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Abstract. A new coding technique using Taguchi
method is proposed for Evolutionary Algorithm (EA)
applied to an aerodynamic optimization. Taguchi
method is used to investigate interactions of de-
sign variables and to determine the appropriate
coding structure for EA in advance. EA coupled
with the new coding technique is then applied to
aerodynamic design of a transonic wing. Three-
dimensional Navier-Stokes calculation is used for
estimation of wing performance.

1 INTRODUCTION

An aerodynamic shape optimization problem is a
typical hard-to-optimize problem. Because of non-
linearity of the flow equations, aerodynamic objec-
tive functions are often rough, discontinuous and
multi-modal. To find the global optimum for such
complex functions, a robust optimization algorithm
is required.

As a robust optimization tool, EA was success-
fully applied to a subsonic wing optimization using
three-dimensional Navier-Stokes (N-S) calculations
in [1]. Key features of the method are simplification
of airfoil definition according to subsonic wing aero-
dynamics and parallelization of N-S calculations on
Numerical Wind Tunnel (NWT). NWT is a par-
allel vector machine of peak performance at 279
GFLOPS with 166 processing elements. (NWT was
used by winners of IEEE’s 1995 & 1996 Gordon Bell
Prize for performance.) The resultant design was
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consistent with the design principles obtained from
existing theories and experiments and therefore in-
dicated that EA had found the global optimum.

An extension to a transonic wing optimization,
however, is not straightforward. To obtain a good
transonic airfoil shape such as supercritical airfoils,
airfoil definition with a large degree of freedom
is necessary. Such definition requires a large num-
ber of design variables and often contains “inter-
actions” of design variables as nonlinearities in fit-
ness functions. These interactions are often referred
as “epistasis”, corresponding to the term epista-
sis in biology. Since the optimization process in
EA depends on construction of similarity templates
(schemata) of design variables, EA cannot find clues
to the optimum if epistasis is too large, i.e., small-
sized schemata do not exist. A degree of epista-
sis is strongly related to the performance of EA
through sizes of “good” schemata. If episitasis of
design variables can be identified in advance, the
size of schemata may be reduced by permuting de-
sign variables accordingly. Therefore, epistasis anal-
ysis provides important information for coding tech-
niques of EA. However, an exhaustive search of
epistasis requires as many evaluations as those re-
quired for EA itself. Obviously, computational ef-
fort for such preprocessing is prohibitive.

In the late 1950s Genichi Taguchi dispersed a
statistical tool for quality improvement i.e., a fac-
torial design using orthogonal arrays®(OA)[2] . Tt
has been developed to gain sufficient information
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from a structured set of coherent tests at the least
expenditure of resources. This technique will be ap-
plied to examine the epistasis of design variables
here.

In this paper, a tree structure of design variables
inspired by the data structure of Genetic Program-
ming is introduced as a coding structure. The cod-
ing structure is determined by the epistasis analysis
using Taguchi method in advance. Then, the result-
ing coding structure is applied to aerodynamic de-
sign using multiobjective EA[3] coupled with FLO-
27[4] to examine the new coding technique. Finally
a transonic wing design using three-dimensional N-
S calculations will be demonstrated.

2 APPROACH

GEOMETRY
REPRESENTATION OF A
WING

2.1

In this study, airfoil sections are generated by the
extended Joukowski transformation[5]. It transforms
a unit circle to various kinds of airfoils in the com-
plex number plane by two consecutive conformal
mappings as,

Zo = e’ + Z, (1)
21120—6/(20—A) (2)
Z=71+1/7 (3)

here Z., Zo, Z1, 7Z and e are complex numbers and
A, r, and 0 are real numbers, where ris determined
so that Zg passes the origin of the coordinate axes.
This transformation is therefore defined by Z., e,
and A. The present design variables are given by
five parameters (xc, yc, Xt, yt, &) where a position
(e, ye) corresponds to the center of the original
circle Zo, the complex number € corresponds to (xt,
y¢) and A is the preliminary movement in the real
axis. It is known that x., x¢, and A are related to
the airfoil thickness while y. and y; are related to
the airfoil camber line.

Then, the wing geometry is represented by these
airfoil parameters and twist angles distributed in
the spanwise direction. These parameters are in-
terpolated by second-order B-Spline curves. The B-
Splines are defined by seven points for the inviscid
case and by five points for the viscous case. Plan-
form of the wing is taken from the NASA Energy
Efficient Transport (EET) Program[6].
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2.2 EVALUATION
2.2.1 AERODYNAMIC PERFORMANCE

In this study, FLO-27 and a N-S solver are used
to evaluate aerodynamic performance for inviscid
and viscous cases, respectively. Freestream Mach
number is 0.8 for both cases and Reynolds number
based on the root chord is set to 107 for the viscid
case.

FLO-27 is applied to epistasis analysis using Taguchi
method as well as the inviscid wing optimization. It
is a transonic, conservative, full-potential code de-
veloped by Jameson and Caughey. The N-S solver

used here is based on a TVD-type upwind differencing[7],

the LU-SGS scheme[8] and the multigrid method[9].
N-S computations are distributed to 64 processing
elements of NWT so that the aerodynamic evalua-
tion processed in parallel.

2.2.2 STRUCTURAL CONSTRAINT

A structural constraint is introduced to the vis-
cous case to obtain a realistic wing in the transonic
regime. For the brevity, the wing and its spanwise
lift distribution are replaced by a cantilever and
concentrated loads, respectively. From the loads,
the bending moment distribution is calculated, which
gives the structural stress on the wing. Then the
constraint is given so that the local stress is less
than the ultimate shear stress of Aluminum alloy
(see, for example, [10]).

2.3 EVOLUTIONARY
ALGORITHM

In EA, design variables of each candidate are en-
coded into finite-length strings just as the charac-
teristics of an individual are encoded in chromo-
somes as genes. Here, randomly created design can-
didates make up the initial population to be op-
timized according to objective function value (fit-
ness) through the simulated evolution. Evolution-
ary operators for the evolution process are evalua-
tion, selection, crossover and mutation[11] as shown
in Fig. 1. The evolutionary direction operator[13] is
a special technique to improve local search perfor-
mance of KA. In this study, a population size of 64
is used.
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2.3.1 EVOLUTIONARY OPERATORS
FOR SINGLE-OBJECTIVE EA

In EA, selection is a process in which individual
strings are copied in mating pool according to their

fitness. The ranking method coupled with the Stochas-

tic Universal sampling (SUS)[12] is used. The best
and the second best individuals in each generation
are copied to the new generation automatically as
the elitist strategy.

The crossover operator exchanges chromosomes
of the selected parents at random. Here, each span-
wise distribution of Joukowski transformation pa-
rameters and twist angle is encoded as a chromo-
some. The simple one-point crossover and the evo-
lutionary direction operator are used to create 70%
and 30% of child generation, respectively.

Mutation is a random walk of a string that will
occur during the crossover process at a given muta-
tion rate. This operator keeps diversity of a popu-
lation. Here, mutation takes place at a probability
of 10% and then adds a random disturbance to the
parameter in the amount up to +10% of design
space.

2.3.2 EVOLUTIONARY OPERATORS
FOR MULTIOBJECTIVE FA

By maintaining a population of solutions, EA can
search for many Pareto-optimal solutions in paral-
lel. This characteristic makes EA very attractive for
solving multiobjective (MO) problems. The follow-
ing two features are desired to solve MO problems
successfully: 1) The solutions obtained are Pareto-
optimal, 2) They are uniformly sampled from the
Pareto-optimal set. To achieve these with EA, the
ranking selection method and the fitness sharing
technique[14] are used. As the elitism, the best-N
selection[15] is incorporated, where the best N indi-
viduals are selected for the next generation among
N parents and N children so that Pareto solutions
will be kept once they are formed. Since the strong
elitism is used, high mutation rate of 0.5 is applied
while the amount of disturbances is reduced from
40% to 1% of the design space as the generation
advances.

24 TAGUCHI METHOD

A parametric study is often conducted by varying
one parameter at a time or by trial and error for a
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limited number of parameters. However, such ap-
proaches only lead to incomplete knowledge for a
large design space. An exhaustive search, in con-
trast, requires unacceptably large number of exper-
iments and thus they are not suitable to real-world
problems. For instance, a complete study of a de-
sign space of 8 parameters with 3 levels requires
6541 experiments.

Taguchi method is an efficient approach for para-
metric studies of large systems, based on the sta-
tistical theory for design of experiments. It reduces
the required number of experiments without dete-
riorating quality of information by arranging the
experiments according to the orthogonal array.

Taguchi method starts with selection of factors
and their levels. The number of factors and their
levels give the total degree of freedom of experi-
ments, which determines the size of required ex-
periments. Then the orthogonal table is selected
according to the size of the experiments. The set
of experiments is performed according to this ta-
ble so that all combinations of the factors become
orthogonal.

Then, the effectiveness of factors and their inter-
actions can be estimated statistically by the values
of F, the variance of factors and interactions di-
vided by that of error. If F' is greater than the crit-
ical value, say, 5%, the corresponding factor or in-
teraction is considered effective. In this paper, this
method is applied to analyze the epistasis of the
Joukowski transformation parameters.

3 RESULTS

3.1 CODING BY TAGUCHI
METHOD

Taguchi method is employed to evaluate effective-
ness of spanwise variation of design variables on
aerodynamic performance C; and Cp of a wing.
Only to account for positive changes in aerody-
namic performance (increase of Cp and decrease
of Cp), following two functions are introduced:

f1 =maxz(Cr — Cr0,0) (4)

£2 = —min(Cp — Cp0,0) (5)

where C10 and Cp0 are those of a wing having a
constant airfoil section along the spanwise direc-
tion. This wing was obtained by optimizing Cg,
and Cp without spanwise variation of airfoil sec-
tions using FLO-27. Airfoil design variables and a
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twist angle x., yc, x¢, yt, A, «, are considered as
factors. Three types of spanwise variations of the
factors are considered as levels: no variation, lin-
ear increase from root to tip, and vice versa. The
number of interactions considered here is ten, i.e.,
XoYey XoXt, Xe¥t, X, YoXt, Ye¥t, Y, Xeyt, X¢A
and y+A. Although the exhaustive search of inter-
actions among six factors requires 729 experiments,
Taguchi method requires only 81 experiments.

Figure 2 shows F values for the factors and in-
teractions. The solid line and the broken line are
critical F values with 1% or 5% statistical risks, re-
spectively. ' values more than these critical values
are judged effective. While every factor is effective
on both fl and f2, interactions of x.x: and y.y:
appear effective. This result is consistent with the
fact that x., x4, and A are related to the airfoil
thickness while y. and y: are related to the airfoil
camber line.

The epistasis analysis using Taguchi method in-
dicates strong interactions in (x., x¢) and (ye¢, yt).
Therefore, a tree structure of design variables can
be constructed as shown in Fig. 3. This will be
better than the simple-minded sequential coding
shown in Fig. 4. When the tree structure coding is
used, good schemata, (x., x¢) and (y., y¢) will be
formed easily. The difference between these coding
techniques appears in crossover.

3.2 MULTIOBJECTIVE
INVISCID OPTIMIZATION

Multiobjective aerodynamic design using EA is first
demonstrated for the validity of the new coding
technique. The main multiobjective optimization is
defined as,

Maximize Cyp,

Minimize Cp

Here the structural constraint is ignored and the
optimization is stopped after 100 generations. Fig-
ure 5 shows the Pareto-optimums indicating the
tradeoff between maximization of C; and mini-
mization of Cp. Solid and hollow points show the

resulting Pareto fronts obtained from the tree-structure

and the sequential coding techniques, respectively.
This figure indicates that the present EA with the
tree-structure coding outperforms the conventional
EA with the sequential coding. Airfoil sections of
the designed wings picked from the Pareto fronts
where Cr, = 1.5 are shown in Figs. 6 and 7 for a
comparison purpose. The design obtained from the
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new coding technique has a large leading-edge ra-
dius, reduced curvature over the middle region of
the upper surface and substantial aft chamber. This
indicates that the new coding technique helps find-
ing supercritical airfoils suitable to transonic flows
while the sequential coding fails.

3.3 SINGLE-OBJECTIVE
VISCOUS OPTIMIZATION

The present EA is applied to a wing optimization
using N-S calculations. Evaluations are parallelized
to reduce the computational time necessary for eval-
uations using a N-S solver. The objective is lift-to-
drag ratio to be maximized with a penalty for the
structural constraint. This problem is the same as
[16].

The convergence history is illustrated in Fig. 8.
Since the best candidates in every generation sat-
isfy the structural constraint, the maximum fitness
value is the same as the maximum lift-to-drag ra-
tio. The average fitness did not converge to the
maximum fitness since some design candidates had
very low fitness doe to violation of the structural
constraint. The lift-to-drag ratio has increaced to
19.84 while the design obtained by sequentioal cod-
ing had the lift-to-drag ratio of 19.56.

Spanwise thickness and twist angle distributions
of the optimized wing are shown in Figs. 9 and 10,
respectively. The thickness distribution satisfies the
structural constraint.

Figure 11 shows surface pressure contours on
upper surface of the design. EA has found a de-
sign that has no flow separation and thus no pres-
sure drag. In addition, a weak shock wave appears
only at the 30% spanwise station where the maxi-
mum thickness is required. This indicates there is
a tradeoff between the increase of the structural
strength and the reduction of the wave drag. The
resulting wing is a compromise for the given con-
straint.

The resulting loading distribution shown in Fig.
12 is far from the parabola that is known to give the
minimum induced drag when the structural con-
straint is considered[5]. This indicates the design
does not achieve the minimum induced drag. How-
ever, to reduce the induced drag further, the lift
at the midspan region has to be increased. This
will resulting a stronger shock wave and thus larger
wave drag. Again there is a tradeoff between reduc-
tions of the induced drag and wave drag and the
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present optimizer has found a good comprimise.

4 CONCLUSION

Taguchi method has been used to analyze epistasis
in the design variables of a transonic wing shape
design. The coding structure for EA is modified
according to the resultant epistasis information.

To examine the performance of the new coding
technique, multiobjective optimizations were first
performed by using an inviscid flow code, FLO-
27. The present EA with the new coding technique
has found the supercritical wing while the EA with
the conventional coding has fallen into a premature
convergence. These results indicate the validity of
the present approach.

Next, a single-objective optimization using EA
coupled with the three-dimensional N-S solver was
demonstrated. To overcome enormous computational
time necessary for this optimization, the N-S evalu-
ations were processed in parallel on NWT. The de-
sign obtained by EA with the new coding technique
had higher lift-to-drag ratio than the design ob-
tained by EA with the sequential coding. Tradeoffs
are found among increase of the structural strength,
reduction of the wave drag and reduction of the in-
duced drag. The present EA was succeeded in find-
ing a good compromised design that have a fully
attached flow and a weak shock wave only at the
kink region where the structural constraint requires
the maximum thickness.
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