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Abstract- A large number of methods for solving multi-
objective optimisation (MOO) problems have been de-
veloped. To compare these methods rigorously, or to
measure the performance of a particular MOO algo-
rithm quantitatively, a variety of performance indices
(PIs) have been proposed. This paper provides an
overview of the various PIs and attempts to categorise
them into a certain number of classes according to their
properties. Comparative studies have been conducted
using a group of artificial solution sets and a group of
solution sets obtained by various MOO solvers to show
the advantages and disadvantages of the PIs. The com-
parative studies show that many PIs may be misleading
in that they fail to truly reflect the quality of solution
sets. Thus, it may not be a good practice to evaluate the
performance of MOO solvers based on PIs only.

1 Introduction

Various performance indices (PIs) 1 for measuring the qual-
ity of Pareto-optimal sets have been proposed to compare
the performance of different multi-objective optimisation
(MOO) algorithms. Usually, the quality of a Pareto-optimal
set can be assessed from three aspects. First, the number
of Pareto-optimal solutions in the set. Second, the accuracy
of the solutions in the set, i.e., the closeness of the solu-
tions to the theoretical Pareto-front. In case the theoretical
Pareto-front is not known, only the relative closeness can
be obtained. Finally, the distribution and spread of the solu-
tions. Distribution and spread are two very closely related
facets, yet they are not completely the same.

Review of PIs can be found in [Coe01, Deb01, Kno02,
Tan02, Zit02, Zit03]. In this paper, we aim to provide a sur-
vey and categorisation of the PIs, including the most recent
results, according to the aspect they account for. Compared
to the existing reviews, we concentrate more on the perfor-
mance of the PIs, i.e., whether the PIs can truly evaluate the
quality of a Pareto-optimal set or correctly compare differ-

1Performance indices are often referred to in the literature as metrics.
However, metric is a well-defined terminology in mathematics and many
PIs in MOO do not necessarily satisfy the conditions for a metric. To avoid
confusions, we use performance indices (PIs) instead of metrics in this
paper.

ent sets. Empirical studies on a group of artificial solution
sets of a simple problem and a group of Pareto-optimal solu-
tion sets of a benchmark problem show that many PIs often
fail to properly reflect the quality of a solution set. Thus,
performance evaluation of different MOO solvers based on
PIs only may be misleading.

In this paper, only PIs for measuring static quality
of Pareto-optimal solution sets are investigated. PIs for
measuring run-time performance [Bae96, Deb02b, Hoo98,
Sch95, Tan02, Vel98], PIs where a decision-maker’s pref-
erences are involved [Esb96, Han98], and PIs for averag-
ing solution sets from different runs [Fon96, Kno00] are not
considered in this paper.

Different notations and definitions have been used and
various assumptions have been made in defining PIs. For
the sake of clarity, we try to use uniform notations and def-
initions throughout the paper. Besides, we assume that we
are dealing with minimisation problems for all PIs without
loss of generality. PIs that have been defined for maximisa-
tion problems are modified accordingly.

The rest of the paper is organised as follows. In Section
2, relevant notations and definitions are reviewed. Section
3 describes the cardinality-based PIs, followed by those for
measuring accuracy based on distance and volume, respec-
tively. In Section 5, the PIs for distribution, spread or both
are given. Empirical comparative studies and discussions
are presented in Section 6. The conclusions of the paper are
summarised in Section 7.

2 Terminology

Parameter Space and Fitness Space The space, of which
the vector of design parameters,

�� , is a subset, is known
as Parameter Space, notated as

���
, where � is the num-

ber of design parameters. The design parameters are pro-
jected onto a space of dimension � ,

���
, by the objective

functions, where � is the number of objective functions.
This space is termed as Fitness Space in evolutionary multi-
objective optimisation.
Feasible Region and Infeasible Region The set of all ad-
missible solutions to an optimisation problem is called Fea-
sible Region, 	 . In the feasible region, all constraints are



satisfied. The rest, i.e.
� � � 	 , is called Infeasible Region.

Weak Dominance, Dominance and Strong Dominance A
design vector

�� is said to weakly dominate another vector��
, notated as

���� �� or
���� �� iff �	��

����� ������ ����� �� � where��� is the � -th objective function. Vector

�� dominates vector��
, notated as

���� ��
or
���� �� , iff ���

������ ������ ����� �� � and� �

������ ����! ����� �� � . Vector
�� strongly dominates

��
, notated

as
��"�#� �� or

��$�#� �� , iff ����

���%� ��&�' ����� �� � .
Pareto Optimality A design vector

��)( 	 is said to be
Pareto Optimal if /

� �*+( 	,
 �*-� �� . The union of all Pareto
optimal design vectors

��.( 	 are called Pareto Optimal
Front or Pareto Optimal Set. We denote Pareto Optimal
Front in the parameter space as /1032�465 and in the fitness
space as /#78032�465 [Vel99].
Pareto Optimal Solution Set It is generally impossible to
get /8032�465 or /#78032�465 . A finite number of Pareto-optimal so-
lutions for the approximation of /1032�465 or /#78032�465 are termed
as Pareto Optimal Solution Set / .
Solution Set and Non-dominated Solution Set The set of
solutions found by an optimiser is known as Solution Set9

. The solutions in
9

that are not dominated by others in
the set define the Non-dominated Solution Set

9;:
. Since in

most cases, only non-dominated solutions will be generated,
we will not distinguish

9
and

9<:
hereafter unless explicitly

indicated.
Reference Set In many cases, the Pareto optimal set is un-
known. Thus, to evaluate the solution set

9
, the user needs

to specify an artificial or desired solution set. This set is
termed as Reference Set

�
.

Good (Utopian) Point and Bad Point A Good Point, />= ,
is defined as /1=@?BA �DCEGF �DCH8FJIKIKI L �M�ON1�DC�  �GP� , and a Bad
Point, /1Q , is defined as /1QR?SA �GTE F �GTH FJIKIUI L �D�>NV�GP�  �GT� .
3 Cardinality-based PIs

The simplest cardinality-based PI is to count the number of
solutions in

9
, which is termed Overall Non-dominated Vec-

tor Generation ( WYX�ZO[ ) [Sch95, Vel99, Vel00]. \ 9 \ should
not be too small and not too large, where \ I \ means the num-
ber of components in the set.

Overall Non-dominated Vector Generation Ratio
( WYX]Z^[ � ) has been proposed to calculate the ratioWYX]ZO[ � � 9 F / � ?_\ 9 \ `&\ /a\ [Vel99, Vel00]. In order to
monitor WYX]Z![ and WYX]ZO[ � during the optimisation,
Generational Non-dominated Vector Generation ( [#X]ZO[ )
and Generational Non-dominated Vector Generation Ratio
( [#X]Z^[ � ) have also been proposed [Vel99, Vel00].
Both can be expressed mathematically by replacing

9
by

9 �cb � . Here, b is the generation index. Additionally,
Non-dominated Vector Addition ( X]ZOd ) is proposed to
reflect the change of the number of solutions in each gen-
eration, X]Z^d^� 9 F b � ?e[#X]Z^[f� 9 F b �hg [#X]Z^[f� 9 F b g-ij�

[Vel99, Vel00]. A PI for measuring the percentage of
non-dominated solutions (

9 :
) in

9
has been considered in

[Tan01, Tan02].
Ideally, the obtained Pareto-optimal solutions are accu-

rate, well-distributed and widely spread. If we know a
Pareto optimal solution set / or a reference set

�
, the

ratio of found solutions against the ideal or reference set
is a reasonable PI. For this purpose, Error Ratio ( k � )
[Vel99, Vel99b] and Ratio of the Reference Points Found
( l ijm ) have been proposed [Czy98, Han98]. The k � means
the ratio of solutions against

9
that are not in / and l i6m

indicates the ratio of found solutions in
�

. If
� ?e/ and\ � \>?n\ /a\o?n\ 9 \ , then we can get the following relation:k � � 9 F / � ? i I p g l iqm � 9 F / � .

In the above PIs, only solutions that are included in
�

or/ can contribute to the PIs. This is very strict and in fact,
useful solutions which are not the member of

�
or / can

also be generated, e.g., solutions that are not dominated by
those in

�
or / . In Ratio of Non-dominated Points by the

Reference Set ( l#r m ), the number of non-dominated solu-
tions are counted [Han98]. The l#r m index can be expressed
as: sutjvxwcyMz%{u|<}�~ �q�h�ay1�

/
��� �f{�� ��� �J��~ �V~ y>~ �

(1)

When we compare two solution sets obtained by dif-
ferent optimisers, we can use Coverage of Two Sets ( l )
[Zit98, Zit99, Zit99b]:s,wcyG��z�y���|<}�~ �q���h�fy��q� � �j�>�fyG�>���6�o��������~ ��~ y���~ �

(2)

It is worth mentioning that l�� 9 E F 9 H � does not have to
be equal to i�g l�� 9 H F 9 E � . Thus, both l�� 9 E F 9 H � andl�� 9 H F 9 E � should be given. In order to show these results,
box plot is often adopted.

It can be found that the definition of l#r m and l are
closely related:s,wcyM�
z�y���|<}��q� ����sut v wcy��Jz�yM��|�� ~ � � �fy � � � � � �fy � ���j�f}��Jt�~~ y � ~ �

(3)

The PIs in this category have several drawbacks. For
example, no information about the accuracy and distribu-
tion of the solutions is contained in WYX]ZO[ , WYX]ZO[ � ,[#X]Z#[ , [#X]Z^[ � , and X]Z#d . Besides, all PIs in this
class are insensitive to small improvements. For example,
as pointed out in [Zit99b] , the l index often fails to indi-
cate the relative quality of two solution sets. An illustra-
tion is given in Figure 1. It can be seen that l�� 9 E F 9 H � andl�� 9 H F 9 E � have the same values, i.e. p�I � , although the qual-
ity of

9 E and
9 H are significantly different.

4 Accuracy PIs

4.1 Distance-based Accuracy PIs

In this subsection, PIs for accuracy based on distance are
shown, which can again be largely divided into two sub-
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Figure 1: The potential problem of the l index.

classes, i.e. the distance from
9

to / (or
�

) or from / (or�
) to

9
. The difference of the two sub-classes originates

from the fact that the number of solutions in
9

and / (or
�

)
may be different.� The distance from

9
to / (or

�
). A natural accu-

racy PI is to calculate the average distance from
9

to/ . For this purpose, Generational Distance ( [ � ) has
been suggested [Vel98, Vel99]:��� wcyMz�� |G}��
	 ��	
 ��� ��������

��� � ��~ y>~ z
(4)

� � }�������! �"$#% &('))* +
 , � � w.- , wc� � |M�
- , w0/�|�| �21 34 z (5)

where � is the number of objectives. When 5 ? r ,6 � is the Euclidean distance. In [Deb00], a 7 index
has been proposed, where 5 equals i in Equation (4).
It is recommended that a large number of solutions in/ should be used [Deb01]. A generalised form of 7 ,
termed as 8:9E , has been suggested in [Zit99b, Zit00],
where

6 � is replaced by a more generalised distance.
Zitzler also has proposed 8 E which is defined on the
parameter space.� The distance from / (or

�
) to

9
. An alter-

native is to calculate the average distance from/ or
�

to
9

. Since it is generally difficult to
get / ,

�
is often used instead of / . Schott

proposed Seven Points Average Distance (
9 /#d � )

[Sch95]. As a reference solution set
�

, the fol-
lowing ; points are generated: � p�F�<>=�? � � H ��� , � p�F r�@<>=�? � � H � `BA � , � p�F�<>=�? � � H � `BA � , � p�F�p � , � <>=�? � � E � F�p � ,� <C=B? � � E � `�A F�p � , � rC@ <>=�? � � E � `BA F�p � . Thus

9 /#d �
is defined asyD�FE � w3{$z�y<|;} �~ {Y~ 	 v 	
 ��� � �����GH � '))* +
 , � � ~ - , w � � |M�
- , wc��|
~ � �

(6)

Similar to [ � , Average Distance from Reference Set
(
�JI 9LK i ) has been suggested [Czy98], which can be

expressed as:�NM ��O��6w3{�z�y<|<} �~ {Y~ 	 v 	
 �P� �RQ �����GH � �TSqw �
� z���|%�2U#z

(7)

Sqw � � z���|;} �WVYXZ � �\[ �H[ ] ] ] [ + �q��z\^ Z w.- Z wc��|G�_- Z w �
� |�|%�8z

(8)

where `ba is the reciprocal number of range of objec-
tive �ca in the reference set

�
. It differs from [ � in

how the distance is calculated, from where the dis-
tance is calculated and whether normalisation is used
or not.

Instead of calculating the average distance, the Maxi-
mum Pareto Front Error ( �+/#7#k ) [Vel99], considers
the maximal approximation error:d �FeFf#wg�xz�y<|<}��WVTX�! !" '))* �����GH � � +
 , � � ~ - , wc��|G�
- , w0/&|
~ � �

(9)

Similarly, the Worst Distance from Reference Set
(
�JI 9LK r ) has also been proposed in [Czy98]:�Nh yji't�w3{�z%y;|<}��WVTXkl v Q �����GH � �TSjwc�jz � |%�2UY� (10)

This PI gives information about the biggest distance
from m ( � to the closest solution in

9
.

The PIs in this class consider the distance between / (or�
) and

9
. A prerequisite is that either / or

�
must be given,

which may not be trivial for some real-world applications.
Finally, it should be pointed out that although they are cate-
gorised as accuracy PIs, they can also be influenced by the
spread and distribution of / and

�
, which will be discussed

later.

4.2 Volume-based Accuracy PIs

In this class, we present the PIs for accuracy based on vol-
ume, which means the size of the area that is dominated by9

. The basic idea is that the larger the area the solutions can
dominate in the fitness space, the better [Zit98, Zit99b].

Zitzler proposed Size of the Dominated Space n 2, of-
ten termed as Hyperarea or Hypervolume [Zit98, Zit99], as
shown in Figure 2. A normalised n has also been defined
by o ���p E � ��qsrTt� g ��q � �� � . Veldhuizen [Vel99] use n �c/ F W�u �
to normalise n . This PI is called Hyperarea Ratio ( n � ),
which gives us the information about the difference between9

and / .
To address the problem of the l index, the Coverage

Difference of Two Set (
�

) has been proposed [Zit99b], refer
to Figure 3. The index

� � 9 E F 9 H � quantifies the size of the
area which is dominated by

9 E but is not by
9 H .

The Hyperarea Difference ( n � ) has been suggested in
[Wu01]. Since it is difficult to know / , good point />= and

2Originally, Zitzler used v , however to maintain a consistent notation,
we chose w .
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bad point /1Q are used instead of / . The dominated area is
calculated on the normalised fitness by /x= and /1Q .

The drawbacks of the PIs in this class is that WWu needs to
be given and that convex parts of the Pareto front are more
preferable than concave parts [Vel99]. If WWu is far from

9
,

their sensitivity to improvement decreases.

5 Distribution and Spread PIs

5.1 Distribution PIs

Roughly speaking, PIs for distribution can be calculated
based on distance or niche.� Distance-based. The first PI to be described in

this sub-class is Spacing (
9 / ) proposed by Schott

[Sch95]:

yD�Ywcy<|;} '))* �~ yf���6~ 	 � 	
 �P� � w � � � �� | � z (11)

� � } �����G��c � � G����� G�� +
� � � ~ - � wc�
� |M�
- � wc� , |
~ z (12)

where
	6

is the average of
6 � . It is worth noticing

that the distance is calculated by the sum of abso-
lute differences along each axis. Additionally, only
the shortest distance from each point is used with-
out sorting. Furthermore, the distance is summed
up from � ? i to � ? \ 9 \ . However, this PI may
be misleading. Consider the following solution set,d!� p&F i p � F�
 � i F�� � F l�� �&F i6� F � � i p&F�p � . To calculate

6 �

in
9 / , the distance between A and B, and C and D

are used twice. Nevertheless, the distance between B
and C is not used.

A more natural distance-based distribution PI is 
>u
proposed in [Deb00] 3 At first, the Euclidean distance6 � between consecutive solutions in

9
are calculated.

Therefore, the average of distance
	6

is calculated. Fi-
nally, 
 u � 9 � is calculated according to the following
equation: ��� wcy<|<} 	 � 	 � �
 �P� � ~ � � � �� ~~ y>~q�]� � (13)� Niche-based. The PIs in this sub-class are based on
the concept of niching. The number of solutions in
each niche is used to calculate the PIs.

Zitzler proposed the 8 9H index which takes into ac-
count both the distribution and the number of non-
dominated solutions [Zit99b, Zit00]:

���� wcy<|<} �~ yo~J��� 
G��l � ~��J���h��y�~�~ ~ �6�8� �J�6~ ~����M��~ z
(14)

where � is the niche radius. This PI is defined on
the fitness space. A PI has also been proposed on the
parameter space, which is denoted as 8 H .
The Uniform Distribution (UD) index has been sug-
gested to measure the distribution of non-dominated
solutions [Tan01, Tan02] as follows:� � wcy;|;}�����w �x� ��� � |�z

(15)

where
� �"! is the standard deviation of niche count of

the overall set of non-dominated solutions
9

:

���#� } '))* $ 	 � 	�P� �&% ' Sjwc� � |M� �	 � 	 $ 	 � 	��� �(' Sjwc� � |�) �~ y>~q�]� z
(16)

where �+*��-, � � denotes the niche count of � -th solution
in
9

: �+*��.,j� � ? \ ,Ya ( 9 N�\K\ ,q� g ,Ya \K\  �o\ g�i .
It is found that both 8 9H and / � may be misleading.
Consider again the example as in

9 / . If � is set top�I � , then 8 9H gets a value of 0 , and / � equals i I p ,
both reaching the best value. However, the distribu-
tion is not good at all. According to our evaluation,
 u seems to be only one that can reflect the distribu-
tion correctly. Unfortunately, 
>u cannot be used for
MOO problems with more than 2 objectives because
consecutive sorting is involved.

3Originally, they have introduced the PI including spread information.
However, they have also explained the PI without spread. See the footnote
in [Deb00].



5.2 Spread PIs

In this subsection, we explain the PIs for measuring the
spread of

9
.

Maximum Spread ( 8 9� ) proposed in [Zit99b, Zit00]
shows the distance between the boundary solutions in

9
.

They have also proposed 8 � on the parameter space. In
[Deb01], normalised maximum spread 8 9� has been intro-
duced, where the fitness is normalised with the range in /
before calculating 8 9� . A similar PI called Overall Pareto
Spread ( W 9 ) is adopted in [Wu01], which can be expressed
as follows:

� y>wcyMz����1z ���8|<} +� �P� � � y , wcyMz ���1z����;|�z (17)

where, W 9�� � 9 F / = F / Q � is called � 0
	 Objective Pareto
Spread ( W 9�� ):

� y�
�wcyGz\� � z � � |<} ~ �WVYX GH � - , wc��|M� ����� G� � - , wc��|
~~ - , wg���1|M�
- , wg���8|
~ �
(18)

Maximum Spread and Overall Pareto Spread are concep-
tually very similar. At first, the hypervolume defined by the
minimum value and the maximum value along each axis
is calculated. For 8 9� , the length of the diagonal line is
assigned as 8:9� . For W 9 , the size of the hypervolume is
calculated. This value is divided by the total size of the
hypervolume defined by /x= and /8Q . Thus, only the repre-
sentative values of the hypervolume are different.

5.3 Distribution and Spread PIs

The PIs in this class include information about both spread
and distribution, which can be based on distance, niching or
entropy.� Distance-based. The 
 u PI has been extended to in-

clude spread information, which is now termed 
 in-
dex [Deb01, Deb02].

� } ��� � ��� � $ 	 � 	 � ��P� � ~ � � � �� ~��� � ��� � w%~ y>~q�]��| �� z
(19)

where
6��

and
6��

are the Euclidean distances between
the extreme solutions and the boundary solutions of9

.
	6

is the average of all distances
6 � F � ( A i F \ 9 \ g�i L .� Niche-based. A PI called Chi-Square-Like Deviation

Measure � has been suggested [Deb89, Sri94].

� } '))* 	 " 	 � �
 ��� � % '
� � �'

�
� � ) � z

(20)

where �;� is the number of solutions in
9

that are
located in the circle generated around each solution
in / ,

	� � is the expected number of solutions when
the ideal solution set can be obtained, and � � for

�>? i F r FqIUIKIUF \ /a\ is suggested as follows:

� H� ? 	� � % iug E� ��� ) . The ��\ /a\�� i6� -th sub-region is

defined as the other feasible region, which is the shad-
owed region in Figure 4. Here,

	� � ��� � E and � � ��� � E are
defined as:

	� � ��� � E ? p and

� H � ��� � E ? $ � ����Pp E � H� ? \ 9 \ % iug E� ��� ) .
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Figure 4: The image of � .

A PI termed Number of Distinct Choices ( X � l � )
has been suggested in [Wu01]. A normalised fitness
space defined by /x= and /1Q is divided into a number
of small hyper-squares with the length �>
q� p  � �i6� . The number of squares with solutions in

9
is then

counted. In addition, a PI called Cluster ( l"!�� ) to
show the average number of solutions in each small
hyper-square has been also considered in [Wu01]:s$#&%<wcyMz � � z � � z'%D|<} ~ y>~

( � s)%<wcyGz�� � z\� � z*%�| � (21)

� Entropy-based. A PI for spread, kOX , based on Shan-
non’s entropy has been proposed in [Far02]. The
basic idea is that each solution point provides some
information about its neighbourhood modelled by a
Gaussian distribution. A Density Function has also
been calculated by the sum of all Gaussian distribu-
tions from all solution points. The peaks and valleys
of density function correspond to the dense areas and
the sparse areas, respectively. A desirable solution set
should have a “uniform” 4 density function which was
evaluated with Shannon’s entropy.

As mentioned in Section 5.1, 
 works only for 2 objec-
tives. In contrast, the PIs � , X � l$+ , and l"!,+ can easily be
extended to more than 2 objectives. But the distribution in
the same niche cannot be taken into account. In [Far03], thekOX is extended to deal with problems with 3 objectives and
the boundary influence is compensated. One problem is the
distortion of the distribution by Gram-Schmidt orthogonal-
isation, refer to [Far03].

4Originally, the term “flat” was used for the description of the density
function, however, statistically the term “uniform” seems to be more ap-
propriate.



6 Empirical Comparisons and Discussions

6.1 Artificial Solution Sets

In this section, we compare the results of PIs using a number
of artificial solution sets, which are shown in Figure 5. In
the figure, the solid line denotes the artificial Pareto front.
For clarity, the properties of each solution set are shown
together with the solutions.
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Figure 5: Artificial solution sets for empirical comparison.

In the calculation,
9 E is used as / and

�
. Additionally,/8= , /1Q and W�u are set to � g#i F g#ij� , � �&F�� � and � �&F�� � , respec-

tively. Niche radius is selected to be p&I ; and � in X � l /
and l"! / is p&I r . The external points in 
 are � p�F 0 � and� 0 F�p � . The calculation results are shown in Table 1. In the
table, the quality ranks according to the corresponding PI
are listed, i.e. if the value is i , this solution set is evaluated
as the best according to the corresponding PI, and a rank of�

is the worst.
It can be seen that the cardinality-based PIs fail to de-

termine the correct order of
9 � , 9 � , 9 � , and

9 �
. Further-

more, the order of other solution sets cannot be correctly
determined by l#r m . As mentioned before, these PIs cannot
distinguish solution sets which are far from / and thus a
correct ranking cannot be achieved for these solution sets.
From the accuracy point of view,

9 E , 9 H , 9�� and
9��

are
better than other sets. In this sense, the accuracy PIs are
performing well. As previously discussed, PIs for accuracy
are also influenced by the distribution and spread of / or

�
.

If the distribution and the spread of
9

are similar to / or
�

,

Table 1: Empirical comparison of several PIs with the artifi-
cial and simple solution sets. The ranks of solution sets are
shown. Tied PIs have the same ranks.

PIs � � �
	 ��� ��
 �
� �
� ��� �
�� m
, � E�� 1 3 5 5 2 4 5 5

� H�� 1 1 5 5 1 1 5 5=�� , � , ���� 1 3 7 7 2 4 6 5
� ��� � 1 6 3 8 2 5 4 7
� � �"! E 1 3 5 8 2 4 6 7� ��# � 1 3 5 5 2 3 5 5
� � �"! H 1 3 2 6 3 3 8 6$

,
$ m

,
$ � 1 4 7 6 2 3 8 5

� � , %'& 1 1 1 1 7 5 8 6
�(�	 , ) � 1 1 1 1 5 5 5 5

�(�� , *+� , *+� � , *+� 	 3 8 1 7 3 6 1 5

% 1 4 2 3 4 8 7 6, 1 3 3 3 2 7 3 7:
� �.- , ��/0- 1 1 1 8 1 5 5 5� :

4 8 1 6 3 7 2 5

the values of these PIs become better.
As recommended in [Deb00], the number of solutions

in / should be large enough. To investigate the influence of
number of solutions in / on the 7 index, additional artificial
solutions evenly distributed on the artificial Pareto Front are
generated. The computation results are shown in Figure 6.
From these results, it can be seen that a larger number of
solutions in / or

�
reduce the influence of the spread and

the distribution.
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Figure 6: 7 index against the number of solutions in / .

In comparing the group (
9 0 ,

9 �
) with the group (

9 A ,9 ; ), the influence of the boundary points still exist because
of the distance between both boundary points on / and

9
.

Although
9 /#d � is categorised as an accuracy PI, it turns

outs that
9 /#d � tends to assign a higher rank to solution

sets with a wider spread than those with a better accuracy.
With regard to the volume-based accuracy PIs, the group
(
9 E , 9 H , 9�� , 9�� ) is better than the other solutions. Note

that these PIs also include the influence of distribution and
spread. The influence is more complex than the distance-
based accuracy PIs. The strength of the influence changes
according to the location of W�u and the distribution of solu-



tions. From the results, it seems that
9 / 5 and 
 u are able

to reflect the distribution of the solution sets correctly. The
rank obtained from 
 seems confusing. It seems that PIs of9 E , 9 H , 9 � , and

9 � perform better than others. However, it
is very hard to distinguish the influence of distribution from
that of spread. The PIs based on the niche, i.e. � , 8 9H and/ � , show a lot of incomparable cases. This is caused by
the insensitivity of the niche count. For one solution set, the
niche count can only take the value of zero or one.

The ranks from the PIs for the spread show a good agree-
ment with the test cases. However, a high value of these PIs
does not imply that the solution set has high quality from
the accuracy and distribution point of view. By comparing9 E with

9 � , this is clear.
It can also be found that the results of X � l + and l"!�+

are very sensitive to � . If � is too large or too small, many
solution sets will become incomparable. However, to spec-
ify an appropriate � is not easy. From the result of kOX , it
can be seen that kOX prefers widely spread solutions. The
group (

9 E , 9 � , 9 � , 9 � ) has higher values than others, although
the order is confusing.

6.2 Real Solution Sets

In this section, we compare solution sets for the 50-
dimensional Schaffer’s function generated by seven widely
used MOO optimisers. Details of the MOO optimisers are
omitted here because they are not of interest in the present
paper. The obtained solution sets are shown in Figure 7.

With these solution sets, we calculate the value of PIs.
According to the values, we determine the rank of the opti-
misers. The results are shown in Table 2. Similarly, a rank
of 1 indicates that the performance of the optimiser is best,
and a rank of 7 that it is worst, according to the PI used. The
following parameters have been used in the calculation:�

and
{

: 500 ideal solutions for
f${

,
s���v

,���
, � ,

� � �
, �
{

100 ideal solutions for
� (�� � {

,sut v
,
�Nh y�i �

,
d �FeFf

,
�Nh yji't

, �
Good point :

��� }�w � ��� ��z�� ��� �j|
Bad point :

� � }�w���� ��z���� �6|
� �

Point :
� � }�w���� ��z���� �j|

External points :
��� }�w3��� ��z
	V� �6|�zJw�	�� ��z���� �6|

Number of division :
%�} ��� ���

Niche radius :
��} ��� �
�6t��

.
First of all, it is very difficult to determine which opti-

miser is best because the ranks of a solution set are com-
pletely different based on different PIs.

In general, PIs that count the number of solutions, such
as WYX][OZ and WYX]Z^[ � are too sensitive to be practi-
cal. No useful information has been revealed based on k � ,

5Although we pointed out that v�� is misleading in Section 5.1, we can
not observe the problem with these solution sets.

0 1 2 3 4
0

1

2

3

4

f1

f2

0 1 2 3 4
0

1

2

3

4

f1

f2

0 1 2 3 4
0

1

2

3

4

f1

f2

(a)
9 E (b)

9 H (c)
9 �

0 1 2 3 4
0

1

2

3

4

f1

f2

0 1 2 3 4
0

1

2

3

4

f1

f2

0 1 2 3 4
0

1

2

3

4

f1

f2

(d)
9 � (e)

9 �
(f)
9 �

0 1 2 3 4
0

1

2

3

4

f1

f2

(g)
9��

Figure 7: Real solution sets for the test function.

l iqm and l#r m . Neither can one draw any conclusion on
the solution quality according to the PIs for accuracy based
on the distance,

9 /#d � and
�JI 9 K i , which are apparently

strongly influenced by the spread of solution sets. Besides,
�+/#7#k is also strongly influenced by the most-right solu-
tion and other solutions have no influence at all. The PIs for
accuracy based on the volume tend to prefer more spread
solution sets than more accurate solution sets.

The PIs for distribution can be divided into two types.
The

9 / and 
 u , based on the distance, seem to prefer the
less spread solution sets because they produce smaller val-
ues if a solution set shrinks. In contrast, 8 9H and / � seem
to prefer more spread solutions because the niche radius is
fixed. Thus, if a PI is dedicated to the uniformity of the
distribution, then the niche radius should be scaled to the
spread of the solutions. The PIs for spread seem to reflect
spread of the solution set correctly. Wider spread solutions
have a better value and vice versa. The PIs for distribution
and spread, i.e. 
 , � , X � l$+ , l"!,+ and kOX , seem to prefer
wider spread solution sets because the influence of the end
points is very large.

7 Conclusions

From our empirical evaluations and discussions, it can be
seen that no single existing PI is able to account for all
aspects of the quality of solution sets for MOO problems.
Some PIs are even quite misleading in certain cases. Thus,
one should be very careful in evaluating and comparing the
performance of MOO optimisers according to performance



Table 2: Empirical comparison of several PIs with real so-
lution sets. The ranks of solution sets are shown. Tied PIs
have the same ranks.

PIs � � � 	 � � � 
 � � � � � �
*
:

� = , *
:

� = m 7 1 1 1 6 5 1� m
, � E�� , � H � 1 1 1 1 1 1 1=�� 5 6 7 4 3 1 2

� , ���� 5 3 7 6 4 1 2
� ��� � 6 4 3 1 2 5 7� � �"! E 6 4 3 2 1 5 7� ��# � 5 6 7 4 1 2 3� � �"! H 5 3 4 1 2 7 6$

,
$ m

,
$ � 6 4 3 2 1 5 7

� � 3 2 5 6 7 4 1
%'& 4 2 5 7 6 3 1
�(�	 7 3 2 1 6 5 4
) � 4 7 1 3 2 5 6

�(�� , *+� 6 4 3 2 1 5 7
* � � 5 4 3 1 2 6 7
* � 	 6 5 2 3 1 4 7

% 7 4 1 3 2 5 6, 3 5 1 6 2 4 6:
� �.- 6 4 1 3 2 5 6

��/ - 6 4 2 3 1 5 7� :
6 5 1 3 2 4 7

indices only. This is particularly important when there is
little information about the shape of the true Pareto-optimal
front, as in most real-world applications.

We should also note that some of the existing PIs work
only for bi-objective optimisation problems. The following
PIs can theoretically be applied to problems with more than
three objectives: cardinality-based PIs, distance-based ac-
curacy PIs except for

9 /#d � , volume-based accuracy PIs,
niche-based distribution PIs, spread PIs, and entropy-based
PIs. For MOO problems with higher number of objectives,
a proper performance index for the distribution based mea-
sures seems more difficult. Although measures of unifor-
mity can easily be defined in higher dimensions for a finite
number of data points, they are not unique. Thus, it becomes
harder - even for humans - to define what type of definition
is favoured.
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