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Abstract- Since information in engineering design 

problems can be both quantitative (Q
T
) and qualitative 

(Q
L
) in nature, combining both types of information 

can result in more realistic solution for real world 

optimisation problems. However, most of the 

approaches reported in literature are incapable of 

conducting optimisation search in such mixed 

environment. Therefore this paper proposes a 

mathematically proven methodology for handling 

integrated Q
T
 and Q

L
 search space in real world 

optimisation problems. The paper begins by 

presenting the definition of these optimisation 

problems an analysis of the challenges that they pose 

for existing optimisation strategies and related 

research. The paper then presents the proposed 

solution strategy and the mathmatical proof. 

Furthermore, a case study on rod rolling problem is 

presented to validate the effectiveness of the proposed 

metholodology. The paper concludes with a brief 

outline of limitations and future research activities.

1. Introduction 

Information in real world engineering design problems 

can be both quantitative (QT) and qualitative (QL) in 

nature (Oduguwa et al., 2003). QT models are very 

popular in real world design optimisation problems. Even 

though such models have been very useful in providing 

detailed information about the design problem, they can 

be ineffective in situations where the mathematical 

formulation of a design problem is not available or is 

partially defined. In such cases QL information can 

provide a valuable access to the design problem by taking 

advantage of human approximate reasoning to improve 

the complex design problem representation. Integrated QT

and QL search space can therfore be defined as the 

combination of both types of information within a 

framework that enables an optimisation algorithm to 

facilitate a search towards a desirable goal. This tends to 

improve the efficient use of information and can result in 

more realistic solutions.  

Such mixed forms of information within real world 

design optimisation problems can either complement, 

substitute or contradict each other. This paper focuses on 

the forms that contradit each other. Here the mixed type 

of information are conflicting in nature. There are various 

approaches reported in the literature for dealing with such 

mixed information engineering design problems. When 

used with design search scenarios, most of these 

approaches do not explore the trade-off relationships that 

exist between QT and QL search space. This can bias the 

search toward sub-optimal regions and can result in 

unrealistic solutions.    

This paper proposes a methodology to deal with the 

challenges posed by integrated QT and QL search space 

optimisation problems. The mathematical proof of the 

solution strategy is also presented.  Furthermore, a case 

study on rod rolling problem is presented to validate the 

effectiveness of the proposed metholodology. The paper 

concludes with a brief outline of limitations and future 

research activities.    

2. Challenges in Integrated Q
T
 and Q

L

Search Space

There are several challenges that can inhibit the wider 

applications of current optimisation strategies for real 

world design problems with contradicting QT and QL

information. Some of these are outlined below. 

It is difficult to develop solution strategies that 

combine both types of information within an 

optimisation framework since most optimisation 

techniques deals with QT models only. 

Solving real-world problems could present scalability 

issues. The computational cost required to generate QL

models when simulating the problem is exponential 

with increasing number of variables. 

Developing QL and QT search procedures for 

objectives greater than two can be complex. Higher 

number of QL objectives has the tendency to increase 

the fragmentation in the search space. This is largely 

due to the discreteness in the QL search space.    

It is difficult to ensure the appropriate correlation of 

the granularity of the QL models with the measurement 

scale of the QT models. Inappropriate correlation could 

deceive the genetic search to a local optimum. 

3. Related Research 

It is observed that although some attempt has been made 

to handle the QL and QT knowledge separately within a 

design optimisation framework, there is not much 
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reported work on handling the two types of knowledge 

simultaneously within an evolutionary computing based 

optimisation framework.  

Several approaches have been developed such as 

interval analysis (Moore, 1979), standard sensitivity 

analysis and probabilistic analysis (Siddall, 1983). Most 

of these approaches can be used to reason qualitatively 

about engineering design problems but are incapable of 

simultaneously dealing with QT models within 

optimisation framework.  

There are several approaches developed based on the 

mathematics of fuzzy sets to incorporate QL knowledge 

into design. Most of the applications of fuzzy sets within 

the field of decision making consist of fuzzification of 

classical theories, where the fuzzy theories attempt to deal 

with the imprecision and vagueness in human reasoning 

of design variable preferences, constraints and goals. 

Some of the earlier work dealing with the optimisation of 

fuzzy systems was by , Tanaka et al., (1974), and 

Zimmerman (1974). Since then several variations of fuzzy 

based approaches have been reported in literature. 

Approaches based on fuzzy mathematical programming 

include fuzzy goal programming, flexible programming, 

fuzzy multi-objective optimisation, possibilistic 

programming with fuzzy preference operators and fuzzy 

linear programming. Antonnsson and Wood (1989) also 

developed a fuzzy based approach, referred to as the 

Method of Imprecision for engineering design problems 

where designers are given preference over a range of 

design values. Most of these approaches fuzzify the 

elements (constraints, goals or design variables) of an 

underlying mathematical formulation and do not combine 

the QL evaluation within the optimisation search.  

There are a number of other fuzzy based approaches 

reported in literature where QL knowledge has been used 

in conjunction with QT models. Fuzzy Genetic Algorithms 

(FGA) manages problems in an imprecise environment. It 

combines fuzzy concepts with genetic algorithms. 

Approaches using fuzzy fitness evaluation function for the 

GA chromosomes has been reported in literature (Dahal et 
al., 1999). In fuzzy optimisation Hsu et al., (2001) 

adopted fuzzy optimisation algorithm for determining the 

optimal gap openings of the programming points in the 

blow moulding process and in fuzzy controlled simulation 

optimisation. Roy (1997) developed a design optimisation 

framework where both types of criteria or knowledge are 

handled separately. Most of the approaches reported 

above simply do not provide the means to deal with both 

QT and QL information simultaneously within an 

optimisation framework. Recently, Oduguwa et al.,
(2003) extended the work of Roy (1997) by developing an 

integrated QT and QL evaluation optimisation approach 

which combines QL evaluation from designers with QT

formulation of the design problem within an optimisation 

framework. The elaborate approach adopts the principle 

of multi-objective optimisation to explore the functional 

relationship between the QT and QL knowledge.  

In previous work, the authors did not justify the 

functional relationships between the QT and QL

information. The presence of such a functional 

relationships was treated as an empirical observation from 

previous work. This however presents a weakness for the 

proposed solution strategy. Therefore, this paper presents 

a mathematical justification of the functional relationship 

between the mixed information. This enhances the rigour 

of the proposed soluiton strategy. Furthermore, a case 

study on rod rolling problem is presented to validate the 

effectiveness of the proposed methodology. 

4. Handling Integrated Q
T
 and Q

L
Search

Space

QT search space in the sense of engineering design 

problems is such that for every feasible design point 

identified in the parameter space there is a corresponding 

objective function value. Therefore it is widely accepted 

that a functional relationship exists between the design 

parameters in the parameter space and the objective 

function values. This functional relationship was nicely 

defined by Bottazzini (1986). This is stated as follows:  

Let A and B be two sets, which may or may not be 
distinct. A relation between a variable element x of A 
and a variable element y of B is called a functional 
relation in y if, for all x in A, there exists a unique y 
in B which is in the given relation with x. 

By the same analogy for solutions lying on the Pareto 

front, for every QT solution to a given design problem, 

there exists a corresponding QL evaluation expressing the 

designer�s opinion about the problem. This QL evaluation 

varies in a unique fashion with the QT solution.  

The integrated QT and QL optimisation problem could 

be viewed as a multi-objective problem and an existing 

multi-objective optimisation algorithm could be applied to 

solve such problem. However, this is only applicable in 

those cases where the two objectives conflicts with each 

other (i.e only in those cases where Pareto front exist). 

For solutions lying on the Pareto front, it is widely 

acceped that there is a functional relationship between the 

two objectives. This implies that a multi-objective 

optimisation algorithm could be applied only to those 

integrated QT and QL optimisation problems in which the 

optimum solutions have a functional relationship between 

the two objectives. The section that follows presents a 

mathematical justification for this functional relationship 

and identifies the conditions under which this is true.     

4.1. Mathematical Jusification of Functional 

Relationship 

4.1.1. Theorem 

There exist a functional relationship between both QT and 

QL Pareto optimal solution of design problems.  

4.1.2. Definitions

The following definitions are used in conjunction with the 

mathematical justification. 
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Definition 1:  

QL evaluation is a proposition of the form �if A then B� 
semantically expressing the designers opinion with 
respect to inputs of parameter values into the objective 
function values of a given QT model.  

This is represented as }|)(
~

{
~

XxxfA                           

where the tilde represents the fuzziness in the QL

evaluations, and modelled as stated in definition 2. 

Definition 2:  

If X is a collection of objects denoted generically by x 
then a fuzzy set Ã in X is a set of ordered pairs: Ã ={(x, Ã

(x))  x  X } where Ã (x) is the membership function of x 
in Ã which maps X to the membership space M. 

Definition 3: 

The QT model and the QL model (obtained from definition 
2) represent two  independent objective spaces explaining 
different behavioural aspects of an overall design 
problem. 

Definition 4: 

Two propositions Ã and B
~

 are equivalent if and only if 

the membership function values induced by Ã and B
~

  are 

equal such that:
Xxxx

BA
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Definition 5:  

QT objective function value is a function of the form y = 
f(x), x  X, where y is the objective function value and x is 
a location in the search space. 

The theorem is therefore stated mathematically as 

follows: 

Let {Ã n  I | I [1,0]}, B  such that: 

Ã = {(x, Ã (x)) x  X} 

B = {f(y) y  Y} 

Then K = {[ Ã(x), f(y)]  (x, y)  X  Y} is a functional 
relationship on the QL evaluation A and the associated 
objective function value of the QT model.  

4.1.3. Identification of validity conditions

This section identifies the conditions under which the 

proposed theorem is valid. For a functional relationship to 

exist between the variables x and y, such that y = f(x), 

where x  X, this condition;  x1 = x2 y1 = y2 must be 

satisfied. 

The condition is a standard for functional relationships 

in QT based models. However, this condition is specified 

as proposition P1, for functional relationship between 

both QT and QL solutions to exist. 

P1: )(
~
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This proposition states that for a given set of identical 

objective function values (f(xk), f(xk+1)), the associated QL

evaluations are equal. The equality expression on the right 

hand side is treated in accordance with definition 4. There 

are clearly two cases to be considered in this proposition. 

Case I: xk = xk+1

This is the case when the two designs are the same. This 

implies that both their QT and QL evaluations are also 

equal. Therefore, P1 is unconditionally true for cases 

where the two designs under consideration are the same. 

Case II: xk xk+1

This is the case when the two designs are different. If the 

QT evaluations of two different designs are equal, then 

one of the following conditions is true: 

The corresponding QL evauation of the two designs 

are equal 

The corresponding QL evaluations of the two designs 

are different 

However as stated in this proposition, the proposed 

theorem is valid only if the equality of the QT evaluations 

of the two different designs implies the equality of the 

corresponding QL evaluations. This condition is 

mathematically stated in Lemma 1. Therefore Lemma 1 

provides a necessary condition for the proposed theorem 

to be valid. 

Lemma 1: 

This lemma provides a condition that must be satisfied for 

the solutions to lie on the Pareto front. Here two different 

designs having identical QL evaluations implies that the 

imprecision in human reasoning perceives both solutions 

as being identical. The difference in the designs is not 

perceived to be sufficiently enough to result to different 

QL evaluations.    

The above discussion reveals that a multi-objective 

optimisation algorithm could only be applied to those 

integrated QT and QL problems whose optimum solutions 

satisfy Lemma 1. The converse of LI is P2, however it 

should be noted that L1 is equivalent to the conditions 

above since A  B  !B  !A. 

4.2. Solution Strategy for integrated Q
T
 and Q

L

Search Space Problems 

The fundamental principle for combining the QT and 

QL information is based on transforming the QL

information into cardinal information with the subsequent 

use of multi-criteria method. Evolutionary multi-objective 

optimisation solution approach is proposed as a solution 

strategy for the integrated QT and QL search space 

problem as discussed above. The rational for adopting this 

strategy is based on the following considerations:   

A multi-objective GA is applied for solving the QT

and QL where the cardinality of the objectives is 

greater than one.  

This problem is such that the nature of this 

relationship exhibits a conflict.  

This can be applied to problems that is assumed to 

have Pareto front. Here, Pareto front implies a 

functional relattionship between the two objectives for 

solutions lying on the Pareto front.   



A structured method is required to explore the 

conflicting behaviour of the two objectives.  

The following conditions are presented for which the 

solution strategy applies. 

The QT and QL objectives derived in relation to 

definitions 3 represent objective cardinality greater 

than one. 

The proposed theorem is valid only if the equality of 

the QT evaluations of two different designs implies the 

equality of the corresponding QL evaluations(Lemma 

1). 

4.3. Solution Approach 

The optimisation algorithm as shown in Figure 1 is 

based on the genetic algorithm (GA) integrated with a 

fuzzy reasoning module.  

Figure 1: Optimisation for Integrated Q
T
 and Q

L

Search Space 

The fuzzy reasoning module consists of fuzzification, 

fuzzy inference and defuzzification routines. Values of the 

decision variables from individual members of the 

population are fuzzified, and fuzzy IF-THEN rules are 

applied within the fuzzy inference mechanism. The 

evaluation of a proposition produces a single fuzzy set 

associated with each model solution variable. An 

appropriate method of defuzzification is used to find a 

scalar value and the corresponding membership grade that 

best represents the information contained in the 

consequent fuzzy set.  

The QL evaluation module outputs both the scalar 

value and the associated membership value from the 

defuzzified fuzzy set.  The scalar value represents the 

approximate QL evaluation of the design problem. This 

value represents the goodness of the individual based on 

QL model and is used as the QL objective function value to 

rank part of the fitness of the individual. The QL fitness 

evaluation also takes into account the membership grade 

to ensure that membership grade below a selected 

threshold is penalised using the penalty function method. 

The QL objective value is represented formally as: 
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xf  is the defuzzified domain 

value, ))(
~

( xf  is the membership function value and  is 

a threshold set for the membership function value. 

Similarly, the QT evaluation represents the QT evaluation 

of the design problem. This value represents the goodness 

of the individual based on the QT model and is used as the 

QT objective function value ( )(xf ) to rank part of the 

fitness of the individual.   

Final fitness solution of each member of the population 

is based on a Pareto dominance ranking mechanism that 

considers the objective function values from both the QT

and QL models expressed as: 

)(xf t
i }))(
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t
ii , where i is a member 

of the population . In order to select the fittest member of 

the population, each individual is ranked based on the 

Pareto dominance criteria stated in section 2 and shown in 

the algorithm in Error! Reference source not found..

The multi-objective ranking mechanism then performs a 

non-domination ranking procedure on each member 

where it is assigned a ranking value based on its location 

in the objective space. 

5. Rod Rolling Design Problem 

The proposed approach is illustrated using a rod rolling 

design problem. The rod rolling process is a continuous 

manufacturing process whereby a square billet 

(dimensions ranging from 100mm to 150mm) referred to 

as the stock is deformed into a rod size ranging from 5mm 

to 12mm. The rod design problem is a two-objective 

optimisation problem (maximising the shape of the rod 

profile and minimising the deformation load). It is used to 

illustrate an optimisation problem based not only on QT

information but also on the engineer�s QL knowledge for 

solving complex engineering design problems.  

The shape condition is a roundness measure of the rod 

profile often measured using classical numerical models. 

Since the rod profiles tend to emerge as non-smooth, most 

of the shape conditions evaluated using classical models 

do not tend to correlate with the designer�s representation. 

Here, a QL model is proposed to capture the designer�s 

representaion of the shape condition.   

In this study, the shape and the load required for rod 

deformation are modelled using fuzzy reasoning and 

meta-modelling technique respectively. The simultaneous 

optimisation of both responses is treated as a multi-

objective problem.  The problem is considered multi-

objective in nature due to the conflicting relationship 

between the two objectives. In practice, for a given stock 

size a perfect shape condition requires large roll pockets. 

This implies a high contact of the stock with the roll, 

which results in high loads.   

5.1. Experimental Procedure and Model Development  

A single roll pass was modelled using the ABAQUS 

Explicit FE simulation software. The case study described 

in this paper deals with the shape, and load optimisation 

of a single oval to round wire rod pass. The geometrical 

parameters relevant to the present study that affects these 

objectives were solicited from the domain expert and 

categorised as: (a) initial thickness (h1), (b) initial width 



(w1), (c) work roll radius (R), (d) pass radius (Pr), (e) roll 

gap (Rg) and (f) temperature (T).

The genetic search for optimal solution requires a 

model definition that quantifies the �goodness� of each 

solution according to the formulation of the optimisation 

problem. Here specific model details of the objectives are 

shown in the sections that follow. Details of the QT and 

QL model development process for shape and load are 

detailed elsewhere (Oduguwa and Roy, 2003), and 

therefore are omitted in this paper.  

5.1.1. Quantitative Modelling

Advanced computational simulation is becoming a key 

component of engineering research and product 

development. However despite improvement in both 

hardware and software the function evaluation tends to be 

computationally expensive.  

In order to address these problems, approximate 

metamodels are developed using Response Surface 

Methods (RSM). The metamodel is a typical example of 

functional approximation defined as a model of an 

underlying simulation model. The RSM is used in this 

study since it is one of the most popular method of 

constructing approximate models in the design 

optimisation literature (Montgomery and Peck, 1992). 

RSM can be used to create smooth approximations of the 

response data. In its simplistic sense, RSM involves (a) 

choosing an experimental design for generating data, (b) 

choosing a model to represent the data, and then (c) fitting 

the model to the observed data.  

QT models of the responses were generated by fitting a 

second order model (main effects, interaction effects and 

quadratic effects). The fit with the lowest sum of squares 

error (highest R2) was selected, this resulted in the 

following experimental models (initial stock area/roll area 

(SAR), form factor (FF) and the roll radius/material 

height ratio (RRMR))  as predicted using ANOVA.  

Load = -2023520.422 + 50112.96 h1 � 853.369 h1
2 + 

35728.755w1 + 434.706 w1
2 � 39003.709 Pr + 604.149 

Pr2 + 19369.967 Rg � 1271.041Rg
2 + 578.474 Rr � 2.206 

Rr
2 + 2799.198 T � 1.039 T2 + 1135 h1w1 � 177.396 h1Pr � 

305.971 w1Pr � 2075.8333 w1Rg + 57.274 w1Rr � 77.103 

w1T + 417.083 PrRg + 14.183 PrT
� 0.413 RrT                  (1) 

SAR = � 1.976 + 0.1106 h1 � 0.00157 h1
2 + 0.184 w1 � 

0.0012 w1
2 � 0.104 Pr + 0.0025 Pr2 + 0.0046 Rr � 2.708E-

6 Rr2 + 11.24E-6 T + 0.0026 h1w1 � 5.728E-4 h1Pr � 

1.0455E-4 h1Rr � 0.002 w1Pr � 0.0036 w1Rg � 1.207E-4 

w1T           (2) 

RRMR = 6.155 � 0.375h1 + 0.0056h1
2 + 0.061Rr +

5.877E-5 h1Rg � 9.319E-4 h1Rr � 1.267E-5 RgRr (3) 

FF   = 11.109 � 0.190 h1 +0.0022 h1
2 � 0.525 w1 + 

0.0077 w1
2 + 0.0022 Pr2 + 0.176 Rg + 0.00561 Rg2 �

0.0035 Rr + 5.191E-6 Rr2 � 0.0061 T + 9.765E-7 T2 � 

8.722E-4 h1w1 + 0.0011 h1Pr + 7.015E-5 h1Rr � 0.0061 

w1Rg � 4.1E-5 w1Rg + 2.532E-4 w1T � 0.0011 PrRg � 

1.695E-4 RgRr + 4.319E-5 RgT    (4) 

5.1.2. Qualitative Modelling

QL evaluation of the design solutions is performed by the 

experts to determine the suitability of each design. In this 

study, fuzzy modelling technique is used to represent the 

Fuzzy models that were developed by formulating the 

response variables of equations 2, 3 and 4 as the 

antecedent part of the rules, and modelling the expert�s 

reasoning of the FE outputs as the consequent part of the 

rules. Nine rules were developed. Details of the rule 

development process are as follows.  

For each of the response variables, the fuzzy sets 

shown in Figure 2a-Figure 2c were created with triangular 

membership functions and their corresponding linguistic 

labels low, average and high. These fuzzy sets correspond 

to the expert�s interpretation of the variable�s behaviour 

with respect to the rod roundness phenomenon. The 

membership function for each fuzzy variable shows the 

degree of membership of each value in the variable�s 

fuzzy sets for the range of interest. For example, Figure 2a 

shows the membership function for stock area (SAR). The 

membership functions for the h/w ratio and form factor 

were also developed as shown in Figure 2b and Figure 2c 

respectively.

          

(a) Fuzzy Set SAR                 (b) Fuzzy Set RRMR 

          

(c) Fuzzy Set Form Factor     (d) Fuzzy set Roundness 

Figure 2: Membership Functions for Rolling Variables 

Figure 3: Classification of FE Rod Shape Profiles 

The consequent part of the fuzzy rule was developed to 

represent the expert�s QL evaluation of the roundness of 

the rod profile. This was achieved by initially classifying 

the FE output of the rod profiles into five main categories 

as shown in Figure 2d. These five categories were then 

formulated into the following five fuzzy sets (as shown in 

Figure 3) with bell shaped membership functions. The 

corresponding linguistic labels are: Elliptical (E), Fairly 
Elliptical (FE), Flat Round (FLTR), Fairly Round (FR), 



and Round (R). These represent the way experts� reason 

about the roundness of the rod profile.     

A rule base that specifies the QL relationship between 

the output parameter (shape condition) and the input 

parameters: initial stock area/roll area (SAR), form factor 

(FF) and the roll radius/material height ratio (RRMR) 

formulated as shown in Table 1. These rules were 

developed by interactive interview with the domain 

experts. For example rule 1 shows that, if the area ratio is 

average, the RRMR is low, and the form factor is low
then rod profile is predicted as �round�.

Table 1: Fuzzy Rule Base 

The compensatory weighted mean operator was used to 

aggregate the fuzzy sets in the antecedent part of the rule. 

This ensures that the cumulative effect of the other rules 

influences the determination of the strain distribution. 

These fuzzy sets were then converted into a scalar value 

using the centroid method of defuzzification in the final 

step of the fuzzy inference cycle. 

The fuzzy sets, input, output fuzzy variables and fuzzy 

rule base all constitute the QL model that is used within 

the optimisation module to evaluate the QL aspect (shape 

condition) of the design problem. These fuzzy sets are 

then converted into a scalar value by a chosen method of 

defuzzification in the final step of the fuzzy inference 

cycle. A centroid method of defuzzification is used in this 

study. The defuzzified scalar value best represents the 

fuzzy solution sets.  

6. Definition of the Optimisation Problem 

The rod design problem is a two objective optimisation 

problem. The aim of this module is to solve a two 

objective rod design optimisation problem using 

simplified method of dealing with the membership 

function. The design problem consists of two cardinal 

objectives: to maximise the shape of the rod profile using 

QL models of the rod profile and minimise the 

deformation load using the QT model. The multi-objective 

optimisation problem is formulated as shown below: 

Minimise      Load             f1(x )  = P                 (5) 

Maximise  Shape               f2(x)   = Ã(x) (6) 

Subject to    P     > 0    (7) 

    Ã(x)  > 0.5   (8) 

where: fuzzy terms are denoted by the tilde, Ã(x) is the 

membership grade of the shape condition. P is the QT

model given by equation 1 in section 5.1.1. Equation 7 is 

a constraint that ensures the deformation load is not 

negative while equation 8 controls the influence of the 

membership function values on the search space.  These 

constraints were dealt with using the penalty function 

method.   

NSGAII (Deb et al., 2000) was adopted in the study 

since it is one of the most popular multi-objective GA. 

NSGAII was used to rank each member of the population 

in terms of the fitness from the QT model and the QL

model. Fitness from the QL model consists of defuzzified 

scalar values and the associated membership grade from 

the fuzzy inference mechanism. This describes the shape 

condition of the rod profile and the deformation load for 

the rod design. Solutions having membership grades 

below a chosen threshold (0.5 in this study) are 

considered infeasible for the rod problem and are replaced 

by feasible solutions obtained by conducting a local 

search. Similarly, fitness from the QT models expresses 

the positive load deformation. 

Figure 4: Q
T
 and Q

L
 Search Space of Design Problem 

7. Test Results and discussion 

The proposed approach was used to optimise two 

objectives: the maximisation of the fuzzy output values 

(defuzzified domain value and the associated membership 

grade) and the minimisation of the deformation load. The 

QT and QL models outlined in section 5.1 were used for 

this purpose. The proposed algorithm was implemented 

for the test problem using C++ code on a Pentium 4 PC. 

Ten independent GA runs were performed in each case 

using a different random initial population. A population 

size of 100 was used with a generation of 1000 iterations. 

In most of the cases examined, seven out of ten runs 

obtained similar results.  

A random search was conducted on the problem to 

explore the nature of the search space. Figure 4 shows the 

search space of the multi-objective QT and QL search 

space in this study. Here the functional relationship of the 

QT and QL objectives is analysed with respect to the 



theorem given in section 4 for Pareto optimal solutions 

given in Table 2. P1 supports the functional relation for 

any combination of solutions 1,2,3 and 4. Where P1 states 

that for a given set of identical objective function values 

(f(xk), f(xk+1)), the associated QL evaluations are also 

equal.  Since (a b) is the same as (not a  not b),

therefore for functional relationship to exist between QT

and QL information for any two different design (xk xk+1)

solutions to lie on the Pareto front, the different QT

evaluations should also imply different QL evaluations. 

For example 1 and 4, the QT objective values are 179.55 

and 28.6 respectively while the equal QL evaluations are 

also R{0.823(0.93)} and Fr{0.51(0.91)}. This illustration 

confirms the functional relationship between the QT and 

QL objectives, and it also indicates the conflicting nature 

of this relationship. This conflicting behaviour and the 

two-objective cardinality therefore confirm the 

appropriateness of the multi-objective solution approach.     

In the sections that follows, the NSGAII results of the 

multi-objective problem and some of the challenges 

poised by optimising within integrated QT and QL search 

space are discussed. 

7.1. Experimental Results 

The trade-off solutions between roundness and load 

located in the optimal region by the NSGA II optimisation 

algorithm is shown in Figure 5. Despite the complexity of 

the problem, NSGAII was able to find solutions in the 

optimal region of the design space. Non-dominated 

solutions were obtained from the experimental runs. The 

Pareto optimal solution plot shows the spread of the 

optimal solutions in the two dimensions. Figure 5 also 

shows a selection of optimal solutions and their variable 

values from the experimental runs. It demonstrates the 

diversity of the vectors of the decision variables in the 

parameter space. Since solutions on these fronts are all 

equally good, further higher level criteria could be applied 

to select a suitable solution for the problem. 

Figure 5: NSGA II Pareto Solution Plot  

Table 2: Selected Solutions 

No (h) (w) 
Pass 

Rad 

Roll 

Gap 

Roll 

Rad 
Temp Shape (f(x)

Load 

(KN)

1 29.1 22.2 30.1 4.3 254.2 769.3 R 0.823(0.93) 179.55 

2 28.1 21.2 30.4 4.3 254.2 731.5 R 0.824(0.92) 138.5 

3 28.1 22.2 30.4 3.6 114.4 728.1 R 0.72(0.92) 78.2 

4 29.5 19.2 30.9 0.9 119.8 1070 R 0.51 (0.91) 28.6 

5 27.8 19.1 26.8 1.1 162.6 1062 FR 0.72(0.77) 26.1 

Selected solutions shown in Table 2  provide insight 

into both the parameter and the objective space, which is 

useful for designers to select suitable solutions for the 

given problem. For example, solutions number 3 and 5 

has a roundness and load value of (round , 78.2 KN) and 

(flat round, 26.1 KN) respectively. Since both solutions 

are equally good, designers might prefer to tradeoff 

solution in the parameter space by selecting solution 3 

based on lower temperature (728.1 C). Similarly, 

designers might prefer to tradeoff solution in the objective 

space by selecting solution 5 based on lower deformation 

load (26.1KN). 

7.2. Limitations 

Three main issues are discussed that reflect the 

limitations of the proposed approach to design 

optimisation problems with QL evaluation.

Visibility of the QL parameter space to the search 

algorithm is lost due to the transformation of the QL

information into cardinal information. As a result, it 

becomes difficult to control the equivalent correlation 

between granularity of the QL models with the 

measurement scale of the QT models. 

The approach is mostly suitable for real world 

problems with lower number of objectives, as  higher 

number of QL objectives has the tendency to increase 

the fragmentation in the search space. This is largely 

due to the discreteness in the QL search space. 

The approach mainly deals with QT and QL

information that are conflicting in nature. It is not 

suitable for mixed form of information that are 

complementary in nature. This limitation is due to the 

fundamental solution strategy adopted in the approach. 

The Lemma 1 condition limits the application to 

problems that satisfies this condition.   

7.3. Future Research  

Future research activities are required to address the 

main limitations described in the previous section and the 

challenges outlined in section 2. This section briefly 

describes main research directions.   

Studies are required to develop optimisation 

algorithms that can deal with various combinations of 

QT and QL information in a single framework. This 

can improve the robustness of such techniques for real 

world problems.  

Scalability of integrated QT and QL design 

optimisation strategies to higher dimensional problems 

is an important success criteria for wider applications. 

This is influenced by the feature of the problem (large 

number of parameters) and the nature of the resulting 



search space (fragmentation). This is due to the 

discontinuity present in real world problems and QL

design space. 

Techniques are required for representing the native 

parameter space of the QL information within the 

optimisation framework. This could provide 

capabilities for tuning the correlation between the 

granularity of the QL models with the measurement 

scale of the QT models. Search algorithm that 

considers such features of the problem should give 

better performance.   

8. Conclusions

Most real world engineering design problems can be 

QT and QL in nature. A review of the literature reveals that 

most optimisation algorithms are not capable of dealing 

with such mixed information simulataneusly within a 

design optimisation framework. This paper proposes a 

methodology to deal with the challenges posed by 

integrated QT and QL search space in real world 

optimisation problems. The mathematical proof of the 

solution strategy is also presented. A case study based on 

multi-objective rod rolling problem is presented to 

validate the effectiveness of the proposed metholodology.  

The results obtained show QT solutions and their 

functional relationships with the QL evaluations in the 

optimal region of the search space. This demonstrates that 

the proposed solution approach can be used to solve real 

world problems having integrated QT and QL information. 

The paper concludes with a brief outline of limitations 

and future research activities.   
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