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ABSTRACT 

Feature selection has recently been the subject of intensive research in data mining, 

especially for datasets with a large number of descriptive attributes such as QSAR 

(Quantitative Activity Structure Relationship) data. QSAR is an in-silico drug design 

methodology, which requires identifying important features of molecules that explain a 

drug relevant activity of interest. A typical QSAR dataset for predicting an activity of 

interest is characterized by a large number of descriptive features (300 - 1000) for a 

relatively small number of compounds (typically around 50 - 500). 

Finding the best feature subset for a given problem with N number of features 

requires evaluating all 2N possible subsets. The best feature subset also depends on the 

predictive modeling, which will be employed to predict the future unknown values of 

response variables of interest. Feature selection involves minimizing the number of 

relevant features for maximizing the predictive power of the model. From this point of 

view feature selection can be viewed as a special type of multi-objective optimization 

problem. 

Evolutionary computing can be applied to problems where traditional methods are 

hard to apply or lead to unsatisfactory solutions (e.g. local optima). The methods of 

evolutionary computation are stochastic and their search methods imitate and model 

some phenomena from nature and evolution: i) the survival of the fittest and ii) genetic 

inheritance. This dissertation addresses evolutionary algorithms for feature selection and 

predictive modeling for QSAR data sets. 
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 CHAPTER 1 

1Introduction 

The purpose of this dissertation is to explore evolutionary computing techniques (i.e., 

genetic algorithms and evolutionary algorithms) and apply them to feature selection 

problems for predictive data mining. There are many problems in real life for which no 

algorithm has been developed to solve at optimality within a reasonable time frame. 

Several of these problems can be framed as multi-objective optimization problems. 

Optimization is a process to find a possible best solution satisfying two or more objective 

amongst countable infinite number of candidate solutions. One class of optimization 

problems is called combinatorial optimization problems, which arise in situations where 

one has to combine a set of entities in a specific way.  

Problems considered in this dissertation are combinatorial problems. A classic 

combinatorial optimization problem is the Traveling Salesman Problem (TSP) that can be 

stated as the problem of finding the shortest path, which goes through each city of a given 

set of cities once and only once and ends in the starting city. Many combinatorial 

optimization problems like the Traveling Salesman problem can be formulated in the 

abstract as finding from a set of S a subset T that satisfies desired criteria and optimize 

(generally minimize) an objective function f. Another combinatorial problem, which is 

the main topic of this dissertation, is feature selection. Feature selection is a common task 

in many classification and regression problems. Feature selection involves minimizing 

the number of relevant features for maximizing the predictive power of the model. From 
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this point of view feature selection can be viewed as a special type of multi-objective 

optimization problem. 

Evolutionary computing can be applied to problems where traditional methods are 

hard to apply or lead to unsatisfactory solutions (e.g. local optima). The methods of 

evolutionary computation are stochastic and their search methods imitate and model 

some phenomena from nature and evolution: i) the survival of the fittest and ii) genetic 

inheritance. A well-known evolutionary computing algorithm is the Genetic Algorithms 

(GA), which are very efficient to search large solution spaces and a good alternative 

method to solve combinatorial problems. In this dissertation, multi-objective evolutionary 

computing will be applied to the Traveling Salesman Problem and to feature selection 

problem for predictive data mining.  

Because the TSP problem is a well-known problem, evolutionary algorithms will 

be applied to the TSP for benchmarking purposes and novel evolutionary algorithms will 

be developed to solve the TSP-like problems (e.g. feature selection problem). These 

algorithms will then be applied to feature selection in predictive data mining. 

Data mining is the process to automate the discovery of non-obvious, novel, and 

potentially useful information from large datasets. The data mining problems can broadly 

be divided into two groups: i) predicting of future unknown values of some dependent 

(response) variables in a data set by using some or all of the other variables (features) in 

the data set, and ii) describing the data by revealing hidden patterns or information that 

can be easily interpretable by users or experts. We define a prediction related data-mining 

problem as the standard data-mining problem. In this context, a standard data-mining 

problem is a multivariate regression or classification problem for which there are many 
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candidate features to choose from. The purpose is not only to build a good predictive 

model but also to explain and interpret to some degree how and why the model works. In 

order to succeed in this task a first step is feature selection. Feature selection is very 

important because excess features cause a curse of dimensionality problem and make the 

predictive model more difficult to explain and interpret. Data-strip mining is defined as 

an iterative procedure for feature selection for data sets where the number of features 

often exceeds or is on the order of the number of data records. The second step is to build 

a predictive modeling. 

The outline of this dissertation is the following: 

Chapter 2 contains a review of evolutionary computation methods for 

optimization problems.  

Chapter 3 is dedicated to genetic algorithms. Genetic algorithms provide an 

alternative to traditional optimization methods by using powerful search techniques to 

locate near optimal solutions in complex optimization problems. The representations, 

selection schemes, genetic operators for the genetic algorithms were presented.  

Chapter 4 describes the Traveling Salesman Problem, which is a well-studied 

classic combinatorial optimization problem in many areas, including evolutionary 

computation. Genetic algorithms for the TSP with a modified Partially Mapped 

Crossover operator that was originally proposed by Goldberg and Lingle [1] are further 

modified for the problem. An algorithm for the TSP based on evolutionary programming 

algorithm was also developed. The proposed algorithm, Evolutionary Programming with 

Constant Population (EPC) is different from the standard evolutionary programming. 

First, EPC always keeps a constant number of individuals similar to genetic algorithms. 
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Second, EPC uses a selection scheme (i.e., simulated annealing) with a mutation 

operation. 

Chapter 5 presents a literature review for evolutionary algorithms for feature 

selection, especially for in-silico drug design problem. In-silico drug design relies on the 

Quantitative Activity Structure Relationship (QSAR) methodology, first introduced by 

Hansch et al. [2]. The aim is to predict the biological activity of new untested chemicals 

from the knowledge of their chemical structures. QSAR methods deal with identifying 

important features of molecules that are relevant to explain variations in an activity of 

interest. A typical QSAR dataset for predicting an activity of interest is characterized by a 

large number of descriptive features (300-1000) for a small number of compounds 

(molecules). 

Chapter 6 introduces data strip mining. Data strip mining is an iterative procedure 

for feature reduction/model building for datasets where the number of features exceeds or 

is on the order of the number of data records. The backbone of the strip mining is the 

sensitivity analysis, which determines the saliency of each of the features in a model and 

to reduce the number of features for the model [3-5].  

Chapter 7 describes three QSAR datasets (Lombardo, HIVrt, and Caco2), which 

were utilized for benchmarking the algorithms proposed in this dissertation. Since the 

aim of the QSAR is to predict the biological activity of new untested molecules from the 

knowledge of their chemical properties, a brief description about the descriptive features 

is also presented. 

In Chapter 8, three evolutionary algorithms for the feature selection problem are 

proposed: i) genetic algorithm with a floating-point representation, ii) genetic algorithm 



 5 

with a unique list representation iii) evolutionary programming algorithm with a unique 

list representation. A novel GA-based feature selection methodology (GAFEAT) based 

on the correlation matrix is introduced. In GAFEAT, the GA determines which 

descriptive features have the best correlation with the response but have a relatively weak 

inter-correlation. GAFEAT is a filter method, which selects features based on the training 

data alone by using correlation-based evaluation function without taking the biases of 

modeling method into consideration [6].  

In Chapters 9 and 10, GAFEAT feature selection is extended by replacing a 

correlation-based fitness function with Partial Least Squares (PLS) regression and Local 

Learning (LL) algorithms in order to take into consideration the biases of the modeling 

algorithms, respectively. In Chapter 11 some suggestions for future research are given.  
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  CHAPTER 2 

2Optimization 

In a daily life, we often face to situations that involve optimization. For example, such an 

optimization problem might involve deciding the best route to work or can be complex as 

to pick a combination of variables that produce a good predictive model in a multivariate 

analysis [7]. Any abstract task to be accomplished can be thought of as solving a 

problem, which, in turn, can be perceived as a search through a potential solution space 

[8].  It is not possible to optimize when there is only one way to carry out a task without 

any alternatives. As an example, if there is only one way to drive to work, there is no 

choice but to take that route whether it is short or not. We consider optimization process 

if a decision between alternatives needs to be made whenever two or more solutions 

(alternatives) exist and if it is desirable to choose the best one. The Merriam Webster 

dictionary defines the term of optimization as “an act, process, or methodology of making 

something (as a design, system, or decision) as fully perfect, functional, or effective as 

possible.” The optimization endeavors to improve performance towards some optimal 

point or points [9]. Independent features that distinguish the alternatives from one another 

are called (independent) variables or parameters of the system under consideration; they 

may be represented as a binary (discrete) or integer (real values) depending on the 

particular problem at hand [10]. Making a rational decision between alternatives requires 

a value judgment to decide which solution can be classified as the better or the best 

solution. This value judgment usually relies on evaluating an objective function, which 

depends on a metric for the system performance and is functionally related to parameters 
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of the system. An important and often the most difficult step in an optimization process is 

to define an appropriate objective function for the problem at hand. There may exist 

multiple objectives at the same time, and the relative weights of each of these 

corresponding goals should be considered as well [11].  

 

2.1 Optimization Methods 

The lack of recognizing a universal optimization method explains the existence of 

numerous optimization methods, each with limited application to a special case [10]. 

Figure 2.1 divides optimization methods into three broad classes [9]: calculus-based, 

enumerative and random search methods.  

Calculus-based methods also subdivide into indirect (analytic) and direct (numeric) 

methods. Indirect methods search local optima by solving the usually nonlinear set of 

equations resulting from setting the gradient of the objective function equal to zero [9]. 

They attempt to find the optimum in a single step, without tests or trials [10]. On the 

other hand, direct methods search local optima by hopping around the search space and 

assessing the gradient of the new point, which guides the search. This is simply the 

notion of “hill-climbing”, which finds the best local point by climbing the steepest 

permissible gradient [9]. Hill-climbing methods approach the solution in a stepwise 

manner. At each step it is hoped that the value of the objective function will improve 

[10]. The common characteristic of hill-climbing methods is that they begin with an 

initial solution (usually determined randomly or deterministically by users) and a new 

solution is calculated based on the current solution. The algorithms differ from each other 

according to the update rules used to create a solution. 
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In general, direct optimization methods are computationally prohibitive, and they tend to 

work for simple unimodal functions or specialized applications. On the other hand, 

indirect methods require the calculation of gradients of functions and constraints. Most of 

the these methods do not guarantee to find the global optimal solutions, because these 

algorithms usually terminate when the gradient of the objective function is very close to 

zero, which may occur both in case of local and global solutions. The other obvious 

drawback of indirect methods is the calculation of gradient, which may be expensive or 

not well defined. In many real world optimization problems the gradient of the objective 

function and constraints may not be calculated exactly because the objective function 

and/or constraints cannot be written in explicit mathematical form [12].  

 

 OPTIMIZATION 
METHODS 

Calculus-based Enumerative Random Search 

Indirect 
(Analytic) 

Direct 
(Numeric) 

Simulated 
Annealing 

Evolutionary 
Computation 
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Programming 
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Figure 2.1 Classification of Optimization Methods 

 

Enumerative methods search every point related to an objective function’s search space, 

one point a time. They are very simple to implement but computation times may be 

prohibitive. Dynamic programming is a good example of this kind of search algorithm.  
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The shortcomings of the calculus-based and enumerative methods have led to the 

random search algorithms. It is common to resort to random decisions in optimization 

whenever deterministic rules do not have the desired success [10]. Randomized search 

does not necessarily imply arbitrary search. Random search methods are based on 

enumerative methods but exploit additional information to guide the search. They cannot 

perform better than enumerative methods in the long run [9]. These methods can be 

divided into at least three subclasses: simulated annealing, evolutionary computation and 

TABU search algorithms. 

 

2.2 Simulated Annealing 

Simulated Annealing (SA) was first introduced by Kirkpatrik et al. [13] for solving 

hard combinatorial optimization problems and is different from the biologically 

motivated evolutionary algorithms [10]. SA works by emulating the annealing 

phenomenon from material science. Annealing is the physical process of heating up a 

material until it melts, followed by cooling it down in a controlled way until material 

crystallizes into a state with perfect lattice. During this process, the free energy of the 

material is minimized. The cooling process must proceed carefully in order to escape 

from locally optimal lattice structures with crystal imperfections [14]. This SA process 

for optimization can be formulated as a problem of finding a solution with minimal cost 

among the very large number of possible states. The physical annealing process can be 

modeled by computer simulation methods based on Monte Carlo techniques.  SA is based 

on Monte Carlo techniques and generates a sequence of states of the solid following way. 

Given a current state i of the solid with energy Ei, then next state j is generated by 
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applying a perturbation which transforms the current state into a next state by a small 

change. The energy of this new state is Ej. If the energy difference, Ej – Ei, is less than or 

equal to zero, the state j becomes the current state. If the energy state is greater than zero, 

the state j is accepted with a certain probability. The acceptance probability is given by 


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 where T denotes the temperature of the heat bath and kB a physical constant known as 

the Boltzman constant. The acceptance rule described above is known as the Metropolis 

criterion and the algorithm that uses this acceptance criterion is known as Metropolis 

algorithm [14]. If the temperature is lowered slowly, the material can reach thermal 

equilibrium at each temperature. In the SA algorithm, this is achieved by generating a 

large number of transitions at a given temperature value. Thermal equilibrium is 

characterized by the Boltzman distribution [15].  

 

2.3 TABU Search 

TABU search (TS), first suggested by Glover [16], is an iterative heuristic 

procedure for solving discrete combinatorial optimization problems. The basic idea 

behind the method is to explore the search space of all feasible solutions by a sequence of 

moves. A move from one solution to another is the best available solution in the 

neighborhood of the current solution. However, a set of solutions determined by the 

short-term and the long-term history of the sequence of moves is forbidden (or taboo) in 

order to escape from locally optimal solutions. TS can be thought as an extension of 

local/neighborhood search with the inclusion of memory structures that record and 
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exploit the history of the search in order to escape local optima and lead the search 

toward higher quality solutions [17]. It has been successfully applied to obtain optimal or 

near optimal solutions to scheduling problems, the traveling salesman problems, and 

layout optimization applications. 

 

2.4  Evolutionary Computation 

Evolutionary computation incorporates algorithms that are inspired from evolution 

principles in nature [18].  The methods of evolutionary computation algorithms are 

stochastic and their search methods imitate and model some natural phenomena: i) the 

survival of the fittest and ii) genetic inheritance. Evolutionary computing can be applied 

to problems where traditional methods are hard to apply (e.g. gradients are not available) 

or lead to unsatisfactory solutions (e.g. local optima) [18]. Evolutionary algorithms work 

with population of potential solutions (i.e. individuals). Each individual is a potential 

solution to the problem under consideration and is encoded into a data structure suitable 

to the problem. Each encoded solution is evaluated by an objective function 

(environment) in order to measure its fitness. Bias on selecting high-fitness individuals 

exploits the acquired fitness information. The individuals will change and evolve to form 

a new population by applying genetic operators. Genetic operators perturb those 

individuals in order to explore search space. There are two main types of genetic 

operators: i) mutation and ii) crossover. Mutation type operators are asexual (unary) 

operators, which create new individuals by a small change in a single individual. On the 

other hand, crossover type operators are multi-sexual (multary [19]) operators, which 

create new individuals by combining parts from two or more individuals. After a number 
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of generations have evolved the process is terminated based on a termination criterion. 

The best individual in the final is then proposed as a (hopefully near-optimal or optimal) 

solution for the problem.  Evolutionary computing further subdivides into four classes: i) 

genetic algorithms, ii) evolutionary programming, iii) evolution strategies, and iv) genetic 

programming. Although there are many close similarities between these evolutionary 

computing paradigms, there are also profound differences between them [8]. These 

differences generally concern the level in the hierarchy of evolution being modeled: the 

chromosome, the individual, or the species [18]. There are also many hybrid methods that 

combine various features from two or more of the methods described in this section.  

 

2.4.1 Genetic Algorithms 

Genetic Algorithms (GAs) are part of a collection of stochastic optimization 

algorithms inspired by natural genetics and the theory of biological evolution [20]. The 

idea behind genetic algorithms is to simulate natural evolution to optimize a particular 

objective function. In the last three decades, GAs have emerged as practical, robust 

optimization and search methods [8]. In the literature, Holland’s genetic algorithm is 

called Simple Genetic Algorithm (SGA) [21]. SGA works with a population of 

individuals (chromosomes), which are encoded as binary strings (genes). A detailed 

literature review about genetics algorithms is presented in Chapter 3.  

 

2.4.2 Evolutionary Programming 

Evolutionary programming (EP) was developed by Lawrence Fogel in the late 

1960s.  Although EP techniques originally aimed at evolving artificial intelligence in the 
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sense of developing the ability to predict changes in the environment [22, 23], it is often 

used as an optimizer. After initializing a population of N individuals and generating N 

children by mutation, N survivors are selected from the population of parent and children 

using a probabilistic function based on fitness. As a consequence, individuals with a 

greater fitness have a higher chance to survive to the next generation. 

  

2.4.3 Evolution Strategies 

Evolution strategies (ES) are algorithms that mimic the principles of natural 

evolution as a method to solve parameter optimization problem [8]. They were developed 

and used in Germany at almost same time that genetic algorithms emerged in the U.S.A. 

during the late 1960s [10]. Early evolution strategies were based on a population 

consisting of one individual and one genetic operator (mutation) only. This method called 

the two-member evaluation strategy. However, the most significant difference between 

simple genetic algorithms and evolution strategies is the representation of the variables. 

In ES, an individual was represented as a pair of floating point-valued vectors, i.e., v = 

(x, σ). Here, the first vector x represents a point in the solution space; the second vector σ 

represents the corresponding standard deviation. The individual is altered by mutation by 

s )N(0,t1t xx +=+ , where s )N(0,  is a vector of independent identically normally 

distributed random numbers with a mean zero and standard devition σ. This is consistent 

with biological observation that smaller changes occur more often than larger ones [8]. 

The mutated individual replaces its parent if and only if the mutated individual has a 

better fitness and all existing constraints are satisfied. Otherwise, the offspring vanishes 

and the population remains unchanged.  
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Multi-member evolution strategies were also introduced [10]. Here a population 

consisting of µ individuals at generation g produces λ offspring. The µ best of (µ + λ) 

individuals will survive as parents for the next generation. This model allows the more fit 

individuals to live for a very long time; therefore, it causes the premature convergence. In 

order to prevent the premature convergence, the following modification is implemented 

to the multi-member evolution strategy. Here, a population consisting of µ individuals at 

generation g produces λ offspring, where λ> µ. The µ best of the λ offspring are chosen 

to be parents of the following generation. 

 

2.4.4 Genetic Programming 

Genetic programming (GP) was developed by Koza [24]. Koza views many 

different problems in artificial intelligence, symbolic processing, and machine learning as 

requiring discovery of a computer program that produces some desired output for 

particular inputs. The process of solving these problems becomes equivalent to searching 

a space of possible computer programs for a most fit individual computer programs. Koza 

[24] developed genetic programming, which provides a way to search for a most fit 

program for the problem. Genetic programming applies genetic algorithms to a 

population of computer programs. In order to create new programs from two parent 

programs, the programs are written as trees. Removing branches from one tree and 

inserting them into another creates new programs. This process ensures that the new 

program is also a valid program. Individual programs are evaluated by a fitness function 

and best solutions selected for modification and re-evaluation. This process is repeated 

until a most fit program is produced.  
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2.4.5 Summary for Evolutionary Computing 

Evolutionary computing can offer several advantages for solving difficult real-

world optimization problems. These advantages related to [25]: 

• Conceptual simplicity  

• Broad applicability 

• Higher performance than classic methods on real problems 

• Easily hybridized with other methods 

• Suitability for parallel processing (computing) 

• Adaptive solutions to changing circumstances 

• Capability to optimize its exogenous parameters 

• No gradient information necessary 

  

Figure 2.2 [9] shows a generic effectiveness index across a problem continuum 

for a calculus-based, an enumerative, a random search and an idealized robust scheme. 

Calculus-based methods perform very well in a narrow problem domain (unimodal) but it 

is very inefficient elsewhere. As it is expected, enumerative scheme performs low 

efficiency across the all problem domain. Because random search methods are based on 

enumerative techniques, they are expected to do no better than enumerative methods. 

The “No-Free-Lunch” (NFL) theorem [26] shows that all algorithms that search 

for optima of a cost function perform exactly the same, when averaged over all possible 

cost function. As a result, there cannot exist a single algorithm for solving all 

optimization problems that is consistently better than any other algorithm. The question 

of whether evolutionary algorithms are inferior or superior to other optimization method 
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does not make sense. It could be claimed that evolutionary algorithms behave better than 

other approaches with respect to solving a specific class of problems [27]. As we can see 

in Figure 2.2, NFL can be justified in the case of evolutionary algorithms versus many 

classical optimization methods mentioned above. Many classical methods are more 

efficient in solving linear, quadratic, convex, unimodal, separable, and many other special 

problems. On the other hand, evolutionary algorithms are more efficient in solving 

discontinuous, nondifferentiable, multimodal, noisy problems [27]. 
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Figure 2.2 Efficiency of Optimization Methods [9] 

 

Since the range and type of the problems faced with in real life are so diverse, it is 

difficult to develop one good method whose performance curve would be like the Robust 

Scheme shown in Figure 2.2. An algorithm can be thought of as a robust algorithm that 
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can successfully solve a wide variety of problems without making too much change in the 

algorithm. Genetic Algorithm and Simulated Annealing are both robust search and 

optimization algorithms that apply to a wide variety of search and optimization problems 

in general [9].  

 

2.5 Combinatorial Optimization 

Combinatorial optimization problems arise in situations where one has to combine 

a set of entities in a specific way. If the quality of the resulting combination of entities 

can be measured, then combinatorial optimization is the task of finding the best 

combination of entities. Many combinatorial optimization problems like the Traveling 

Salesman problem can be formulated in the abstract as finding from a set of S a subset T 

that satisfies desired criteria and optimize (generally minimize) an objective function f 

[28]. Most of the combinatorial optimization problems are NP-complete for which it is 

not guaranteed that an optimal solution can be found even when using the most efficient 

computers. The computation time required for processing a typical NP problem with 

input data of size n by a “brute force” algorithm requires at least 2n steps if all subsets of 

the given n-point set of inputs are considered (for example variable selection problem), or 

on the order of n! steps if all permutations are considered (for example, the Traveling 

Salesman Problem), or nn steps if all self-maps are considered [29]. It is believed that 

optimal solutions cannot be found for NP-hard problems within polynomially bounded 

computation times [14]. Therefore, solving NP-hard problems at optimality requires 

unfeasible amount of computation time. This situation led to look for heuristic methods 

that find a near optimal solution relatively fast within a reasonable time [30]. 
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One of the objectives of this dissertation is to develop a solution methodology 

using evolutionary computing for combinatorial optimization problems that are similar to 

the Traveling Salesman Problem (TSP). A detailed literature for relevant TSP like 

problems is included in Chapter 4. 

The Traveling Salesman Problem is a classic combinatorial optimization problem 

and can be stated as the problem of finding the shortest closed tour, which visits each city 

of a given set of cities once and only once. Our objective is to find an ordering of N cities 

that minimize the tour length [30]. Since the TSP is NP-hard [29] it has been attacked by 

many heuristics methods such as local optimization [28], simulated annealing [13], neural 

networks [31]. Because finding optimal solution for the TSP involves searching in a 

solution space that grows exponentially with number of cities, the TSP also has been 

attacked to solve by genetic algorithms [1]. These algorithms produce near-optimal 

solutions by maintaining a population of candidate solutions, which evolves by applying 

crossover and mutation operators with a selection scheme that is biased towards selecting 

more fit individual [8]. 



 19

  CHAPTER 3 

3Genetic Algorithms 

Genetic Algorithms (GAs) were proposed by John Holland and his students at the 

University of Michigan in the early 1970s [32] and provide an alternative to traditional 

optimization methods by using powerful search techniques to locate near optimal 

solutions in complex optimization problems. GAs are stochastic algorithms whose search 

methods model some natural phenomena based on genetic inheritance and natural 

selection. It is a multi-directional search by maintaining a population of potential 

solutions and assures information formation and exchange between these directions [8]. 

The potential solutions to a problem evolve to a better-fit group of solutions [20]. At each 

generation the better solutions reproduce, while the relatively bad solutions eventually die 

off. GAs have been successfully applied to real world optimization problems like 

scheduling processes, the traveling salesman like problems, variable reduction, facility 

layout problems, optimization problems in general. GAs have the following distinct 

properties: 

• Work with encoding of the parameters, 

• Search by means of a population of potential solutions, 

• Use an evaluation (fitness) function that does not require the calculation of 

derivatives, 

• Search stochastically. 

A generic pseudo-code for a genetic algorithm is shown in Figure 3.1. 
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 procedure genetic algorithm 
begin  

  Choose a coding to represent variables 
t ←  0 
Initialize population P(t) 
Evaluate population P(t) 
 
while (not termination condition) do 

t ←  t+1 
Select P(t) from P(t-1) 
Alter P(t) with crossover and mutation 
Evaluate P(t)  

end 
end 

  
Figure 3.1 A Simple Genetic Algorithm Cycle 

 

A genetic algorithm for a particular problem contains the following components: 

• A genetic representation for parameters in the problem, 

• A way to create initial population, 

• An evaluation (fitness) function, 

• Genetic operators (crossover, mutation) that alter the population, 

• Values for parameters that genetic algorithm uses (population size, number of 

generation, probabilities of applying genetic operators, selective pressure, etc.). 

These are explained in detail in following sections. 

 

3.1 Genetic Vocabulary 

Since genetic algorithms are rooted in natural genetics, most of the nomenclatures 

in the field are taken from biology. A brief introduction to vocabulary is presented first. 

In a biological organism, the information specifying how the organism is to be 

constructed is carried in chromosomes. Organisms whose chromosomes are arrayed in 
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pairs are called diploid (see section 3.2.3); organisms with unpaired chromosomes are 

called haploid. In nature, most of the sexually reproducing species have diploid 

chromosomes. For example, human being has 23 pairs of chromosomes in each cell [33]. 

Each chromosome consists of a number of units called genes. The position of a gene on a 

chromosome is called a locus. The locus of the gene within the chromosome structure 

determines what particular characteristic the gene represents. A set of values that a gene 

may take at a particular location on a chromosome is called as allele. One or more 

chromosomes may specify the complete organism. However, we consider only one-

stranded chromosome genotype. The complete set of chromosomes is called a genotype, 

and the interaction of a genotype with its environment to form an organism is called a 

phenotype. Therefore, different genotypes may lead to same phenotype, or same 

genotypes may result in different phenotypes.  

 

3.2 Genetic Representation of Parameters 

In a genetic algorithm, the environment is the problem under consideration and 

each of the organisms is a solution to the problem. Two things must be determined in 

order to apply a genetic algorithm to a given problem: i) a genetic code representation 

and ii) a fitness or objective function, which assigns a quality measure to each solution 

according to its performance [19]. The encoding of the parameters in genetic algorithms 

depends on the problems at hand.  

Around 1972 GA practitioners could be divided into tow camps [9]: i) the 

minimalist camp and ii) the maximal alphabet camp. The minimalist practitioners have 

followed Holland’s theory of schemata and low-cardinality alphabets. The low-



 22

cardinality-alphabet theory suggests that small alphabets are good, because they 

maximize the number of schemata available for genetic processing [34]. On the other 

hand the maximal alphabet practitioners have preferred to represent one parameter with 

one gene regardless of the number of alternative alleles required for a particular gene. 

Eventually the two camps for allele representation evolved to binary and floating-point 

GAs.  

 

3.2.1 Binary Representation and Gray Coding 

The traditional method of applying genetic algorithms to real-parameter problems 

is to encode each parameter as a bit string using either a standard Boolean or a Gray 

coding [22]. Holland [32] suggested that binary strings should be used for representation 

of all solutions. The motivation for using binary strings came from the schemata theorem 

that was originally introduced by Holland [32]. A schema is a similarity template that 

defines a subset of strings with fixed equal genes at certain locations. A schema is 

therefore a subset of the complete search space. In order to illustrate the concept of 

schema a special symbol ‘#’is appended to the binary alphabet.  The symbol # is called 

‘don’t care’ symbol that can take any value of alphabet. For instance, the schema  (#111) 

matches two strings, namely {(0111), (1111)} and similarly, the schema (#111#) 

describes four strings, namely, {(01110), (11110), (01111), (11111)}. A schema 

represents 2t strings that have same gene in all positions other than ‘#’, where t is the 

number of symbols ‘#’ in the schema template.  

Schemata are classified by two parameters: order and defining length of the 

schema. A schema’s order defines the number of fixed alleles in the chromosome 
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(string). Its defining length is the distance between the first and last defined allele, 

ranging from zero up to l-1, where l is the length of the chromosome. These parameters 

are useful for determining how likely a schema is to survive after crossover and mutation 

operators. The order strongly correlated to how likely the schema is to be destroyed after 

mutation. More alleles in the schema imply a higher chance that mutation will destroy the 

schema. The defining length tells how likely the schema is to be destroyed by crossover. 

Longer schema is more likely destroyed by crossover. If a schema tends to occur in above 

average fitness strings in the population then, the strings incorporating that particular 

schema are selected more frequently. Strings are generally destroyed by recombination 

but short and low-order tend to survive. The schemata theorem says that the schemata 

with above average fitness value will reproduce in increasing numbers in successive 

generations, while the schemata with below average fitness values will eventually die off. 

The binary representation has some drawbacks when applied to multidimensional, high-

precision numerical problem [8]. If the optimization problem is defined over a continuous 

domain, its real-valued parameters can only have approximate genotype representations 

because of the finite length of the binary encoding. The desired degree of precision 

determines the appropriate length for the binary encoding [22]. If the number of 

parameters is large, the size of the chromosome grows quickly. This, in turn, generates 

very large search space and reduces the performance of genetic algorithms. The genetic 

algorithms invest a lot of computational effort in evaluating the least significant digits of 

the gene. However, the optimal value for these digits depends on the more significant 

ones [35].   
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Schraudolph et al. [35] propose a dynamic parameter encoding method as a 

mechanism that obtains high-precision results and avoids problems mentioned above. In 

this method at first, a very crude precision binary encoding is applied and the GA is 

allowed to converge. At this point the resulting population is re-encoded with a high 

precision binary encoding, and the GA is restarted.  

If we assume an integer domain 0 to 2L –1 for an arbitrary function, any point in 

the domain can be represented using an L bit string. A Gray code is defined as a binary 

encoding schema that guarantees that points that are next to each other in the integer 

domain have a Hamming distance of one. Gray coding is better encoding for a standard 

binary representation for problems with limited degree of non-linearity and a locally 

correlated structure. The Gray coded representations also induce fewer minima than the 

corresponding binary representations for these kinds of problems [36-38]. Gray coding 

forces two points that are close to each other in the representation space to be close in the 

problem space, and vice versa. This is not always the case with the standard binary 

representation [8].  

 

3.2.2 Real-coded Genetic Algorithms 

Real-coded genetic algorithms use floating-point or other high cardinality 

encoding in their chromosomes [34].  Real-coded (non-binary) representations are more 

natural for the specific problems. For instance, in a numerical optimization on continues 

domain a chromosome is represented as a vector of floating point numbers in which each 

number corresponds to a variable in the problem [10, 12]. Wright [39] suggests a genetic 

algorithm that uses real parameter vectors as chromosomes, real parameters as genes, and 
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real numbers as alleles to optimize problems over several real parameters. Vectors of 

integers are used for scheduling and ordering problems such as the Traveling Salesman 

Problem [40]. 

Real-coded GAs usually adopt mutation operators that perturb the current solution 

around the current value and are well-suited for hill-climbing in the decision space under 

the consideration. In these kinds of situations, binary coded genes can easily become 

stuck on Hamming cliffs. Under the assumptions of a fixed population size, a fixed 

number of search alternatives, and serial processing of individual loci, it can be shown 

theoretically and empirically that higher cardinality alphabets converge to a solution 

more quickly than those coded over a smaller alphabet [34].  

 

3.2.3 Diploidicity 

So far, the simplest (haploid) genotype found in nature has been considered. In 

this model, a single-stranded (haploid) string carries all the information related to the 

problem under consideration. Although there are many haploid organisms in the nature, 

most of them tend to be of a relatively uncomplicated life form [9]. More complex 

organisms tend to have more complex chromosome structures employing diploid or 

double-stranded chromosomes. In this structure a genotype carries one or more pairs of 

chromosomes, each of them containing information for the same function. When the pair 

of genes decode to different function values, the mechanism for eliminating this conflict 

of redundancy is governed by a genetic operator called dominance. To illustrate this 

operation, let’s consider a diploid chromosome structure where different letters stand for 

different alleles.  
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 A b C d E f 

A b c D e F 
 

Each letter represents one allele for that position; two alleles from each chromosome 

compete for that position in order to be expressed in the phenotype. One allele 

(DOMINANT) takes precedence over the other allele (recessive) at that position. An 

allele is dominant if it shows up in the phenotype when paired with some other allele. In 

our demonstration, if we assume that all capital letters are dominant and that all 

lowercase letters are recessive, the phenotype will be: 

 A b C d E f 

                             →              A b C D E F 
A b c D e F 

 

At each location, the dominant gene is always expressed but recessive genes are 

expressed only if both alleles are recessive. The mechanism of dominance can be thought 

of as a genotype-to-phenotype or genotype reduction mapping [9].  

 

3.3 Crossover 

Crossover is the key operator, which makes GAs converge to a good solution. The 

idea behind crossover is that two or more individuals with high fitness values will create 

one or more new offspring (children) who inherit the best features of their parents. Since 

the best features are not known a priori, individuals are recombined randomly under a 

mechanism of selection, which is biased to more fit individuals. Crossover treats good 

features as building blocks scattered throughout the population and tries to recombine 

them into new and improved individuals [41]. Crossover will create worse individuals as 
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well but they will eventually die off. The crossover operator can be divided into two 

groups: two-parent (classical crossover) and multi-parent. 

 

3.3.1 Two-parent Crossover 

Holland [32] originally proposed one-point crossover. It is a reproduction 

operator that takes two parent chromosomes and randomly chooses a location on the 

chromosomes. Figure 3.2 illustrates the one-point crossover for binary representation 

where the vertical line represents the crossover point.  

Parent 1 1 1 1 1 1 1 1 1

Parent 2 0 0 0 0 0 0 0 0

Offspring 1 1 1 1 1 0 0 0 0

Offspring 2 0 0 0 0 1 1 1 1
 

Figure 3.2 One-point Crossover 

Chromosomes are cut at that position and the right part of the chromosomes are swapped. 

Another well-known crossover is two-point crossover that chooses two cut points at 

random and swaps the middle part of the chromosomes. This can be generalized n point 

crossover as well. Figure 3.3 depicts the two-point crossover. 

Parent 1 1 1 1 1 1 1 1 1

Parent 2 0 0 0 0 0 0 0 0

Offspring 1 1 1 0 0 0 0 1 1

Offspring 2 0 0 1 1 1 1 0 0
 

Figure 3.3 Two-point Crossover 
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3.3.2 Multi-parent Crossover 

The creation of new individuals always occurs through either asexual (one parent) 

or sexual (two-parent) reproduction in nature. Although there are no biological analogies 

of recombination mechanism where more than two parent genotypes mixed in one single 

recombination act, there is no necessity to restrict reproduction mechanisms to one 

(mutation) or two (crossover) parent chromosomes in computer evolution. It has been 

hypothesized that recombination has a statistical error correction effect, called genetic 

repair, and that this effect can be improved by using more than two parents for creating 

offspring [42]. 

Biasing the recombination operator can improve the performance of the Genetic 

Algorithm [43]. A problem independent way of incorporating bias into the recombination 

operation is to use n parents and apply some limited statistical analysis on allele 

distribution of the selected parents. Randomly choosing an allele from the parents 

introduces a very slight bias. Looking at the number of occurrences of a certain allele at a 

particular position and choosing the most common one introduces a strong bias. 

Inheriting the number of genes proportional to the fitness value of the parents is a more 

sophisticated, but still problem independent mechanism. 

Eiben [42, 43] has described a number of genetic operators based on multi-parent. 

These operators use two or more parents to generate a single offspring are based on gene 

scanning. These operators are uniform scanning, occurrence based scanning, and fitness 

based scanning. 

Uniform scanning is an extension of the number of parents for the uniform 

crossover operator. Uniform crossover takes two parents and chooses a crossover point 
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randomly, then, generates two offspring. In uniform scanning, only one offspring is 

generated and each allele in this single offspring is chosen by a uniform random 

mechanism, in where each parent has an equal chance of being chosen to provide value. 

The classical uniform crossover is a very disruptive operator. Applying an n-ary version 

reduces the level of disruption by using a bigger sample of search space and by creating 

only one offspring [44].  

Occurrence based scanning is based on the value, which occurs in the selected 

parents in a particular position. The selection of parents is based on their fitness. The 

selection of value among the marked values is done by a majority vote. If there is no 

value in majority among the marked values, the value is assigned to the child either a 

policy (from the first parent, etc.) or randomly. Figure 3.4 illustrates the method. 

 

Parent 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0
Parent 2 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0
Parent 3 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1
Parent 4 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0
Child 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0  

Figure 3.4 Occurrence Based Scanning on Bit Patterns 

Fitness based scanning passes a value to the child proportional to the fitness 

values of the parents. For instance, for maximization problem, the probability of choosing 

a value from parent i is 
∑

=
if

f
P i

i  (the Roulette wheel selection). Ei, the expected 

number of genes inherited from parent i, will be Ei = Pi * L, where L is the length of a 

chromosome. 
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Adjacency based crossover [43] is a customized case of scanning, which is specifically 

designed for order-based representations where the relative positioning of values is 

important. The Traveling Salesman Problem is a good example for these kinds of 

problems. In this method, the first gene value in the child is always inherited from the 

first gene value of the first parent. For each parent, its marker is set to the first successor 

of the previously selected value, which does not already show up in the child. When all 

immediate successors to a value have already been inherited by the child, the successor of 

these immediate successors, and so on, will be checked. The new value will be chosen 

amongst these values that are not present in the child. Figure 3.5 illustrates the method. 

P(1, 2, 3) and Ch represent parents and child, respectively. 

P1 3 7 2 4 8 1 6 5 3 7 2 4 8 1 6 5
P2 2 5 1 7 6 3 8 4 2 5 1 7 6 3 8 4
P3 2 3 8 5 6 4 7 1 2 3 8 5 6 4 7 1
P4 1 3 2 7 5 4 8 6 1 3 2 7 5 4 8 6
Ch 3 3 8

P1 3 7 2 4 8 1 6 5 3 7 2 4 8 1 6 5
P2 2 5 1 7 6 3 8 4 2 5 1 7 6 3 8 4
P3 2 3 8 5 6 4 7 1 2 3 8 5 6 4 7 1
P4 1 3 2 7 5 4 8 6 1 3 2 7 5 4 8 6
Ch 3 8 1 3 8 1 2

P1 3 7 2 4 8 1 6 5 3 7 2 4 8 1 6 5
P2 2 5 1 7 6 3 8 4 2 5 1 7 6 3 8 4
P3 2 3 8 5 6 4 7 1 2 3 8 5 6 4 7 1
P4 1 3 2 7 5 4 8 6 1 3 2 7 5 4 8 6
Ch 3 8 1 2 5 3 8 1 2 5 7

P1 3 7 2 4 8 1 6 5 3 7 2 4 8 1 6 5
P2 2 5 1 7 6 3 8 4 2 5 1 7 6 3 8 4
P3 2 3 8 5 6 4 7 1 2 3 8 5 6 4 7 1
P4 1 3 2 7 5 4 8 6 1 3 2 7 5 4 8 6
Ch 3 8 1 2 5 7 4 3 8 1 2 5 7 4 6  

Figure 3.5 Adjacency Based Crossover 
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Diagonal Multi-parent Crossover has been introduced in [43]. The Diagonal 

crossover is a generalization of 1-point crossover for two parents generating two 

offspring. Diagonal crossover uses n parents (n ≥ 2), and (n-1) crossover points and 

produces n offspring. Figure 3.6 illustrates the procedure where n=3 and ↓ represents the 

crossover points. 

 

 Parent1   111111↓1111111↓1111  Offspring1  111111↓2222222↓3333 

Parent2   222222↓2222222↓2222  Offspring2  222222↓3333333↓1111 

Parent3   333333↓3333333↓3333  Offspring3  333333↓1111111↓2222 
  

Figure 3.6 Diagonal Crossover 

The use of more parents in diagonal crossover leads to an improvement in the 

performance of GA because the search becomes more explorative, without hindering 

exploitation. The more explorative character is the result of having more crossover points 

and thus a higher level of disruptiveness, and the fact that using more parents there is 

more "consensus" to focus on to search a certain region [44].  In order to investigate the 

effect of having more parents in diagonal crossover, Eiben [45] studied a test suit 

containing eight numerical optimization problems and established that higher number of 

parents tented to lead to a better performance. 

Lis [46] proposed Multi-Sexual Genetic Algorithm (MSGA) for multi-objective 

optimization problems. Many real world problems have multiple objectives and these 

objectives need to be achieved simultaneously. In most cases, these objectives are in 

conflict with one another, so that it is not possible to improve on any of the objective 

functions without deteriorating one of the other. This fact is known as the Pareto 
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optimality concept [47]. A general multi-objective optimization problem consists of a 

number of objectives and constraints in the form of equalities and inequalities. In these 

kinds of problems, there may not exist an unambiguous optimal solution. The 

characteristic of the multi-objective optimization problems is the presence of a large set 

of acceptable solutions that are superior to the rest of the solutions in the search space 

when all objectives are considered. On the other hand, these solutions are not optimal 

from the point of any single objective. MSGA provides each individual with an additional 

feature (sex or gender) and maps optimization criteria to sexes by one-to-one mapping 

and evaluates individuals by the optimization criteria belonging to the sex, and uses 

multi-parent crossover for recombination that requires one parent from each sex. In the 

recombination phase, the probability of choosing an individual is related to its rank 

calculated in the evaluation step. The uniform scanning crossover operator creates one 

child from many parents. The sex of offspring is inherited from the parent supplied the 

largest number of genes. If there is tie, the parent is chosen randomly. Enforcing that 

crossover is applied to representatives of different sexes and the different sexes are 

evaluated by different optimization criteria prevent the algorithm from converging to 

optimal points with respect to only on single optimization criterion. 

  

3.4 Mutation 

Mutation is a common reproduction operator used for finding new points in the 

search space. When a string (chromosome) is chosen for mutation, a random choice is 

made for selecting genes of the string, and these genes are modified accordingly. In the 

case of binary representation, the corresponding bits are flipped form 0 to 1 or vice versa. 
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A commonly used mutation probability is one over the number of genes in the string [41]. 

Mutation operator is generally used with a crossover operator as a background operator 

that diversifies the population [8].  

 

3.5 Selection Mechanism 

Selection is one of the main operators used in evolutionary algorithms and its 

primary objective is to emphasize better solutions in a population [48]. A genetic 

algorithm starts with a certain number of random (or non random) problem specific 

structures (population). Each individual or structure in the population represents a 

solution to the problem and has a fitness value fi. The GA proceeds for a certain number 

of iterations (generations) until one or more stopping criteria are satisfied. At the 

beginning of the each generation, the genetic algorithm performs selection followed by 

genetic operators (crossover and mutation). There are two important factors in the 

evolution process of the genetic search [8]: population diversity and selective pressure. 

These two factors are strongly related with each other because an increase in the selective 

pressure decreases the diversity of the population, and vice versa. It is very important to 

balance these two factors in a genetic search because strong selection pressure causes 

premature convergence and weak selection can make the genetic search inefficient. 

 

3.5.1 Fitness Proportional Selection Schemes 

The most common selection mechanism is roulette wheel selection (stochastic 

sampling with replacement) [9]. Here, each slot on the roulette wheel represents an 

individual. The area of the slot is directly proportional to the objective function value 
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(fitness) of the individual. Each individual is selected by a spin of the roulette wheel. 

Figure 3.7 illustrates the roulette wheel selection scheme.  

 

Individuals Fitness Proportional Fitness
Parent1 30 30%
Parent2 60 60%
Parent3 10 10%

Total 100 1

Parent3

Parent1

Parent2

 
Figure 3.7 Roulette Wheel Selection 

 

Although the lowest fit individual (Parent 3) in Figure 3.7 is selected by the roulette 

wheel, the individuals with higher fitness are likely to be selected more often the ones 

with lower fitness. This reproduction method often forces the genetic search to focus on 

the top individuals only, which leads to premature convergence (local optima). 

In order to alleviate the premature convergence caused by the roulette wheel 

selection, six selection methods were introduced by Brindle [49].  These methods mainly 

control the number of individual copied to the new population. One of those methods is 

the Remainder Stochastic Sampling with Replacement. This method selects individuals 

deterministically for the integer part of their expectations and uses the fractional part as a 

probability for the roulette wheel selection. For example, if the objective function value 
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of an individual is fi, the probability of selection of an individual will be 
∑ f

f

i

i . The 

expected number of individual for each string is 
∑ f

f
N

i

i , where N is population size. For 

example, an individual with an expected number of copies equal to 2.25, the two copies 

of the individual are copied to the next population and the third copy will be determined 

by the roulette wheel with probability 0.25.  

 

3.5.2 Tournament Selection Scheme 

Another popular selection method is Stochastic Tournament Selection [49]. In this 

method, N tournaments are held and each of them contributes one individual to the new 

population for the next generation. In each tournament two individuals from the current 

population are selected using roulette wheel selection. The individual with the best 

overall fitness is selected from them. This process is repeated until the entire population 

has been replaced. This method was extended to k number of individuals in each 

tournament by Goldberg [50]. This method selects some number of individuals and 

copies the best one amongst them to the new population. If the k is large, the selective 

pressure will increase. 

 

3.5.3 Elitist Scheme 

The elitist selection scheme was proposed by De Jong [51]. This method copies a 

certain number of the best individuals from the existing population to the next population. 

This enforces preserving the best structures for the problem at hand.  
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3.5.4 Rank Selection 

A nonparametric procedure for selection  (Rank Selection) was introduced by 

Baker [52]. In this method individuals in the population are sorted according to their 

fitness values and individuals for the next generation are selected proportionally to their 

rank rather than actual objective function value. Ranking acts as function transformation 

that assigns a new fitness value to an individual based on its performance relative to other 

individuals [53]. Baker [52] used the rank selection to slow down the search speed. This 

method prevents the super individuals to take over population in a few generations by 

adjusting the selective pressure. Whitley [53] suggested that selection according to rank 

is superior to fitness proportionate selection and can also be used to increase search 

speed. There are linear and nonlinear methods to assign a number of offspring based on 

ranking [8]. The rank selection has been criticized because it violates the Schema 

Theorem and ignores information about the search space as revealed by the objective 

function [53]. On the other hand, rank selection prevent scaling problem and control the 

selective pressure. 
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  CHAPTER 4 

4Evolutionary Algorithms for the Traveling Salesman 

Problem 

4.1 Introduction 

The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem 

and can be stated as the problem of finding the shortest closed tour, which visits each city 

of a given set of cities once and only once. Our objective is to find an ordering of N cities 

that minimize the tour length [30]. Assume that there is a set of cities, S={ca1, cb2, cc3, … , 

cnN}, where first subscript represents the city name and second subscript represents the 

visit order of the city. For example, cb2 means that city b is visited as a second city after 

city a.  If dij represents the distance between two consecutively visited cities (for 

example, d23 will be the distance between city b and city c) where i = j+1, 1 ≤ i, and j ≤ N, 

our objective is to find an ordering of N cities which gives the minimum total tour length. 

The objective function can be written as 







 +∑

−

=

1N

1i
1Nij ddmin  

We will concentrate in this dissertation on symmetric TSP, in which the distances 

from city i to  j is the same as that from city j to city i. In this case, the tour length does 

not change if the order of cities are reversed. The distances between cities can in principle 

be expressed in different metrics, but they must satisfy the triangle inequality. This means 

that the direct route between two cities is always the shortest path. These types of TSP 

problems are also called Euclidean Traveling Salesman Problems. Even though, in the 

)1.4(
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real world, there are cases where the shortest route from city i to city j must pass through 

city k, we will ignore these situations here. It can easily be proven that the optimal 

solution to the Euclidean TSP can never cross itself [54].  

The TSP is very simple to state but difficult to solve exactly. Several variations of 

the TSP find immediate applications in routing and scheduling problems. In an instance 

of a TSP, there is a set of N cities, and a distance between each pair of cities. In order to 

find a guaranteed optimal solution, which minimizes the tour distance, all the valid tours 

for a given problem have to be evaluated. For instance, in a 10-city TSP there are 

440,181
2

)!110(
2

)!1( =−=−N

 
distinct tours. If the number of cities becomes 14; then, 

number of distinct tours becomes 31,135,000,000,000. All of the known algorithms 

demand computing times that grows exponentially with N. The TSP belongs to the class 

of NP-hard problems, and consequently, it is unlikely that there is a polynomial-time 

algorithm that solves each instance of the problem at optimality [31]. 

 

4.2 Approaches for Solving the TSP 

There are several approaches for solving the TSP. Because the TSP is a NP-hard 

problem, finding optimal solution requires possibly infeasible computing time. Aarts and 

Stehouwer grouped these approaches into two categories: optimization and 

approximation [31]. There are optimization algorithms for the TSP based on enumeration 

methods using branch and bound techniques that can handle a certain problem size and 

might take some time to find the optimal solution. In real life there are many situations 

where much larger sizes of TSP like problem need to be handled (e.g., printed circuit 

board design).   
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Several applications stimulated the emergence of approximate heuristic algorithms 

that can find near-optimal solutions preferably with small running times. Although these 

heuristic techniques are relatively faster than strict optimization algorithms, their solution 

qualities are moderate. Approximation algorithms subdivide into the following classes 

[30]:  

 

4.2.1 Tour Construction Heuristics 

A popular and natural tour construction heuristic for the TSP is Nearest Neighbor 

algorithm. The salesman starts his journey from an arbitrary city and always travels to the 

nearest unvisited city. A related tour construction heuristic relies on Greedy heuristics. In 

this case, a TSP tour is viewed as a complete graph (Hamiltonian cycle) with the cities as 

vertices and with the distance between cities as edges. The Hamiltonian cycle is 

constructed by adding the available shortest edge one at a time.  

There are tour construction heuristics that are called insertion heuristics. They 

start with a sub-tour and then extend the sub-tour by inserting the remaining cities one by 

one until all cities have been inserted. The starting sub-tour usually contains three cities, 

which form the largest triangle. The well-known insertion heuristics are nearest insertion 

and farthest insertion [55].  In the nearest insertion, a city among all cities not in the tour 

is selected such a way that its addition to the tour results the lowest increase in the length 

of new tour size n+1. Figure 4.1 illustrates the nearest insertion method with a 6-city 

TSP. In the farthest insertion, a city whose minimal distance to the tour is maximal 

among cities not present in the tour is added into the tour first. Although tour construction 
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algorithms are fast, the quality of solutions are generally not better than 10% from 

optimal solution [30]. 
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Figure 4.1 Development of a Tour on 6-city TSP using the Nearest Insertion Method 

 

4.2.2 Local Improvement Algorithms 

Local improvement algorithms for the TSP are simply based on modification of a 

valid tour. The well-known local improvement algorithms are 2-Opt and 3-Opt [30]. For 

example, a 2-Opt procedure consists of eliminating two edges and reconnecting the two 

resulting paths in a different way to obtain a new tour. After deleting two edges there is 

only one way to reconnect the paths that yield a different tour. Figure 4.2 illustrates a 2-
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Opt move. The pair, which gives a shorter tour than the length of the current tour, is 

chosen among all pairs of edges. This procedure ends when no such pair of edges can be 

found. Lin & Kernighan proposed [28] an algorithm based on 2-Opt moves. This 

algorithm significantly reduces the search space and is known to be the most efficient 

local improvement algorithm [30]. Local improvement algorithms are relatively slow, but 

can find solution within a few percent of the optimal solution. 
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Figure 4.2 A 2-Opt Move (a) Original Tour (b) Discontinued Edges are Selected Edges 

for Exchange (c) The Resulting Tour after the 2-Opt Move 

 

 

4.2.3 Memetic Algorithms 

Memetic algorithms are a hybrid between genetic algorithms and a local search 

algorithm. A local search algorithm is applied to every individual before it is included in 

the population of a genetic algorithm. These algorithms can be thought of as a special 

kind of genetic search over the subspace of local optima [56]. 

Merz [57] used this approach to solve symmetric and asymmetric TSP problems 

and used a modified version of Lin-Kernighan algorithm [28] as local optimizer. They 
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reported optimal solutions for symmetric TSP instances of up to 1400 cities.  These kinds 

of methods are called Genetic Local Search (GLS). In the GLS algorithm, after applying 

a genetic operator, a local search procedure is applied to the resulting individual. 

Therefore, all individuals in the population represent local minima.  

 

4.2.4 TABU Search 

TABU search was explained in section 2.3 and can also be used for solving the 

TSP. The first TABU search algorithm for the TSP was implemented by Glover [58]. His 

implementation starts with a tour and the tour is modified by a 2-Opt move. A TABU list 

is constructed by including the shorter of the two edges deleted by a 2-Opt move. 

Zachariasen and Dam [59] presented a new TABU search approach for the TSP problem 

by using 3-Opt and Lin & Kernighan [28] algorithm as a move strategy. 

 

4.2.5 Simulated Annealing 

The TSP was actually the first problem on which simulated annealing applied 

[13]. When simulated annealing algorithms are applied to the TSP, a valid tour sequence 

is modified at each step. If the length of new tour is shorter than that of current tour, the 

new tour will be accepted. Otherwise, the new tour will be accepted with a certain 

probability. Martin and Otto [60] combined simulated annealing and local search 

heuristics. Before applying the simulated annealing algorithm, the tour is locally 

optimized with a local search algorithm. Their results show that this approach is efficient 

for solving large TSP problems.  
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4.2.6 Neural Networks 

Hopfield and Tank [61] proposed a Hopfield neural network to approximately 

solve the TSP. These neural networks consist of N2 neurons and N4 connections, where N 

is number of cities; the TSP problem is replaced by an equivalent energy minimization 

approach. They reported results for 10-city and 30-city TSPs, which are 5% above 

optimal. Kohonen’s Self-Organizing Map [62] has also been applied to the TSP with 

modest success [31, 63]. Generally, neural networks for the TSP are slow and their 

effectiveness is rather modest.  

 

4.2.7 Ant Systems 

The ant algorithm models a real ant colony. Real ants have the ability to find the 

shortest route from a food source to the colony by exploiting pheromone information 

without using any visual cues [64]. When ants travel, they deposit pheromone on the 

ground and follow the strongest scent of pheromone previously deposited by other ants. 

Ant systems work in the following way. Each ant generates a complete legal tour by 

choosing cities based on a probabilistic rule. The rule is to visit cities, which are close to 

each other with a high a mount of pheromone. A certain number of artificial ants are 

created and placed on randomly selected cities. When each ant makes a trip to next city, 

the pheromone information in that edge is modified. This is called local trail updating 

[65]. When all the ants in the system complete their tour the ant with the shortest tour 

updates the edges belonging to its tour by adding an amount of pheromone trail that is 

inversely proportional to the tour length. This is called global trail updating [65]. There 



 44

are claims that ant system outperforms other nature-inspired algorithms such as simulated 

annealing and evolutionary computation [64]. 

 

4.3 Genetic Algorithms 

Because finding the optimal solution for the TSP involves searching in a solution 

space that grows exponentially with the number of cities, solutions to the TSP have also 

been tried with genetic algorithms. These algorithms produce near-optimal solutions by 

maintaining a population of candidate solutions, which evolve by applying crossover and 

mutation operators under a selection scheme that biases towards the more fit individual 

[8]. Johnson and McGeoch [30] wrote: 

“… in the case of the TSP many tour construction heuristics do surprisingly well 

in practice. The best typically get within roughly 10-15% of optimal in relatively 

little time. Furthermore, ‘classical’ local optimization techniques for the TSP 

yield even better results, with the simple 3-Opt heuristic getting 3-4% of optimal 

and the ‘variable-opt’ algorithms of Lin & Kernighan (1973) typically getting 

within 1-2%. Moreover, for geometric data the aforementioned algorithms all 

appear to have running time growth rates O(N2), i.e., subquadratic, at least in the 

range from 100 to 1,000,000 cities. These successes for traditional approaches 

leave less room for new approaches like tabu search, simulated annealing, etc., to 

make contributions. Nevertheless, at least one of the new approaches, genetic 

algorithms, does have something to contribute if one is willing to pay a large, 

although still O(N2), price in running time.” 
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In recent years a variety of genetic algorithms have been devised. These algorithms 

can be divided into two groups [66]: pure genetic algorithms and heuristic genetic 

algorithms.  

Heuristic genetic algorithms employ genetic operators that incorporate specific 

information about the TSP [67-72]. Such information is generally taken advantage of 

operations by using heuristic algorithms such as tour construction and local improvement 

algorithms explained in Sections 4.2.1 and 4.2.2 in this chapter.  

Pure genetic algorithms do not employ domain-specific information about the TSP 

and use generic genetic operators (crossover and mutation) that can be applied to 

arbitrary permutations [9, 73-77]. Therefore, they can be applied in any problem domain 

involving objects represented as permutations. These genetic operators will be explained 

in the following sections. In this dissertation, we will focus on pure genetic algorithms.  

 

4.4 Representations and Genetic Operators 

The key point to solve the TSP as well as any other problems using genetic 

algorithms is to develop an encoding that allows genetic operators to generate “legitimate 

children” without any constraint violation. GA applications to the TSP have an intrinsic 

problem because of the constraints imposed upon the representation for a tour: i.e., each 

tour must contain exactly one of instance of a city. Any omission or duplication of a city 

or cities leads to illegal tours. Several different tour representations and specialized 

genetic operators customized to these representations have been developed to solve the 

TSP.  
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4.4.1 Binary Representation 

The TSP can be encoded as a binary string but it is clear that the traditional 

crossover and mutation operators will produce illegal tour as well. A TSP problem with 

N cities requires Nlog2  bits to represent all cities, and a tour requires )(log2 NN bits to 

be encoded. For example, for a six-city TSP a 3-bit string and a18-bit string represent 

cities and tours, respectively.   

 

City Name A B C D E F
Binary Representation 000 001 010 011 100 101  

Figure 4.3 Binary Representation of the 6-city TSP 

 

The following two tours can be represented by binary string using Figure 4.3. 

Tour 1: A →  B →  C →  D →  E →  F 
Tour 2: A →  E →  F →  B →  D →  C 

Tour 1BINARY: 000 001 010 011 100 101 
Tour 2BINARY: 000 100 101 001 011 010 

Note that with a 3-bit binary we can represents 8 (23) cities, and there exist two 3-bit 

strings that do not correspond to any city for a 6-city TSP problem. These strings are 

represented by110 and 111. 

Classical crossover [32] takes two tours and randomly chooses a point, where the 

tours are broken into two parts and then swaps the tails between the tours. For the six-city 

TSP tour, the classical crossover operator is illustrated in Figure 4.4.  
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Tour 1BINARY 000 001 0 10 011 100 101

Tour 2BINARY 000 100 1 01 001 011 010

Child 1 000 001 0 01 001 011 010 

Child 2 000 100 1 10 011 100 101 

Crossover 
point

 
Figure 4.4 Classical Crossover Operation on the Binary Encoded 6-city TSP 

 

According to Figure 4.4 child tour1 corresponds to (A →  B →  B →  B →  D →  C), and 

child tour 2 corresponds to (A →  E →  ? →  D →  E →  F) where ‘?’ represents non-

existing city. 

The classical mutation operator [32] simply flips one or more bits with a small 

probability.  For example, the tenth bit of the Tour 1 is chosen to be mutated. Tour 

1BINARY: 000 001 010 011 100 101. The child tour will be 000 001 010 111 100 101, 

which corresponds to (A →  B →  C →  ? →  E →  F) where ‘?’ represents non-existing 

city. 

As we have seen, classical crossover and mutation operations produce 

duplications and/or omissions of one or more cities. Thus, some repair algorithms are 

required in order to solve TSP problems with a binary encoding [40]. 

 

4.4.2 Permutation Representation 

It seems natural to encode ordering problems like the TSP in permutation form 

[9]. Here, a tour is represented as a list of N cities. If city i is j-th element of the list, city i 
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is the j-th city to be visited. For example, the tour B →  D →  C →  A →  E →  F is simple 

represented by B D C A E F. In general, cities are represented as an integer number in 

tours.  

 

City A B C D E F
Integer code 1 2 3 4 5 6  

Figure 4.5 Permutation Representation for 6-city TSP 

 

Then, the tour given above is simply represented by 2 4 3 1 5 6. This representation is 

also called as path representation or order representation [78].  This representation may 

lead to infeasible tours when traditional crossover and mutation operators are used. Many 

variations for crossover and mutation operators have been invented to be applicable to 

permutation representation.  

 

4.4.2.1 Partially-Mapped Crossover (PMX) 

PMX, proposed by Goldberg and Lingle [1], produces an offspring by choosing a 

portion of tour from one parent and preserving the position and relative order of as many 

cities as from the other parent [9]. Consider the following two tours for the illustration of 

the operation of PMX.  Tour 1: (1 2 3 4 5 6 7 8) and Tour 2: (6 7 4 2 8 5 3 1). First, PMX 

selects uniformly at random two cut points along the tour. The symbol | shows the 

crossover points.  

Tour 1: (1 2 | 3 4 5 | 6 7 8) 
Tour 2: (6 7 | 4 2 8 | 5 3 1) 

Second, PMX exchanges sub-strings between parents. 
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Offspring 1: (* * | 4 2 8 | * * *) 
Offspring 2: (* * | 3 4 5 | * * *) 

Third, PMX determines the mapping relationship as following: 

3 ↔  4 ↔  2, 5  ↔  8. 

Then, the remaining cities are filled from original parent, if a city already present in the 

offspring it is replaced according to mapping relationship. The new tours will be: 

Offspring 1: (1 3 | 4 2 8 | 6 7 5) 
Offspring 2: (6 7 | 3 4 5 | 8 2 1) 

 
 

4.4.2.2 Order Crossover (OX) 

The OX, proposed by Davis [79], creates new offspring by choosing a sub-tour of 

one parent and preserving the relative order of cities of the other parent. Again, consider 

the following parent tours with two cut points market by symbol |:  

Tour 1: (1 2 | 3 4 5 | 6 7 8) 
Tour 2: (6 7 | 4 2 8 | 5 3 1) 

The offspring are constructed in the following way. First, the tour subsequences between 

the cut points are inherited into the offspring, which is shown below: 

Offspring 1: (* * | 3 4 5 | * * *) 
Offspring 2: (* * | 4 2 8 | * * *) 

Second, delete the cities, which are already present in the subsequence from the other 

parent. 

Offspring 1    : (  *   *  3   4   5   *   *   *  ) 
Parent Tour 2:  (  6  7  4   2   8    5   3  1  ) 

Offspring 2     : (   *   *   4   2   8   *   *   *  ) 
Parent Tour 1 :  (   1   2   3   4   5   6   7   8  ) 
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Last, starting from the second cut point of one parent, the remaining cities are copied in 

the order in which they appear in the other parent. When the end of the string is reached, 

we continue from the first place of the string. The offspring will be: 

Offspring 1: (2  8  3  4  5  1  6  7) 
Offspring 2: (3  5  4  2  8  6  7  1) 

The OX exploits a property of the path representation where the order of cities is 

important [9]. 

 

4.4.2.3 Cycle Crossover (CX) 

The CX was proposed by Oliver et al. [73] and creates an offspring from the 

parents where every element of the offspring comes from one of the parents. This 

crossover satisfies that every position of the offspring must hold a value found in the 

corresponding position of a parent, and that the offspring are legal tours.  The mechanism 

of CX works as follows. Consider following parent tours. 

Tour 1: (1 2 3 4 5 6 7 8) 
Tour 2: (6 7 4 2 8 5 3 1) 

First of all, find the cycle that is defined by the corresponding positions of cities between 

parents starting from the first city of one of the parents. Figure 4.6 shows how to find a 

circle.  

 

Tour 1 1 2 3 4 5 6 7 8

Tour 2 6 7 4 2 8 5 3 1  
Figure 4.6 Finding a Cycle in Cycle Crossover 

The circle will be 1 →  6 →  5 →  8 →  1. 
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Second of all, keep the cities in the cycle corresponding positions of one parent and 

delete other non-cycle cities and merge the tour in order to construct an offspring. 

Tour 1 1 * * * 5 6 * 8

Tour 2 * 7 4 2 * * 3 *

Offspring 1 1 7 4 2 5 6 3 8  

Tour 2 6 * * * 8 5 * 1

Tour 1 * 2 3 4 * * 7 *

Offspring 2 6 2 3 4 8 5 7 1  

The CX maintains the absolute position of the elements in the parent sequence. 

 

4.4.3 Edge Representation 

The TSP can be represented by a binary encoding based on edges on the tour [80]. 

Lets assume we have a six-city TSP, which can be represented by a binary encoding as a 

following way. Consider these two tours:  

Tour 1: (A →  B →  C →  D →  E →  F) 
Tour 2: (B →  D →  C →  A →  E →  F) 

All possible edges are listed and if an edge exists in the tour; then the value is one 

otherwise zero. The positions of the cities in the tour are not important because the tours 

are circular. Also, the direction of an edge is not important in the symmetric TSP because 

edge AB is the same as edge BA.  

 

 

AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF
Tour 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1
Tour 2 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1  

Figure 4.7 Binary Encoding of the TSP Based on Edges 
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Whitley [80] developed a genetic operator that generates good solutions for 

sequencing and ordering problems. This operator is called Genetic Edge Recombination. 

The edge recombination operator uses an edge map to create an offspring that inherits as 

much information as possible from the donor structures. The edge map stores all the 

connections from two donors that lead into and out of a city.  

 

4.4.4 Adjacency Representation 

A tour is represented as a list of N cities in adjacency representation. The city j is 

in the position i in the list if and only if the tour leads from city i to city j. For example, 

the tour (1 →  3 →  7 →  2 →  5 →  4 →  6 →  8) is represented by (3  5  7  6  4  8  2  1). 

Although each tour has unique adjacency representation, some of them may represent 

illegal tours. For example, the adjacency list  (3 5 7 6 2 4 1 8) leads to the premature 

partial tour (1 →  3  →  7  →  1). It is clear that the adjacency representation does not 

support the classical crossover operation and a repair algorithm might be necessary in 

order to correct illegal tours. Some crossover operators were proposed for adjacency 

representation. These are alternating-edge crossover, subtour-chunks crossover, and 

heuristic crossover [8]. 

The main advantage of the adjacency representation is that it allows schemata 

analysis. However, this representation generally produces poor results for all crossover 

operators listed above [8].  
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4.4.5 Ordinal Representation 

In ordinal representation, a tour with N-cities is represented as a list of N 

elements, where the i-th element of the list is a number in the range from 1 to N-i+1. 

Here, there exists an ordered list of cities R, which serves as a reference point. For 

example, assume R = (1 2 3 4 5 6 7 8) and the tour T = (1 →  3 →  7 →  2 →  5 →  4 →  6 

→  8) is represented by  O = (1  2  5  1  2  1  1  1). This order representation O can be 

transformed to original tour. The first element in O is 1, which means that takes the first 

element of R, which is city 1 and removes it from R. The new is R = (2 3 4 5 6 7 8). The 

first element of the tour T will be city 1. Look at the second element of O, which is 2. 

This means that we take the second element of R, which is 3 and remove from R. The 

second city in the tour is city 3. If we continue this way until all elements of R are 

removed, we will get the original route. 

The main advantage of ordinal representation is that the classical one point 

crossover does not need a repair algorithm. Although partial tours to the left of the 

crossover point do not change, the partial tour to the right of the crossover point is 

changing in a quite random way. That is the reason why this representation produces poor 

results with classical one point crossover operator [8]. 

 

4.4.6 Random Keys Representation 

  Bean [77] proposed the Random Key representation. This representation uses 

random numbers between 0 and 1 to represent a solution. These numbers are used as sort 

keys to decode a solution. For example, consider a 6-city tour represented by a random 

key where random key tour is represented as (0.21 0.85 0.43 0.71 0.91 0.10). The random 
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number at position i determines the visiting order when we sort them in ascending order. 

This random key tour represents the following tour (6 → 1 →  3 →  4 →  2 →  5). The 

important advantage of random key is that all offspring resulting from by crossover are 

feasible solutions.  

 

4.4.7 Matrix Representation 

Fox and McMahon [81] proposed a matrix representation for the TSP. In this 

matrix, the element in row i and column j is 1 if and only if the city i occurs before city j. 

For example, the tour (2 →  3 →  1 →  4) is represented by the following matrix. 



















0000
1001
1101
1000

 

In this representation, the matrix representing a tour has the following properties [8]: 

• Total number 1s = 
2

)1( −nn  

• The diagonal elements of the matrix are all zero. mij = 0 for  0 ≤ i ≤ N. 

• If mij =1 and mjk = 1 then mik = 1. 

If the first conditions does not hold and the other two hold, then cities are partially 

ordered and we can complete such a matrix to get a legal tour. 

 

4.5 Modified Partially Mapped Crossover 

Partially Mapped Crossover (PMX) [1] was explained in section 4.4.2.1 in this 

chapter. We will first illustrate and explain the classic PMX crossover operator and then, 
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we will propose a modification into Partially Mapped Crossover in order to increase the 

efficiency of the crossover operator by reducing the premature convergence.  

 

4.5.1 PMX and Premature Convergence 

PMX produces an offspring by choosing a portion of tour from one parent and 

preserving the position and relative order of as many cities as from the other parent [9]. 

Consider the following two tours for the illustration of the operation of PMX.  

Tour 1: (1 2 3 4 5 6 7 8) 
Tour 2: (6 7 4 2 8 5 3 1) 

First, PMX selects uniformly at random two cut points along the tour. The symbol | 

shows the crossover points.  

Tour 1: (1 2 | 3 4 5 | 6 7 8) 
Tour 2: (6 7 | 4 2 8 | 5 3 1) 

Second, PMX exchanges sub-strings between parents. 

Offspring 1: (* * | 4 2 8 | * * *) 
Offspring 2: (* * | 3 4 5 | * * *) 

Third, PMX determines the mapping relationship as following: 

3 ↔  4 ↔  2, 5  ↔  8. 

Then, the remaining cities are filled from original parent, if a city already exists in the 

offspring it is replaced according to mapping relationship. The new tours will be: 

Offspring 1: (1 3 | 4 2 8 | 6 7 5) 
Offspring 2: (6 7 | 3 4 5 | 8 2 1) 

Goldberg and Lingle [1] reported results for 10-city and 33-city TSP problems. 

They used roulette wheel selection (fitness proportional selection), inversion operation 

for mutation, PMX with crossover probability 0.60, population size 200 and reported 
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optimal solution for 10-city TSP. For 33-city TSP, using population size 2000, they 

reported solutions within 10 percent of the optimal solution. 

The principal natural mechanism responsible for recoding a problem is the inversion 

operator [9]. The inversion operation involves selecting two points within a chromosome 

and reversing the substring between these points. This operation produces legal offspring 

and useful finding good string ordering in TSP like problems [32].  

Frantz [82] used two ways of choosing inversion points: linear and linear+end. 

The linear inversion method, which is same as classical inversion operation, chooses two 

points at random (i.e., each point has an equal likely probability of being chosen) and all 

genes between and including these points are reverted. Frantz calculated the probability 

of any position m being inverted on a string length N. 

Probability{gene moved} =
N

mNm
2

]12)1([2 −−+  

 

Frantz [82] reported that when N is 25, genes located in central positions are almost 

seven times more likely to be included in an inversion operation than the genes located in 

either of the two ends. This situation makes it difficult for any gene located in one of the 

end position to be close to a gene located on the other end. He devised the linear+end 

inversion method in order to alleviate this problem. In linear+end inversion, cut points 

are chosen in the same way as in linear inversion but the inversion is performed either 

between cut points or between first cut point and the left end of the string or between 

second cut point and the right of the string with a certain probability. 

Another way for reducing these end effects is to treat the chromosome as a ring, 

with no beginning and no end [9]. In this case, each location is equally likely to be 

relocated under a single inversion. 
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Premature convergence is one of the major handicaps for genetic algorithms. It 

has been observed that this problem is closely related to the problem of losing diversity in 

the population. Individuals with high fitness (super individuals) take over the population 

after some number of generations. One of the reasons for premature convergence is 

related to the end effect [9, 82].  

 

4.5.2 A Modification to PMX 

Our experiments have been shown that PMX operator causes the premature 

convergence of genetic algorithms for the TSP because of the end effect. First, PMX is 

implemented same as in Goldberg and Lingle [1]. In order to reduce the end effect, we 

treated one of the parent chromosomes as a ring, with no beginning and no end before 

crossover occurs. In this implementation of the genetic algorithm, we used the path 

representation and started with a random population. However, there is no priori reason 

to believe that a non-random population will not be appropriate [83]. 

The individuals are selected for next generation based on roulette wheel selection 

proportionally to their rank rather than actual evaluation values [8]. The rank probability 

for selecting an individual for the next generation is calculated based on following 

formula.  

1)1()( −−= iqqip  ,  

where p(i) is the rank probability of tour i. i = 1… pop_size. i = 1 represents the best 

individual, while i = pop_size represents the worst tour. 



 58

The classical inversion operation is employed for mutation. In this algorithm for 

the TSP all individuals are valid tours. For example, we can represent 5-city TSP as 

following. 

1 2 3 4 5  

 

Because a tour is a closed loop, the following tours are also exactly same as above. 

 

2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4  

 

We will call this virtual representation a dynamic representation. If we cross over two of 

same individual without dynamic representation, we get a twin pair offspring, where the 

children are exactly same as parents. Let’s assume crossover points 1 and 3. 

 

Parent 1 1 2 3 4 5

Parent 2 1 2 3 4 5

Child 1 1 2 3 4 5

Child 2 1 2 3 4 5  

 

If we allow first parent becomes one of its states with probability 20.0
5
11 ==

N
, where 

N is the number of city. Lets assume that first parent found in the following state. 
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Parent 1 2 3 4 5 1

Parent 2 1 2 3 4 5  

 

If we apply crossover operation onto the parents, assume crossover points 1 and 3, we 

get: 

Parent 1 2 3 4 5 1

Parent 2 1 2 3 4 5

Parent 1 2 2 3 5 1

Parent 2 1 3 4 4 5  

2 ↔  3 ↔  4 

Child 1 4 2 3 5 1

Child 2 1 3 4 2 5  

 

As we have seen above, even though the parent donors are twins, they can produce 

different children.  

 

4.5.3 Comparison of Classic PMX and Modified PMX 

We have studied four Euclidean TSPs. Three of them, berlin52, eil76, and rd100, 

are from the TSPLIB [84]. The last problem, oliver30, is from Oliver et al. [73]. Each of 

the problems is solved 10 times by two genetic algorithms. The only difference between 

two algorithms is the representation of the first parent before PMX. The genetic 

algorithm with the modified PMX is called as Dynamic PMX and the algorithm with 

classical PMX is called as Static PMX. These results are presented in the Tables 4.1, 4.2, 

4.3, and 4.4 for 30, 52, 76, 100-city TSPs, respectively. 
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Table 4.1 Results of Static and Dynamic PMX for 30-city Problem  

: 30 : 150 : 0.08
: 0.9 : 0.02 : 423.741

Tour Length Run Time Generation Difference Tour Length Run Time Generation Difference
1 457.816 18 1276 -8.04% 423.741 24 1612 0.00%
2 424.692 24 1738 -0.22% 423.912 24 1666 -0.04%
3 425.104 18 1334 -0.32% 423.741 22 1550 0.00%
4 458.496 24 1709 -8.20% 423.741 29 2065 0.00%
5 428.673 20 1393 -1.16% 424.692 18 1249 -0.22%
6 462.812 19 1335 -9.22% 438.382 21 1472 -3.46%
7 494.499 20 1467 -16.70% 423.741 20 1386 0.00%
8 455.520 23 1667 -7.50% 438.382 36 2478 -3.46%
9 439.786 24 1727 -3.79% 424.692 18 1230 -0.22%
10 461.058 22 1626 -8.81% 423.741 18 1250 0.00%

Average 450.846 21 1527 -6.40% 426.877 23 1596 -0.74%

Oliver30
Number of Cities Population Size Selection Pressure
Crossover Probability Mutation Probabiliy The Best Known Solution

STATIC PMX DYNAMIC PMXRun

 

 

Table 4.2 Results of Static and Dynamic PMX for 52-city Problem 

: 30 : 250 : 0.08
: 0.9 : 0.02 :7544.37

Tour Length Run Time Generation Difference Tour Length Run Time Generation Difference
1 8175.130 199 2262 -8.36% 7544.370 192 2195 0.00%
2 8110.700 154 1764 -7.51% 7863.300 163 1863 -4.23%
3 7966.550 202 2262 -5.60% 7544.370 221 2470 0.00%
4 8145.900 191 2160 -7.97% 7816.430 218 2495 -3.61%
5 8255.190 216 2480 -9.42% 7777.330 155 1796 -3.09%
6 7971.170 277 3183 -5.66% 7544.370 181 1958 0.00%
7 8288.520 158 1813 -9.86% 7887.230 371 4205 -4.54%
8 8287.730 298 3410 -9.85% 8040.450 153 1739 -6.58%
9 8173.780 198 2279 -8.34% 7973.310 168 1933 -5.69%
10 8425.190 200 2309 -11.68% 7777.330 252 2894 -3.09%

Average 8179.986 209 2392 -8.43% 7776.849 207 2355 -3.08%

Berlin52
Number of Cities Population Size Selection Pressure
Crossover Probability Mutation Probabiliy The Best Known Solution

STATIC PMX DYNAMIC PMXRun

 
 
 
 

Table 4.3 Results of Static and Dynamic PMX for 76-city Problem 

: 76 : 300 : 0.08
: 0.9 : 0.02 : 545.39

Tour Length Run Time Generation Difference Tour Length Run Time Generation Difference
1 598.012 708 2465 -9.65% 550.279 1126 3922 -0.90%
2 610.988 1208 4197 -12.03% 564.321 785 2741 -3.47%
3 590.146 657 2284 -8.21% 551.941 953 3333 -1.20%
4 597.797 1089 3788 -9.61% 558.566 1745 6077 -2.42%
5 594.241 1016 3543 -8.96% 555.320 825 2874 -1.82%
6 594.520 990 3438 -9.01% 563.637 787 2744 -3.35%
7 618.222 777 2710 -13.35% 560.371 1091 3824 -2.75%
8 611.990 1073 3735 -12.21% 562.285 972 3388 -3.10%
9 595.472 847 2956 -9.18% 558.251 1148 4023 -2.36%
10 608.441 808 2521 -11.56% 560.739 997 3430 -2.81%

Average 601.983 917 3164 -10.38% 558.571 1043 3636 -2.42%

Eil76
Number of Cities Population Size Selection Pressure
Crossover Probability Mutation Probabiliy The Best Known Solution

STATIC PMX DYNAMIC PMXRun
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Table 4.4 Results of Static and Dynamic PMX for 100-city Problem 

: 100 : 350 : 0.08
: 0.9 : 0.02 : 7910.40

Tour Length Run Time Generation Difference Tour Length Run Time Generation Difference
1 8945.91 4841 6347 -13.09% 8290.42 3361 4600 -4.80%
2 8610.15 3358 4592 -8.85% 8404.97 3338 4574 -6.25%
3 8371.87 2639 3459 -5.83% 8115.11 4345 5971 -2.59%
4 8321.18 3386 4625 -5.19% 8432.02 3342 4543 -6.59%
5 9080.16 3694 5065 -14.79% 8286.90 4073 5527 -4.76%
6 9147.68 2774 3801 -15.64% 8126.83 5672 7757 -2.74%
7 8943.40 2860 3886 -13.06% 8298.87 5328 7284 -4.91%
8 8586.54 2980 4072 -8.55% 8257.43 5057 6875 -4.39%
9 8677.63 4008 5494 -9.70% 8245.67 3769 5180 -4.24%
10 8557.58 3309 4538 -8.18% 7942.80 4171 6429 -0.41%

Average 8724.21 3385 4588 -10.29% 8240.10 4246 5874 -4.17%

Rd100
Number of Cities Population Size Selection Pressure
Crossover Probability Mutation Probabiliy The Best Known Solution

STATIC PMX DYNAMIC PMXRun

 
 

 
 

Table 4.5 presents overall comparison results of static and dynamic PMX for the 

four TSPs. According to computational results, the proposed method improves solution 

quality very well. The results are encouraging because this algorithm is a pure genetic 

algorithm, which does not use knowledge-augmented operators. 

 

Table 4.5 Summary Results for Static and Dynamic PMX 
Number of Population Crossover Mutation Selection

Cities Size Probability Probability Pressure Static PMX Dynamic PMX
oliver30 30 150 0.9 0.02 0.08 -6.40 -0.74
berlin52 52 250 0.9 0.02 0.08 -8.43 -3.08

eil76 76 300 0.9 0.02 0.08 -10.38 -2.42
rd100 100 350 0.9 0.02 0.08 -10.29 -4.17

% Difference from Optimal
Data Set

 

 

 

4.6  Evolutionary Programming Approach to the TSP 

Evolutionary Programming (EP) has been introduced in the section 2.4.2 in Chapter 

2. First, we will revisit evolutionary programming and explain it in a detail. Second, a 

new algorithm for solving the TSP is developed based on EP in which a rank based and 

simulated annealing selection scheme are implemented.  
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4.6.1 Evolutionary Programming 

Evolutionary programming (EP) originated from Lawrence Fogel in the late 

1960s [85] and is a stochastic optimization method similar to genetic algorithms. It 

originally aimed at evolution of artificial intelligence in the sense of developing ability to 

predict changes in environment [22, 23]. The key difference between GAs and EPs is that 

there is no more crossover operator and that selection is based on a survival of the fittest 

criterion. In an application of EA, after initializing the population, all N individuals are 

selected to be parents. Only mutation is used for producing N children from N parents 

and N survivors are chosen from 2N individuals (parents plus children), using a 

probabilistic function based on fitness. In other words, individuals with a greater fitness 

have a higher chance to present in the next generation. Figure 4.8 shows the outline of the 

EP. 

EP was used in [86] to solve three test traveling salesman problems (30-city, 50-

city and 75-city in [40]). They reported better results than the previously known best 

solutions.  Each tour was encoded as a list of cities to be visited in order. The mutation 

operator selected two positions along the tour and reversed the order of cities between 

these positions. The population consisted of 100 parent tours and each parent produced a 

single offspring through mutation operator. 100 tours were selected to be parents for next 

generation based on a competition rule [87]. Competition for survival proceeds as 

following. Each tour competes against 10% of the population. The probability of winning 

in each encounter is equal to the opponent’s tour length divided by the sum of the two 

competing tour lengths. Also, the population size is forced to decrease linearly over time 
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(one tour per 5000 evaluated offspring) in order to simulate a decrease in natural 

resources in the environment [87]. 

 

 
 

 Procedure evolutionary programming 
Begin  

  Choose a coding to represent variables 
t ←  0 
Initialize population P(t) 
Evaluate population P(t) 
 
While (not termination condition) do 

t ←  t+1 
Select P(t) 
Alter P(t) with mutation and produce C(t) 
Evaluate P(t) and C(t) 
Survive P(t) from P(t) + C(t)  

End 
End  

Figure 4.8 Standard Evolutionary Programming Algorithm  

 

 

4.6.2 Evolutionary Programming with Constant Population (EPC) 

We propose a new algorithm based on EP. The proposed algorithm, Evolutionary 

Programming with Constant Population (EPC) is different than classic or previously used 

EP. First, EPC always keeps a constant number of individuals similar to genetic 

algorithms. Second, EPC uses a selection scheme (simulated annealing) with mutation 

operation. The procedure for EPC is shown in Figure 4.9. Details are for procedure of 

EPC given below. 
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 Procedure evolutionary programming based on simulated annealing 
Begin  

  Choose a coding to represent variables 
t ←  0 
Initialize population P(t) 
Evaluate population P(t) 
 
While (not termination condition) do 

t ←  t+1 
Select P(t) 
Mutate P(t) with some probability. 
Evaluate P(t) 

End 
End 

  
Figure 4.9 Evolutionary Programming with Constant Population 

 

 

Representation and Initialization: The path representation was employed for 

the representation of the tour in the population. As an initial population a number of 

random permutations (tours) equal to population size is created. The population size is 

always constant. This means that if an individual is created it immediately replaces with 

its parent or dies off. In classic EP, each individual in the population creates an offspring. 

Both parents and offspring will survive until a selection (survival of the fittest) operation 

is performed, which reduce the size of the population half.   

Evaluation and selection: The individuals are evaluated and ranked from the 

shortest route to the longest one.  Selection of the individuals for the next generation is 

based on roulette wheel selection with proportionality to their rank as explained in 

previous section [8]. 

Mutation: Following the idea of EP (in the narrow sense) the population is 

altered by mutation only (i.e., no crossover operation presents). Therefore, this algorithm 
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can be interpreted as the asexual counterpart the genetic algorithms. The tours are 

mutated with a simple inversion operator. The simple inversion mutation randomly 

determines two cities in a tour and reverses the cities between them [32]. After creating 

offspring a tournament takes place between the parent tour and its offspring. The 

selection process uses simulated annealing based on a Boltzman probability distribution. 

The offspring can win the tournament based on Boltzman probability distribution.  

 





 −=

Tk
cp

selectprob
B

iiexp)( , 

where,  

pi and ci are the length of the parent tour and the length of the child tour, respectively.  

kB and T represent the Boltzman constant and temperature, respectively.   

Notice that if the length of offspring tour is shorter than that of parent  (pi ≥ ci); then, the 

child always will be replaced with its parent. If the length of offspring is longer than that 

of its parent  (pi ≤ ci); then, the child will be replaced with its parent with some 

probability. This acceptance rule is known as the Metropolis criterion [13]. 

 

4.6.3 Experimental Results for EPC 

EPC algorithm was applied to four standard TSPs: 30-city from [73], 50- and 75-

city from [88] and 100-city (KroA100) from TSPLIB. Each of the problems solved 10 

times by EPC with different random population initializations. The results and parameters 

used for these problems are presented in Tables 4.6, 4.7, 4.8, and 4.9.  We used two 

different calculations for the tour lengths: the real and the integer tour distance. The 

difference between the real and integer tour lengths is that in the first case distances 
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between cities are measured by floating point approximations of real numbers. On the 

other hand, in the integer case the distance between cities are calculated as an integer in 

following way: 

X= Xi-Xj, where X is x coordinate of the city.  

Y= Yi-Yj where Y is y coordinate of the city. 

Dij=int(sqrt(X2+Y2)+0.5), where Dij is the distance between city i and city j. 

 

Table 4.6 Results of EPC for 30-city TSP 

: 30 : 0.06
: 450

Real Integer Run Time  Generation  Real Integer
1 423.741 420 10 262 0.00% 0.00%
2 424.635 421 7 187 -0.21% -0.24%
3 423.912 420 8 203 -0.04% 0.00%
4 423.741 420 7 196 0.00% 0.00%
5 424.573 422 6 156 -0.20% -0.48%
6 423.741 420 8 205 0.00% 0.00%
7 423.741 420 8 198 0.00% 0.00%
8 423.741 420 14 366 0.00% 0.00%
9 423.741 420 7 176 0.00% 0.00%
10 423.741 420 8 214 0.00% 0.00%

Average 423.931 420 8 216 -0.04% -0.07%

Run 

Oliver30

Number of Cities
Population Size

The Best Known Solution: 423.741 (real) and 420 (integer)
Selection Pressure

Tour Length  Difference

 
 

 

Table 4.7 Results of EPC for 50-city TSP 

: 50 : 0.08
: 1000

Real Integer Run Time  Generation  Real Integer
1 427.312 426 33 218 0.13% -0.24%
2 436.970 436 25 173 -2.13% -2.59%
3 441.301 439 43 298 -3.14% -3.29%
4 428.856 428 50 344 -0.23% -0.71%
5 427.312 426 37 257 0.13% -0.24%
6 433.342 432 37 259 -1.28% -1.65%
7 427.312 426 64 431 0.13% -0.24%
8 428.178 426 27 182 -0.08% -0.24%
9 427.779 427 34 229 0.02% -0.47%
10 433.370 430 33 227 -1.29% -1.18%

Average 431.173 430 38 262 -0.78% -1.08%

Run 

Population Size
Tour Length  Difference

Eil50
The Best Known Optimal Solution: 427.855 (real) and 425 (integer)

Number of Cities Selection Pressure
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Table 4.8 Results of EPC for 75-city TSP 

: 75 : 0.08
: 1250

Real Integer Run Time  Generation  Real Integer
1 548.678 543 83 344 -1.16% -1.50%
2 553.768 548 101 417 -2.10% -2.43%
3 560.196 553 83 343 -3.29% -3.36%
4 557.932 552 107 441 -2.87% -3.18%
5 550.924 546 187 734 -1.58% -2.06%
6 561.051 558 65 267 -3.44% -4.30%
7 561.758 556 61 253 -3.57% -3.93%
8 560.247 553 70 287 -3.30% -3.36%
9 553.297 547 98 410 -2.01% -2.24%
10 553.970 552 84 345 -2.14% -3.18%

Average 556.182 551 94 384 -2.55% -2.95%

Run 
Tour Length  Difference

Population Size

Eil75
The Best Known Optimal Solution: 542.37 (real) and 535 (integer)

Number of Cities Selection Pressure

 
 

 

Table 4.9 Results of EPC for 100-city TSP 

: 100 : 0.07
: 1500

Real Integer Run Time  Generation  Real Integer
1 21967.100 21967 273 622 -3.20% -3.22%
2 21921.800 21919 158 351 -2.99% -2.99%
3 22030.400 22029 184 434 -3.50% -3.51%
4 21900.200 21898 165 397 -2.89% -2.89%
5 21906.500 21905 196 492 -2.92% -2.93%
6 21981.900 21979 258 640 -3.27% -3.28%
7 21787.200 21786 174 426 -2.36% -2.37%
8 21930.400 21927 239 595 -3.03% -3.03%
9 22213.100 22212 259 600 -4.36% -4.37%
10 21828.900 21829 170 420 -2.55% -2.57%

Average 21946.750 21945 208 498 -3.11% -3.12%

Run 

Population Size
Tour Length  Difference

KroA100
The Best Known Optimal Solution: 21285.44 (real) and 21282 (integer)

Number of Cities Selection Pressure

 
 

 

 

The comparison of EPC with other heuristics (Genetic Algorithm, Evolutionary 

Programming, and Simulated Annealing) is performed on the best results because most of 

the available studies do not the give average results. The comparisons are performed on 

both integer and real tour length for each of the TSPs. Table 4.10 gives the references of 

the compared methods. 
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Table 4.10 References of Compared Methods  

Problem  Genetic Evolutionary Simulated 
Name Algorithm Programming Annealing 

Oliver30 (Oliver, 1987) (Fogel, 1993) N/A 
Eil50 (Whitley, 1989) (Fogel, 1993) (Lin, 1993) 
Eil75 (Whitley, 1989) (Fogel, 1993) (Lin, 1993) 

KroA100 (Whitley, 1989)] N/A N/A 
 

 

 

Table 4.11 Comparison of EPC with Other Methods 
Problem Solution Proposed Genetic Evolutionary Simulated The Best Known

Name Type EPC Algorithm Programming Annealing Solution
integer 420 N/A N/A N/A N/A

real 423.741 423.741 423.741 N/A 423.741
integer 426 428 426 443 425

real 427.312 N/A 427.855 N/A N/A 
integer 543 545 542 580 535

real 548.678 N/A 549.81 N/A N/A
integer 21786 21761 N/A N/A 21282

real 21787.2 N/A N/A N/A N/A

Oliver30

Eil50

Eil75

KroA100  

 

 

According to the TSP benchmark problems, the use of EPC brings significant 

improvement. The 30-city problem is solved the most easily. The proposed method has 

found optimal solution in seven of ten runs.  When the number of cities increases the 

performance of the method decreases. The comparison of results shows that the proposed 

method performs very well for 30, 50 and 75 cities, which gets shorter routes in terms of 

real-valued tour distances. For 100-city problem, the result is worse than the result of GA 

but the proposed method found 3.12% worse than the optimal solution in 10 runs. 
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  CHAPTER 5 

5Evolutionary Algorithms for Predictive Modeling and 

Data Mining 

 

5.1 Predictive Modeling and Data Mining 

Advances in data collection and storage technologies have provided large amounts 

of data for business, government, and scientific purposes. [89]. Due to the large amount 

of data that are stored in databases, traditional data analysis tools are often not well suited 

to extract knowledge from these databases. Consequently, new techniques and tools have 

been devised with the aim to automatically transform data into useful information and 

knowledge. This emerging research area is called as Data Mining. Data mining is a field 

of study that deals with extracting knowledge and useful information from large 

databases, without putting restrictions on the amount or types of data in a database [90]. 

The goal of the data mining can be broadly divided into two categories: prediction and 

description [91]. A prediction task involves using attributes of a database to be able to 

predict on unknown future values of a dependent variable of interest. On the other hand, 

the description task focuses on interpreting the data. Figure 5.1 illustrates a decision-

making process for data mining [91]. 

 

5.1.1 Standard Data Mining Problems 

In this dissertation, a predictive data mining problem is defined as the standard 

data mining problem. In this context, a standard data mining problem is a multivariate 
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regression or classification problem for which there are many candidate features to 

choose from in order to generate a predictive model. The ultimate aim is not just to build 

a good predictive model but also explain and interpret to some degree how and why the 

model works. The standard data mining problem can be different from a standard 

statistical regression approach in the sense that the number of descriptive features for a 

predictive data mining problem can be extremely large even for data sets with a relatively 

small number of data records. [92]. The standard data mining problem is different from 

feature selection in statistics in the sense that a typical data mining problem might deal 

with multiple sources of large datasets (i.e., large either in number of patterns, or in 

number of features, or both) with potentially missing, false and conflicting data. The data 

mining approach is also different from the statistical approach in the sense that the data 

sets for data mining problem are often too large to fit in memory or have so many 

features that traditional statistical methods might not apply (i.e., curse-of-dimensionality 

problem). 

Map to a predefined 
categorical or real value?

Map to an undefined 
categorical?

Data Mining Task?

Summary data?

Other Tasks?

Prediction
(Decision-making)

Description
(Decision-support)

Real Categorical

ClassificationRegression

Yes No

Clustering

Summarization

Yes No

The standard
data mining problem  

Figure 5.1 The Standard Data Mining Problem 
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5.1.2 Data Strip Mining Problems 

As the number of features becomes larger than the number of data points, the 

standard data-mining task becomes more challenging and complex. Most predictive 

modeling approaches do not work well in these situations. One solution is to collect more 

data, but this option is not always available. In this case, a data analyst must extract as 

much information as possible from the existing data. In this context, the standard data 

mining problem is defined as the process of building good predictive model based on a 

relevant subset of the descriptive features that can help explain the model. The extreme 

case, where the number of features is on the order of or greater than the number of data 

points, is defined here as a data strip mining problem [92]. In this case, the challenge is to 

find a subset of features that provides a good predictive model. 

Feature selection is a common task in many classification and regression 

problems. Feature selection involves minimizing the number of relevant features and 

maximizing the predictive power of the model. From this point of view feature selection 

can be viewed as a special type of multi-objective optimization problem [93].  

Predictive data mining has an objective to predict a dependent variable Y (also 

called the output or the response variable) based on a number of features represented by 

X = (x1, … , xn) (also called the independent, input or predictor variables). In machine 

learning the classical supervised learning task involves the use of learning algorithms for 

training on data where both the features (x) and corresponding dependent variable (y) are 

known. The goal of such a learning algorithm is often to use this data set in order to 

derive a predictive model for y that can ultimately be explained by a set of rules that 

involves a subset of features. 
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The strategies of learning algorithms depend upon the nature of the response 

variable in terms of the types of values it can be assigned. The most common data types 

are categorical and ordinal. In ordinal response variable cases, values for the response 

variable are real numbers and there is an order relationship possible between every pair of 

responses that can be characterized by a distance measure. These kinds of predictive 

modeling problems are called regression problems. In the categorical response cases, the 

response variable y realizes an unordered discrete value only and there is no defined order 

relationship or distance measure between a pair of response values. Two response 

variables are either equal (same) or not equal (different class). These kinds of problems 

are called classification problems [94].  

In principle, all input features (including irrelevant features) are used to 

approximate the underlying function between the response variable and the features. In 

practice, the presence of irrelevant features can cause several problems [92, 95]: 

1. The irrelevant input features will increase the dimension of the problem and will 

require greater computational cost. 

2. Irrelevant features lead to a curse-of-dimensionality problem.  

3. The irrelevant input features may lead to overfitting.  

4. Excess features make the model more difficult to predict. 

5. Excess features make the model more difficult to explain. 

The key motivation for feature selection is to choose a subset of XS of the complete 

set of input features X={x1, x2, … , xN} so that this subset XS can estimate the output Y 

with an accuracy higher than or comparable to the performance of the complete input set 

X (preferably, with a reduced computation time)[95]. 
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This dissertation, mainly concerns feature selection for regression problems, 

but the methodology should be generally applicable. Feature selection has been addressed 

to some degree in statistics, pattern recognition, econometrics, computational chemistry, 

and machine learning, but still remains an interesting and difficult problem (depending on 

the particular application). The machine learning community has recently targeted it and 

has developed its own techniques [6]. Feature selection still remains as a difficult 

problem for all of the study domains. 

 

5.2 In-Silico Drug Design 

An important area of the computational chemistry is the construction of a 

predictive relationship between features related to chemical structure and certain activity 

response variables (i.e. a measure of how organic chemical compounds interact with and 

affect certain living organisms). The design of a drug with desired pharmaceutical 

properties is an important and challenging task that involves evaluating and searching a 

large number of potential candidate molecules with regard to their pharmaceutical 

properties [96]. Traditionally, the introduction of a novel drug was done by trial-and-

error, which involves synthesizing and testing a large numbers of diverse compounds. 

This is time consuming, costly, and laborious. The design of a new drug before it hits the 

market typically requires 10 to 15 years of research and development (R&D) and requires 

on the order of $500,000 of resources per drug [97]. 

Recent developments in high-throughput chemistry enabled the synthesis of a large 

number of molecular compounds (specifically several thousands of molecules within a 

few days) [98].  The idea behind rational drug design is to utilize large existing 
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pharmaceutical databases to derive structure/activity correlation models that can exploit 

and identify novel relationships between the molecular structure and the pharmaceutical 

properties. Each molecule in a dataset is characterized by an appropriate set of descriptive 

features or descriptors. These descriptors will then be used to build Quantitative 

Structure-Activity Relationship (QSAR) models that characterize and predict relevant 

biological responses or pharmaceutical properties. These QSAR models will then be used 

to screen existing molecular databases for novel drug candidates or to create new virtual 

combinatorial libraries of potentially active compounds [97]. 

The basic idea behind QSAR, first introduced by Hansch et al. [2], is to predict the 

biological activity of new untested chemicals from the knowledge of their chemical 

structures. QSAR assumes that the change in biological activity that is observed within a 

series of similar compounds is a function of the change in chemical structure within the 

series [99]. Thus, QSAR methods deal with identifying important structural features of 

molecules that are relevant to explain variations in biological or chemical properties. 

Most of the QSAR methods developed since Hansch et al. [2] dealt with descriptors of 

molecular structures derived from a two-dimensional (2D) representation of molecular 

structures (i.e., based on molecular connectivity). 

The rapid accumulation of experimental tree-dimensional (3D) structural 

information for many organic molecules of biological interest and the development of 

fast and accurate methods for the 3D structure generation for chemical molecules have 

led to the development of 3D structural descriptors. 3D QSAR involves the analysis of 

quantitative relationship between the biological activity of a set of molecular compounds 

and their three-dimensional structures [100]. 
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Figure 5.2 shows the structure for a typical QSAR data set. Here, X and Y-data 

represent independent descriptive features (or descriptors) and the corresponding interests 

that need to be predicted. The indexes i, j, and k denote the molecule names (ID), 

biological responses, and features, respectively. The aim of the QSAR studies is to find a 

model such that the model predicts the relationship between the independent X-data and 

the dependent Y-data for future values of X-data with unknown Y-data.  
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Figure 5.2 A Typical QSAR Dataset [99] 

 

Often QSAR problems have more descriptive features than there are compounds (or 

molecules). If the number of features becomes larger than the number of molecules, the 

predictive modeling problem becomes extremely challenging. 

Recent trends in both 2D and 3D QSAR studies have concentrated on the 

development of optimal QSAR models through feature selection [100]. The objective is 

to narrow a large set of potential inputs into a smaller subset for good prediction. The 

selection of a subset of features is very important because an excess number of features in 
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the model cause two problems [92]. The first problem relates to the fact that excess 

features cause the parameter estimation methodology to overfit the model so there is no 

real predictive value. The second problem is that excess features might make the model 

more difficult to explain. 

 

5.3 Feature Selection for In-Silico Drug Design 

Variable selection is typically a time-consuming and ambiguous process for 

QSAR because of the large number of descriptors in the datasets. Most 2D and 3D QSAR 

techniques assume a linear relationship between the biological activity and molecular 

descriptors (or features). The optimal set of descriptive features is typically selected by 

combining stochastic search methods with the correlation methods such as Multiple 

Linear Regression (MLR), Principal Component Analysis (PCA), and more commonly 

Partial Least Square (PLS) regression [99, 101-103]. PLS regression is a principal 

component analysis related regression method. In PLS regression, a relationship is 

determined between a response variable Y and feature data matrix X. Latent variables are 

determined in such a way that they model the feature data set X and optimally correlate 

with response variable Y [104, 105]. In contrast, in principal component analysis the 

latent variables (eigenvectors) only transform feature data set X in an orthogonal set. 

Some feature selection techniques in PLS analysis have been proposed such as the 

GOLPE [106], VIP [107], and IVS [108] methods.  

i) The GOLPE (Generation of Optimal Linear PLS Estimators) uses D-optimal 

design to preselect non-redundant variables and fractional factorial design to run 
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PLS analyses with different variable combinations [106, 109]. Variables 

significantly contributing to prediction are then selected.  

ii) VIP (Variable Influence on the Projection) score is derived from the PLS 

weights for each variable [107]. VIP scores greater than 1.0 indicate important 

variables. The threshold value of 0.8 is used as a limit below which variables are 

considered to be unimportant.  

iii) IVS (Interactive Variable Selection) method uses cross-validation for 

dimensionwise elimination of single elements in the PLS weight vectors [108, 

110-112]. 

In recent years, a variety of nonlinear QSAR methods have been proposed. Most 

of these methods are based on Artificial Neural Networks (ANNs) [113, 114] or other 

related machine learning techniques such as Support Vector Machines. Simulated 

annealing, genetic algorithms [115-120], and evolutionary algorithms [92, 121, 122] have 

been used as stochastic search methods for feature selection, which are then wrapped 

around the available linear or non-linear QSAR methods. 

Waller and Bradley [122] have proposed a Fast Random Elimination of 

Descriptors (FRED) algorithm. FRED is a simple random selection strategy that 

implements an iterative generation of models.  It starts with a population of predictive 

models composed of a fixed or variable number of selected descriptors and eliminates 

descriptors iteratively. After creating a population of models, the models are sorted 

according to their fitness. This fitness function is based on Partially Least Square (PLS) 

regression model with full (leave-one-out) cross validation. A certain number of models 

with low fitness values are deleted from the population. The descriptors of the deleted 
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models (or less fit models) are then compared to the descriptors of the models kept in the 

population (more fit models). Descriptors that are not found in the more fit models are 

placed in the TABU list. If a descriptor appears on the TABU list more than once (not 

necessarily sequential generation), it is removed from the allowable descriptor pool. A 

new population of models is created for next generation by using those descriptors in the 

allowable pool. Iterative elimination of descriptors leads to subsequent generations 

consisting of more fit models. 

Kewley, Embrechts, and Breneman [92] have proposed a novel Artificial Neural 

Network (ANN) based technique for Data Strip Mining (DSM), which results in a 

predictive model for data sets with a large number of potential input features and 

comparatively few data points. DSM uses neural network sensitivity analysis to 

iteratively eliminate variables, which are less significant in the model. After an ANN has 

been trained on a relatively large set of input features, the significance of each feature is 

calculated by holding all the input features frozen at their average value and tweaking the 

features one at a time and identifying the most sensitive input features that cause the 

largest output variability. 

Genetic algorithms [117, 118] have been used extensively for feature selection in 

QSAR. Most of these studies adopted classical binary string representation. Each 

individual in a population represents a binary string of digits, either “one” or “zero”. The 

values of “one” or “zero” imply that the corresponding descriptive feature is included or 

excluded in the parent (model). The length of the chromosome string is equal to the total 

number of descriptors (all descriptors). The population is evolved with a GA by 
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performing classical crossover and mutation operators. The fitness of each individuals is 

evaluated with the PLS algorithm with a leave-one-out cross validation procedure. 

Wessel, et al. employed a GA coupled with computational neural networks for 

feature selection in order to predict the absorption of a drug compound through the 

human intestinal cell lining [123].  A predictive ANN model is developed by using GAs 

with a neural network fitness evaluator. They used a set of 86 drug and drug-like 

compounds and their experimentally derived Human Intestinal Absorption rates (%HIA), 

which were gathered from literature sources. Each compound is represented by 728 

descriptors. They employed data preprocessing methods (called objective feature 

selection [124]) in order to eliminate features that contained redundant or minimal 

information. The first objective feature selection method was to eliminate descriptive 

features that had greater than 80% identical values. The second one is to eliminate one of 

the features, which were correlated higher than 90%.  127 descriptive features remained 

after objective feature selection method. The 127-member reduced pool of descriptive 

features was fed into GA/ANN in order to build a good predictive model with a few 

descriptive features. The data set was split randomly into three sets: training set with 67 

molecules, validation set with 9 molecules, and external prediction set with 10 molecules. 

The root mean square errors (RMSE) of validation and test sets were used by the GA to 

determine a fitness function that related directly to the overall quality of an individual (a 

particular subset) in the population. The fitness function is calculated with the following 

equation: 

Fitness = TRMSE  + W ( | TRMSE – VRMSE  | ) 
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Where TRMSE is the training set RMSE, VRMSE is the validation set RMSE, and W is the 

weight factor. They used 0.4 for weight factor W based on their experiences.  

 

5.4 Feature Selection in Statistics 

   Selecting a subset of variables (features) is a problem that has been extensively 

considered in linear models. The variable selection problem is considered as a special 

case of the model selection problem, where each model corresponds to a distinct subset 

of variables. In order to select a model containing subset of variables, several criteria 

have been proposed in the statistical literature for linear models. One of the well-known 

criteria is the Residual Mean Square (RMS) of prediction, which is defined for a model 

with p variables as 

pn
SSEpRMSp

−
=  

where SSE is the residual sum of square errors, and n is the number of data points. If two 

models are compared; then, the one with the smallest RMSp is chosen.  

The other well-known subset selection criterion for linear regression is Mallow’s 

Cp statistic [125]. Since predicted values obtained from a subset regression model are 

biased, the mean square error of prediction consists of two components: the variance of 

prediction arising from estimation, and a bias arising from the deletion of variables [126]. 

Mallow’s Cp statistics is defined as 

)np2(
2ˆ

SSEpCp −+
σ

=  

where σ̂  is the estimate of the variance of the random error, which calculated from the 

full regression model. The expected value of the Cp is p when there is no bias in the 
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model. Therefore, the feature subset whose Cp is the closest to p is the best subset based 

on Cp statistic. 

When the number of variables is large, the evaluation of the all possible subsets of 

variables using one of the above selection criteria is not feasible. There are sequential 

variable selection methods that do not require evaluating all possible subsets [127, 128]. 

These methods calculate the variation caused by the deletion or the addition of a variable 

into the model. They keep the variable whose contribution into the model is significant 

based on a selection criterion. Those methods are forward selection, backward 

elimination, and stepwise regression.  

The sequential variable selection methods do not require evaluation of all 2k-1 

possible subset models, where k is the number of the independent variables. These 

methods involve evaluation of at most (k+1) models. They are deterministic methods in 

the sense that they always obtain same subset of features for all runs. However, the order 

of inclusion or deletion of variables should not be interpreted as reflecting the relative 

importance of the variables [126]. These methods generally select the same variables 

from datasets with noncollinear variables. They do not perform well on collinear datasets. 

Ridge regression can be used to select variables when data are highly collinear. Ridge 

regression is a method to stabilize the regression coefficient [126], where a stable 

coefficient means that it is not affected by slight change made in data. Several Bayesian 

methods for variable selection in Multiple Linear Regression have been proposed. Most 

of them use either the Akaike Information Criterion (AIC) [129] or the Bayesian 

Information Criterion (BIC) [130] for model selection. A detailed review of feature 

(variable) selection in Multiple Regression is given by Thompson [127, 128]. 



 82

5.5 Common Components of Feature Selection Algorithms 

A feature selection algorithm performs a search through the space of feature subsets 

and must have at least the following three components [131]: 

• A feature evaluation criterion to compare variable subsets. 

• A search method to explore the possible variable combinations of the 

search space. 

• A stopping criterion to stop searching through the space of feature subsets. 

 

5.5.1 Feature Evaluation 

The feature evolution criterion helps us to compare subsets of features in order to 

select one of them. Feature selection methods, which perform feature selection as a 

preprocessing step prior to learning, can be divided into two main categories based upon 

their feature subset evaluation: a wrapper or a filter approach [6]. A wrapper method 

searches for a good feature subset tailored to a particular predictive modeling approach 

and uses the induction algorithm as a black box for evaluating feature subsets. On the 

other hand, a filter method attempts to access the merits of features from the data alone.  

Wrapper methods generally use the actual learning algorithm with a statistical re-

sampling method (such as cross validation, bootstrapping) to estimate the quality of 

feature subsets. This approach is useful but sometimes computationally prohibitive 

because the learning algorithm to evaluate feature subsets has to be applied numerous 

times. On the other hand, filter methods have proven to be more practical than wrapper 

methods for applications to large datasets since they are much faster. 
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Figure 5.3 Filter Approach to Feature Selection 

 

 

5.5.2 Search Methods 

The only way to be sure of selecting the best subset of variables would be to 

enumerate all the possible models. Given the fact that if n is the number of variables; 

then there are (2n-1) possible combinations. This approach is limited to problems with a 

few variables. Searching the whole space within reasonable time is necessary if a feature 

selection algorithm is to operate on data with a large number of features. 

Greedy Hill Climbing (GHC) methods consider local changes to the current 

feature subset by adding or deleting a single feature from it [95, 132]. If a GHC considers 

only additions of features to the feature subset it is called as forward selection. 

Considering only deletions is called as backward elimination. The combination of these 

two methods, called stepwise bi-directional search, considers both addition and deletion 

of features. Although GHC methods are fast, they do not enable the user to consider 

several contending subsets involving different sets of variables that may be preferable to 

the selected one for other reasons. 

GAs have proven to be a very effective techniques to find a solution for feature 

selection. They employ a population of potential solutions, which search the solution 

space in parallel. GAs allow the exploration of the whole search space and generally 

select more efficient subsets of features than that of classical feature selection methods 

[7]. 
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5.5.3 Stopping Criterion 

If we would have been able to enumerate all possible subsets, we could have 

selected the best one according to our evaluation criterion. Here, the feature selection 

algorithm is terminated when all subsets are evaluated. 

If the empirical distribution of the evaluation criterion is known, a statistical 

hypothesis testing can be applied to terminate the search. The distribution characteristics 

of evaluation criteria in classical methods can be easily derived. For example, sequential 

variable selection methods in Multiple Linear Regression models terminate as soon as 

possible when a variable is found insignificant according to the statistical test. 

The distribution of the evaluation criterion is difficult to obtain for non-parametric 

methods such as Artificial Neural Networks. Therefore, hypothesis testing is seldom used 

with these models. The most frequently used method is to compute the estimation of the 

generalization error on validation set using a bootstrapping or a cross-validation 

methodology. The variable subset with the best predictive performance will be selected. 

GA based feature selection methods assume a fast and efficient learning method (e.g. 

PLS). Furthermore, these methods may become computationally prohibitive if a user 

wants a high level of statistical confidence.  

 

5.6 GAs for Feature Selection 

 

5.6.1 Representation 

The most important part of applying GAs to a specific problem is the selection of 

a suitable genetic coding (representation) and fitness function for individuals. The 
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representation must cover the whole search space for the problem.  The natural and 

simplest representation for the feature selection is a binary string representation. The 

number of features in the problem determines the length of the string (chromosome). 

Each bit (gene) represents the elimination or inclusion of the associated feature. As an 

example, consider a problem with six features. The string 100001 corresponds to 

selecting features 1 and 6. The advantage of binary representation is that classical GA 

operators (binary mutation and crossover) can be applied without any modification. 

 

5.6.2 Studies of GAs on Feature Selection 

Several researchers have employed GAs for feature selection in classification 

problems [89, 133]. In these studies, individuals were encoded as standard binary strings 

and a learning algorithm (classifier) was used to calculate the fitness. 

Guerra-Salcedo and Whitley [89] compared two different genetic algorithms for 

feature selection in a classification problem. They used the Euclidian Decision Table 

classifier as a fitness function. One of the first general purpose GAs is called GENESIS 

[134] and is a public domain software based on a simple GA. A more advance general 

purpose GA is CHC proposed by Eshelman [135]. CHC is a generational search 

algorithm. They reported that CHC performed better than GENESIS. 

The CHC algorithm randomly pairs individuals in the population. Only pairs, 

which differ from each other by some number of bits (mating threshold), are crossed 

over. This is called a truncation selection scheme. The crossover operator is similar to 

uniform crossover and randomly swaps exactly half of the bits that differ between two 

strings. When no offspring is produced, the mating threshold is reduced by 1. When the 
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mating threshold become 0 and no offspring can be created, a new population is created 

based on the best individual in the current population. This is called cataclysmic 

mutation.  Cataclysmic mutation uses the best individual of the current population as a 

template to create a new population by mutating the template. 

Leardi, Boggia, and Terrile [7] applied a modified simple GA to regression 

problems. They used the Multiple Linear Regression as a fitness function and cross-

validated variance explained by the regression as a fitness. In order to prevent an 

infeasible individual (in which there are more variable than objects in regression) feasible 

individuals are created for the initial population. Crossover is performed in the following 

way after selecting two donors, each gene has swapped with a certain probability. 

Immediately after the creation of two offspring their response is evaluated and a decision 

is made whether these offspring will be inserted to current population or not. If an 

offspring with k variable has higher fitness than that of the worst individual with k 

variable in the current population it will be replaced. Otherwise, it will be discarded.  The 

mutation operator randomly chooses some bits and changes their value from 0 to 1and 

vice versa. After all mutation have been performed the fitness of the mutated individuals 

are evaluated and decision is made whether they are inserted into the current population 

or not. This GA is successfully applied to regression problems and performed better than 

classical variable selection methods. 

Hou, Wang, Liao, and Xu [115] studied QSARs for 35 cinnamamides by using 

genetic algorithms. They used binary string representation and classical crossover and 

mutation operators. The probability of an individual to be parent for crossover was based 

on fitness of that individual. The fitness function was defined as the multiple linear 
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regression coefficient (r). After the crossover and mutation operator, the offspring are 

compared with the individuals in the population. Offspring that are better than some 

individuals in the population are copied to the population. A partial re-initialization is 

applied after some number of genetic operators. In partial re-initialization lowest 50 

percent of chromosomes are replaced with randomly generated ones. 

Yasri and Hartsough [136] reported the development of a novel QSAR technique 

combining genetic algorithms and neural networks for selecting a subset of relevant 

features and building the optimal neural network architecture for QSAR studies. The 

optimal neural network architecture is explored in parallel with the feature selection by 

dynamically modifying the size of the hidden layer. They showed that this method could 

be used to build both classification and regression models and outperformed simpler 

feature selection methods mainly for nonlinear datasets. In their proposed algorithm, each 

individual (chromosome) encodes different subset of features by a binary string 

representation. The length of each chromosome is equal to the total number of features in 

the data set. A neural network is trained and cross validated for each chromosome using a 

training dataset. The classical crossover mutation and roulette wheel selection were used 

to evolve the GA population. 
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  CHAPTER 6 

6Data Strip Mining 

Feature reduction is an important step for building good predictive models. Too many 

features in the model cause the classical curse of dimensionality problem. Furthermore, 

irrelevant or redundant features not only diminish the performance of a predictive model 

but also make the model more difficult to explain and interpret. Data strip mining was 

introduced as an iterative procedure for feature reduction/model building for data sets 

where the number of features exceeds or is on the order of the number of data records 

[92]. Figure 6.1 depicts the process of data strip mining. 
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Figure 6.1 Data Strip Mining Process 
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6.1 Scientific Data Mining 

Data mining is the process to automate the discovery of non-obvious, novel, and 

potentially useful information from large datasets with the aid of computers. Scientific 

data mining refers to data mining that assists the scientific discovery process or is applied 

to science-related data. Scientific data mining differs from commercially-oriented data 

mining with regard to the type of data (both in size and data quality) and uses different 

methods as well. While the boundary between traditional data mining and scientific data 

mining is not clearly delineated, scientific data mining applications more often rely on 

real-number coded data and frequently require regression rather than classification. Data 

mining software developed for traditional data mining applications is often not well 

suited for scientific data mining applications. 

The scientific data mining process can often be broadly divided into three steps:  

i) The prediction of future unknown values of one or more dependent 

(response) variables in a data set, by using some or all of the other 

descriptive variables (features) in a predictive model;  

ii) Feature selection for identifying the most relevant set of descriptive 

variables;  

iii) The model explanation phase, where the selected features or combinations of 

selected features explain part of (or the complete) model in a way that can be 

understood by the domain expert.  

The data mining process forces scientific discovery to proceed in a systematic way 

and assists in discovery by revealing hidden, non-obvious patterns and information that is 

ultimately interpretable, explainable, and verifiable by humans. 
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6.2 StripMinerTM 

The StripMiner  [4] code is a software package for predictive modeling and 

feature selection with scientific data mining applications in mind. StripMinerΤΜ  is a shell 

program for data-strip mining that manages and integrates the execution of several 

different machine learning and statistical methods such as Artificial Neural Networks 

(ANNs), Genetic Algorithms (GAs), Support Vector Machines (SVMs), Local Learning 

(LL), and Partially Least Square (PLS) Regression. StripMinerTM also implements several 

different methods for feature reduction for predictive modeling. These feature reduction 

methods are based either on genetic algorithms or sensitivity analysis. Feature reduction 

methods specific to the particular predictive model are also possible. 

 

6.3 Predictive Modeling Algorithms in StripMinerTM 

The strip-mining approach does not depend on any particular methodology. There 

are several machine learning and statistical methods for building predictive models. 

StripMinerTM gives the user the choice between several machine learning approaches 

such as ANNs [92], SVMs [137], GAs [22] [8], and LL [138] as well as a statistical 

method, PLS [139]. 

 

6.3.1 Neural Network Model 

The neural networks models are standard feed-forward multi-layered perceptrons 

(MLP) trained with the backpropagation algorithm [140, 141]. The neural networks have 

two hidden layers, are oversized (e.g. 13 and 11 neurons in the hidden layers). Training 

was halted with early stopping by monitoring the validation set. Because of the early 



 91

stopping procedure, the neural network results are not very sensitive to the number of 

neurons in the hidden layers. On the other hand, neural networks that rely on early 

stopping tend to be more linear.  

 

6.3.2 Local Learning 

Local Learning is a data analytic modeling approach that attempts to model the 

training data by only fitting a parametric function in a region around the location of a 

query point [142-144].  This means that local learning methods are locally parametric, as 

opposed to most learning methods (Least Square Regression, etc.) that attempt to fit a 

single global model into the training data. Local learning methods make predictions 

based on local models constructed on the neighborhood of a query point. Nearest 

neighbor and locally weighted regression are examples to local learning models [142]. In 

Chapter 10, genetic algorithms with local learning are developed for feature selection 

problem.  

 

6.3.3 Support Vector Machines  

StripMinerTM uses standard 2-Norm Support Vectors Machines (SVMs) for 

regression problems [137]. The detailed tutorial information about SVMs can be found in 

[145]. A short introduction to SVM regression taken from [146] is given below. 

Suppose we are given t training examples (xi, yi), where, i = 1,2,… ,t, xi ∈  Rn,  and 

yi ∈  R. The optimal ε-insensitive SVM model can be found by solving the following dual 

quadratic problem: 
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There are several types of kernels (e.g. linear, polynomial, and radial-basis 

function) that could be used in the SVMs. The SVM in this dissertation uses Radial Basis 

Functions (RBF) kernel with parameter σ, which is the most common used kernel in the 

SVM literature: 
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Typically, SVM algorithms with RBF kernel function perform better with normalized 

data [147]. SVMTorch is used as a subroutine to solve equation (6.1) [148]. The solution 

of equation (6.1) requires the following priori knowledge: the kernel parameter σ, the 

trade-off constant C, and the value of ε. These parameters are automatically computed 

using a Pattern Search (PS) algorithm [146, 149]. PS is a direct search method that does 

not use derivatives but direct function evaluation to find optimal points. For solving 

regression problems with good accuracy, it is necessary to choose a sufficiently good 

parameter set for the SVM. Automatic model selection is an important issue for SVM and 

is a hot research topic today [150]. The leave-one-out-error (LOO) estimate is often used 
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for the classification. However, automatic model selection for regression has not been 

studied as much as that for classification. In StripMinerTM, the Q2 averaged over the 

leave-one-out cross validation is used as a measure of validating the predictive model and 

optimized by using the pattern search algorithm [149]. The pattern search methods are a 

kind of direct search method. They do not use any derivatives but use direct evaluation of 

points in the search space. Therefore, they can be applied for problems that are 

impossible or for hard to obtain information about the derivatives.  

 

6.3.4 Partial Least Square (PLS) Regression  

Partial Least Squares (PLS) regression is an algorithm similar in idea to principal 

component analysis (PCA) that has found utility in solving a variety of data analysis 

problems [104, 151, 152]. The Partial Least Squares method seeks to uncover a small 

number of “latent” variables from a much larger set of correlated descriptors. The PLS 

method can be expressed as:  

y = a1 LV1 + a2 LV2 + … … + am LVm 

in which y is the dependent variable (biological response), LVi the ith latent variable and 

ai is the ith regression coefficient corresponding to LVi . Each latent variable, LVi, can be 

expressed as a linear combination of independent variables xi: 

LVi = b1 x1 + b2 x2 + b3 x3 +… .+ bn xn 

where xi is the ith independent molecular descriptor and b1, b2… bn are the descriptor 

coefficients. The first latent variable accounts for most of the variance, while consecutive 

latent variables account for relatively smaller amounts of variance. In addition, the latent 

variables in a model are orthogonal to each other.  
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6.4 Performance Estimation for Learning Models 

In this dissertation, the model quality for a machine learning model is measured 

with five distinct measures for the error: the root mean square error (RMSE), r2, q2, R2 

and Q2. In this dissertation, qualities of the fit of the training data (goodness of the fit of 

the model) are always reported in terms of r2 and R2; and test (validation) errors are 

always reported in terms of RMSE, q2 and Q2. In the given formula below, summations 

are inclusive of all compounds (data points) in the training or test set. 

r2 is known as the coefficient of determination in which, r is the coefficient of 

correlation (Pearson’s correlation coefficient) that is a measure of the degree of linear 

association between actual activities ( iy ) and predicted activities ( iŷ ). r is given by 
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where y is the mean of the actual (response variables) activities and ŷ is the mean of the 

predicted (response variables) activities. q2 is defined for a test set as 22 r1q −= .  
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In the QSAR literature, the prediction quality is often reported via q2 or Q2, which 

is called as predictive R2 or cross-validated R2. It is calculated in the same way as in R2 

but the predicted activities ( iŷ ) are always obtained from the leave-one-out-cross-

validation. In this dissertation, q2 and Q2 are always calculated on the test or validation 

sets as explained above and are different than the predictive R2 (cross-validated R2) used 

in the QSAR literature. 

 The RMSE is the square root of the average of squares of the errors for each of 

the N data points of the test set according to 
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where N is the number of data points in the test set and summation is inclusive of all data 

points in the test set..  

 

6.5 Sensitivity Analysis for Feature Reduction 

The purpose of sensitivity analysis is to determine the saliency of each of the 

features in a model and to reduce the number of features for the model. Sensitivity 

analysis uses a trained machine-learning model to determine the sensitivities of the 

variables of the model [3, 92, 153, 154]. For more details about sensitivity analysis, see 

Arciniegas [155]. 
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6.5.1 One-Dimensional (1-D) Sensitivity Analysis 

In order to proceed with 1-D sensitivity analysis, all the descriptive features are 

held frozen at their median (or average) values and the variation in the output of the 

learning model is monitored, while the features are changed one at a time within their 

allowable range. In practice, rather than changing a feature continuously, the model 

output for each feature is monitored for certain number of different discrete values (e.g. 

13 level). The sensitivity for a particular feature is the maximum model response minus 

the minimum model response from these 13 settings. 

The feature set was extended with an additional random variable to gauge the 

sensitivities. Although the random variables used in this dissertation were obtained from 

a uniform distribution, they can be drawn from different distributions. Features with 

sensitivities smaller than this random variable are eliminated in successive (strip mining) 

iterations for feature reduction stages, and a new model based on the reduced feature set 

is constructed. Iterative feature elimination with sensitivity analysis was halted when 

there were no more features with sensitivity below the sensitivity of the random gauge 

variable. Here, the hypothesis is that features with sensitivities that are lower than this 

random variable are not important for the model. 

Figure 6.2 shows graphically how sensitivity analysis works. The roman numerals 

show the steps in the sensitivity analysis. In step I, a random variable is added into the 

training dataset. The second step (step II) in this feature reduction methodology is the 

training of a machine-learning model based on the extended dataset -the original dataset 

augmented by a uniform random variable. So far, only one uniform random variable was 
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considered as a gauge. It is possible to add several random gauge variables (possibly 

from different distributions) at the same time. 

In order to implement the sensitivity analysis, a new sensitivity analysis specific 

dataset is generated in the following way. All the features were held at their median value 

and each feature was changed one at a time between allowable ranges of the feature for L 

discrete levels. Here, all features are scaled between zero and unity. The structure of the 

sensitivity analysis specific dataset for the sensitivity analysis is shown in Figure 6.2. It is 

assumed that there are M descriptive features, N data points, and L sensitivity levels for 

one dependent (response) variable. 

In step III, the sensitivity analysis specific file is fitted into the trained machine-

learning model. The generated model response is an array, consisting of M sets (because 

there are M features) of L predicted (output) values. In step IV, the sensitivity for a 

particular feature is then estimated as its range (i.e., maximum minus the minimum model 

response) from the L level settings for that feature. 

Finally in step V, all features with sensitivities smaller than the random variable 

are dropped and one cycle of the sensitivity analysis ends. A new feature reduction cycle 

starts with the dataset with selected features and the random variable. This iterative 

feature elimination procedure is halted when no further features can be dropped (i.e., 

there are no more features with a sensitivity below the sensitivity of the random gauge 

variable) or when a predefined number of features has been reached. 
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Figure 6.2 One Cycle in the Sensitivity Analysis 

 

1-D sensitivity analysis can be further extended to multivariate sensitivity analysis 

(e.g. 2-D, 3-D). For example, 2-D sensitivity analysis is similar to 1-D sensitivity 

analysis, except that saliency is calculated for a pair of features by changing two features 

simultaneously while holding the other features frozen at their average or median values.  

 

6.5.2 Bootstrap Aggregation (Bagging) Sensitivity Analysis 

Bootstrapping, introduced by Efron [156], is a well-known technique for 

estimating the generalization error of a learning model based on resampling. In classical 

bootstrapping, a sample of data of size n is taken uniformly from the original data of size 
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n with replacement and this resampling process is repeated in a certain number of times 

(50-1000) [157]. In StripMiner , the (n-v) samples for the learning set are drawn 

without replacement, where n is the number of samples in the data set and v is the 

number of samples in the validation set. There is no overlapping between the training and 

validation sets for each bootstrap sample. 

The machine learning model is trained by using the training set and the 

sensitivities of the variables are measured. The validation data set is fitted into the trained 

learning algorithm in order to assess the predictive ability (goodness) of the model. This 

process is repeated for a number of different bootstrap samples. This goodness 

measurement can be used to weigh (or bag) the sensitivities of the features over assemble 

of models.  

The final sensitivity for each variable is obtained by sorting the weighted average 

of all bootstrapping learning models sensitivities in ascending order, and by eliminating 

any features with sensitivities smaller than that of the random variable. This elimination 

process proceeds in successive stages using the reduced dataset for the next stage for 

further possible feature (descriptor) reduction. This process is terminated when no more 

features can be dropped (i.e. all features are less sensitive than the random variable) or 

when a predefined number of features have been reached. Figure 6.3 graphically depicts 

the bagging sensitivity analysis. The roman numerals in Figure 6.3 represent steps in the 

bagging sensitivity analysis.  

In step I, the full dataset is extended with a random variable. In step II, a bootstrap 

sample with size l from the full dataset with size n is drawn without replacement to 

construct the training (learning) set. The remaining set with size v = n - l constitutes the 
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validation set. In step III a machine-learning algorithm is trained by using the training set. 

In step IV, the sensitivity analysis specific file is fitted into the trained learning model. 

The generated model response is an array consisting of M sets (because there are M 

features) of L predicted (output) values. In step V, the sensitivity for a particular feature 

is then estimated as its range (i.e., maximum minus the minimum model response) from 

the L level settings for that feature. In step VI, the validation set is fitted into the trained 

learning model. The quality of prediction is measured in terms of q2, where q2 = 1 - r2. 

Here, r is the correlation coefficient between actual response and predicted response. In 

step VII, the sensitivities of features are weighted by multiplying each feature by 1 - q2.  

Steps I through VII are repeated for a certain number of bootstrap samples. Weighted 

sensitivities of features for each bootstrap sample are recorded. Finally in step VIII, the 

final sensitivity for each feature is calculated as the weighted average of all bootstrapping 

sensitivities. All features with weighted average sensitivities higher than the weighted 

average sensitivity of the random variable are kept, and one cycle of the bagging 

sensitivity analysis ends. A new bagged feature reduction cycle starts with the dataset 

with selected features and the random variable. This iterative feature elimination 

procedure stops either when no further features can be dropped or when a predefined 

number of features has been reached. 

The data strip mining procedure is independent from a particular modeling 

approach and can be integrated with any machine learning or statistical modeling 

approach in general. Sensitivity analysis for feature reduction proceeded with predictive 

models based on MLP neural networks. 
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Figure 6.3 Bagging Sensitivity Analysis  
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  CHAPTER 7 

7Benchmarking Datasets 

In this chapter we introduce the QSAR datasets, which will be used for benchmarking the 

proposed algorithms. Since the aim of QSAR is to predict the biological activity of new 

untested molecules from the knowledge of their chemical properties, descriptors are 

needed to be generated. We first give a brief description about the descriptors that were 

generated for the benchmarking datasets and then, three benchmarking datasets 

(Lombardo, HIVrt, and Caco2) will be introduced.  

 

7.1 Descriptors 

QSAR assumes that the change in biological activity that is observed within a 

series of similar compounds is a function of the change in chemical structure within the 

series [99]. Thus, QSAR methods deal with identifying important structural features of 

molecules that are relevant to explain variations in biological or chemical properties. The 

QSAR datasets used in this dissertation consist of either Transferable Atomic Equivalent 

(TAE) descriptors [158, 159], or Property Encoded Surface Translator (PEST) descriptors 

[160, 161], or Molecular Operating Environment (MOE) descriptors [162], or 

combination of those descriptors. These descriptors are briefly introduced in the 

following sections. 
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7.1.1 Transferable Atomic Equivalent (TAE) Descriptors 

The TAE method employs rapid reconstruction of charge densities and electronic 

properties of molecules, using atom charge density fragments that are pre-computed from 

ab initio wave functions [158, 159]. The original TAE descriptors were created from ten 

or twenty-bin fixed-range histograms describing the distributions of ten different 

electronic properties on electron density-derived Van der Waals molecular surfaces. A 

new class of Wavelet Coefficient Descriptors (WCDs) has been developed that encodes 

molecular surface property information into a small set of wavelet coefficients [163]. 

Development of rapidly calculable WCDs captures important features of molecular 

electron density distributions.  

 

7.1.2 Property Encoded Surface Translator (PEST) Descriptors 

In Shape/Property-based PEST (Property Encoded Surface Translator) descriptors 

a TAE property-encoded surface is subjected to internal ray reflection analysis [160, 

161]. In this method, a ray is initialized with a random location and direction within the 

molecular surface, and then reflected throughout inside the electron density isosurface 

until the molecular surface is adequately sampled. Molecular shape information is 

obtained by recording the ray-path information, including segment lengths, reflection 

angles and property values at each point of incidence.  

 

7.1.3 Molecular Operating Environment (MOE) Descriptors 

The Molecular Operating Environment (MOE) is a flexible and robust chemical 

computing software by the Chemical Computing Group [162]. MOE can calculate over 
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300 molecular properties including topological indices, octanol/water logP, molar 

refractivity and property-encoded Van der Waals surface descriptors, which have shown 

wide applicability in compound classification, QSAR and ADME property modeling 

[162]. 

 

7.2 Lombardo Blood-brain Barrier Dataset 

The Lombardo blood-brain barrier partitioning data set is a well-known and 

challenging dataset for QSAR benchmark studies [164]. Sixty-two molecules from the 

original data set were chosen for this study, with 694 features. Molecule 37, butanone, 

was excluded from our study since an experimental value was not reported. The 

Lombardo data set contains two very distinct classes of molecules, a class comprised of 

36 nitrogen-containing heterocycles and a class of 28 alkanes, alkenes, and halogen-

substituted derivatives. In addition, the gases methane and nitrogen are included. 

The Lombardo dataset contains a diverse set of molecules for which blood-brain 

barrier penetration data is available. This is an important phenomenon to model, since all 

drugs that act on the central nervous system must pass through this barrier in order to 

function. This class of compounds includes antidepressants, anesthetics, chemotherapy 

agents, antifungal agents, antibiotics and antiviral drugs. The Lombardo data set 

represents a benchmark in QSAR and provides a wealth of comparison data in QSAR 

literature. 
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7.3 Human Immunodeficiency Virus reverse transcriptase (HIVrt ) 

Inhibitors Dataset … … … … … . 

 
The second dataset used in this dissertation is composed of HIVrt (Human 

Immunodeficiency Virus reverse transcriptase) inhibitors selected from a recent review 

article [165]. The molecules were selected according to a single criterion; all molecules 

had EC50 values measured against MT-4 cells in vitro. The HIVrt data set contains 64 

molecules representing five structural classes of reverse transcriptase inhibitors. The five 

subsets are labeled as tibo(13) [166], hept(26) [167], tsao(11) [168], triazoline(7) [169], 

and thiadiazole(7) [170], the number in parentheses shows how many members from 

each respective class were included in the data set. To date QSAR models have been 

constructed for individual classes of HIV reverse transcriptase inhibitors typically using 

the comparative molecular field analysis (CoMFA) [171] or traditional QSAR methods 

[165]. However, a QSAR model encompassing several diverse classes has not appeared 

in the literature, with this in mind, the HIVrt dataset was constructed to provide a serious 

challenge to our predictive modeling abilities. 

The HIVrt dataset is significant since it represents one of several ways that the 

spread of HIV and AIDS may be slowed or halted. These molecules inhibit an important 

biochemical step in the life cycle of the virus, and if inhibition were optimized, HIV 

would not be able to leave an infected cell and establish itself in another cell. 

 

7.4 Caco-2 Dataset 

The human intestinal cell line Caco-2 has been generally accepted as a primary 

absorption-screening tool in the early stage of drug development.  In an effort to improve 
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lead generation hit-rates, there is great interest in defining quantitative relationships 

between molecular structure and the various modes of Caco-2 permeability. The 

Absorption, Distribution, Metabolism and Elimination/Excretion (ADME) characteristics 

of pharmaceuticals are important properties to be considered in the development of novel 

therapeutic agents. Many of the compounds entering into clinical trials often fail due to 

issues directly related to ADME. Among these properties, absorption is of paramount 

important in drug design. Currently, there is a heavy emphasis on producing drug 

candidates that have good oral absorption that hopefully extends to good oral 

bioavailability. Several in vitro test systems have been developed for measuring transport 

across intestinal mucosa. Of all in vitro systems that have been developed to date, the 

most commonly used method for determining the transport of compound across the 

intestinal mucosa currently involves the use of Caco-2 cells. 

Caco-2 cell lines were originally established by Jorgen Fogh approximately 20 

years ago after he screened several lines derived from human colon carcinomas [172, 

173]. The Caco-2 cell line has been widely used for testing the GI absorption of 

compounds dues to its ability to express the morphological features of mature 

enterocytes. Therefore, they are amenable to rapid throughput screening for GI 

absorption. Measures of apparent permeation (Papp) are accepted as meaningful 

substitutes for actual human intestinal absorption values. Consequently, modeling of 

these permeability measures is an important substitute for modeling intestinal absorption. 

In recent years, the number of predictive approaches to ADME using computational 

techniques has increased dramatically. Hybrid approaches, those combine computational 

techniques with easily obtainable experimental data, are also becoming more prevalent 



 107 

[174].  The obstacle to good, general, and robust models of absorption has always been 

made to model absorption, and most are attempted with small datasets.  

In this study, two representative Caco-2 cell permeability data sets were obtained from 

two literatures [175, 176]. These two structural heterogeneous data sets cover a relatively 

wide range of molecular size and lipophilicity.  

Dataset I. Stenberg et al. reported Caco-2 cell permeability data for 27 structures [175]. 

All compounds are regarded as being transported by passive diffusion.  

Dataset II. Another 48 structures are collected from Yazdanian et al. [176].  

  For each dataset, a large set of 780 descriptors was generated by combining electron-

density based TAE, Property/Shape-Encode PEST, and the selected traditional MOE 

descriptors. Initial descriptor set contains 274 TAE descriptors [159], 396 PEST 

descriptors [160, 161], and 110 selected MOE descriptors that are related with 

pharmacophore, shape and volume.  
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  CHAPTER 8 

8Correlation-based Feature Selection with Evolutionary 

Algorithms 

Feature selection methods can be divided into two main categories based upon their 

feature subset evaluation: a wrapper or a filter approach [6]. A wrapper method searches 

for a good feature subset tailored to a particular predictive modeling approach and uses 

the induction algorithm as a black box for evaluating feature subsets. On the other hand, a 

filter method attempts to access the merits of features from the data alone. Wrapper 

methods generally use a learning algorithm with a statistical re-sampling method (such as 

cross validation, bootstrapping) to estimate the quality of feature subsets. This approach 

is useful but becomes computationally prohibitive because the learning algorithm must be 

trained and tested many times to evaluate feature subsets. On the other hand, filter 

methods are more practical than wrapper methods for applications to large datasets since 

they are much faster. 

Evolutionary algorithms are heuristic search/optimization methods that provide 

robust and powerful adaptive search mechanism [177]. Evolutionary algorithms maintain 

a population of potential solutions that evolve according to rules of selection and some 

genetic operators such as recombination and mutation [177]. Individuals in the population 

are evaluated using a fitness function that mimics the environment. Individuals with high 

fitness value have a higher chance to survive and pass on their structures to the next 

generations.  
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Correlation-based feature selection with evolutionary algorithms will be explained 

in this chapter. This feature selection method can be thought as a filter method, which 

selects features based on the training data alone without taking the biases of learning 

algorithms into consideration [6]: i.e., the proposed evolutionary algorithms for feature 

selection are independent of the learning algorithm and are used as a filter to conduct a 

search for a good feature subset using a correlation-based evaluation function. The search 

space in a variable reduction problem with T features is 2T if all feature subsets are 

considered (including feature set with all features and no features). If the number of 

features to be selected is predefined, the optimal feature subset of size N chosen from a 

total of T features can in principle be found by enumerating and testing all possibilities 

based on a criterion, which requires 
)!NT(!N

!T
N
T

−
=



  tests. This becomes prohibitively 

expensive in computing time when T becomes larger. Evolutionary algorithms provide an 

alternative search method to select a good feature subset with a predefined size. 

Evolutionary algorithms explore the whole search space probabilistically by using a rank-

based selection scheme and genetic operators (crossover and mutation) tailored to the 

representation of the individuals. 

 

8.1 Correlation Based Evaluation Function  

The evaluation function used by evolutionary algorithms, which will be explained 

in the next sections, is based on the hypothesis that a relevant feature is highly correlated 

with the response variable(s) and less correlated with other features in the feature subset 

[178]. Correlation is a bivariate measure of association (strength) of the relationship 

between two variables. In this dissertation, the correlation between variables i and j (Cij) 
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is measured in terms of the Pearson's correlation coefficient (r) that is a measure of the 

degree of linear association between two variables. It can take on the values from -1.0 to 

1.0, where -1.0 is a perfect negative (inverse) correlation, 0.0 is no correlation, and 1.0 is 

a perfect positive correlation. The objective for feature selection can be related to 

maximizing the evaluation function defined in equation (8.1). The number of features to 

be selected, N, is predetermined.  The fitness function for the individual k containing N 

features is defined by  
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where: 

Fk  = Fitness of individual k, k = 1, 2, 3, … , Pop_size. 

| Cij | = Absolute value of the inter-correlation between feature i and feature j. 

| CiR | = Absolute value of the correlation between feature i and the response variable R. 

α = Inter-correlation penalty factor. 

β = Death penalty factor: i.e., If  | Cij | > 0.95 then β = 1000; otherwise β = 0. 

 

In the fitness function, the sums of correlations are scaled in terms of the number of 

features in order to prevent trivial solutions. α is a user defined penalty factor for inter-

correlation and takes on values between zero and one. It is obvious that when α = 0, the 

objective function is simply to find the features which are the most highly correlated with 

the response variable. If α is greater than zero the inter-correlated variables are penalized. 

β is a parameter called death penalty factor, which gives a very high penalty to an 

)1.8(
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individual having features with inter-correlation higher than 0.95. The death penalty 

factor allows us to define an upper threshold for inter-correlation: because these features 

are usually highly correlated, we use the term “cousin features” in this context. Those 

feature subsets with features inter-correlated above this threshold are penalized. This 

parameter also assures that individuals with duplicated features die off in next 

generations. 

 

8.2 Rank-Based Selection Scheme 

Evolutionary algorithms for feature selection in this thesis use a rank-based 

selection scheme. Rank selection, a nonparametric procedure for selection, was 

introduced by Baker [52]. In this method individuals in the current population are sorted 

according to their fitness values and individuals for the next generation are selected 

proportionally to their rank rather than their actual objective function values. Ranking 

acts as a function transformation that assigns a new fitness value to an individual based 

on its performance relative to other individuals [53]. This method prevents the super 

individuals to take over population in a few generations by adjusting the ranking weights.  

 

8.3 Genetic Algorithms for Feature Selection (GAFEAT) 

A key issue in applying GAs to any problem is the selection of an appropriate 

formulation and representation that represents all possible solutions to the problem. In a 

feature selection problem the objective is to represent the space of all possible subsets of 

the given feature set. The traditional and simplest representation is a binary 

representation, where each chromosome consists of fixed-length binary string with a size 
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the number of features in the problem. Each bit in the chromosome represents either the 

elimination or the inclusion of the corresponding feature.  

Binary string representation has some drawbacks. In a typical binary GA for feature 

selection, one of the important issues is the initialization of the initial population. Since a 

chromosome consists of zeros and ones (representing exclusion and inclusion of the 

corresponding feature), deciding number of “1” in individuals of the initial population is 

problematic. In binary GAs for feature selection, the value of each gene in a chromosome 

is determined probabilistically by the toss of a coin. If the coin were fair (no bias) an 

average of 50 percent of the genes in a chromosome would have a value of “1”, which 

means that corresponding features are included. The number of “1” is controlled by 

introducing biases into selection of gene values. Leardi, et al. [7] suggest a biased 

probability producing low number of “1” in chromosomes of the initial population. They 

suggest that a good value for this probability is a value that selects an average of five 

variables per chromosome (e.g. 10 percent when working with a data set with 50 

variables). The GA itself builds more complex combinations with more features through 

crossover and mutation operators. 

Although binary representation is able to represent all possible feature subsets, it 

can still cause premature convergence. Consider a data set with 10 features. The whole 

search space for this problem is 210 = 1024 if all feature subsets are considered. If the 

number of features to be selected is predefined with a size N (where N=1, 2, 3, … , 10), 

the search subspace will be  

N)!(TN!
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 . 

 



 113 

The sum of all subspaces will be equal to whole search space.  

T
T

0N

2
N)!(TN!

T! =∑
= −

, 

where T is the total number of features. Table 8.1 shows search subspaces and their 

relative percentages for the dataset with 10 features. Figure 8.1 shows the relative size of 

the search subspaces to total search space. It is now obvious why a binary GA may 

convergence to a suboptimal solution. For instance, for subspaces with 2 features and 5 

features the total search space is 45 and 252, respectively. There is a high chance for the 

GA to converge to a solution that is optimal (or close to optimal) solution for the 

subspace with 2 features, even though the global optimal solution may reside in the 

subspace with 5 features. Leardi, et al. [7] suggest a stratified selection scheme in which 

only chromosomes belonging to the same subspace compete with each other for the next 

generation. Although this is a good strategy to overcome the premature convergence, 

there is still some chance that some of the subspaces may not be adequately represented 

in the population. 

Even with the stratified selection scheme proposed by [7], the classical binary 

crossover and mutation operators may produce offspring, which belong to a different 

subspace than that of the parent chromosomes. This causes a loss of information gained 

by the GA for the current subspaces. Thus, binary genetic operators may cause to poor 

convergence since the GA cannot exploit the information properly for the stratified 

subspace. Binary operators are illustrated in the Figure 8.2. 
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Table 8.1 Search Subspace for a Dataset with 10 Features 

Number of features to 
be selected (N)

Search space
Percentage search 

space
0 1 0.0010
1 10 0.0098
2 45 0.0439
3 120 0.1172
4 210 0.2051
5 252 0.2461
6 210 0.2051
7 120 0.1172
8 45 0.0439
9 10 0.0098
10 1 0.0010

Total 1024 1.0000  
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Figure 8.1 Percentage Search Subspace for a Dataset with 10 Features 
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Parent1 1 0 0 0 1 1 0 1 0 1

Parent2 1 0 1 1 1 0 0 0 0 0

Selected Chromosomes

Uniform Crossover 

Mutation

Crossover point

Parent1 1 0 0 0 1 1 0 1 0 1

Parent2 1 0 1 1 1 0 0 0 0 0

Parent 1 0 0 0 1 1 0 1 0 1

Parent 1 0 0 0 1 1 0 1 0 1

Selected gene

Offspring1 1 0 0 0 1 1 0 0 0 0

Ofspring2 1 0 1 1 1 0 0 1 0 1

Offspring 1 0 0 0 1 1 0 1 0 0

(belongs to subspace with 5 features)

(belongs to subspace with 3 features)

(belongs to subspace with 6 features)

(belongs to subspace with 5 features)

(belongs to subspace with 4 features)

(belongs to subspace with 4 features)

 
Figure 8.2 Binary Crossover and Mutation Operations for Feature Selection Problem 

 

Because the classical binary GAs are not well suitable for the feature selection 

problem, GAs based on floating-point and unique list representations are proposed. These 

representations and their genetic operators are explained in the following sections. 

  

8.3.1 Floating-Point Representation 

A genetic algorithm (GA) for feature selection with a floating-point representation 

for the features is proposed. The number of features (N) to be selected is pre-specified. 

Chromosomes are represented as floating point arrays with size N in which each gene 
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corresponds to the variable number in the feature subset. The initial population is created 

randomly as floating point arrays where each entry (gene) in an array (chromosome) is 

created using the following function: 

Geneij = (Uij * T) + 1, 

where Uij is an uniform random number between zero and one, T is the total number of 

features in the dataset under study. The index, ij represents the jth gene position on the ith 

chromosome in a population. For example for the case where 10 features are to be 

selected out of total of 100 features, an individual (genotype) could be represented as  

93.57, 64.31, 6.96, 54.40, 38.97, 60.43, 13.25, 48.91, 30.97, 4.03 

in which the integer part of each floating-point number (gene) represents the 

corresponding feature. The phenotype of the chromosome represented by the above 

floating point array will be: 

 

93 64 6 54 38 60 13 48 30 4  

 

In this genotype-phenotype mapping, different genotypes can correspond to the same 

phenotype. Also, the genotype-phenotype mapping can lead to illegal feature subsets 

(individuals), which means that some individuals may have some duplicated features. 

The proposed GA corrects illegal individuals after creating the random initial population. 

Hence, initial population consists of legal individuals only.  
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8.3.2  Crossover and Mutation for Floating-Point Representation 

The proposed floating-point GA uses classical one-point crossover as originally 

proposed by Holland [32]. This crossover operator simply chooses a random position on 

two chromosomes (strings), divides strings into two parts, and swaps the tails of the 

strings between them. For this study, the genes of the genotype of each individual are 

sorted in ascending order before the crossover operation. Such a sorting reduces the 

chance of having illegal individual after crossover operation. The GA does not try to 

correct the illegal individuals, but penalizes those individuals to make sure that they will 

die off in the next generation. The penalty method is the most common method to handle 

infeasible (illegal) solutions in the evolutionary algorithms for simple constrained 

optimization problem. The addition of a penalty term to the objective function transforms 

the constrained optimization problem into an unconstrained optimization problem. 

Crossover is an expensive operator for the feature selection problem since some 

individuals may violate some of the constraints of the problem. Figure 8.3 illustrates the 

crossover operation for a problem where in which the objective is to select a good subset 

with 10 features out of total of 100 features. The mutation operator chooses a random 

gene position and changes the value of gene within the feature range. Note that the 

mutation operator may also lead to an illegal individual. 
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3.70 7.35 16.98 37.74 44.28 52.02 57.83 61.41 71.89 99.24

12.03 32.70 35.49 48.18 49.11 70.24 77.94 81.17 89.77 99.69

3 7 16 37 44 52 57 61 71 99

12 32 35 48 49 70 77 81 89 99

Parent 1

Parent 2

Genotype
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Parent 1

Parent 2

Sorted Genotype

Parent 1

Parent 2

Phenotype

3 7 16 37 44 52 57 61 71 99

12 32 35 48 49 70 77 81 89 99

Parent 1

Parent 2

3 7 16 37 44 52 77 81 89 99

12 32 35 48 49 70 57 61 71 99

Child 1

Child 2

 
Figure 8.3 One-point Crossover Operator in the Floating-point GA for Feature Selection 

 

 

8.3.3 Unique List Representation 

Another alternative for the phenotype representation employed by GAFEAT is a 

unique list representation. Given a dataset containing T features, each chromosome 

represents a legal subset containing N features. In this representation, a chromosome is as 

an integer array of size N. GAFEAT always works on the phenotype individuals after 

creating an initial population. With no duplicated features a unique list representation can 

be thought of as an order-based chromosome where N features represented in a 

chromosome are the selected features, and the remaining (T-N) features not in the 

chromosome are the non-significant features.  
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8.3.4 Crossover and Mutation operators for Unique List Representation 

Partially Mapped Crossover (PMX) was introduced in Chapter 3. PMX, proposed 

for the Traveling Salesman Problem by Goldberg and Lingle [1], produces an offspring 

by choosing a portion of tour from one parent and preserving the position and relative 

order of as many cities as from the other parent [9]. PMX can be viewed as an extension 

of two-point crossover with a special repairing mechanism to resolve the illegitimacy 

caused by two-point crossover. PMX can be adapted to the feature selection problem. 

The procedure for the PMX is the following: 

Step 1. Select parents for crossover. 

Step 2. Select randomly two crossover points on the chromosomes. The sections 

between two crossover points are called the mapping sections. 

Step 3. Swap the mapping sections between parent chromosomes. 

Step 4. Determine the mapping relationship between mapping sections. 

Step 5. Build offspring based on mapping relationship. 

This procedure is illustrated in Figure 8.4. 
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Crossover point II

37 16 52 70 16 35 57 7 99 71

32 99 77 44 61 3 49 12 48 89

Step1. Select parents

Step2. Select Crossover Points

Step3. Swap Mapping Sections

Step4. Determine Mapping Relationship

Step5. Correct Offspring based on Mapping Relationship

37 61 52 70 16 35 57 7 99 71

32 99 77 44 61 3 49 12 48 89

Offspring 1

Offspring 2

Duplicated feature

44 70 61 16 3 35

 
Figure 8.4 Partially Mapped Crossover for the GA with the Unique List Representation 

for Feature Selection 

 

 

In order to avoid illegal offspring from mutation, the mutation operator now 

randomly chooses a gene position in the chromosome and tries to exchange it with a 

unique random value. If a unique value cannot be found after a certain number of trials 

then the parent chromosome is copied without any change. 
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8.4 Evolutionary Programming for Feature Selection (EPFEAT) 

Evolutionary Programming (EP) was explained in section 2.4.2 and section 4.6 and 

successful implemented for the Traveling Salesman Problem in section 4.6. EP 

traditionally used representations that are tailored to the problem domain [177]. The most 

important difference between a GA and EP is that EP does not use any recombination 

(crossover) operator.  The forms of mutation used in EP are quite flexible and can 

produce perturbations similar to recombination if intelligent mutation operators are 

devised. Therefore, the performance of an EP is affected by its choice of the mutation 

operators used to create variability and novelty in evolving populations [177].  

 

8.4.1 Representation for EPFEAT 

An evolutionary programming algorithm for feature selection problem (EPFEAT) 

is proposed based on the unique list representation introduced in section 8.3.3.  Given a 

dataset consisting of total T number of features, each chromosome corresponds to one of 

the permutations of an array with the numbers 1 - T. This means that each chromosome 

has a different ordered list of T features similar to the Traveling Salesman representation 

used in Chapter 4. Since the number of features to be selected (N) is predetermined, the 

first N features of a chromosome are used for calculating the fitness of the chromosome. 

This can be thought of as an order-based list, where the left-most N features are the 

selected features and, the remaining T-N values correspond to unselected features. The 

representation of an individual is illustrated in Figure 8.5. In Figure 8.5, the objective of 

the EP algorithm is to select 4 features out of 10. An individual represents the dataset 
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with a total of 10 features, where the first 4 features construct the feature subset and the 

remaining features (the shaded features) are the non-significant feature subset.  

 

 

Selected features Unselected features

Chromosome

2 3 9 6 4 10 8 7 1 5

 
Figure 8.5 Representation for Evolutionary Programming Algorithm for Feature 

Selection 

 

 

8.4.2 Mutation Operator for EPFEAT 

A new mutation operator for EPFEAT is proposed. The first N features are used 

for measuring the fitness of the individuals. This can be considered as dividing the total 

number of features into two subsets based on a fitness function. These two feature subsets 

can be thought of further as sub-chromosomes. The proposed mutation operator randomly 

selects a gene position within the first N features and within last (T-N) features and 

swaps these features. This operator can be considered as a recombination operation 

between two sub-chromosomes. One of the most important consequences of this 

representation is that it allows us to develop a mutation operator that produces 

perturbation similar to crossover operator. Note that this mutation operator always 

produces a legal feature subset (i.e., no duplicate features). 
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8.5 Comparisons of Evolutionary Algorithms for Feature Selection 

The proposed three evolutionary algorithms for feature selection (genetic algorithm 

with the floating-point, genetic algorithm with the unique list representation, and the 

evolutionary programming algorithm) are compared using the HIVrt dataset with 64 

molecules and 620 features explained in section 7.3. For comparison, the parameter α 

and the threshold correlation for the parameter β in the fitness function are set to 0 and 

1.0, respectively, leading the fitness function in equation (8.1) for the most correlated 

features only according to:  

∑
=






=

N

1i
iRk |C|F

N

1
 

In other words, the objective of the feature selection algorithms is simply to find N 

features that are highly correlated with response variable. The optimal solution for this 

problem is easy to find by calculating correlations between features and response variable 

and sorting them in descending order. The performances of the proposed algorithms are 

then compared with the optimal solution. Each algorithm was executed 10 times to select 

25 out of 620 features with a different initial population (i.e., a different random seed). 

The parameter settings of the algorithms are shown in Table 8.2. 

 

Table 8.2 Parameter Settings for the Evolutionary Algorithms for Feature Selection 

Algorithm Population Crossover 
Probability

Mutation 
Probability

GAFEAT
(Floating-point)

GAFEAT
(Unique List)

EPFEAT 200 None 0.02

200 0.90 0.40

200 0.90 0.02
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Each algorithm was able to find the 25 features most correlated with the response 

variable in each run. The results of those computational experiments are presented in 

Table 8.3. These results show that the proposed representations are very efficient.  

 

Table 8.3 Comparisons of Genetic Algorithm with Floating-point and Unique List 
Representations, and Evolutionary Programming Algorithm for Feature Selection 

No Feature No Feature Label 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
1 241 Del.G.NIA x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
2 331 PIPAvg x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
3 267 SIGIA x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
4 191 Del.K.IA x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
5 402 LaplAvg x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
6 150 pips6 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
7 217 SIKIA x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
8 166 Del.Rho.NIA x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
9 158 pipd6 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
10 347 PIP16 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
11 393 AbsFuk5 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
12 507 SHsOH.91 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
13 544 CHsOH.182 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
14 570 CsOH.227 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
15 149 pips5 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
16 533 SsOH.136 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
17 260 AbsDGN7 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
18 390 AbsFuk2 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
19 575 CdS.242 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
20 538 SdS.151 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
21 348 PIP17 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
22 391 AbsFuk3 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
23 332 PIP1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
24 159 pipd7 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
25 487 dxvp4.71 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

62 63 63 60 61 60 61 62 61 61 99 98 98 100 98 97 98 98 97 98 132 133 132 132 132 132 133 134 133 132Run Time    (in second)

GAFEAT-Floationg-point Representation GAFEAT-Unique List Representation EPFEAT25 features most correlated with 
response

 

 

 

8.6 Effects of the Inter-correlation Penalty (α) Factor on Variable 

Selection 

In this section, the effects of the inter-correlation factor on variable selection will 

be investigated. For this purpose, a synthetic (i.e., artificially made-up) dataset with 64 

data points and 600 descriptive features was randomly drawn from a normal distribution 

with mean 0 and standard deviation 1. Values of the response variable were constructed 

as a linear combination of first 40 features from this data set. The coefficients of these 40 

variables were chosen randomly. Since the 40 features are known in advance, the 
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performance of GAFEAT can be tested by selecting 40 features from the dataset with 

different α values (ranging between 0 and 1). Multiple Linear Regression is used in order 

to assess the quality of the feature subsets with 40 features selected by GAFEAT. The 

qualities of the feature subsets are reported based on the Multiple Coefficient of 

Determination (R2), the F statistic and the P value of F statistic. These statistics allow us 

to assess or judge the usefulness of the regression model (feature subset). R2 is a statistic 

widely used to determine how well a regression model fits to data. The F statistic is 

the test statistic used to decide whether the model as a whole has statistically significant 

predictive capability. A large value of F (or a low value of P) as well as a large value of 

R2 indicates that most of the variation of the response variable is explained by the 

regression equation and that model is useful [179]. The results of these experiments are 

presented in Table 8.4. It is apparent from Table 8.4 that when α increases the quality of 

the features subset increases, even though the number of original variables included in the 

feature subsets decreases. The R2 of the regression models constructed with a subset of 

40 features selected by GAFEAT for this synthetic dataset is plotted versus α values in 

Figure 8.6. 

Table 8.4 Results for 40 Features Selected by GAFEAT from Synthetic Dataset at 
Different α Values 

α #of Selected 
Original Variable R2 F value P value

0.00 7 0.9143 7.3487 0.0000
0.10 8 0.9331 9.2480 0.0000
0.20 7 0.9350 9.3277 0.0000
0.30 7 0.9344 9.3496 0.0000
0.40 6 0.9361 8.9800 0.0000
0.50 6 0.9390 9.3949 0.0000
0.60 6 0.9427 11.2437 0.0000
0.70 6 0.9434 11.1698 0.0000
0.80 6 0.9432 11.1622 0.0000
0.90 6 0.9439 11.1552 0.0000
1.00 6 0.9533 13.7375 0.0000  
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R2 versus α
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Figure 8.6 The Multiple Coefficient of Determination (R2) of the Feature Subset with 40 
Features Selected by GAFEAT at Different α Values from Artificial Dataset versus Inter-

correlation Factor (α). 

 

 

The coefficient (weight factor) of each of the original 40 features used to 

construct to the response variable is shown in the Table 8.5. The shaded six features in 

the Table 8.5 were always selected by GAFEAT at all of the different alpha values. The 

common properties of these six features (features 16, 29, 17, 28, 39, and 19) are that they 

have higher coefficients and are highly correlated with the response variable. Selecting 

the 40 features that are the most correlated with response variable (i.e., α = 0) contains 7 

of the original 40 features; its performance in R2 is lower than selected feature subsets 

with α values exceeding 0.4. As can be seen from Figure 8.6, this indicates that 

penalizing the inter-correlation between features while maximizing their correlation with 

the response variable helps to construct a better regression model. 
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Table 8.5 Weight Factors, Correlation Ranks and Correlations with the Response 
Variable of 40 Features that Constructed to the Response Variable for Random 

Coefficients 

Feature No Coefficient Correlation with 
Response Variable

Correlation 
Rank

16 -0.5469 -0.3723 4
8 -0.4414 -0.0895 288
29 0.3675 0.5188 1
27 0.3439 0.0764 329
17 0.2775 0.4085 2
4 0.2759 0.0127 551
28 -0.2737 -0.2349 41
14 0.2100 -0.1162 222
35 -0.2061 -0.1555 138
1 0.2034 -0.0241 507
15 0.1913 0.1343 186
39 0.1768 0.2811 15
19 0.1765 0.2421 36
9 0.1709 0.0813 317
25 0.1636 0.1385 178
33 0.1496 -0.0942 279
26 -0.1482 -0.1013 262
38 0.1244 -0.1198 215
7 0.1226 -0.0586 387
3 0.1117 0.1587 133
20 -0.1070 -0.1067 243
36 0.1007 0.0820 311
6 0.0978 -0.2355 40
23 0.0836 0.0165 535
30 -0.0766 -0.1544 141
18 -0.0641 -0.0913 285
40 -0.0636 0.0760 331
2 0.0624 0.0705 350
34 -0.0618 -0.2522 31
24 -0.0527 -0.1535 142
10 0.0516 -0.0031 590
21 -0.0493 -0.0058 581
11 -0.0416 -0.0726 341
5 0.0390 -0.0727 340
22 0.0249 -0.0685 356
31 0.0106 -0.0560 396
32 0.0099 0.1109 233
13 0.0064 -0.1052 250
37 -0.0005 0.0712 345
12 0.0000 -0.0413 447  
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Figure 8.7 depicts the different α values versus the average correlation between 

the selected features (FF) and the average correlation between response variable and the 

selected features (RF). When the inter-correlation value (α) increases FF and RF decrease 

but the amount of decrease in FF exceeds that of RF. This is not easily seen from Figure 

8.7 since the dataset was randomly created. Therefore, the difference between RF and FF 

versus α is plotted in Figure 8.8. 

 

Average Feature to Feature (FF) Correlation and Average 
Response to Feature (RF) Correlation versus α
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Figure 8.7 Inter-correlation Penalty (α) versus Average Feature to Feature (FF) 

Correlation and Average Response to Feature (RF) Correlation for Artificial Dataset 
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Figure 8.8 Inter-correlation Penalty (α) versus Difference between the Average 
Response to Feature (RF) Correlation and the Average Feature to Feature (FF) 

Correlation and for Artificial Dataset 
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The effect of the inter-correlation factor (α) on variable selection was also 

investigated by keeping the coefficients of all 40 variables at the same value in the 

construction of the values of the response variable. The results of these experiments are 

shown in the Table 8.6. The number of original features selected by GAFEAT is 10 for α 

values of 0.0, 0.10, 0.20, 0.30, 0.40, 0.50, and 0.60. Although the R2 values of regression 

models fluctuate, there is an increasing trend in the R2 values when α increases. On the 

other hand, the number of original features selected by GAFEAT is 11 at α values of 

0.80, 0.90, and 1.00 and R2 values tend to increase monotonically with α. Figure 8.9 

depicts R2 versus α for the case where feature coefficients are set to same value. 

Table 8.6 Results for 40 Features Selected by GAFEAT from Artificial Dataset (constant 
weight) at Different Alpha Values 

α #of Selected 
Original Features R2 F value P value

0.00 10 0.915 6.1528 0.0000
0.10 10 0.930 7.6307 0.0000
0.20 10 0.928 7.3758 0.0000
0.30 10 0.921 5.7778 0.0000
0.40 10 0.930 6.0760 0.0000
0.50 10 0.930 7.5784 0.0000
0.60 10 0.936 6.1712 0.0000
0.70 10 0.931 6.4777 0.0000
0.80 11 0.937 8.5247 0.0000
0.90 11 0.957 12.8164 0.0000
1.00 11 0.961 8.5493 0.0000  

R2 versus α
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Figure 8.9 Multiple Coefficient of Determination (R2) versus Inter-correlation Factor (α) 

for Same Coefficients 
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Table 8.7 Weight Factors, Correlation Ranks and Correlations with the Response 
Variable of 40 Features that Constructed to the Response Variable with the Same 

Coefficients 

Feature 
No

Coefficient Correlation with 
Response Variable

Correlation 
Rank

26 0.5 0.3717 2
37 0.5 0.3363 3
28 0.5 0.3271 6
40 0.5 0.3159 7
1 0.5 0.3140 8
16 0.5 0.2759 17
34 0.5 0.2616 21
6 0.5 0.2601 22
24 0.5 0.2557 26
25 0.5 0.2496 27
15 0.5 0.2042 70
23 0.5 0.1974 82
10 0.5 0.1962 86
14 0.5 0.1934 87
11 0.5 0.1933 88
30 0.5 0.1869 95
31 0.5 0.1841 99
3 0.5 0.1782 106
21 0.5 0.1742 110
2 0.5 0.1709 118
39 0.5 -0.1396 167
5 0.5 0.1387 169
22 0.5 0.1377 171
20 0.5 0.1363 174
9 0.5 0.1203 208
7 0.5 0.1189 210
33 0.5 0.1110 229
17 0.5 0.1101 232
36 0.5 0.1097 233
12 0.5 0.1046 249
18 0.5 0.1040 252
27 0.5 0.0866 286
32 0.5 0.0710 344
35 0.5 0.0582 386
4 0.5 0.0520 409
19 0.5 0.0287 494
8 0.5 -0.0230 510
29 0.5 -0.0229 511
38 0.5 -0.0055 566
13 0.5 -0.0001 600  



 131 

Weight factors, correlation ranks and correlations with the response variable of 40 

features that were used to construct the response variable are presented in Table 8.7. The 

gray shaded nine features (26, 37, 28, 40, 1, 16, 34, 24, and 25) are common to the 

feature subsets selected by GAFEAT for all α values. These features are highly 

correlated with the response variable, which are amongst the top 30 most correlated 

features to the response variable. 

 

8.7 Effect of the Inter-correlation Penalty (α) Factor on Prediction 

In this section, the effect of the inter-correlation penalty factor (α) on the predictive 

performance of learning algorithms (Multi-Layered Perceptrons and Partial Least 

Squares) will be investigated. For this purpose, the HIVrt dataset (see section 7.3) with 

the set of 160 wavelet descriptors [163] explained in section 7.1.1 was employed.  

The neural network model used in all methods is a standard feed-forward multi-

layered perceptrons trained with the back-propagation algorithm [140, 141]. The artificial 

neural networks have two hidden layers and are oversized (the hidden layers for this 

study contained 13 and 11 neurons respectively). Training was halted with early stopping 

by policy (when LMS error drops below at 0.09). Because of the early stopping 

procedure, the neural network results are not very sensitive to the number of neurons in 

the hidden layers. On the other hand, because of the early stopping the neural network 

models will also be relatively linear. The PLS models described in chapters of this 

dissertation used four latent variables for all calculations.  

The predictive performance of the learning algorithm heavily depends on the 

appropriate value of α. Since the performances of the evolutionary algorithms proposed 
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in this Chapter are more or less similar, GAFEAT with a floating-point representation 

will be used for feature selection. Results of feature selection with GAFEAT will be 

compared with those from the Sensitivity Analysis explained earlier in section 6.5. 

 

8.7.1 Evaluation of Learning Algorithms 

The learning algorithms for model building are Multi-Layered Perceptrons 

(MLPs), trained with back-propagation and Partial Least Square (PLS) regression. The 

MLP and PLS algorithms are both implemented in the StripMinerTM [4]. Estimating the 

error of a learning model constructed from a set of training data is important to predict its 

performance on future unseen data and/or to compare it with its competitors. Cross-

validation and bootstrapping are methods for estimating the generalization error rate of a 

learning model based on resampling [157]. In a cross-validation procedure, the dataset is 

randomly divided into k non-overlapping subsets where the size of each subset is as equal 

as possible. The learning model is trained and tested k times by using the j th (where j=1, 

2, … , k) subset  as a test set (i.e., validation set, both the terms, test set and validation set, 

will be used interchangeably for the out of sample) and combining the remaining subsets 

together as a training set. 

Bootstrapping, introduced by Efron [156], is a general technique for estimating 

sampling distributions. In bootstrapping, multiple samples (anywhere from 50 to 2000 

samples) of data of size n are taken uniformly from the original data of size n with 

replacement. Since bootstrap samples are drawn with replacement, the probability of any 

given instance not being part of the bootstrap dataset is (1-1/n)n =1/e =0.368, which can 

be thought of as smoothed versions of cross-validation [157]. In our implementation, the 
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(n-v) samples for training set are drawn without replacements, where n is the number of 

samples in the dataset and v is the number of samples in the validation set. There is no 

overlap between training and validation sets for each bootstrap sample. The model is 

trained on the training set and the error rate for the learning model is estimated on the 

error on the validation set. The performance estimations of different learning algorithms 

are reported with two distinct measures for the error: q2 and Q2 based on the validation 

set for each bootstrap sample.  

 

8.7.2 Effect of the α on the Prediction Quality 

GAFEAT was run with different α values ranging between 0 and 1 to select 40 

descriptors from the HIVrt dataset with 160 wavelet descriptors. Each selected set of 

descriptors is used to construct a predictive model using MLPs and PLS regression. Error 

rates of the learning algorithms are calculated based on 100 bootstrap samples in terms of 

q2 and Q2
 by leaving 58 molecules in the training set and 6 molecules in validation set. 

Figures 8.10 and 8.11 show how the α value affects the predictive performance of MLPs 

and PLS regression, respectively. One conclusion that can be easily drawn from these 

results is that the selection of the inter-correlation factor is a critical issue for choosing a 

good subset of descriptors. The low values as well as high values for inter-correlation 

penalty factor deteriorate the prediction error of the MLPs and PLS regression. For the 

HIVrt dataset, 0.55 for was found to be optimal for α. Table 8.8 presents the results of the 

100 bootstraps validation errors of the MLPs and PLS regression with all 160 features. 

According to these results, if the right α value is applied, GAFEAT can select relevant 
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features that lead to better predictive models (compared to models that employ all the 

available features). 

 

 

 

Table 8.8 100-bootstrap Validation of the HIVrt Dataset with 160 Wavelet Descriptors 

Validation Error Learning Models q2 Q2 
PLS 0.4294 0.4377 
MLP 0.4190 0.4400 
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Figure 8.10 Inter-correlation Penalty Factor versus q2 and Q2 of MLPs Models 

Constructed by 40 Features Selected by GAFEAT from HIVrt Dataset with 160 Wavelet 
Descriptors. The values of q2 and Q2 are based on 100-bootstrap Samples 
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q² and Q² of versus α  for PLS Regression
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Figure 8.11 Inter-correlation Penalty Factor versus q2 and Q2 of PLS Models Constructed 

by 40 Features Selected by GAFEAT from HIVrt Dataset with 160 Wavelet descriptors. 
The values of q2 and Q2 are based on 100-bootstrap samples 

 

Figure 8.12 depicts the average correlation between the selected features (FF) and 

the average correlation between response variable and the selected features (RF) versus 

α. When α increases FF and RF decrease, but the amount of decrease in FF is higher than 

that of RF. It can be seen from Figure 8.12, that when α is around 0.55, feature subsets 

are less correlated with each other and more correlated with the response variable. 

 
Average Feature to Feature (FF) Correlation and Average 

Response to Feature (RF) Correlation versus α
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Figure 8.12 Inter-correlation penalty (α) versus Average Feature to Feature (FF) 

Correlation and Average Response to Feature (RF) Correlation for HIVrt Dataset with 
160 Wavelet Descriptors 
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The correlation matrix of the data with 40 selected features (ordered by 

correlation with the response) at α value 0.55 is presented in Figure 8.13. Here, the last 

column and row correspond to the response variable. Darker colors represent a high 

correlation value between the two corresponding variables. It can be noticed that a few 

features are highly inter-correlated and that the selected features are better correlated with 

the response variable. Figures 8.14-A and 8.14-B show the histograms of the correlation 

of the response variable with all 160 descriptors and with 40 selected descriptors by 

GAFEAT, respectively.  

 

 
Figure 8.13 Colorplot of Correlation Matrix of 40 Features Selected by GAFEAT from 

HIVrt dataset with 160 Wavelet Descriptors 
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(A) 

 
(B) 

Figure 8.14 (A) Histogram of the Correlation of the Response Variable with All 160 
Descriptors (B) Histogram of the Correlation of the Response Variable with the 40 

Selected Descriptors by GAFEAT (α = 0.55) 

 

 

The feature subset with 40 descriptors selected by GAFEAT is further pruned 

down by using neural network sensitivity analysis explained in section 6.5. Sensitivity 

analysis was able to reduce the number of features from 40 to 31 and slightly improved 

quality of the model. Neural network sensitivity analysis was applied to the HIVrt dataset 

with 160 descriptors and selected 35 descriptors out of 160. For comparison purposes, the 

HIVrt dataset with all 160 descriptors was used to construct the neural network model. 

The training set size is set to 58 molecules, leaving 6 molecules for the validation 

set. In order to compare the results of the models, the MLP is trained and tested for 100 

bootstraps and average error rate of all bootstraps is reported in terms of q2 and Q2. Table 

8.9 summarizes those results. 
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Table 8.9 Comparisons of Methods 

q² Q²

NO FEATURE SELECTION 
Using all 160 descriptors 160 0.419 0.440

GAFEAT 

 Using all 160 descriptors
NN SENSITIVITY ANALYSIS 
Using 40 descriptors selected by 

GAFEAT
31 0.359 0.377

NN SENSITIVITY ANALYSIS 
Using 160 descriptors 35 0.312 0.340

MLPs Predictive 
Results based on 
100 bootstrapsMETHOD

Number of 
Selected 

Descriptors

40 0.364 0.380

 
 

Figure 8.15 shows the result of the predictive modeling for the dataset with 31 

features selected by neural network sensitivity analysis using 40 features selected by 

GAFEAT. The prediction variance is also shown in this figure for each molecule. 

 

 

Figure 8.15 MLP Prediction Results for the Dataset with 31 Features Selected by Neural 
Network Sensitivity Analysis using 40 Features Selected by GAFEAT 
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8.7.3 Performance of GAFEAT on Feature Selection 

In this section, GAFEAT is applied for feature selection in order to build a good 

predictive MLP model. For this purpose, two Caco-2 cell permeability datasets are 

employed. These datasets are explained in section 7.4. First dataset is Caco-2 cell 

permeability data for 27 structures [175]. These 27 structures will be modeled separately 

according to two response variables: LogPC and Logpapp. The second one contains 48 

compounds and is used to model LogPC [176]. Each dataset initially contains 780 

descriptors (274 TAE descriptors [159], 396 PEST descriptors [160, 161], and 110 

selected MOE descriptors that are related with pharmacophore, shape and volume). 

The next step was to discard descriptive features, which contained constant 

values. This reduced the number of descriptive features to 715 and 703 for dataset I (27 

molecules) and dataset II (48 molecules), respectively. GAFEAT with unique list 

representation was used to select 20 features from both datasets. The parameter settings 

of GAFEAT for both datasets are the following: 

Population size                            :   200 Number of features to be selected :    20 
Maximum number of generation : 1000 Crossover probability                    : 0.90 
Mutation probability                    :  0.02 Inter-correlation penalty                : 0.55 
Death penalty                               :  0.95  

 

The selected 20 features from both datasets are presented in Table 8.10. 
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Table 8.10 20 Features Selected by GAFEAT for Caco-2 Datasets 

DATASET II (48-molecule)
Response: LogPC Response: LogPapp Response: LogPC
Feature Label Feature Label Feature Label
ABSDRN6 ABSDRN6 ABSDRN6
ABSEPMIN SIEPMIN DGNB03
PIP2 PIP2 DGNB52
PIP16 PIP16 DRNB53
KB44 KB11 GB53
KB54 FUKB14 KB04
FUKB14 PIPB53 KB35
PEOE_VSA+3 BNPB31 KB52
PEOE_VSA_FHYD PEOE_VSA+3 PIPB03
PEOE_VSA_FPNEG PEOE_VSA_FHYD PIPB04
PEOE_VSA_FPPOS PEOE_VSA_FPNEG PIPB34
PEOE_VSA_PPOS PEOE_VSA_FPPOS PIPB35
Q_VSA_FPNEG PEOE_VSA_PPOS BNPB40
pmiY Q_VSA_FPNEG PEOE_VSA-1
a_don pmiY PEOE_VSA_FPOS
SlogP a_don RPC+
SlogP_VSA0 SlogP dipoleY
SlogP_VSA6 SlogP_VSA6 a_don
SMR_VSA4 SMR_VSA4 vsa_pol
SMR_VSA7 SMR_VSA7 SlogP_VSA0

DATASET I (27-molecule)
20 FEATURES SELECTED BY GAFEAT FOR Caco-2 DATASETS

 

 

A standard feed-forward multi-layered perceptrons trained with the back-

propagation algorithm is used to build a predictive model. The artificial neural networks 

have two hidden layers and are oversized (the hidden layers for this study contained 13 

and 11 neurons respectively). Training phase of the neural networks was halted at 0.105 

with early stopping by policy. The training set sizes are set to 24 and 43 molecules, 

leaving 3 and 5 molecules for the validation sets for Dataset I and Dataset II, 

respectively. In order to compare the results of the models, the MLP is trained and tested 

for 100 bootstrap samples and average error rate of all bootstraps is reported in terms of 

q2 and Q2. The predictive results of MLPs for Caco-2 datasets based on 100-bootstrap are 

presented in Table 8.11. According to these results GAFEAT selects relevant features and 

helps us to build a better predictive model compared to using all features. 
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Table 8.11 Predictive Results of MLPs for Caco-2 Datasets based on 100-bootstraps 

q2 Q2 q2 Q2 q2 Q2

Without Feature Selection
(Using all features)

With Feature Selection
(Using 20 features selected by 

GAFEAT)

Method

0.494

0.253

0.494

0.2560.174 0.179 0.158 0.165

0.575 0.582 0.554 0.558

Response: LogPC Response: LogPapp Response: LogPC
DATASET I (27-molecule) DATASET II (48-molecule)

 

 

 

8.7.4 Conclusions 

One conclusion that can be easily drawn from the experimental results is that 

GAFEAT selects a good initial subset of features and improves the predictive quality of 

the learning algorithms. The predictive ability of the learning algorithms heavily depends 

on the selection of the appropriate value for the inter-correlation penalty factor (α). 

According to computational results, if a right alpha value is selected, GAFEAT can select 

relevant features and help to build a better predictive model compared to using all 

features. It has been found that the low values as well as high values for inter-correlation 

penalty factor deteriorate the prediction error of the learning algorithms, and a good value 

for α lies between 0.40 and 0.80. 

Neural network sensitivity analysis is also useful tool to prune down the features 

selected by GAFEAT and to lower the prediction error. If we compare GAFEAT and 

sensitivity analysis as a stand-alone method, sensitivity analysis performs better than 

GAFEAT. One of the reasons is that sensitivity analysis can be thought of as a wrapper 

approach and takes the biases of the model into consideration. The other reason is that 

sensitivity analysis is an iterative method that starts from full set of features and drops 

insignificant features iteratively. On the other hand, one of the advantages of GAFEAT is 
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that it scales only with the number of features. Therefore, GAFEAT does not require 

extra computing cost if the number of the data points in a dataset increases. The 

advantage of GAFEAT over the sensitivity analysis is that it requires less computation 

time. Since the most of the wrapper methods require more computation time with respect 

to the number of descriptors and data points, GAFEAT can be used as a filter to reduce 

the number of descriptors for the wrapper methods. 
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  CHAPTER 9 

9GAFEAT-PLS: Genetic Algorithms with Partial Least 

Squares Regression for Feature Selection 

Partial least squares projections to latent structures (PLS) has a useful method for 

modeling highly multidimensional scientific datasets with collinear features [103, 180-

182]. PLS regression is a Principal Component Regression (PCR) based on latent 

variables, in which the direction of the latent variables is slightly shifted from the PCR 

solution to obtain optimal correlation between the response variables and independent 

variables [103]. 

In the past, PLS regression was considered to be almost insensitive to noise; 

therefore, there was a common acceptance that no feature selection was necessary to 

build a better predictive model [183]. Today, it has been widely accepted that a feature 

selection has some advantages. Although PLS is a well-working method to model highly 

multidimensional and collinear datasets, the interpretation and understanding of the 

predictive model and its results are more difficult [182]. Feature selection can also help to 

built a better predictive PLS model with fewer features [103, 183].  

In this chapter, an error measure for PLS regression is integrated as a cost 

function inside the genetic algorithm with the unique list representation developed in 

section 8.3.3 in order to perform feature selection. First of all, detailed information about 

PCR and PLS is presented. Second, a literature review related to feature selection with 

evolutionary algorithms and PLS is reviewed. In later sections, the details of the proposed 
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Genetic Algorithm with Partial Least Squares (GAFEAT-PLS) for feature selection and 

its performance on two QSAR datasets (the Lombardo and HIVrt will be presented.  

 

9.1 Data Compression 

The basic idea behind a ‘data compression’ or ‘rank reduction’ is that the 

information in the many observed data variables )x,...,x,x(x K21=  can be compressed 

into a few underlying latent variables (also called components, scores, regression factors 

or just factors) A21 t,...,t,t [184]. This relationship can be mathematically expressed as 

)}x,...,x,x{(h)t,...,t,t( K211A21 =  

and these latent variables can be used as regressors to build a regression model with 

response variable y.  

e)}t,...,t,t{(hy A212 +=  

In equation (9.2), e represents those contributions to y, which cannot be explained by 

latent variables. The A latent variables (A < K) are assumed to represent the systematic 

variation in the original data variables, which are important for predicting the response 

variable y. The functions h1 and h2 in equations (9.1) and (9.2) can be combined together 

to build a predictive regression model for y. 

)}x(h{hŷ 12=  

Data compression helps to simplify model-building phase by reducing the number 

of model parameters and to solve the collinearity problem by guaranteeing an invertible 

matrix in calculation of regression coefficients [104]. It can also simplify the 

interpretation of the results since a few latent variables can reveal the main relationship 

between large numbers of original variables. On the other hand, data compression has 

)2.9(

)3.9(

)1.9(
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some disadvantages. Some useful information can be contained in the discarded latent 

variables and/or a retained latent variable may not have predictive information [104, 

184]. The interpretation of the results may be cumbersome since the latent variables are 

some combinations of the original variables. Many different methods are available for 

data compression. Principal Component Regression (PCR) and Partial Least Square 

(PLS) Regression are well-known methods.  

 

9.1.1 Principal Component Analysis (PCA) and Principal Component Regression 

(PCR) 

Principal Component Analysis (PCA) is a powerful visualization tool and is 

widely used in explanatory data analysis and data compression (or rank reduction). PCA 

is based on the fact that any set of M variables can be transformed to a set of M 

orthogonal variables [104, 126]. 

X = TPT 

The symbol T stands for the transpose of the matrix. X is the data matrix with N rows and 

M columns, which correspond to the number of samples and independent variables, 

respectively. T is the score matrix with N rows and M columns form the so-called 

principal components of X and P is the loading matrix with M rows and N columns. The 

columns of P are made up of the eigenvectors of XTX. The elements of the principal 

components are the axes of the principal component line. The score matrix T is the 

projection of the respective points on the principal component lines. 

PCA is a classical statistical method and mostly used in data analysis where the X 

variables are expected to be collinear.  The collinearity means that the X data matrix has 

)4.9(
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some dominating types of variability that explain most of the available information. PCA 

is based on the concept of variation and built on the assumption that variation implies 

information that might be classified as either relevant or irrelevant. Then, the purpose of 

the PCA is to express dominant information in the data matrix X = {xm, m = 1, 2, … , M} 

by a lower number of variables (principal components of X) TA={t1, t2, … , tA} where 

A_<_M. [184]. Then, redundancy and smaller noise variability are removed. The PCA 

provides a way to reduce the dimensionality of the data in such a way that linear 

combinations of X variables account for maximal amount of variations. In this situation, 

the first A columns of the score matrix T and the loading matrix P are considered. 

T
AA PTX̂ =  

where X̂ is an estimation of X.  

Principal Component Regression (PCR) is obtained by regressing the dependent 

variable Y on the score matrix T. In PCR, the variables of the X are replaced by those of 

T, which are orthogonal to each other and span the same multidimensional space of X if 

all principal components are combined [104].  

T
AAPTX̂ =  

AA PXT =  

EBTY A +=  

One of the advantages of the PCR is that it solves the ill conditioning in the 

matrix inversion due to multi-collinearity problem in the calculation of the regression 

coefficients (B) by producing orthogonal variables. A second advantage is that 

eliminating some of the principal components can cause some random error elimination. 

A key important advantage of the PCR is that, in contrast to MLR, it can also be applied 

)5.9(

)8.9(

)7.9(

)6.9(
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to and give good results when there are more X-features than data points, as long as the 

predictive information is in the first few principal components (eigenvectors) [184]. 

 

9.1.2 NIPALS Algorithm 

The NIPALS (Nonlinear Iterative PArtial Least Squares) algorithm is the most 

commonly used method for calculating the principal components for a dataset [151]. The 

algorithm extracts one component a time and finds A principal components without 

calculating all the eigenvectors [104]. It extracts 1t  and T
1p from the data matrix X . The 

outer product of T
11pt is subtracted from X in order to get residual the 1E . Then, 1E  is 

used to calculate 2t  and T
2p .  

...,ptEE,ptEE,ptXE T
3323

T
2212

T
111 −=−=−=   

The implementation of the NIPALS algorithm is discussed more detail in [104, 184, 185]. 

The complete NIPALS algorithm is summarized in Appendix A. 

 

9.1.3 Partial Least Squares (PLS) Regression  

Partial Least Squares (PLS) is a general method of handling regression problems. 

This method allows relationships between many blocks of data to be characterized and 

modeled [105]. Also, this method can model data with strongly correlated and/or noisy or 

numerous independent variables and several response variables [180]. The simplest type 

of application of PLS methods is the PLS regression. The PLS regression is a 

generalization of Multiple Linear Regression (MLR). The results of the PLS regression 

are analogous to the MLR. In addition, the PLS regression also produces a set of plots 

)9.9(
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(scores and loadings) that provide information about the correlation structure of the 

variables and the structural similarities/dissimilarities between the compounds [180].  

Both PCR (explained in section 9.1.1) and PLS regression are factor based 

regression methods that produce factor scores as linear combinations of the original X  

variables. On the other hand, PLS and PCR differ in their ways of extracting factor 

scores. In the PLS regression the latent variables are extracted both to model X  and to 

correlate with Y , which is contrast to PCR, in which the latent variables only model X  

[105]. 

In the PLS regression, a relationship is modeled between a response variable 

matrix Y  and a data matrix X . The modeling procedure begins with scaling the Y  and 

X  columnwise with mean zero and variance one. The PLS model is built on the 

properties of the NIPALS algorithm explained in section 9.1.2. There are many variants 

of the NIPALS algorithms that normalize or do not normalize certain vectors [184].  

The following explanation of the PLS regression is taken from Geladi and 

Kowalski [104, 186]. A PLS model consists of outer relations ( X  and Y  matrices 

individually) and an inner relationship between both matrices. The outer relation for the 

X  data can be written as: 

EptEPTX T
h

A

0h
h

T +=+= ∑
=

 

where A is the number of latent variables. The outer relation for the Y  data also can be 

written in the same way: 

*T
h

A

0h
h

*T FquFQUY +=+= ∑
=

 

The regression part of the PLS is an inner relation, which is described as: 

)10.9(

)11.9(
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hh tbû =  

 where h
T
hh

T
hh tt/tub = and the “hat” indicates that the vector is an estimated one. The 

mixed relation can be written as: 

FQBTY T +=  

where F  has to be minimized with the condition that E  in equation (9.10) is 

minimized.  

It is necessary to introduce weighting (w) to get orthogonal scores as in PCR. The 

PLS model is obtained by using the residuals after each dimension, which can be written 

as: 

0
T
hh1hh EX;ptEE =−= −  

0
T
hhh1hh FY;qtbFF =−= −  

The complete PLS algorithm is given in the Appendix B. 

 

9.1.4 Optimal Number of Latent Variables  

An optimal number of latent variables (PLS regression components) (Aopt) needs 

to be estimated. In general, Aopt is chosen as the model rank that minimizes some 

criterion (e.g., prediction error on a validation set) for the different models 

A_=_3,4,5,… ,Amax. There is a high risk for overfitting when working with dataset with 

large number of inter-correlated features. Generally, this criterion is calculated with 

cross-validation to test the predictive ability of the model, and the best one is chosen 

[181]. When several models, e.g., A = 4, 5, 6 perform about the same based on the 

criterion used, a lower-dimensional model is preferred [187].  

)13.9(

)12.9(

)14.10(

)15.10(
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The HIVrt and Lombardo datasets are modeled with PLS regression with a 

different number of latent variables under the leave-one-out cross-validation. The HIVrt 

datasets has 64 molecules and 230 descriptive features and the Lombardo datasets has 62 

molecules and 309 descriptive features (the datasets are pre-processed using 

StripMinerTM program). The results of the leave-one-out cross validations for different 

number of latent variables for the HIVrt and Lombardo datasets are presented in Tables 

9.1 and 9.2, respectively. The plot of the prediction errors for the both datasets in terms of 

Q2 versus the number of latent variables is shown in Figure 9.1. It is apparent from Figure 

9.1 that the optimal number of latent variables for both datasets is four (lowest leave-one-

out prediction error). 

 

Table 9.1 Leave-One-Out Cross-validation Results of the PLS Regression Model with 
Different Latent Variables for the HIVrt Datasets 

# of latent 
Variable r² R² q²   Q²

3 0.7682 0.7682 0.3960 0.3974
4 0.8044 0.8043 0.3396 0.3400
5 0.8517 0.8517 0.3417 0.3464
6 0.8822 0.8822 0.3397 0.3494
7 0.9172 0.9170 0.3575 0.3790
8 0.9384 0.9381 0.3978 0.4283
9 0.9590 0.9585 0.4024 0.4522

10 0.9622 0.9617 0.4302 0.5005

HIVrt DATASET

 
 
 

Table 9.2 Leave-One-Out Cross-validation Results of the PLS Regression Model with 
Different Latent Variables for the Lombardo Datasets 

# of latent 
Variable r² R² q²   Q²

3 0.8760 0.8760 0.2926 0.2932
4 0.9158 0.9157 0.2855 0.2868
5 0.9497 0.9496 0.2855 0.2910
6 0.9622 0.9621 0.2911 0.2992
7 0.9693 0.9692 0.3035 0.3170
8 0.9766 0.9765 0.3221 0.3464
9 0.9811 0.9809 0.3426 0.3805

10 0.9851 0.9850 0.3618 0.4108

LOMBARDO DATASET
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 Leave-One-Out Prediction Error (Q²) versus 
Number of Latent Variables 
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Figure 9.1 Leave-One-Out Prediction Errors of the PLS Regression Models for the HIVrt 

and Lombardo Datasets versus Number of Latent Variables  

 

 

9.1.5 Nonlinear Partial Least Squares (PLS) Regression  

In general, real datasets (e.g. QSAR datasets) exhibit significant nonlinear 

characteristics, which cannot be properly modeled by linear regression methods. Non-

linearity can be handled either using models with a nonlinear function in the regression 

step or making relationship between X  and Y  data linear and using ordinary least 

squares methods [188].  

In the first approach, the development of a nonlinear PLS model is to modify the 

inner relationship of the linear PLS regression by introducing a nonlinear function (a 

quadratic polynomial, a spline function) that relates the output scores u  to input scores t  

by keeping the X  and Y  data intact [189-191]. However, these methods require a 

number of parameters (e.g. degree of the polynomial and spline knots placement) to be 
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determined, which is difficult and adds additional complexity to the problem. These 

methods also easily overfit the data since they are very flexible [192].  

 In the second approach, a new expanded X  dataset is constructed by including 

higher order terms (e.g. quadratic terms, cross-product terms) of the original variables of 

the X  data. Then, a linear PLS regression is fitted into the new expanded X  data and Y  

data. This way, a nonlinear variant of the linear PLS algorithm can be produced by 

integrating nonlinear variables within the linear framework [191]. The disadvantage of 

this method is that if dataset has K features and quadratic nonlinearities are included, the 

number of cross-product term will be 
2

1)(KK −
, which increases rapidly when K 

increases.  Therefore, it is clearly seen that the full expansion of the features is not 

suitable for QSAR datasets since a typical QSAR dataset for predicting an activity of 

interest is characterized by a large number of descriptive features (300-1000). 

Berglund and Wold [192] proposed a simple way to develop nonlinear PLS 

models within the linear PLS framework. Since PLS produces a model in which each 

latent variable is a linear combination of the original X  variables, if Y  is a nonlinear 

function of these latent variables; then, the X  data must be expanded in such a way that 

the square and cross-product terms of the latent variables exist in the model. They show 

that by simply adding squared variables of the X  data, both the square and cross product 

terms of the latent variables are implicitly included in the resulting linear PLS model. 

This method, which is called as INLR (Implicit Nonlinear Latent variable Regression), 

works well when X  data is well modeled by a projection model )PTX( T≈  and for 

continuous rather than binary features. Therefore, if a latent structure is present in the X , 
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the cross-product terms of the variables of the X  can be excluded in the polynomial 

expansion. 

The principle of the INLR taken from [192] is the following: 

Let Y be a nonlinear function in T  (in the simplest case, polynomially quadratic): 

∑ ∑
= =

++=
A

1a

A

ab
imabmibiim

T
im fdtt}Q{TY  

The relationship in equation (9.16) can be modeled by estimating the coefficients ( abmd ) 

and the latent variables at , 2
at , and 1aa tt + . On the other hand, it can be shown that this 

relationship can be modeled by the expanded predictor matrix ( 2XX ) that includes only 

original variables of the X  data and their squares. Let’s assume TPTX ≈ , the squared 

term can be written as 

∑ ∑
= =

+=
A

1a

A

ab
ikbkakibia

2
ik eppttx  

Equation (9.17) shows that by expanding X  with only the squared terms, both the 

quadratic and the cross-product terms of latent variables are implicitly included in the 

PLS model of the X  block. This can be shown on a simple example of a X  matrix with 

rank two (A=2): 

)0E(ptptPTX T
22

T
11

T =+==  

Let’s consider only the first element of X , 11x , then 2121111111 ptptx += . The squared 

term of 11x is calculated as 

)ptpt(2)pt()pt()ptpt()x( 21211111
2

2121
2

1111
2

21211111
2

11 ++=+=  

)16.9(

)17.9(

)18.9(

)19.9(
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Equation (9.19) is equal to Equation (9.18). The same approach is also valid for the cubic 

extension of X  data. This is a logical extension of the ordinary linear PLS, if there is a 

latent structure in the data that is related to the response variables [188]. The underlying 

assumptions are that the X  data has a latent structure and that there are enough X -

variables to support the increased dimensionality of the expansion. Therefore, the number 

of latent variables A must be substantially smaller than the number of variables and the 

initial number of variables (K) should be larger than three times the rank of X [192]. 

When comparing a number of different approaches to non-linear PLS modeling (PLS 

with non-linear inner relationship [190], neural network PLS [193, 194]) with INLR 

[192], it has been pointed out that all except INLR are somewhat cumbersome to use and 

have tendency to be too flexible, causing overfitting, especially in small datasets [195]. 

 

9.2 Feature Selection with Evolutionary Algorithms and PLS 

Regression 

An evolutionary approach, the MUSEUM (MUtation and SElection Uncover 

Models) algorithm, was proposed in [101, 103] for feature selection in the regression and 

PLS analyses for QSAR datasets. The MUSEUM algorithm starts from an arbitrary 

regression model and adds or drops features to or from this model based on a mutation 

mechanism. The fitness of a model is defined by a certain criterion, e.g. the standard 

deviation or the Fischer significance value F of the regression model. If a mutated model 

has higher fitness than that of its parent, it is taken as a new breeding model that will be 

further mutated by feature additions or eliminations. If no improved model is obtained 

after a predetermined number of mutation operations, the mutation rate is increased. If a 
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better model still cannot be found, the current best model is accepted as an intermediate 

result. In the next step, in order to check whether all feature combinations have been 

considered by mutation operations, all features not included and included by the current 

best model are systematically added and eliminated, one at a time. If an improved model 

is obtained, the MUSEUM algorithm starts again with this improved model. On the other 

hand, if there is no improved model found, all features included by the model are tested 

for significance at 95% confidence level and insignificant features are eliminated. 

Leardi et al. proposed a modified binary genetic algorithm for feature selection in 

regression and PLS analyses for QSAR datasets [7, 183, 196]. In a GA applied to a 

dataset with k features for feature selection, the structure of a chromosome consists of 

binary string with the size of k in which each gene is represented a single bit (0 = 

corresponding feature is absent, 1 = corresponding feature is present). The objective of 

the GA is to find a feature subset that maximizes the percentage of predicted variance 

(R2).  As an example, an individual could be 0010011001 for a dataset with 10 features. 

The fitness of this individual will be the variance predicted by the PLS model computed 

by taking into account features 3, 6, 7, and 10. The following modifications were applied 

to the binary GA to take into account some peculiarities of the feature selection problem:  

i) An initial population is formed by individual corresponding to subsets of only a few 

features in each. At stage of the creation of the initial population, the probability of 

having ‘1’ is much lower than that of having ‘0’. 

ii) Since the fitness function requires a full multivariate analysis (MLP, PLS, etc.) to 

obtain a predicted value using cross-validation, the time required by the fitness 
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evaluation can be excessive. For this reason, the population size of the GA is kept 

as low as possible (30 individuals). 

iii) A high degree of elitism is introduced to GA by allowing parents and their children 

coexist if their fitness’s are higher respect to population.  

iv) The best individual containing C number of features is added into next generation 

regardless of its fitness value unless an individual with a same or lower number of 

features give a better fitness value. This rule forces the GA to have solutions 

containing as few features as possible since a feature subset with a few features 

leads to an easier mathematical model and sometimes to lower the computational 

cost. At the end of the run, the evolution of the fitness as a function of the number 

of selected features can be tracked in the individuals of the last population. 

v) The GA is hybridized with stepwise selection. A backward stepwise selection is 

performed on the best individual of each GA generation and resulting individual is 

considered as an offspring.  

Hesegawe et al. employed the modified GA proposed by Leardi et al. to obtain a 

PLS model with high internal predictivity using a small number of features in QSAR 

datasets [197]. They applied the GAPLS to the inhibitory activity of calcium channel 

antagonists. As a result, they selected the features strongly contributing to the inhibitory 

activity and estimated the structural requirements for the inhibitory activity in an 

effective manner. 

Genetic Partial Least Square (GPLS) was proposed to construct QSAR models by 

Duns et al. [99]. The GPLS method uses a GA to select appropriate basis functions 

(features) to be used to model a QSAR data. The initial models are generated by 
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randomly selecting a number of features using the user-specified basis function type, and 

then, constructing the models from random sequences of these basis functions. In GPLS, 

individuals are a series of basis functions. The lengths of the series (individuals) are 

predetermined. For each individual, a QSAR model is construct by using PLS regression 

to generate the regression coefficients for the basis functions. The fitness of the 

individuals (models) is rated using a modified form of Friedman’s ‘lack of fit’ (LOF) 

[198]. LOF is defined as in equation 10.5 
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The terms in the equation 10.5 are defined as follows. LSE is the least-square error, N is 

the number of compound in the dataset, d is a smoothing parameter, and c is the number 

of basis functions (independent variables) in the model. The objective of the GPLS is to 

minimize LOF since the smaller the LOF is the better model. GPLS uses classical one 

point uniform crossover. The parents for crossover are chosen based on the inverse of 

their LOF scores.  

 

9.3 The Proposed GAFEAT-PLS 

In the Genetic Algorithm proposed in this thesis with Partial Least Square 

Regression (GAFEAT-PLS), the PLS regression is integrated as a cost function into the 

GA with unique list representation developed in section 8.3.3. Given a dataset containing 

T features, each chromosome represents a legal subset containing N features. In this 

representation, a chromosome is an integer array with size N, where N is the 

predetermined number of features to be selected out of total T features. Each gene 

)5.10(
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represents the corresponding feature in the dataset. A flow diagram describing the 

procedure of GAFEAT-PLS is presented in the Figure 9.2.  
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Figure 9.2 Flow Diagram of GAFEAT-PLS Algorithm 

 

 

9.3.1 Creation of the Initial Population 

The initial population is created randomly as explained in section 8.3.1. In the 

initial population, all features in each individual are guaranteed to be different (i.e., there 

are no duplicated feature). Although the optimal number of chromosomes (individuals) 

depends on the number of features in the dataset under scrutiny, a population size of 100 

is sufficient large for GAFEAT-PLS to converge for up to 1500 features for small 

datasets. 
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9.3.2 Evaluation of the Fitness 

The fitness of each individual (chromosome) is evaluated by the predictivity of 

the PLS model derived from the feature subset represented by the corresponding 

individual. R2 is used as a yardstick for estimating the prediction ability of the PLS 

models (see section 6.4). GAFEAT-PLS calculates the fitness of each individual based on 

a certain number of bootstrap samples. In this implementation, the (n-h) compounds 

(samples) for the training set are drawn without replacements, where n is the number of 

compounds in the data set and h is the number of samples left in the holdout set. The 

number of samples left in the holdout set is generally around 10 percent of the total 

number of samples in the dataset. Note that this holdout set is neither test nor validation 

set and is never used for any purposes such as preventing over-fitting. There are no 

overlap between training and holdout sets for a bootstrap sample. After the PLS model is 

constructed by using the training set, R2 is calculated on this training set. This process is 

repeated 20 times and the fitness of each individual in the population is obtained based on 

the average R2 for 20 bootstrap samples. The fitness of the individual k is given by 
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The objective of GAFEAT-PLS is to find the individuals maximizing this fitness 

function. The values of the fitness function will be between ∞− and +1, since the values 

for R2 lie between ∞−  and +1.  

In order to show how GAFEAT-PLS calculates the fitness for individuals, let’s 

assume that the objective of GAFEAT-PLS is to select 10 features from a dataset with 62 

molecules and 694 descriptive features. Figure 9.3 graphically illustrates this example. 

For each individual, 56 molecules are randomly drawn without replacement from the 
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total of 62 molecules to construct a training set that contains only the features represented 

by the corresponding individual. A PLS regression is fitted this training set and the 

goodness-of-fit of this model is measured in terms of R2 statistic. This process is repeated 

20 times and the final fitness of the individual is calculated based on the average of these 

R2 of 20 bootstrap training sets.   
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Figure 9.3 Illustration of the Fitness Evaluation in GAFET-PLS Algorithm 

 

9.3.3 Selection Mechanism 

Selection is the process of deciding on which individuals will survive for the next 

iteration in the algorithm. GAFEAT-PLS employs a rank-based selection, which means 

that only the rank ordering of the fitness of the individuals within the current population 

determines the survival probabilities. There are many methods to assign the survival 

probability based on ranking (see [8, 199]). GAFEAT-PLS assigns new fitness values to 

the individuals of the population based on their ranking using the following function: 
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θ+−= )1ranksize_pop(Fitness )(rank  

This function returns a new fitness value of an individual ranked in position in rank, 

where pop_size is the number of individuals in the population and rank = 1, 2, 3, … , 

pop_size (rank = 1 means the best individual and rank = pop_size means the worst 

individual in the population based on the actual fitness). Individuals for the next 

generation are selected proportionally to their new fitness values rather than the actual 

objective function values. θ is a user-defined parameter that allows the users to influence 

the selective pressure. The acceptable range for the θ parameter is between 0 and 10.  θ = 

0 means that there is no selective pressure and all individuals have the same survival 

probability regardless of their actual fitnesses. If value of θ increases the survival 

probability of the better individuals increases. Figure 9.4 shows the ranking versus the 

survival probabilities for different selective pressures (θ) of 0.0, 1.0, 1.8, 5.0, and 10.0 for 

a population containing 100 individuals. 
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Figure 9.4 Survival Probability for a Population Size of 100 individuals versus Ranking 

for Different Selective Pressure (θ) Values 
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9.3.4 Crossover and Mutation 

In the proposed GAFEAT-PLS, after the rank-based selection (or sampling) 

mechanism, a recombination (crossover) operator is applied to the individuals selected 

based on a predefined crossover probability. GAFEAT-PLS employs a sexual (two 

parents) reproduction, namely partially mapped crossover (PMX) explained in section 

8.3.4 so that the resulting two offspring contain maximal characteristics from both 

parents. The proportion of the population that undergoes crossover during a generation is 

determined by the crossover probability. For example, if the probability of crossover is 

90 percent, we expect that on average 90 percent of the population will undergo 

crossover and these individuals are paired off as parents.  

After the crossover operation, mutation follows. The mutation operator randomly 

chooses a gene position in the chromosome and tries to exchange it with a unique random 

value. Here, the unique value means that the mutated gene position must have a different 

value (indicating a new feature) than all values for a given individual. If a unique value 

cannot be found a certain number of trials then the parent chromosome is copied without 

any change. 

 

9.3.5 Stopping Criteria 

A key issue is deciding when to stop evolving solutions with a genetic algorithm. 

The proposed GAFEAT-PLS uses two termination criteria: the allowed maximum 

number of generation and the early stopping.  Once one of them is satisfied, GAFEAT-

PLS stops running and reports the last population and the fittest individual of the GA run. 
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The allowed maximum number of generation must be large enough to allow GAFEAT-

PLS to converge.  

The second termination criterion is the early stopping. The fitness function of 

GAFEAT-PLS explained in the Section 10.6.2. The objective of GAFEAT-PLS is to find 

the solutions (feature subsets) maximizing the fitness function defined by 
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The values of the fitness function will be between ∞−  and 1. GAFEAT-PLS stops 

running if an individual with fitness value equal to 1 has been found. However, the 

threshold value for the fitness can be specified as a value less than 1 in order to halt a 

GAFEAT-PLS run early.   

 

9.4 Validation of GAFEAT-PLS 

The main goal of the feature selection is to select a subset of the original features 

such that the resulting model can perform well on unseen future data points (compounds) 

[200]. The commonly used validation strategy for the feature selection consists of the 

following two steps: 

Step 1.  The selection of features by using all the data points,  

Step 2. The model obtained with the selected features is validated under a 

validation scheme (cross-validation, bootstrapping, etc.). 

Because the selection of the features and model validation are performed on the 

same data points, the predictive model is only partially validated [200, 201]. Figure 9.5 

illustrates the classical (partial) validation approach to feature selection. It has been 

reported that the prediction quality or ability of a predictive model validated in this way 
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is optimistically biased, since the data points used for the feature selection is also 

employed in the model building and validation step [6, 196, 200, 201]. 
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Figure 9.5 Classical (Partial) Validation Approach to Feature Selection  

 

It has been pointed out by many researchers that in order to perform a full 

validation, the feature selection, model selection, and model validation must be 

performed under the same validation scheme [6, 196, 201]. The full validation approach 

to feature selection is illustrated in Figure 9.6.   
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Figure 9.6 Full Validation Approach to Feature Selection 
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Any QSAR model needs to be properly validated prior to use for predicting 

biological activities of new untested molecules. QSAR models have a theoretical 

foundation as semi-empirical analogy models such that they usually have local validity, 

and that they can only predict molecules that are chemically and biologically similar to 

those of the training set [202]. Therefore, the most important step in building a sound and 

robust OSAR model is the selection of an informative and representative training set. The 

validation process, in general, is a very important step and must be carried out in the right 

way. The most commonly used methods for a model validation are the use of an external 

validation (test) set and cross-validation. A randomization test is also commonly used for 

the validation of QSAR models [124]. These validation methods are explained in more 

detail in the following sections. 

 

9.4.1 External (Independent) Validation Set 

The most reliable method for model validation uses an external validation set for 

confirmation. This requires that the dataset under examination is sufficiently large, which 

is often not the case in the QSAR studies. If the dataset has a sufficiently large number of 

data points (i.e., molecules or compounds in QSAR) then, the dataset can be split up in a 

training and an external validation sets. This division can be made in several ways such 

as the D-optimal design [202], stratified validation samples etc. However, it is very 

important that both datasets should be representative and informative (i.e., they should 

span approximately similar ranges of the biological responses and the structural 

properties [203]).  
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Martens and Dardenne [187] demonstrated that for small datasets, independent 

validation test set are wasteful and still uncertain with sometimes over-optimistic 

estimates of future predictive error. The reason is that removing samples from an already 

limited set of available samples to an independent validation test set seriously biases the 

feature selection process and therefore reduces the predictive ability of the models, and 

while at the same time give uncertain, systematically over-optimistic assessment of the 

predictive ability of the models (because of “over-fitted” features). 

In the absence of an external validation set, two reasonable ways of model 

validation can be performed by either a cross-validation that simulates how well the 

model predicts new data, or model re-estimation after randomization that estimates the 

chance probability to obtain a good fit with randomly shuffled response values [181]. 

 

9.4.2 Cross-validation and Bootstrapping without Replacement 

Cross-validation is also called internal validation, since all the data points 

belong to same dataset that was also used in the training or building of a predictive 

model. In cross-validation, a dataset is divided into k subsets of approximately equal size. 

A k-fold-cross-validation procedure requires the fitting the model into dataset k times; at 

each time a subset is left out once, and only once, as a validation set and the remaining 

datasets are combined as a training set. If k is equal to the number of data points; then, it 

is called leave-one-out-cross-validation (LOOCV). If k is less than the number of data 

points; then, it is called as leave-several-out-cross-validation (LSOCV).  

The LSOCV leaves out a certain portion of the dataset; therefore, it creates a 

constant perturbation in the structure. On the other hand, the LOOCV perturbs the data 
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structure by removing one data points at a time; therefore, causes an increasingly smaller 

perturbation with increasing the number of data points. Hence, (1-Q2) of LOOCV 

approaches R2 of LOOCV in the limit [203]. Therefore, LOOCV gives an over-optimistic 

result that is an underestimation of the true prediction error. On the other hand, LSOCV 

(leaving approximately 7 molecules in the validation set) is recommend in order to get an 

unbiased estimation of the model quality [203].  

In this dissertation, bootstrapping without replacement is employed for model 

validation instead of cross-validation. Bootstrapping without replacement is explained in 

section 8.7.1. The reason behind this choice is that there is a relationship between the 

bootstrapping without replacement and cross-validation methods. Since the cross-

validation estimate is a heuristic estimate that depends on the division of data into folds, 

repeating cross-validation multiple times using different splits into folds and combining 

those estimates gives more accurate estimate. A complete cross-validation estimate is a 

combination of the estimates of all 





k/n
n  possibilities for choosing k/n  instances out of 

n, where n is the number of data points and k is the number of folds [204]. The 

bootstrapping without replacement can be thought of as a better Monte Carlo estimate to 

the corresponding complete cross-validation.  

 

9.4.3 Randomization test (Randomization of the Response Values)  

A randomization test is based on repetitive random reassignments (or shuffling) 

of the order of the original values of the response (Y) variable in the training set. Then, a 

model is built on each of the modified (randomized) datasets and its prediction error is 

calculated. If in each case the modified (randomized) dataset gives significantly higher 
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Q2 values than the original dataset; then, it can be inferred that the real QSAR model is 

relevant and predictive. In general, some hundreds of modeling of modified datasets are 

required, but randomization of the Y data a number of times (at least 10 times) gives a 

fairly good idea of the significance of the real QSAR model [203]. A target level of 

confidence for the randomization test can be set to 90, 95, 98, or 99 percent by comparing 

the resulting scores with the score of the original QSAR equation generated with the non-

randomized (original) data. The higher the confidence level, the more randomization tests 

are to be performed. It is suggested that for a 90% confidence level, 9 trials are to be 

performed, 19 trials at 95%, 49 trials at 98%, and 99 trials at 99% [205]. If the training 

and prediction error of the random models are comparable to that of model with the 

original dataset, it can be concluded that either noise is modeled or the set of observations 

is not sufficient to support to build a predictive model.   

A randomization test is very useful tool for the validation of the models with 

features selected by genetic algorithms in such situations [183]: 

i) A dataset is very noisy (especially response variable). 

ii) A dataset has a large number of descriptive features for a relatively small 

number of molecules.  

If a GA is used for building a predictive model on these kinds of datasets, the GA may 

simply model the noise. A randomization test can be a useful validation tool to verify it.  

 

9.4.4 Validation Strategy for GAFEAT-PLS  

In order to properly validate the proposed GAFEAT-PLS feature selection method 

for small datasets, a combination of partial and full validation approaches is used. Partial 
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validation is applied to all models by using 100-bootstrap samples after the GAFEAT-

PLS feature selection step. Full validation is applied to GAFEAT-PLS feature selection 

by employing a randomization test. The validation strategy consists of the following three 

steps: 

i) The models constructed with features selected by GAFEAT-PLS are validated 

based on 100 bootstrap samples as explained in section 9.4.2. The main advantage of the 

bootstrapping without replacement over a LSOCV is that the former method gives a better 

estimation. 

ii) In the literature, some researchers have reported that although the wrapper 

feature selection methods have certain advantages, they select an optimal feature subset 

biased to a particular learning algorithm [6]. Since any learning algorithm is biased to 

some degree, selecting feature subsets tailored to a particular learning algorithm is 

equivalent to customizing the data to fit into that particular learning algorithm. The 

purpose of the feature selection is not only to build a good predictive model but also to 

explain and interpret to some degree how and why the model works. Therefore, 

especially in QSAR studies, a good feature subset, which is independent of any learning 

algorithm, will give more useful information that can be easily interpretable. Since 

GAFEAT-PLS is a wrapper feature selection method in which the PLS regression is used 

as a cost function, the quality of the selected feature subsets are also measured by another 

learning algorithm, in this case Support Vector Machines (SVM) regression, in addition 

to the PLS models. 

iii) A randomization test is performed for the full GAFEAT-PLS feature selection 

method in order to verify that GAFEAT-PLS selects a good feature subset that model 
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information available in the dataset. To evaluate the statistical significance of a QSAR 

model constructed with features selected by a GAFEAT-PLS for an actual dataset, a 

standard hypothesis testing approach proposed by Zheng and Tropsha [100] is used. The 

null (H0) and alternative (HA) hypothesis are formulated as following: 

µ=h:H0  

µ<h:HA      or      µ>h:HA   

where h is the Q2
 or R2 value for the model constructed with the selected features by 

GAFEAT-PLS from the original dataset and µ  is the average value of the Q2
 or R2 for 

the models constructed with the selected features by GAFEAT-PLS from random 

datasets. The null hypothesis states that the model for the original dataset is not 

significantly better than random models. If the training (R2) and prediction (Q2) error of 

the random models are comparable to that of model with the original dataset based on the 

hypothesis testing, it can be concluded that either GAFEAT-PLS simply models the noise 

(overfitting) or the set of observations is not sufficient to support to build a predictive 

model.   

In standard hypothesis testing, the sampling distribution of the statistic is assumed 

to normal and the formula shown below is used for calculating the standardized test 

statistic (Z). 

σ
µ−= hZ  

where σ is the standard error of Q2 or R2 of the models constructed with the selected 

features by GAFEAT-PLS from random datasets. Value of the Z determines whether it is 
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appropriate to reject or not reject the null hypothesis based on a target level of confidence 

(e.g. 90, 95, 98, or 99 percent). 

 

9.5 Computational Evaluation of GAFEAT-PLS 

There are two QSAR datasets that have been used to evaluate the performance of 

GAFEAT-PLS: i) the Lombardo dataset originally with 62 compounds and 694 

descriptive features (see section 7.2). ii) the HIVrt dataset with 64 compounds and 620 

descriptive features (see section 7.3).  

The first step is to use objective feature selection (e.g. removing non-changing, 

highly inter-correlated (cousin features), and 4-sigma outlier features) to remove features 

that contain redundant, minimal information or distorted information. The StripMiner  

program [4], which is a general purpose data preprocessing and modeling program for the 

scientific data mining of large datasets, is used to perform objective feature selection. The 

StripMiner  program removes cousin (highly inter-correlated) features in the following 

way: if two features are correlated with each other above a pre-specified correlation 

threshold, StripMiner  removes the feature that is less correlated with the response 

variable. In general, this correlation threshold is set to 95%. StripMiner  is also used to 

remove the 4σ outliers. Since the QSAR datasets studied in this dissertation are 

characterized by a large number of descriptive features for a relatively small number of 

molecules, only the outlier features rather than molecules with outlier features are 

removed. 
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9.5.1 The Lombardo Dataset 

The Lombardo dataset was pre-processed with StripMiner  in order to remove 

non-changing, highly inter-correlated (%95 and above) features, and features with 4σ 

outlier. After pre-processing, 309 descriptive features were retained in the Lombardo 

dataset. 

Since GAFEAT-PLS conducts a search for a good feature subset using the PLS 

regression itself as part of the fitness function, the accuracy estimation of the PLS model 

may be overly optimistic (overfits to the PLS regression model). Therefore, another 

learning algorithm, namely the SVM regression, is used for constructing a predictive 

model and its accuracy estimation (validation error) is compared with that of the PLS 

regression model. In a summary, it is desired to find a good feature subset, which give 

consistent results for both the PLS and SVM regression models. 

First of all, the StripMiner  [4] program is employed to construct predictive 

models (the PLS and SVM regression) of the Lombardo dataset with 309 original 

features. The predictive abilities of the PLS and SVM regression models are obtained 

based on 100-bootstrapping samples by leaving out 6 molecules in each validation set. 

The PLS regression models described in this dissertation used four latent variables for all 

calculations. However, the SVM regression in the StripMiner  [4] automatically 

computes the parameters of the SVM regression model (the kernel parameter σ, the trade-

off constant C, and the value of ε) for each bootstrapping sample by using a pattern 

search algorithm [146, 149]. For this reason, validations of the SVM regression models 

are computationally expensive. The results of the 100 bootstrap validation of the PLS and 

SVM regression models with all features are presented in the Table 9.3.  
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Table 9.3 100-bootstrap Validation of Full Lombardo Dataset 

Training Error Validation Error Learning Models r2 R2 q2 Q2 
PLS 0.9228 0.9228 0.2853 0.2858 
SVM 0.9846 0.9822 0.3098 0.3105 

 

 

GAFEAT-PLS is applied on the Lombardo dataset to select a good feature subset 

with a minimum number of features. Since the number of selected features is 

predetermined, several of GAFEAT-PLS runs with different numbers of features are 

performed in order to determine the most informative feature subset with the minimum 

number of descriptive features. The parameters of GAFEAT-PLS used for the Lombardo 

dataset are listed in the Table 9.4.  

 

Table 9.4 Parameters of GAFEAT-PLS for the Lombardo Dataset  

Population 
Size 

Crossover 
Probability 

Mutation 
Probability 

Maximum # of 
Generation 

Number of Latent 
Variables 

100 0.90 0.02 1000 4 
 
Number of Bootstraps in 

the Fitness Evaluation 
Number of Molecules 

in the Training Set 
Number of Molecules 
in the Validation Set 

20 56 6 
 

 GAFEAT-PLS is executed 5 times to select 10, 20, 30, 40, and 50 features from 

the Lombardo dataset with 309 features. Each selected feature subset is modeled by the 

PLS and SVM regression, and are further validated with 100-boostrap samples by leaving 

56 molecules in training sets and 6 molecules in the validation sets. The feature subset 

validation results of the PLS and SVM regression models are presented in the Tables 9.5 

and 9.6, respectively. 
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Table 9.5 100-bootstrap Validation Results of PLS Models of the Feature Subset 
Selected by GAFEAT-PLS from the Lombardo Dataset 

r2 R2 q2 Q2

10 0.9122 0.9122 0.1710 0.1729
20 0.9719 0.9719 0.0809 0.0822
30 0.9812 0.9812 0.0669 0.0677
40 0.9801 0.9801 0.0749 0.0755
50 0.9828 0.9828 0.0831 0.0871

Number of 
Selected 
Features 

Training Error Validation Error

 

 

Table 9.6 100-bootstrap Validation Results of SVM Models of the Feature Subset 
Selected by GAFEAT-PLS from the Lombardo Dataset 

r2 R2 q2 Q2

10 0.9320 0.9309 0.1922 0.1951
20 0.9731 0.9705 0.0962 0.0966
30 0.9810 0.9795 0.0719 0.0733
40 0.9821 0.9802 0.0950 0.0955
50 0.9824 0.9795 0.0981 0.1018

Number of 
Selected 
Features 

Training Error Validation Error

 
 
 

 

Figure 9.7 shows the number of features selected by GAFEAT-PLS versus 100-

bootstrap validation errors of the PLS and SVM regression models of the corresponding 

selected feature subsets in terms of Q2 statistics. The PLS and SVM regression models 

with the selected features are significantly more predictive than those models containing 

all the features. It can be seen that the subset with 30 features is the best subset since its 

validation error is the lowest one (also relatively low) when compared with other feature 

subsets. ‘Relatively low validation error’ means that a feature subset gives the lowest 

error as the average of the validation errors of the SVM and PLS regression models. It is 
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hypothesized in this dissertation that a good feature subset should give similar results for 

the PLS and SVM regression models. 
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Figure 9.7 100-bootstrap Validation Errors (Q2) of the PLS and SVM Regression Models 

of Selected Feature Subsets by GAFEAT-PLS from the Lombardo Dataset 

 

 

9.5.2 The HIVrt Dataset 

HIVrt dataset has been pre-processed by StripMiner  [4] to remove non-

changing, highly correlated (%95 and above) and 4σ outlier features. After pre-

processing, 230 descriptive features left in the HIVrt dataset. The StripMiner  program 

is employed to construct predictive models (the PLS and SVM regressions) of the HIVrt 

dataset with 230 original features. The obtained PLS and SVM models are validated 
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based on 100-bootstrapping samples by leaving 58 molecules in training set and 6 

molecules in the validation set. These validation results are presented in the Table 9.7. 

 

Table 9.7 100-bootstrap Validation of Full HIVrt Dataset 

Training Error Validation Error Learning Models r2 R2 q2 Q2 
PLS 0.8129 0.8129 0.3354 0.3368 
SVM 0.9276 0.9159 0.3690 0.3718 

 

 

GAFEAT-PLS is applied to select a good feature subset with the minimum 

number of features for the HIVrt dataset. The parameters of GAFEAT-PLS used for the 

HIVrt dataset is presented in the Table 9.8. Since the number of feature to be selected is 

predetermined, a several of GAFEAT-PLS runs are performed to obtain the most 

informative and predictive feature subset with the minimum number of features.  

 

Table 9.8 Parameters of GAFEAT-PLS for the HIVrt Dataset  

Population 
Size 

Crossover 
Probability 

Mutation 
Probability 

Maximum # of 
Generation 

Number of Latent 
Variables 

100 0.90 0.02 1000 4 
 
Number of Bootstraps in 

the Fitness Evaluation 
Number of Molecules 

in the Training Set 
Number of Molecules 
in the Validation Set 

20 58 6 
 

  

GAFEAT-PLS executed to select 10, 20, 30, 40, and 50 features from the HIVrt 

dataset with 230 features. Each selected feature subset is modeled by the PLS and SVM 

regression techniques, and these models are further validated with 100-boostrapping 



 177 

samples by leaving 58 molecules in training set and 6 molecules in the validation set. The 

feature subset validation results for the PLS and SVM regression models are presented in 

the Tables 9.9 and 9.10, respectively. 

 

Table 9.9 100-bootstrap HIVrt Feature Subset Validation with PLS Regression 

r2 R2 q2 Q2

10 0.8712 0.8712 0.1843 0.1858
20 0.9142 0.9142 0.1592 0.1593
30 0.9362 0.9362 0.1840 0.1851
40 0.9379 0.9379 0.1966 0.1969
50 0.9299 0.9299 0.1912 0.1915

Training Error Validation ErrorNumber of 
Selected 
Features 

 

 

Table 9.10 100-bootstrap HIVrt Feature Subset Validation with SVM Regression 

r2 R2 q2 Q2

10 0.8807 0.8793 0.2194 0.2218
20 0.9218 0.9182 0.1865 0.1872
30 0.9753 0.9749 0.1456 0.1470
40 0.9796 0.9788 0.1602 0.1618
50 0.9703 0.9683 0.2220 0.2237

Number of 
Selected 
Features 

Training Error Validation Error

 
 
 
 

Figure 9.8 shows the plot of the number of selected features by GAFEAT-PLS versus the 

100-bootstrap validation errors of the PLS and SVM models for the corresponding 

selected feature subsets in terms of Q2 statistics. It is seen from Figure 9.8 that the feature 

subset with 30 features is the best subset since whose validation error is relatively lower 

when compared to other feature subsets.  
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100-bootstrap Validation Error (Q2) of PLS and SVM Models of  
Selected Feature Subsets by GAFEAT-PLS from the HIVrt Dataset  

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

10 20 30 40 50 All
Number of selected features by GAFEAT-PLS

Q2

  Q²  PLS
  Q²  SVM

 
Figure 9.8 100-bootstrap Validation Errors (Q2) of the PLS and SVM Regression Models 

of Selected Feature Subsets by GAFEAT-PLS from the HIVrt Dataset 

 

 

9.6 Computational Validation of GAFEAT-PLS with a Randomization 

Test 

As explained in section 9.4.4, the validation (robustness) of GAFEAT-PLS method 

is examined with a standard hypothesis testing where the results of a real dataset is 

compared to those of randomized datasets. The randomization test validation of 

GAFEAT-PLS is performed on the Lombardo and HIVrt datasets. Full validation result of 

GAFEAT-PLS based on 10 fold cross-validation and leave-one-out cross-validation on 

the Lombardo and HIVrt datasets are presented in the Appendix C. These full validation 

results are presented in the appendix, since full validation approach for feature selection 

in small datasets is not conclusive as explained in section 9.4.  
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9.6.1 The Lombardo Dataset 

Ten randomization trails were performed in which the biological activity data was 

randomized with respect to the dataset. A full GAFEAT-PLS feature selection method is 

performed for each randomized dataset. Randomization of data, GAFEAT-PLS feature 

selection, and subsequent model evaluation are performed to assess the statistical validity 

of QSAR models and the overall GAFEAT-PLS feature selection method. Each selected 

feature subset is modeled using a PLS regression with 4 latent variables and the 

predictive quality of the resulting model is measured based on 100 bootstrap samples 

leaving 56 molecules in the training sets and 6 molecules in the validation sets. Figures 

9.9 and 9.10 show the results of randomization test of GAFEAT-PLS feature selection 

method on the Lombardo dataset in terms of the Q2 and R2 statistics, respectively. 
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Figure 9.9 100-bootstrap Validation Errors (Q2) of the PLS Models of Feature Subsets 

Selected by GAFEAT-PLS from Randomized Lombardo Dataset for Different 
Randomization Trials 
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Quality of the Fit (R²) of the PLS models of Selected Feature Subsets by 
GAFEAT-PLS from Randomized Lombardo Dataset for Different 

Randomization Trials 

0.5

0.6

0.7

0.8

0.9

1.0

1.1

10 20 30 40 50  All

Number of Selected Features by GAFEAT-PLS

R²

Randomized 1

Randomized 2

Randomized 3

Randomized 4

Randomized 5

Randomized 6

Randomized 7

Randomized 8

Randomized 9

Randomized 10

Original Data

 
Figure 9.10 Quality of the Fit (R2) of the PLS Models of Selected Feature Subsets by 
GAFEAT-PLS from the Randomized Lombardo Dataset for Different Randomization 

Trials  

 

 

It appears from Figures 9.9 and 9.10 that in each randomization test the 

randomized data give much higher Q2 and much lower R2 values than those of the 

original data. As explained in section 9.4.4, the validation (robustness) of GAFEAT-PLS 

method is carried out by standard hypothesis testing where the results of a real dataset is 

compared to those of randomized datasets. The hypothesis testing results based on R2 and 

Q2 are presented in Tables 9.11 and 9.12, respectively. Z score and P value represent the 

test statistics and its probability that is the smallest probability leading to rejection of the 

null hypothesis, respectively.  
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Table 9.11 Standard One-Tail Hypothesis Testing of GAFEAT-PLS on the Lombardo 
Dataset Based on R2 

Number of 
Selected 
Features

Original Data
Mean of the 

Randomization 
Trials

Std. Dev. of the 
Randomization 

Trials
Z score P value

10 0.9122 0.6495 0.0650 4.0398 0.0000
20 0.9719 0.8269 0.0435 3.3340 0.0004
30 0.9812 0.8821 0.0290 3.4196 0.0003
40 0.9801 0.8992 0.0273 2.9618 0.0015
50 0.9828 0.9047 0.0253 3.0881 0.0010
All 0.9228 0.7062 0.0446 4.8570 0.0000  

   

 

Table 9.12 Standard One-Tail Hypothesis Testing of GAFEAT-PLS on the Lombardo 
Dataset Based on Q2 

Number of 
Selected 
Features

Original Data
Mean of the 

Randomization 
Trials

Std. Dev. of the 
Randomization 

Trials
Z score P value

10 0.1729 0.5435 0.1089 -3.4014 0.0003
20 0.0822 0.5452 0.1807 -2.5626 0.0052
30 0.0677 0.6109 0.1944 -2.7947 0.0026
40 0.0755 0.7354 0.2702 -2.4424 0.0073
50 0.0871 0.8122 0.2653 -2.7328 0.0031
All 0.2858 1.3286 0.2677 -3.8956 0.0000  

   

 

Based on P values, it can be concluded with a 90 percent of confidence that 

GAFEAT-PLS models on original datasets give consistently higher R2 and lower Q2 than 

those of GAFEAT-PLS models obtained on the ten different randomized datasets.  

 

9.6.2 The HIVrt Dataset 

Ten randomization trails were performed in which the biological activity data was 

randomized with respect to the dataset. A full GAFEAT-PLS feature selection is 

performed for each randomized HIVrt dataset. Randomization of data, GAFEAT-PLS 

feature selection and subsequent model evaluations are performed to assess the statistical 

validity of the QSAR model and GAFEAT-PLS feature selection method. Each selected 
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feature subset is modeled using the PLS algorithm with 4 latent variables and the 

predictive quality of the resulting model is measured based on 100 bootstrap samples 

leaving 6 molecules in the validation set. Figures 9.11 and 9.12 show the results of 

randomization test of GAFEAT-PLS feature selection method on the HIVrt dataset. 
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Figure 9.11 100-bootstrap Validation Errors (Q2) of the PLS Models of Selected Feature 

Subsets by GAFEAT-PLS from the Randomized HIVrt Dataset for Different 
Randomization Trials 
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Quality of the Fit (R²) of the PLS models of Selected Feature Subsets by 
GAFEAT-PLS from Randomized HIVrt Dataset for Different Randomization 

Trials
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Figure 9.12 Quality of the Fit (R2) of the PLS Models of Selected Feature Subsets by 
GAFEAT-PLS from the Randomized HIVrt Dataset for Different Randomization Tests 

 

It appears from the Figures 9.11 and 9.12 that in each randomization test the 

randomized data give much higher Q2 and much lower R2 values than those of the 

original data. The hypothesis testing results based on R2 and Q2 are presented in Tables 

9.13 and 9.14, respectively. Z score and P value represent the test statistics and its 

probability that is the smallest probability leading to rejection of the null hypothesis, 

respectively.  

 

Table 9.13 Standard One-Tail Hypothesis Testing of GAFEAT-PLS on the HIVrt Dataset 
Based on R2 

Number of 
Selected 
features

Original Data
Mean of the 

Randomization 
Trials

Std. Dev. of the 
Randomization 

Trials
Z score P value

10 0.8712 0.5929 0.0754 3.6903 0.0001
20 0.9142 0.7535 0.0579 2.7733 0.0028
30 0.9362 0.7895 0.0453 3.2417 0.0006
40 0.9379 0.7929 0.0524 2.7699 0.0028
50 0.9299 0.7923 0.0546 2.5203 0.0059
All 0.8129 0.5648 0.0596 4.1616 0.0000  
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Table 9.14 Standard One-Tail Hypothesis Testing of GAFEAT-PLS on the HIVrt Dataset 
Based on Q2 

Number of 
Selected 
features

Original Data
Mean of the 

Randomization 
Trials

Std. Dev. of the 
Randomization 

Trials
Z score P value

10 0.1858 0.6228 0.1408 -3.1033 0.0010
20 0.1593 0.6179 0.1878 -2.4419 0.0073
30 0.1851 0.7852 0.2780 -2.1587 0.0154
40 0.1969 0.8510 0.3219 -2.0319 0.0211
50 0.1915 0.9347 0.2366 -3.1419 0.0008
All 0.3368 1.2436 0.2219 -4.0862 0.0000  

   

Based on the P values of the test statistics, it can be concluded with a 90 percent of 

confidence that GAFEAT-PLS models on original datasets give consistently higher R2 

and lower Q2 than those of GAFEAT-PLS models obtained on the ten different 

randomized datasets.  

 

9.7 Computational Evaluation of the Implicit Nonlinear GAFEAT-PLS 

It is worth mentioning that PLS model is a linear while the SVM model is non-

linear. If the relationship between the predictor data (X) and response data (Y) is linear, 

then it is expected that nonlinear model (SVM) will converge to a linear model. However, 

almost all of the real datasets (i.e., such as QSAR datasets used in this dissertation) 

exhibit moderate nonlinear characteristics.  Since PLS is a linear model, GAFEAT-PLS 

selects feature subsets based on a linear criterion, even though the dataset has some 

nonlinear characteristics. These feature subsets selected by GAFEAT-PLS may also 

contain some nonlinear characteristics depending on the dataset under scrutiny. These 

nonlinear characteristics cannot be taken into consideration by GAFEAT-PLS, since the 

PLS algorithm only models linear relationships.  Depending on the existing nonlinearities 

in the selected feature subsets, the SVM regression models sometimes may perform 

better than PLS. It is expected that if PLS regression could also model for nonlinearities, 
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its performance will be similar to that of the SVM model. This issue is addressed by 

applying the INLR method proposed in [192] on the Lombardo and HIVrt datasets. The 

INLR method has been explained in the section 9.1.5. 

 

9.7.1 The Lombardo dataset 

Lombardo dataset originally had 62 compounds and 694 descriptive features (see 

section 7.2). First, the squares of the features were added into the Lombardo dataset and 

the total number of features at the onset of the analysis became 1388. The expanded 

Lombardo dataset has been pre-processed with StripMinerTM in order to remove non-

changing, highly correlated (%95 and above) and the 4σ outlier features. After pre-

processing, 442 descriptive features remained in the expanded Lombardo dataset (241 

original features and 241 squared features). 

The StripMiner  [4] program is then employed to construct PLS and SVM 

predictive regression models of the expanded Lombardo dataset consisting of 442 

features. The obtained PLS and SVM regression models are validated based on 100-

bootstrapping samples by leaving out 6 molecules in the validation set each time. These 

validation results are presented in the Table 9.15.  

 

 

 Table 9.15 100-bootstrap Validation of the Expanded Lombardo Full Dataset 

Training Error Validation Error Learning Models r2 R2 q2 Q2 
PLS 0.9315 0.9315 0.2595 0.2595 
SVM 0.9482 0.9404 0.2798 0.2802 
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GAFEAT-PLS is applied to the expanded Lombardo dataset to select a good 

subset with the minimum number of descriptive features. The same parameter set listed in 

the Table 9.4 is used for GAFEAT-PLS. GAFEAT-PLS is run to select 10, 20, 30, 40, 

and 50 features from the expanded Lombardo dataset with 442 features. Each selected 

feature subset is modeled by the PLS and SVM regression in the StripMiner  [4] and are 

further validated with 100-boostrapping samples by leaving 56 molecules in training set 

and 6 molecules in the validation set. These feature subset validation results for the PLS 

and SVM regression models are presented in the Tables 9.16 and 9.17, respectively. 

 

 

Table 9.16 100-bootstrap the Expanded Lombardo Feature Subset Validation with PLS 
Regression 

r2 R2 q2 Q2

10 0.9122 0.9122 0.1710 0.1729
20 0.9794 0.9794 0.0511 0.0513
30 0.9840 0.9840 0.0570 0.0571
40 0.9877 0.9877 0.0559 0.0572
50 0.9890 0.9890 0.0544 0.0567

Number of 
Selected 
Features 

Training Error Validation Error

 

 

Table 9.17 100-bootstrap the Expanded Lombardo Feature Subset Validation with SVM 
Regression 

r2 R2 q2 Q2

10 0.9320 0.9309 0.1922 0.1951
20 0.9859 0.9855 0.0565 0.0569
30 0.9913 0.9911 0.0591 0.0593
40 0.9888 0.9875 0.0532 0.0548
50 0.9934 0.9928 0.0504 0.0521

Number of 
Selected 
Features 

Training Error Validation Error
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Figure 9.13 shows the number of selected features from the expanded Lombardo 

dataset by GAFEAT-PLS versus the 100-bootstrap validation errors of the PLS and SVM 

regression models of the corresponding selected feature subsets in terms of Q2 statistics. 

The PLS and SVM regression models with the selected features are significantly more 

predictive than those models with all features. Here, although feature subsets with 20, 30, 

40, and 50 features give almost similar validation error, it is seen that the feature subset 

with 20 features is the best subset since its validation error is relatively lower and 

contains less number of features when compared with other feature subsets.  
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Figure 9.13 100-bootstrap Validation Errors of the PLS and the SVM Regression Models 

of Selected Feature Subsets by GAFEAT-PLS from the Expanded Lombardo Dataset 
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9.7.2 The HIVrt dataset 

HIVrt dataset originally had 64 compounds and 620 descriptive features (see 

section 7.3). First, the squares of the features were added into the HIVrt dataset and the 

total number of features became 1240. The expanded HIVrt dataset has been pre-

processed in order to remove non-changing, the highly correlated  (%95 and above) and 

the 4-sigma outlier features. After pre-processing, 369 descriptive features remained in 

the HIVrt dataset (197 original features and 172 squared features). 

The StripMiner  [4] program is employed to construct PLS and SVM predictive 

regression models of the expanded HIVrt dataset containing 369 features. The obtained 

PLS and SVM models are validated based on 100-bootstrapping samples by leaving out 6 

molecules in the validation set each time. These validation results are presented in the 

Table 9.18. 

 

 Table 9.18 100-bootstrap Validation of the Expanded HIVrt Full Dataset 

Training Error Validation Error Learning Models r2 R2 q2 Q2 
PLS 0.8103 0.8103 0.3326 0.3349 
SVM 0.9319 0.9215 0.3546 0.3546 

 

 

GAFEAT-PLS is applied to the expanded HIVrt dataset to select a good feature 

subset with the minimum number. The same parameter set listed in the Table 9.4 is used 

for GAFEAT-PLS. GAFEAT-PLS is used to select 10, 20, 30, 40, and 50 features from 

the expanded HIVrt dataset with 369 features. Each selected feature subset is modeled by 

the PLS and SVM regression methods, and these models are further validated with 100-
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boostrapping samples. These feature subset validation results for the PLS and the SVM 

regressions are presented in the Tables 9.19 and 9.20, respectively. 

 

Table 9.19 100-bootstrap the Expanded HIVrt Feature Subset Validation with PLS 

r2 R2 q2 Q2

10 0.8805 0.8805 0.1581 0.1610
20 0.9149 0.9149 0.1337 0.1347
30 0.9366 0.9366 0.1073 0.1089
40 0.9272 0.9272 0.1401 0.1437
50 0.9336 0.9336 0.1157 0.1204

Number of 
Selected 
Features 

Training Error Validation Error

 

 

Table 9.20 100-bootstrap the Expanded HIVrt Feature Subset Validation with SVM 

r2 R2 q2 Q2

10 0.8976 0.8976 0.1937 0.1957
20 0.9252 0.9200 0.1652 0.1690
30 0.9554 0.9521 0.1336 0.1371
40 0.9416 0.9366 0.2072 0.2128
50 0.9464 0.9406 0.1855 0.1901

Number of 
Selected 
Features 

Training Error Validation Error

 
 
 

Figure 9.14 shows the number of selected features from the expanded HIVrt 

dataset by GAFEAT-PLS versus the 100-bootstrap validation errors of the PLS and SVM 

regression models of the corresponding selected feature subsets in terms of Q2 statistics. 

The PLS and SVM regression models with the selected features are significantly more 

predictive than those models with all features. Here, it is seen that the feature subset with 

30 features is the best subset since whose validation error is the lowest (also relatively 

lowest) when compared with other feature subsets.  
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 100-bootstrap Validation Error (Q2) of PLS and SVM Models of  
Selected Feature Subsets by GAFEAT-PLS from the Expanded HIVrt 

Dataset
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Figure 9.14 100-bootstrap Validation Errors of the PLS and the SVM Regression Models 

of Selected Feature Subsets by GAFEAT-PLS from the Expanded HIVrt Dataset 

 

 

9.7.3 Comparisons of GAFEAT-PLS and Implicit Nonlinear GAFEAT-PLS 

Like multiple regression models, PLS models give a linear relationship between X 

and Y data. However, almost all of the real datasets (i.e. such as QSAR datasets used in 

this dissertation) exhibit nonlinear characteristics in some degree.  A wide degree of non-

linearity (from mild to severe) may exist between sets of variables, and the mildest non-

linearities can be modeled by quadratic polynomials [195]. Berglund et al. point out that 

if a dataset has mild non-linear characteristics, the INLR method works well, and if non-

linearities are more severe than quadratically polynomial, they cannot be modeled by the 

INLR method [195].  

GAFEAT-PLS feature selection method integrated with the INLR method has 

been applied to the Lombardo and HIVrt datasets in sections 9.7.1 and 9.7.2, respectively. 
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The comparisons of GAFEAT-PLS feature selection method without and with the INLR 

method are presented for the Lombardo and HIVrt datasets in Figures 9.15 and 9.16, 

respectively. It is clearly seen from these computational results that the INLR models 

perform better than the PLS models on the datasets with all features (without feature 

selection). As we previously pointed out that if the PLS regression is able to model the 

nonlinearities, and then its performance will be similar to that of the SVM model. This 

can be apparently seen from the Lombardo dataset. The performances of the PLS and 

SVM regression models with feature subsets selected by GAFEAT-PLS from the 

expanded Lombardo dataset give very similar prediction error in terms of Q2 statistics 

calculated based on 100 bootstrap sample (see Figure 9.15-A). These results confirm that 

the Lombardo dataset has mild non-linear characteristics, which can be modeled by 

quadratic polynomials.  
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(B) 

Figure 9.15 Lombardo Dataset (A) GAFEAT-PLS  (B) GAFEAT-PLS with the INLR 
Method  
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The results of the HIVrt dataset show that the HIVrt dataset has more severe non-

linearities than quadratically polynomial, and they cannot be modeled by the INLR 

method totally (see Figure 9.16). As mentioned in the section 7.3 the HIVrt dataset is a 

more non-linear dataset that contains 64 molecules representing five structural classes of 

reverse transcriptase inhibitors. Although the INLR method helps improving the 

predictive quality of the PLS models, there are more non-linearities remained as a noise. 

This can be seen from Figure 9.16 that there are some discrepancies between 

performances of the PLS and SVM regression models. 
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100-bootstrap Validation Error (Q2) of PLS and SVM Models of  
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(B) 

Figure 9.16 HIVrt Dataset (A) GAFEAT-PLS  (B) GAFEAT-PLS with the INLR Method 

 

 

Computational results show that GAFEAT-PLS is able to selected good feature 

subsets that result more predictive models than that of full dataset. The integration of the 

INLR method with GAFEAT-PLS further improves the quality of the feature subsets by 

taking into consideration mild non-lineraties in the datasets.  
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9.8 Convergence of GAFEAT-PLS 

The effectiveness of GAFEAT-PLS is demonstrated on real QSAR (HIVrt and 

Lombardo) datasets. The feature subsets selected by GAFEAT-PLS apparently lead to 

more predictive models with fewer features than the models that incorporate all features. 

Although GAFEAT-PLS efficiently and effectively explores a large feature space and 

finds good predictive feature subsets based on a defined criterion, it cannot be known 

whether the features subsets are optimal (the best) for the criterion used. The only way to 

be sure of the convergence of GAFEAT-PLS would be to enumerate and evaluate all the 

possible PLS models. Since the whole search space in a feature subset selection problem 

with T features is 2T, an exhaustive search is not applicable to the studied QSAR datasets 

that have over 200 features. Even though the number of features to be selected is 

predefined in GAFEAT-PLS, the optimal feature subset of size N chosen from a total of 

T features can be found by enumerating and testing all possibilities, which requires 

)!NT(!N
!T

N
T

−
=



  PLS models to be evaluated. This is also prohibitively expensive in 

computing time when T becomes larger. For instance, if T = 100, and N = 20, the number 

of models evaluated will be 5.35983E+20.  

Instead of enumerating all possible subsets for the QSAR datasets, the 

convergence of GAFEAT-PLS is tested by using the subsets of features selected by 

GAFEAT-PLS. Since GAFEAT-PLS uses a cost function based on R2, which is similar 

to that of the best subsets regression method, the best subset regression method can be 

used to test the convergence of GAFEAT-PLS.  

The best subsets regression is a way to select a group of "best subsets" for further 

analysis by selecting the smallest subset that fulfills certain statistical criteria (e.g. 
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Mallow’s Cp statistic, adj.R2, RMSE). The subset model may actually estimate the 

regression coefficients and predict future responses with smaller variance than the full 

model using all predictors [206]. In the best subsets regression method, all possible 

regressions are performed, and the highest R2 at each model size is recorded. It is then 

possible to explore the trade-offs between model fit and size by plotting this information. 

However, R2 always increases with the size of the subset [126]. For instance, the best 

regression model with 5 features will always have a higher R2 than that of the best model 

with 4 features. Therefore, R2 is a useful criterion when comparing linear regression 

models of the same size. In this situation, choosing the linear regression model with the 

highest R2 is equivalent to choosing the model with the smallest sum of square of error 

(SSE). The adjusted R2 (adj.R2) is more appropriate when comparing linear regression 

models with different number of features since adj.R2 adjusts (penalizes) for the number 

of predictors (features) in the model [126]. The formula for adj.R2 is defined by 
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where n is the number of data points and p is the number of predictors in the model. In 

this case, choosing the linear regression model with the highest adj.R2 is equivalent to 

choosing the model with the smallest mean square error (MSE). The best subset 

regression method becomes intractable due to the exponential growth of the number of 

possible subsets when the number of features becomes large. Minitab, a statistical 

program, can perform the best subsets regression for small size of regression problems 

(up to 20 features). The S-PLUS statistical program performs All-Subset Regressions by 

using leaps and bounds method [207] up to 30 features.  
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It can be hypothesized that a feature subset with size N selected by GAFEAT-PLS 

from a dataset with T features is a good feature subset if and only if it has no feature 

subsets performing better than itself and the N is less than or equal to the size of the best 

feature subset for the dataset with T features.   

Using the adj.R2 as a feature selection criterion, the best subsets regression of 

Minitab release 12.2 and all-subsets regression of S-PLUS 4.5 are used to evaluate 

feature subsets selected by GAFEAT-PLS from the Lombardo and HIVrt datasets up to 30 

features. It has been found that no subsets of those subsets with up to 20 features selected 

by GAFEAT-PLS performed better than the original feature subsets based on the adj.R2. 

This results are consistent with GAFEAT-PLS feature selection analysis applied on the 

HIVrt and Lombardo datasets since the size of the optimal feature subsets for both 

datasets are greater than 20.  

As an example to this experiment, the results of a feature subset with 20 features 

selected by GAFEAT-PLS from the Lombardo dataset are presented in Figure 9.17 in 

which the adj.R2 and RMSE of  the best 5 models of each dimensionality versus 

dimensionality are plotted. It can be clearly seen from Figure 9.17 that the best 

dimensionality is 20, which means that none of the 1,048,575 evaluated feature subsets 

performed better than the original subset selected by GAFEAT-PLS.  

If GAFEAT-PLS had not been able to convergence to a good feature subset there 

would have been a dimensionality less than 20. In order to demonstrate this case, 20 

features are randomly selected from the Lombardo dataset and the best subset regression 

is applied to this feature subset. The results of the best subset regression are presented in 
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the Figure 9.18. It is apparently seen that the best dimensionality for the random feature 

subset is 10, which is less 20 features. 
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Figure 9.17 The Best Subset Regression Results of the Subset with 20 Features Selected 
by GAFEAT-PLS from the Lombardo Dataset  (A) Adj.R2 versus Dimensionality (B) 

RMSE versus Dimensionality 
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Figure 9.18 The Best Subset Regression Results of the Subset with 20 Features 
Randomly Selected from the Lombardo Dataset  (A) Adj.R2 versus Dimensionality (B) 

RMSE versus Dimensionality 
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The other well-known feature selection criterion for linear regression is the 

Mallow’s Cp [125]. The Mallow's Cp  statistic also measures how well a model fits data, 

but with a penalty for adding extra independent variables. Since predicted values 

obtained from a subset regression model are biased, the mean square error of prediction 

consists of two components: the variance of prediction arising from estimation, and a bias 

arising from the deletion of variables. Mallow’s Cp statistics is defined as 

)np2(
2̂

SSEp
Cp −+

σ
=  

where 2σ̂  is the estimate of the variance of the random error, which is calculated from 

the full regression model. The expected value of the Cp is p when there is no bias in the 

model. Therefore, it is wanted to select a model in which the value of Cp is close to the 

number of terms, including the constant term, in the model.  

Using the Mallow’s Cp statistic as a feature selection criterion, the best subsets 

regression of Minitab release 12.2 and all-subsets regression of S-PLUS 4.5 are also used 

to evaluate feature subsets selected by GAFEAT-PLS from the Lombardo and HIVrt 

datasets up to 30 features. It has been found that no subsets of those subsets (with up to 

20 features) selected by GAFEAT-PLS performed better than the original feature subsets 

based on the Mallow’s Cp statistic. As an example to this computational experiment, the 

Cp plots of a subset with 20 features selected by GAFEAT-PLS and a subset with 20 

feature randomly selected from the Lombardo dataset are presented in Figures 9.19-A 

and 9.19-B, respectively. The values of Cp of the best 5 models of each dimensionality 

versus dimensionality are plotted. It can be clearly seen from Figure 9.19-A that the best 

dimensionality for the subset of GAFEAT-PLS is 20 based on Cp criterion, which means 
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that none of feature subsets are performed better than the original subset selected by 

GAFEAT-PLS. The best dimensionality for the randomly subset selected subset is 7.  
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Figure 9.19 The Best Subset Regression Results Cp versus Dimensionality (A) the 
Subset with 20 Features Selected by GAFEAT-PLS from the Lombardo Dataset  (B) the 

Subset with 20 Features Randomly Selected from the Lombardo Dataset   

 

 

GAFEAT-PLS was executed to select 10, 20, 30, 40, and 50 features from the 

HIVrt and Lombardo datasets in order to find the most informative subsets with the 

minimum number of features. Therefore, the obtained best subsets with minum number 

of features are relative to the number of GAFEAT-PLS runs carried out for the datasets. 

Hovewer, it is always possible to zoom in to determine the exact subset with minimum 

number of features. Our experiments show that even though the selected feature subsets 

consist of more features than the fine-tuned (the actual optimal) feature subsets, the 

predictive performance of the models were not effected severely. GAFEAT-PLS feature 

selection on the expanded Lombardo dataset in section 9.5.6 is a example since the size 
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of the optimal feature subset is 20 but subsets with sizes of 20, 30, 40, and 50 features 

also give close prediction error (Q2) based on a 100 bootstrap validation. All-subsets 

regression of S-PLUS 4.5 are used to evaluate the subset with 30 features selected by 

GAFEAT-PLS from the expanded Lombardo dataset based on both adj.R2 and Mallow’s 

Cp criteria. These results are presented in the Figure 9.20. It can be clearly seen from 

Figures 9.20-A and 9.20-B that even though a lower dimensional regression models 

exists based on both adj.R2 and the Mallow’s Cp criteria, their performances are very 

close to each other. 
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Figure 9.20 The Best Subset Regression Results of the Subset with 30 Features Selected 
by GAFEAT-PLS from the Expanded Lombardo Dataset (A) Cp versus Dimensionality  

(B) Adj.R2 versus Dimensionality   
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  CHAPTER 10 

10GAFEAT-LL: Genetic Algorithms with Local 

Learning for Feature Selection 

The traditional approach to supervised learning is global modeling describing the 

relationship between the input and output with an analytical function over the whole 

input domain [208]. For example, neural networks, Support Vector Machines, and PLS 

are global modeling techniques. One of the advantages of the global models is that after 

deriving a global model, there is no need to save the training data for prediction; 

therefore, it requires a small memory for the prediction on new data. The other advantage 

is that global models are very fast in the prediction phase. On the other hand, the global 

modeling approaches are typically slow and analytically intractable when they are 

applied to the highly nonlinear and complex input/output relations [208].  For this reason, 

local modeling has become an alternative to global modeling in the research community. 

Local modeling is a divide-and-conquer strategy, which is based on attacking a complex 

problem by dividing the problem into simpler problems whose solutions can be combined 

to obtain a solution to the original problem [208]. 

In this chapter, a local learning algorithm is integrated as an evaluation function 

into the genetic algorithm with the unique list representation developed in section 8.3.3. 

First of all, some information about the local learning algorithm is presented. Second, a 

literature review related to feature selection with evolutionary algorithms with LL is 

presented. In later sections, the details of the proposed Genetic Algorithm with Local 
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Learning (GAFEAT-LL) and its performance on two QSAR datasets (the Lombardo and 

HIVrt) will be presented.  

 

10.1 Local Learning 

Memory-based learning refers to a family of algorithms that process training data 

until a query needs to be answered [142]. These algorithms store all of the training data in 

a memory and wait for a query to do further calculation to answer this particular query. 

The query is answered by finding relevant training data points. Relevance is generally 

calculated using a distance function. This type of learning is also called Lazy Learning 

[142]. Some of the memory-based learning algorithms find a set of nearest neighbors 

around a query point and answer the query by fitting a parametric function in its 

neighborhood. This type of memory-based learning is referred to as Local Learning (LL) 

[142, 144, 209]. Nearest neighbor, weighted average, and locally weighted regression are 

examples to local learning methods [142]. These methods, unlike to global modeling 

methods such as PLS, are 'locally parametric' and do not produce a 'visible' model of the 

data. Instead they make predictions based on local models generated on a query point 

basis. Although LL is a non-parametric regression technique, it does have several 

'parameters' that must be tuned in order to obtain good predictive results. 

  One of the most important is the notion of neighborhood. Given a query point q, it 

needs to be decided which training cases will be used to fit a local polynomial around the 

query point. This procedure involves defining a distance metric over the multi-

dimensional space defined by the input variables. With this metric, a distance function 

can be specified, which allows finding the nearest training cases of any query point. 
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There are other issues to be addressed, such as weighting of the variables within the 

distance calculations (feature weighting) and the number of training cases (L) that enters 

the local fit (known as the bandwidth selection problem, generally chosen as 3 or 5) 

[144]. After determining the bandwidth specification, it is required to weight the 

contribution of the training cases within the bandwidth. This is usually accomplished by a 

weighting function or kernel function. Weighing the data can be viewed as re-

emphasizing the relevant instances and de-emphasizing irrelevant instances. In other 

words, nearer instances to the query point contribute more into local fit [142, 144]. 

In this dissertation, the distance function is the Euclidean distance. A distance 

d(xi,q) between the query point q and a data point i (between their input features) is 

defined by 
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where, N is the number of features and i
jx  is the jth component of the vector xi. 

The weighting function (kernel function) K() is defined by 

θ−= d)d(K  

where d is the distance d(xi,q) and θ  is a user defined weight factor that allow the user to 

influence the contribution of the nearer data points (θ > 0). A value of 1.3 for the 

parameter θ ?is used for all calculations in this dissertation. The outcome ( qŷ ) for a query 

point q is estimated by local learning model from the target outcomes of its L nearest 

neighbor ( iy ) according to: 
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A value 5 for the parameter L (the number of training cases that enters the local fit) is 

used for all calculations in this dissertation. 

 

10.2 Feature Selection with Evolutionary Algorithms and Local 

Learning 

Embrechts et al. [144, 209] propose a novel approach for the supervised training of 

regression systems. The proposed method, Supervised Scaled Regression Clustering with 

Genetic Algorithms (SSRCGA), relies on a GA supervised clustering algorithm with 

local learning. The chromosomes of the GA represent the coordinates of the clusters. For 

instance, if the dimensionality of the data is D and number of predetermined cluster 

centers is K, the number of genes in a chromosomes will be D*K. The GA is a floating-

point GA that uses arithmetic crossover and uniform mutation [8]. SSRCGA tries to 

minimize a fitness function F, which is defined by 

RE M)NJ(F α+γ±= , 

where J is the classical cluster dispersion measure, γ is a “dummy cluster” penalty/bonus 

factor, EN  is the number of empty clusters, RM  is the penalty factor proportional to the 

total regression error, and α  is the regularization parameter. The SSRCGA starts out with 

a relatively large predetermined number of clusters and allows the number of clusters to 

vary by adding a penalty/bonus term for empty clusters. A cluster is empty when it has no 

members. Empty clusters do not effectively contribute to cluster dispersion and it 
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depends on the particular application whether a penalty or bonus is the more appropriate 

approach. For each cluster, local learning method is applied to calculate the outcome. The 

clustering itself is influenced by the results of the local learning model )M( R . The 

regularization parameterα  can be problem dependent and needs to be specified by the 

user or determined by trial and error. In SSRCGA, the local learning is supervised in the 

sense that the prediction quality is incorporated as a penalty term added to the cost 

function of the genetic algorithm. Adaptive dimension scaling is also added into the 

SSRCGA. This is implemented by adding a number of genes, representing scaling 

factors, into the chromosomes corresponding to the dimensionality (D).  Each dimension 

(feature) is multiplied by its corresponding scaling factor in order to discourage irrelevant 

features. The sum of the scaling factors is normalized to unity to prevent a trivial 

solution. The GA adaptively adjusts appropriate scaling factors and the most relevant 

features for the dataset under scrutiny are the ones with the larger scaling factor. The 

SSRCGA has advantages compared to traditional neural network approaches. These 

advantages are: i) the simplicity of the idea; ii) the flexibility of its implementation by 

allowing the user to modify the cost function and the penalty terms (e.g. the 

misclassification error measure); iii) a straightforward methodology for feature selection 

via scaling; and iv) a good general performance, even for high-dimensional datasets. On 

the other hand, the SSRCGA has some disadvantages compared to traditional neural 

network approaches. These disadvantages are: i) possible excessive demands on 

computing time and memory; ii) poor scaling of the speed of the algorithm with the 

number of data points; and iii) the ad-hoc problem choice for problem dependent 

regularization parameters.  
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Zheng and Tropsha [100] developed an automated variable selection method for 

quantitative structure-activity relationship (QSAR) based on an integration of k-Nearest 

Neighbor (kNN) principle into simulated annealing as a cost function. The basic idea 

behind this method (kNN QSAR) is that similar compounds display similar profiles of 

pharmacological activities. The activity of each compound is predicted as an average 

activity of k most chemically similar compounds from the dataset. The kNN QSAR 

algorithm searches for both optimum k value and an optimal subset with a predefined 

number of descriptors, which together build a QSAR model with the best predictive 

ability in terms of leave-one-out prediction error. Since the number of features is 

predefined, it needs to be optimized by setting to different values in several different 

runs. They demonstrated the robustness of the QSAR models by comparing them to those 

derived from randomized datasets. 

K-nearest-neighbors (kNN) methods are commonly used for analyzing datasets that 

cannot be assumed to have a normal distribution [210]. Pure kNN classifiers cannot 

perform well on datasets, which have noisy input data, outliers, and correlated features. 

Weighting the feature axes according to their relative importance can help kNN 

classifiers. If there is a priori knowledge of the relative contribution of the each feature, 

then features can be weighted accordingly. If there is no such prior information available, 

it is impossible to weight features. Genetic algorithms have been widely used to learn 

feature weights for the kNN classifiers [210-212].  In these implementations, the length 

of a chromosome is equal to the number of features in the dataset. A chromosome is a 

vector consisting of a real-valued weight for each of the features. The GA is used to 
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assign weights to features in order to discourage the irrelevant and weakly relevant 

features and reward the relevant features.  

Raymer et al. [210, 211] have applied genetic algorithms to the problem of feature 

selection. In their work, the genetic algorithm performs feature selection and extraction in 

combination with a k-nearest-neighbors (kNN) classifier, which is used to evaluate the 

classification performance of each subset features selected by the GA. The GA is used to 

perform simultaneous feature selection and feature extraction. The GA uses both a 

feature weight vector and a masking (selection) vector on its chromosomes. A feature 

selection vector consists of a single bit for each feature, with a ‘1’ indicating that the 

feature is included in the kNN classification, and a ‘0’ indicating that it is omitted.  A 

feature weight vector consists of a real-valued weight for each of the features. Each 

feature is multiplied by both its weight and mask values prior to classification by the 

kNN classifier. One of the advantages of this method is that the GA can test the effect of 

eliminating a feature completely from the classification by setting its mask value to zero 

without reducing the associated feature weight to zero. This prevents losing the 

previously learned weights and makes the search efficient and faster.   

 

10.3 The Proposed GAFEAT-LL 

In the proposed Genetic Algorithm with Local Learning (GAFEAT-LL), local 

learning algorithm is integrated as a cost function into the GA with unique list 

representation developed in section 8.3.3. Given a dataset containing T features, each 

chromosome represents a legal subset containing N features. In this representation, a 

chromosome is as an integer array with size N, where N is the predetermined number of 
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features to be selected out of total T features. Each gene represents the number for 

corresponding feature in the dataset. The details of the genetic algorithm are explained in 

section 9.3. The only difference now is the cost function where PLS regression is 

replaced with the Local Learning algorithm explained in section 10.1.  

 

10.4 Computational Evaluation of GAFEAT-LL 

Two QSAR datasets (the Lombardo and HIVrt datasets), which were used to 

evaluate the performance of GAFEAT-PLS, have been used to evaluate the performance 

of GAFEAT-LL. The first step is to use objective feature selection (e.g. removing non-

changing, highly inter-correlated (cousin features), and 4σ outlier features) to remove 

features that contain redundant, minimal or distorted information. StripMiner  [4] is 

employed to perform the objective feature selection. 

Since GAFEAT-LL conducts a search for a good feature subset using the local 

learning algorithm itself as part of the fitness function, the accuracy estimation of the LL 

models can be overly optimistic (over-fitting). Therefore, another predictive methods, 

namely the SVM regression is used for constructing predictive models for the selected 

subsets by GAFEAT-LL and accuracy estimations of SVM regression models (validation 

errors) are compared with that of LL models. PLS regression method is also used for 

modeling the selected feature subset to see how selected subsets effects the linear 

method. 
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10.4.1 The Lombardo Dataset 

After pre-processing, 309 descriptive features remained in the Lombardo dataset. The 

StripMiner  [4] program is employed to construct predictive models (the LL, PLS, and 

SVM models) of the Lombardo dataset with 309 original features, and these models are 

validated based on 100-bootstrap samples by leaving out 6 molecules in the validation 

sets. The LL models described in this dissertation used five nearest neighbors and weight 

factor θ is set to 1.3 for all calculations. The PLS regression models used 4 latent 

variables for all calculations. These validation results are presented in the Table 10.1. 

 

 

Table 10.1 100-bootstrap Validation of Full Lombardo Dataset with PLS, SVM, and LL 

Training Error Validation Error Learning Models r2 R2 q2 Q2 
LL 0.5563 0.5531 0.3665 0.3689 

PLS 0.9228 0.9228 0.2853 0.2858 
SVM 0.9846 0.9822 0.3098 0.3105 

 

 

GAFEAT-LL is applied on the Lombardo dataset to select a good feature subset with a 

minimum number of features. The parameters of GAFEAT-LL are presented in the Table 

10.2. Since the number of feature to be selected is predetermined, a several of GAFEAT-

LL runs are performed to find the most informative feature subset with the minimum 

number of descriptive features. GAFEAT-LL is run to select 10, 20, 30, 40, and 50 

features from the Lombardo dataset with 309 features. Each selected feature subset is 

modeled by the LL, PLS, and SVM algorithms and these models are further validated 

with 100-bootsrap samples by leaving 56 molecules in training sets and 6 molecules in 
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the validation sets. The feature subset validation results for the LL, PLS, and SVM 

models are presented in the Tables 10.3, 10.4, and 10.5, respectively. 

 

Table 10.2 Parameters of GAFEAT-LL for the Lombardo Dataset  

Population 
Size 

Crossover 
Probability 

Mutation 
Probability 

Maximum # of 
Generation 

Number of Latent 
Variables 

100 0.90 0.02 1000 4 
 
# of Bootstraps in the 

Fitness Evaluation 
# of Molecules 

in the Training Set 
#of Molecules 

in the Validation Set 
Learning Weight 

Factor (θ) 
20 56 6 1.3 

  

 

Table 10.3 LL 100-bootstrap Validation Results for Feature Subsets Selected by 
GAFEAT-LL from the Lombardo Dataset  

r2 R2 q2 Q2

10 0.8957 0.8878 0.0981 0.1037
20 0.8645 0.8605 0.1178 0.1204
30 0.8867 0.8782 0.0962 0.1031
40 0.8968 0.8770 0.0998 0.1140
50 0.8884 0.8775 0.1212 0.1301

Training Error Validation ErrorNumber of 
Selected 
Features 

 

 

 

Table 10.4 PLS 100-bootstrap Validation Results for Feature Subsets Selected by 
GAFEAT-LL from the Lombardo Dataset 

r2 R2 q2 Q2

10 0.8284 0.8284 0.2267 0.2275
20 0.8619 0.8619 0.2140 0.2157
30 0.8933 0.8933 0.2185 0.2223
40 0.9272 0.9272 0.1964 0.1984
50 0.9171 0.9171 0.2191 0.2235

Training ErrorNumber of 
Selected 
Features 

Validation Error
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Table 10.5 SVM 100-bootstrap Validation Results for Feature Subsets Selected by 
GAFEAT-LL from the Lombardo Dataset 

r2 R2 q2 Q2

10 0.8371 0.8363 0.3008 0.3016
20 0.8494 0.8430 0.2412 0.2426
30 0.8851 0.8781 0.2392 0.2392
40 0.9197 0.9116 0.2237 0.2255
50 0.904 0.8906 0.2278 0.2291

Number of 
Selected 
Features 

Training Error Validation Error

 

 

Figure 10.1 shows the number of features selected by GAFEAT-LL versus 100-

bootstrap validation errors of the LL, PLS, and SVM models of the corresponding 

selected feature subsets in terms of Q2 statistics. Although the performances of the SVM 

and PLS regression models constructed with the feature subsets selected by GAFEAT-LL 

are similar and better than the dataset with all features, the performances of the LL 

models are significantly better than the PLS and SVM regression models; indicating 

possibly a bias (i.e., overfitting) in the selected features.  
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Figure 10.1 100-bootstrap Validation Errors (Q2) of the LL, SVM, and PLS Models of 

Selected Feature Subsets by GAFEAT-LL from the Lombardo Dataset 
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It has been hypothesized that a good feature subset selected by GAFEAT-LL should give 

similar results for the SVM regression. Since LL can be thought of as a non-linear 

method, GAFEAT-LL feature selection method selects features describing the non-linear 

relationship existing in the dataset. The results show that the PLS models have a slightly 

better performance than the SVM models, although the PLS regression is a linear 

modeling approach. These results may indicate that GAFEAT-LL feature selection 

method simply overfit the data. Therefore, a randomization test will be applied to 

GAFEAT-LL feature selection in section 10.5 in order to verify whether the feature 

subsets selected by GAFEAT-LL model noise instead of the underlying information in 

the dataset. 

 

10.4.2 The HIVrt Dataset 

After pre-processing, 230 descriptive features left in the HIVrt dataset. The 

StripMiner  [4] program is employed to construct predictive models (the LL, PLS and 

SVM models) of the HIVrt dataset with 230 original features. The obtained LL, PLS and 

SVM models are further validated based on 100-bootstrapping samples by leaving 58 

molecules in training set and 6 molecules in the validation sets. These validation results 

are presented in the Table 10.6. 

 

Table 10.6 100-bootstrap Validation of HIVrt Full Dataset with LL, PLS, and SVM 

Training Error Validation Error Learning Models r2 R2 q2 Q2 
LL 0.6233 0.6228 0.4956 0.5045 

PLS 0.8129 0.8129 0.3354 0.3368 
SVM 0.9276 0.9159 0.3690 0.3718 
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GAFEAT-LL is applied to select a good feature subset with the minimum number 

of features on the HIVrt dataset. The parameters of GAFEAT-LL used for the HIVrt 

dataset is presented in the Table 10.7. Several different GAFEAT-LL runs were executed 

in order to find the most informative feature subset with the minimum number of 

features.  

 

Table 10.7 Parameters of GAFEAT-LL for the HIVrt Dataset 

Population 
Size 

Crossover 
Probability 

Mutation 
Probability 

Maximum # of 
Generation 

Number of Latent 
Variables 

100 0.90 0.02 1000 4 
 
# of Bootstraps in the 

Fitness Evaluation 
# of Molecules 

in the Training Set 
#of Molecules 

in the Validation Set 
Learning Weight 

Factor (θ) 
20 58 6 1.3 

  

 

GAFEAT-LL was executed to select 10, 20, 30, 40, and 50 features from the 

HIVrt dataset with 230 features. Each selected feature subset is modeled by the LL, PLS, 

and SVM algorithms and these models are further validated with 100-boostrap samples 

by leaving 58 molecules in training set and 6 molecules in the validation set. The feature 

subset validation results for the LL, PLS, and SVM models are presented in the Tables 

10.8, 10.9, and 10.10, respectively. 
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Table 10.8 LL 100-bootstrap Validation Results for Feature Subsets Selected by 
GAFEAT-LL from the HIVrt Dataset 

r2 R2 q2 Q2

10 0.7877 0.7827 0.1827 0.1828
20 0.8278 0.8252 0.1663 0.1686
30 0.8141 0.8126 0.2042 0.2044
40 0.8123 0.8122 0.2097 0.2111
50 0.7845 0.7802 0.2162 0.2172

Training Error Validation ErrorNumber of 
Selected 
Features 

 
 

 

Table 10.9 PLS 100-bootstrap Validation Results for Feature Subsets Selected by 
GAFEAT-LL from the HIVrt Dataset 

r2 R2 q2 Q2

10 0.5073 0.5073 0.6319 0.6526
20 0.6522 0.6522 0.5041 0.5275
30 0.7049 0.7048 0.4887 0.5030
40 0.7458 0.7458 0.4121 0.4248
50 0.7043 0.7043 0.4494 0.4682

Training ErrorNumber of 
Selected 
Features 

Validation Error

 
 

 

Table 10.10 SVM 100-bootstrap Validation Results for Feature Subsets Selected by 
GAFEAT-LL from the HIVrt Dataset 

r2 R2 q2 Q2

10 0.9706 0.9692 0.2232 0.2237
20 0.9640 0.9611 0.1973 0.2019
30 0.9814 0.9789 0.2107 0.2119
40 0.9281 0.9219 0.2224 0.2224
50 0.9981 0.9981 0.1766 0.1841

Number of 
Selected 
Features 

Training Error Validation Error

 

 

Figure 10.2 shows the number of selected features by GAFEAT-PLS versus the 100-

bootstrap validation errors of the LL, PLS and SVM models of the corresponding 

selected feature subsets in terms of Q2 statistics. 



 214 

100-bootstrap Validation Error (Q2) of LL, SVM, and PLS Models 
of Selected Feature Subsets by GAFEAT-LL from HIVrt Dataset
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Figure 10.2 100-bootstrap Validation Errors (Q2) of the LL, SVM, and PLS Models of 

Selected Feature Subsets by GAFEAT-LL from the Lombardo Dataset 

 

 

It is clear from these results that PLS regression method is not able to model the 

dataset with the features selected by GAFEAT-LL, most likely because PLS is a linear 

regression method. On the other hand, the performances of the SVM and LL models with 

the selected feature subsets are very similar and better than the models with the all 

features. Before, analyzing the performance of GAFEAT-LL in detail, the validation of 

GAFEAT-LL is performed with a randomization test in the following section. 
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10.5 Computational Validation of GAFEAT-LL with a Randomization 

Test 

As explained in section 9.4.4, like GAFEAT-PLS, the validation (robustness) of 

GAFEAT-LL method is examined with a standard hypothesis testing where the results of 

a real dataset is compared to those of the dataset with randomly shuffled response values. 

The randomization test validation of GAFEAT-LL is performed on the Lombardo and 

HIVrt datasets. 

 

10.5.1 The Lombardo Dataset 

Ten randomization trials were performed in which the biological activity data was 

randomized with respect to the dataset. A full GAFEAT-LL feature selection method is 

performed for each randomized dataset. Randomization of data, GAFEAT-LL feature 

selection, and subsequent model evaluation are performed to assess the statistical validity 

of QSAR models and GAFEAT-LL feature selection method. Each selected feature 

subset is modeled using the LL algorithm (with 5 nearest neighbors and weighting factor 

θ  1.3) and the predictive quality of the resulting models is measured based on 100 

bootstrap samples leaving 56 molecules in the training set and 6 molecules in the 

validation set. Figures 10.3 and 10.4 show the results of randomization test of GAFEAT-

LL feature selection method on the Lombardo dataset.  
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100-bootstrap Validation Erorr (Q²) of the LL models of the Selected 
Feature Subsets by the GAFEAT-LL from Randomized Lombardo 

Dataset for Different Randomization Trials
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Figure 10.3 100-bootstrap Validation Errors (Q2) of the LL Models of Feature Subsets 

Selected by GAFEAT-LL from Randomized Lombardo Dataset for Different 
Randomization Trials 

 

Quality of the Fit (R²) of the LL models of the Selected Feature Subsets 
by GAFEAT-LL from the Randomized Lombardo Dataset for Different 

Randomization Trials 
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Figure 10.4 Quality of the Fit (R2) of the LL Models of Selected Feature Subsets by 
GAFEAT-LL from the Randomized Lombardo Dataset for Different Randomization 

Trials 
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It appears from Figures 10.3 and 10.4 that in each randomization test the randomized data 

give much higher Q2 and much lower R2 values than those of the original data. As 

explained in section 9.4.4, the validation (robustness) of GAFEAT-LL method is carried 

out by standard hypothesis testing where the results for the real dataset are compared to 

those of randomized datasets. The hypothesis testing results based on R2 and Q2 are 

presented in Tables 10.11 and 10.12, respectively. Z score and P value represent the test 

statistics and its probability (i.e., the smallest probability leading to rejection of the null 

hypothesis) respectively.  

 

Table 10.11 Standard One-Tail Hypothesis Testing of GAFEAT-LL on the Lombardo 
Dataset Based on R2 

Number of 
Selected 
Features

Original Data
Mean of the 

Randomization 
Trials

Std. Dev. of the 
Randomization 

Trials
Z score P value

10 0.8878 0.4627 0.0826 5.1452 ~0
20 0.8605 0.4731 0.0845 4.5863 0.0000
30 0.8782 0.4856 0.1067 3.6780 0.0001
40 0.877 0.4447 0.0733 5.8971 ~0
50 0.8775 0.3602 0.1297 3.9897 0.0000
All 0.5531 -0.2297 0.1568 4.9926 0.0000  

   

 

Table 10.12 Standard One-Tail Hypothesis Testing of GAFEAT-LL on the Lombardo 
Dataset Based on Q2 

Number of 
Selected 
Features

Original Data
Mean of the 

Randomization 
Trials

Std. Dev. of the 
Randomization 

Trials
Z score P value

10 0.1037 0.5396 0.0860 -5.0674 ~0
20 0.1204 0.5365 0.0706 -5.8936 ~0
30 0.1031 0.5091 0.0981 -4.1384 0.0000
40 0.114 0.5636 0.0904 -4.9722 0.0000
50 0.1301 0.6397 0.1310 -3.8899 0.0001
All 0.3689 1.2343 0.1469 -5.8916 ~0  
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Based on P values, it can be concluded with 90 percent confidence that GAFEAT-

LL models on original datasets give consistently higher R2 and lower Q2 than those of 

GAFEAT-LL models obtained on the ten different randomized datasets.  

 

 

10.5.2 The HIVrt Dataset 

Ten randomization trials were performed in which the biological activity data was 

randomized with respect to the dataset. A full GAEFAT-LL feature selection and 

modeling method is performed for each randomized HIVrt dataset. Each selected feature 

subset is modeled using the LL algorithm (with 5 nearest neighbors and weighting factor 

θ  1.3) and the predictive quality of the resulting models is measured based on 100 

bootstrap samples leaving 6 molecules in the validation set. Figures 10.5 and 10.6 show 

the results of randomization testing of the GAFEAT-LL feature selection method on the 

HIVrt dataset. 
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100-bootstrap Validation Erorr (Q²) of the LL models of Selected Feature 
Subsets by GAFEAT-LL from Randomized HIVrt Dataset for Different 

Randomization Trials

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

10 20 30 40 50  All

Number of Selected Features by GAFEAT-LL

Q²

Randomized 1

Randomized 2

Randomized 3

Randomized 4

Randomized 5

Randomized 6

Randomized 7

Randomized 8

Randomized 9

Randomized 10

Original Data

 
Figure 10.5 100-bootstrap Validation Errors (Q2) of the LL Models of Selected Feature 

Subsets by GAFEAT-LL from the Randomized HIVrt Dataset for Different 
Randomization Trials 

 

Quality of the Fit (R²) of the LL models of Selected Feature Subsets by 
GAFEAT-LL from Randomized HIVrt Dataset for Different 
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Figure 10.6 Quality of the Fit (R2) of the LL Models of Selected Feature Subsets by 
GAFEAT-LL from the Randomized HIVrt Dataset for Different Randomization Tests 
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It appears from the Figures 10.5 and 10.6 that in each randomization test the randomized 

data give much higher Q2 and much lower R2 values than those of the original data. The 

hypothesis testing results based on R2 and Q2 are presented in the Tables 10.13 and 10.14, 

respectively. Z score and P value represent the test statistics and its probability (i.e., the 

smallest probability leading to rejection of the null hypothesis). 

 

Table 10.13 Standard One-Tail Hypothesis Testing of GAFEAT-LL on the HIVrt Dataset 
Based on R2 

Number of 
Selected 
Features

Original Data
Mean of the 

Randomization 
Trials

Std. Dev. of the 
Randomization 

Trials
Z score P value

10 0.7827 0.3863 0.1240 3.1962 0.0007
20 0.8252 0.3675 0.0965 4.7457 0.0000
30 0.8126 0.3513 0.0814 5.6676 ~0
40 0.8122 0.2933 0.1104 4.7011 0.0000
50 0.7802 0.2391 0.1037 5.2153 ~0
All 0.6228 -0.1796 0.1509 5.3174 ~0  

 
 

Table 10.14 Standard One-Tail Hypothesis Testing of GAFEAT-LL on the HIVrt Dataset 
Based on Q2 

Number of 
Selected 
Features

Original Data
Mean of the 

Randomization 
Trials

Std. Dev. of the 
Randomization 

Trials
Z score P value

10 0.1828 0.5846 0.1095 -3.6697 0.0001
20 0.1686 0.5977 0.0740 -5.8005 ~0
30 0.2044 0.6214 0.0829 -5.0303 ~0
40 0.2111 0.6657 0.0967 -4.7023 0.0000
50 0.2172 0.7215 0.0968 -5.2069 ~0
All 0.5045 1.1475 0.1177 -5.4650 ~0  

   

 

Based on P values, it can be concluded with a 90 percent of confidence that 

GAFEAT-LL models on the original dataset give consistently higher R2 and lower Q2 

than those of GAFEAT-LL models obtained from ten different randomized datasets. 
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10.6 Final Remarks on GAFEAT-LL Feature Selection 

The results of the randomization tests of GAFEAT-LL on the Lombardo and HIVrt 

datasets showed the robustness of the LL models constructed with the feature subsets 

selected by GAFEAT-LL as well as the robustness of the GAFEAT-LL feature selection 

method. Computational results of GAFEAT-LL on the Lombardo and HIVrt datasets 

showed that GAFEAT-LL was able to selected good feature subsets that resulted more 

predictive models than that of that of the model with all features. 

The results of the Lombardo dataset in section 10.4.1 showed that the PLS models 

of the feature subsets selected by GAFEAT-LL performed slightly better than those of 

the SVM models, and that the performances of the LL models were significantly better 

than the PLS and SVM regression models. According to the performance of GAFEAT-

LL on HIVrt dataset, the SVM and LL models performed similar but the performances of 

the PLS models were significantly worse than those of the SVM and LL models. This 

result would be expected since LL method can be thought of as a non-linear method and 

the GAFEAT-LL selects feature subsets describing the non-linear characteristics of the 

dataset. It is also known that the molecules in the HIVrt dataset are clustered in to five 

classes; therefore, this dataset is known to more non-linear. The basic idea behind the 

local learning method is that structurally similar compounds should have similar 

biological activities [100]. Based on the performances of GAFEAT-LL on the Lombardo 

and HIVrt datasets, it can be concluded that GAFEAT-LL feature selection method 

works better in datasets in which several classes of chemical compounds are encountered.  

Since the PLS and LL algorithms are used as a fitness function by GAFEAT-PLS 

and GAFEAT-LL, respectively, the prediction errors of the resulting PLS and LL models 
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can be overly optimistic (e.g. bias to the specific method). For this reason, all three 

methods are compared based on the performance of the SVM models on the feature 

subsets selected by the corresponding feature selection method. It is also worth 

mentioning that GAFEAT-PLS selects features based on a linear criterion, since PLS 

regression is a linear method. On the other hand, GAFEAT-LL selects features based on a 

non-linear criterion. If the relationship between the selected features and response 

variable is linear, then it is expected that SVM regression, which is a nonlinear model, 

will converge to the linear model. 

Comparison of the feature selection methods on the Lombardo and HIVrt datasets 

based on the best SVM models are presented in the Tables 10.15 and 10.16, respectively. 

The results were calculated based on 100 bootstrap samples. GAEFAT-PLS with INLR 

method performs better than the GAFEAT-PLS and GAFEAT-LL methods. Although the 

performance of GAFEAT-LL on the Lombardo dataset is significantly worse than 

GAFEAT-PLS methods, its performance on the HIVrt dataset is comparable to GAFEAT-

PLS. In conclusion, based on results of the Lombardo and HIVrt datasets, three feature 

selection methods (GAFEAT-PLS, GAFEAT-PLS with INLR method, and GAFEAT-

LL) worked well for selecting feature subsets that results more predictive models than 

that of the model with all features.  
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Table 10.15 Comparison of the Feature Selection Methods on the Lombardo Dataset 
Based on the Best SVM Models 

r2 R2 q2 Q2

GA-PLS 30 0.9810 0.9795 0.0719 0.0733
GA-PLS with INLR 50 0.9934 0.9928 0.0504 0.0521
GA-LL 40 0.9197 0.9116 0.2237 0.2255

Number of Selected 
Features 

Training Error Validation ErrorFeature Selection 
Method

 
 
 
 
 
 
 

Table 10.16 Comparison of the Feature Selection Methods on the HIVrt Dataset Based on 
the Best SVM Models 

r2 R2 q2 Q2

GA-PLS 30 0.9753 0.9749 0.1456 0.1470
GA-PLS with INLR 30 0.9554 0.9521 0.1336 0.1371
GA-LL 50 0.9981 0.9981 0.1766 0.1841

Feature Selection 
Method

Number of Selected 
Features 

Training Error Validation Error
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CHAPTER 11 

11Conclusions and Scope of Future Work 

The contributions of this dissertation can be categorized into four main areas:  

• The design of novel evolutionary algorithms for solving the Traveling Salesman 

Problem.  

• The design of novel evolutionary algorithms for feature selection problem: i) 

genetic algorithm with floating-point representation, ii) genetic algorithm with 

unique list representation iii) evolutionary programming algorithm with unique 

list representation. 

• A novel correlation based feature selection method (GAFEAT) and its 

hybridization with the sensitivity analysis. 

• Applications of the developed evolutionary algorithms to predictive data mining 

problems, especially in drug design (QSAR) problems.  

 

Novel genetic algorithms for the TSP with a modified Partially Mapped 

Crossover (PMX) operator were developed where the concept of PMX is carried further. 

The PMX was originally proposed by Goldberg and Lingle [1]. An algorithm for the TSP 

based on evolutionary programming was also developed. The proposed evolutionary 

programming algorithm, Evolutionary Programming with Constant Population (EPC), is 

different from the standard evolutionary programming algorithm in the sense that EPC 

always keeps a constant number of individuals in the population similar to genetic 
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algorithms and that EPC uses a selection scheme (i.e., simulated annealing) with a 

mutation operation. 

Novel genetic algorithms for feature selection problem based on floating-point 

and unique list representations were developed. An evolutionary programming algorithm 

for feature selection was also developed based on the unique list representation. The 

computational results have demonstrated that the proposed evolutionary algorithms are 

capable of converging to optimal or near optimal solutions depending on the specific 

objective function criterion used. The proposed evolutionary algorithms for feature 

selection require a predetermined number of descriptive features as an input. The idea 

behind the fixing the number of features to be selected for each run of an evolutionary 

algorithm is to make search efficient. The proposed evolutionary algorithms can also be 

allowed to determine this parameter automatically (optimal dimension), but this strategy 

can potentially cause the algorithm to convergence prematurely.  Since each dimension 

(subset size) has its global optima (the best subset), and the search spaces of the subsets 

are not equally represented in the total search space, the evolutionary algorithms have the 

tendency to converge to subsets with a few or with more features.  

GAFEAT, a novel GA-based feature selection methodology, is based on the 

correlation matrix. The GA determines which descriptive features have the best 

correlation with the response, but have a relatively weak inter-correlation. The 

advantages of GAFEAT are (i) the generally robust subset of selected features, and (ii) 

that it scales linearly with the number of descriptive features (with only a weak 

dependency on the number of molecules in the dataset). The disadvantages of GAFEAT 

are the ad-hoc heuristics for determining the control parameters in the algorithm, and the 
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user generally does not know the right number of selected features.  For QSAR studies 

selecting about 40 features, a conservative number, ensures that important features are 

included in the model.  

A hybrid feature selection method, which combines GAFEAT selection method 

with neural network sensitivity analysis, was also proposed. The drawback of the neural 

network sensitivity analysis methodology is that the method is time consuming and does 

not scale-up well to very large data sets. The consideration of computational efficiency 

for large datasets favors a combination of methods. Applying GAFEAT for coarse feature 

selection followed by a sensitivity-based fine-tuning for feature selection demonstrated 

indeed that GAFEAT was picking features with valuable information content. 

GAFEAT is independent on the learning algorithm and is used as a filter to 

conduct a search for a good feature subset using a correlation-based evaluation function. 

GAFEAT can be thought of as a filter method, which selects features based on the 

training data alone and does not take the biases of modeling algorithms into 

consideration. The main disadvantage of filter methods is that they totally ignore the 

effect of the selected feature subset on the performance of the learning algorithm. In 

order to take into account the biases of the modeling algorithms, Partial Least Square 

(PLS) regression has been integrated into the GA as a fitness function.   

A typical QSAR predictive data-mining problem dataset is characterized by a 

large number of highly inter-correlated descriptive features (300-1000) for a relatively 

small number of molecules. PLS regression is a useful tool to model datasets in which the 

number of features exceeds the number of observations and/or a high level of multi-

collinearity among those features exists. GAFEAT-PLS feature selection method was 
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applied onto two QSAR datasets (the Lombardo and HIVrt datasets) in order to analyze 

its performance. GAFEAT-PLS was able to identify feature subsets for models with good 

prediction. GAFEAT and GAFEAT-PLS choose feature subsets based on linear criteria. 

If a dataset has underlying linear characteristics, the selected subsets by GAFEAT-PLS 

produce better predictive linear (e.g. PLS) as well as non-linear models (e.g. SVM). 

However, generally real datasets (e.g. QSAR datasets) can exhibit significant nonlinear 

characteristics, which cannot be properly accounted for with linear methods. Most of the 

real datasets exhibit nonlinear characteristics to some degree.  A wide degree of non-

linearity (from mild to severe) may exist between sets of variables, and the mildest non-

linearities can be modeled by quadratic polynomials [195]. Berglund and Wold [192] 

proposed a simple way to develop nonlinear PLS models (Implicit Nonlinear Latent 

variable Regression) within the linear PLS framework. They point out that if a dataset 

has mild non-linear characteristics, the INLR method works well. Therefore, the INLR 

method was combined with the GAs for feature selection. The results of GAFEAT-PLS 

with the INLR showed that by introducing the quadratic non-linearities into the linear 

PLS framework, the selected feature subset resulted more predictive models.  

If the non-linearities cannot be accounted for with a quadratic polynomial, the 

INLR approach fails. The severe non-linearities make data look discontinuous and 

clustered, and the data cannot be modeled by any single continuous model [195]. In order 

to take into the consideration more complex non-linearities in the feature selection phase, 

GA algorithms combined with a Local Learning algorithm (GAFEAT-LL). Local 

modeling is a divide-and-conquer strategy, which is based on attacking a complex 

problem by dividing the problem into simpler problems whose solutions is combined to 
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obtain a solution to the original problem [208]. Computational results have shown that 

the GAFEAT-LL feature selection method performed better for clustered datasets with 

many separate classes. It is worth noting that the selected feature subsets by GAFEAT-

LL produced better predictive model with the non-linear modeling methods (e.g. SVM) 

since GAFEAT-LL selects the features based on non-linear criterion and linear model can 

only model the linear relationship. In this dissertation, the aim was to find good feature 

subsets with lower dimensionality, which gave similar results for the linear (e.g. PLS) 

and non-linear (e.g. SVM) predictive models. If the relationship between the predictor 

data (X) and response data (Y) is linear, then it is expected that non-linear model (SVM) 

can converge to a linear model. Therefore, the feature subsets selected by GAFEAT-PLS 

and GAFEAT-PLS with INLR method produced a better model with linear and non-

linear methods.  

The GA feature selection could be implemented with other methods, which could 

take into consideration the more severe non-linearities in data. One of these methods is 

the GIFI approach [188, 195, 213]. In the GIFI approach, each variable of the X data is 

divided into a number of bins, and each bin represents a new variable. In other words, 

each original variable is represented by a set of new variables. This new representation 

allows for a non-linear representation for the corresponding original variable. This 

approach can be used for the GAFEAT-PLS to select appropriate feature subsets to 

model non-linear datasets. A second approach is the combination of the GAs feature 

selection with non-linear methods such as kernel PLS and SVM regression. In this 

approach, it is essential to develop an efficient algorithm, which can be trained very fast, 
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since GAs are population-based algorithms and can be slow due to the large number of 

required objective function evaluation.  
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 APPENDICES 
APPENDIX A 

 
A. The NIPALS Algorithm 

 

X -variables are pre-scaled to ensure that comparable noise level. Then, the average 

value of each column (variable) of X  is calculated and subtracted from corresponding 

column (mean-centering). The NIPALS algorithm extracts one principal component a 

time. The NIPALS algorithm proceeds as follows [104], where the symbol T stands for 

the transpose of the matrix or the vector: 

Step 1. Take a vector jx  from X  and call it jhh xt:t =  

Step 2. Calculate 
h

T
h

T
hT

h
T
h tt

Xt
p:p =  

Step 3. Normalize T
hp  to length 1: T

h)old(

T
h)old(T

h)new( p

p
p =  

Step 4. Calculate 
h

T
h

h
hh pp

pX
t:t =  

Step 5. Calculate the residual T
hhh ptXE −=   

Step 6. Compare the ht used in the Step 2 with that calculated in Step 4. If both are the 

same stop (the iteration has converged), else set hEX =  and go to Step 2.  
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APPENDIX B 
 

B. The PLS Algorithm 
 

Graphical representation of the dimensions of the matrices and vectors used in PLS 

algorithm is depicted in the Figure B.1.The symbol T stands for the transpose of the 

matrix or the vector. The PLS algorithm proceeds as follows [104]: 

Step 0. X and Y are mean-centered and scaled to unit variance.   

Step 1. As starting values, take 1ih Yu =  

Step 2. 
h

T
h

T
hT

h uu

Xu
w =  

Step 3.  T
hw is normalized to unity: T

h)old(

T
h)old(T

h)new(
w

w
w =  

Step 4. 
h)new(

T
h)new(

h)new(T
h ww

wX
t =  

Step 5.  
h

T
h

T
hT

h tt
Yt

q =  

Step 6.  T
hq is normalized to unity: T

h)old(

T
h)old(T

h)new(
q

q
q =  

Step 7. 
h)new(

T
h)new(

h)new(
h qq

qY
u =  
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Step 8.  Perform a convergence check to see if the u used in Step 2 with that calculated 

in Step 7 are the same or not within a predetermined range. If δ<− h)7step(h)2step( uu  

where δis some predefined threshold; then go to Step 9. Else return to Step 2 using the 

new value of u from Step 7. (If Y  has only one column steps 5 through 8 can be 

omitted by putting q = 1, and no more iteration is necessary.) 

Steps 9 through 12 calculate X loadings and rescale the scores and weights accordingly: 

Step 9. 
h

T
h

T
hT

h tt
Xt

p =  

Step 10.  T
hp is normalized to unity: T

h)old(

T
h)old(T

h)new(
p

p
p =  

Step 11.  
T

h)old(
T
h

T
h)new( ptt =  

Step 12.  
T

h)old(
T

h)old(
T

h)new( pww =  

Save 
T

h)new(p T
h)new(q and 

T
h)new(w for prediction. 

Step 13. Find the regression coefficient hb  for inner relationship: 

  
h)new(

T
h)new(

h)new(
T

h tt

tu
b =  

Step 15.  Calculate the residual hE and hF for the X-block and for the Y-block, 

respectively.  

The general outer relation for the X-block for the component h: 
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T

h)new(h)new(1hh ptEE −= − ; 0EX =  

The mixed relation for the Y-block for the component h: 

  
T

h)new(h)new(h1hh qtbFF −= − ; 0FY =  

Step 16. Replace X and Y with their corresponding residual matrices hE and hF : 

  hEX = ; hFY =  

Step 17.  Go to Step 1 to implement the procedure for the next component. 

 

Figure B.1 A Graphical Representation of the Matrices and Vectors used in PLS 
Algorithm 
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APPENDIX C 
 

C. Full Validation Results of GAFEAT-PLS 
 
 
In this Appendix, full validation approach was applied to GAFEAT-PLS feature selection 

with 10-fold and Leave-One-Out cross-validation for the Lombardo and HIVrt datasets. 

  In cross-validation, a dataset is divided into k subsets of approximately equal size. 

A k-fold-cross-validation procedure requires the fitting the model into dataset k times; at 

each time a subset is left out once, and only once, as an external test (validation) set and 

the remaining datasets are combined as a training set. If k is equal to the number of data 

points, it is called Leave-One-Out-Cross-validation. 

In the full cross-validation of GAFEAT-PLS, GAFEAT-PLS performed feature 

selection k times (e.g. as many times as the number of cross-validation subsets) for a 

given dataset and at each time, the reduced training dataset (training dataset with only 

selected features) was modeled with the Partial Least Squares (PLS) regression. Then, the 

performance of the model was measured on the corresponding reduced external test set 

(test set with only selected features) in terms of Q2 statistics. The PLS models described 

in this appendix used four latent variables for all calculations. GAFEAT-PLS was 

executed to select 30 descriptive features from each dataset. The PLS models obtained 

with feature subsets selected by GAFEAT-PLS were also compared with those of dataset 

with all features in terms of Q2 statistics. 
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C.1 Results of Full 10-fold Cross-validation of GAFEAT-PLS for the 
       Lombardo Dataset 
 
 
 

Table C.1 Parameters of GAFEAT-PLS for the Lombardo Dataset with Full 10-fold 
Cross-validation. Number of features to be selected is set to 30 features 

 
Population 

Size 
Crossover 
Probability 

Mutation 
Probability 

Maximum # of 
Generation 

Number of Latent 
Variables 

100 0.90 0.02 1000 4 
 

Number of Bootstraps in 
the Fitness Evaluation 

Number of Molecules 
in the Training Set 

Number of Molecules 
in the Validation Set 

20 Depends on fold 4 
  

 

 

 
Table C.2 Result of Full 10-fold Cross-validation of GAFEAT-PLS for the Lombardo 

Dataset 
 

 Full Data (without feature selection) GA-PLS (with feature selection) 
Fold r2 R2 q2 Q2 r2 R2 q2 Q2 

1 0.9223 0.9215 0.0999 0.1482 0.9826 0.9824 0.1461 0.1610 
2 0.9453 0.9447 0.3106 0.6356 0.9858 0.9853 0.2905 0.5084 
3 0.9183 0.9177 0.1239 0.2839 0.9761 0.9761 0.1648 0.1898 
4 0.9266 0.9266 0.9435 1.7527 0.9871 0.9870 0.6881 1.1869 
5 0.9299 0.9288 0.4619 1.0786 0.9877 0.9867 0.4323 1.1076 
6 0.9316 0.9313 0.3161 0.3739 0.9884 0.9884 0.5692 0.8647 
7 0.9137 0.9137 0.0644 0.0706 0.9847 0.9846 0.1562 0.6803 
8 0.9125 0.9121 0.1214 0.1537 0.9839 0.9837 0.0559 0.0962 
9 0.9291 0.9281 0.2072 0.3234 0.9883 0.9881 0.4211 0.4556 
10 0.9158 0.9157 0.2951 0.3404 0.9834 0.9832 0.4344 0.5479 

Overall   0.2872 0.2901   0.3099 0.3638 
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(A) 

With all features (without feature selection) 

 
(B) 

With GAFEAT-PLS (with feature selection) 
Figure C.1 Overall Results of Full 10-fold Cross-validation for the Lombardo Dataset 

 

 

 
Lombardo Dataset with all features 

Result of Fold 1 

 
GAFEAT-PLS (Lombardo Dataset) 

Result of Fold 1 
 

 
Lombardo Dataset with all features 

Result of Fold 2 

 
GAFEAT-PLS (Lombardo Dataset) 

Result of Fold 2 
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Lombardo Dataset with all features 

Result of Fold 3 

 
GAFEAT-PLS (Lombardo Dataset) 

Result of Fold 3 
 

 
Lombardo Dataset with all features 

Result of Fold 4 

 
GAFEAT-PLS (Lombardo Dataset) 

Result of Fold 4 
 

 
Lombardo Dataset with all features 

Result of Fold 5 

 
GAFEAT-PLS (Lombardo Dataset) 

Result of Fold 5 
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Lombardo Dataset with all features 

Result of Fold 6 

 
GAFEAT-PLS (Lombardo Dataset) 

Result of Fold 6 
 

 
Lombardo Dataset with all features 

Result of Fold 7 

 
GAFEAT-PLS (Lombardo Dataset) 

Result of Fold 7 
 

 
Lombardo Dataset with all features 

Result of Fold 8 

 
GAFEAT-PLS (Lombardo Dataset) 

Result of Fold 8 
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Lombardo Dataset with all features 

Result of Fold 9 

 
GAFEAT-PLS (Lombardo Dataset) 

Result of Fold 9 
 

 
Lombardo Dataset with all features 

Result of Fold 10 

 
GAFEAT-PLS (Lombardo Dataset) 

Result of Fold 10 
Figure C.2 Comparison of the Individual Fold of the Full 10-fold Cross-validation of 

GAFEAT-PLS with Full Dataset 
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C.2 Results of Full Leave-One-Out Cross-validation of GAFEAT-PLS 
       for the Lombardo Dataset 
 
 
 
Table C.3 Parameters of GAFEAT-PLS for the Lombardo Dataset with Full Leave-One-

Out Cross-validation. Number of features to be selected is set to 30 features. 
 

Population 
Size 

Crossover 
Probability 

Mutation 
Probability 

Maximum # of 
Generation 

Number of Latent 
Variables 

100 0.90 0.02 1000 4 
 

Number of Bootstraps in 
the Fitness Evaluation 

Number of Molecules 
in the Training Set 

Number of Molecules 
in the Validation Set 

20 56 6 
  

 

 

 

 

 
(A) 

With all features (without feature selection) 

 
(B) 

With GAFEAT-PLS (with feature selection) 
Figure C.3 Overall results of Leave-One-Out Cross-validation for the Lombardo Dataset 
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C.3 Results of Full 10-fold Cross-validation of GAFEAT-PLS  
       for the HIVrt Dataset 

 

 

Table C.4 Parameters of GAFEAT-PLS for the HIVrt Dataset with Full 10-fold Cross-
validation. Number of features to be selected is set to 30 features. 

 
Population 

Size 
Crossover 
Probability 

Mutation 
Probability 

Maximum # of 
Generation 

Number of Latent 
Variables 

100 0.90 0.02 1000 4 
 

Number of Bootstraps in 
the Fitness Evaluation 

Number of Molecules 
in the Training Set 

Number of Molecules 
in the Validation Set 

20 Depends on fold 4 
  

 
 
 
 
 

Table C.5 Result of Full 10-fold Validation of GAFEAT-PLS for the HIVrt Dataset 
 

 Full Data (without feature selection) GA-PLS (with feature selection) 
Fold r2 R2 q2 Q2 r2 R2 q2 Q2 

1 0.8146 0.8131 0.2269 0.3996 0.9521 0.9508 0.4839 0.6375 
2 0.8348 0.8336 0.7033 1.2646 0.9607 0.9583 0.7483 1.5513 
3 0.7917 0.7915 0.1504 0.2119 0.9502 0.9501 0.3207 0.3232 
4 0.8164 0.8161 0.4342 0.6128 0.9475 0.9473 0.3933 0.7025 
5 0.7991 0.7991 0.3047 0.3243 0.9474 0.9474 0.7488 1.6040 
6 0.7876 0.7849 0.4844 1.1770 0.9428 0.9408 0.2196 0.7333 
7 0.8289 0.8289 0.7157 0.7335 0.9616 0.9609 0.8538 1.0954 
8 0.8221 0.8209 0.1055 0.5683 0.9508 0.9481 0.2640 1.4951 
9 0.8233 0.8222 0.2128 0.6086 0.9401 0.9399 0.6387 3.7095 
10 0.8172 0.8164 0.1687 0.3187 0.9508 0.9498 0.6328 0.7168 

Overall   0.3656 0.3679   0.5624 0.7188 
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(A) 

With all features (without feature selection) 

 
(B) 

With GAFEAT-PLS (with feature selection) 
Figure C.4 Overall Results of Full 10-fold Cross-validation for the HIVrt Dataset 

 

 
 

 
HIVrt Dataset with all features 

Result of Fold 1 

 
GAFEAT-PLS (HIVrt Dataset) 

Result of Fold 1 
 

 
HIVrt Dataset with all features 

Result of Fold 2 

 
GAFEAT-PLS (HIVrt Dataset) 

Result of Fold 2 
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HIVrt Dataset with all features 

Result of Fold 3 

 
GAFEAT-PLS (HIVrt Dataset) 

Result of Fold 3 
 

 
HIVrt Dataset with all features 

Result of Fold 4 

 
GAFEAT-PLS (HIVrt Dataset) 

Result of Fold 4 
 

 
HIVrt Dataset with all features 

Result of Fold 5 

 
GAFEAT-PLS (HIVrt Dataset) 

Result of Fold 5 
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HIVrt Dataset with all features 

Result of Fold 6 

 
GAFEAT-PLS (HIVrt Dataset) 

Result of Fold 6 
 

 
HIVrt Dataset with all features 

Result of Fold 7 

 
GAFEAT-PLS (HIVrt Dataset) 

Result of Fold 7 
 

 
HIVrt Dataset with all features 

Result of Fold 8 

 
GAFEAT-PLS (HIVrt Dataset) 

Result of Fold 8 
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HIVrt Dataset with all features 

Result of Fold 9 

 
GAFEAT-PLS (HIVrt Dataset) 

Result of Fold 9 
 

 
HIVrt Dataset with all features 

Result of Fold 10 

 
GAFEAT-PLS (HIVrt Dataset) 

Result of Fold 10 
Figure C.5 Comparison of the Individual Fold of the Full 10-fold Cross-validation of 

GAFEAT-PLS with Full Dataset 
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C.4 Results of Full Leave-One-Out Cross-validation of GAFEAT-PLS  
       for the HIVrt Dataset 
 
 
 
Table C.6 Parameters of GAFEAT-PLS for the HIVrt Dataset with Full Leave-One-Out 

Cross-validation. Number of features to be selected is set to 30 features. 
 

Population 
Size 

Crossover 
Probability 

Mutation 
Probability 

Maximum # of 
Generation 

Number of Latent 
Variables 

100 0.90 0.02 1000 4 
 

Number of Bootstraps in 
the Fitness Evaluation 

Number of Molecules 
in the Training Set 

Number of Molecules 
in the Validation Set 

20 58 6 
  

 
 
 
 
 
 

 
(A) 

All features (without feature selection) 

 
(B) 

GAFEAT-PLS (with feature selection) 
Figure C.6 Overall results of Leave-One-Out Cross-validation for the HIVrt Dataset 
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APPENDIX D 
 

D. Comparison of the Proposed Evolutionary 
Algorithms for Feature Selection with CART 

 
 

In this Appendix, the feature subsets selected from the Lombardo and HIVrt datasets by 

the proposed evolutionary algorithms (GAFEAT-PLS, GAFEAT-PLS with INLR, and 

GAFEAT-LL) will be compared with that of CART (Classification And Regression 

Trees) method. The following brief information about CART was taken from [214].  

 

D.1   CART Methodology 

CART is a statistical procedure introduced by Breiman, Friedman, Olshen, and C. 

Stone in 1984 [215]. CART procedure can be used to analyze either categorical 

(classification problem) or continuous data (regression problem). The CART 

methodology is known as binary recursive partitioning. The process is binary since parent 

nodes are always split into exactly two child nodes. The process is recursive since it can 

be repeated by treating each child node as a parent. The key elements of a CART analysis 

are a set of rules for:  

i) Splitting each node in a tree; 

ii) Deciding when a tree is complete; and 

iii) Assigning each terminal node to a class outcome for classification 

problems (or predicted value for regression problem).  

CART presents its results in the form of decision trees and therefore it is a 

significant departure from more traditional statistical analysis procedure. CART uses a 
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decision tree to display how data may be classified or predicted. By asking a series of 

“yes/no” questions concerning database fields, CART automatically searches for 

important relationships and uncovers hidden structure even in highly complex datasets. 

 

D.2    Feature Selection with CART 

CART is often employed to select a manageable number of relevant features from 

datasets with hundreds of features. Since one of the goals of CART is to develop a simple 

tree structure for data, relatively few variables may appear explicitly in the splitting 

criteria. This can be interpreted that other variables are not important in understanding or 

predicting the response variable. Unlike a linear regression model, a variable in CART 

can be considered highly important even if it never appears as a primary node splitter, 

since CART keeps track of surrogate splits in the tree-growing process and the 

contribution a variable can make in prediction is not determined only by primary splits. 

The importance score of a variable in CART is calculated in the following way: 

CART looks at the improvement measure attributable to each variable in its role as a 

surrogate to the primary split. The value of these improvements are summed over each 

node and totaled, and scaled relative to the best performing variable. The variable with 

the highest sum of improvement is scored to 100, and all other variables will have lower 

scores ranging downwards towards to zero. 

It is noted that the importance score measures a variable’s ability to mimic the 

chosen tree and to play a role as a stand-in for variables appearing in primary splits. The 

importance score does not say anything about the value of any variable in the 

construction of other trees. Therefore, the importance score does not indicate an absolute 
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information value of a variable and ranking of the variables are strictly relative to a given 

tree structure. 

 

D.3   CART Analysis for the Lombardo and HIVrt Datasets 

CART program was used to select important features from the Lombardo and HIVrt 

datasets. The default setting of the CART program was used to analyze these QSAR 

datasets. The importance of the variables (features) was obtained from the best CART 

tree for both datasets. 11 variables for the Lombardo and 12 variables for the HIVrt were 

identified as important features based on the best CART tree. Important variables for the 

Lombardo and HIVrt datasets were presented in the Tables D.1 and D.2, respectively. 

 
 

Table D.1 Importance of Variables of the Lombardo Dataset Calculated from the Best 
CART Tree 

Variable ID Variable Name Score  
V16 AbsDRN7 100.00 |||||||||||||||||||||||||||||||||||||||||| 
V2 drns1 92.77 ||||||||||||||||||||||||||||||||||||||| 
V1 SHWHBD_358 82.04 |||||||||||||||||||||||||||||||||| 
V24 dknd3 74.91 ||||||||||||||||||||||||||||||| 
V4 AbsDRN5 72.25 |||||||||||||||||||||||||||||| 
V43 AbsL7 68.37 |||||||||||||||||||||||||||| 
V199 lapld7 16.46 |||||| 
V167 AbsDRN1 15.96 |||||| 
V95 lapld8 15.96 |||||| 
V28 Gmax_100 13.49 ||||| 
V294 fuks3 11.87 |||| 

 
 
 

Table D.2 Importance of Variables of the HIVrt Dataset Calculated from the Best CART 
Tree 

Variable ID Variable Name Score  
V17 pips8 100.00 |||||||||||||||||||||||||||||||||||||||||| 
V88 pips1 90.83 |||||||||||||||||||||||||||||||||||||| 
V1 Del.G.NIA 78.95 ||||||||||||||||||||||||||||||||| 
V3 pips6 62.49 |||||||||||||||||||||||||| 
V28 HMax.99 51.69 ||||||||||||||||||||| 
V8 SHsOH.91 51.69 ||||||||||||||||||||| 
V172 AbsBNP7 44.43 |||||||||||||||||| 
V18 SaasC.119 30.15 |||||||||||| 
V38 AbsDRN4 28.15 ||||||||||| 
V15 SssCH2.111 25.46 |||||||||| 
V32 dxp4.49 25.21 |||||||||| 
V149 CssCH2.202 23.94 ||||||||| 
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The performances of the feature subsets selected by CART on PLS and SVM 

regression models were calculated based on 100-bootstrap sample by leaving 6 and 8 

molecules in the validation sets for the Lombardo and HIVrt datasets, respectively. These 

results are present in Tables D.3 and D.4 for the Lombardo and HIVrt datasets, 

respectively. 

 

Table D.3 100-bootstrap Validation for the Selected 11 Features from the Lombardo 
Dataset by CART 

Training Error Validation Error Learning Models 
r2 R2 q2 Q2 

PLS 0.7723 0.7723 0.3112 0.3129 
SVM 0.8721 0.8712 0.2332 0.2333 

 
 

Table D.4 100-bootstrap Validation for the Selected 12 Features from the HIVrt Dataset 
by CART 

Training Error Validation Error Learning Models 
r2 R2 q2 Q2 

PLS 0.6535 0.6534 0.5240 0.5415 
SVM 0.8987 0.8953 0.2987 0.3058 

 
 

D.4   Comparison of CART with the Proposed Feature Selection Methods 

In order to compare the feature subsets selected by CART with those of the 

proposed evolutionary algorithms (GAFEAT-PLS, GAFEAT-PLS with INLR, and 

GAFEAT-LL), SVM regression was used to model the CART feature subsets. Since 

CART selected 11 features from the Lombardo and 12 features from HIVrt datasets, the 

proposed feature selection algorithms were executed to select feature subsets of size 10 

for both datasets for a fair comparison. Tables D.5 and D.6 present the comparison of 

feature selection methods based on SVM regression model with 100-bootstrap validation 
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for the Lombardo and HIVrt datasets, respectively. Figures D.1 and D.2 also depict these 

results graphically. 

 

Table D.5 Comparison of Feature Selection Methods based on SVM regression Model 
with 100-bootstrap Validation for the Lombardo Dataset 

Feature Selection Method
Number of Selected 

Features
  Q²  SVM

GAFEAT-LL 10 0.3016
GAFEAT-PLS 10 0.1951
GAFEAT-PLS with INLR 10 0.1951
CART 11 0.2333  

 

Table D.6 Comparison of Feature Selection Methods based on SVM regression Model 
with 100-bootstrap validation for the HIVrt Dataset 

Feature Selection Method Number of Selected 
Features

  Q²  SVM

GAFEAT-LL 10 0.2237
GAFEAT-PLS 10 0.2218
GAFEAT-PLS with INLR 10 0.1957
CART 12 0.3058  

 

 

Comparison of Feature Selection Methods on the 
Lombardo Dataset
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Figure D.1 Comparison of Feature Selection Methods based on SVM regression Model 

with 100-bootstrap Validation for the Lombardo Dataset 
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Comparison of Feature Selection Methods on the HIVrt 

Dataset
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Figure D.2 Comparison of Feature Selection Methods based on SVM regression Model 

with 100-bootstrap Validation for the HIVrt Dataset 
 

 

It is clear from figures D.1 and D.2 that the proposed feature selection methods 

give comparable, or even better, results than those of CART. It should be noted that even 

if the subsets of size 10 selected by the proposed feature selection algorithms are not the 

best subset for the Lombardo and HIVrt datasets, these subsets still give comparable 

results to that of CART.  


