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Abstract. In order to evaluate the relative performance of optimization
algorithms benchmark problems are frequently used. In the case of multi-
objective optimization (MOO), we will show in this paper that most
known benchmark problems belong to a constrained class of functions
with piecewise linear Pareto fronts in the parameter space. We present
a straightforward way to define benchmark problems with an arbitrary
Pareto front both in the fitness and parameter spaces. Furthermore, we
introduce a difficulty measure based on the mapping of probability den-
sity functions from parameter to fitness space. Finally, we evaluate two
MOO algorithms for new benchmark problems.

1 Introduction

In the recent literature, several multi-objective evolutionary optimization algo-
rithms have been proposed [1, 3]. In order to compare their performance and in
order for practitioners to decide which algorithm to employ, benchmark problems
(test functions) are extensively used. Therefore, the properties of test functions
and their difficulty and representativeness are of utmost importance. Although
some work on summarizing the properties of test functions for multi-objective
optimization can be found in the literature [1], we will see in the next section
that a majority of all test functions share the same property: their Pareto front
in parameter space is piecewise linear. This restriction of benchmarks to a lim-
ited class of functions is dangerous since we cannot expect that most real-world
problems will also have piecewise linear Pareto fronts in parameter space. It is
the target of this paper to present an “easy to follow” recipe to construct test
functions for multi-objective optimization problems with arbitrary, user-specified
Pareto curves in the parameter space and fitness space. Furthermore, in Section
4, we will present a measure for the difficulty of benchmark problems based on
the mapping between parameter space and fitness space!. In Section 5, examples
of generated test functions will be given. We will compare two multi-objective
evolutionary algorithms for these new test problems in Section 6 and summarize
this paper in the last section.

! Note that the fitness space is the space spanned by the number of objectives in
MOO. It should not be confused with the fitness landscape, which in single objective
optimization is sometimes also referred to as fitness space.



2 Properties of Test Functions

Coello et al. [1] have summarized test functions for MOO according to their
properties in the fitness space (FS) and in the parameter space (PS). However the
geometry of the Pareto front in parameter space and in particular the mapping
between the PS and the FS has not received much attention. We investigated the
geometry of the Pareto front in the PS of the test functions found in [1, 3]. The
results are shown in Table 1 for the two-dimensional case. It is noticed that the
Pareto fronts of most test functions consists of piecewise linear curves and/or
single points in the PS.

Table 1. Geometry of Pareto fronts in the parameter space. The properties of test
functions with “*” are obtained empirically.

Geometry|Test Functions Geometry Test Functions
1 Point [Binh(3), Osyczka 4 Lines Schaffer(2),ZDT3
31 Points [ZDT5 5 Lines Osyczka(2)

1 Line Binh(1),Binh(2),Fonseca, |[1 Point and 3 Lines [Kursawe*
Fonseca(2),Laumanns,Lis, |[1 Point and 4 Lines [Poloni* Viennet(3)*

Murata,Rendon(2),Schaffer,|[T Curve Binh(4),0Obayashi
Belegundu,Kita,Srinivas, 3 Curves Tanaka
ZDT1,ZDT2,ZDT4,ZDT6 1 Surface Viennet¥, Tamaki
2 Lines |Jimenez 1 Surface and 1 Line|Viennet(4)*
3 Lines |Rendon,Viennet(2)* 6 Parts of Surface |[Quaglizrella

In [2, 3], Deb has proposed the following method to construct ”tunable” test
functions for MOO:

min (fl (m)i fQ(m)) = (fl (.’171,.’[12, () mm); g($m+1;$m+2; ey Z’n) ) h(flag)) . (1)
Here, f;,4 = 1,2 and z;,j = 1,...,n are the i-th objective function, and the
j-th component of the parameter vector with dimension n. Functions g and h
are defined by the user. In Equation (1), function h determines the shape of
the Pareto front in the fitness space, function g controls the difficulty for an
algorithm to converge to the Pareto front, and function f; influences the di-
versity of the Pareto optimal solutions. By applying deceptive or multi-modal
test functions from single objective optimization (SOO) to g, one can realize
the same difficulty, i.e. deceptiveness or multi-modality, in MOO. Therefore, it
is possible to determine the shape of the Pareto front in FS and to tune the
difficulty with respect to “standard” measures of difficulty from single objective
optimization. However, we can decompose the optimization problem resulting
from such test functions in the following way: (1) minimize the g function; (2)
generate proper f; values to get widely spread and well-distributed solutions.
Since all values of f; locate on the boundary of the feasible region and might
be Pareto optimal solutions, it is sufficient to generate well-distributed f; values
to get well-distributed Pareto-optimal solutions. The mapping between the pa-
rameter and the fitness spaces, and the shape of the Pareto front in parameter
space have not been taken into account in the framework outlined above. This
might be the reason for the similarity of the class of test functions created using
the framework.

Although many papers in the literature concentrate on bi-objective optimiza-
tion and/or optimization without constraints, most of real-world problems have
more than two objectives and a lot of constraints. Three different approaches for



generating test functions with more than two objectives in [4, 6] and the one for
constrained test functions in [5] are proposed. These are frontier work for more
practical test functions.

3 A New Method to Build Test Functions

This section proposes a method to construct different types of test functions
with arbitrary, customized Pareto fronts in fitness and in parameter space. The
basic idea is to start from a starting space between a parameter space and a
fitness space?, which we denote by &2, and to construct the parameter space
and the fitness by applying appropriate functions to S2. Using the inverse of
the generation operation, i.e. deformation, rotation and shift, for the parameter
space, we arrive at the mapping from PS to FS. The basic procedure is outlined
in Figure 1 and will be described in detail in the next sections.

Starting Space Intermedl ate Space
52 : ‘ Deformation
ngﬂ'&?'on y | Generate Rotation
Shift | Boundary Shift

wn | ntermediate Pareto Front
I True Pareto Front
Feasible Region

Fitness Space

Fig. 1. Basic idea to generate test functions with arbitrary Pareto fronts in the PS
and the FS. The space S is the starting space. The final result is given by the Pareto
fronts in the PS X2 and the FS F? and the mapping from PS to FS.

3.1 Determine Intermediate Pareto Front in the PS

The space S%(s1,s2) with the Pareto front s, = 0 is used as the starting point.
The mapping between S? and the parameter space X2(z1,22) is given by

z1 =m(s1,82), T2 =mn2(s1,82). (2)
The following equations correspond to the intermediate Pareto front in PS
1 :7’}1(31,82:0), $2:n2(31,82:0). (3)

Since a true Pareto front will be determined later, we added the term interme-
diate. Tf the defining space for 7; ' is denoted as X2 ot the functional relation
for the Pareto front in the parameter space is given by

z2 = na(ny (21,82 = 0),80 = 0), =1 € X;l_l (4)
Therefore, functions 7, and 7, define the Pareto front in parameter space Ad-
ditionally, some constraints are introduced if X 2_1 £ IR?, e.g. if g, = s3, the

constraint is given by x; > 0. However, bes1des defining the (intermediate)
Pareto front in parameter space, 1; also has a more hidden property. It relates

% Note that we will restrict the discussion in the following to two dimensions, however,
the identical approach can be used to construct test functions in higher dimensions
(both of a parameter space and a fitness space).



the probability density (PD) in S? space to the probability density in X2 space.
This is an important aspect because the search process in multi-objective evo-
lutionary optimization can be understood by mapping the search distribution
in parameter space to the one in fitness space [8]. Two examples of the map-
ping of a uniform distribution on s, = 0 in S? space to the Pareto front in
parameter space are shown in Figure 2 with 75 = sin(s;). Here, the points are
generated with s; =0.14—4.0 (¢ =0,1,---,80). We refer to this property of 7,
as deformation.

In order to analyze the effect of the functions 1; and 7o on the whole X2
space (not just the Pareto front), we decompose them into functions that depend
on s; or sy only>.

x1 =11(51,82) = g91(51) + 92(82), T2 = Ma(s1,82) = gs(s1) +9a(s2).  (5)
To simplify our discussion, g2(s2) = 0 will be used for the rest of this paper. If we
assume g4(s2) = 0,Vsy = 0, then our comments above on the role of 7; equally
apply to gs(s1). Thus, g3(s1) determines the relationship of the probability den-
sity on the Pareto front from the S? space to the X2. The role of g4(s2) is similar,
however, it controls the mapping of the probability density function approaching
the Pareto front. Again in Figure 3 two examples are shown. Here, the points are
generated with s; = 0.1i—4.0 (i = 0,1,---,80), s2 = 0.25j—1.0 (j = 0,1,---,8).
Needless to say that the function g4(s2) is very important as a measure for the
difficulty of the optimization problem. In the extreme case, the Pareto front
might be an “island” surrounded by areas of extremely low probability (under
the assumption of a uniform distribution in S? space).
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Fig. 2. The effect of 7, function. Prob-
ability density of solutions along the
Pareto front for n1(s1,s2 = 0) = s1 (top)
and 71 (s1,82 = 0) = s} (bottom). Data
points (dots) are uniformly generated in

Fig. 3. The effect of g4 function. Proba-
bility density for g4(s2) = s2 (top) and
ga(s2) = s3 (bottom). Here, 91 (s1, s2) =
s1 and gs(s1) = sin(s1) are assumed.
Data points (dots) are uniformly gener-

S? space. ated in the 82 space.

In order to extend the possible degree of variation, the Pareto front in X2
space can additionally be rotated using a standard rotation matrix.

So far we have discussed the mapping from the starting space S? to X2
space, because this is the direction for constructing the Pareto front. Of course
the mapping direction during search is the opposite. The projected probability

3 To simplify our discussion, we assume that 7; and 72 can be decomposed. However,
this assumption is not necessary for generating test functions in practice.



distributions for the mapping from X2 space to S? space assuming uniform
distribution of (1, x2) in [—,7]? is shown in Figure 4(a) for the example of

n(s1,82) = 8?7 n2(s1,82) = Sin(s‘?) + 52, (6)
and in Figure 4(b) for the example of
m(s1,52) =1, na(s1,s2) = sin(sy) + s3. (7)

In Figure 4(b), we can observe the “island effect” which we mentioned above.
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(a) (z1,22) = (s1,sin(s7) + s2) (b) (z1,z2) = (s1,sin(s1) + s3)

Fig. 4. Projected distribution in the S space. The distribution in the PS (the X2
space), is assumed to be uniform in (z1,2) € [—7, 7>

3.2 Generate Boundary

The first step from the intermediate space S? toward the fitness space is the
generation of a boundary, since the Pareto front in fitness space usually consists
of parts of a boundary.

There are two approaches to generating boundaries. First, the boundary
can explicitly be defined by introducing appropriate constraints. Second, it can
implicitly be defined by using functions that generate a boundary. We will
concentrate on the second approach and define a second intermediate space
T? = (t1,t2). The following functions will be used as "boundary generators”:

(1) t1 = 61(81) = 81 (2) t1 = 51(81) = S1 (3) ty = 51(31) =81
ty = &a(s2) = 53 ty = &a((s2) = |s2] ty = &a(52) = /[sa].

Now, the distribution in the 72 space can be calculated theoretically [8]. The
distribution in the S space is assumed to be uniform in [—1, 1]?. The results are
shown in Figure 5. As explained in [8], the sphere function results in the highest
value of the probability density function (PDF) near the intermediate Pareto
front. Theoretically, the PDF of case (1) at to = 0 is infinity. For the absolute
function, case (2), the distribution remains uniform. The square root function,
case (3), generates difficult problems to reach the intermediate Pareto front.

3.3 Determine Intermediate and True Pareto Front in FS

To generate the shape of the intermediate Pareto front in the FS, the same
procedure as in Section 3.1 can be used. In the 72 space, the boundary of t; =0
is the candidate for the Pareto front in the FS. The relationship between the
space 72 and the fitness space can be written as:

fi =Gt t2),  fa = Calta,ta). (8)
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Fig. 5. Projected Distribution in the 72 space. The distribution in the S* space is
assumed to be uniform in [—1, 1)°.

It is worth noticing that the mapping direction from 72 to F?2 is the same as
for the optimization, i.e. from the PS to the FS. Thus, the discussion of the
properties of (1 and (o carry directly over to the discussion of the PS to FS
mapping for the optimization.

After generating the intermediate Pareto front, the true Pareto front in the
FS will be determined. According to the definition of Pareto optimality [1], only
parts of the generated boundary will be the Pareto front. Here, we can also
generate a disconnected Pareto front by selecting proper functions of ¢; and (5.
To know which parts are the Pareto front in the PS, the boundary information
can be mapped back to the PS using the functions and their inverses outlined
in the previous sections.

4 Distribution Indicator

In this section, we will discuss the difficulty of test functions from the viewpoint
of the transformation of a given probability density under the mapping from the
parameter space to the fitness space. For this purpose, the Distribution Indicator
will be proposed.

Assume the distribution before projection to be ¢(x1,x2) in the parameter
space X2. Using the following equation, the projected distribution, ¥ (f1, f2), in
the fitness space F? can be calculated with the Jacobian matrix J as follows [8]:

1

Vi) = e, 7] = gl gl SR Q
Again equation (9) shows only the two-dimensional case with a one-to-one map-
ping between both spaces, however, both conditions can easily be relaxed. The
necessary extension can be found in [8].

We are now in a position to define the distribution indicator as an additional
measure for the difficulty of test problems for multi-objective optimization as
follows:

D = (det) ' =|J| . (10)
The distribution indicator measures the amount of distortion the probability
density in parameter space suffers under the mapping from PS to FS.



In the previous section, we constructed test functions using the intermediate
spaces S2 and T2 and the additional rotation operation. The rotation results
in no distortion and will therefore be neglected in the following. The remaining
distribution indicators can simply be multiplied to yield the overall indicator:

D= Dz—)f =Dy s X Dyyy X Dt—)f (]-]-)

The Distribution Indicators D, for the functions that we used in the pre-

vious sections are given as follows

(1) (z1,22) = (s1,8in(s1) + 82) = Dgys =1

(2) (z1,22) = (83,sin(s?) + 82) — Dys = 357

(3) (21,z2) = (s1,sin(s1) + s3) — Dys = 355
Case 1 results in no changes in the probability density. For the second case, the
distribution is uniform in the direction of ss but not in s;. Since the Distri-
bution Indicator becomes low near s; = 0, the probability density in this area
becomes sparse whereas it is high for s; >> 0 and s; << 0. Case 3 is similar
to case 2, however, the role of s; and ss is exchanged. These results which show
good agreement with Figure 4 demonstrate that difficult MOO problems can be
generated with a smaller Distribution Indicator close to the Pareto front.

The Distribution Indicators Dy_,; are given by

(1) (t1,t2) = (s1,83) = Dsmye = (2v/F2)7"

(2) (t1,t2) = (81, |82|) — Dsse =1

(3) (t1,t2) = (s1,1/]s2]) = Dsrt = 22
For case 1 the PDF becomes infinite on the intermediate Pareto front. Addi-
tionally, the area near the intermediate Pareto front has higher values of the
PDF. This situation is the same as for SCH1 test function in [9]. Case 2 results
in a uniform distribution due to D = 1. In case 3, the distribution depends on
2t5. Thus, the area far from the intermediate Pareto front has high value. The
minimum PDF is on the intermediate Pareto front.

The Distribution Indicators Dy_,y can be calculated in the same way with
D,_,s due to the same generation operation.

5 Illustrative Examples

With the framework presented in this paper, a variety of test functions can be
generated. Due to the space limit, only two examples are shown here.

Test Function OKA1
Suppose that the desired Pareto front in the PS is defined by x> = 3 cos(z1)+

3 with 15-degree rotation clockwise and the one in the FS by fo = /27 —+/fi.
To control the hardness of the test function, the distribution in the f; direction
is assumed to be uniform (see Example 1 in Figure 2) and the one in the fo
direction is assumed to become more sparse towards the Pareto front, see Figure
4 (b). For this purpose, we can use the following mapping functions:

1 (s1, $2) = cos(mw/12)s1 + sin(7/12) (3 cos(s1) +3+ sg) ,

12(s1, 82) = —sin(w/12)s1 + cos(w/12) (3 cos(s1) + 3+ s%)

61(51) = 81, 52(82) = |52|, Cl(t1,t2) =11, Cz(h,tz) = m— |t1| + 2ta. (12)



Here, 71 and 72 define the Pareto front in the PS. To generate the boundary,
the simple mapping functions & = s; and & = |s2| is used. Finally, mappings
¢1 and (» determine the Pareto front in the the FS. In this way, the following
MOO test function is created:

fi=ah, fo=V21— \/@4—2 |w'2 — 3cos(z}) —3‘% ,
o} = cos(m/12)z1 — sin(n/12)z2, w5 = sin(n/12)z1 + cos(w/12)z2,
x1 € [6sin(7/12), 6sin(7/12) + 27w cos(n/12)], x2 € [—2msin(7/12),6 cos(m/12)]
Pareto Front in the PS z5 = 3cos(z}) +3  (z} € [0, 27])
Pareto Front in the FS fo = V27 — \/E (f1 €10,2n])
Distribution Indicator Dy y = g |:c'2 —3cos(zy) — 3|% . (13)
Test Function OKA2
Similarly, we can construct the following three-dimensional test function:
fi=z, fo=1- # (@1 + )% + |22 — 5 cos(z1)|F + |z — 5sin(e)|
x1 € [-m, 7], x2,x3 €[-H,5]
Pareto Front in the PS (21, z2,x3) = (§,5cos(§),5sin(§)) (z1 € [—m,7])

Pareto Front in the FS  fo =1 — # (i +7)° (fi € [-m, 7))

Distribution Indicator Dy =9|z2 —5 cos(m1)|% |z3 —5 sin(m1)|% . (14)

To show the Pareto front, 10000 data points are generated randomly in the

PS and projected into the FS, see Figure 6 and 7. In the FS, all data points

are plotted to show the entire fitness landscape. In the PS, only non-dominated

points are shown. The true Pareto front is denoted by the solid curves. It can be

seen from Figure 6 and 7 that the designed test functions address our concerns
discussed in Section 1 and 2.
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(a) Pareto Front in PS (b) Pareto Front in FS
Fig. 6. Pareto front (OKA1) in the parameter space (PS) and in the fitness space (FS).

6 Performance Comparison

In this section, the performance of NSGA-II (GA version) [6] and Hybrid Repre-
sentation (HR) [9] will be compared on the two given test functions OKA1 and
OKA2. Each algorithm was executed 30 times to reduce the randomness. The
parameters used are summarized in Table 2 and the results are shown in Figure
8 (a)-(b) for NSGA-II, and (d)-(e) for HR, respectively. It can be seen that the
performance of both optimizers on OKA1 and OKA2 is not sufficient.
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(a) Pareto Front in PS (b) Pareto Front in FS

Fig. 7. Pareto front (OKAZ2) in the parameter space (PS) and in the fitness space (FS).

The main reason is that for both test functions, the closer the population
gets to the Pareto front, the more sparse the probability density becomes. To
illustrate this, we show the parent (denoted by dots) and offspring (denoted
by circles) individuals at the final generation in Figure 8 (c¢) of NSGA-II and
(f) of HR. Clearly, both optimizers cannot generate promising offspring even if
parents have converged to the Pareto front (denoted by the curve). Using the
new test functions, we show that although both optimizers can solve existing
test functions of a low dimension perfectly, neither of them is able to solve the
test functions proposed in this work satisfactorily even if the dimensionality is
very low.

Table 2. Parameters used in the experiments.

NSGA-II HR
Population size 100 100
Maximum iterations 500 500
Coding Gray coding Gray coding
Crossover One-point crossover |One-point crossover
Crossover rate 0.90 0.90
Mutation (GA) Bit flip Bit flip
Mutation rate (GA) 0.025 0.025
Number of bits per one design parameter|20 20
Initial step size (ES) N/A o; =[0.0,0.1]
Lower bound N/A g; > 0.004 X |z;]
Minimum number of individuals N/A 5%
Mutation rate (Switching) N/A 0.01
Selection Crowded Tournament|Crowded Tournament

7 Summary

Most test functions have piecewise linear Pareto fronts in parameter space. In
order to circumvent this undesirable restriction, we proposed in this paper a
method to construct benchmark problems for multi-objective optimization prob-
lems with arbitrary, customized Pareto fronts in fitness and parameter space. As
a “by-product” of this method we suggested an additional measure for the dif-
ficulty of test problems which is based on the mapping of probability density
functions from parameter to fitness space. We termed this measure distribution
indicator. If the value of this indicator is small, the corresponding region is diffi-
cult to search for the optimizer. Finally, we gave examples of test functions with
a higher order Pareto curve in parameter space and compared the performance
of two evolutionary algorithms.
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Fig. 8. Solutions obtained by NSGA-II (a)-(b) and HR (d)-(e) on OKA1l and OKAZ2.

Only 5 results are shown to avoid complicated figures. Parents and offspring at the
final generation of NSGA-II (c) and HR (f) on OKA2.
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