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Abstract. Feature selection for ensembles has shown to be an effective strategy
for ensemble creation due to its ability of producing good subsets of features,
which make the classifiers of the ensemble disagree on difficult cases. In this pa-
per we present an ensemble feature selection approach based on a hierarchical
multi-objective genetic algorithm. The algorithm operates in two levels. Firstly,
it performs feature selection in order to generate a set of classifiers and then it
chooses the best team of classifiers. In order to show its robustness, the method
is evaluated in two different contexts: supervised and unsupervised feature selec-
tion. In the former, we have considered the problem of handwritten digit recog-
nition while in the latter, we took into account the problem of handwritten month
word recognition. Experiments and comparisons with classical methods, such as
Bagging and Boosting, demonstrated that the proposed methodology brings com-
pelling improvements when classifiers have to work with very low error rates.

1 Introduction

Ensemble of classifiers has been widely used to reduce model uncertainty and improve
generalization performance. Developing techniques for generating candidate ensemble
members is a very important direction of ensemble of classifiers research. It has been
demonstrated that a good ensemble is one where the individual classifiers in the ensem-
ble are both accurate and make their errors on different parts of the input space [7]. In
other words, an ideal ensemble consists of good classifiers (not necessarily excellent)
that disagree as much as possible on difficult cases.

The literature has shown that varying the feature subsets used by each member of the
ensemble should help to promote this necessary diversity [6,15,18]. Traditional feature
selection algorithms aim at finding the best trade-off between features and generaliza-
tion. On the other hand, ensemble feature selection has the additional goal of finding
a set of feature sets that will promote disagreement among the component members of
the ensemble. The Random Subspace Method (RMS) proposed by Ho in [6] was one
early algorithm that constructs an ensemble by varying the subset of features. Strategies
based on genetic algorithms (GAs) also have been proposed [5,15]. All these strategies
claim better results than those produced by traditional methods for creating ensembles
such as Bagging and Boosting. In spite of the good results brought by GA-based meth-
ods, they still can be improved in some aspects, e.g., avoiding classical methods such as



the weighted sum to combine multiple objective functions. It is well known that when
dealing with this kind of combination, one should deal with problems such as scaling
and sensitivity towards the weights.

It has been demonstrated that feature selection through multi-objective genetic al-
gorithm (MOGA) is a very powerful tool for finding a set of good classifiers [4,14],
since GA is quite effective in rapid global search of large, non-linear and poorly un-
derstood spaces [17]. Besides, it can overcome problems such as scaling and sensitivity
towards the weights. Kudo and Sklansky [8] have compared several algorithms for fea-
ture selection and concluded that GAs are suitable when dealing with large-scale feature
selection (number of features is over 50). This is the case of most of the problems in
handwriting recognition, which is the test problem in this work.

In this light, we propose an ensemble feature selection approach based on a hier-
archical MOGA. The underlying paradigm is the “overproduce and choose” [16]. The
algorithm operates in two levels. The former is devoted to generate a set of good classi-
fiers by minimizing two criteria: error rate and number of features. The latter combines
these classifiers in order to find an ensemble by maximizing the following two criteria:
accuracy of the ensemble and a measure of diversity. We demonstrated through exper-
imentation that using diversity jointly with performance to guide selection can avoid
overfitting during the search.

In order to show robustness of the proposed methodology, it was evaluated in two
different contexts: supervised and unsupervised feature selection. In the former, we have
considered the problem of handwritten digit recognition and used three different feature
sets and multi-layer perceptron (MLP) neural networks as classifiers. In the latter, we
took into account the problem of handwritten month word recognition and used three
different feature sets and hidden Markov models (HMM) as classifiers. We demonstrate
that it is feasible to find compact clusters and complementary high-level representa-
tions (codebooks) in subspaces without using the recognition results of the system.
Experiments and comparisons with classical methods, such as Bagging and Boosting,
demonstrated that the proposed methodology brings compelling improvements when
classifiers have to work with very low error rates.

2 Methodology Overview

In this section we outline the hierarchical approach proposed. As stated before, it is
based on an “overproduce and choose” paradigm where the first level generates sev-
eral classifiers by conducting feature selection and the second one chooses the best
ensemble among such classifiers. Figure 1 depicts the proposed methodology. Firstly,
we carry out feature selection by using a MOGA. It gets as inputs a trained classifier
and its respective data set. Since the algorithm aims at minimizing two criteria during
the search4, it will produce at the end a 2-dimensional Pareto-optimal front, which con-
tains a set of classifiers (trade-offs between the criteria being optimized). The final step
of this first level consists in training such classifiers.

4 Error rate and number of features in the case of supervised feature selection and a clustering
index and the number of features in the case of unsupervised feature selection.
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Fig. 1. An overview of the proposed methodology.

Once the set of classifiers have been trained, the second level is suggested to pick the
members of the team which are most diverse and accurate. Let

����������	
���
	�������	
�����
be a set of � classifiers extracted from the Pareto-optimal and � a chromosome of
size � of the population. The relationship between

�
and � is straightforward, i.e.,

the gene � of the chromosome � is represented by the classifier
���

from
�

. Thus, if a
chromosome has all bits selected, all classifiers of

�
will be included in the ensemble.

Therefore, the algorithm will produce a 2-dimensional Pareto-optimal front which is
composed of several ensembles (trade-offs between accuracy and diversity). In order
to choose the best one, we use a validation set, which points out the most diverse and
accurate team among all. Later in this paper, we will discuss the issue of using diversity
to choose the best ensemble.

In both cases, MOGAs are based on bit representation, one-point crossover, and
bit-flip mutation. In our experiments, MOGA used is a modified version of the Non-
dominated Sorting Genetic Algorithm (NSGA) [2] with elitism.

3 Classifiers and Feature Sets

As stated before, we have carried out experiments in both supervised and unsupervised
contexts. The remaining of this section describes the feature sets and classifiers we have
used.

3.1 Supervised Context

To evaluate the proposed methodology in the supervised context, we have used three
base classifiers trained to recognize handwritten digits of NIST SD19. Such classifiers
were trained with three well-known feature sets: Concavities and Contour (CC ��� ) [13],
Distances (DDD ��� ), and Edge Maps (EM ��� ). All classifiers here are MLPs trained with
the gradient descent applied to a sum-of-squares error function.



The training (TRDB ��� ) and validation (VLDB1 ��� ) sets are composed of 195,000
and 28,000 samples from hsf 0123 series respectively while the test set (TSDB ��� ) is
composed of 30,089 samples from the hsf 7. We consider also a second validation set
(VLDB2 ��� ), which is composed of 30,000 samples of hsf 7. This data is used to select
the best ensemble of classifiers. Table 1 reports the performance of all classifiers at
zero-rejection level and error rates fixed at low levels (0.10 and 0.50%). These numbers
are much more meaningful when dealing with real applications since they describe the
recognition rate in relation to a specific error rate, including implicitly a corresponding
reject rate. They also corroborates that recognition of handwritten digits is still an open
problem when very low error rates are required.

Table 1. Description and performance of the classifiers on TSDB (zero-rejection level) .

Feature Number. of Units in the Rec. Rec. Rate
Set Features Hidden Layer Rate (%) Err=0.1% Err=0.5%

CC ��� 132 80 99.13 91.83 98.50
DDD ��� 96 60 98.17 75.11 92.80
EM ��� 125 70 97.04 60.11 85.10

3.2 Unsupervised Context

To evaluate the proposed methodology in unsupervised context we have used three
HMM-based classifiers trained to recognize handwritten Brazilian month words (“Janeiro”,
“Fevereiro”, “Março”, “Abril”, “Maio”, “Junho”, “Julho”, “Agosto”, “Setembro”, “Out-
ubro”, “Novembro”, “Dezembro”). The training (TRDB � � ), validation (VLDB1 � � ),
and testing (TSDB � � ) sets are composed of 1,200, 400, and 400 samples, respectively.
In order to increase the training and validation sets, we have also considered 8,300
and 1,900 word images, respectively, extracted from the legal amount database. This is
possible because we are considering character models. We consider also a second vali-
dation set (VLDB2 � � ) of 500 handwritten Brazilian month words. Such data is used to
select the best ensemble of classifiers.
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Fig. 2. Topologies of (a) space, (b), and (c) letter models

Given a discrete HMM-based approach, each word image is transformed as a whole
into a sequence of observations by the successive application of preprocessing, segmen-
tation, and feature extraction. Preprocessing consists of correcting the average character
slant. The segmentation algorithm uses the upper contour minima and some heuristics
to split the date image into a sequence of segments (graphemes), each of which con-
sists of a correctly segmented, an under-segmented, or an over-segmented character. A
detailed description of the preprocessing and segmentation stages is given in [12].



The word models are formed by the concatenation of appropriate elementary HMMs,
which are built at letter and space levels. The topology of space model shown in Figure
2(a) consists of two states linked by two transitions that encode a space (transition

��� �
)

or no space (transition
� � � ���

).
Two topologies of letter models were chosen based on the output of our grapheme-

based segmentation algorithm which may produce a correct segmentation of a let-
ter, a letter under-segmentation or a letter over-segmentation into two, three, or four
graphemes depending on each letter. In order to cope with these configurations of seg-
mentations, we have designed topologies with three different paths leading from the
initial state to the final state. Considering uppercase and lowercase letters, we need 42
models since the legal amount alphabet is reduced to 21 letter classes and we are not
considering the unused ones. Thus, regarding the two topologies, we have 84 HMMs
which are trained using the Baum-Welch algorithm with the Cross-Validation proce-
dure.

The feature set that feeds the first classifier is a mixture of concavity and contour
features (CC � � ) [13]. In this case, each grapheme is divided into two equal zones (hori-
zontal) where for each region a concavity and contour feature vector of 17 components
is extracted. Therefore, the final feature vector has 34 components. The other two clas-
sifiers make use of a feature set based on distances. The former uses the same zoning
discussed before (two equal zones), but in this case, for each region a vector of 16 com-
ponents is extracted. This leads to a final feature vector of 32 components (DDD32� � ).
For the latter we have tried a different zoning. Table 2 reports the performance of all
classifiers on the test set at zero-rejection level and error rates fixed at 1 and 4%. We
have chosen higher error rates in this case due to the size of the database we are dealing
with.

Table 2. Performance of the classifiers on the test set.

Feature Number of Codebook Rec. Rate Rec. Rate
Set Features Size (%) Err=1% Err=4%

CC � � 34 80 86.1 61.0 79.2
DDD32 � � 32 40 73.0 30.5 48.4
DDD64 � � 64 60 64.5 24.9 37.0

It can be observed from Table 2 that the recognition rates with error fixed at 1 and
4% are very poor, hence, the number of rejected patterns is very high. We will see in the
next sections that the proposed methodology can improve these results considerably.

4 Implementation

This section introduces how we have implemented both levels of the proposed method-
ology. First we discuss the supervised context and then the unsupervised.

4.1 Supervised Feature Subset Selection

The feature selection algorithm used in here was introduced in [14]. To make this paper
self-contained, a brief description is included in this section.



As stated elsewhere, the idea of using feature selection is to promote diversity
among the classifiers. To tackle such a task we have to optimize two objective func-
tions: minimization of the number of features and minimization of the error rate of the
classifier. Computing the first one is simple, i.e., the number of selected features. The
problem lies in computing the second one, i.e., the error rate supplied by the classi-
fier. Regarding a wrapper approach, in each generation, evaluation of a chromosome
(a feature subset) requires training the corresponding neural network and computing
its accuracy. This evaluation has to be performed for each of the chromosomes in the
population. Since such a strategy is not feasible due to the limits imposed by the learn-
ing time of the huge training set considered in this work, we have adopted the strategy
proposed by Moody and Utans in [9], who use the sensitivity of the network to estimate
the relationship between the input features and the network performance.

Moody and Utans show that when variables with small sensitivity values with re-
spect to the network outputs are removed, they do not influence the final classification.
So, in order to evaluate a given feature subset we replace the unselected features by their
averages. In this way, we avoid training the neural network and hence turn the wrapper
approach feasible for our problem. Such a scheme makes it feasible to deal with huge
databases in order to better represent the pattern recognition problem during the fitness
evaluation. Moreover it can accommodate multiple criteria such as the number of fea-
tures and the accuracy of the classifier, and generate the Pareto-optimal front in the first
run of the algorithm.
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Fig. 3. Evolution of the population in the objective plane

It can be observed in Figure 3 that the Pareto-optimal front is composed of several
different classifiers. To find out which classifiers of the Pareto-optimal front compose
the best ensemble, we carried out a second level of search. Once we did not train the
models during the search (the training step is replaced by the sensitivity analysis), the
last step of feature selection consists of training the solutions provided by the Pareto-
optimal front (1).

4.2 Choosing the Best Ensemble

As defined in Section 2 each gene of the chromosome is represented by a classifier
produced in the previous level. Therefore, if a chromosome has all bits selected, all



classifiers will compose the team. In order to find the best ensemble of classifiers, i.e.,
the most diverse set of classifiers that brings a good generalization, we have used two
objective functions during this level of the search, namely, maximization of the recog-
nition rate of the ensemble and maximization of a measure of diversity. We have tried
different measures such as overlap, entropy, and ambiguity [7]. The results achieved
with ambiguity and entropy were very similar. In this work we have used ambiguity as
diversity measure. The ambiguity is defined as follows:

� ��������� �
	 � ���
������� ���
������� �
(1)

where � � is the ambiguity of the ����� classifier on the example
���

, randomly drawn
from an unknown distribution, while

� �
and

�
are the � ��� classifier and the ensemble

predictions, respectively. In other words, it is simply the variance of ensemble around
the mean, and it measures the disagreement among the classifiers on input

�
. Thus the

ambiguity of an ensemble measured on a set of � samples is

� ������ ��
�
��! � � ���
����� (2)

where
�

is the number of classifiers. So, if the classifiers implement the same functions,
the ambiguity

�
will be low, otherwise it will be high.

At this level of the strategy we want to maximize the generalization of the ensemble,
therefore, it will be necessary to use a way of combining the outputs of all classifiers to
get a final decision. To do this, we have used the average, which is a simple and effective
scheme of combining predictions of the neural networks. Other combination rules such
as product, min, and max have been tested but the simple average has produced slightly
better results. In order to evaluate the objective functions during the search described
above we have used the validation set VLDB1 ��� .

4.3 Unsupervised Feature Subset Selection

A lot of work done in the field of handwritten word recognition take into account dis-
crete HMMs as classifiers, which have to be fed with a sequence of discrete values
(symbols). This means that before using a continuous feature vector, we must convert it
to discrete values. A common way to do that is through clustering. The problem is that
for the most of real-life situations we do not know the best number of clusters, what
makes it necessary to explore different numbers of clusters using traditional clustering
methods such as the K-means algorithm and its variants. In this light, clustering can
become a trial-and-error work. Besides, its result may not be very promising especially
when the number of clusters is large and not easy to estimate.

Unsupervised feature selection emerges as a clever solution to this problem. The
literature contains several studies on feature selection for supervised learning, but only
recently, the feature selection for unsupervised learning has been investigated [3]. The
objective in unsupervised feature selection is to search for a subset of features that best
uncovers “natural” groupings (clusters) from data according to some criterion. In this
way, we can avoid the manual process of clustering and find the most discriminative



features in the same time. Hence, we will have at the end a more compact and robust
high-level representation (symbols).

In the above context, unsupervised feature selection also presents a multi-criterion
optimization function, where the objective is to find compact and well separated hyper-
spherical clusters in the feature subspaces. Differently of the supervised feature selec-
tion, here the criteria optimized by the algorithm are a validity index and the number of
features. [11].

In order to measure the quality of clusters during the clustering process, we have
used the Davies-Bouldin (DB)-index [1] over 80,000 feature vectors extracted from the
training set of 9,500 words. To make such an index suitable for our problem, it must be
normalized by the number of selected features. This is due to the fact that it is based
on geometric distance metrics and therefore, it is not directly applicable here because
it is biased by the dimensionality of the space, which is variable in feature selection
problems.

We have noticed that the value of DB index decreases as the number of features
increases. We have correlated this effect with the normalization of DB-index by the
number of features. In order to compensate this, we have considered as second objective
the minimization of the number of features. In this case, one feature must be set at
least. Figure 4 depicts the Pareto-optimal front found after the search, the relationship
between the number of clusters and number of features and the relationship between
the recognition rate on the validation set and the number of features.

Once we have a limited space here, we opted by not showing the Pareto-optimal
front for unsupervised case. However, it is very similar to that presented in Figure 3.
Figure 4 shows the relationship between the number of clusters and the number of
features and the relationship between the recognition rate and the number of features.
The way of choosing the best ensemble is exactly the same as introduced in Section 4.2.
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Fig. 4. (a)Relationship between the number of clusters and the number of features and (b) Rela-
tionship between the recognition rate and the number of features.



5 Experimental Results

All experiments in this work were based on a single-population master-slave MOGA. In
this strategy, one master node executes the genetic operators (selection, crossover and
mutation), and the evaluation of fitness is distributed among several slave processors.
We have used a Beowulf cluster with 17 (one master and 16 slaves) PCs (1.1Ghz CPU,
512Mb RAM) to execute our experiments.

The following parameter settings were employed in both levels: population size =
128, number of generations = 1000, probability of crossover = 0.8, probability of mu-
tation = ��� � (where � is the length of the chromosome), and niche distance ( ��� �����	� )
= [0.25,0.45]. The length of the chromosome in the first level is the number of com-
ponents in the feature set (see Table 1), while in the second level is the number of
classifiers picked from the Pareto-optimal front in the previous level.

In order to define the probabilities of crossover and mutation, we have used the
one-max problem, which is probably the most frequently-used test function in research
on genetic algorithms because of its simplicity. This function measures the fitness of
an individual as the number of bits set to one on the chromosome. We have used a
standard genetic algorithm with a single-point crossover and the maximum generations
of 1000. The fixed crossover and mutation rates are used in a run, and the combination
of the crossover rates 0.0, 0.4, 0.6, 0.8 and 1.0 and the mutation rates of 
 � ��� � , ��� � and� 
 � � , where � is the length of the chromosome. The best results were achieved with��
 � 
 � � and

��� � ��� � . The parameter ��� ������� was tuned empirically.

5.1 Experiments in the Supervised Context

Once all parameters have been defined, the first step, as described in Section 4.1, con-
sists of performing feature selection for a given feature set. As depicted in Figure 3, this
procedure produces quite a large number of classifiers, which should be trained for use
in the second level. After some experiments, we found out that the second level never
chooses those classifiers with poor performance (e.g., error � 60%) to compose the en-
semble. Thus, in order to speed up the training process and the second level of search
as well, we decide not to use them in the second level. To train such classifiers, the
same databases reported in Section 3.1 were used. Table 3 summarizes the classifiers
that undergoes to the second level for the three feature sets we have considered.

Table 3. Summary of the classifiers produced by the first level.

Feature No. of Range of Range of
Set Classifiers Features Rec. Rates (%)

CC ��� 81 24-125 90.5 - 99.1
DDD ��� 54 30-84 90.6 - 98.1
EM ��� 78 35-113 90.5 - 97.0

Considering for example the feature set CC � 
 , the first level of the algorithm pro-
vided 81 classifiers which have the number of features ranging from 24 to 125 and



recognition rates ranging from 90.5% to 99.1% on TSDB � 
 . This shows the great di-
versity of the classifiers produced by the feature selection method. Based on Table 3
we define four sets of base classifiers as follows: � � � ��� � ��� � 	�������	 � � ����� � � , � � �������� ��� � 	�������	������ ������� � , �	� � ��
 ����� � 	�������	�
 ��������� � , and �	
 � � � �	� � ��� �	� � .
All these sets could be seem as ensembles, but in this work we reserve the word ensem-
ble to characterize the results yielded by the second-level of the algorithm. In order to
assess the objective functions of the second-level of the algorithm (generalization of the
ensemble and diversity) we have used the validation set (VLDB1 ��� ).
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Fig. 5. The Pareto-optimal front produced by the second-level MOGA: (a) � � and (b) � �

Like the first level, the second one also generates a set of possible solutions which
are the trade-offs between the generalization of the ensemble and its diversity. Thus the
problem now lies in choosing the most accurate ensemble among all. Figure 5 depicts
the variety of ensembles yielded by the second-level of the algorithm for � � and � � . The
number over each point stands for the number of classifiers in the ensemble. In order to
decide which ensemble to choose we validate the Pareto-optimal front using VLDB2 ��� ,
which was not used so far. Since we are aiming at performance, the direct choice will
be the ensemble that provides better generalization on VLDB2 � 
 . Table 4 summarizes
the best ensembles produced for the four sets of base classifiers and their performance
at zero-rejection level on the test set. For facility, we reproduce in this table the results
of the original classifiers.

We can notice from Table 4 that the ensembles and base classifiers have very similar
performance at zero-rejection level. On the other hand, it also shows that the ensembles
respond better for error rates fixed at very low levels than single classifiers. The most
expressive result was achieved for the ensemble ��� , which attains a reasonable perfor-
mance at zero-rejection level but performs very poorly at low error rates. In such a case,
the ensemble of classifiers brought an improvement of about 8%. We have noticed that
the ensemble reduces the high outputs of some outliers so that the threshold used for
rejection can be reduced and consequently the number of samples rejected is reduced.



Thus, aiming for a small error rate we have to consider the important role of the ensem-
ble. Another fact worth noting though, is the performance of � 
 at low error rates. For
the error rate fixed at 1% it reached 95.0% against 93.5% of � � . � 
 is composed of 14,
6, and 4 classifiers from � � , � � , and �	� , respectively. This emphasizes the ability of the
algorithm in finding good ensembles when more original classifiers are available.

Table 4. Performance of the ensembles on the test set.

Ensembles Original
Feature No. Rec. Rate Rec. Rate

Set Classif. no Rej. Err=0.1% Err=0.5% no Rej. Err=0.1% Err=0.5%
� � 4 99.22 93.49 98.86 99.13 91.83 98.50
� � 4 98.18 79.22 95.28 98.17 75.11 92.80
� � 7 97.10 68.50 89.00 97.04 60.11 85.10
��� 24 99.25 95.03 98.94

5.2 Experiments in the Unsupervised Context

The experiments in the unsupervised context follow the same vein of the supervised one.
As discussed in Section 4.3, the main difference lies in the way the feature selection is
carried out. In spite of that, we can observe that the number of classifiers produced
during unsupervised feature selection is quite large as well. To train the classifiers,
the same databases reported in Section 3.2 were considered. Table 5 summarizes the
classifiers (after training) produced by the first level for the three feature sets we have
considered.

Table 5. Summary of the classifiers produced by the first level.

Feature Number of Range of Range of Range of
Set Classifiers Features Codebook Rec. Rates (%)

CC � � 15 10-32 29-39 68.1 - 88.6
DDD32 � � 21 10-31 20-30 71.7 - 78.0
DDD64 � � 50 10-64 52-80 60.6 - 78.2

Considering for example the feature set CC � � , the first level of the algorithm pro-
vided 15 classifiers which have the number of features ranging from 10 to 32 and
recognition rates ranging from 68.1% to 88.6% on VLDB1 � � . This shows the great
diversity of the classifiers produced by the feature selection method. Based on the
classifiers reported in Table 5 we define four sets of base classifiers as follows:

� � �
��� �

� � � 	�������	 � � � � � 
 � , � � ������� �����
� � � 	�������	�� �������

� � � � � , � � ��� �������	�
� � � 	������	���� ���
�

� � 
�� � , and
� 
 � � � � � � � � � � � .

Figure 6 depicts the variety of ensembles yielded by the second-level of the algo-
rithm for

� �
and

� �
. The number over each point stands for the number of classifiers in

the ensemble. Like in the previous experiments, the second validation set (VLDB2 � � )
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Fig. 6. The Pareto-optimal front (and validation curves where the best solutions are highlighted
with an arrow) produced by the second-level MOGA: (a) � � and (b) � �

was used to select the best ensemble. After selecting the best ensemble the final step is
to assess them on the test set. Table 6 summarizes the performance of the ensembles on
the test set. For the sake of comparison, we reproduce in Table 6 the results presented
in Table 2.

Table 6. Comparison between ensembles and original classifiers.

Ensembles Original
Feature No. Rec. Rate Rec. Rate

Set Classif. no Rej. Err=1% Err=5% no Rej. Err=1% Err=4%
� � 10 89.2 66.0 81.0 86.1 61.0 79.0
� � 15 80.2 45.0 60.2 73.0 29.5 48.5
� � 36 80.7 43.7 62.5 64.5 24.0 36.5
� � 45 90.2 70.2 77.0

Like in the previous experiments (supervised context), the result achieved by the
ensemble

� 
 shows the ability of the algorithm in finding good ensembles when more
base classifiers are considered. The ensemble

� 
 is composed of 9, 11, and 25 classifiers
from

� �
,
� �

, and
� � , respectively. In light of this, we decided to introduce a new feature

set, which, based on our experience, has a good discrimination power when combined
with other features such as concavities. This feature set, which we call “global features”,
is composed of primitives such as ascenders, descenders, and loops. The combination of
these primitives plus a primitive that determines whether a grapheme does not contain
ascender, descender, and loop produces a 20-symbol alphabet. For more details, see Ref.
[10]. In order to train the classifier with this feature set, we have used the same databases
described in Section 3.2. The recognition rates at zero-rejection level are 86.1% and



87.2% on validation and testing sets, respectively. This performance compares with the
CC � � classifier.

Since we have a new base classifier, our sets of base classifiers must be modified
to cope with it. Thus,

� ��� � � � � ��� �
,
� ��� � � � ����� �

,
� � � � � � � ��� �

, and
� 
 � � � � � � � ��� � � ��� �

. In such cases,
�

stands for the classifier trained with
global features. Table 7 summarizes the ensembles found using these new sets of base
classifiers. It is worthy of remark the reduction of the size of the teams and the improve-
ment in the recognition rates. This shows the ability of the algorithm in finding not just
diverse but also uncorrelated classifiers to compose the ensemble [19]. Besides, it cor-
roborates to our claim that the classifier

�
when combined with other features bring an

improvement to the performance.

Table 7. Performance of the ensembles with global features.

Base Number of Rec. Rate (%)
Classifiers Classifiers no Rej. Err=1% Err=4%

� ��� 2 92.2 69.0 87.5
� ��� 2 89.7 53.2 80.2
� �	� 7 85.5 55.0 75.0
� � � 23 92.0 75.0 88.7

Like the results at zero-rejection level, the improvement observed here also are quite
impressive. Table 7 shows that

� ���
and

� 
 � reach similar results on the test set at zero-
rejection level, however,

� �	�
contains just two classifiers against 23 of

� 
 � . On the
other hand, the latter features a slightly better error-reject trade-off in the long run.

Based on the experiments reported so far we can affirm that the unsupervised feature
selection is a good strategy to generate diverse classifiers. This is made very clear in the
experiments regarding the feature set DDD64. In such a case, the original classifier has
a poor performance (about 65% on the test set), but when it is used to generate the set of
base classifiers, the second-level MOGA was able to produce a good ensemble by max-
imizing the performance and the ambiguity measure. Such an ensemble of classifiers
brought an improvement of about 15% in the recognition rate at zero-rejection level.

6 Discussion and Conclusion

The results obtained here attest that the proposed strategy is able to generate a set of
good classifiers in both supervised and unsupervised contexts. To better evaluate our
results, we have used two traditional ensemble methods (Bagging and Boosting) in the
supervised context. Figure 7 reports the results for

� � � 
 . As we can see, the proposed
methodology achieved better results, especially when considering very low error rates.

Diversity is an issue that deserves some attention when discussing ensemble of clas-
sifiers. As we have mentioned before, some authors advocated that diversity does not
help at all. In our experiments, most of the time, the best ensembles of the Pareto-
optimal also were the best for the unseen data. This could lead one to agree that di-
versity is not important when building ensembles, since even using a validation set the
selected team is always the most accurate and with less diversity.



However, if we look carefully the results, we will observe that there are cases where
the validation curve does not have the same shape of the Pareto-optimal. In such cases
diversity is very useful to avoid selecting overfitted solutions.

One can argue that using a single-objective GA and considering the entire final
population, perhaps the similar solutions found in the Pareto-optimal produced by the
MOGA will be there. To show that it does not happen, we have carried out some ex-
periments with a single-objective GA where the fitness function was the maximization
of the ensemble´s accuracy. Since a single-objetive optimization algorithm searches for
an optimum solution, it is natural to expect that it will converge towards the fittest so-
lution, hence, the diversity of solutions presented in the Pareto-optimal is not present in
the final population of the single-objective GA.
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Fig. 7. Comparison among feature selection for ensembles, bagging, and boosting for ����� �

We have described a methodology for ensemble creation underpinned on the paradigm
“overproduce and choose”. It takes two levels of search where the first level overpro-
duces a set of classifiers by performing feature selection while the second one chooses
the best team of classifiers.

The feasibility of the strategy was demonstrated through comprehensive experi-
ments carried out in the context of handwriting recognition. The idea of generating
classifiers through feature selection was proved to be successful in both supervised and
unsupervised contexts. The results attained in both situations and using different fea-
ture sets and base classifiers demonstrated the efficiency of the proposed strategy by
finding powerful ensembles, which succeed in improving the recognition rates for clas-
sifiers working with a very low error rates. Such results compare favorably to traditional
ensemble methods such as Bagging and Boosting.

Finally we have addressed the issue of using diversity to build ensembles. As we
have seen, using diversity jointly with the accuracy of the ensemble as selection crite-
rion might be very helpful to avoid choosing overfitted solutions. Our results certainly
brings some contribution to the field, but this still is an open problem.
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