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Abstract. Purpose of the paper is to introduce a methodology for a
parameter-free multi-criterion optimization of water distribution net-
works. It is based on a two-level approach, with a population of inner
multi-objective genetic algorithms (MOGAs) and an outer simple GA
(without crossover). The inner MOGAs represent the network optimiz-
ers, while the outer GA — the meta GA — is a supervisor process adapting
mutation and crossover probabilities of the inner MOGAs. The hyper-
volume metric has been adopted as fitness for the individuals at the
meta-level. The methodology has been applied to a small system often
studied in the literature, for which an exhaustive search of the entire
decision space has allowed the determination of all Pareto-optimal so-
lutions of interest: the choice of this simple system was done in order
to compare the hypervolume metric to two performance measures (a
convergence and a sparsity index) introduced on purpose. Simulations
carried out show how the proposed procedure proves robust, giving bet-
ter results than a MOGA alone, thus allowing a considerable ease in the
network optimization process.

1 Introduction

The problem of choosing the optimal combination of pipe diameters, in order to
minimize the overall cost of a looped water distribution system (given a finite set
of commercial available sizes), is proven to be NP-hard [1]. In the last decades,
many authors have proposed several approaches based on different optimization
techniques, mainly linear programming [2], [3], [4], [5], [6], [7] and non-linear
programming [8], [9].

More recently, several researchers have applied genetic algorithms (GAs) to
single-objective optimization of water supply systems, introducing some improve-
ments with respect to the simple GA, [10], [11], [12], [13]. [14] applied GAs to
optimal location of control valves, while [15] and [16] to leak detection and cali-
bration problems; [17] used GAs for optimal scheduling of pipe replacement.

[18] have shown that networks designed taking into account only cost mini-
mization (and in the case of just one loading condition) tend to branched config-
urations, as also pointed out by [19]. In a recent editorial, [20] stressed the need
of adopting a multi-objective approach for the design of water supply systems.



These last years have seen an increasing number of applications of multi-
objective optimization algorithms: generally, only two-objective problems have
been considered, the first criterion being the total cost of the system and the
second representing a measure of the network performance: [21] adopted for the
first time a multi-objective algorithm for water network rehabilitation, minimiz-
ing cost and maximizing benefits; [22] considered the minimization of cost and of
the maximum pressure deficit at nodes; [23] took into account the maximization
of entropy or demand supply ratio, while [24] and [25] the maximization of the
reliability of the system.

A multi-objective evolutionary algorithm (MOEA) has two main goals [26]:
firstly, to find a set of solutions as close as possible to the Pareto optimal front;
secondly, to find a set of solutions as diverse as possible. However, the perfor-
mance of the algorithm is quite affected by crossover and mutation type and
probability: as a result, many runs with different starting populations and pa-
rameter sets are usually performed in order to find a good population of non-
dominated solutions.

In this paper, a different approach is proposed, consisting of a population
of MOGAs at the inner level, and an outer single-objective GA (meta GA)
controlling the MOGAs crossover and mutation probabilities. The fitness of each
individual of the meta GA is given by the hypervolume (that is, the amount of
the objective space dominated by the obtained non-dominated front, [27], [28])
obtained by the inner MOGA it represents.

This methodology reconsiders some ideas of [29] and [30], and is non-self-
adaptive [31], thus basically different from the self-adaptive mechanism based
on the inclusion of operators and control parameters within the individual rep-
resentation, [32], [33].

In order to asses the validity of the hypervolume metric, it has been compared
to two performance measures, namely a convergence and a sparsity index [34],
which quantify the exploitation and exploration issues of the inner MOGAs.

The paper is organized as follows: in Section 2, the mathematical formulation
of the problem is presented, together with the test problem adopted for the
numerical analyses; Section 3 describes the performance metrics, while Section
4 the two-level approach; Section 5 presents the results obtained and Section 6
some concluding remarks.

2 Two-objective water supply system optimization

2.1 Mathematical formulation

The problem is formulated as the minimization of the total cost of the network
and the maximization of the minimum pressure level at nodes: for pressure level,
we mean the deviation from the required pressure (see Figure 1 for an explana-
tion), and hence both negative and positive values are allowed; however, in this
work, the attention is focused only on negative values, indicating situations of
pressure deficit (the maximum bound on the pressure level is then zero). The



problem is constrained by continuity of mass at every node and energy conser-
vation along every path in the system, giving:
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in which
- di,...,dn, are the N, (number of pipes in the network) decision variables;

- ¢(d;) and L;; are, respectively, the cost per unit length and the total length
of pipe j whose diameter is d;;

- D is the set of the Np available commercial diameters (whose minimum and
maximum sizes are dmin and dmax, respectively);

- N, is the number of supply nodes in the system;

- Hj, is the actual piezometric head at node k;

- H;*? is the required pressure at node k;

- Qir and @ 1 respectively represent the n; and my, flows entering or leaving
node k;

- Qe,r is the erogated flow at node k;

- p; is the number of links belonging to path j;

- hy,; represents the energy loss in link ¢ of path j;

- AEj is the total energy loss along path j: for a closed loop, AE; = 0.

Equations (3) and (4) are guaranteed by the hydraulic simulator (in this
work EPANET 2 [35]), to which the optimizer has been coupled. The following
expression for the energy loss, hy, has been adopted:

Q1.852L

hy =10.668 W ™

in which @ is the discharge in the pipe (m®/s), L the length (m), d the diameter,
and Chw is the Hazen—Williams (adimensional) pipe roughness coefficient.

2.2 Test problem adopted for the analyses

The two-loop network illustrated in Figure 2 has been considered, [2]: all links
are 1000 m long, with a Hazen-Williams coefficient Cgw = 130. Nodal charac-
teristics are also shown on the figure, while the available commercial diameters
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Fig. 1. Actual piezometric line and required pressures in a water supply system.

(inches) are: 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 10, 22, 24, and their respective
costs per unit length ($/m): 2, 5, 8, 11, 16, 23, 32, 50, 60, 90, 130, 170, 300, 550.

The decision space consists of 148 configurations, and has been totally ex-
plored by exhaustive search (requiring nearly 50 hours of CPU time on a Pentium
ITT 1GHz). In particular, the subsequent analyses have been focused only on the
region of interest (ROI) of the objective space characterized by configurations
having minimum pressure level at nodes not below -30 meters (Figure 3): this
resulted in 647691 solutions inside the ROI, of which only 38 are Pareto-optimal,
and are reported on Table 1.
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Fig. 2. Two-loop network adopted for the numerical analyses.

A problem which arises when considering such multi-objective problem is the
huge dimension of the Pareto front: there are actually non-dominated individuals
characterized by not realistic pressure levels (extremely negative numbers). In



Table 1. Pareto-optimal solutions belonging to the region of interest for the two-loop
network optimization problem.
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Fig. 3. Region of interest of the objective space with Pareto-optimal solutions eviden-
tiated.



order to avoid such (useless) configurations, the search has been biased towards
the solutions inside the ROI through a bending of the Pareto front as indicated
in Figure 4, thus transforming all Pareto-optimal solutions outside the ROI into
dominated individuals: mathematically, this has been achieved through a slight
change in the first objective function, namely:

flds . dN)Z{EieDzszlc(di)Lij it fody,...,dn,) > —30.0;

Ez’ED Ej:p]_ C(dz)Lm +p[ - fz(dl, . ,de) - 300] otherwise.
(8)

in which p > 0 is a penalty factor.
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Fig. 4. Bending of the Pareto front in order to bias the search only on configurations
of interest: (a), Pareto front with non-dominated solutions evidentiated; (b), preferred
region of the frontier, with Pareto-optimal solutions outside the ROI being now domi-
nated.

3 Performance metrics

Two kinds of performance measures have been considered:

1. the hypervolume, HV, which quantifies with only one scalar the amount of
criterion space dominated by the current non-dominated front, [26], [27],
[28]. Since we knew the Pareto-optimal solutions (POS), it was decided to
adimentionalize the metric with respect to its maximum value.

2. Two indices representing, respectively, the convergence towards the non-
dominated solutions and the distribution of the individuals in the generic
population along the front [34].

In the following, the convergence and sparsity indices are described in more
detail.



3.1 Convergence index
The convergence index, CZ, is expressed as:

POS

CT = W(l -3) 9)

where N ff OS5 represent the number of POS inside the ROI found by the algo-
rithm, NP9 = 38 (the size of P*, P* being the set of Pareto-optimal solutions
reported on Table 1), and & is the average of the adimentionalized Euclidean
distance values of all individuals inside the ROI from their nearest solution in
P>, given by:

_ 1 1 FOS — fii \? 705 = fai \?
0= N EOI > 0= NEOI Z\/( +
i i

fl,ma.x - fl,min f2,max - f2,min
(10)

where NEOT is the number of individuals inside the ROL, f;; and fs; are re-
spectively the cost and pressure level of the i-th individual, f?% and ff{°
the same quantities referred to the Pareto-optimal solution closest to the ¢-th
individual, fl,max = 419000, fl,min = 264000, f2,ma.x =0, f2,min = -30 (these

last values delimiting the ROT). The symbols are also represented in Figure 5.
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Fig. 5. Example of a generic population of 50 individuals (49 of which are inside the
ROI here illustrated) and the Pareto front: solid lines connect each individual to its
closest non-dominated solution, and represent the distance d; in equation (10).

3.2 Sparsity index

The sparsity index, SZ, is expressed as:
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where NFOS represents the number of POS in P* which have been approached
(reached) by at least one individual in the population (of course, every POS found
is also reached, but the contrary is not necessarily true), zmax is the maximum
number of consecutive (adjacent) POS in P* not reached, and o44im takes into
account the actual distribution of individuals around the POS reached.

To understand the meaning of zmax and o44im, consider the example of be-
fore, in which 49 individuals are inside the ROI, and 29 POS have been reached:
the actual distribution may be deduced from Figure 5 (counting the individuals
around each POS), and is schematized in Figure 6 (a). Actually, the individu-
als inside the ROI may be distributed in many different ways around the POS
reached: in particular, there will be (best) distributions characterized by the min-
imum standard deviation, as in Figure 6 (b), and (worst) distributions with the
maximum standard deviation, as in Figure 6 (¢). 044im is the adimentionalized
standard deviation between these two extreme situations.
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Fig. 6. Schematic representation of the distribution of the 49 individuals of the pop-
ulation around the NF°S = 29 reached. In (a), the actual distribution is reported
(cfr. Figure 5), while in (b) and in (c), two examples of distributions characterized, re-
spectively, by the minimum standard deviation (best distribution) and the maximum
standard deviation (worst distribution). n, is the number of individuals that have ap-
proached the n-th POS, whose progressive number is shown below (according to the
numeration given on Table 1 and represented in Figure 3).

4 The two-level approach

The methodology consists of a population of inner multi-objective GAs and an
outer simple GA, adapting crossover and mutation probabilities of the inner level.



Figure 7 shows a schematic representation of the inner and outer populations. In
the figure, N;, and N,,; are the inner and outer population sizes, respectively,
while p,, and p. the mutation and crossover probabilities.
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Fig. 7. Representation of inner and outer GAs for the two-loop network.

4.1 The inner GA

Two elitist multi-objective evolutionary algorithms have been implemented at
the inner level with the aid of GAlib library [36], which has been modified in
order to handle multi-criterion optimization problems:

1. the NSGA-II [37], a parameter-free NSGA based on the crowding distance of

individuals; one problem of NSGA-II resides in the way elitism is performed,
since it determines a deletion of solutions of non-elitist fronts and, as a result,
the search process may suffer from stagnation or premature convergence.

. The Controlled NSGA-II (CNSGA-II), introduced by [38], which, if com-
pared to NSGA-II, performs elitism in a controlled manner, that is, instead
of preserving all individuals of rank one, each front is allowed to have an
exponentially decreasing number of solutions, thus forcing part of all non-
dominated fronts to coexist in the new generation.

Every individual has a direct coding of commercial diameter values for each

of the 8 decision variables, representing the 8 diameters to be assigned to the
network. A population size of N;, = 50 individuals has been adopted, together
with uniform crossover and adjacent mutation, allowing only changes to the

nearest larger or smaller diameters.



4.2 The outer GA

The meta GA is a simple GA with elitism, no crossover operator, a population
size of N,yt = 5, and a binary (gray) coding, mapping both mutation and proba-
bilities from 0 to 1 with 3-digit precision (thus requiring 10 bits each), for a total
of 20 bits chromosome representation. For every individual at the outer level,
an inner multi-objective evolutionary algorithm is performed, and its fitness is
represented by the (maximum) hypervolume HV reached during the evolution
process.

5 Results

Numerical experiments have been divided in two phases: in the first, an assess-
ment of the hypervolume metric has been performed, through its comparison
with the convergence and sparsity indices previously introduced; in the second,
the two-level approach has been tested.

Tables 2-5 report the results obtained with the NSGA-II and CNSGA-II,
indicated as mean and standard deviation over ten runs with different initial
populations. In particular, Tables 2 and 4 refer to the last generations of the
evolution process, while Tables 3 and 5 to the best results achieved during the
runs. Some considerations follow:

1. there is a good agreement between the hypervolume metric and the conver-
gence and sparsity indices, also evidentiated by the number of Pareto-optimal
solutions found or reached.

2. There may be situations in which hypervolume is high, although convergence
and sparsity indices are not; this is due to the discrete character of the
problem and to the actual distribution of Pareto-optimal solutions: looking
at the front in Figure 3, it may be noted that there are some clusters of
solutions which only marginally contribute to the hypervolume (a closer
look at Table 1 reveals also that neighbour solutions on the objective space
are characterized by changes in only one or two diameters).

3. CNSGA-II actually outperforms NSGA-II with respect to all the metrics,
having also lower values of standard deviations, especially for the sparsity
index; looking at Figure 8, which shows an example of the best evolutions of
the two MOGAs, it may be observed that CNSGA-II exhibits both higher
rapidity in reaching final values of performance measures, both lower oscil-
lating evolutions, as confirmed by the comparison between Tables 4 and 5;
NSGA-II, on the contrary, shows higher oscillating patterns (cfr. Tables 2
and 3).

4. There is a dependance of the two MOGAs with respect to crossover prob-
ability. Although mutation probability has been kept constant, some runs
performed confirmed the same behaviour, thus introducing the problem of
the optimal choice of such values: this motivated the two-level approach.

Tables 6 and 7 report the results obtained with the two-level methodology,
respectively adopting roulette wheel and tournament selection for the outer GA.



Table 2. Values of performance measures obtained with NSGA-II at last generation,

for different crossover probabilities, p.: p is the mean and o the standard deviation.
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Table 3. Best values of performance measures obtained with NSGA-II, for different

crossover probabilities, p.: p is the mean and o the standard deviation.

HY

(/A

ST

POS
Ny

NTPOS

Zmax

Pe

I

(o2

©

(o2

m

g

I

(o2

m

g

I

g

0.00
0.25
0.50
0.75
1.00

0.9324
0.9554
0.9619
0.9774
0.9430

0.0824
0.0681
0.0671
0.0470
0.0717

0.3602
0.4716
0.6063
0.6272
0.4292

0.2900
0.3239
0.3345
0.3021
0.3200

0.6539
0.6949
0.7698
0.7737
0.5272

0.2008
0.1824
0.1694
0.1440
0.1474

13.80
18.00
23.10
23.90
16.40

10.99
12.29
12.65
11.42
12.13

27.40
28.80
31.10
31.40
29.80

6.48
5.47
4.93
4.08
5.56

1.90
1.70
1.30
1.40
1.50

0.70
0.64
0.46
0.49
0.50

Mean

0.9540

0.0673

0.4989

0.3141

0.6839

0.1688

19.04

11.89

29.70

5.31

1.56

0.56

Table 4. Values of performance measures obtained with CNSGA-II at last generation,
for different crossover probabilities, p.: p is the mean and o the standard deviation.
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Table 5. Best values of performance measures obtained with CNSGA-II, for different

crossover probabilities, p.: p is the mean and o the standard deviation.
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Numbers represent the hypervolume obtained after 10 and 20 outer generations
(indicated in parentheses in the Tables). CPU times were about 30 seconds for
each outer generation. It may be observed that:

1. fitness obtained in one run is much higher than that achieved with a MOGA
alone, even when several runs with different parameters are performed.

2. Very often results after 20 generations determine only a slight improvement
with respect to those after 10.

3. NSGA-IT and CNSGA-II present nearly the same performances, as well the
tournament and roulette wheel selections.

Table 6. Results obtained with the two-level approach and adopting roulette wheel
selection at the outer level: numbers represent hypervolume, with g the mean and o
the standard deviation.

Run[NSGA-II (10)|NSGA-TI (20)|CNSGA-II (10)| CNSGA-II (20)
1 | 0999622 | 0.999622 0.999667 0.999667
2 | 0999514 | 0.999710 0.999656 0.999656
3| 0999190 | 0.999585 0.999434 0.999483
4| 0999633 | 0.999650 0.999658 0.999761
5| 0999673 | 0.999719 0.999382 0.999382
6 | 0999634 | 0.999661 0.999687 0.999687
7 | 0.999673 | 0.999673 0.999652 0.999652
8 | 0999122 | 0.999698 0.999064 0.999481
9 | 0999504 | 0.999591 0.999183 0.999508
10 | 0.999630 | 0.999630 0.999532 0.999532
o | 0999520 | 0.999654 0.099492 0.999581
o | 0.000190 | 0.000045 0.000211 0.000113

6 Concluding remarks

The paper has presented a two-level methodology for multi-criterion optimiza-
tion of water distribution systems. Results show how such an approach, although
requiring more computational effort than using a multi-objective genetic algo-
rithm alone, is able to achieve very good performances in only one simulation
run, thus proving its robustness and easing the network optimization process. In
this work, a non-self adaptive procedure has been proposed: future research will
be focused on the inclusion of mutation and crossover probabilities in the string
representation, as in a fully self-adaptive mechanism.
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