ON IMPROVING MULTIOBJECTIVE GENETIC ALGORITHMS
FOR DESIGN OPTIMIZATION

S. Narayanan and S. Azarm
Department of Mechanical Engineering
University of Maryland

College Park, Maryland 20742

USA

1. Abstract

The paper presents some new improvements to Multi-Objective Genetic Algorithms (MOGAS) as reported in the
literature. MOGA modifies certain operators within the GA itself to produce a multiobjective optimization technique.
The improvements are made to overcome some of the shortcomings in niche formation, stopping criteria and
interaction with a design decision-maker. The technique involves filtering, mating restrictions, and the use of objective
constraints. A step-by-step procedure for an improved MOGA has been developed and demonstrated via two
multiobjective engineering design examples: (i) two-bar truss design, and (ii) vibrating platform design.

2. Keywords
Multiple objectives, genetic algorithms, design optimization.

3. Introduction
A general Multi-Objective Optimization Problem (MOOP) with m objective functions is expressed as,

Minimize f(x)={f](X),..., f;i(%), ...[,,,(%)}
subject to: xe D)
D={: gj(x) <0,j=1,..,J, hk(x)= 0, k=1,....K}

Due to the conflicting design objectives in a MOOP, the term “minimize” generally refers to a solution (hereafter called
a Pareto solution) around which there is no way of improving any objective without worsening at least one other
objective (see, for example, [1]). In the paper, to distinguish between a Pareto point (or set) in transition (i.e., Pareto for
the current population) and a MOOP Pareto point (or final solution set), the former is referred to as a non-inferior point
or set while the latter is referred to as a Pareto point or set.

Genetic Algorithms (GAs) have been modified to handle multiple objectives [2] so that the problem need not be
converted into a series of single objective optimization problems. These modified GAs have come to be known as
Multi-Objective Genetic Algorithms (MOGAs). MOGAs rely on a fitness assignment strategy different from that of
single objective GAs. In MOGAs, a number of schemes have been proposed for forming a fitness function (see, for
example, Fonseca and Fleming [2] and Jones et al.{3], wherein further references can be found).

In this paper, some new improvements to the MOGA developed by Fonseca and Fleming [2] have been proposed. The
main shortcomings of the current MOGA techniques are described in Section 4. This is followed with an overview of
some proposed improvements to MOGA in Section 5. Two engineering design examples that demonstrate the
application of the improved MOGA is presented in Section 6. The present paper is a short version of the work reported
by Narayanan and Azarm [4] wherein additional details are given.

4. Some MOGA Problems

MOGA obtains the Pareto set in an all-at-once manner and thus it must be able to sample as large a Pareto set as
possible and produce solution points which are uniformly spread across the set. Also, the smoothness of the Pareto set
may depend on how early the MOGA converges. That in turn depends on the stopping criteria used in the algorithm.
For single objective GAs, one of many different stopping criteria can be used depending on the problem. But stopping
criteria such as “no improvement in an objective function value for N generations™ cannot be used in a MOGA. This
calls for a technique to detect when the Pareto set has been obtained. Three main problems are identified, as discussed
next.

Problem 1: The first problem is how to guide the population out of closed-form niches and encourage it to sample as
large a Pareto set as possible. In order to achieve this, two requirements need to be met. Firstly, the method needs to
identify “groups” or “clusters” of individuals in the non-inferior set. There are usually several niches that form early on
during the design evolution. As MOGA proceeds, these niches tend to spread out, but the process can be hastened

considerably by building in some sort of rule at the parent selection stage. Secondly, the method needs to prevent these
niches from deepening and growing. This would involve a method to prevent parents from the same region or niche
from mating to produce offspring.

Problem 2: The second problem is how to impose stopping criteria which reliably detect when the Pareto set has been
obtained and whether or not the Pareto set is “uniformly spread”. A uniformly spread Pareto set should not have groups
of solutions clustered together in some places and gaps in other places. These gaps and clusters are the result of niche
forming tendencies of populations.

Problem 3: The third problem is how to give the designer the flexibility to choose a particular region of the Pareto set
in order to recursively zoom into the region. An advantage of an interactive method like this is that the population size
needed at a given stage in the process could be very small. For example, if the designer chooses an

a posteriori MOOP method (e.g., see the review in [4]), a detailed Pareto set might have to be generated. This would
involve using a large population because it has been noted that the number of points on the Pareto set is almost equal
the population size itself, since the population tends to become non-inferior and inferior solutions are weeded out early.
Hence, an interactive method would involve a small population that converges much faster than a large population. The
disadvantage would be that it would be more difficult to spread out the small population across the entire set.

5. Improvements to MOGAs

A four pronged approach is developed to resolve the above mentioned problems (see [4], for details). The
modifications described next make improvements over existing practices (see, for example, [2]) in MOGAs. The thrust
is in making MOGA interactive with the designer and incorporating decision-making strategies in the fitness
assignment stage. The approach also involves filtering, mating restrictions and the idea of objective constraints. The
stopping criteria introduced helps in detecting when the Pareto set has been obtained.

Stopping criteria modification: Developing a stopping criteria for a MOGA is more difficult than those for a single
objective GA. To detect improvement in the non-inferior set between one generation and the next, one has to maintain
two sets of non-inferior solutions. A three-step scheme based on a L, norm (the Euclidean norm) has been implemented
here to simultaneously detect improvement and spread uniformity of the non-inferior set.

The scheme is as follows. First, for each individual in the non-inferior set, the distance from the ideal point (or a good
point as identified by the designer) is computed. Hence, for each generation, one set of L, norms is obtained. Second,
the mean and standard deviation of the L, norms are calculated. Third, as the non-inferior set improves across
generations, the points on the set get closer and closer to the ideal point. Therefore, the distance of each point on the set
from the ideal point decreases as the convergence gradually is achieved. This decrease in L, norms can be measured by
their mean, and the spread can be measured by the increase in standard deviation. If the improvement in the mean is
less than some small number (tolerance), the MOGA can be assumed to have converged and is stopped.

Filtering and mating restrictions improvement: At each generation, once the non-inferior set has been obtained, a
filtering routine can go through the population and delete some individuals from each niche. The number of individuals
to delete would depend on how crowded the niche is, i.e., what the density is. This process is similar to “infighting”
observed within natural communities, although the reason there is competition for scarce resources. In the MOGA, the
reason is to help the designer focus clearly on the problem and understand it better. The deleted individuals are then
replaced by those randomly generated.

The observation that parents in a niche tend to proliferate extensively leads one to the conclusion that less mating
among close “cousins” might lead to a more uniform sampling of the Pareto set. Hence, a limit using a distance metric
in the objective function space could be used in preventing close parents from mating. One way to implement it would
be to compute the distance between the two parents selected for reproduction. If this distance is less than some limiting
distance (tolerance), the parents shall not be allowed to mate, otherwise, they are allowed to mate. The limiting distance
would depend on how dense the niches are and what the spread of the population is.

Objective constraints improvement: Once the entire spread of the non-inferior set is shown to the designer, (s)he
should have the flexibility to zoom into a desired region by imposing objective constraints. This essentially involves (i)
pausing the GA, (ii) imposing the necessary constraints, and (iii) resuming the GA. This process can be carried out
every time the GA converges or as often as the designer wishes. The MOGA can be easily adapted to prevent any
individual violating the objective constraints from reproducing.

Constraint evaluation improvement: Constraints are usually evaluated for all individuals in the population.
However, if they are evaluated only for the non-inferior individuals instead of the entire population, then it is likely that
substantial saving in computational effort is obtained. Moreover, if a constraint is violated by a non-inferior individual,
it is undesirable to completely preventing it from reproducing into the next generation. This is because such an

individual may contain some genes that might give rise to future Pareto solutions. For this reason, only non-inferior
individuals are evaluated for constraint violation and if any constraint is violated, a mild penalty is imposed in the form
of reduced fitness. This reduced fitness is achieved by assigning the rank of N to the individual violating the constraint
(N is the population size).

6. Examples

6.1. A Two-Bar Truss Example
This example was originally formulated in the literature [5] as a single objective two-bar truss problem.The problem
has been modified here to a two-objective problem:
ST 2,\1/2 23\1/2
Minimize £, pme = X 16+ y°)"“ +x,(1+ y)
2016+ y*)"'?

yx
Subject to: 2)

f volume <01
f stress 4o < 100000

atress 5, < 100000

Minimize fmmAC =

1<y<3
XXy >0
Starting iteration 239 Generations
60000 90000
. 80000 1o
50000 70000 1
40000 80000 i
. 50000
l:mooo 0000 i
20000 30000 %
i) 20000
10000 4
10000 -
0 LAY S S 0 ad XY P PP,
0.02 0.04 0.08 0.08 01 042 0 0.02 0.04 0.08 0.08 0.1 0.12
Volums Volume

Figure 1. Two-bar truss solution results with the improved MOGA in the objective space

Fig. 1 shows the non-inferior set after a number of iterations. The total number of function evaluations used to obtain
the Pareto set is 9,523. This number is significantly less than that obtained with MOGA without improvements (i.e.,
27,296). The number however may change significantly depending upon the GA parameters.

6.2. A Vibrating Platform Example

The second example is a modification of a vibrating platform problem that was originally formulated as a single
objective being the maximization of fundamental frequency, with an estimated cost being one of the constraints [6]. It
has been modified here to include cost as the second objective, and also by making the problem combinatorial (both
material and geometry of the platform is synthesized). The problem is to design a platform with a motor mounted on it.
The machine setup is simplified as a pin-pin supported beam carrying a weight. A vibratory disturbance is imparted
from the motor onto the beam, which is of length L, width b, and symmetrical about its mid-plane. The beam has a
sandwich structure made up of three-layer materials 1, 2, and 3. Variables d; and d,, respectively, locate the contact of
materials 1 and 2, and 2 and 3. Variable d; locates the top of the beam. The combinatorial variables M; refers to the
material type for layer i (i=1,2,3) that each of the three layers 1, 2, and 3 of the beam can be made of. The mass density
(P), Young’s modulus of elasticity (E), and cost per unit volume (c) for each material type is also given in Table 1.

Material type M; P (Kg/m?) E(N/m?) ¢ ($/volume)

1 2,770 70x10° 1,500
2 100 1.6x10° 500
3 7,780 200x10° 800

Table 1. Vibrating platform example - material properties

The objective functions are the fundamental frequency, f;, and the cost of the setup, f;. The complete formulation is as
follows:

Maximize f,(d;,d,,d;,b,L,M;) =@ /2L?)ELp)"
El = 2b/3)[Ey, 4, +By, (d,° —d,*) +Eyy, (d5° -d,)]
p =2b[py,d; + Py, Ay —d1) + oy, (d3 —d))]
Minimize f,(d;,d;,d;,b,M;) =2b[cy d; +0y, (d; —d)) +Cy, (d3 —dy)]
Subject to: 3
g = uL—2800<0
g =dy,—d; -001<0
g3 =dy—d,—001<0
84 =005<d, 205
g5=02<d,<05
8s=02<d; <06
g7=0355b<0.5
g =35L<6

The aim is to design the sandwich beam, i.e., find L, b, d,, d,, d3, M;, My, M, in order to minimize the vibration of the
beam that results from the motor disturbance, as well as to minimize cost. This example was solved with the improved
MOGA and the results are given in Fig. 2.The convergence was again somewhat faster with the improvements (127
generations as compared to 150 generations without) and the number of function evaluations required is 2115. In
addition, as a result of greater sharing between non-inferior solutions and mating restrictions, the final number of the
solutions detected, which is 9, is also greater than the MOGA without the improvements, which was 7.

Starting iteration 127 Generations
250 500
%
150 s 300
j 100 'y | 200 &.
50 - 100 ¢ *
®
0 T T T | 0 T T v y
-400 -300 -200 -100 0 -400 -300 -200 -100 0
(-) Fundamental frequency (Hz} (-} Fundamental frequency (Hz}

Figure 2. Evolution of non-inferior set (MOGA with improvements) for the vibrating platform

7. Conclusion

Four new improvements are made in MOGA. They include (i) introduction of a new stopping criterion that is based on
statistical rather than deterministic metrics, (ii) a metric to ensure uniformity and spread of Pareto solutions, (iii)
incorporating an interactive decision-making technique in the fitness assignment stage, and (iv) reducing computation
time by eliminating some constraint evaluations. The MOGA presented in this paper can detect the Pareto set reliably
and quickly. It can also obtain the Pareto set irrespective of whether or not it's in a non-convex region. This is
especially useful in engineering design problems where non-convex Pareto sets are encountered. MOGA with the
improvements also ‘spreads’ out in search of the Pareto set, thereby detecting a larger range of the Pareto optimal
points when compared with MOGA without the improvements.

It can be clearly seen that for the vibrating platform problem, there are only a few Pareto solutions. This is not
surprising, since in a discrete problem there are a finite number of Pareto points and niche formation deters the
detection of all Pareto solutions. On the other hand, for continuous variable problems such as the two-bar truss, the
Pareto set is essentially a continuous curve, i.e., it is always possible to find a Pareto solution which lies in the
neighborhood of any two Pareto points. Therefore, in continuous problems, two close Pareto points can be used as
parents to generate another Pareto point in the neighborhood. That is precisely how the MOGA proceeds, it can thus
keep proliferating and gradually detect a large part of the Pareto set.

As shown in the paper , the stopping criterion introduced can greatly reduce the number of function evaluations. An
important part of this criterion is to assess when the Pareto set has been obtained. The Ly-based technique described
does detect, in a heuristic sense, the Pareto set. There is however scope for further improvement in assessing the quality
of the Pareto set in a more reliable and quantitative terms. This aspect should be further investigated as part of the
future research in this area.

8. Acknowledgements
The work presented in this paper was supported in part by NSF grant DMI-9700059, Maryland Industrial
Partnerships,and by an ONR contract N000149810842.

9. References

[1] Eschenauer, H., Koski, J., and Osyczka, A.(Editors), 1990, Multicriteria Design Optimization, Springer-Verlag,
New York.

[2] Fonseca, C.M. and Fleming, P.J., 1998, “Multiobjective Optimization and Multiple Constraint Handling with
Evolutionary Algorithms-Part I: A unified formulation,” IEEE Trans. on Systems, Man, Cyber., 28(1), 26-37.

[3] Jones, D. F., Tamiz, M., and Mirrazavi, S. K. 1998, “Investigation into the Incorporation and Use of Multiple
Objectives in Genetic Algorithms,” Proceedings of MOPGP '98, Quebec City, Quebec, Canada.

[4] Narayanan, S., and Azarm, S., 1999, “On Improving Multiobjective Genetic Algorithms for Design Optimization,”
Structural Optimization (accepted).

[5] Kirsch, U. 1981, Optimal structural design. New York: McGraw-Hill.

[6] Messac A. 1996, “Physical Programming: Effective Optimization for Computational Design,” AIAA Journal, 34(1),
149-158.

