Pareto-based Soft Real-Time Task Scheduling
in Multiprocessor Systems

Jaewon Oh, Hyokyung Bahn, Chisu Wu, and Kern Koh
School of Computer Science and Engineering
Seoul National University
Seoul 151-742, South Korea
Jjwoh@selab.snu.ac.kr
hyokyung @ summer.snu.ac.kr
wuchisu@selab.snu.ac.kr
kernkoh@june.snu.ac.kr

Abstract

We develop a new method to map (i.e. allocate and schedule)
real-time applications into certain multiprocessor systems. Its
objectives are 1) the minimization of the number of
processors used and 2) the minimization of the deadline
missing time. Given a parallel program with real time
constraints and a multiprocessor system, our method finds
schedules of the program in the system which satisfy all the
real time constraints with minimum number of processors.
The minimization is carried out through a Pareto-based
Genetic Algorithm which independently considers the both
goals, because they are non-commensurable criteria.
Experimental results show that our scheduling algorithm
achieved better performance than previous ones. The
advantage of our method is that the algorithm produces not a
single solution but a family of solutions known as the Pareto-
optimal set, out of which designers can select optimal
solutions appropriate for their environmental conditions.

1. Introduction
The availability of inexpensive, high-performance
processors and memory chips has made it attractive to use
multiprocessor systems for real-time applications. However,
the programming of such multiprocessor systems presents a
rather formidable problem. In particular, time-critical tasks
must be serviced within certain preassigned deadlines
dictated by the physical environment in which the
multiprocessor system operates [1]. Thus, efficient methods
and tools for allocation and scheduling of tasks are needed.

In general, a task can be characterized by an integer triple
(S, C, D), where S is the start-time of the task, C is the
execution time of the task, and D is the deadline. A
precedence relation may be defined on a set of tasks. Task
preemption may or may not be allowed.

A multitude of methods for allocation and scheduling of
these task sets have been proposed. For the uniprocessor case,
Liu and Layland obtained a necessary and sufficient

This work was supported by the Brain Korea 21 Project.

1530-1362/00 $10.00 © 2000 IEEE

24

condition for scheduling periodic task sets (with preemption
allowed) [2]. Henn generalized the result for a single
processor case to cover precedence constraints [3]. Garey and
Johnson discovered optimal scheduling algorithm when there
are only two processors [4]. Unluckily, the scheduling
problem often becomes NP-hard whenever more than two
processors are involved [1].

Task scheduling is simply the choice of a mapping of a set
of tasks to a set of processors to achieve the pre-defined
objectives such as the minimization of the deadline missing
time and the minimization of the communication cost. Whilst
this problem requires the simultaneous optimization of
multiple, often competing, criteria, the solutions to the
problem are usually computed by combining them into a
single criterion to be optimized, according to some
combining function [5, 6]. The weakness of optimizing a
combination of the objectives is that if the optimal solution
cannot be accepted either because the combining function
used excluded aspects of the problem which were unknown
prior to optimization or because we chose an inappropriate
setting of the coefficients of the combining function,
additional runs may be required until a suitable solution is
found [7]. Therefore, we treat the problem of determining an
optimal scheduling as a multiobjective problem with non-
commensurable objectives. We wuse the Pareto-based
optimization, which independently considers multiple
objectives, and find a set of solutions that satisfy all of the
given objectives. Moreover, when a new objective is
introduced, our method can include it without interfering
with existing objectives.

The success of any GA-based approach depends heavily
on how well the various components of a GA incorporate the
salient features of the problem under consideration. In this
paper, we present GA components that are well suited to the
problem of task scheduling with precedence and deadline
constraints, including the problem encoding strategies, the
GA operators with various heuristics, and parameter tunings.

This paper is organized as follows. In Section 2, we define
the graph models for allocation and scheduling of real-time
applications. Section 3 shows our scheduling algorithm. In

Section 4, we describe the results and analysis of the
experiment on applications presented in [5). Finally, we
conclude in Section 5.

2. Scheduling Model

We assume that a real-time application program has been
partitioned into tasks that describe subcomputations of the
application. Each task may be composed of one or more
subtasks.

2.1. Subtask Graph (STG)

STG is an acyclic, directed, and weighted graph, that
represents the relationships among subtasks in a task. Each
subtask in a task is denoted by a node in the graph and the
precedence condition between two subtasks is denoted by a
directed edge. An edge is directed from the sender toward the
receiver. STG is denoted by:

STG = (ST, STR, STW, STCW, STRT, STD)

e ST (Subtasks) = { ts; }, where t;5; indicates subtask j of task
i

e STR (Subtask Relationships) = { stryu }, where stryy = 1 if
1;s; sends output to ;s Otherwise stry, = 0. It is assumed
that if subtask s, sends output to s,, this is done at the end
of the s, execution, and must arrive before s, can begin
executing.

e STW (Subtask Workloads) = { stw;; }, where stw;; indicates
the size of #s; in terms of the number of instructions
executed.

e STCW (Subtask Communication Workloads) = { stcwyy },
where stcw;y indicates the volume of communication from
1:85; 0 45y

e STRT (Subtask Release Times) = { stre; }, where f;5; must
start its execution after sert;;

The macro data flow model described in 8] will be
adopted: a subtask is ready to be executed as soon as all its
input data are available and it cannot be interrupted once
started. However, if all input data of #s; are available before
strt, t;s; must wait until sere;.

e STD (Subtask deadlines) = { std; }, where ¢s; must finish

its execution within stdj;.

2.2. Task Graph (TG)

We assume there is no communication between tasks. TG
is an acyclic, directed, and weighted graph. Its node set
W(TG) is a set of all subtasks in an application and its edge
set E(TG) is a set of all precedence relations between
subtasks. This graph has the following components that are
constructed from STG:

TG = (T, STGS, TRT, TD)

o T (Tasks) = { #; }, where ¢; indicates task i.

Let STG,; be the subtask graph of task i and be (ST, STR,
STW, STCW, STRT, STD,). Then, the union of STG; and
STG; is defined as STG,; = (ST; L ST, STR; U STR;, STW; L
STW, STCW; U STCW, STRT; © STRT;, STD; U STD)).

25

¢ STGS (Subtask Graph Sets) = USTG; for every task i.

® TRT (Task Release Times) = { rt; }, where every subtask
£is; in task f; must start its execution after 1rt,.

® TD (Task Deadlines) = { td; }, where every subtask in
task #; must finish its execution within td;.

2.3. System Graph (SG)

SG is an undirected and weighted graph. Each processor
in a parallel system is denoted by a node and the network
connection is denoted by an undirected edge. SG has the
following components:

SG = (P, PR, PC, NC)

e P (Processor) = { p; }, where p; indicates processor i in the
system.

® PR (Processor.Relationship) = { pr; }, where pr; = 1 if
processor i is connected by network with processor j.
Otherwise pr; = 0.

® PC (Processor Capability) = { pc; }, where pc; indicates the
(average) time of execution for one instruction on
processor i.

® NC (Network Capability) = { nc; }, where nc; indicates the
average time needed to transfer a unit of information from
processor i to processor j.

3. Mapping Algorithm
3.1. Solution Structure and Fitness Function

In the scheduling problem, a chromosome represents one
of all the possible mappings of all the subtasks into the
processors. A possible solution in our method is illustrated in
Figure 1.

The system graph and the task graph are shown in Figure
1-(a) and a possible allocation and scheduling is in Figure 1-
(b). The system graph is a complete graph on three
processors and the task graph is composed of two tasks,
which have no precedence condition and are composed of six
subtasks and three subtasks, respectively. A chromosome is
partitioned into two parts, which represent the allocation and
scheduling information of subtasks, respectively, as shown in
Figure 1-(b). Chromosome A denotes the scheduling
information and chromosome B the allocation information.
The length of each chromosome is the total number of
subtasks in a real-time application. The sequence of subtasks
in chromosome A represents the scheduling order. Because
there may be precedence relations among subtasks, some
sequence of scheduling may not be a feasible solution. Note
that to be a feasible schedule, chromosome A should be a
possible topological order for the given task graph.
Chromosome B determines the allocation of subtasks. In
chromosome B, i-th gene (i.e. i-th character in chromosome
B) denotes the processor number to which a subtask A[i] is
allocated. In Figure 1-(b), the second gene of chromosome B,
B[2] means that s3 (A[2]) is allocated to pl. For example, in
Figure 1, s1, s3, 55, and s8, which are allocated into the
processor pl, are scheduled to begin execution first, second,
third, and last, respectively.

System Graph Task Graph

(a) Sample Task Graph and System Graph

[s1 [s3 [sa | s2]s5 | s6 | s7] s9o] ss |
Chromosome A (Scheduling)
[PiTPi[P3P3[PLP3[P3 | P3P |
Chromosome B (Allocation)
(b) A Feasible Solution
Figure 1. Chromosome Encoding

In a GA, we need a cost function for measuring the quality
of each solution. Our cost function is a vector-valued
function F that consists of an objective function component f
corresponding to each objective. They are defined as follows:

F=(fif)

fi: S >R, where k=1,2 and S is a set of solutions.

e f, (number of processors used): This objective function
component denotes the total number of processors, which
are used to execute subtasks in a real-time application.

e f, (deadline missing time): This component denotes the
sum of the deadline missing times of all subtasks with the
deadline requirements. It is calculated by the following
formula:

f2= 2 Pos (stt ;- sid ;)

Pos (x)=x if x>0
0 otherwise
where stt; is the time at which subtask i ends its execution.
Assuming a minimization problem, the following
definitions apply [9]:

Definition 1. (Inferiority) Vector u = (i, ..., u,) is said to be
inferior to v = (v, ..., v,) iff v is partially less than u (v p< u),
ie,Vi=1,..,nv,;iSuandJi=1, ..., nv,<u;

Definition 2 (Superiority) Vector u = (u,, ..., u,) is said to
be superior to v = (v, ..., v,) iff v is inferior to u.

Definition 3 (Domination) Let v; and v; be the vector values
of a cost function over the solutions S; and S}, respectively. S;
is said to dominate S; iff v; is superior to V.

In this paper, instead of determining the individual’s
fitness by combining objectives (i.., f; and f,) into a single
criterion to be optimized, we assign the fitness to the
individual using a scheme proposed in [9]. In the scheme, the
rank of a certain chromosome corresponds to the number of
chromosomes in the current population by which it is
dominated. Consider, for example, an individual x; at

26

generation ¢, which is dominated by p,” individuals in the
current generation. Its current position in the individuals’
rank can be given by:

Rank(x,5) = 1 + p
The individual’ fitness is its rank in our method.

3.2. GA Operators

Selection Operator

We apply the most common practice, which gives the best
chromosome in the population four times more probability to
be selected than the worst chromosome. The normalized
fitness function is as follows:

NF,= Ry~ R) + Ry~ R))/3,

where R,, R, and R; are the ranks of the worst chromosome,
the best chromosome, and the chromosome i, respectively, in
the population.

Based on the normalized fitness function, we apply a
roulette wheel selection as a selection operator [10].

Crossover Operator

We define a one-point crossover with adjustment because
when the classical one-point crossover is applied to
chromosome A, it may produce infeasible solutions; the
sequence of subtasks in chromosome A of a new solution
may not be the scheduling order. This problem is resolved by
the following procedure:

Procedure 1. one-point crossover with adjustment.

1) Let P41 = (P41[1], ..., P4l[n]) and Pyl = (Ppl[1], ...,
Pgl[n]) be chromosomes A and B of parent P1, and P,2
and Pg2 be chromosomes A and B of parent P2,
respectively. Then, generate a crossover point k randomly,
1<k<n.

2) The left segments of C41 and Cz1 of the child C1 are
Cal := P41[1], ..., P41{k] and Cgl := Pgl[1], ..., Ppl[k]

3) Scan the parent string P42 from left to right for P,2[i]
such that P,2[i] # C,1[j} forallj, 1 Sj<k.

4) Cul[k+1] := P,2[i] and Cpl[k+1] := Pg2[i]. Then,
increment k by 1.

5) Iterate 3 ~ 4 steps until the production of the child C1 is
completed.

Applying this procedure to chromosome A of two parents
will produce a child solution representing a possibly new
topological order for the given task graph. We prove it in [10].

While the child has the same left segment as the parent P1
has, the child may have the right segment that is produced
from the parent P2 but is adjusted to satisfy the precedence
requirement. To give the child a chance to have the same
right segment as parent P1 has, the new crossover procedure
that is modified by swapping the left and the right in
Procedure 1, is introduced. The two operators are applied
alternatively. An example of a one-point crossover with
adjustment is given in Figure 2, when the system graph and
task graph in Figure 1-(a) are used.

Crossover point

Parent1 y

|'s1 | s2] s5 | s3 s4 [s6 | s7 | s9 | s8 |
e [P [P3 [P3 Pi | P3 | P3 | PL | P3 |
Parent2

Child1
[s1 | s2] ss
P [P1 | P3
Child2

[s77] s9 [s8 |
| p3 PL | P3|

Figure 2. 1-point crossover with adjustment

Mutation Operator

Our mutation operator works by randomly selecting a gene
of chromosome B and then replacing the value of this gene
with a random number chosen from among processor
numbers used by chromosome B.
Replacement Operator

At first if both parents dominate a new solution, the most
inferior chromosome in the current population is replaced
with the offspring. Otherwise, the operator checks if the
offspring dominates either of two parents. If the offspring
dominates one parent, the parent is replaced with the
offspring. If the offspring dominates neither of two parents,
the most inferior chromosome of the existing population is
replaced with the offspring.

4. Experiments
4.1. Initial Population
The default population size N is 80. Each of the N initial
solutions is generated by giving a randomly generated
topological order for the given task graph to chromosome A
and assigning a randomly chosen processor to each subtask.

4.2. Domination Redefinition
Applying domination defined in Section 3 caused
premature convergence to a local optimum, i.e., f; is not
minimized while £, is minimized and converges to 0. To
resolve this problem, we redefine domination instead of
applying the heuristic improvement operator.
First, a new objective function is introduced:

¢ f; (Load Imbalance): This objective function component
measures how uniformly the workloads of the subtasks
scheduled by one solution are distributed. The solution with a
smaller value of f; indicates that the workloads are distributed
more uniformly. It is calculated by the following formula,
where N is the number of processors:

o z(;

2
Stwi X pe, X x; —TLIN] /N
PN

7'L=22stw,-><pcpxx,~p
p i

27

where x;,, = 1 if subtask i is allocated to processor p.
Otherwise, x;, = 0.

This load imbalance component is used to reduce the
number of processors used. When one solution S; does not
dominate the other S; and $; does not dominate S;, the
solution with a larger value of f; of the two solutions is given
to larger fitness. The reason is the solution S with a larger
value of f; indicates that its workloads may be more skewed
on certain processors. So the genes from S may dominate the
population, potentially causing convergence to solutions with
the minimum number of processors used. The domination is
redefined as follows.

Definition 4. (Domination) Let v; = (fy(i), fo(i), f3(i)) and v; =
1), £20), f3(7)) be the vector values of a cost function over
the solutions S; and S, respectively. S; is said to dominate S;
iff (fi(i), f(i)) is superior to (f;(j), £2(j)) or ((fi(i), £2(1)) = (f:(j),
Ja(j)) and f5(1) > f3(j))-

4.3. Experimental Testbed

To validate our allocation and scheduling algorithm, we
performed experiments on two real-time application
programs presented in [S] and on one program into which the
two programs are merged. In this paper, we show only the
experiment on a program with one task and fifty subtasks on
account of limited space. Refer to our technical report for
detail [10].

To compare the performance of our method (RT-GA) with
that of the method (RT-SA) proposed in [5], the following
assumptions are taken:

1) All the processors are equal.
2) Communication time is negligible.
3) The release times of all tasks and subtasks are 0.

Example 1. The Sample Parallel Application with one

task and fifty subtasks

The task graph for this application is given in Figure 3.
The weight of a node denotes its workload. We want to
execute this program in a parallel system whose system
graph is a complete graph on nine processors with values of
pc 1. This application must respect the following real-time
constraints:

STD = { Stdl_u =30, Std|_13 =45, St,dl_zg = 75, Stdl_zg = 65,
S[d1_45 = 145, Stdl_SO =170)

Allocation and scheduling produced by our algorithm is
shown in Figure 4 through a Gantt chart. Both RT-GA and
RT-SA produced schedules that satisfy all real-time
constraints. But schedules given by RT-GA use 5 processors,
while the schedule returned automatically by RT-SA uses 8
processors though two more processors could be made free
by analyzing the schedule returned.

We plot the experimental results with the number of used
processors on the x-axis and the deadline missing time on the
y-axis in Figure 5. A logarithmic scale is used for the y-axis.
It shows the distribution of solutions in the population over
times (i.e. at populations 0, 1000, 2000, 3000, 6000, 14000,
and 20000). In this population graph, the solution closest to

the origin is the near-optimal one because we assume the
minimization problem. We can see that our algorithm yields
new individuals that will lead to better solutions over time
before population 14000. During the evolution, some
subtasks scheduled by these individuals miss their deadlines
even if the overall system has the capacity to meet the
deadlines of all subtasks or these solutions use more
processors than the optimal solution can use. After this time,
solutions are converged to schedules that use five processors
with the deadline missing time 0.

Conclusion

We addressed the problem of determining an optimal
scheduling of a real-time application in certain multi
processor systems such that the number of processors used
and the total deadline missing time are minimized. We treat
task scheduling as a multiobjective problem with non-
commensurable objectives. Our approach differs from
previous researches in that we seek to minimize the
components of a vector-valued fitness function. In order to
consider these objectives independently and search near-
optimal solutions, we provide a Pareto-based GA. To
improve on solutions, the existing domination relation is
redefined and a heuristic crossover operator is newly defined.
Experimental results show that our scheduling algorithm
achieved better performance than the previous approach.

S.

References

[1] M. L. Dertouzos and A. K. Mok, “Multiprocessor On-Line
Scheduling of Hard-Real-Time Tasks,” IEEE Transactions
on Software Engineering, vol. 15, no. 12, Dec. 1989.

[21 C. L. Liu and J. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” JACM,
vol. 20, no. 1, Jan. 1973.

[3] R. Henn, “Antwortzeitgesteuerte prozessorzuteilung unter
strengen zeitbedingungen,” Computing, vol. 19, 1978, pp.
209-220.

(4] M. Garey and D. Johnson, “Two-processor scheduling with
start-time and deadlines,” SIAM J. Comput., vol.6, 1977, pp.
416-426.

(5] M. Coli and P. Palazzari, "A New Method for Optimization
of Allocation and Scheduling in Real Time Applications,”
Tth Euromicro Workshop on Real-Time Systems, 1995.

[6) J. Aguilar, and E. Gelenbe, "Task Assignment and
Transaction Clustering Heuristics for Distributed Systems,"
Information Sciences, Vol. 97, March 1997, pp. 199-219.

[71 C. A. Coello Coello, An Empirical Study Of Evolutionary
Techniques For Multiobjective Optimization In Engineering
Design, Ph. D. Thesis, Tulane University, 1996.

[8] V. Sarkar, Partitioning and scheduling parallel programs for
execution on multiprocessors, Cambridge, MS, M.LT. Press,
1989.

[9] C. M. Fonseca and P. J. Fleming, “Genetic Algorithms for
Multiobjective Optimization: Formulation, Discussion and
Generalization,” Proceedings of the Fifth International
Conference on Genetic Algorithms, 1993, pp. 416-423.

[10] Jaewon Oh, Hyokyung Bahn, Chisu Wu, and Kern Koh,
“Pareto-based Soft Real-Time Task Scheduling in
Multiprocessor Systems,” School of Computer Science
and Engineering, Seoul National University, 2000,
http://drum.snu.ac.kr/~jwoh/TechReport/techRep00_9.ps.

Figure 3. Task Graph for Example1

The Deadline Nissing Time Distribution of Solutions
0% T

-

1024 i
M

i

°
o

X W e seNm e
s

1 o " -
. 5 6 7 8 9 10 u
The Musber of Ussd Processers

——

Figure 5. The Distribution of Solutions

Figure 4. Gantt Charts for Example 1

28

