

EVOLUTIONARY COMPUTING FOR

FEATURE SELECTION AND PREDICTIVE DATA MINING

By

Muhsin Ozdemir

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Engineering Science

Approved by the
Examining Committee:

Jorge Haddock, Thesis Adviser

Mark J. Embrechts, Thesis Adviser

Curt M. Breneman, Member

Nong Shang, Member

Rensselaer Polytechnic Institute
Troy, New York

March 2002

(For Graduation May 2002)

 ii

TABLE OF CONTENTS

LIST OF TABLES..… … … … … … … … … … … … … … ...… .… ..… … .… … … .… … … .vi

LIST OF FIGURES… … … … … … … … … … … … … … … …… … … … … ..… ...…ix

ACKNOWLEDGEMENT… … … ..… … … … … … … … … … … ..… … ..… .… ...…xiii

ABSTRACT… … … … … … … … … … … .… … … … … … … … ..… … … .… … ...… ...… ...xiv

1 INTRODUCTION ..1

2 OPTIMIZATION ...6

2.1 Optimization Methods ...7
2.2 Simulated Annealing..9
2.3 TABU Search ...10
2.4 Evolutionary Computation..11

2.4.1 Genetic Algorithms ..12
2.4.2 Evolutionary Programming ..12
2.4.3 Evolution Strategies ...13
2.4.4 Genetic Programming...14
2.4.5 Summary for Evolutionary Computing ...15

2.5 Combinatorial Optimization ...17

3 GENETIC ALGORITHMS ...19

3.1 Genetic Vocabulary ...20
3.2 Genetic Representation of Parameters ...21

3.2.1 Binary Representation and Gray Coding...22
3.2.2 Real-coded Genetic Algorithms..24
3.2.3 Diploidicity ..25

3.3 Crossover ...26
3.3.1 Two-parent Crossover ..27
3.3.2 Multi-parent Crossover...28

3.4 Mutation...32
3.5 Selection Mechanism ...33

3.5.1 Fitness Proportional Selection Schemes..33
3.5.2 Tournament Selection Scheme ...35
3.5.3 Elitist Scheme ..35
3.5.4 Rank Selection ...36

4 EVOLUTIONARY ALGORITHMS FOR THE TRAVELING SALESMAN
PROBLEM ...37

4.1 Introduction ...37
4.2 Approaches for Solving the TSP ...38

4.2.1 Tour Construction Heuristics..39
4.2.2 Local Improvement Algorithms..40
4.2.3 Memetic Algorithms ..41

 iii

4.2.4 TABU Search...42
4.2.5 Simulated Annealing ..42
4.2.6 Neural Networks ..43
4.2.7 Ant Systems ...43

4.3 Genetic Algorithms ..44
4.4 Representations and Genetic Operators ...45

4.4.1 Binary Representation ..46
4.4.2 Permutation Representation..47
4.4.3 Edge Representation...51
4.4.4 Adjacency Representation ..52
4.4.5 Ordinal Representation...53
4.4.6 Random Keys Representation...53
4.4.7 Matrix Representation ..54

4.5 Modified Partially Mapped Crossover..54
4.5.1 PMX and Premature Convergence..55
4.5.2 A Modification to PMX..57
4.5.3 Comparison of Classic PMX and Modified PMX59

4.6 Evolutionary Programming Approach to the TSP...61
4.6.1 Evolutionary Programming ..62
4.6.2 Evolutionary Programming with Constant Population (EPC)..................63
4.6.3 Experimental Results for EPC ..65

5 EVOLUTIONARY ALGORITHMS FOR PREDICTIVE MODELING AND
DATA MINING..69

5.1 Predictive Modeling and Data Mining..69
5.1.1 Standard Data Mining Problems ...69
5.1.2 Data Strip Mining Problems ...71

5.2 In-Silico Drug Design...73
5.3 Feature Selection for In-Silico Drug Design ...76
5.4 Feature Selection in Statistics..80
5.5 Common Components of Feature Selection Algorithms82

5.5.1 Feature Evaluation ...82
5.5.2 Search Methods..83
5.5.3 Stopping Criterion ..84

5.6 GAs for Feature Selection..84
5.6.1 Representation..84
5.6.2 Studies of GAs on Feature Selection...85

6 DATA STRIP MINING ...88

6.1 Scientific Data Mining ...89
6.2 StripMinerTM ...90
6.3 Predictive Modeling Algorithms in StripMinerTM..90

6.3.1 Neural Network Model...90
6.3.2 Local Learning ...91
6.3.3 Support Vector Machines ...91
6.3.4 Partial Least Square (PLS) Regression ...93

6.4 Performance Estimation for Learning Models ...94

 iv

6.5 Sensitivity Analysis for Feature Reduction...95
6.5.1 One-Dimensional (1-D) Sensitivity Analysis ..96
6.5.2 Bootstrap Aggregation (Bagging) Sensitivity Analysis98

7 BENCHMARKING DATASETS ..102

7.1 Descriptors ...102
7.1.1 Transferable Atomic Equivalent (TAE) Descriptors103
7.1.2 Property Encoded Surface Translator (PEST) Descriptors103
7.1.3 Molecular Operating Environment (MOE) Descriptors.........................103

7.2 Lombardo Blood-brain Barrier Dataset ...104
7.3 Human Immunodeficiency Virus reverse transcriptase (HIVrt) Inhibitors

Dataset … … … … … ..105
7.4 Caco-2 Dataset ...105

8 CORRELATION-BASED FEATURE SELECTION WITH EVOLUTIONARY
ALGORITHMS..108

8.1 Correlation Based Evaluation Function..109
8.2 Rank-Based Selection Scheme...111
8.3 Genetic Algorithms for Feature Selection (GAFEAT)111

8.3.1 Floating-Point Representation ..115
8.3.2 Crossover and Mutation for Floating-Point Representation...................117
8.3.3 Unique List Representation ..118
8.3.4 Crossover and Mutation operators for Unique List Representation119

8.4 Evolutionary Programming for Feature Selection (EPFEAT)121
8.4.1 Representation for EPFEAT ...121
8.4.2 Mutation Operator for EPFEAT ...122

8.5 Comparisons of Evolutionary Algorithms for Feature Selection.................123
8.6 Effects of the Inter-correlation Penalty (α) Factor on Variable Selection...124
8.7 Effect of the Inter-correlation Penalty (α) Factor on Prediction131

8.7.1 Evaluation of Learning Algorithms ..132
8.7.2 Effect of the α on the Prediction Quality ..133
8.7.3 Performance of GAFEAT on Feature Selection139
8.7.4 Conclusions..141

9 GAFEAT-PLS: GENETIC ALGORITHMS WITH PARTIAL LEAST SQUARES
REGRESSION FOR FEATURE SELECTION..143

9.1 Data Compression..144
9.1.1 Principal Component Analysis (PCA) and Principal Component

Regression (PCR) ...145
9.1.2 NIPALS Algorithm ..147
9.1.3 Partial Least Squares (PLS) Regression ..147
9.1.4 Optimal Number of Latent Variables..149
9.1.5 Nonlinear Partial Least Squares (PLS) Regression................................151

9.2 Feature Selection with Evolutionary Algorithms and PLS Regression154
9.3 The Proposed GAFEAT-PLS ..157

9.3.1 Creation of the Initial Population..158
9.3.2 Evaluation of the Fitness ..159

 v

9.3.3 Selection Mechanism ...160
9.3.4 Crossover and Mutation ...162
9.3.5 Stopping Criteria ..162

9.4 Validation of GAFEAT-PLS ...163
9.4.1 External (Independent) Validation Set ..165
9.4.2 Cross-validation and Bootstrapping without Replacement166
9.4.3 Randomization test (Randomization of the Response Values)...............167
9.4.4 Validation Strategy for GAFEAT-PLS ...168

9.5 Computational Evaluation of GAFEAT-PLS...171
9.5.1 The Lombardo Dataset ...172
9.5.2 The HIVrt Dataset...175

9.6 Computational Validation of GAFEAT-PLS with a Randomization Test ..178
9.6.1 The Lombardo Dataset ...179
9.6.2 The HIVrt Dataset...181

9.7 Computational Evaluation of the Implicit Nonlinear GAFEAT-PLS..........184
9.7.1 The Lombardo dataset ..185
9.7.2 The HIVrt dataset..188
9.7.3 Comparisons of GAFEAT-PLS and Implicit Nonlinear GAFEAT-PLS 190

9.8 Convergence of GAFEAT-PLS ...193

10 GAFEAT-LL: GENETIC ALGORITHMS WITH LOCAL LEARNING FOR
FEATURE SELECTION ...200

10.1 Local Learning...201
10.2 Feature Selection with Evolutionary Algorithms and Local Learning........203
10.3 The Proposed GAFEAT-LL..206
10.4 Computational Evaluation of GAFEAT-LL...207

10.4.1 The Lombardo Dataset ...208
10.4.2 The HIVrt Dataset...211

10.5 Computational Validation of GAFEAT-LL with a Randomization Test215
10.5.1 The Lombardo Dataset ...215
10.5.2 The HIVrt Dataset...218

10.6 Final Remarks on GAFEAT-LL Feature Selection......................................221

11 CONCLUSIONS AND SCOPE OF FUTURE WORK.......................................224

CITED LITERATURE ...230

APPENDICES ...249

A. The NIPALS Algorithm..249
B. The PLS Algorithm...250
C. Full Validation Results of GAFEAT-PLS..253
D. Comparison of the Proposed Evolutionary Algorithms for Feature Selection

with CART...266

 vi

LIST OF TABLES

Table Page
4.1 Results of Static and Dynamic PMX for 30-city Problem - - - - - - - - - - - 60

4.2 Results of Static and Dynamic PMX for 52-city Problem - - - - - - - - - - - 60

4.3 Results of Static and Dynamic PMX for 76-city Problem - - - - - - - - - - - 60

4.4 Results of Static and Dynamic PMX for 100-city Problem - - - - - - - - - - 61

4.5 Summary Results for Static and Dynamic PMX - - - - - - - - - - - - - - - - - 61

4.6 Results of EPC for 30-city TSP - 66

4.7 Results of EPC for 50-city TSP - 66

4.8 Results of EPC for 75-city TSP - 67

4.9 Results of EPC for 100-city TSP - 67

4.10 References of Compared Methods - 68

4.11 Comparison of EPC with Other Methods - 68

8.1 Search Subspace for a Dataset with 10 Features - - - - - - - - - - - - - - - - - 114

8.2 Parameter Settings for the Evolutionary Algorithms for Feature
Selection - 123

8.3 Comparisons of Genetic Algorithm with Floating-point and Unique
List Representations, and Evolutionary Programming Algorithm for
Feature Selection - 124

8.4 Results for 40 Features Selected by GAFEAT from Synthetic
Dataset at Different a Values - 125

8.5 Weight Factors, Correlation Ranks and Correlations with the
Response Variable of 40 Features that Constructed to the Response
Variable for Random Coefficients - 127

8.6 Results for 40 Features Selected by GAFEAT from Artificial
Dataset (constant weight) at Different Alpha Values - - - - - - - - - - - - - - 129

8.7 Weight Factors, Correlation Ranks and Correlations with the
Response Variable of 40 Features that Constructed to the Response
Variable with the Same Coefficients - 130

8.8 100-bootstrap Validation of the HIVrt Dataset with 160 Wavelet
Descriptors - 134

8.9 Comparisons of Methods - 138

 vii

8.10 20 Features Selected by GAFEAT for Caco-2 Datasets - - - - - - - - - - - - 140

8.11 Predictive Results of MLPs for Caco-2 Datasets based on 100-
bootstraps - 141

9.1 Leave-One-Out Cross-validation Results of the PLS Regression
Model with Different Latent Variables for the HIVrt Datasets - - - - - - - - 150

9.2 Leave-One-Out Cross-validation Results of the PLS Regression
Model with Different Latent Variables for the Lombardo Datasets - - - - - 150

9.3 100-bootstrap Validation of Full Lombardo Dataset - - - - - - - - - - - - - - 173

9.4 Parameters of GAFEAT-PLS for the Lombardo Dataset - - - - - - - - - - - - 173

9.5 100-bootstrap Validation Results of PLS Models of the Feature
Subset Selected by GAFEAT-PLS from the Lombardo Dataset - - - - - - - 174

9.6 100-bootstrap Validation Results of SVM Models of the Feature
Subset Selected by GAFEAT-PLS from the Lombardo Dataset - - - - - - - 174

9.7 100-bootstrap Validation of Full HIVrt Dataset - - - - - - - - - - - - - - - - - - 176

9.8 Parameters of GAFEAT-PLS for the HIVrt Dataset - - - - - - - - - - - - - - - 176

9.9 100-bootstrap HIVrt Feature Subset Validation with PLS Regression - - - 177

9.10 100-bootstrap HIVrt Feature Subset Validation with SVM
Regression - 177

9.11 Standard One-Tail Hypothesis Testing of GAFEAT-PLS on the
Lombardo Dataset Based on R2 - 181

9.12 Standard One-Tail Hypothesis Testing of GAFEAT-PLS on the
Lombardo Dataset Based on Q2 - 181

9.13 Standard One-Tail Hypothesis Testing of GAFEAT-PLS on the
HIVrt Dataset Based on R2 - 183

9.14 Standard One-Tail Hypothesis Testing of GAFEAT-PLS on the
HIVrt Dataset Based on Q2 - 184

9.15 100-bootstrap Validation of the Expanded Lombardo Full Dataset - - - - - 185

9.16 100-bootstrap the Expanded Lombardo Feature Subset Validation
with PLS Regression - 186

9.17 100-bootstrap the Expanded Lombardo Feature Subset Validation
with SVM Regression - 186

9.18 100-bootstrap Validation of the Expanded HIVrt Full Dataset - - - - - - - - 188

9.19 100-bootstrap the Expanded HIVrt Feature Subset Validation with
PLS - 189

 viii

9.20 100-bootstrap the Expanded HIVrt Feature Subset Validation with
SVM - 189

10.1 100-bootstrap Validation of Full Lombardo Dataset with PLS, SVM,
and LL - 208

10.2 Parameters of GAFEAT-LL for the Lombardo Dataset - - - - - - - - - - - - 209

10.3 LL 100-bootstrap Validation Results for Feature Subsets Selected by
GAFEAT-LL from the Lombardo Dataset - 209

10.4 PLS 100-bootstrap Validation Results for Feature Subsets Selected
by GAFEAT-LL from the Lombardo Dataset - - - - - - - - - - - - - - - - - - - 209

10.5 SVM 100-bootstrap Validation Results for Feature Subsets Selected
by GAFEAT-LL from the Lombardo Dataset - - - - - - - - - - - - - - - - - - - 210

10.6 100-bootstrap Validation of HIVrt Full Dataset with LL, PLS, and
SVM - 211

10.7 Parameters of GAFEAT-LL for the HIVrt Dataset - - - - - - - - - - - - - - - - 212

10.8 LL 100-bootstrap Validation Results for Feature Subsets Selected by
GAFEAT-LL from the HIVrt Dataset - 213

10.9 PLS 100-bootstrap Validation Results for Feature Subsets Selected
by GAFEAT-LL from the HIVrt Dataset - 213

10.10 SVM 100-bootstrap Validation Results for Feature Subsets Selected
by GAFEAT-LL from the HIVrt Dataset - 213

10.11 Standard One-Tail Hypothesis Testing of GAFEAT-LL on the
Lombardo Dataset Based on R2 - 217

10.12 Standard One-Tail Hypothesis Testing of GAFEAT-LL on the
Lombardo Dataset Based on Q2 - 217

10.13 Standard One-Tail Hypothesis Testing of GAFEAT-LL on the HIVrt
Dataset Based on R2 - 220

10.14 Standard One-Tail Hypothesis Testing of GAFEAT-LL on the HIVrt
Dataset Based on Q2 - 220

10.15 Comparison of the Feature Selection Methods on the Lombardo
Dataset Based on the Best SVM Models - 223

10.16 Comparison of the Feature Selection Methods on the HIVrt Dataset
Based on the Best SVM Models - 223

 ix

LIST OF FIGURES

Figure Page
2.1 Classification of Optimization Methods - - - - - - - - - - - - - - - - - - - - - 8

2.2 Efficiency of Optimization Methods - - - - 16

3.1 A Simple Genetic Algorithm Cycle - - - - 20

3.2 One-point Crossover - - - - 27

3.3 Two-point Crossover - - - - 27

3.4 Occurrence Based Scanning on Bit Patterns - - - - - - - - - - - - - - - - - - 29

3.5 Adjacency Based Crossover - - - - 30

3.6 Diagonal Crossover - - - - 31

3.7 Roulette Wheel Selection - - - - 34

4.1 Development of a Tour on 6-city TSP using the Nearest Insertion
Method - - - - 40

4.2 A 2-Opt Move (a) Original Tour (b) Discontinued Edges are
Selected Edges for Exchange (c) The Resulting Tour after the 2-
Opt Move - 41

4.3 Binary Representation of the 6-city TSP - - - - - - - - - - - - - - - - - - - - - 46

4.4 Classical Crossover Operation on the Binary Encoded 6-city TSP - - - 47

4.5 Permutation Representation for 6-city TSP - - - - - - - - - - - - - - - - - - - 48

4.6 Finding a Cycle in Cycle Crossover - 50

4.7 Binary Encoding of the TSP Based on Edges - - - - - - - - - - - - - - - - - 51

4.8 Standard Evolutionary Programming Algorithm - - - - - - - - - - - - - - - 63

4.9 Evolutionary Programming with Constant Population - - - - - - - - - - - - 64

5.1 The Standard Data Mining Problem - 70

5.2 A Typical QSAR Dataset [99] - 75

5.3 Filter Approach to Feature Selection - 83

6.1 Data Strip Mining Process - 88

6.2 One Cycle in the Sensitivity Analysis - 98

6.3 Bagging Sensitivity Analysis - 101

 x

8.1 Percentage Search Subspace for a Dataset with 10 Features - - - - - - - - 114

8.2 Binary Crossover and Mutation Operations for Feature Selection
Problem - 115

8.3 One-point Crossover Operator in the Floating-point GA for
Feature Selection - 118

8.4 Partially Mapped Crossover for the GA with the Unique List
Representation for Feature Selection - 120

8.5 Representation for Evolutionary Programming Algorithm for
Feature Selection - 122

8.6 The Multiple Coefficient of Determination (R2) of the Feature
Subset with 40 Features Selected by GAFEAT at Different a
Values from Artificial Dataset versus Inter-correlation Factor (α) - - - 126

8.7 Inter-correlation Penalty (α) versus Average Feature to Feature
(FF) Correlation and Average Response to Feature (RF)
Correlation for Artificial Dataset - 128

8.8 Inter-correlation Penalty (α) versus Difference between the
Average Response to Feature (RF) Correlation and the Average
Feature to Feature (FF) Correlation and for Artificial Dataset - - - - - - 128

8.9 Multiple Coefficient of Determination (R2) versus Inter-
correlation Factor (α) for Same Coefficients - - - - - - - - - - - - - - - - - - 129

8.10 Inter-correlation Penalty Factor versus q2 and Q2 of MLPs Models
Constructed by 40 Features Selected by GAFEAT from HIVrt
Dataset with 160 Wavelet Descriptors. The values of q2 and Q2
are based on 100-bootstrap Samples - 134

8.11 Inter-correlation Penalty Factor versus q2 and Q2 of PLS Models
Constructed by 40 Features Selected by GAFEAT from HIVrt
Dataset with 160 Wavelet descriptors. The values of q2 and Q2
are based on 100-bootstrap samples - - - - 135

8.12 Inter-correlation penalty (α) versus Average Feature to Feature
(FF) Correlation and Average Response to Feature (RF)
Correlation for HIVrt Dataset with 160 Wavelet Descriptors - - - - - - - 135

8.13 Colorplot of Correlation Matrix of 40 Features Selected by
GAFEAT from HIVrt dataset with 160 Wavelet Descriptors - - - - - - - 136

8.14 (A) Histogram of the Correlation of the Response Variable with
All 160 Descriptors (B) Histogram of the Correlation of the
Response Variable with the 40 Selected Descriptors by GAFEAT
(α = 0.55) - 137

 xi

8.15 MLP Prediction Results for the Dataset with 31 Features Selected
by Neural Network Sensitivity Analysis using 40 Features
Selected by GAFEAT - 138

9.1 Leave-One-Out Prediction Errors of the PLS Regression Models
for the HIVrt and Lombardo Datasets versus Number of Latent
Variables - 151

9.2 Flow Diagram of GAFEAT-PLS Algorithm - - - - - - - - - - - - - - - - - - 158

9.3 Illustration of the Fitness Evaluation in GAFET-PLS Algorithm - - - - 160

9.4 Survival Probability for a Population Size of 100 individuals
versus Ranking for Different Selective Pressure (θ) Values - - - - - - - - 161

9.5 Classical (Partial) Validation Approach to Feature Selection - - - - - - - 164

9.6 Full Validation Approach to Feature Selection - - - - - - - - - - - - - - - - 164

9.7 100-bootstrap Validation Errors (Q2) of the PLS and SVM
Regression Models of Selected Feature Subsets by GAFEAT-PLS
from the Lombardo Dataset - 175

9.8 100-bootstrap Validation Errors (Q2) of the PLS and SVM
Regression Models of Selected Feature Subsets by GAFEAT-PLS
from the HIVrt Dataset - 178

9.9 100-bootstrap Validation Errors (Q2) of the PLS Models of
Feature Subsets Selected by GAFEAT-PLS from Randomized
Lombardo Dataset for Different Randomization Trials - - - - - - - - - - - 179

9.10 Quality of the Fit (R2) of the PLS Models of Selected Feature
Subsets by GAFEAT-PLS from the Randomized Lombardo
Dataset for Different Randomization Trials - - - - - - - - - - - - - - - - - - - 180

9.11 100-bootstrap Validation Errors (Q2) of the PLS Models of
Selected Feature Subsets by GAFEAT-PLS from the Randomized
HIVrt Dataset for Different Randomization Trials - - - - - - - - - - - - - - - 182

9.12 Quality of the Fit (R2) of the PLS Models of Selected Feature
Subsets by GAFEAT-PLS from the Randomized HIVrt Dataset for
Different Randomization Tests - 183

9.13 100-bootstrap Validation Errors of the PLS and the SVM
Regression Models of Selected Feature Subsets by GAFEAT-PLS
from the Expanded Lombardo Dataset - - - - - - - - - - - - - - - - - - - - - - 187

9.14 100-bootstrap Validation Errors of the PLS and the SVM
Regression Models of Selected Feature Subsets by GAFEAT-PLS
from the Expanded HIVrt Dataset - 190

 xii

9.15 Lombardo Dataset (A) GAFEAT-PLS (B) GAFEAT-PLS with
the INLR Method - 191

9.16 HIVrt Dataset (A) GAFEAT-PLS (B) GAFEAT-PLS with the
INLR Method - 192

9.17 The Best Subset Regression Results of the Subset with 20
Features Selected by GAFEAT-PLS from the Lombardo Dataset
(A) Adj.R2 versus Dimensionality (B) RMSE versus
Dimensionality - 196

9.18 The Best Subset Regression Results of the Subset with 20
Features Randomly Selected from the Lombardo Dataset (A)
Adj.R2 versus Dimensionality (B) RMSE versus Dimensionality - - - - 196

9.19 The Best Subset Regression Results Cp versus Dimensionality
(A) the Subset with 20 Features Selected by GAFEAT-PLS from
the Lombardo Dataset (B) the Subset with 20 Features Randomly
Selected from the Lombardo Dataset - 198

9.20 The Best Subset Regression Results of the Subset with 30
Features Selected by GAFEAT-PLS from the Expanded
Lombardo Dataset (A) Cp versus Dimensionality (B) Adj.R2
versus Dimensionality - - - - 199

10.1 100-bootstrap Validation Errors (Q2) of the LL, SVM, and PLS
Models of Selected Feature Subsets by GAFEAT-LL from the
Lombardo Dataset - 210

10.2 100-bootstrap Validation Errors (Q2) of the LL, SVM, and PLS
Models of Selected Feature Subsets by GAFEAT-LL from the
Lombardo Dataset - 214

10.3 100-bootstrap Validation Errors (Q2) of the LL Models of Feature
Subsets Selected by GAFEAT-LL from Randomized Lombardo
Dataset for Different Randomization Trials - - - - - - - - - - - - - - - - - - - 216

10.4 Quality of the Fit (R2) of the LL Models of Selected Feature
Subsets by GAFEAT-LL from the Randomized Lombardo
Dataset for Different Randomization Trials - - - - - - - - - - - - - - - - - - - 216

10.5 100-bootstrap Validation Errors (Q2) of the LL Models of
Selected Feature Subsets by GAFEAT-LL from the Randomized
HIVrt Dataset for Different Randomization Trials - - - - - - - - - - - - - - 219

10.6 Quality of the Fit (R2) of the LL Models of Selected Feature
Subsets by GAFEAT-LL from the Randomized HIVrt Dataset for
Different Randomization Tests - 219

 xiii

ACKNOWLEDGEMENT

I wish to express my deep gratitude to my thesis advisers Professors Jorge Haddock and

Mark J. Embrechts, whose support, guidance, and encouragement made this work

possible. I wish to express my sincere appreciation to Professor Embrecths for inspiring,

directing, and motivating this research. It was a great pleasure to work with him. He is

not only an excellent teacher and researcher but also an excellent mentor and friend.

I am also indebted to Dr. Curt M. Breneman and his research group who made

valuable contributions to this work by supplying datasets and making helpful suggestions

and comments throughout the course of work. I also would like to thank Dr. Nong Shang

for his advice and comments throughout the course of work.

I would like to thank all the members of the DDASSL research group for their

technical support, help, friendship, and collaboration. During the course of my study I

have been fortunate to make many exceptional friends. I thank all of them for their help

and collaboration.

Last but not the least, I would like to thank my friends - Fabio Arcienages, Jinbo

Bi, Jiaqi Hu, Natasha Yakovchuk, Qiong Luo, Yuchun Yang, Robert Bress, Minghu

Song, and Michinari Momma - for all their support and friendship.

I am grateful to the Adnan Menderes University, Turkey, and the NSF for

financially supporting me during my study at the Rensselaer.

This thesis is dedicated to my parents, whose constant encouragement throughout

the years at the Rensselaer has been a source of inspiration.

 xiv

ABSTRACT

Feature selection has recently been the subject of intensive research in data mining,

especially for datasets with a large number of descriptive attributes such as QSAR

(Quantitative Activity Structure Relationship) data. QSAR is an in-silico drug design

methodology, which requires identifying important features of molecules that explain a

drug relevant activity of interest. A typical QSAR dataset for predicting an activity of

interest is characterized by a large number of descriptive features (300 - 1000) for a

relatively small number of compounds (typically around 50 - 500).

Finding the best feature subset for a given problem with N number of features

requires evaluating all 2N possible subsets. The best feature subset also depends on the

predictive modeling, which will be employed to predict the future unknown values of

response variables of interest. Feature selection involves minimizing the number of

relevant features for maximizing the predictive power of the model. From this point of

view feature selection can be viewed as a special type of multi-objective optimization

problem.

Evolutionary computing can be applied to problems where traditional methods are

hard to apply or lead to unsatisfactory solutions (e.g. local optima). The methods of

evolutionary computation are stochastic and their search methods imitate and model

some phenomena from nature and evolution: i) the survival of the fittest and ii) genetic

inheritance. This dissertation addresses evolutionary algorithms for feature selection and

predictive modeling for QSAR data sets.

 1

 CHAPTER 1

1Introduction

The purpose of this dissertation is to explore evolutionary computing techniques (i.e.,

genetic algorithms and evolutionary algorithms) and apply them to feature selection

problems for predictive data mining. There are many problems in real life for which no

algorithm has been developed to solve at optimality within a reasonable time frame.

Several of these problems can be framed as multi-objective optimization problems.

Optimization is a process to find a possible best solution satisfying two or more objective

amongst countable infinite number of candidate solutions. One class of optimization

problems is called combinatorial optimization problems, which arise in situations where

one has to combine a set of entities in a specific way.

Problems considered in this dissertation are combinatorial problems. A classic

combinatorial optimization problem is the Traveling Salesman Problem (TSP) that can be

stated as the problem of finding the shortest path, which goes through each city of a given

set of cities once and only once and ends in the starting city. Many combinatorial

optimization problems like the Traveling Salesman problem can be formulated in the

abstract as finding from a set of S a subset T that satisfies desired criteria and optimize

(generally minimize) an objective function f. Another combinatorial problem, which is

the main topic of this dissertation, is feature selection. Feature selection is a common task

in many classification and regression problems. Feature selection involves minimizing

the number of relevant features for maximizing the predictive power of the model. From

 2

this point of view feature selection can be viewed as a special type of multi-objective

optimization problem.

Evolutionary computing can be applied to problems where traditional methods are

hard to apply or lead to unsatisfactory solutions (e.g. local optima). The methods of

evolutionary computation are stochastic and their search methods imitate and model

some phenomena from nature and evolution: i) the survival of the fittest and ii) genetic

inheritance. A well-known evolutionary computing algorithm is the Genetic Algorithms

(GA), which are very efficient to search large solution spaces and a good alternative

method to solve combinatorial problems. In this dissertation, multi-objective evolutionary

computing will be applied to the Traveling Salesman Problem and to feature selection

problem for predictive data mining.

Because the TSP problem is a well-known problem, evolutionary algorithms will

be applied to the TSP for benchmarking purposes and novel evolutionary algorithms will

be developed to solve the TSP-like problems (e.g. feature selection problem). These

algorithms will then be applied to feature selection in predictive data mining.

Data mining is the process to automate the discovery of non-obvious, novel, and

potentially useful information from large datasets. The data mining problems can broadly

be divided into two groups: i) predicting of future unknown values of some dependent

(response) variables in a data set by using some or all of the other variables (features) in

the data set, and ii) describing the data by revealing hidden patterns or information that

can be easily interpretable by users or experts. We define a prediction related data-mining

problem as the standard data-mining problem. In this context, a standard data-mining

problem is a multivariate regression or classification problem for which there are many

 3

candidate features to choose from. The purpose is not only to build a good predictive

model but also to explain and interpret to some degree how and why the model works. In

order to succeed in this task a first step is feature selection. Feature selection is very

important because excess features cause a curse of dimensionality problem and make the

predictive model more difficult to explain and interpret. Data-strip mining is defined as

an iterative procedure for feature selection for data sets where the number of features

often exceeds or is on the order of the number of data records. The second step is to build

a predictive modeling.

The outline of this dissertation is the following:

Chapter 2 contains a review of evolutionary computation methods for

optimization problems.

Chapter 3 is dedicated to genetic algorithms. Genetic algorithms provide an

alternative to traditional optimization methods by using powerful search techniques to

locate near optimal solutions in complex optimization problems. The representations,

selection schemes, genetic operators for the genetic algorithms were presented.

Chapter 4 describes the Traveling Salesman Problem, which is a well-studied

classic combinatorial optimization problem in many areas, including evolutionary

computation. Genetic algorithms for the TSP with a modified Partially Mapped

Crossover operator that was originally proposed by Goldberg and Lingle [1] are further

modified for the problem. An algorithm for the TSP based on evolutionary programming

algorithm was also developed. The proposed algorithm, Evolutionary Programming with

Constant Population (EPC) is different from the standard evolutionary programming.

First, EPC always keeps a constant number of individuals similar to genetic algorithms.

 4

Second, EPC uses a selection scheme (i.e., simulated annealing) with a mutation

operation.

Chapter 5 presents a literature review for evolutionary algorithms for feature

selection, especially for in-silico drug design problem. In-silico drug design relies on the

Quantitative Activity Structure Relationship (QSAR) methodology, first introduced by

Hansch et al. [2]. The aim is to predict the biological activity of new untested chemicals

from the knowledge of their chemical structures. QSAR methods deal with identifying

important features of molecules that are relevant to explain variations in an activity of

interest. A typical QSAR dataset for predicting an activity of interest is characterized by a

large number of descriptive features (300-1000) for a small number of compounds

(molecules).

Chapter 6 introduces data strip mining. Data strip mining is an iterative procedure

for feature reduction/model building for datasets where the number of features exceeds or

is on the order of the number of data records. The backbone of the strip mining is the

sensitivity analysis, which determines the saliency of each of the features in a model and

to reduce the number of features for the model [3-5].

Chapter 7 describes three QSAR datasets (Lombardo, HIVrt, and Caco2), which

were utilized for benchmarking the algorithms proposed in this dissertation. Since the

aim of the QSAR is to predict the biological activity of new untested molecules from the

knowledge of their chemical properties, a brief description about the descriptive features

is also presented.

In Chapter 8, three evolutionary algorithms for the feature selection problem are

proposed: i) genetic algorithm with a floating-point representation, ii) genetic algorithm

 5

with a unique list representation iii) evolutionary programming algorithm with a unique

list representation. A novel GA-based feature selection methodology (GAFEAT) based

on the correlation matrix is introduced. In GAFEAT, the GA determines which

descriptive features have the best correlation with the response but have a relatively weak

inter-correlation. GAFEAT is a filter method, which selects features based on the training

data alone by using correlation-based evaluation function without taking the biases of

modeling method into consideration [6].

In Chapters 9 and 10, GAFEAT feature selection is extended by replacing a

correlation-based fitness function with Partial Least Squares (PLS) regression and Local

Learning (LL) algorithms in order to take into consideration the biases of the modeling

algorithms, respectively. In Chapter 11 some suggestions for future research are given.

 6

 CHAPTER 2

2Optimization

In a daily life, we often face to situations that involve optimization. For example, such an

optimization problem might involve deciding the best route to work or can be complex as

to pick a combination of variables that produce a good predictive model in a multivariate

analysis [7]. Any abstract task to be accomplished can be thought of as solving a

problem, which, in turn, can be perceived as a search through a potential solution space

[8]. It is not possible to optimize when there is only one way to carry out a task without

any alternatives. As an example, if there is only one way to drive to work, there is no

choice but to take that route whether it is short or not. We consider optimization process

if a decision between alternatives needs to be made whenever two or more solutions

(alternatives) exist and if it is desirable to choose the best one. The Merriam Webster

dictionary defines the term of optimization as “an act, process, or methodology of making

something (as a design, system, or decision) as fully perfect, functional, or effective as

possible.” The optimization endeavors to improve performance towards some optimal

point or points [9]. Independent features that distinguish the alternatives from one another

are called (independent) variables or parameters of the system under consideration; they

may be represented as a binary (discrete) or integer (real values) depending on the

particular problem at hand [10]. Making a rational decision between alternatives requires

a value judgment to decide which solution can be classified as the better or the best

solution. This value judgment usually relies on evaluating an objective function, which

depends on a metric for the system performance and is functionally related to parameters

 7

of the system. An important and often the most difficult step in an optimization process is

to define an appropriate objective function for the problem at hand. There may exist

multiple objectives at the same time, and the relative weights of each of these

corresponding goals should be considered as well [11].

2.1 Optimization Methods

The lack of recognizing a universal optimization method explains the existence of

numerous optimization methods, each with limited application to a special case [10].

Figure 2.1 divides optimization methods into three broad classes [9]: calculus-based,

enumerative and random search methods.

Calculus-based methods also subdivide into indirect (analytic) and direct (numeric)

methods. Indirect methods search local optima by solving the usually nonlinear set of

equations resulting from setting the gradient of the objective function equal to zero [9].

They attempt to find the optimum in a single step, without tests or trials [10]. On the

other hand, direct methods search local optima by hopping around the search space and

assessing the gradient of the new point, which guides the search. This is simply the

notion of “hill-climbing”, which finds the best local point by climbing the steepest

permissible gradient [9]. Hill-climbing methods approach the solution in a stepwise

manner. At each step it is hoped that the value of the objective function will improve

[10]. The common characteristic of hill-climbing methods is that they begin with an

initial solution (usually determined randomly or deterministically by users) and a new

solution is calculated based on the current solution. The algorithms differ from each other

according to the update rules used to create a solution.

 8

In general, direct optimization methods are computationally prohibitive, and they tend to

work for simple unimodal functions or specialized applications. On the other hand,

indirect methods require the calculation of gradients of functions and constraints. Most of

the these methods do not guarantee to find the global optimal solutions, because these

algorithms usually terminate when the gradient of the objective function is very close to

zero, which may occur both in case of local and global solutions. The other obvious

drawback of indirect methods is the calculation of gradient, which may be expensive or

not well defined. In many real world optimization problems the gradient of the objective

function and constraints may not be calculated exactly because the objective function

and/or constraints cannot be written in explicit mathematical form [12].

 OPTIMIZATION
METHODS

Calculus-based Enumerative Random Search

Indirect
(Analytic)

Direct
(Numeric)

Simulated
Annealing

Evolutionary
Computation

Evolutionary
Programming

Evolution
Strategies

Genetic
Algorithms

Genetic
Programming

TABU
Search

Figure 2.1 Classification of Optimization Methods

Enumerative methods search every point related to an objective function’s search space,

one point a time. They are very simple to implement but computation times may be

prohibitive. Dynamic programming is a good example of this kind of search algorithm.

 9

The shortcomings of the calculus-based and enumerative methods have led to the

random search algorithms. It is common to resort to random decisions in optimization

whenever deterministic rules do not have the desired success [10]. Randomized search

does not necessarily imply arbitrary search. Random search methods are based on

enumerative methods but exploit additional information to guide the search. They cannot

perform better than enumerative methods in the long run [9]. These methods can be

divided into at least three subclasses: simulated annealing, evolutionary computation and

TABU search algorithms.

2.2 Simulated Annealing

Simulated Annealing (SA) was first introduced by Kirkpatrik et al. [13] for solving

hard combinatorial optimization problems and is different from the biologically

motivated evolutionary algorithms [10]. SA works by emulating the annealing

phenomenon from material science. Annealing is the physical process of heating up a

material until it melts, followed by cooling it down in a controlled way until material

crystallizes into a state with perfect lattice. During this process, the free energy of the

material is minimized. The cooling process must proceed carefully in order to escape

from locally optimal lattice structures with crystal imperfections [14]. This SA process

for optimization can be formulated as a problem of finding a solution with minimal cost

among the very large number of possible states. The physical annealing process can be

modeled by computer simulation methods based on Monte Carlo techniques. SA is based

on Monte Carlo techniques and generates a sequence of states of the solid following way.

Given a current state i of the solid with energy Ei, then next state j is generated by

 10

applying a perturbation which transforms the current state into a next state by a small

change. The energy of this new state is Ej. If the energy difference, Ej – Ei, is less than or

equal to zero, the state j becomes the current state. If the energy state is greater than zero,

the state j is accepted with a certain probability. The acceptance probability is given by








≤



 −

>

ji
B

ji

ji

j EEif
Tk

EE
exp

EEif1

{accept}P ,

 where T denotes the temperature of the heat bath and kB a physical constant known as

the Boltzman constant. The acceptance rule described above is known as the Metropolis

criterion and the algorithm that uses this acceptance criterion is known as Metropolis

algorithm [14]. If the temperature is lowered slowly, the material can reach thermal

equilibrium at each temperature. In the SA algorithm, this is achieved by generating a

large number of transitions at a given temperature value. Thermal equilibrium is

characterized by the Boltzman distribution [15].

2.3 TABU Search

TABU search (TS), first suggested by Glover [16], is an iterative heuristic

procedure for solving discrete combinatorial optimization problems. The basic idea

behind the method is to explore the search space of all feasible solutions by a sequence of

moves. A move from one solution to another is the best available solution in the

neighborhood of the current solution. However, a set of solutions determined by the

short-term and the long-term history of the sequence of moves is forbidden (or taboo) in

order to escape from locally optimal solutions. TS can be thought as an extension of

local/neighborhood search with the inclusion of memory structures that record and

 11

exploit the history of the search in order to escape local optima and lead the search

toward higher quality solutions [17]. It has been successfully applied to obtain optimal or

near optimal solutions to scheduling problems, the traveling salesman problems, and

layout optimization applications.

2.4 Evolutionary Computation

Evolutionary computation incorporates algorithms that are inspired from evolution

principles in nature [18]. The methods of evolutionary computation algorithms are

stochastic and their search methods imitate and model some natural phenomena: i) the

survival of the fittest and ii) genetic inheritance. Evolutionary computing can be applied

to problems where traditional methods are hard to apply (e.g. gradients are not available)

or lead to unsatisfactory solutions (e.g. local optima) [18]. Evolutionary algorithms work

with population of potential solutions (i.e. individuals). Each individual is a potential

solution to the problem under consideration and is encoded into a data structure suitable

to the problem. Each encoded solution is evaluated by an objective function

(environment) in order to measure its fitness. Bias on selecting high-fitness individuals

exploits the acquired fitness information. The individuals will change and evolve to form

a new population by applying genetic operators. Genetic operators perturb those

individuals in order to explore search space. There are two main types of genetic

operators: i) mutation and ii) crossover. Mutation type operators are asexual (unary)

operators, which create new individuals by a small change in a single individual. On the

other hand, crossover type operators are multi-sexual (multary [19]) operators, which

create new individuals by combining parts from two or more individuals. After a number

 12

of generations have evolved the process is terminated based on a termination criterion.

The best individual in the final is then proposed as a (hopefully near-optimal or optimal)

solution for the problem. Evolutionary computing further subdivides into four classes: i)

genetic algorithms, ii) evolutionary programming, iii) evolution strategies, and iv) genetic

programming. Although there are many close similarities between these evolutionary

computing paradigms, there are also profound differences between them [8]. These

differences generally concern the level in the hierarchy of evolution being modeled: the

chromosome, the individual, or the species [18]. There are also many hybrid methods that

combine various features from two or more of the methods described in this section.

2.4.1 Genetic Algorithms

Genetic Algorithms (GAs) are part of a collection of stochastic optimization

algorithms inspired by natural genetics and the theory of biological evolution [20]. The

idea behind genetic algorithms is to simulate natural evolution to optimize a particular

objective function. In the last three decades, GAs have emerged as practical, robust

optimization and search methods [8]. In the literature, Holland’s genetic algorithm is

called Simple Genetic Algorithm (SGA) [21]. SGA works with a population of

individuals (chromosomes), which are encoded as binary strings (genes). A detailed

literature review about genetics algorithms is presented in Chapter 3.

2.4.2 Evolutionary Programming

Evolutionary programming (EP) was developed by Lawrence Fogel in the late

1960s. Although EP techniques originally aimed at evolving artificial intelligence in the

 13

sense of developing the ability to predict changes in the environment [22, 23], it is often

used as an optimizer. After initializing a population of N individuals and generating N

children by mutation, N survivors are selected from the population of parent and children

using a probabilistic function based on fitness. As a consequence, individuals with a

greater fitness have a higher chance to survive to the next generation.

2.4.3 Evolution Strategies

Evolution strategies (ES) are algorithms that mimic the principles of natural

evolution as a method to solve parameter optimization problem [8]. They were developed

and used in Germany at almost same time that genetic algorithms emerged in the U.S.A.

during the late 1960s [10]. Early evolution strategies were based on a population

consisting of one individual and one genetic operator (mutation) only. This method called

the two-member evaluation strategy. However, the most significant difference between

simple genetic algorithms and evolution strategies is the representation of the variables.

In ES, an individual was represented as a pair of floating point-valued vectors, i.e., v =

(x, σ). Here, the first vector x represents a point in the solution space; the second vector σ

represents the corresponding standard deviation. The individual is altered by mutation by

s)N(0,t1t xx +=+ , where s)N(0, is a vector of independent identically normally

distributed random numbers with a mean zero and standard devition σ. This is consistent

with biological observation that smaller changes occur more often than larger ones [8].

The mutated individual replaces its parent if and only if the mutated individual has a

better fitness and all existing constraints are satisfied. Otherwise, the offspring vanishes

and the population remains unchanged.

 14

Multi-member evolution strategies were also introduced [10]. Here a population

consisting of µ individuals at generation g produces λ offspring. The µ best of (µ + λ)

individuals will survive as parents for the next generation. This model allows the more fit

individuals to live for a very long time; therefore, it causes the premature convergence. In

order to prevent the premature convergence, the following modification is implemented

to the multi-member evolution strategy. Here, a population consisting of µ individuals at

generation g produces λ offspring, where λ> µ. The µ best of the λ offspring are chosen

to be parents of the following generation.

2.4.4 Genetic Programming

Genetic programming (GP) was developed by Koza [24]. Koza views many

different problems in artificial intelligence, symbolic processing, and machine learning as

requiring discovery of a computer program that produces some desired output for

particular inputs. The process of solving these problems becomes equivalent to searching

a space of possible computer programs for a most fit individual computer programs. Koza

[24] developed genetic programming, which provides a way to search for a most fit

program for the problem. Genetic programming applies genetic algorithms to a

population of computer programs. In order to create new programs from two parent

programs, the programs are written as trees. Removing branches from one tree and

inserting them into another creates new programs. This process ensures that the new

program is also a valid program. Individual programs are evaluated by a fitness function

and best solutions selected for modification and re-evaluation. This process is repeated

until a most fit program is produced.

 15

2.4.5 Summary for Evolutionary Computing

Evolutionary computing can offer several advantages for solving difficult real-

world optimization problems. These advantages related to [25]:

• Conceptual simplicity

• Broad applicability

• Higher performance than classic methods on real problems

• Easily hybridized with other methods

• Suitability for parallel processing (computing)

• Adaptive solutions to changing circumstances

• Capability to optimize its exogenous parameters

• No gradient information necessary

Figure 2.2 [9] shows a generic effectiveness index across a problem continuum

for a calculus-based, an enumerative, a random search and an idealized robust scheme.

Calculus-based methods perform very well in a narrow problem domain (unimodal) but it

is very inefficient elsewhere. As it is expected, enumerative scheme performs low

efficiency across the all problem domain. Because random search methods are based on

enumerative techniques, they are expected to do no better than enumerative methods.

The “No-Free-Lunch” (NFL) theorem [26] shows that all algorithms that search

for optima of a cost function perform exactly the same, when averaged over all possible

cost function. As a result, there cannot exist a single algorithm for solving all

optimization problems that is consistently better than any other algorithm. The question

of whether evolutionary algorithms are inferior or superior to other optimization method

 16

does not make sense. It could be claimed that evolutionary algorithms behave better than

other approaches with respect to solving a specific class of problems [27]. As we can see

in Figure 2.2, NFL can be justified in the case of evolutionary algorithms versus many

classical optimization methods mentioned above. Many classical methods are more

efficient in solving linear, quadratic, convex, unimodal, separable, and many other special

problems. On the other hand, evolutionary algorithms are more efficient in solving

discontinuous, nondifferentiable, multimodal, noisy problems [27].

0

1

E
FF

IC
IE

N
C

Y

PROBLEM TYPE

Multimodal Unimodal Combinatorial

Robust Scheme

Calculus-based Scheme

Enumerative Scheme

Random Search

Figure 2.2 Efficiency of Optimization Methods [9]

Since the range and type of the problems faced with in real life are so diverse, it is

difficult to develop one good method whose performance curve would be like the Robust

Scheme shown in Figure 2.2. An algorithm can be thought of as a robust algorithm that

 17

can successfully solve a wide variety of problems without making too much change in the

algorithm. Genetic Algorithm and Simulated Annealing are both robust search and

optimization algorithms that apply to a wide variety of search and optimization problems

in general [9].

2.5 Combinatorial Optimization

Combinatorial optimization problems arise in situations where one has to combine

a set of entities in a specific way. If the quality of the resulting combination of entities

can be measured, then combinatorial optimization is the task of finding the best

combination of entities. Many combinatorial optimization problems like the Traveling

Salesman problem can be formulated in the abstract as finding from a set of S a subset T

that satisfies desired criteria and optimize (generally minimize) an objective function f

[28]. Most of the combinatorial optimization problems are NP-complete for which it is

not guaranteed that an optimal solution can be found even when using the most efficient

computers. The computation time required for processing a typical NP problem with

input data of size n by a “brute force” algorithm requires at least 2n steps if all subsets of

the given n-point set of inputs are considered (for example variable selection problem), or

on the order of n! steps if all permutations are considered (for example, the Traveling

Salesman Problem), or nn steps if all self-maps are considered [29]. It is believed that

optimal solutions cannot be found for NP-hard problems within polynomially bounded

computation times [14]. Therefore, solving NP-hard problems at optimality requires

unfeasible amount of computation time. This situation led to look for heuristic methods

that find a near optimal solution relatively fast within a reasonable time [30].

 18

One of the objectives of this dissertation is to develop a solution methodology

using evolutionary computing for combinatorial optimization problems that are similar to

the Traveling Salesman Problem (TSP). A detailed literature for relevant TSP like

problems is included in Chapter 4.

The Traveling Salesman Problem is a classic combinatorial optimization problem

and can be stated as the problem of finding the shortest closed tour, which visits each city

of a given set of cities once and only once. Our objective is to find an ordering of N cities

that minimize the tour length [30]. Since the TSP is NP-hard [29] it has been attacked by

many heuristics methods such as local optimization [28], simulated annealing [13], neural

networks [31]. Because finding optimal solution for the TSP involves searching in a

solution space that grows exponentially with number of cities, the TSP also has been

attacked to solve by genetic algorithms [1]. These algorithms produce near-optimal

solutions by maintaining a population of candidate solutions, which evolves by applying

crossover and mutation operators with a selection scheme that is biased towards selecting

more fit individual [8].

 19

 CHAPTER 3

3Genetic Algorithms

Genetic Algorithms (GAs) were proposed by John Holland and his students at the

University of Michigan in the early 1970s [32] and provide an alternative to traditional

optimization methods by using powerful search techniques to locate near optimal

solutions in complex optimization problems. GAs are stochastic algorithms whose search

methods model some natural phenomena based on genetic inheritance and natural

selection. It is a multi-directional search by maintaining a population of potential

solutions and assures information formation and exchange between these directions [8].

The potential solutions to a problem evolve to a better-fit group of solutions [20]. At each

generation the better solutions reproduce, while the relatively bad solutions eventually die

off. GAs have been successfully applied to real world optimization problems like

scheduling processes, the traveling salesman like problems, variable reduction, facility

layout problems, optimization problems in general. GAs have the following distinct

properties:

• Work with encoding of the parameters,

• Search by means of a population of potential solutions,

• Use an evaluation (fitness) function that does not require the calculation of

derivatives,

• Search stochastically.

A generic pseudo-code for a genetic algorithm is shown in Figure 3.1.

 20

 procedure genetic algorithm
begin

 Choose a coding to represent variables
t ← 0
Initialize population P(t)
Evaluate population P(t)

while (not termination condition) do

t ← t+1
Select P(t) from P(t-1)
Alter P(t) with crossover and mutation
Evaluate P(t)

end
end

Figure 3.1 A Simple Genetic Algorithm Cycle

A genetic algorithm for a particular problem contains the following components:

• A genetic representation for parameters in the problem,

• A way to create initial population,

• An evaluation (fitness) function,

• Genetic operators (crossover, mutation) that alter the population,

• Values for parameters that genetic algorithm uses (population size, number of

generation, probabilities of applying genetic operators, selective pressure, etc.).

These are explained in detail in following sections.

3.1 Genetic Vocabulary

Since genetic algorithms are rooted in natural genetics, most of the nomenclatures

in the field are taken from biology. A brief introduction to vocabulary is presented first.

In a biological organism, the information specifying how the organism is to be

constructed is carried in chromosomes. Organisms whose chromosomes are arrayed in

 21

pairs are called diploid (see section 3.2.3); organisms with unpaired chromosomes are

called haploid. In nature, most of the sexually reproducing species have diploid

chromosomes. For example, human being has 23 pairs of chromosomes in each cell [33].

Each chromosome consists of a number of units called genes. The position of a gene on a

chromosome is called a locus. The locus of the gene within the chromosome structure

determines what particular characteristic the gene represents. A set of values that a gene

may take at a particular location on a chromosome is called as allele. One or more

chromosomes may specify the complete organism. However, we consider only one-

stranded chromosome genotype. The complete set of chromosomes is called a genotype,

and the interaction of a genotype with its environment to form an organism is called a

phenotype. Therefore, different genotypes may lead to same phenotype, or same

genotypes may result in different phenotypes.

3.2 Genetic Representation of Parameters

In a genetic algorithm, the environment is the problem under consideration and

each of the organisms is a solution to the problem. Two things must be determined in

order to apply a genetic algorithm to a given problem: i) a genetic code representation

and ii) a fitness or objective function, which assigns a quality measure to each solution

according to its performance [19]. The encoding of the parameters in genetic algorithms

depends on the problems at hand.

Around 1972 GA practitioners could be divided into tow camps [9]: i) the

minimalist camp and ii) the maximal alphabet camp. The minimalist practitioners have

followed Holland’s theory of schemata and low-cardinality alphabets. The low-

 22

cardinality-alphabet theory suggests that small alphabets are good, because they

maximize the number of schemata available for genetic processing [34]. On the other

hand the maximal alphabet practitioners have preferred to represent one parameter with

one gene regardless of the number of alternative alleles required for a particular gene.

Eventually the two camps for allele representation evolved to binary and floating-point

GAs.

3.2.1 Binary Representation and Gray Coding

The traditional method of applying genetic algorithms to real-parameter problems

is to encode each parameter as a bit string using either a standard Boolean or a Gray

coding [22]. Holland [32] suggested that binary strings should be used for representation

of all solutions. The motivation for using binary strings came from the schemata theorem

that was originally introduced by Holland [32]. A schema is a similarity template that

defines a subset of strings with fixed equal genes at certain locations. A schema is

therefore a subset of the complete search space. In order to illustrate the concept of

schema a special symbol ‘#’is appended to the binary alphabet. The symbol # is called

‘don’t care’ symbol that can take any value of alphabet. For instance, the schema (#111)

matches two strings, namely {(0111), (1111)} and similarly, the schema (#111#)

describes four strings, namely, {(01110), (11110), (01111), (11111)}. A schema

represents 2t strings that have same gene in all positions other than ‘#’, where t is the

number of symbols ‘#’ in the schema template.

Schemata are classified by two parameters: order and defining length of the

schema. A schema’s order defines the number of fixed alleles in the chromosome

 23

(string). Its defining length is the distance between the first and last defined allele,

ranging from zero up to l-1, where l is the length of the chromosome. These parameters

are useful for determining how likely a schema is to survive after crossover and mutation

operators. The order strongly correlated to how likely the schema is to be destroyed after

mutation. More alleles in the schema imply a higher chance that mutation will destroy the

schema. The defining length tells how likely the schema is to be destroyed by crossover.

Longer schema is more likely destroyed by crossover. If a schema tends to occur in above

average fitness strings in the population then, the strings incorporating that particular

schema are selected more frequently. Strings are generally destroyed by recombination

but short and low-order tend to survive. The schemata theorem says that the schemata

with above average fitness value will reproduce in increasing numbers in successive

generations, while the schemata with below average fitness values will eventually die off.

The binary representation has some drawbacks when applied to multidimensional, high-

precision numerical problem [8]. If the optimization problem is defined over a continuous

domain, its real-valued parameters can only have approximate genotype representations

because of the finite length of the binary encoding. The desired degree of precision

determines the appropriate length for the binary encoding [22]. If the number of

parameters is large, the size of the chromosome grows quickly. This, in turn, generates

very large search space and reduces the performance of genetic algorithms. The genetic

algorithms invest a lot of computational effort in evaluating the least significant digits of

the gene. However, the optimal value for these digits depends on the more significant

ones [35].

 24

Schraudolph et al. [35] propose a dynamic parameter encoding method as a

mechanism that obtains high-precision results and avoids problems mentioned above. In

this method at first, a very crude precision binary encoding is applied and the GA is

allowed to converge. At this point the resulting population is re-encoded with a high

precision binary encoding, and the GA is restarted.

If we assume an integer domain 0 to 2L –1 for an arbitrary function, any point in

the domain can be represented using an L bit string. A Gray code is defined as a binary

encoding schema that guarantees that points that are next to each other in the integer

domain have a Hamming distance of one. Gray coding is better encoding for a standard

binary representation for problems with limited degree of non-linearity and a locally

correlated structure. The Gray coded representations also induce fewer minima than the

corresponding binary representations for these kinds of problems [36-38]. Gray coding

forces two points that are close to each other in the representation space to be close in the

problem space, and vice versa. This is not always the case with the standard binary

representation [8].

3.2.2 Real-coded Genetic Algorithms

Real-coded genetic algorithms use floating-point or other high cardinality

encoding in their chromosomes [34]. Real-coded (non-binary) representations are more

natural for the specific problems. For instance, in a numerical optimization on continues

domain a chromosome is represented as a vector of floating point numbers in which each

number corresponds to a variable in the problem [10, 12]. Wright [39] suggests a genetic

algorithm that uses real parameter vectors as chromosomes, real parameters as genes, and

 25

real numbers as alleles to optimize problems over several real parameters. Vectors of

integers are used for scheduling and ordering problems such as the Traveling Salesman

Problem [40].

Real-coded GAs usually adopt mutation operators that perturb the current solution

around the current value and are well-suited for hill-climbing in the decision space under

the consideration. In these kinds of situations, binary coded genes can easily become

stuck on Hamming cliffs. Under the assumptions of a fixed population size, a fixed

number of search alternatives, and serial processing of individual loci, it can be shown

theoretically and empirically that higher cardinality alphabets converge to a solution

more quickly than those coded over a smaller alphabet [34].

3.2.3 Diploidicity

So far, the simplest (haploid) genotype found in nature has been considered. In

this model, a single-stranded (haploid) string carries all the information related to the

problem under consideration. Although there are many haploid organisms in the nature,

most of them tend to be of a relatively uncomplicated life form [9]. More complex

organisms tend to have more complex chromosome structures employing diploid or

double-stranded chromosomes. In this structure a genotype carries one or more pairs of

chromosomes, each of them containing information for the same function. When the pair

of genes decode to different function values, the mechanism for eliminating this conflict

of redundancy is governed by a genetic operator called dominance. To illustrate this

operation, let’s consider a diploid chromosome structure where different letters stand for

different alleles.

 26

 A b C d E f

A b c D e F

Each letter represents one allele for that position; two alleles from each chromosome

compete for that position in order to be expressed in the phenotype. One allele

(DOMINANT) takes precedence over the other allele (recessive) at that position. An

allele is dominant if it shows up in the phenotype when paired with some other allele. In

our demonstration, if we assume that all capital letters are dominant and that all

lowercase letters are recessive, the phenotype will be:

 A b C d E f

 → A b C D E F
A b c D e F

At each location, the dominant gene is always expressed but recessive genes are

expressed only if both alleles are recessive. The mechanism of dominance can be thought

of as a genotype-to-phenotype or genotype reduction mapping [9].

3.3 Crossover

Crossover is the key operator, which makes GAs converge to a good solution. The

idea behind crossover is that two or more individuals with high fitness values will create

one or more new offspring (children) who inherit the best features of their parents. Since

the best features are not known a priori, individuals are recombined randomly under a

mechanism of selection, which is biased to more fit individuals. Crossover treats good

features as building blocks scattered throughout the population and tries to recombine

them into new and improved individuals [41]. Crossover will create worse individuals as

 27

well but they will eventually die off. The crossover operator can be divided into two

groups: two-parent (classical crossover) and multi-parent.

3.3.1 Two-parent Crossover

Holland [32] originally proposed one-point crossover. It is a reproduction

operator that takes two parent chromosomes and randomly chooses a location on the

chromosomes. Figure 3.2 illustrates the one-point crossover for binary representation

where the vertical line represents the crossover point.

Parent 1 1 1 1 1 1 1 1 1

Parent 2 0 0 0 0 0 0 0 0

Offspring 1 1 1 1 1 0 0 0 0

Offspring 2 0 0 0 0 1 1 1 1

Figure 3.2 One-point Crossover

Chromosomes are cut at that position and the right part of the chromosomes are swapped.

Another well-known crossover is two-point crossover that chooses two cut points at

random and swaps the middle part of the chromosomes. This can be generalized n point

crossover as well. Figure 3.3 depicts the two-point crossover.

Parent 1 1 1 1 1 1 1 1 1

Parent 2 0 0 0 0 0 0 0 0

Offspring 1 1 1 0 0 0 0 1 1

Offspring 2 0 0 1 1 1 1 0 0

Figure 3.3 Two-point Crossover

 28

3.3.2 Multi-parent Crossover

The creation of new individuals always occurs through either asexual (one parent)

or sexual (two-parent) reproduction in nature. Although there are no biological analogies

of recombination mechanism where more than two parent genotypes mixed in one single

recombination act, there is no necessity to restrict reproduction mechanisms to one

(mutation) or two (crossover) parent chromosomes in computer evolution. It has been

hypothesized that recombination has a statistical error correction effect, called genetic

repair, and that this effect can be improved by using more than two parents for creating

offspring [42].

Biasing the recombination operator can improve the performance of the Genetic

Algorithm [43]. A problem independent way of incorporating bias into the recombination

operation is to use n parents and apply some limited statistical analysis on allele

distribution of the selected parents. Randomly choosing an allele from the parents

introduces a very slight bias. Looking at the number of occurrences of a certain allele at a

particular position and choosing the most common one introduces a strong bias.

Inheriting the number of genes proportional to the fitness value of the parents is a more

sophisticated, but still problem independent mechanism.

Eiben [42, 43] has described a number of genetic operators based on multi-parent.

These operators use two or more parents to generate a single offspring are based on gene

scanning. These operators are uniform scanning, occurrence based scanning, and fitness

based scanning.

Uniform scanning is an extension of the number of parents for the uniform

crossover operator. Uniform crossover takes two parents and chooses a crossover point

 29

randomly, then, generates two offspring. In uniform scanning, only one offspring is

generated and each allele in this single offspring is chosen by a uniform random

mechanism, in where each parent has an equal chance of being chosen to provide value.

The classical uniform crossover is a very disruptive operator. Applying an n-ary version

reduces the level of disruption by using a bigger sample of search space and by creating

only one offspring [44].

Occurrence based scanning is based on the value, which occurs in the selected

parents in a particular position. The selection of parents is based on their fitness. The

selection of value among the marked values is done by a majority vote. If there is no

value in majority among the marked values, the value is assigned to the child either a

policy (from the first parent, etc.) or randomly. Figure 3.4 illustrates the method.

Parent 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0
Parent 2 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0
Parent 3 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1
Parent 4 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0
Child 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0

Figure 3.4 Occurrence Based Scanning on Bit Patterns

Fitness based scanning passes a value to the child proportional to the fitness

values of the parents. For instance, for maximization problem, the probability of choosing

a value from parent i is
∑

=
if

f
P i

i (the Roulette wheel selection). Ei, the expected

number of genes inherited from parent i, will be Ei = Pi * L, where L is the length of a

chromosome.

 30

Adjacency based crossover [43] is a customized case of scanning, which is specifically

designed for order-based representations where the relative positioning of values is

important. The Traveling Salesman Problem is a good example for these kinds of

problems. In this method, the first gene value in the child is always inherited from the

first gene value of the first parent. For each parent, its marker is set to the first successor

of the previously selected value, which does not already show up in the child. When all

immediate successors to a value have already been inherited by the child, the successor of

these immediate successors, and so on, will be checked. The new value will be chosen

amongst these values that are not present in the child. Figure 3.5 illustrates the method.

P(1, 2, 3) and Ch represent parents and child, respectively.

P1 3 7 2 4 8 1 6 5 3 7 2 4 8 1 6 5
P2 2 5 1 7 6 3 8 4 2 5 1 7 6 3 8 4
P3 2 3 8 5 6 4 7 1 2 3 8 5 6 4 7 1
P4 1 3 2 7 5 4 8 6 1 3 2 7 5 4 8 6
Ch 3 3 8

P1 3 7 2 4 8 1 6 5 3 7 2 4 8 1 6 5
P2 2 5 1 7 6 3 8 4 2 5 1 7 6 3 8 4
P3 2 3 8 5 6 4 7 1 2 3 8 5 6 4 7 1
P4 1 3 2 7 5 4 8 6 1 3 2 7 5 4 8 6
Ch 3 8 1 3 8 1 2

P1 3 7 2 4 8 1 6 5 3 7 2 4 8 1 6 5
P2 2 5 1 7 6 3 8 4 2 5 1 7 6 3 8 4
P3 2 3 8 5 6 4 7 1 2 3 8 5 6 4 7 1
P4 1 3 2 7 5 4 8 6 1 3 2 7 5 4 8 6
Ch 3 8 1 2 5 3 8 1 2 5 7

P1 3 7 2 4 8 1 6 5 3 7 2 4 8 1 6 5
P2 2 5 1 7 6 3 8 4 2 5 1 7 6 3 8 4
P3 2 3 8 5 6 4 7 1 2 3 8 5 6 4 7 1
P4 1 3 2 7 5 4 8 6 1 3 2 7 5 4 8 6
Ch 3 8 1 2 5 7 4 3 8 1 2 5 7 4 6

Figure 3.5 Adjacency Based Crossover

 31

Diagonal Multi-parent Crossover has been introduced in [43]. The Diagonal

crossover is a generalization of 1-point crossover for two parents generating two

offspring. Diagonal crossover uses n parents (n ≥ 2), and (n-1) crossover points and

produces n offspring. Figure 3.6 illustrates the procedure where n=3 and ↓ represents the

crossover points.

 Parent1 111111↓1111111↓1111 Offspring1 111111↓2222222↓3333

Parent2 222222↓2222222↓2222 Offspring2 222222↓3333333↓1111

Parent3 333333↓3333333↓3333 Offspring3 333333↓1111111↓2222

Figure 3.6 Diagonal Crossover

The use of more parents in diagonal crossover leads to an improvement in the

performance of GA because the search becomes more explorative, without hindering

exploitation. The more explorative character is the result of having more crossover points

and thus a higher level of disruptiveness, and the fact that using more parents there is

more "consensus" to focus on to search a certain region [44]. In order to investigate the

effect of having more parents in diagonal crossover, Eiben [45] studied a test suit

containing eight numerical optimization problems and established that higher number of

parents tented to lead to a better performance.

Lis [46] proposed Multi-Sexual Genetic Algorithm (MSGA) for multi-objective

optimization problems. Many real world problems have multiple objectives and these

objectives need to be achieved simultaneously. In most cases, these objectives are in

conflict with one another, so that it is not possible to improve on any of the objective

functions without deteriorating one of the other. This fact is known as the Pareto

 32

optimality concept [47]. A general multi-objective optimization problem consists of a

number of objectives and constraints in the form of equalities and inequalities. In these

kinds of problems, there may not exist an unambiguous optimal solution. The

characteristic of the multi-objective optimization problems is the presence of a large set

of acceptable solutions that are superior to the rest of the solutions in the search space

when all objectives are considered. On the other hand, these solutions are not optimal

from the point of any single objective. MSGA provides each individual with an additional

feature (sex or gender) and maps optimization criteria to sexes by one-to-one mapping

and evaluates individuals by the optimization criteria belonging to the sex, and uses

multi-parent crossover for recombination that requires one parent from each sex. In the

recombination phase, the probability of choosing an individual is related to its rank

calculated in the evaluation step. The uniform scanning crossover operator creates one

child from many parents. The sex of offspring is inherited from the parent supplied the

largest number of genes. If there is tie, the parent is chosen randomly. Enforcing that

crossover is applied to representatives of different sexes and the different sexes are

evaluated by different optimization criteria prevent the algorithm from converging to

optimal points with respect to only on single optimization criterion.

3.4 Mutation

Mutation is a common reproduction operator used for finding new points in the

search space. When a string (chromosome) is chosen for mutation, a random choice is

made for selecting genes of the string, and these genes are modified accordingly. In the

case of binary representation, the corresponding bits are flipped form 0 to 1 or vice versa.

 33

A commonly used mutation probability is one over the number of genes in the string [41].

Mutation operator is generally used with a crossover operator as a background operator

that diversifies the population [8].

3.5 Selection Mechanism

Selection is one of the main operators used in evolutionary algorithms and its

primary objective is to emphasize better solutions in a population [48]. A genetic

algorithm starts with a certain number of random (or non random) problem specific

structures (population). Each individual or structure in the population represents a

solution to the problem and has a fitness value fi. The GA proceeds for a certain number

of iterations (generations) until one or more stopping criteria are satisfied. At the

beginning of the each generation, the genetic algorithm performs selection followed by

genetic operators (crossover and mutation). There are two important factors in the

evolution process of the genetic search [8]: population diversity and selective pressure.

These two factors are strongly related with each other because an increase in the selective

pressure decreases the diversity of the population, and vice versa. It is very important to

balance these two factors in a genetic search because strong selection pressure causes

premature convergence and weak selection can make the genetic search inefficient.

3.5.1 Fitness Proportional Selection Schemes

The most common selection mechanism is roulette wheel selection (stochastic

sampling with replacement) [9]. Here, each slot on the roulette wheel represents an

individual. The area of the slot is directly proportional to the objective function value

 34

(fitness) of the individual. Each individual is selected by a spin of the roulette wheel.

Figure 3.7 illustrates the roulette wheel selection scheme.

Individuals Fitness Proportional Fitness
Parent1 30 30%
Parent2 60 60%
Parent3 10 10%

Total 100 1

Parent3

Parent1

Parent2

Figure 3.7 Roulette Wheel Selection

Although the lowest fit individual (Parent 3) in Figure 3.7 is selected by the roulette

wheel, the individuals with higher fitness are likely to be selected more often the ones

with lower fitness. This reproduction method often forces the genetic search to focus on

the top individuals only, which leads to premature convergence (local optima).

In order to alleviate the premature convergence caused by the roulette wheel

selection, six selection methods were introduced by Brindle [49]. These methods mainly

control the number of individual copied to the new population. One of those methods is

the Remainder Stochastic Sampling with Replacement. This method selects individuals

deterministically for the integer part of their expectations and uses the fractional part as a

probability for the roulette wheel selection. For example, if the objective function value

 35

of an individual is fi, the probability of selection of an individual will be
∑ f

f

i

i . The

expected number of individual for each string is
∑ f

f
N

i

i , where N is population size. For

example, an individual with an expected number of copies equal to 2.25, the two copies

of the individual are copied to the next population and the third copy will be determined

by the roulette wheel with probability 0.25.

3.5.2 Tournament Selection Scheme

Another popular selection method is Stochastic Tournament Selection [49]. In this

method, N tournaments are held and each of them contributes one individual to the new

population for the next generation. In each tournament two individuals from the current

population are selected using roulette wheel selection. The individual with the best

overall fitness is selected from them. This process is repeated until the entire population

has been replaced. This method was extended to k number of individuals in each

tournament by Goldberg [50]. This method selects some number of individuals and

copies the best one amongst them to the new population. If the k is large, the selective

pressure will increase.

3.5.3 Elitist Scheme

The elitist selection scheme was proposed by De Jong [51]. This method copies a

certain number of the best individuals from the existing population to the next population.

This enforces preserving the best structures for the problem at hand.

 36

3.5.4 Rank Selection

A nonparametric procedure for selection (Rank Selection) was introduced by

Baker [52]. In this method individuals in the population are sorted according to their

fitness values and individuals for the next generation are selected proportionally to their

rank rather than actual objective function value. Ranking acts as function transformation

that assigns a new fitness value to an individual based on its performance relative to other

individuals [53]. Baker [52] used the rank selection to slow down the search speed. This

method prevents the super individuals to take over population in a few generations by

adjusting the selective pressure. Whitley [53] suggested that selection according to rank

is superior to fitness proportionate selection and can also be used to increase search

speed. There are linear and nonlinear methods to assign a number of offspring based on

ranking [8]. The rank selection has been criticized because it violates the Schema

Theorem and ignores information about the search space as revealed by the objective

function [53]. On the other hand, rank selection prevent scaling problem and control the

selective pressure.

 37

 CHAPTER 4

4Evolutionary Algorithms for the Traveling Salesman

Problem

4.1 Introduction

The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem

and can be stated as the problem of finding the shortest closed tour, which visits each city

of a given set of cities once and only once. Our objective is to find an ordering of N cities

that minimize the tour length [30]. Assume that there is a set of cities, S={ca1, cb2, cc3, … ,

cnN}, where first subscript represents the city name and second subscript represents the

visit order of the city. For example, cb2 means that city b is visited as a second city after

city a. If dij represents the distance between two consecutively visited cities (for

example, d23 will be the distance between city b and city c) where i = j+1, 1 ≤ i, and j ≤ N,

our objective is to find an ordering of N cities which gives the minimum total tour length.

The objective function can be written as







 +∑

−

=

1N

1i
1Nij ddmin

We will concentrate in this dissertation on symmetric TSP, in which the distances

from city i to j is the same as that from city j to city i. In this case, the tour length does

not change if the order of cities are reversed. The distances between cities can in principle

be expressed in different metrics, but they must satisfy the triangle inequality. This means

that the direct route between two cities is always the shortest path. These types of TSP

problems are also called Euclidean Traveling Salesman Problems. Even though, in the

)1.4(

 38

real world, there are cases where the shortest route from city i to city j must pass through

city k, we will ignore these situations here. It can easily be proven that the optimal

solution to the Euclidean TSP can never cross itself [54].

The TSP is very simple to state but difficult to solve exactly. Several variations of

the TSP find immediate applications in routing and scheduling problems. In an instance

of a TSP, there is a set of N cities, and a distance between each pair of cities. In order to

find a guaranteed optimal solution, which minimizes the tour distance, all the valid tours

for a given problem have to be evaluated. For instance, in a 10-city TSP there are

440,181
2

)!110(
2

)!1(=−=−N

distinct tours. If the number of cities becomes 14; then,

number of distinct tours becomes 31,135,000,000,000. All of the known algorithms

demand computing times that grows exponentially with N. The TSP belongs to the class

of NP-hard problems, and consequently, it is unlikely that there is a polynomial-time

algorithm that solves each instance of the problem at optimality [31].

4.2 Approaches for Solving the TSP

There are several approaches for solving the TSP. Because the TSP is a NP-hard

problem, finding optimal solution requires possibly infeasible computing time. Aarts and

Stehouwer grouped these approaches into two categories: optimization and

approximation [31]. There are optimization algorithms for the TSP based on enumeration

methods using branch and bound techniques that can handle a certain problem size and

might take some time to find the optimal solution. In real life there are many situations

where much larger sizes of TSP like problem need to be handled (e.g., printed circuit

board design).

 39

Several applications stimulated the emergence of approximate heuristic algorithms

that can find near-optimal solutions preferably with small running times. Although these

heuristic techniques are relatively faster than strict optimization algorithms, their solution

qualities are moderate. Approximation algorithms subdivide into the following classes

[30]:

4.2.1 Tour Construction Heuristics

A popular and natural tour construction heuristic for the TSP is Nearest Neighbor

algorithm. The salesman starts his journey from an arbitrary city and always travels to the

nearest unvisited city. A related tour construction heuristic relies on Greedy heuristics. In

this case, a TSP tour is viewed as a complete graph (Hamiltonian cycle) with the cities as

vertices and with the distance between cities as edges. The Hamiltonian cycle is

constructed by adding the available shortest edge one at a time.

There are tour construction heuristics that are called insertion heuristics. They

start with a sub-tour and then extend the sub-tour by inserting the remaining cities one by

one until all cities have been inserted. The starting sub-tour usually contains three cities,

which form the largest triangle. The well-known insertion heuristics are nearest insertion

and farthest insertion [55]. In the nearest insertion, a city among all cities not in the tour

is selected such a way that its addition to the tour results the lowest increase in the length

of new tour size n+1. Figure 4.1 illustrates the nearest insertion method with a 6-city

TSP. In the farthest insertion, a city whose minimal distance to the tour is maximal

among cities not present in the tour is added into the tour first. Although tour construction

 40

algorithms are fast, the quality of solutions are generally not better than 10% from

optimal solution [30].

1

2

 3

4

56

1

2

 3

4

5
6

1

2

 3

4

5
6

1

2

 3

4

5
6

(a) (b)

(c) (d)

Figure 4.1 Development of a Tour on 6-city TSP using the Nearest Insertion Method

4.2.2 Local Improvement Algorithms

Local improvement algorithms for the TSP are simply based on modification of a

valid tour. The well-known local improvement algorithms are 2-Opt and 3-Opt [30]. For

example, a 2-Opt procedure consists of eliminating two edges and reconnecting the two

resulting paths in a different way to obtain a new tour. After deleting two edges there is

only one way to reconnect the paths that yield a different tour. Figure 4.2 illustrates a 2-

 41

Opt move. The pair, which gives a shorter tour than the length of the current tour, is

chosen among all pairs of edges. This procedure ends when no such pair of edges can be

found. Lin & Kernighan proposed [28] an algorithm based on 2-Opt moves. This

algorithm significantly reduces the search space and is known to be the most efficient

local improvement algorithm [30]. Local improvement algorithms are relatively slow, but

can find solution within a few percent of the optimal solution.

1 2

 3

4

(a)

5

6

1 2

 3

45

6

1 2

 3

45

6

(c)(b)
Figure 4.2 A 2-Opt Move (a) Original Tour (b) Discontinued Edges are Selected Edges

for Exchange (c) The Resulting Tour after the 2-Opt Move

4.2.3 Memetic Algorithms

Memetic algorithms are a hybrid between genetic algorithms and a local search

algorithm. A local search algorithm is applied to every individual before it is included in

the population of a genetic algorithm. These algorithms can be thought of as a special

kind of genetic search over the subspace of local optima [56].

Merz [57] used this approach to solve symmetric and asymmetric TSP problems

and used a modified version of Lin-Kernighan algorithm [28] as local optimizer. They

 42

reported optimal solutions for symmetric TSP instances of up to 1400 cities. These kinds

of methods are called Genetic Local Search (GLS). In the GLS algorithm, after applying

a genetic operator, a local search procedure is applied to the resulting individual.

Therefore, all individuals in the population represent local minima.

4.2.4 TABU Search

TABU search was explained in section 2.3 and can also be used for solving the

TSP. The first TABU search algorithm for the TSP was implemented by Glover [58]. His

implementation starts with a tour and the tour is modified by a 2-Opt move. A TABU list

is constructed by including the shorter of the two edges deleted by a 2-Opt move.

Zachariasen and Dam [59] presented a new TABU search approach for the TSP problem

by using 3-Opt and Lin & Kernighan [28] algorithm as a move strategy.

4.2.5 Simulated Annealing

The TSP was actually the first problem on which simulated annealing applied

[13]. When simulated annealing algorithms are applied to the TSP, a valid tour sequence

is modified at each step. If the length of new tour is shorter than that of current tour, the

new tour will be accepted. Otherwise, the new tour will be accepted with a certain

probability. Martin and Otto [60] combined simulated annealing and local search

heuristics. Before applying the simulated annealing algorithm, the tour is locally

optimized with a local search algorithm. Their results show that this approach is efficient

for solving large TSP problems.

 43

4.2.6 Neural Networks

Hopfield and Tank [61] proposed a Hopfield neural network to approximately

solve the TSP. These neural networks consist of N2 neurons and N4 connections, where N

is number of cities; the TSP problem is replaced by an equivalent energy minimization

approach. They reported results for 10-city and 30-city TSPs, which are 5% above

optimal. Kohonen’s Self-Organizing Map [62] has also been applied to the TSP with

modest success [31, 63]. Generally, neural networks for the TSP are slow and their

effectiveness is rather modest.

4.2.7 Ant Systems

The ant algorithm models a real ant colony. Real ants have the ability to find the

shortest route from a food source to the colony by exploiting pheromone information

without using any visual cues [64]. When ants travel, they deposit pheromone on the

ground and follow the strongest scent of pheromone previously deposited by other ants.

Ant systems work in the following way. Each ant generates a complete legal tour by

choosing cities based on a probabilistic rule. The rule is to visit cities, which are close to

each other with a high a mount of pheromone. A certain number of artificial ants are

created and placed on randomly selected cities. When each ant makes a trip to next city,

the pheromone information in that edge is modified. This is called local trail updating

[65]. When all the ants in the system complete their tour the ant with the shortest tour

updates the edges belonging to its tour by adding an amount of pheromone trail that is

inversely proportional to the tour length. This is called global trail updating [65]. There

 44

are claims that ant system outperforms other nature-inspired algorithms such as simulated

annealing and evolutionary computation [64].

4.3 Genetic Algorithms

Because finding the optimal solution for the TSP involves searching in a solution

space that grows exponentially with the number of cities, solutions to the TSP have also

been tried with genetic algorithms. These algorithms produce near-optimal solutions by

maintaining a population of candidate solutions, which evolve by applying crossover and

mutation operators under a selection scheme that biases towards the more fit individual

[8]. Johnson and McGeoch [30] wrote:

“… in the case of the TSP many tour construction heuristics do surprisingly well

in practice. The best typically get within roughly 10-15% of optimal in relatively

little time. Furthermore, ‘classical’ local optimization techniques for the TSP

yield even better results, with the simple 3-Opt heuristic getting 3-4% of optimal

and the ‘variable-opt’ algorithms of Lin & Kernighan (1973) typically getting

within 1-2%. Moreover, for geometric data the aforementioned algorithms all

appear to have running time growth rates O(N2), i.e., subquadratic, at least in the

range from 100 to 1,000,000 cities. These successes for traditional approaches

leave less room for new approaches like tabu search, simulated annealing, etc., to

make contributions. Nevertheless, at least one of the new approaches, genetic

algorithms, does have something to contribute if one is willing to pay a large,

although still O(N2), price in running time.”

 45

In recent years a variety of genetic algorithms have been devised. These algorithms

can be divided into two groups [66]: pure genetic algorithms and heuristic genetic

algorithms.

Heuristic genetic algorithms employ genetic operators that incorporate specific

information about the TSP [67-72]. Such information is generally taken advantage of

operations by using heuristic algorithms such as tour construction and local improvement

algorithms explained in Sections 4.2.1 and 4.2.2 in this chapter.

Pure genetic algorithms do not employ domain-specific information about the TSP

and use generic genetic operators (crossover and mutation) that can be applied to

arbitrary permutations [9, 73-77]. Therefore, they can be applied in any problem domain

involving objects represented as permutations. These genetic operators will be explained

in the following sections. In this dissertation, we will focus on pure genetic algorithms.

4.4 Representations and Genetic Operators

The key point to solve the TSP as well as any other problems using genetic

algorithms is to develop an encoding that allows genetic operators to generate “legitimate

children” without any constraint violation. GA applications to the TSP have an intrinsic

problem because of the constraints imposed upon the representation for a tour: i.e., each

tour must contain exactly one of instance of a city. Any omission or duplication of a city

or cities leads to illegal tours. Several different tour representations and specialized

genetic operators customized to these representations have been developed to solve the

TSP.

 46

4.4.1 Binary Representation

The TSP can be encoded as a binary string but it is clear that the traditional

crossover and mutation operators will produce illegal tour as well. A TSP problem with

N cities requires Nlog2 bits to represent all cities, and a tour requires)(log2 NN bits to

be encoded. For example, for a six-city TSP a 3-bit string and a18-bit string represent

cities and tours, respectively.

City Name A B C D E F
Binary Representation 000 001 010 011 100 101

Figure 4.3 Binary Representation of the 6-city TSP

The following two tours can be represented by binary string using Figure 4.3.

Tour 1: A → B → C → D → E → F
Tour 2: A → E → F → B → D → C

Tour 1BINARY: 000 001 010 011 100 101
Tour 2BINARY: 000 100 101 001 011 010

Note that with a 3-bit binary we can represents 8 (23) cities, and there exist two 3-bit

strings that do not correspond to any city for a 6-city TSP problem. These strings are

represented by110 and 111.

Classical crossover [32] takes two tours and randomly chooses a point, where the

tours are broken into two parts and then swaps the tails between the tours. For the six-city

TSP tour, the classical crossover operator is illustrated in Figure 4.4.

 47

Tour 1BINARY 000 001 0 10 011 100 101

Tour 2BINARY 000 100 1 01 001 011 010

Child 1 000 001 0 01 001 011 010

Child 2 000 100 1 10 011 100 101

Crossover
point

Figure 4.4 Classical Crossover Operation on the Binary Encoded 6-city TSP

According to Figure 4.4 child tour1 corresponds to (A → B → B → B → D → C), and

child tour 2 corresponds to (A → E → ? → D → E → F) where ‘?’ represents non-

existing city.

The classical mutation operator [32] simply flips one or more bits with a small

probability. For example, the tenth bit of the Tour 1 is chosen to be mutated. Tour

1BINARY: 000 001 010 011 100 101. The child tour will be 000 001 010 111 100 101,

which corresponds to (A → B → C → ? → E → F) where ‘?’ represents non-existing

city.

As we have seen, classical crossover and mutation operations produce

duplications and/or omissions of one or more cities. Thus, some repair algorithms are

required in order to solve TSP problems with a binary encoding [40].

4.4.2 Permutation Representation

It seems natural to encode ordering problems like the TSP in permutation form

[9]. Here, a tour is represented as a list of N cities. If city i is j-th element of the list, city i

 48

is the j-th city to be visited. For example, the tour B → D → C → A → E → F is simple

represented by B D C A E F. In general, cities are represented as an integer number in

tours.

City A B C D E F
Integer code 1 2 3 4 5 6

Figure 4.5 Permutation Representation for 6-city TSP

Then, the tour given above is simply represented by 2 4 3 1 5 6. This representation is

also called as path representation or order representation [78]. This representation may

lead to infeasible tours when traditional crossover and mutation operators are used. Many

variations for crossover and mutation operators have been invented to be applicable to

permutation representation.

4.4.2.1 Partially-Mapped Crossover (PMX)

PMX, proposed by Goldberg and Lingle [1], produces an offspring by choosing a

portion of tour from one parent and preserving the position and relative order of as many

cities as from the other parent [9]. Consider the following two tours for the illustration of

the operation of PMX. Tour 1: (1 2 3 4 5 6 7 8) and Tour 2: (6 7 4 2 8 5 3 1). First, PMX

selects uniformly at random two cut points along the tour. The symbol | shows the

crossover points.

Tour 1: (1 2 | 3 4 5 | 6 7 8)
Tour 2: (6 7 | 4 2 8 | 5 3 1)

Second, PMX exchanges sub-strings between parents.

 49

Offspring 1: (* * | 4 2 8 | * * *)
Offspring 2: (* * | 3 4 5 | * * *)

Third, PMX determines the mapping relationship as following:

3 ↔ 4 ↔ 2, 5 ↔ 8.

Then, the remaining cities are filled from original parent, if a city already present in the

offspring it is replaced according to mapping relationship. The new tours will be:

Offspring 1: (1 3 | 4 2 8 | 6 7 5)
Offspring 2: (6 7 | 3 4 5 | 8 2 1)

4.4.2.2 Order Crossover (OX)

The OX, proposed by Davis [79], creates new offspring by choosing a sub-tour of

one parent and preserving the relative order of cities of the other parent. Again, consider

the following parent tours with two cut points market by symbol |:

Tour 1: (1 2 | 3 4 5 | 6 7 8)
Tour 2: (6 7 | 4 2 8 | 5 3 1)

The offspring are constructed in the following way. First, the tour subsequences between

the cut points are inherited into the offspring, which is shown below:

Offspring 1: (* * | 3 4 5 | * * *)
Offspring 2: (* * | 4 2 8 | * * *)

Second, delete the cities, which are already present in the subsequence from the other

parent.

Offspring 1 : (* * 3 4 5 * * *)
Parent Tour 2: (6 7 4 2 8 5 3 1)

Offspring 2 : (* * 4 2 8 * * *)
Parent Tour 1 : (1 2 3 4 5 6 7 8)

 50

Last, starting from the second cut point of one parent, the remaining cities are copied in

the order in which they appear in the other parent. When the end of the string is reached,

we continue from the first place of the string. The offspring will be:

Offspring 1: (2 8 3 4 5 1 6 7)
Offspring 2: (3 5 4 2 8 6 7 1)

The OX exploits a property of the path representation where the order of cities is

important [9].

4.4.2.3 Cycle Crossover (CX)

The CX was proposed by Oliver et al. [73] and creates an offspring from the

parents where every element of the offspring comes from one of the parents. This

crossover satisfies that every position of the offspring must hold a value found in the

corresponding position of a parent, and that the offspring are legal tours. The mechanism

of CX works as follows. Consider following parent tours.

Tour 1: (1 2 3 4 5 6 7 8)
Tour 2: (6 7 4 2 8 5 3 1)

First of all, find the cycle that is defined by the corresponding positions of cities between

parents starting from the first city of one of the parents. Figure 4.6 shows how to find a

circle.

Tour 1 1 2 3 4 5 6 7 8

Tour 2 6 7 4 2 8 5 3 1
Figure 4.6 Finding a Cycle in Cycle Crossover

The circle will be 1 → 6 → 5 → 8 → 1.

 51

Second of all, keep the cities in the cycle corresponding positions of one parent and

delete other non-cycle cities and merge the tour in order to construct an offspring.

Tour 1 1 * * * 5 6 * 8

Tour 2 * 7 4 2 * * 3 *

Offspring 1 1 7 4 2 5 6 3 8

Tour 2 6 * * * 8 5 * 1

Tour 1 * 2 3 4 * * 7 *

Offspring 2 6 2 3 4 8 5 7 1

The CX maintains the absolute position of the elements in the parent sequence.

4.4.3 Edge Representation

The TSP can be represented by a binary encoding based on edges on the tour [80].

Lets assume we have a six-city TSP, which can be represented by a binary encoding as a

following way. Consider these two tours:

Tour 1: (A → B → C → D → E → F)
Tour 2: (B → D → C → A → E → F)

All possible edges are listed and if an edge exists in the tour; then the value is one

otherwise zero. The positions of the cities in the tour are not important because the tours

are circular. Also, the direction of an edge is not important in the symmetric TSP because

edge AB is the same as edge BA.

AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF
Tour 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1
Tour 2 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1

Figure 4.7 Binary Encoding of the TSP Based on Edges

 52

Whitley [80] developed a genetic operator that generates good solutions for

sequencing and ordering problems. This operator is called Genetic Edge Recombination.

The edge recombination operator uses an edge map to create an offspring that inherits as

much information as possible from the donor structures. The edge map stores all the

connections from two donors that lead into and out of a city.

4.4.4 Adjacency Representation

A tour is represented as a list of N cities in adjacency representation. The city j is

in the position i in the list if and only if the tour leads from city i to city j. For example,

the tour (1 → 3 → 7 → 2 → 5 → 4 → 6 → 8) is represented by (3 5 7 6 4 8 2 1).

Although each tour has unique adjacency representation, some of them may represent

illegal tours. For example, the adjacency list (3 5 7 6 2 4 1 8) leads to the premature

partial tour (1 → 3 → 7 → 1). It is clear that the adjacency representation does not

support the classical crossover operation and a repair algorithm might be necessary in

order to correct illegal tours. Some crossover operators were proposed for adjacency

representation. These are alternating-edge crossover, subtour-chunks crossover, and

heuristic crossover [8].

The main advantage of the adjacency representation is that it allows schemata

analysis. However, this representation generally produces poor results for all crossover

operators listed above [8].

 53

4.4.5 Ordinal Representation

In ordinal representation, a tour with N-cities is represented as a list of N

elements, where the i-th element of the list is a number in the range from 1 to N-i+1.

Here, there exists an ordered list of cities R, which serves as a reference point. For

example, assume R = (1 2 3 4 5 6 7 8) and the tour T = (1 → 3 → 7 → 2 → 5 → 4 → 6

→ 8) is represented by O = (1 2 5 1 2 1 1 1). This order representation O can be

transformed to original tour. The first element in O is 1, which means that takes the first

element of R, which is city 1 and removes it from R. The new is R = (2 3 4 5 6 7 8). The

first element of the tour T will be city 1. Look at the second element of O, which is 2.

This means that we take the second element of R, which is 3 and remove from R. The

second city in the tour is city 3. If we continue this way until all elements of R are

removed, we will get the original route.

The main advantage of ordinal representation is that the classical one point

crossover does not need a repair algorithm. Although partial tours to the left of the

crossover point do not change, the partial tour to the right of the crossover point is

changing in a quite random way. That is the reason why this representation produces poor

results with classical one point crossover operator [8].

4.4.6 Random Keys Representation

 Bean [77] proposed the Random Key representation. This representation uses

random numbers between 0 and 1 to represent a solution. These numbers are used as sort

keys to decode a solution. For example, consider a 6-city tour represented by a random

key where random key tour is represented as (0.21 0.85 0.43 0.71 0.91 0.10). The random

 54

number at position i determines the visiting order when we sort them in ascending order.

This random key tour represents the following tour (6 → 1 → 3 → 4 → 2 → 5). The

important advantage of random key is that all offspring resulting from by crossover are

feasible solutions.

4.4.7 Matrix Representation

Fox and McMahon [81] proposed a matrix representation for the TSP. In this

matrix, the element in row i and column j is 1 if and only if the city i occurs before city j.

For example, the tour (2 → 3 → 1 → 4) is represented by the following matrix.



















0000
1001
1101
1000

In this representation, the matrix representing a tour has the following properties [8]:

• Total number 1s =
2

)1(−nn

• The diagonal elements of the matrix are all zero. mij = 0 for 0 ≤ i ≤ N.

• If mij =1 and mjk = 1 then mik = 1.

If the first conditions does not hold and the other two hold, then cities are partially

ordered and we can complete such a matrix to get a legal tour.

4.5 Modified Partially Mapped Crossover

Partially Mapped Crossover (PMX) [1] was explained in section 4.4.2.1 in this

chapter. We will first illustrate and explain the classic PMX crossover operator and then,

 55

we will propose a modification into Partially Mapped Crossover in order to increase the

efficiency of the crossover operator by reducing the premature convergence.

4.5.1 PMX and Premature Convergence

PMX produces an offspring by choosing a portion of tour from one parent and

preserving the position and relative order of as many cities as from the other parent [9].

Consider the following two tours for the illustration of the operation of PMX.

Tour 1: (1 2 3 4 5 6 7 8)
Tour 2: (6 7 4 2 8 5 3 1)

First, PMX selects uniformly at random two cut points along the tour. The symbol |

shows the crossover points.

Tour 1: (1 2 | 3 4 5 | 6 7 8)
Tour 2: (6 7 | 4 2 8 | 5 3 1)

Second, PMX exchanges sub-strings between parents.

Offspring 1: (* * | 4 2 8 | * * *)
Offspring 2: (* * | 3 4 5 | * * *)

Third, PMX determines the mapping relationship as following:

3 ↔ 4 ↔ 2, 5 ↔ 8.

Then, the remaining cities are filled from original parent, if a city already exists in the

offspring it is replaced according to mapping relationship. The new tours will be:

Offspring 1: (1 3 | 4 2 8 | 6 7 5)
Offspring 2: (6 7 | 3 4 5 | 8 2 1)

Goldberg and Lingle [1] reported results for 10-city and 33-city TSP problems.

They used roulette wheel selection (fitness proportional selection), inversion operation

for mutation, PMX with crossover probability 0.60, population size 200 and reported

 56

optimal solution for 10-city TSP. For 33-city TSP, using population size 2000, they

reported solutions within 10 percent of the optimal solution.

The principal natural mechanism responsible for recoding a problem is the inversion

operator [9]. The inversion operation involves selecting two points within a chromosome

and reversing the substring between these points. This operation produces legal offspring

and useful finding good string ordering in TSP like problems [32].

Frantz [82] used two ways of choosing inversion points: linear and linear+end.

The linear inversion method, which is same as classical inversion operation, chooses two

points at random (i.e., each point has an equal likely probability of being chosen) and all

genes between and including these points are reverted. Frantz calculated the probability

of any position m being inverted on a string length N.

Probability{gene moved} =
N

mNm
2

]12)1([2 −−+

Frantz [82] reported that when N is 25, genes located in central positions are almost

seven times more likely to be included in an inversion operation than the genes located in

either of the two ends. This situation makes it difficult for any gene located in one of the

end position to be close to a gene located on the other end. He devised the linear+end

inversion method in order to alleviate this problem. In linear+end inversion, cut points

are chosen in the same way as in linear inversion but the inversion is performed either

between cut points or between first cut point and the left end of the string or between

second cut point and the right of the string with a certain probability.

Another way for reducing these end effects is to treat the chromosome as a ring,

with no beginning and no end [9]. In this case, each location is equally likely to be

relocated under a single inversion.

 57

Premature convergence is one of the major handicaps for genetic algorithms. It

has been observed that this problem is closely related to the problem of losing diversity in

the population. Individuals with high fitness (super individuals) take over the population

after some number of generations. One of the reasons for premature convergence is

related to the end effect [9, 82].

4.5.2 A Modification to PMX

Our experiments have been shown that PMX operator causes the premature

convergence of genetic algorithms for the TSP because of the end effect. First, PMX is

implemented same as in Goldberg and Lingle [1]. In order to reduce the end effect, we

treated one of the parent chromosomes as a ring, with no beginning and no end before

crossover occurs. In this implementation of the genetic algorithm, we used the path

representation and started with a random population. However, there is no priori reason

to believe that a non-random population will not be appropriate [83].

The individuals are selected for next generation based on roulette wheel selection

proportionally to their rank rather than actual evaluation values [8]. The rank probability

for selecting an individual for the next generation is calculated based on following

formula.

1)1()(−−= iqqip ,

where p(i) is the rank probability of tour i. i = 1… pop_size. i = 1 represents the best

individual, while i = pop_size represents the worst tour.

 58

The classical inversion operation is employed for mutation. In this algorithm for

the TSP all individuals are valid tours. For example, we can represent 5-city TSP as

following.

1 2 3 4 5

Because a tour is a closed loop, the following tours are also exactly same as above.

2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

We will call this virtual representation a dynamic representation. If we cross over two of

same individual without dynamic representation, we get a twin pair offspring, where the

children are exactly same as parents. Let’s assume crossover points 1 and 3.

Parent 1 1 2 3 4 5

Parent 2 1 2 3 4 5

Child 1 1 2 3 4 5

Child 2 1 2 3 4 5

If we allow first parent becomes one of its states with probability 20.0
5
11 ==

N
, where

N is the number of city. Lets assume that first parent found in the following state.

 59

Parent 1 2 3 4 5 1

Parent 2 1 2 3 4 5

If we apply crossover operation onto the parents, assume crossover points 1 and 3, we

get:

Parent 1 2 3 4 5 1

Parent 2 1 2 3 4 5

Parent 1 2 2 3 5 1

Parent 2 1 3 4 4 5

2 ↔ 3 ↔ 4

Child 1 4 2 3 5 1

Child 2 1 3 4 2 5

As we have seen above, even though the parent donors are twins, they can produce

different children.

4.5.3 Comparison of Classic PMX and Modified PMX

We have studied four Euclidean TSPs. Three of them, berlin52, eil76, and rd100,

are from the TSPLIB [84]. The last problem, oliver30, is from Oliver et al. [73]. Each of

the problems is solved 10 times by two genetic algorithms. The only difference between

two algorithms is the representation of the first parent before PMX. The genetic

algorithm with the modified PMX is called as Dynamic PMX and the algorithm with

classical PMX is called as Static PMX. These results are presented in the Tables 4.1, 4.2,

4.3, and 4.4 for 30, 52, 76, 100-city TSPs, respectively.

 60

Table 4.1 Results of Static and Dynamic PMX for 30-city Problem

: 30 : 150 : 0.08
: 0.9 : 0.02 : 423.741

Tour Length Run Time Generation Difference Tour Length Run Time Generation Difference
1 457.816 18 1276 -8.04% 423.741 24 1612 0.00%
2 424.692 24 1738 -0.22% 423.912 24 1666 -0.04%
3 425.104 18 1334 -0.32% 423.741 22 1550 0.00%
4 458.496 24 1709 -8.20% 423.741 29 2065 0.00%
5 428.673 20 1393 -1.16% 424.692 18 1249 -0.22%
6 462.812 19 1335 -9.22% 438.382 21 1472 -3.46%
7 494.499 20 1467 -16.70% 423.741 20 1386 0.00%
8 455.520 23 1667 -7.50% 438.382 36 2478 -3.46%
9 439.786 24 1727 -3.79% 424.692 18 1230 -0.22%
10 461.058 22 1626 -8.81% 423.741 18 1250 0.00%

Average 450.846 21 1527 -6.40% 426.877 23 1596 -0.74%

Oliver30
Number of Cities Population Size Selection Pressure
Crossover Probability Mutation Probabiliy The Best Known Solution

STATIC PMX DYNAMIC PMXRun

Table 4.2 Results of Static and Dynamic PMX for 52-city Problem

: 30 : 250 : 0.08
: 0.9 : 0.02 :7544.37

Tour Length Run Time Generation Difference Tour Length Run Time Generation Difference
1 8175.130 199 2262 -8.36% 7544.370 192 2195 0.00%
2 8110.700 154 1764 -7.51% 7863.300 163 1863 -4.23%
3 7966.550 202 2262 -5.60% 7544.370 221 2470 0.00%
4 8145.900 191 2160 -7.97% 7816.430 218 2495 -3.61%
5 8255.190 216 2480 -9.42% 7777.330 155 1796 -3.09%
6 7971.170 277 3183 -5.66% 7544.370 181 1958 0.00%
7 8288.520 158 1813 -9.86% 7887.230 371 4205 -4.54%
8 8287.730 298 3410 -9.85% 8040.450 153 1739 -6.58%
9 8173.780 198 2279 -8.34% 7973.310 168 1933 -5.69%
10 8425.190 200 2309 -11.68% 7777.330 252 2894 -3.09%

Average 8179.986 209 2392 -8.43% 7776.849 207 2355 -3.08%

Berlin52
Number of Cities Population Size Selection Pressure
Crossover Probability Mutation Probabiliy The Best Known Solution

STATIC PMX DYNAMIC PMXRun

Table 4.3 Results of Static and Dynamic PMX for 76-city Problem

: 76 : 300 : 0.08
: 0.9 : 0.02 : 545.39

Tour Length Run Time Generation Difference Tour Length Run Time Generation Difference
1 598.012 708 2465 -9.65% 550.279 1126 3922 -0.90%
2 610.988 1208 4197 -12.03% 564.321 785 2741 -3.47%
3 590.146 657 2284 -8.21% 551.941 953 3333 -1.20%
4 597.797 1089 3788 -9.61% 558.566 1745 6077 -2.42%
5 594.241 1016 3543 -8.96% 555.320 825 2874 -1.82%
6 594.520 990 3438 -9.01% 563.637 787 2744 -3.35%
7 618.222 777 2710 -13.35% 560.371 1091 3824 -2.75%
8 611.990 1073 3735 -12.21% 562.285 972 3388 -3.10%
9 595.472 847 2956 -9.18% 558.251 1148 4023 -2.36%
10 608.441 808 2521 -11.56% 560.739 997 3430 -2.81%

Average 601.983 917 3164 -10.38% 558.571 1043 3636 -2.42%

Eil76
Number of Cities Population Size Selection Pressure
Crossover Probability Mutation Probabiliy The Best Known Solution

STATIC PMX DYNAMIC PMXRun

 61

Table 4.4 Results of Static and Dynamic PMX for 100-city Problem

: 100 : 350 : 0.08
: 0.9 : 0.02 : 7910.40

Tour Length Run Time Generation Difference Tour Length Run Time Generation Difference
1 8945.91 4841 6347 -13.09% 8290.42 3361 4600 -4.80%
2 8610.15 3358 4592 -8.85% 8404.97 3338 4574 -6.25%
3 8371.87 2639 3459 -5.83% 8115.11 4345 5971 -2.59%
4 8321.18 3386 4625 -5.19% 8432.02 3342 4543 -6.59%
5 9080.16 3694 5065 -14.79% 8286.90 4073 5527 -4.76%
6 9147.68 2774 3801 -15.64% 8126.83 5672 7757 -2.74%
7 8943.40 2860 3886 -13.06% 8298.87 5328 7284 -4.91%
8 8586.54 2980 4072 -8.55% 8257.43 5057 6875 -4.39%
9 8677.63 4008 5494 -9.70% 8245.67 3769 5180 -4.24%
10 8557.58 3309 4538 -8.18% 7942.80 4171 6429 -0.41%

Average 8724.21 3385 4588 -10.29% 8240.10 4246 5874 -4.17%

Rd100
Number of Cities Population Size Selection Pressure
Crossover Probability Mutation Probabiliy The Best Known Solution

STATIC PMX DYNAMIC PMXRun

Table 4.5 presents overall comparison results of static and dynamic PMX for the

four TSPs. According to computational results, the proposed method improves solution

quality very well. The results are encouraging because this algorithm is a pure genetic

algorithm, which does not use knowledge-augmented operators.

Table 4.5 Summary Results for Static and Dynamic PMX
Number of Population Crossover Mutation Selection

Cities Size Probability Probability Pressure Static PMX Dynamic PMX
oliver30 30 150 0.9 0.02 0.08 -6.40 -0.74
berlin52 52 250 0.9 0.02 0.08 -8.43 -3.08

eil76 76 300 0.9 0.02 0.08 -10.38 -2.42
rd100 100 350 0.9 0.02 0.08 -10.29 -4.17

% Difference from Optimal
Data Set

4.6 Evolutionary Programming Approach to the TSP

Evolutionary Programming (EP) has been introduced in the section 2.4.2 in Chapter

2. First, we will revisit evolutionary programming and explain it in a detail. Second, a

new algorithm for solving the TSP is developed based on EP in which a rank based and

simulated annealing selection scheme are implemented.

 62

4.6.1 Evolutionary Programming

Evolutionary programming (EP) originated from Lawrence Fogel in the late

1960s [85] and is a stochastic optimization method similar to genetic algorithms. It

originally aimed at evolution of artificial intelligence in the sense of developing ability to

predict changes in environment [22, 23]. The key difference between GAs and EPs is that

there is no more crossover operator and that selection is based on a survival of the fittest

criterion. In an application of EA, after initializing the population, all N individuals are

selected to be parents. Only mutation is used for producing N children from N parents

and N survivors are chosen from 2N individuals (parents plus children), using a

probabilistic function based on fitness. In other words, individuals with a greater fitness

have a higher chance to present in the next generation. Figure 4.8 shows the outline of the

EP.

EP was used in [86] to solve three test traveling salesman problems (30-city, 50-

city and 75-city in [40]). They reported better results than the previously known best

solutions. Each tour was encoded as a list of cities to be visited in order. The mutation

operator selected two positions along the tour and reversed the order of cities between

these positions. The population consisted of 100 parent tours and each parent produced a

single offspring through mutation operator. 100 tours were selected to be parents for next

generation based on a competition rule [87]. Competition for survival proceeds as

following. Each tour competes against 10% of the population. The probability of winning

in each encounter is equal to the opponent’s tour length divided by the sum of the two

competing tour lengths. Also, the population size is forced to decrease linearly over time

 63

(one tour per 5000 evaluated offspring) in order to simulate a decrease in natural

resources in the environment [87].

 Procedure evolutionary programming
Begin

 Choose a coding to represent variables
t ← 0
Initialize population P(t)
Evaluate population P(t)

While (not termination condition) do

t ← t+1
Select P(t)
Alter P(t) with mutation and produce C(t)
Evaluate P(t) and C(t)
Survive P(t) from P(t) + C(t)

End
End

Figure 4.8 Standard Evolutionary Programming Algorithm

4.6.2 Evolutionary Programming with Constant Population (EPC)

We propose a new algorithm based on EP. The proposed algorithm, Evolutionary

Programming with Constant Population (EPC) is different than classic or previously used

EP. First, EPC always keeps a constant number of individuals similar to genetic

algorithms. Second, EPC uses a selection scheme (simulated annealing) with mutation

operation. The procedure for EPC is shown in Figure 4.9. Details are for procedure of

EPC given below.

 64

 Procedure evolutionary programming based on simulated annealing
Begin

 Choose a coding to represent variables
t ← 0
Initialize population P(t)
Evaluate population P(t)

While (not termination condition) do

t ← t+1
Select P(t)
Mutate P(t) with some probability.
Evaluate P(t)

End
End

Figure 4.9 Evolutionary Programming with Constant Population

Representation and Initialization: The path representation was employed for

the representation of the tour in the population. As an initial population a number of

random permutations (tours) equal to population size is created. The population size is

always constant. This means that if an individual is created it immediately replaces with

its parent or dies off. In classic EP, each individual in the population creates an offspring.

Both parents and offspring will survive until a selection (survival of the fittest) operation

is performed, which reduce the size of the population half.

Evaluation and selection: The individuals are evaluated and ranked from the

shortest route to the longest one. Selection of the individuals for the next generation is

based on roulette wheel selection with proportionality to their rank as explained in

previous section [8].

Mutation: Following the idea of EP (in the narrow sense) the population is

altered by mutation only (i.e., no crossover operation presents). Therefore, this algorithm

 65

can be interpreted as the asexual counterpart the genetic algorithms. The tours are

mutated with a simple inversion operator. The simple inversion mutation randomly

determines two cities in a tour and reverses the cities between them [32]. After creating

offspring a tournament takes place between the parent tour and its offspring. The

selection process uses simulated annealing based on a Boltzman probability distribution.

The offspring can win the tournament based on Boltzman probability distribution.





 −=

Tk
cp

selectprob
B

iiexp)(,

where,

pi and ci are the length of the parent tour and the length of the child tour, respectively.

kB and T represent the Boltzman constant and temperature, respectively.

Notice that if the length of offspring tour is shorter than that of parent (pi ≥ ci); then, the

child always will be replaced with its parent. If the length of offspring is longer than that

of its parent (pi ≤ ci); then, the child will be replaced with its parent with some

probability. This acceptance rule is known as the Metropolis criterion [13].

4.6.3 Experimental Results for EPC

EPC algorithm was applied to four standard TSPs: 30-city from [73], 50- and 75-

city from [88] and 100-city (KroA100) from TSPLIB. Each of the problems solved 10

times by EPC with different random population initializations. The results and parameters

used for these problems are presented in Tables 4.6, 4.7, 4.8, and 4.9. We used two

different calculations for the tour lengths: the real and the integer tour distance. The

difference between the real and integer tour lengths is that in the first case distances

 66

between cities are measured by floating point approximations of real numbers. On the

other hand, in the integer case the distance between cities are calculated as an integer in

following way:

X= Xi-Xj, where X is x coordinate of the city.

Y= Yi-Yj where Y is y coordinate of the city.

Dij=int(sqrt(X2+Y2)+0.5), where Dij is the distance between city i and city j.

Table 4.6 Results of EPC for 30-city TSP

: 30 : 0.06
: 450

Real Integer Run Time Generation Real Integer
1 423.741 420 10 262 0.00% 0.00%
2 424.635 421 7 187 -0.21% -0.24%
3 423.912 420 8 203 -0.04% 0.00%
4 423.741 420 7 196 0.00% 0.00%
5 424.573 422 6 156 -0.20% -0.48%
6 423.741 420 8 205 0.00% 0.00%
7 423.741 420 8 198 0.00% 0.00%
8 423.741 420 14 366 0.00% 0.00%
9 423.741 420 7 176 0.00% 0.00%
10 423.741 420 8 214 0.00% 0.00%

Average 423.931 420 8 216 -0.04% -0.07%

Run

Oliver30

Number of Cities
Population Size

The Best Known Solution: 423.741 (real) and 420 (integer)
Selection Pressure

Tour Length Difference

Table 4.7 Results of EPC for 50-city TSP

: 50 : 0.08
: 1000

Real Integer Run Time Generation Real Integer
1 427.312 426 33 218 0.13% -0.24%
2 436.970 436 25 173 -2.13% -2.59%
3 441.301 439 43 298 -3.14% -3.29%
4 428.856 428 50 344 -0.23% -0.71%
5 427.312 426 37 257 0.13% -0.24%
6 433.342 432 37 259 -1.28% -1.65%
7 427.312 426 64 431 0.13% -0.24%
8 428.178 426 27 182 -0.08% -0.24%
9 427.779 427 34 229 0.02% -0.47%
10 433.370 430 33 227 -1.29% -1.18%

Average 431.173 430 38 262 -0.78% -1.08%

Run

Population Size
Tour Length Difference

Eil50
The Best Known Optimal Solution: 427.855 (real) and 425 (integer)

Number of Cities Selection Pressure

 67

Table 4.8 Results of EPC for 75-city TSP

: 75 : 0.08
: 1250

Real Integer Run Time Generation Real Integer
1 548.678 543 83 344 -1.16% -1.50%
2 553.768 548 101 417 -2.10% -2.43%
3 560.196 553 83 343 -3.29% -3.36%
4 557.932 552 107 441 -2.87% -3.18%
5 550.924 546 187 734 -1.58% -2.06%
6 561.051 558 65 267 -3.44% -4.30%
7 561.758 556 61 253 -3.57% -3.93%
8 560.247 553 70 287 -3.30% -3.36%
9 553.297 547 98 410 -2.01% -2.24%
10 553.970 552 84 345 -2.14% -3.18%

Average 556.182 551 94 384 -2.55% -2.95%

Run
Tour Length Difference

Population Size

Eil75
The Best Known Optimal Solution: 542.37 (real) and 535 (integer)

Number of Cities Selection Pressure

Table 4.9 Results of EPC for 100-city TSP

: 100 : 0.07
: 1500

Real Integer Run Time Generation Real Integer
1 21967.100 21967 273 622 -3.20% -3.22%
2 21921.800 21919 158 351 -2.99% -2.99%
3 22030.400 22029 184 434 -3.50% -3.51%
4 21900.200 21898 165 397 -2.89% -2.89%
5 21906.500 21905 196 492 -2.92% -2.93%
6 21981.900 21979 258 640 -3.27% -3.28%
7 21787.200 21786 174 426 -2.36% -2.37%
8 21930.400 21927 239 595 -3.03% -3.03%
9 22213.100 22212 259 600 -4.36% -4.37%
10 21828.900 21829 170 420 -2.55% -2.57%

Average 21946.750 21945 208 498 -3.11% -3.12%

Run

Population Size
Tour Length Difference

KroA100
The Best Known Optimal Solution: 21285.44 (real) and 21282 (integer)

Number of Cities Selection Pressure

The comparison of EPC with other heuristics (Genetic Algorithm, Evolutionary

Programming, and Simulated Annealing) is performed on the best results because most of

the available studies do not the give average results. The comparisons are performed on

both integer and real tour length for each of the TSPs. Table 4.10 gives the references of

the compared methods.

 68

Table 4.10 References of Compared Methods

Problem Genetic Evolutionary Simulated
Name Algorithm Programming Annealing

Oliver30 (Oliver, 1987) (Fogel, 1993) N/A
Eil50 (Whitley, 1989) (Fogel, 1993) (Lin, 1993)
Eil75 (Whitley, 1989) (Fogel, 1993) (Lin, 1993)

KroA100 (Whitley, 1989)] N/A N/A

Table 4.11 Comparison of EPC with Other Methods
Problem Solution Proposed Genetic Evolutionary Simulated The Best Known

Name Type EPC Algorithm Programming Annealing Solution
integer 420 N/A N/A N/A N/A

real 423.741 423.741 423.741 N/A 423.741
integer 426 428 426 443 425

real 427.312 N/A 427.855 N/A N/A
integer 543 545 542 580 535

real 548.678 N/A 549.81 N/A N/A
integer 21786 21761 N/A N/A 21282

real 21787.2 N/A N/A N/A N/A

Oliver30

Eil50

Eil75

KroA100

According to the TSP benchmark problems, the use of EPC brings significant

improvement. The 30-city problem is solved the most easily. The proposed method has

found optimal solution in seven of ten runs. When the number of cities increases the

performance of the method decreases. The comparison of results shows that the proposed

method performs very well for 30, 50 and 75 cities, which gets shorter routes in terms of

real-valued tour distances. For 100-city problem, the result is worse than the result of GA

but the proposed method found 3.12% worse than the optimal solution in 10 runs.

 69

 CHAPTER 5

5Evolutionary Algorithms for Predictive Modeling and

Data Mining

5.1 Predictive Modeling and Data Mining

Advances in data collection and storage technologies have provided large amounts

of data for business, government, and scientific purposes. [89]. Due to the large amount

of data that are stored in databases, traditional data analysis tools are often not well suited

to extract knowledge from these databases. Consequently, new techniques and tools have

been devised with the aim to automatically transform data into useful information and

knowledge. This emerging research area is called as Data Mining. Data mining is a field

of study that deals with extracting knowledge and useful information from large

databases, without putting restrictions on the amount or types of data in a database [90].

The goal of the data mining can be broadly divided into two categories: prediction and

description [91]. A prediction task involves using attributes of a database to be able to

predict on unknown future values of a dependent variable of interest. On the other hand,

the description task focuses on interpreting the data. Figure 5.1 illustrates a decision-

making process for data mining [91].

5.1.1 Standard Data Mining Problems

In this dissertation, a predictive data mining problem is defined as the standard

data mining problem. In this context, a standard data mining problem is a multivariate

 70

regression or classification problem for which there are many candidate features to

choose from in order to generate a predictive model. The ultimate aim is not just to build

a good predictive model but also explain and interpret to some degree how and why the

model works. The standard data mining problem can be different from a standard

statistical regression approach in the sense that the number of descriptive features for a

predictive data mining problem can be extremely large even for data sets with a relatively

small number of data records. [92]. The standard data mining problem is different from

feature selection in statistics in the sense that a typical data mining problem might deal

with multiple sources of large datasets (i.e., large either in number of patterns, or in

number of features, or both) with potentially missing, false and conflicting data. The data

mining approach is also different from the statistical approach in the sense that the data

sets for data mining problem are often too large to fit in memory or have so many

features that traditional statistical methods might not apply (i.e., curse-of-dimensionality

problem).

Map to a predefined
categorical or real value?

Map to an undefined
categorical?

Data Mining Task?

Summary data?

Other Tasks?

Prediction
(Decision-making)

Description
(Decision-support)

Real Categorical

ClassificationRegression

Yes No

Clustering

Summarization

Yes No

The standard
data mining problem

Figure 5.1 The Standard Data Mining Problem

 71

5.1.2 Data Strip Mining Problems

As the number of features becomes larger than the number of data points, the

standard data-mining task becomes more challenging and complex. Most predictive

modeling approaches do not work well in these situations. One solution is to collect more

data, but this option is not always available. In this case, a data analyst must extract as

much information as possible from the existing data. In this context, the standard data

mining problem is defined as the process of building good predictive model based on a

relevant subset of the descriptive features that can help explain the model. The extreme

case, where the number of features is on the order of or greater than the number of data

points, is defined here as a data strip mining problem [92]. In this case, the challenge is to

find a subset of features that provides a good predictive model.

Feature selection is a common task in many classification and regression

problems. Feature selection involves minimizing the number of relevant features and

maximizing the predictive power of the model. From this point of view feature selection

can be viewed as a special type of multi-objective optimization problem [93].

Predictive data mining has an objective to predict a dependent variable Y (also

called the output or the response variable) based on a number of features represented by

X = (x1, … , xn) (also called the independent, input or predictor variables). In machine

learning the classical supervised learning task involves the use of learning algorithms for

training on data where both the features (x) and corresponding dependent variable (y) are

known. The goal of such a learning algorithm is often to use this data set in order to

derive a predictive model for y that can ultimately be explained by a set of rules that

involves a subset of features.

 72

The strategies of learning algorithms depend upon the nature of the response

variable in terms of the types of values it can be assigned. The most common data types

are categorical and ordinal. In ordinal response variable cases, values for the response

variable are real numbers and there is an order relationship possible between every pair of

responses that can be characterized by a distance measure. These kinds of predictive

modeling problems are called regression problems. In the categorical response cases, the

response variable y realizes an unordered discrete value only and there is no defined order

relationship or distance measure between a pair of response values. Two response

variables are either equal (same) or not equal (different class). These kinds of problems

are called classification problems [94].

In principle, all input features (including irrelevant features) are used to

approximate the underlying function between the response variable and the features. In

practice, the presence of irrelevant features can cause several problems [92, 95]:

1. The irrelevant input features will increase the dimension of the problem and will

require greater computational cost.

2. Irrelevant features lead to a curse-of-dimensionality problem.

3. The irrelevant input features may lead to overfitting.

4. Excess features make the model more difficult to predict.

5. Excess features make the model more difficult to explain.

The key motivation for feature selection is to choose a subset of XS of the complete

set of input features X={x1, x2, … , xN} so that this subset XS can estimate the output Y

with an accuracy higher than or comparable to the performance of the complete input set

X (preferably, with a reduced computation time)[95].

 73

This dissertation, mainly concerns feature selection for regression problems,

but the methodology should be generally applicable. Feature selection has been addressed

to some degree in statistics, pattern recognition, econometrics, computational chemistry,

and machine learning, but still remains an interesting and difficult problem (depending on

the particular application). The machine learning community has recently targeted it and

has developed its own techniques [6]. Feature selection still remains as a difficult

problem for all of the study domains.

5.2 In-Silico Drug Design

An important area of the computational chemistry is the construction of a

predictive relationship between features related to chemical structure and certain activity

response variables (i.e. a measure of how organic chemical compounds interact with and

affect certain living organisms). The design of a drug with desired pharmaceutical

properties is an important and challenging task that involves evaluating and searching a

large number of potential candidate molecules with regard to their pharmaceutical

properties [96]. Traditionally, the introduction of a novel drug was done by trial-and-

error, which involves synthesizing and testing a large numbers of diverse compounds.

This is time consuming, costly, and laborious. The design of a new drug before it hits the

market typically requires 10 to 15 years of research and development (R&D) and requires

on the order of $500,000 of resources per drug [97].

Recent developments in high-throughput chemistry enabled the synthesis of a large

number of molecular compounds (specifically several thousands of molecules within a

few days) [98]. The idea behind rational drug design is to utilize large existing

 74

pharmaceutical databases to derive structure/activity correlation models that can exploit

and identify novel relationships between the molecular structure and the pharmaceutical

properties. Each molecule in a dataset is characterized by an appropriate set of descriptive

features or descriptors. These descriptors will then be used to build Quantitative

Structure-Activity Relationship (QSAR) models that characterize and predict relevant

biological responses or pharmaceutical properties. These QSAR models will then be used

to screen existing molecular databases for novel drug candidates or to create new virtual

combinatorial libraries of potentially active compounds [97].

The basic idea behind QSAR, first introduced by Hansch et al. [2], is to predict the

biological activity of new untested chemicals from the knowledge of their chemical

structures. QSAR assumes that the change in biological activity that is observed within a

series of similar compounds is a function of the change in chemical structure within the

series [99]. Thus, QSAR methods deal with identifying important structural features of

molecules that are relevant to explain variations in biological or chemical properties.

Most of the QSAR methods developed since Hansch et al. [2] dealt with descriptors of

molecular structures derived from a two-dimensional (2D) representation of molecular

structures (i.e., based on molecular connectivity).

The rapid accumulation of experimental tree-dimensional (3D) structural

information for many organic molecules of biological interest and the development of

fast and accurate methods for the 3D structure generation for chemical molecules have

led to the development of 3D structural descriptors. 3D QSAR involves the analysis of

quantitative relationship between the biological activity of a set of molecular compounds

and their three-dimensional structures [100].

 75

Figure 5.2 shows the structure for a typical QSAR data set. Here, X and Y-data

represent independent descriptive features (or descriptors) and the corresponding interests

that need to be predicted. The indexes i, j, and k denote the molecule names (ID),

biological responses, and features, respectively. The aim of the QSAR studies is to find a

model such that the model predicts the relationship between the independent X-data and

the dependent Y-data for future values of X-data with unknown Y-data.

 1
 2
 3
 .
 .
 i
 .
 .
 .
 L

Molecules 1, 2, 3, … … … … … k … … . … . … … N 1, 2, 3, … j … M

Yij

Xik

Biological Activity Descriptors of Molecules

Figure 5.2 A Typical QSAR Dataset [99]

Often QSAR problems have more descriptive features than there are compounds (or

molecules). If the number of features becomes larger than the number of molecules, the

predictive modeling problem becomes extremely challenging.

Recent trends in both 2D and 3D QSAR studies have concentrated on the

development of optimal QSAR models through feature selection [100]. The objective is

to narrow a large set of potential inputs into a smaller subset for good prediction. The

selection of a subset of features is very important because an excess number of features in

 76

the model cause two problems [92]. The first problem relates to the fact that excess

features cause the parameter estimation methodology to overfit the model so there is no

real predictive value. The second problem is that excess features might make the model

more difficult to explain.

5.3 Feature Selection for In-Silico Drug Design

Variable selection is typically a time-consuming and ambiguous process for

QSAR because of the large number of descriptors in the datasets. Most 2D and 3D QSAR

techniques assume a linear relationship between the biological activity and molecular

descriptors (or features). The optimal set of descriptive features is typically selected by

combining stochastic search methods with the correlation methods such as Multiple

Linear Regression (MLR), Principal Component Analysis (PCA), and more commonly

Partial Least Square (PLS) regression [99, 101-103]. PLS regression is a principal

component analysis related regression method. In PLS regression, a relationship is

determined between a response variable Y and feature data matrix X. Latent variables are

determined in such a way that they model the feature data set X and optimally correlate

with response variable Y [104, 105]. In contrast, in principal component analysis the

latent variables (eigenvectors) only transform feature data set X in an orthogonal set.

Some feature selection techniques in PLS analysis have been proposed such as the

GOLPE [106], VIP [107], and IVS [108] methods.

i) The GOLPE (Generation of Optimal Linear PLS Estimators) uses D-optimal

design to preselect non-redundant variables and fractional factorial design to run

 77

PLS analyses with different variable combinations [106, 109]. Variables

significantly contributing to prediction are then selected.

ii) VIP (Variable Influence on the Projection) score is derived from the PLS

weights for each variable [107]. VIP scores greater than 1.0 indicate important

variables. The threshold value of 0.8 is used as a limit below which variables are

considered to be unimportant.

iii) IVS (Interactive Variable Selection) method uses cross-validation for

dimensionwise elimination of single elements in the PLS weight vectors [108,

110-112].

In recent years, a variety of nonlinear QSAR methods have been proposed. Most

of these methods are based on Artificial Neural Networks (ANNs) [113, 114] or other

related machine learning techniques such as Support Vector Machines. Simulated

annealing, genetic algorithms [115-120], and evolutionary algorithms [92, 121, 122] have

been used as stochastic search methods for feature selection, which are then wrapped

around the available linear or non-linear QSAR methods.

Waller and Bradley [122] have proposed a Fast Random Elimination of

Descriptors (FRED) algorithm. FRED is a simple random selection strategy that

implements an iterative generation of models. It starts with a population of predictive

models composed of a fixed or variable number of selected descriptors and eliminates

descriptors iteratively. After creating a population of models, the models are sorted

according to their fitness. This fitness function is based on Partially Least Square (PLS)

regression model with full (leave-one-out) cross validation. A certain number of models

with low fitness values are deleted from the population. The descriptors of the deleted

 78

models (or less fit models) are then compared to the descriptors of the models kept in the

population (more fit models). Descriptors that are not found in the more fit models are

placed in the TABU list. If a descriptor appears on the TABU list more than once (not

necessarily sequential generation), it is removed from the allowable descriptor pool. A

new population of models is created for next generation by using those descriptors in the

allowable pool. Iterative elimination of descriptors leads to subsequent generations

consisting of more fit models.

Kewley, Embrechts, and Breneman [92] have proposed a novel Artificial Neural

Network (ANN) based technique for Data Strip Mining (DSM), which results in a

predictive model for data sets with a large number of potential input features and

comparatively few data points. DSM uses neural network sensitivity analysis to

iteratively eliminate variables, which are less significant in the model. After an ANN has

been trained on a relatively large set of input features, the significance of each feature is

calculated by holding all the input features frozen at their average value and tweaking the

features one at a time and identifying the most sensitive input features that cause the

largest output variability.

Genetic algorithms [117, 118] have been used extensively for feature selection in

QSAR. Most of these studies adopted classical binary string representation. Each

individual in a population represents a binary string of digits, either “one” or “zero”. The

values of “one” or “zero” imply that the corresponding descriptive feature is included or

excluded in the parent (model). The length of the chromosome string is equal to the total

number of descriptors (all descriptors). The population is evolved with a GA by

 79

performing classical crossover and mutation operators. The fitness of each individuals is

evaluated with the PLS algorithm with a leave-one-out cross validation procedure.

Wessel, et al. employed a GA coupled with computational neural networks for

feature selection in order to predict the absorption of a drug compound through the

human intestinal cell lining [123]. A predictive ANN model is developed by using GAs

with a neural network fitness evaluator. They used a set of 86 drug and drug-like

compounds and their experimentally derived Human Intestinal Absorption rates (%HIA),

which were gathered from literature sources. Each compound is represented by 728

descriptors. They employed data preprocessing methods (called objective feature

selection [124]) in order to eliminate features that contained redundant or minimal

information. The first objective feature selection method was to eliminate descriptive

features that had greater than 80% identical values. The second one is to eliminate one of

the features, which were correlated higher than 90%. 127 descriptive features remained

after objective feature selection method. The 127-member reduced pool of descriptive

features was fed into GA/ANN in order to build a good predictive model with a few

descriptive features. The data set was split randomly into three sets: training set with 67

molecules, validation set with 9 molecules, and external prediction set with 10 molecules.

The root mean square errors (RMSE) of validation and test sets were used by the GA to

determine a fitness function that related directly to the overall quality of an individual (a

particular subset) in the population. The fitness function is calculated with the following

equation:

Fitness = TRMSE + W (| TRMSE – VRMSE |)

 80

Where TRMSE is the training set RMSE, VRMSE is the validation set RMSE, and W is the

weight factor. They used 0.4 for weight factor W based on their experiences.

5.4 Feature Selection in Statistics

 Selecting a subset of variables (features) is a problem that has been extensively

considered in linear models. The variable selection problem is considered as a special

case of the model selection problem, where each model corresponds to a distinct subset

of variables. In order to select a model containing subset of variables, several criteria

have been proposed in the statistical literature for linear models. One of the well-known

criteria is the Residual Mean Square (RMS) of prediction, which is defined for a model

with p variables as

pn
SSEpRMSp

−
=

where SSE is the residual sum of square errors, and n is the number of data points. If two

models are compared; then, the one with the smallest RMSp is chosen.

The other well-known subset selection criterion for linear regression is Mallow’s

Cp statistic [125]. Since predicted values obtained from a subset regression model are

biased, the mean square error of prediction consists of two components: the variance of

prediction arising from estimation, and a bias arising from the deletion of variables [126].

Mallow’s Cp statistics is defined as

)np2(
2ˆ

SSEpCp −+
σ

=

where σ̂ is the estimate of the variance of the random error, which calculated from the

full regression model. The expected value of the Cp is p when there is no bias in the

 81

model. Therefore, the feature subset whose Cp is the closest to p is the best subset based

on Cp statistic.

When the number of variables is large, the evaluation of the all possible subsets of

variables using one of the above selection criteria is not feasible. There are sequential

variable selection methods that do not require evaluating all possible subsets [127, 128].

These methods calculate the variation caused by the deletion or the addition of a variable

into the model. They keep the variable whose contribution into the model is significant

based on a selection criterion. Those methods are forward selection, backward

elimination, and stepwise regression.

The sequential variable selection methods do not require evaluation of all 2k-1

possible subset models, where k is the number of the independent variables. These

methods involve evaluation of at most (k+1) models. They are deterministic methods in

the sense that they always obtain same subset of features for all runs. However, the order

of inclusion or deletion of variables should not be interpreted as reflecting the relative

importance of the variables [126]. These methods generally select the same variables

from datasets with noncollinear variables. They do not perform well on collinear datasets.

Ridge regression can be used to select variables when data are highly collinear. Ridge

regression is a method to stabilize the regression coefficient [126], where a stable

coefficient means that it is not affected by slight change made in data. Several Bayesian

methods for variable selection in Multiple Linear Regression have been proposed. Most

of them use either the Akaike Information Criterion (AIC) [129] or the Bayesian

Information Criterion (BIC) [130] for model selection. A detailed review of feature

(variable) selection in Multiple Regression is given by Thompson [127, 128].

 82

5.5 Common Components of Feature Selection Algorithms

A feature selection algorithm performs a search through the space of feature subsets

and must have at least the following three components [131]:

• A feature evaluation criterion to compare variable subsets.

• A search method to explore the possible variable combinations of the

search space.

• A stopping criterion to stop searching through the space of feature subsets.

5.5.1 Feature Evaluation

The feature evolution criterion helps us to compare subsets of features in order to

select one of them. Feature selection methods, which perform feature selection as a

preprocessing step prior to learning, can be divided into two main categories based upon

their feature subset evaluation: a wrapper or a filter approach [6]. A wrapper method

searches for a good feature subset tailored to a particular predictive modeling approach

and uses the induction algorithm as a black box for evaluating feature subsets. On the

other hand, a filter method attempts to access the merits of features from the data alone.

Wrapper methods generally use the actual learning algorithm with a statistical re-

sampling method (such as cross validation, bootstrapping) to estimate the quality of

feature subsets. This approach is useful but sometimes computationally prohibitive

because the learning algorithm to evaluate feature subsets has to be applied numerous

times. On the other hand, filter methods have proven to be more practical than wrapper

methods for applications to large datasets since they are much faster.

 83

 Input
All Features

Induction
Algorithm

Search for
Feature Subset

Figure 5.3 Filter Approach to Feature Selection

5.5.2 Search Methods

The only way to be sure of selecting the best subset of variables would be to

enumerate all the possible models. Given the fact that if n is the number of variables;

then there are (2n-1) possible combinations. This approach is limited to problems with a

few variables. Searching the whole space within reasonable time is necessary if a feature

selection algorithm is to operate on data with a large number of features.

Greedy Hill Climbing (GHC) methods consider local changes to the current

feature subset by adding or deleting a single feature from it [95, 132]. If a GHC considers

only additions of features to the feature subset it is called as forward selection.

Considering only deletions is called as backward elimination. The combination of these

two methods, called stepwise bi-directional search, considers both addition and deletion

of features. Although GHC methods are fast, they do not enable the user to consider

several contending subsets involving different sets of variables that may be preferable to

the selected one for other reasons.

GAs have proven to be a very effective techniques to find a solution for feature

selection. They employ a population of potential solutions, which search the solution

space in parallel. GAs allow the exploration of the whole search space and generally

select more efficient subsets of features than that of classical feature selection methods

[7].

 84

5.5.3 Stopping Criterion

If we would have been able to enumerate all possible subsets, we could have

selected the best one according to our evaluation criterion. Here, the feature selection

algorithm is terminated when all subsets are evaluated.

If the empirical distribution of the evaluation criterion is known, a statistical

hypothesis testing can be applied to terminate the search. The distribution characteristics

of evaluation criteria in classical methods can be easily derived. For example, sequential

variable selection methods in Multiple Linear Regression models terminate as soon as

possible when a variable is found insignificant according to the statistical test.

The distribution of the evaluation criterion is difficult to obtain for non-parametric

methods such as Artificial Neural Networks. Therefore, hypothesis testing is seldom used

with these models. The most frequently used method is to compute the estimation of the

generalization error on validation set using a bootstrapping or a cross-validation

methodology. The variable subset with the best predictive performance will be selected.

GA based feature selection methods assume a fast and efficient learning method (e.g.

PLS). Furthermore, these methods may become computationally prohibitive if a user

wants a high level of statistical confidence.

5.6 GAs for Feature Selection

5.6.1 Representation

The most important part of applying GAs to a specific problem is the selection of

a suitable genetic coding (representation) and fitness function for individuals. The

 85

representation must cover the whole search space for the problem. The natural and

simplest representation for the feature selection is a binary string representation. The

number of features in the problem determines the length of the string (chromosome).

Each bit (gene) represents the elimination or inclusion of the associated feature. As an

example, consider a problem with six features. The string 100001 corresponds to

selecting features 1 and 6. The advantage of binary representation is that classical GA

operators (binary mutation and crossover) can be applied without any modification.

5.6.2 Studies of GAs on Feature Selection

Several researchers have employed GAs for feature selection in classification

problems [89, 133]. In these studies, individuals were encoded as standard binary strings

and a learning algorithm (classifier) was used to calculate the fitness.

Guerra-Salcedo and Whitley [89] compared two different genetic algorithms for

feature selection in a classification problem. They used the Euclidian Decision Table

classifier as a fitness function. One of the first general purpose GAs is called GENESIS

[134] and is a public domain software based on a simple GA. A more advance general

purpose GA is CHC proposed by Eshelman [135]. CHC is a generational search

algorithm. They reported that CHC performed better than GENESIS.

The CHC algorithm randomly pairs individuals in the population. Only pairs,

which differ from each other by some number of bits (mating threshold), are crossed

over. This is called a truncation selection scheme. The crossover operator is similar to

uniform crossover and randomly swaps exactly half of the bits that differ between two

strings. When no offspring is produced, the mating threshold is reduced by 1. When the

 86

mating threshold become 0 and no offspring can be created, a new population is created

based on the best individual in the current population. This is called cataclysmic

mutation. Cataclysmic mutation uses the best individual of the current population as a

template to create a new population by mutating the template.

Leardi, Boggia, and Terrile [7] applied a modified simple GA to regression

problems. They used the Multiple Linear Regression as a fitness function and cross-

validated variance explained by the regression as a fitness. In order to prevent an

infeasible individual (in which there are more variable than objects in regression) feasible

individuals are created for the initial population. Crossover is performed in the following

way after selecting two donors, each gene has swapped with a certain probability.

Immediately after the creation of two offspring their response is evaluated and a decision

is made whether these offspring will be inserted to current population or not. If an

offspring with k variable has higher fitness than that of the worst individual with k

variable in the current population it will be replaced. Otherwise, it will be discarded. The

mutation operator randomly chooses some bits and changes their value from 0 to 1and

vice versa. After all mutation have been performed the fitness of the mutated individuals

are evaluated and decision is made whether they are inserted into the current population

or not. This GA is successfully applied to regression problems and performed better than

classical variable selection methods.

Hou, Wang, Liao, and Xu [115] studied QSARs for 35 cinnamamides by using

genetic algorithms. They used binary string representation and classical crossover and

mutation operators. The probability of an individual to be parent for crossover was based

on fitness of that individual. The fitness function was defined as the multiple linear

 87

regression coefficient (r). After the crossover and mutation operator, the offspring are

compared with the individuals in the population. Offspring that are better than some

individuals in the population are copied to the population. A partial re-initialization is

applied after some number of genetic operators. In partial re-initialization lowest 50

percent of chromosomes are replaced with randomly generated ones.

Yasri and Hartsough [136] reported the development of a novel QSAR technique

combining genetic algorithms and neural networks for selecting a subset of relevant

features and building the optimal neural network architecture for QSAR studies. The

optimal neural network architecture is explored in parallel with the feature selection by

dynamically modifying the size of the hidden layer. They showed that this method could

be used to build both classification and regression models and outperformed simpler

feature selection methods mainly for nonlinear datasets. In their proposed algorithm, each

individual (chromosome) encodes different subset of features by a binary string

representation. The length of each chromosome is equal to the total number of features in

the data set. A neural network is trained and cross validated for each chromosome using a

training dataset. The classical crossover mutation and roulette wheel selection were used

to evolve the GA population.

 88

 CHAPTER 6

6Data Strip Mining

Feature reduction is an important step for building good predictive models. Too many

features in the model cause the classical curse of dimensionality problem. Furthermore,

irrelevant or redundant features not only diminish the performance of a predictive model

but also make the model more difficult to explain and interpret. Data strip mining was

introduced as an iterative procedure for feature reduction/model building for data sets

where the number of features exceeds or is on the order of the number of data records

[92]. Figure 6.1 depicts the process of data strip mining.

FEATURE
SET Learning Algorithm

Neural Networks
SVM
PLS

PREDICTIVE MODEL

REDUCED
FEATURE SET

SENSITIVITY ANALYSIS

Learning Algorithm

Neural Networks
SVM
PLS

Random Gauge
Variable

Figure 6.1 Data Strip Mining Process

 89

6.1 Scientific Data Mining

Data mining is the process to automate the discovery of non-obvious, novel, and

potentially useful information from large datasets with the aid of computers. Scientific

data mining refers to data mining that assists the scientific discovery process or is applied

to science-related data. Scientific data mining differs from commercially-oriented data

mining with regard to the type of data (both in size and data quality) and uses different

methods as well. While the boundary between traditional data mining and scientific data

mining is not clearly delineated, scientific data mining applications more often rely on

real-number coded data and frequently require regression rather than classification. Data

mining software developed for traditional data mining applications is often not well

suited for scientific data mining applications.

The scientific data mining process can often be broadly divided into three steps:

i) The prediction of future unknown values of one or more dependent

(response) variables in a data set, by using some or all of the other

descriptive variables (features) in a predictive model;

ii) Feature selection for identifying the most relevant set of descriptive

variables;

iii) The model explanation phase, where the selected features or combinations of

selected features explain part of (or the complete) model in a way that can be

understood by the domain expert.

The data mining process forces scientific discovery to proceed in a systematic way

and assists in discovery by revealing hidden, non-obvious patterns and information that is

ultimately interpretable, explainable, and verifiable by humans.

 90

6.2 StripMinerTM

The StripMiner [4] code is a software package for predictive modeling and

feature selection with scientific data mining applications in mind. StripMinerΤΜ is a shell

program for data-strip mining that manages and integrates the execution of several

different machine learning and statistical methods such as Artificial Neural Networks

(ANNs), Genetic Algorithms (GAs), Support Vector Machines (SVMs), Local Learning

(LL), and Partially Least Square (PLS) Regression. StripMinerTM also implements several

different methods for feature reduction for predictive modeling. These feature reduction

methods are based either on genetic algorithms or sensitivity analysis. Feature reduction

methods specific to the particular predictive model are also possible.

6.3 Predictive Modeling Algorithms in StripMinerTM

The strip-mining approach does not depend on any particular methodology. There

are several machine learning and statistical methods for building predictive models.

StripMinerTM gives the user the choice between several machine learning approaches

such as ANNs [92], SVMs [137], GAs [22] [8], and LL [138] as well as a statistical

method, PLS [139].

6.3.1 Neural Network Model

The neural networks models are standard feed-forward multi-layered perceptrons

(MLP) trained with the backpropagation algorithm [140, 141]. The neural networks have

two hidden layers, are oversized (e.g. 13 and 11 neurons in the hidden layers). Training

was halted with early stopping by monitoring the validation set. Because of the early

 91

stopping procedure, the neural network results are not very sensitive to the number of

neurons in the hidden layers. On the other hand, neural networks that rely on early

stopping tend to be more linear.

6.3.2 Local Learning

Local Learning is a data analytic modeling approach that attempts to model the

training data by only fitting a parametric function in a region around the location of a

query point [142-144]. This means that local learning methods are locally parametric, as

opposed to most learning methods (Least Square Regression, etc.) that attempt to fit a

single global model into the training data. Local learning methods make predictions

based on local models constructed on the neighborhood of a query point. Nearest

neighbor and locally weighted regression are examples to local learning models [142]. In

Chapter 10, genetic algorithms with local learning are developed for feature selection

problem.

6.3.3 Support Vector Machines

StripMinerTM uses standard 2-Norm Support Vectors Machines (SVMs) for

regression problems [137]. The detailed tutorial information about SVMs can be found in

[145]. A short introduction to SVM regression taken from [146] is given below.

Suppose we are given t training examples (xi, yi), where, i = 1,2,… ,t, xi ∈ Rn, and

yi ∈ R. The optimal ε-insensitive SVM model can be found by solving the following dual

quadratic problem:

 92

t,...,1i,C0,0)(.t.s

)(y)()(K)(
2
1minimize

i
T*

T*T**T*

=≤α≤=α−α

α+αε+α−α−α−αα−α

1

1

where K is a matrix with Kij = k(xi, yi) and 1 is a vector of ones. The optimal regression

function is obtained by

∑
=

+α−α==
t

1i
i

T
i

*
i b)x,x(k)()x(fŷ

There are several types of kernels (e.g. linear, polynomial, and radial-basis

function) that could be used in the SVMs. The SVM in this dissertation uses Radial Basis

Functions (RBF) kernel with parameter σ, which is the most common used kernel in the

SVM literature:











σ
−

−= 2

2
i

i 2
xx

exp)x,x(k

Typically, SVM algorithms with RBF kernel function perform better with normalized

data [147]. SVMTorch is used as a subroutine to solve equation (6.1) [148]. The solution

of equation (6.1) requires the following priori knowledge: the kernel parameter σ, the

trade-off constant C, and the value of ε. These parameters are automatically computed

using a Pattern Search (PS) algorithm [146, 149]. PS is a direct search method that does

not use derivatives but direct function evaluation to find optimal points. For solving

regression problems with good accuracy, it is necessary to choose a sufficiently good

parameter set for the SVM. Automatic model selection is an important issue for SVM and

is a hot research topic today [150]. The leave-one-out-error (LOO) estimate is often used

)1.6(

)2.6(

)3.6(

 93

for the classification. However, automatic model selection for regression has not been

studied as much as that for classification. In StripMinerTM, the Q2 averaged over the

leave-one-out cross validation is used as a measure of validating the predictive model and

optimized by using the pattern search algorithm [149]. The pattern search methods are a

kind of direct search method. They do not use any derivatives but use direct evaluation of

points in the search space. Therefore, they can be applied for problems that are

impossible or for hard to obtain information about the derivatives.

6.3.4 Partial Least Square (PLS) Regression

Partial Least Squares (PLS) regression is an algorithm similar in idea to principal

component analysis (PCA) that has found utility in solving a variety of data analysis

problems [104, 151, 152]. The Partial Least Squares method seeks to uncover a small

number of “latent” variables from a much larger set of correlated descriptors. The PLS

method can be expressed as:

y = a1 LV1 + a2 LV2 + … … + am LVm

in which y is the dependent variable (biological response), LVi the ith latent variable and

ai is the ith regression coefficient corresponding to LVi . Each latent variable, LVi, can be

expressed as a linear combination of independent variables xi:

LVi = b1 x1 + b2 x2 + b3 x3 +… .+ bn xn

where xi is the ith independent molecular descriptor and b1, b2… bn are the descriptor

coefficients. The first latent variable accounts for most of the variance, while consecutive

latent variables account for relatively smaller amounts of variance. In addition, the latent

variables in a model are orthogonal to each other.

 94

6.4 Performance Estimation for Learning Models

In this dissertation, the model quality for a machine learning model is measured

with five distinct measures for the error: the root mean square error (RMSE), r2, q2, R2

and Q2. In this dissertation, qualities of the fit of the training data (goodness of the fit of

the model) are always reported in terms of r2 and R2; and test (validation) errors are

always reported in terms of RMSE, q2 and Q2. In the given formula below, summations

are inclusive of all compounds (data points) in the training or test set.

r2 is known as the coefficient of determination in which, r is the coefficient of

correlation (Pearson’s correlation coefficient) that is a measure of the degree of linear

association between actual activities (iy) and predicted activities (iŷ). r is given by

∑ ∑
∑

−−

−−
=

2
i

2
i

ii

)ŷŷ()yy(

)ŷŷ()yy(
r ,

where y is the mean of the actual (response variables) activities and ŷ is the mean of the

predicted (response variables) activities. q2 is defined for a test set as 22 r1q −= .

R2 is defined for a training set by

∑
∑

−
−

−= 2
i

2
ii2

)yy(

)ŷy(
1R

Q2 is defined for a test set by 22 R1Q −= , which is given by

∑
∑

−
−

= 2
i

2
ii2

)yy(

)ŷy(
Q

 95

In the QSAR literature, the prediction quality is often reported via q2 or Q2, which

is called as predictive R2 or cross-validated R2. It is calculated in the same way as in R2

but the predicted activities (iŷ) are always obtained from the leave-one-out-cross-

validation. In this dissertation, q2 and Q2 are always calculated on the test or validation

sets as explained above and are different than the predictive R2 (cross-validated R2) used

in the QSAR literature.

 The RMSE is the square root of the average of squares of the errors for each of

the N data points of the test set according to

N
)ŷy(

RMSE
2

ii∑ −
= ,

where N is the number of data points in the test set and summation is inclusive of all data

points in the test set..

6.5 Sensitivity Analysis for Feature Reduction

The purpose of sensitivity analysis is to determine the saliency of each of the

features in a model and to reduce the number of features for the model. Sensitivity

analysis uses a trained machine-learning model to determine the sensitivities of the

variables of the model [3, 92, 153, 154]. For more details about sensitivity analysis, see

Arciniegas [155].

 96

6.5.1 One-Dimensional (1-D) Sensitivity Analysis

In order to proceed with 1-D sensitivity analysis, all the descriptive features are

held frozen at their median (or average) values and the variation in the output of the

learning model is monitored, while the features are changed one at a time within their

allowable range. In practice, rather than changing a feature continuously, the model

output for each feature is monitored for certain number of different discrete values (e.g.

13 level). The sensitivity for a particular feature is the maximum model response minus

the minimum model response from these 13 settings.

The feature set was extended with an additional random variable to gauge the

sensitivities. Although the random variables used in this dissertation were obtained from

a uniform distribution, they can be drawn from different distributions. Features with

sensitivities smaller than this random variable are eliminated in successive (strip mining)

iterations for feature reduction stages, and a new model based on the reduced feature set

is constructed. Iterative feature elimination with sensitivity analysis was halted when

there were no more features with sensitivity below the sensitivity of the random gauge

variable. Here, the hypothesis is that features with sensitivities that are lower than this

random variable are not important for the model.

Figure 6.2 shows graphically how sensitivity analysis works. The roman numerals

show the steps in the sensitivity analysis. In step I, a random variable is added into the

training dataset. The second step (step II) in this feature reduction methodology is the

training of a machine-learning model based on the extended dataset -the original dataset

augmented by a uniform random variable. So far, only one uniform random variable was

 97

considered as a gauge. It is possible to add several random gauge variables (possibly

from different distributions) at the same time.

In order to implement the sensitivity analysis, a new sensitivity analysis specific

dataset is generated in the following way. All the features were held at their median value

and each feature was changed one at a time between allowable ranges of the feature for L

discrete levels. Here, all features are scaled between zero and unity. The structure of the

sensitivity analysis specific dataset for the sensitivity analysis is shown in Figure 6.2. It is

assumed that there are M descriptive features, N data points, and L sensitivity levels for

one dependent (response) variable.

In step III, the sensitivity analysis specific file is fitted into the trained machine-

learning model. The generated model response is an array, consisting of M sets (because

there are M features) of L predicted (output) values. In step IV, the sensitivity for a

particular feature is then estimated as its range (i.e., maximum minus the minimum model

response) from the L level settings for that feature.

Finally in step V, all features with sensitivities smaller than the random variable

are dropped and one cycle of the sensitivity analysis ends. A new feature reduction cycle

starts with the dataset with selected features and the random variable. This iterative

feature elimination procedure is halted when no further features can be dropped (i.e.,

there are no more features with a sensitivity below the sensitivity of the random gauge

variable) or when a predefined number of features has been reached.

 98

Random
Variable

Learning
Algorithm

Prediction
P1max - P1min

Mean/Median
Value

Sensitivity
Levels

IIIIII
IIII

IVIV

Selected
features VV

Training set

Sensitivities

If (SFj > SRV)

Random Variable

II
0.00 F2 F3 … . Fm RV
0.25 F2 F3 … . Fm RV
0.50 F2 F3 … . Fm RV
0.75 F2 F3 … . Fm RV
1.00 F2 F3 … . Fm RV
F1 0.00 F3 … . Fm RV
F1 0.25 F3 … . Fm RV
F1 0.50 F3 … . Fm RV
F1 0.75 F3 … . Fm RV
F1 1.00 F3 … . Fm RV
: : : … . : :
: : : … . : :

F1 F2 F3 … . Fm 0.00
F1 F2 F3 … . Fm 0.25
F1 F2 F3 … . Fm 0.50
F1 F2 F3 … . Fm 0.75
F1 F2 F3 … . Fm 1.00

P11
P12

:
P1L
P21
P22

:
P2L

:
:

PmL
Prv1
Prv2

:
PrvL

P2max - P2min

Prvmax - Prvmin

SF1
SF2
SF3

:
:

SFm
SRV

Figure 6.2 One Cycle in the Sensitivity Analysis

1-D sensitivity analysis can be further extended to multivariate sensitivity analysis

(e.g. 2-D, 3-D). For example, 2-D sensitivity analysis is similar to 1-D sensitivity

analysis, except that saliency is calculated for a pair of features by changing two features

simultaneously while holding the other features frozen at their average or median values.

6.5.2 Bootstrap Aggregation (Bagging) Sensitivity Analysis

Bootstrapping, introduced by Efron [156], is a well-known technique for

estimating the generalization error of a learning model based on resampling. In classical

bootstrapping, a sample of data of size n is taken uniformly from the original data of size

 99

n with replacement and this resampling process is repeated in a certain number of times

(50-1000) [157]. In StripMiner , the (n-v) samples for the learning set are drawn

without replacement, where n is the number of samples in the data set and v is the

number of samples in the validation set. There is no overlapping between the training and

validation sets for each bootstrap sample.

The machine learning model is trained by using the training set and the

sensitivities of the variables are measured. The validation data set is fitted into the trained

learning algorithm in order to assess the predictive ability (goodness) of the model. This

process is repeated for a number of different bootstrap samples. This goodness

measurement can be used to weigh (or bag) the sensitivities of the features over assemble

of models.

The final sensitivity for each variable is obtained by sorting the weighted average

of all bootstrapping learning models sensitivities in ascending order, and by eliminating

any features with sensitivities smaller than that of the random variable. This elimination

process proceeds in successive stages using the reduced dataset for the next stage for

further possible feature (descriptor) reduction. This process is terminated when no more

features can be dropped (i.e. all features are less sensitive than the random variable) or

when a predefined number of features have been reached. Figure 6.3 graphically depicts

the bagging sensitivity analysis. The roman numerals in Figure 6.3 represent steps in the

bagging sensitivity analysis.

In step I, the full dataset is extended with a random variable. In step II, a bootstrap

sample with size l from the full dataset with size n is drawn without replacement to

construct the training (learning) set. The remaining set with size v = n - l constitutes the

 100

validation set. In step III a machine-learning algorithm is trained by using the training set.

In step IV, the sensitivity analysis specific file is fitted into the trained learning model.

The generated model response is an array consisting of M sets (because there are M

features) of L predicted (output) values. In step V, the sensitivity for a particular feature

is then estimated as its range (i.e., maximum minus the minimum model response) from

the L level settings for that feature. In step VI, the validation set is fitted into the trained

learning model. The quality of prediction is measured in terms of q2, where q2 = 1 - r2.

Here, r is the correlation coefficient between actual response and predicted response. In

step VII, the sensitivities of features are weighted by multiplying each feature by 1 - q2.

Steps I through VII are repeated for a certain number of bootstrap samples. Weighted

sensitivities of features for each bootstrap sample are recorded. Finally in step VIII, the

final sensitivity for each feature is calculated as the weighted average of all bootstrapping

sensitivities. All features with weighted average sensitivities higher than the weighted

average sensitivity of the random variable are kept, and one cycle of the bagging

sensitivity analysis ends. A new bagged feature reduction cycle starts with the dataset

with selected features and the random variable. This iterative feature elimination

procedure stops either when no further features can be dropped or when a predefined

number of features has been reached.

The data strip mining procedure is independent from a particular modeling

approach and can be integrated with any machine learning or statistical modeling

approach in general. Sensitivity analysis for feature reduction proceeded with predictive

models based on MLP neural networks.

 101

Learning
Algorithm

Prediction
P1max - P1min

Sensitivity
Levels

IVIV
IIIIII

VV

VIIVII

Training set

Sensitivities

Random
Variable

IIII

0.00 F2 F3 … . Fm RV
0.25 F2 F3 … . Fm RV
0.50 F2 F3 … . Fm RV
0.75 F2 F3 … . Fm RV
1.00 F2 F3 … . Fm RV
F1 0.00 F3 … . Fm RV
F1 0.25 F3 … . Fm RV
F1 0.50 F3 … . Fm RV
F1 0.75 F3 … . Fm RV
F1 1.00 F3 … . Fm RV
: : : … . : :
: : : … . : :

F1 F2 F3 … . Fm 0.00
F1 F2 F3 … . Fm 0.25
F1 F2 F3 … . Fm 0.50
F1 F2 F3 … . Fm 0.75
F1 F2 F3 … . Fm 1.00

P11
P12

:
P1L
P21
P22

:
P2L

:
:

PmL
Prv1
Prv2

:
PrvL

P2max - P2min

Prvmax - Prvmin

SF1
SF2
SF3

:
:

SFm
SRV

Full Dataset

Validation set

II

VIVI

Weighted
Sensitivities

Wj*SF1j

Wj*SF2j

Wj*SF3j

:
:

Wj*SFmj

Wj*SRVj

SELECTED
FEATURES

If (wSFi > wSRV)

∑
∑=

Wj
jSFWj

wSF
)1*(

1

∑
∑=

Wj
jSFWj

wSF
)2*(

2

∑
∑=

Wj
jSFWj

wSF
)3*(

3

∑
∑=

Wj
SRVjWj

wSRV
)*(

∑
∑=

Wj
SFmjWj

wSFm
)*(

:
.

VIIIVIII

Figure 6.3 Bagging Sensitivity Analysis

 102

 CHAPTER 7

7Benchmarking Datasets

In this chapter we introduce the QSAR datasets, which will be used for benchmarking the

proposed algorithms. Since the aim of QSAR is to predict the biological activity of new

untested molecules from the knowledge of their chemical properties, descriptors are

needed to be generated. We first give a brief description about the descriptors that were

generated for the benchmarking datasets and then, three benchmarking datasets

(Lombardo, HIVrt, and Caco2) will be introduced.

7.1 Descriptors

QSAR assumes that the change in biological activity that is observed within a

series of similar compounds is a function of the change in chemical structure within the

series [99]. Thus, QSAR methods deal with identifying important structural features of

molecules that are relevant to explain variations in biological or chemical properties. The

QSAR datasets used in this dissertation consist of either Transferable Atomic Equivalent

(TAE) descriptors [158, 159], or Property Encoded Surface Translator (PEST) descriptors

[160, 161], or Molecular Operating Environment (MOE) descriptors [162], or

combination of those descriptors. These descriptors are briefly introduced in the

following sections.

 103

7.1.1 Transferable Atomic Equivalent (TAE) Descriptors

The TAE method employs rapid reconstruction of charge densities and electronic

properties of molecules, using atom charge density fragments that are pre-computed from

ab initio wave functions [158, 159]. The original TAE descriptors were created from ten

or twenty-bin fixed-range histograms describing the distributions of ten different

electronic properties on electron density-derived Van der Waals molecular surfaces. A

new class of Wavelet Coefficient Descriptors (WCDs) has been developed that encodes

molecular surface property information into a small set of wavelet coefficients [163].

Development of rapidly calculable WCDs captures important features of molecular

electron density distributions.

7.1.2 Property Encoded Surface Translator (PEST) Descriptors

In Shape/Property-based PEST (Property Encoded Surface Translator) descriptors

a TAE property-encoded surface is subjected to internal ray reflection analysis [160,

161]. In this method, a ray is initialized with a random location and direction within the

molecular surface, and then reflected throughout inside the electron density isosurface

until the molecular surface is adequately sampled. Molecular shape information is

obtained by recording the ray-path information, including segment lengths, reflection

angles and property values at each point of incidence.

7.1.3 Molecular Operating Environment (MOE) Descriptors

The Molecular Operating Environment (MOE) is a flexible and robust chemical

computing software by the Chemical Computing Group [162]. MOE can calculate over

 104

300 molecular properties including topological indices, octanol/water logP, molar

refractivity and property-encoded Van der Waals surface descriptors, which have shown

wide applicability in compound classification, QSAR and ADME property modeling

[162].

7.2 Lombardo Blood-brain Barrier Dataset

The Lombardo blood-brain barrier partitioning data set is a well-known and

challenging dataset for QSAR benchmark studies [164]. Sixty-two molecules from the

original data set were chosen for this study, with 694 features. Molecule 37, butanone,

was excluded from our study since an experimental value was not reported. The

Lombardo data set contains two very distinct classes of molecules, a class comprised of

36 nitrogen-containing heterocycles and a class of 28 alkanes, alkenes, and halogen-

substituted derivatives. In addition, the gases methane and nitrogen are included.

The Lombardo dataset contains a diverse set of molecules for which blood-brain

barrier penetration data is available. This is an important phenomenon to model, since all

drugs that act on the central nervous system must pass through this barrier in order to

function. This class of compounds includes antidepressants, anesthetics, chemotherapy

agents, antifungal agents, antibiotics and antiviral drugs. The Lombardo data set

represents a benchmark in QSAR and provides a wealth of comparison data in QSAR

literature.

 105

7.3 Human Immunodeficiency Virus reverse transcriptase (HIVrt)

Inhibitors Dataset … … … … … .

The second dataset used in this dissertation is composed of HIVrt (Human

Immunodeficiency Virus reverse transcriptase) inhibitors selected from a recent review

article [165]. The molecules were selected according to a single criterion; all molecules

had EC50 values measured against MT-4 cells in vitro. The HIVrt data set contains 64

molecules representing five structural classes of reverse transcriptase inhibitors. The five

subsets are labeled as tibo(13) [166], hept(26) [167], tsao(11) [168], triazoline(7) [169],

and thiadiazole(7) [170], the number in parentheses shows how many members from

each respective class were included in the data set. To date QSAR models have been

constructed for individual classes of HIV reverse transcriptase inhibitors typically using

the comparative molecular field analysis (CoMFA) [171] or traditional QSAR methods

[165]. However, a QSAR model encompassing several diverse classes has not appeared

in the literature, with this in mind, the HIVrt dataset was constructed to provide a serious

challenge to our predictive modeling abilities.

The HIVrt dataset is significant since it represents one of several ways that the

spread of HIV and AIDS may be slowed or halted. These molecules inhibit an important

biochemical step in the life cycle of the virus, and if inhibition were optimized, HIV

would not be able to leave an infected cell and establish itself in another cell.

7.4 Caco-2 Dataset

The human intestinal cell line Caco-2 has been generally accepted as a primary

absorption-screening tool in the early stage of drug development. In an effort to improve

 106

lead generation hit-rates, there is great interest in defining quantitative relationships

between molecular structure and the various modes of Caco-2 permeability. The

Absorption, Distribution, Metabolism and Elimination/Excretion (ADME) characteristics

of pharmaceuticals are important properties to be considered in the development of novel

therapeutic agents. Many of the compounds entering into clinical trials often fail due to

issues directly related to ADME. Among these properties, absorption is of paramount

important in drug design. Currently, there is a heavy emphasis on producing drug

candidates that have good oral absorption that hopefully extends to good oral

bioavailability. Several in vitro test systems have been developed for measuring transport

across intestinal mucosa. Of all in vitro systems that have been developed to date, the

most commonly used method for determining the transport of compound across the

intestinal mucosa currently involves the use of Caco-2 cells.

Caco-2 cell lines were originally established by Jorgen Fogh approximately 20

years ago after he screened several lines derived from human colon carcinomas [172,

173]. The Caco-2 cell line has been widely used for testing the GI absorption of

compounds dues to its ability to express the morphological features of mature

enterocytes. Therefore, they are amenable to rapid throughput screening for GI

absorption. Measures of apparent permeation (Papp) are accepted as meaningful

substitutes for actual human intestinal absorption values. Consequently, modeling of

these permeability measures is an important substitute for modeling intestinal absorption.

In recent years, the number of predictive approaches to ADME using computational

techniques has increased dramatically. Hybrid approaches, those combine computational

techniques with easily obtainable experimental data, are also becoming more prevalent

 107

[174]. The obstacle to good, general, and robust models of absorption has always been

made to model absorption, and most are attempted with small datasets.

In this study, two representative Caco-2 cell permeability data sets were obtained from

two literatures [175, 176]. These two structural heterogeneous data sets cover a relatively

wide range of molecular size and lipophilicity.

Dataset I. Stenberg et al. reported Caco-2 cell permeability data for 27 structures [175].

All compounds are regarded as being transported by passive diffusion.

Dataset II. Another 48 structures are collected from Yazdanian et al. [176].

 For each dataset, a large set of 780 descriptors was generated by combining electron-

density based TAE, Property/Shape-Encode PEST, and the selected traditional MOE

descriptors. Initial descriptor set contains 274 TAE descriptors [159], 396 PEST

descriptors [160, 161], and 110 selected MOE descriptors that are related with

pharmacophore, shape and volume.

 108

 CHAPTER 8

8Correlation-based Feature Selection with Evolutionary

Algorithms

Feature selection methods can be divided into two main categories based upon their

feature subset evaluation: a wrapper or a filter approach [6]. A wrapper method searches

for a good feature subset tailored to a particular predictive modeling approach and uses

the induction algorithm as a black box for evaluating feature subsets. On the other hand, a

filter method attempts to access the merits of features from the data alone. Wrapper

methods generally use a learning algorithm with a statistical re-sampling method (such as

cross validation, bootstrapping) to estimate the quality of feature subsets. This approach

is useful but becomes computationally prohibitive because the learning algorithm must be

trained and tested many times to evaluate feature subsets. On the other hand, filter

methods are more practical than wrapper methods for applications to large datasets since

they are much faster.

Evolutionary algorithms are heuristic search/optimization methods that provide

robust and powerful adaptive search mechanism [177]. Evolutionary algorithms maintain

a population of potential solutions that evolve according to rules of selection and some

genetic operators such as recombination and mutation [177]. Individuals in the population

are evaluated using a fitness function that mimics the environment. Individuals with high

fitness value have a higher chance to survive and pass on their structures to the next

generations.

 109

Correlation-based feature selection with evolutionary algorithms will be explained

in this chapter. This feature selection method can be thought as a filter method, which

selects features based on the training data alone without taking the biases of learning

algorithms into consideration [6]: i.e., the proposed evolutionary algorithms for feature

selection are independent of the learning algorithm and are used as a filter to conduct a

search for a good feature subset using a correlation-based evaluation function. The search

space in a variable reduction problem with T features is 2T if all feature subsets are

considered (including feature set with all features and no features). If the number of

features to be selected is predefined, the optimal feature subset of size N chosen from a

total of T features can in principle be found by enumerating and testing all possibilities

based on a criterion, which requires
)!NT(!N

!T
N
T

−
=



 tests. This becomes prohibitively

expensive in computing time when T becomes larger. Evolutionary algorithms provide an

alternative search method to select a good feature subset with a predefined size.

Evolutionary algorithms explore the whole search space probabilistically by using a rank-

based selection scheme and genetic operators (crossover and mutation) tailored to the

representation of the individuals.

8.1 Correlation Based Evaluation Function

The evaluation function used by evolutionary algorithms, which will be explained

in the next sections, is based on the hypothesis that a relevant feature is highly correlated

with the response variable(s) and less correlated with other features in the feature subset

[178]. Correlation is a bivariate measure of association (strength) of the relationship

between two variables. In this dissertation, the correlation between variables i and j (Cij)

 110

is measured in terms of the Pearson's correlation coefficient (r) that is a measure of the

degree of linear association between two variables. It can take on the values from -1.0 to

1.0, where -1.0 is a perfect negative (inverse) correlation, 0.0 is no correlation, and 1.0 is

a perfect positive correlation. The objective for feature selection can be related to

maximizing the evaluation function defined in equation (8.1). The number of features to

be selected, N, is predetermined. The fitness function for the individual k containing N

features is defined by

β−




α−





= ∑∑∑

+==−=

N

1ij
ij

N

1i1)N(N

2
N

1i
iR

N

1
k |C||C|F

where:

Fk = Fitness of individual k, k = 1, 2, 3, … , Pop_size.

| Cij | = Absolute value of the inter-correlation between feature i and feature j.

| CiR | = Absolute value of the correlation between feature i and the response variable R.

α = Inter-correlation penalty factor.

β = Death penalty factor: i.e., If | Cij | > 0.95 then β = 1000; otherwise β = 0.

In the fitness function, the sums of correlations are scaled in terms of the number of

features in order to prevent trivial solutions. α is a user defined penalty factor for inter-

correlation and takes on values between zero and one. It is obvious that when α = 0, the

objective function is simply to find the features which are the most highly correlated with

the response variable. If α is greater than zero the inter-correlated variables are penalized.

β is a parameter called death penalty factor, which gives a very high penalty to an

)1.8(

 111

individual having features with inter-correlation higher than 0.95. The death penalty

factor allows us to define an upper threshold for inter-correlation: because these features

are usually highly correlated, we use the term “cousin features” in this context. Those

feature subsets with features inter-correlated above this threshold are penalized. This

parameter also assures that individuals with duplicated features die off in next

generations.

8.2 Rank-Based Selection Scheme

Evolutionary algorithms for feature selection in this thesis use a rank-based

selection scheme. Rank selection, a nonparametric procedure for selection, was

introduced by Baker [52]. In this method individuals in the current population are sorted

according to their fitness values and individuals for the next generation are selected

proportionally to their rank rather than their actual objective function values. Ranking

acts as a function transformation that assigns a new fitness value to an individual based

on its performance relative to other individuals [53]. This method prevents the super

individuals to take over population in a few generations by adjusting the ranking weights.

8.3 Genetic Algorithms for Feature Selection (GAFEAT)

A key issue in applying GAs to any problem is the selection of an appropriate

formulation and representation that represents all possible solutions to the problem. In a

feature selection problem the objective is to represent the space of all possible subsets of

the given feature set. The traditional and simplest representation is a binary

representation, where each chromosome consists of fixed-length binary string with a size

 112

the number of features in the problem. Each bit in the chromosome represents either the

elimination or the inclusion of the corresponding feature.

Binary string representation has some drawbacks. In a typical binary GA for feature

selection, one of the important issues is the initialization of the initial population. Since a

chromosome consists of zeros and ones (representing exclusion and inclusion of the

corresponding feature), deciding number of “1” in individuals of the initial population is

problematic. In binary GAs for feature selection, the value of each gene in a chromosome

is determined probabilistically by the toss of a coin. If the coin were fair (no bias) an

average of 50 percent of the genes in a chromosome would have a value of “1”, which

means that corresponding features are included. The number of “1” is controlled by

introducing biases into selection of gene values. Leardi, et al. [7] suggest a biased

probability producing low number of “1” in chromosomes of the initial population. They

suggest that a good value for this probability is a value that selects an average of five

variables per chromosome (e.g. 10 percent when working with a data set with 50

variables). The GA itself builds more complex combinations with more features through

crossover and mutation operators.

Although binary representation is able to represent all possible feature subsets, it

can still cause premature convergence. Consider a data set with 10 features. The whole

search space for this problem is 210 = 1024 if all feature subsets are considered. If the

number of features to be selected is predefined with a size N (where N=1, 2, 3, … , 10),

the search subspace will be

N)!(TN!
T!

N
T

−
=



 .

 113

The sum of all subspaces will be equal to whole search space.

T
T

0N

2
N)!(TN!

T! =∑
= −

,

where T is the total number of features. Table 8.1 shows search subspaces and their

relative percentages for the dataset with 10 features. Figure 8.1 shows the relative size of

the search subspaces to total search space. It is now obvious why a binary GA may

convergence to a suboptimal solution. For instance, for subspaces with 2 features and 5

features the total search space is 45 and 252, respectively. There is a high chance for the

GA to converge to a solution that is optimal (or close to optimal) solution for the

subspace with 2 features, even though the global optimal solution may reside in the

subspace with 5 features. Leardi, et al. [7] suggest a stratified selection scheme in which

only chromosomes belonging to the same subspace compete with each other for the next

generation. Although this is a good strategy to overcome the premature convergence,

there is still some chance that some of the subspaces may not be adequately represented

in the population.

Even with the stratified selection scheme proposed by [7], the classical binary

crossover and mutation operators may produce offspring, which belong to a different

subspace than that of the parent chromosomes. This causes a loss of information gained

by the GA for the current subspaces. Thus, binary genetic operators may cause to poor

convergence since the GA cannot exploit the information properly for the stratified

subspace. Binary operators are illustrated in the Figure 8.2.

 114

Table 8.1 Search Subspace for a Dataset with 10 Features

Number of features to
be selected (N)

Search space
Percentage search

space
0 1 0.0010
1 10 0.0098
2 45 0.0439
3 120 0.1172
4 210 0.2051
5 252 0.2461
6 210 0.2051
7 120 0.1172
8 45 0.0439
9 10 0.0098
10 1 0.0010

Total 1024 1.0000

2
4.4%

3
11.7%

0
0.1%

4
20.5%

1
1.0%

5
24.6%

9
1.0%

6
20.5%

10
0.1%

7
11.7%

8
4.4%

Figure 8.1 Percentage Search Subspace for a Dataset with 10 Features

 115

Parent1 1 0 0 0 1 1 0 1 0 1

Parent2 1 0 1 1 1 0 0 0 0 0

Selected Chromosomes

Uniform Crossover

Mutation

Crossover point

Parent1 1 0 0 0 1 1 0 1 0 1

Parent2 1 0 1 1 1 0 0 0 0 0

Parent 1 0 0 0 1 1 0 1 0 1

Parent 1 0 0 0 1 1 0 1 0 1

Selected gene

Offspring1 1 0 0 0 1 1 0 0 0 0

Ofspring2 1 0 1 1 1 0 0 1 0 1

Offspring 1 0 0 0 1 1 0 1 0 0

(belongs to subspace with 5 features)

(belongs to subspace with 3 features)

(belongs to subspace with 6 features)

(belongs to subspace with 5 features)

(belongs to subspace with 4 features)

(belongs to subspace with 4 features)

Figure 8.2 Binary Crossover and Mutation Operations for Feature Selection Problem

Because the classical binary GAs are not well suitable for the feature selection

problem, GAs based on floating-point and unique list representations are proposed. These

representations and their genetic operators are explained in the following sections.

8.3.1 Floating-Point Representation

A genetic algorithm (GA) for feature selection with a floating-point representation

for the features is proposed. The number of features (N) to be selected is pre-specified.

Chromosomes are represented as floating point arrays with size N in which each gene

 116

corresponds to the variable number in the feature subset. The initial population is created

randomly as floating point arrays where each entry (gene) in an array (chromosome) is

created using the following function:

Geneij = (Uij * T) + 1,

where Uij is an uniform random number between zero and one, T is the total number of

features in the dataset under study. The index, ij represents the jth gene position on the ith

chromosome in a population. For example for the case where 10 features are to be

selected out of total of 100 features, an individual (genotype) could be represented as

93.57, 64.31, 6.96, 54.40, 38.97, 60.43, 13.25, 48.91, 30.97, 4.03

in which the integer part of each floating-point number (gene) represents the

corresponding feature. The phenotype of the chromosome represented by the above

floating point array will be:

93 64 6 54 38 60 13 48 30 4

In this genotype-phenotype mapping, different genotypes can correspond to the same

phenotype. Also, the genotype-phenotype mapping can lead to illegal feature subsets

(individuals), which means that some individuals may have some duplicated features.

The proposed GA corrects illegal individuals after creating the random initial population.

Hence, initial population consists of legal individuals only.

 117

8.3.2 Crossover and Mutation for Floating-Point Representation

The proposed floating-point GA uses classical one-point crossover as originally

proposed by Holland [32]. This crossover operator simply chooses a random position on

two chromosomes (strings), divides strings into two parts, and swaps the tails of the

strings between them. For this study, the genes of the genotype of each individual are

sorted in ascending order before the crossover operation. Such a sorting reduces the

chance of having illegal individual after crossover operation. The GA does not try to

correct the illegal individuals, but penalizes those individuals to make sure that they will

die off in the next generation. The penalty method is the most common method to handle

infeasible (illegal) solutions in the evolutionary algorithms for simple constrained

optimization problem. The addition of a penalty term to the objective function transforms

the constrained optimization problem into an unconstrained optimization problem.

Crossover is an expensive operator for the feature selection problem since some

individuals may violate some of the constraints of the problem. Figure 8.3 illustrates the

crossover operation for a problem where in which the objective is to select a good subset

with 10 features out of total of 100 features. The mutation operator chooses a random

gene position and changes the value of gene within the feature range. Note that the

mutation operator may also lead to an illegal individual.

 118

37.74 16.98 52.02 44.28 61.41 3.70 57.83 7.35 99.24 71.89

32.70 99.69 77.94 70.24 81.17 35.49 49.11 12.03 48.18 89.77

3.70 7.35 16.98 37.74 44.28 52.02 57.83 61.41 71.89 99.24

12.03 32.70 35.49 48.18 49.11 70.24 77.94 81.17 89.77 99.69

3 7 16 37 44 52 57 61 71 99

12 32 35 48 49 70 77 81 89 99

Parent 1

Parent 2

Genotype

Crossover point

Parent 1

Parent 2

Sorted Genotype

Parent 1

Parent 2

Phenotype

3 7 16 37 44 52 57 61 71 99

12 32 35 48 49 70 77 81 89 99

Parent 1

Parent 2

3 7 16 37 44 52 77 81 89 99

12 32 35 48 49 70 57 61 71 99

Child 1

Child 2

Figure 8.3 One-point Crossover Operator in the Floating-point GA for Feature Selection

8.3.3 Unique List Representation

Another alternative for the phenotype representation employed by GAFEAT is a

unique list representation. Given a dataset containing T features, each chromosome

represents a legal subset containing N features. In this representation, a chromosome is as

an integer array of size N. GAFEAT always works on the phenotype individuals after

creating an initial population. With no duplicated features a unique list representation can

be thought of as an order-based chromosome where N features represented in a

chromosome are the selected features, and the remaining (T-N) features not in the

chromosome are the non-significant features.

 119

8.3.4 Crossover and Mutation operators for Unique List Representation

Partially Mapped Crossover (PMX) was introduced in Chapter 3. PMX, proposed

for the Traveling Salesman Problem by Goldberg and Lingle [1], produces an offspring

by choosing a portion of tour from one parent and preserving the position and relative

order of as many cities as from the other parent [9]. PMX can be viewed as an extension

of two-point crossover with a special repairing mechanism to resolve the illegitimacy

caused by two-point crossover. PMX can be adapted to the feature selection problem.

The procedure for the PMX is the following:

Step 1. Select parents for crossover.

Step 2. Select randomly two crossover points on the chromosomes. The sections

between two crossover points are called the mapping sections.

Step 3. Swap the mapping sections between parent chromosomes.

Step 4. Determine the mapping relationship between mapping sections.

Step 5. Build offspring based on mapping relationship.

This procedure is illustrated in Figure 8.4.

 120

37 16 52 44 61 3 57 7 99 71

32 99 77 70 16 35 49 12 48 89

Parent 1

Parent 2

Crossover point I

37 16 52 44 61 3 57 7 99 71

32 99 77 70 16 35 49 12 48 89

Parent 1

Parent 2

Crossover point II

37 16 52 70 16 35 57 7 99 71

32 99 77 44 61 3 49 12 48 89

Step1. Select parents

Step2. Select Crossover Points

Step3. Swap Mapping Sections

Step4. Determine Mapping Relationship

Step5. Correct Offspring based on Mapping Relationship

37 61 52 70 16 35 57 7 99 71

32 99 77 44 61 3 49 12 48 89

Offspring 1

Offspring 2

Duplicated feature

44 70 61 16 3 35

Figure 8.4 Partially Mapped Crossover for the GA with the Unique List Representation

for Feature Selection

In order to avoid illegal offspring from mutation, the mutation operator now

randomly chooses a gene position in the chromosome and tries to exchange it with a

unique random value. If a unique value cannot be found after a certain number of trials

then the parent chromosome is copied without any change.

 121

8.4 Evolutionary Programming for Feature Selection (EPFEAT)

Evolutionary Programming (EP) was explained in section 2.4.2 and section 4.6 and

successful implemented for the Traveling Salesman Problem in section 4.6. EP

traditionally used representations that are tailored to the problem domain [177]. The most

important difference between a GA and EP is that EP does not use any recombination

(crossover) operator. The forms of mutation used in EP are quite flexible and can

produce perturbations similar to recombination if intelligent mutation operators are

devised. Therefore, the performance of an EP is affected by its choice of the mutation

operators used to create variability and novelty in evolving populations [177].

8.4.1 Representation for EPFEAT

An evolutionary programming algorithm for feature selection problem (EPFEAT)

is proposed based on the unique list representation introduced in section 8.3.3. Given a

dataset consisting of total T number of features, each chromosome corresponds to one of

the permutations of an array with the numbers 1 - T. This means that each chromosome

has a different ordered list of T features similar to the Traveling Salesman representation

used in Chapter 4. Since the number of features to be selected (N) is predetermined, the

first N features of a chromosome are used for calculating the fitness of the chromosome.

This can be thought of as an order-based list, where the left-most N features are the

selected features and, the remaining T-N values correspond to unselected features. The

representation of an individual is illustrated in Figure 8.5. In Figure 8.5, the objective of

the EP algorithm is to select 4 features out of 10. An individual represents the dataset

 122

with a total of 10 features, where the first 4 features construct the feature subset and the

remaining features (the shaded features) are the non-significant feature subset.

Selected features Unselected features

Chromosome

2 3 9 6 4 10 8 7 1 5

Figure 8.5 Representation for Evolutionary Programming Algorithm for Feature

Selection

8.4.2 Mutation Operator for EPFEAT

A new mutation operator for EPFEAT is proposed. The first N features are used

for measuring the fitness of the individuals. This can be considered as dividing the total

number of features into two subsets based on a fitness function. These two feature subsets

can be thought of further as sub-chromosomes. The proposed mutation operator randomly

selects a gene position within the first N features and within last (T-N) features and

swaps these features. This operator can be considered as a recombination operation

between two sub-chromosomes. One of the most important consequences of this

representation is that it allows us to develop a mutation operator that produces

perturbation similar to crossover operator. Note that this mutation operator always

produces a legal feature subset (i.e., no duplicate features).

 123

8.5 Comparisons of Evolutionary Algorithms for Feature Selection

The proposed three evolutionary algorithms for feature selection (genetic algorithm

with the floating-point, genetic algorithm with the unique list representation, and the

evolutionary programming algorithm) are compared using the HIVrt dataset with 64

molecules and 620 features explained in section 7.3. For comparison, the parameter α

and the threshold correlation for the parameter β in the fitness function are set to 0 and

1.0, respectively, leading the fitness function in equation (8.1) for the most correlated

features only according to:

∑
=






=

N

1i
iRk |C|F

N

1

In other words, the objective of the feature selection algorithms is simply to find N

features that are highly correlated with response variable. The optimal solution for this

problem is easy to find by calculating correlations between features and response variable

and sorting them in descending order. The performances of the proposed algorithms are

then compared with the optimal solution. Each algorithm was executed 10 times to select

25 out of 620 features with a different initial population (i.e., a different random seed).

The parameter settings of the algorithms are shown in Table 8.2.

Table 8.2 Parameter Settings for the Evolutionary Algorithms for Feature Selection

Algorithm Population Crossover
Probability

Mutation
Probability

GAFEAT
(Floating-point)

GAFEAT
(Unique List)

EPFEAT 200 None 0.02

200 0.90 0.40

200 0.90 0.02

 124

Each algorithm was able to find the 25 features most correlated with the response

variable in each run. The results of those computational experiments are presented in

Table 8.3. These results show that the proposed representations are very efficient.

Table 8.3 Comparisons of Genetic Algorithm with Floating-point and Unique List
Representations, and Evolutionary Programming Algorithm for Feature Selection

No Feature No Feature Label 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
1 241 Del.G.NIA x
2 331 PIPAvg x
3 267 SIGIA x
4 191 Del.K.IA x
5 402 LaplAvg x
6 150 pips6 x
7 217 SIKIA x
8 166 Del.Rho.NIA x
9 158 pipd6 x
10 347 PIP16 x
11 393 AbsFuk5 x
12 507 SHsOH.91 x
13 544 CHsOH.182 x
14 570 CsOH.227 x
15 149 pips5 x
16 533 SsOH.136 x
17 260 AbsDGN7 x
18 390 AbsFuk2 x
19 575 CdS.242 x
20 538 SdS.151 x
21 348 PIP17 x
22 391 AbsFuk3 x
23 332 PIP1 x
24 159 pipd7 x
25 487 dxvp4.71 x

62 63 63 60 61 60 61 62 61 61 99 98 98 100 98 97 98 98 97 98 132 133 132 132 132 132 133 134 133 132Run Time (in second)

GAFEAT-Floationg-point Representation GAFEAT-Unique List Representation EPFEAT25 features most correlated with
response

8.6 Effects of the Inter-correlation Penalty (α) Factor on Variable

Selection

In this section, the effects of the inter-correlation factor on variable selection will

be investigated. For this purpose, a synthetic (i.e., artificially made-up) dataset with 64

data points and 600 descriptive features was randomly drawn from a normal distribution

with mean 0 and standard deviation 1. Values of the response variable were constructed

as a linear combination of first 40 features from this data set. The coefficients of these 40

variables were chosen randomly. Since the 40 features are known in advance, the

 125

performance of GAFEAT can be tested by selecting 40 features from the dataset with

different α values (ranging between 0 and 1). Multiple Linear Regression is used in order

to assess the quality of the feature subsets with 40 features selected by GAFEAT. The

qualities of the feature subsets are reported based on the Multiple Coefficient of

Determination (R2), the F statistic and the P value of F statistic. These statistics allow us

to assess or judge the usefulness of the regression model (feature subset). R2 is a statistic

widely used to determine how well a regression model fits to data. The F statistic is

the test statistic used to decide whether the model as a whole has statistically significant

predictive capability. A large value of F (or a low value of P) as well as a large value of

R2 indicates that most of the variation of the response variable is explained by the

regression equation and that model is useful [179]. The results of these experiments are

presented in Table 8.4. It is apparent from Table 8.4 that when α increases the quality of

the features subset increases, even though the number of original variables included in the

feature subsets decreases. The R2 of the regression models constructed with a subset of

40 features selected by GAFEAT for this synthetic dataset is plotted versus α values in

Figure 8.6.

Table 8.4 Results for 40 Features Selected by GAFEAT from Synthetic Dataset at
Different α Values

α #of Selected
Original Variable R2 F value P value

0.00 7 0.9143 7.3487 0.0000
0.10 8 0.9331 9.2480 0.0000
0.20 7 0.9350 9.3277 0.0000
0.30 7 0.9344 9.3496 0.0000
0.40 6 0.9361 8.9800 0.0000
0.50 6 0.9390 9.3949 0.0000
0.60 6 0.9427 11.2437 0.0000
0.70 6 0.9434 11.1698 0.0000
0.80 6 0.9432 11.1622 0.0000
0.90 6 0.9439 11.1552 0.0000
1.00 6 0.9533 13.7375 0.0000

 126

R2 versus α

0.91

0.92

0.93

0.94

0.95

0.96

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

α

R2

Figure 8.6 The Multiple Coefficient of Determination (R2) of the Feature Subset with 40
Features Selected by GAFEAT at Different α Values from Artificial Dataset versus Inter-

correlation Factor (α).

The coefficient (weight factor) of each of the original 40 features used to

construct to the response variable is shown in the Table 8.5. The shaded six features in

the Table 8.5 were always selected by GAFEAT at all of the different alpha values. The

common properties of these six features (features 16, 29, 17, 28, 39, and 19) are that they

have higher coefficients and are highly correlated with the response variable. Selecting

the 40 features that are the most correlated with response variable (i.e., α = 0) contains 7

of the original 40 features; its performance in R2 is lower than selected feature subsets

with α values exceeding 0.4. As can be seen from Figure 8.6, this indicates that

penalizing the inter-correlation between features while maximizing their correlation with

the response variable helps to construct a better regression model.

 127

Table 8.5 Weight Factors, Correlation Ranks and Correlations with the Response
Variable of 40 Features that Constructed to the Response Variable for Random

Coefficients

Feature No Coefficient Correlation with
Response Variable

Correlation
Rank

16 -0.5469 -0.3723 4
8 -0.4414 -0.0895 288
29 0.3675 0.5188 1
27 0.3439 0.0764 329
17 0.2775 0.4085 2
4 0.2759 0.0127 551
28 -0.2737 -0.2349 41
14 0.2100 -0.1162 222
35 -0.2061 -0.1555 138
1 0.2034 -0.0241 507
15 0.1913 0.1343 186
39 0.1768 0.2811 15
19 0.1765 0.2421 36
9 0.1709 0.0813 317
25 0.1636 0.1385 178
33 0.1496 -0.0942 279
26 -0.1482 -0.1013 262
38 0.1244 -0.1198 215
7 0.1226 -0.0586 387
3 0.1117 0.1587 133
20 -0.1070 -0.1067 243
36 0.1007 0.0820 311
6 0.0978 -0.2355 40
23 0.0836 0.0165 535
30 -0.0766 -0.1544 141
18 -0.0641 -0.0913 285
40 -0.0636 0.0760 331
2 0.0624 0.0705 350
34 -0.0618 -0.2522 31
24 -0.0527 -0.1535 142
10 0.0516 -0.0031 590
21 -0.0493 -0.0058 581
11 -0.0416 -0.0726 341
5 0.0390 -0.0727 340
22 0.0249 -0.0685 356
31 0.0106 -0.0560 396
32 0.0099 0.1109 233
13 0.0064 -0.1052 250
37 -0.0005 0.0712 345
12 0.0000 -0.0413 447

 128

Figure 8.7 depicts the different α values versus the average correlation between

the selected features (FF) and the average correlation between response variable and the

selected features (RF). When the inter-correlation value (α) increases FF and RF decrease

but the amount of decrease in FF exceeds that of RF. This is not easily seen from Figure

8.7 since the dataset was randomly created. Therefore, the difference between RF and FF

versus α is plotted in Figure 8.8.

Average Feature to Feature (FF) Correlation and Average
Response to Feature (RF) Correlation versus α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
α

RF
FF

Figure 8.7 Inter-correlation Penalty (α) versus Average Feature to Feature (FF)

Correlation and Average Response to Feature (RF) Correlation for Artificial Dataset

Difference between RF and FF versus α

0.168

0.170

0.172

0.174

0.176

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

α

D
iff

er
en

ce

Figure 8.8 Inter-correlation Penalty (α) versus Difference between the Average
Response to Feature (RF) Correlation and the Average Feature to Feature (FF)

Correlation and for Artificial Dataset

 129

The effect of the inter-correlation factor (α) on variable selection was also

investigated by keeping the coefficients of all 40 variables at the same value in the

construction of the values of the response variable. The results of these experiments are

shown in the Table 8.6. The number of original features selected by GAFEAT is 10 for α

values of 0.0, 0.10, 0.20, 0.30, 0.40, 0.50, and 0.60. Although the R2 values of regression

models fluctuate, there is an increasing trend in the R2 values when α increases. On the

other hand, the number of original features selected by GAFEAT is 11 at α values of

0.80, 0.90, and 1.00 and R2 values tend to increase monotonically with α. Figure 8.9

depicts R2 versus α for the case where feature coefficients are set to same value.

Table 8.6 Results for 40 Features Selected by GAFEAT from Artificial Dataset (constant
weight) at Different Alpha Values

α #of Selected
Original Features R2 F value P value

0.00 10 0.915 6.1528 0.0000
0.10 10 0.930 7.6307 0.0000
0.20 10 0.928 7.3758 0.0000
0.30 10 0.921 5.7778 0.0000
0.40 10 0.930 6.0760 0.0000
0.50 10 0.930 7.5784 0.0000
0.60 10 0.936 6.1712 0.0000
0.70 10 0.931 6.4777 0.0000
0.80 11 0.937 8.5247 0.0000
0.90 11 0.957 12.8164 0.0000
1.00 11 0.961 8.5493 0.0000

R2 versus α

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

α

R2

Figure 8.9 Multiple Coefficient of Determination (R2) versus Inter-correlation Factor (α)

for Same Coefficients

 130

Table 8.7 Weight Factors, Correlation Ranks and Correlations with the Response
Variable of 40 Features that Constructed to the Response Variable with the Same

Coefficients

Feature
No

Coefficient Correlation with
Response Variable

Correlation
Rank

26 0.5 0.3717 2
37 0.5 0.3363 3
28 0.5 0.3271 6
40 0.5 0.3159 7
1 0.5 0.3140 8
16 0.5 0.2759 17
34 0.5 0.2616 21
6 0.5 0.2601 22
24 0.5 0.2557 26
25 0.5 0.2496 27
15 0.5 0.2042 70
23 0.5 0.1974 82
10 0.5 0.1962 86
14 0.5 0.1934 87
11 0.5 0.1933 88
30 0.5 0.1869 95
31 0.5 0.1841 99
3 0.5 0.1782 106
21 0.5 0.1742 110
2 0.5 0.1709 118
39 0.5 -0.1396 167
5 0.5 0.1387 169
22 0.5 0.1377 171
20 0.5 0.1363 174
9 0.5 0.1203 208
7 0.5 0.1189 210
33 0.5 0.1110 229
17 0.5 0.1101 232
36 0.5 0.1097 233
12 0.5 0.1046 249
18 0.5 0.1040 252
27 0.5 0.0866 286
32 0.5 0.0710 344
35 0.5 0.0582 386
4 0.5 0.0520 409
19 0.5 0.0287 494
8 0.5 -0.0230 510
29 0.5 -0.0229 511
38 0.5 -0.0055 566
13 0.5 -0.0001 600

 131

Weight factors, correlation ranks and correlations with the response variable of 40

features that were used to construct the response variable are presented in Table 8.7. The

gray shaded nine features (26, 37, 28, 40, 1, 16, 34, 24, and 25) are common to the

feature subsets selected by GAFEAT for all α values. These features are highly

correlated with the response variable, which are amongst the top 30 most correlated

features to the response variable.

8.7 Effect of the Inter-correlation Penalty (α) Factor on Prediction

In this section, the effect of the inter-correlation penalty factor (α) on the predictive

performance of learning algorithms (Multi-Layered Perceptrons and Partial Least

Squares) will be investigated. For this purpose, the HIVrt dataset (see section 7.3) with

the set of 160 wavelet descriptors [163] explained in section 7.1.1 was employed.

The neural network model used in all methods is a standard feed-forward multi-

layered perceptrons trained with the back-propagation algorithm [140, 141]. The artificial

neural networks have two hidden layers and are oversized (the hidden layers for this

study contained 13 and 11 neurons respectively). Training was halted with early stopping

by policy (when LMS error drops below at 0.09). Because of the early stopping

procedure, the neural network results are not very sensitive to the number of neurons in

the hidden layers. On the other hand, because of the early stopping the neural network

models will also be relatively linear. The PLS models described in chapters of this

dissertation used four latent variables for all calculations.

The predictive performance of the learning algorithm heavily depends on the

appropriate value of α. Since the performances of the evolutionary algorithms proposed

 132

in this Chapter are more or less similar, GAFEAT with a floating-point representation

will be used for feature selection. Results of feature selection with GAFEAT will be

compared with those from the Sensitivity Analysis explained earlier in section 6.5.

8.7.1 Evaluation of Learning Algorithms

The learning algorithms for model building are Multi-Layered Perceptrons

(MLPs), trained with back-propagation and Partial Least Square (PLS) regression. The

MLP and PLS algorithms are both implemented in the StripMinerTM [4]. Estimating the

error of a learning model constructed from a set of training data is important to predict its

performance on future unseen data and/or to compare it with its competitors. Cross-

validation and bootstrapping are methods for estimating the generalization error rate of a

learning model based on resampling [157]. In a cross-validation procedure, the dataset is

randomly divided into k non-overlapping subsets where the size of each subset is as equal

as possible. The learning model is trained and tested k times by using the j th (where j=1,

2, … , k) subset as a test set (i.e., validation set, both the terms, test set and validation set,

will be used interchangeably for the out of sample) and combining the remaining subsets

together as a training set.

Bootstrapping, introduced by Efron [156], is a general technique for estimating

sampling distributions. In bootstrapping, multiple samples (anywhere from 50 to 2000

samples) of data of size n are taken uniformly from the original data of size n with

replacement. Since bootstrap samples are drawn with replacement, the probability of any

given instance not being part of the bootstrap dataset is (1-1/n)n =1/e =0.368, which can

be thought of as smoothed versions of cross-validation [157]. In our implementation, the

 133

(n-v) samples for training set are drawn without replacements, where n is the number of

samples in the dataset and v is the number of samples in the validation set. There is no

overlap between training and validation sets for each bootstrap sample. The model is

trained on the training set and the error rate for the learning model is estimated on the

error on the validation set. The performance estimations of different learning algorithms

are reported with two distinct measures for the error: q2 and Q2 based on the validation

set for each bootstrap sample.

8.7.2 Effect of the α on the Prediction Quality

GAFEAT was run with different α values ranging between 0 and 1 to select 40

descriptors from the HIVrt dataset with 160 wavelet descriptors. Each selected set of

descriptors is used to construct a predictive model using MLPs and PLS regression. Error

rates of the learning algorithms are calculated based on 100 bootstrap samples in terms of

q2 and Q2
 by leaving 58 molecules in the training set and 6 molecules in validation set.

Figures 8.10 and 8.11 show how the α value affects the predictive performance of MLPs

and PLS regression, respectively. One conclusion that can be easily drawn from these

results is that the selection of the inter-correlation factor is a critical issue for choosing a

good subset of descriptors. The low values as well as high values for inter-correlation

penalty factor deteriorate the prediction error of the MLPs and PLS regression. For the

HIVrt dataset, 0.55 for was found to be optimal for α. Table 8.8 presents the results of the

100 bootstraps validation errors of the MLPs and PLS regression with all 160 features.

According to these results, if the right α value is applied, GAFEAT can select relevant

 134

features that lead to better predictive models (compared to models that employ all the

available features).

Table 8.8 100-bootstrap Validation of the HIVrt Dataset with 160 Wavelet Descriptors

Validation Error Learning Models q2 Q2
PLS 0.4294 0.4377
MLP 0.4190 0.4400

q² and Q² versus α for MLPs

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

0.51

0.53

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

α

Q²

q²

Figure 8.10 Inter-correlation Penalty Factor versus q2 and Q2 of MLPs Models

Constructed by 40 Features Selected by GAFEAT from HIVrt Dataset with 160 Wavelet
Descriptors. The values of q2 and Q2 are based on 100-bootstrap Samples

 135

q² and Q² of versus α for PLS Regression

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

α

Q²

q²

Figure 8.11 Inter-correlation Penalty Factor versus q2 and Q2 of PLS Models Constructed

by 40 Features Selected by GAFEAT from HIVrt Dataset with 160 Wavelet descriptors.
The values of q2 and Q2 are based on 100-bootstrap samples

Figure 8.12 depicts the average correlation between the selected features (FF) and

the average correlation between response variable and the selected features (RF) versus

α. When α increases FF and RF decrease, but the amount of decrease in FF is higher than

that of RF. It can be seen from Figure 8.12, that when α is around 0.55, feature subsets

are less correlated with each other and more correlated with the response variable.

Average Feature to Feature (FF) Correlation and Average

Response to Feature (RF) Correlation versus α

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

α

RF

FF

Figure 8.12 Inter-correlation penalty (α) versus Average Feature to Feature (FF)

Correlation and Average Response to Feature (RF) Correlation for HIVrt Dataset with
160 Wavelet Descriptors

 136

The correlation matrix of the data with 40 selected features (ordered by

correlation with the response) at α value 0.55 is presented in Figure 8.13. Here, the last

column and row correspond to the response variable. Darker colors represent a high

correlation value between the two corresponding variables. It can be noticed that a few

features are highly inter-correlated and that the selected features are better correlated with

the response variable. Figures 8.14-A and 8.14-B show the histograms of the correlation

of the response variable with all 160 descriptors and with 40 selected descriptors by

GAFEAT, respectively.

Figure 8.13 Colorplot of Correlation Matrix of 40 Features Selected by GAFEAT from

HIVrt dataset with 160 Wavelet Descriptors

 137

(A)

(B)

Figure 8.14 (A) Histogram of the Correlation of the Response Variable with All 160
Descriptors (B) Histogram of the Correlation of the Response Variable with the 40

Selected Descriptors by GAFEAT (α = 0.55)

The feature subset with 40 descriptors selected by GAFEAT is further pruned

down by using neural network sensitivity analysis explained in section 6.5. Sensitivity

analysis was able to reduce the number of features from 40 to 31 and slightly improved

quality of the model. Neural network sensitivity analysis was applied to the HIVrt dataset

with 160 descriptors and selected 35 descriptors out of 160. For comparison purposes, the

HIVrt dataset with all 160 descriptors was used to construct the neural network model.

The training set size is set to 58 molecules, leaving 6 molecules for the validation

set. In order to compare the results of the models, the MLP is trained and tested for 100

bootstraps and average error rate of all bootstraps is reported in terms of q2 and Q2. Table

8.9 summarizes those results.

 138

Table 8.9 Comparisons of Methods

q² Q²

NO FEATURE SELECTION
Using all 160 descriptors 160 0.419 0.440

GAFEAT

 Using all 160 descriptors
NN SENSITIVITY ANALYSIS
Using 40 descriptors selected by

GAFEAT
31 0.359 0.377

NN SENSITIVITY ANALYSIS
Using 160 descriptors 35 0.312 0.340

MLPs Predictive
Results based on
100 bootstrapsMETHOD

Number of
Selected

Descriptors

40 0.364 0.380

Figure 8.15 shows the result of the predictive modeling for the dataset with 31

features selected by neural network sensitivity analysis using 40 features selected by

GAFEAT. The prediction variance is also shown in this figure for each molecule.

Figure 8.15 MLP Prediction Results for the Dataset with 31 Features Selected by Neural
Network Sensitivity Analysis using 40 Features Selected by GAFEAT

 139

8.7.3 Performance of GAFEAT on Feature Selection

In this section, GAFEAT is applied for feature selection in order to build a good

predictive MLP model. For this purpose, two Caco-2 cell permeability datasets are

employed. These datasets are explained in section 7.4. First dataset is Caco-2 cell

permeability data for 27 structures [175]. These 27 structures will be modeled separately

according to two response variables: LogPC and Logpapp. The second one contains 48

compounds and is used to model LogPC [176]. Each dataset initially contains 780

descriptors (274 TAE descriptors [159], 396 PEST descriptors [160, 161], and 110

selected MOE descriptors that are related with pharmacophore, shape and volume).

The next step was to discard descriptive features, which contained constant

values. This reduced the number of descriptive features to 715 and 703 for dataset I (27

molecules) and dataset II (48 molecules), respectively. GAFEAT with unique list

representation was used to select 20 features from both datasets. The parameter settings

of GAFEAT for both datasets are the following:

Population size : 200 Number of features to be selected : 20
Maximum number of generation : 1000 Crossover probability : 0.90
Mutation probability : 0.02 Inter-correlation penalty : 0.55
Death penalty : 0.95

The selected 20 features from both datasets are presented in Table 8.10.

 140

Table 8.10 20 Features Selected by GAFEAT for Caco-2 Datasets

DATASET II (48-molecule)
Response: LogPC Response: LogPapp Response: LogPC
Feature Label Feature Label Feature Label
ABSDRN6 ABSDRN6 ABSDRN6
ABSEPMIN SIEPMIN DGNB03
PIP2 PIP2 DGNB52
PIP16 PIP16 DRNB53
KB44 KB11 GB53
KB54 FUKB14 KB04
FUKB14 PIPB53 KB35
PEOE_VSA+3 BNPB31 KB52
PEOE_VSA_FHYD PEOE_VSA+3 PIPB03
PEOE_VSA_FPNEG PEOE_VSA_FHYD PIPB04
PEOE_VSA_FPPOS PEOE_VSA_FPNEG PIPB34
PEOE_VSA_PPOS PEOE_VSA_FPPOS PIPB35
Q_VSA_FPNEG PEOE_VSA_PPOS BNPB40
pmiY Q_VSA_FPNEG PEOE_VSA-1
a_don pmiY PEOE_VSA_FPOS
SlogP a_don RPC+
SlogP_VSA0 SlogP dipoleY
SlogP_VSA6 SlogP_VSA6 a_don
SMR_VSA4 SMR_VSA4 vsa_pol
SMR_VSA7 SMR_VSA7 SlogP_VSA0

DATASET I (27-molecule)
20 FEATURES SELECTED BY GAFEAT FOR Caco-2 DATASETS

A standard feed-forward multi-layered perceptrons trained with the back-

propagation algorithm is used to build a predictive model. The artificial neural networks

have two hidden layers and are oversized (the hidden layers for this study contained 13

and 11 neurons respectively). Training phase of the neural networks was halted at 0.105

with early stopping by policy. The training set sizes are set to 24 and 43 molecules,

leaving 3 and 5 molecules for the validation sets for Dataset I and Dataset II,

respectively. In order to compare the results of the models, the MLP is trained and tested

for 100 bootstrap samples and average error rate of all bootstraps is reported in terms of

q2 and Q2. The predictive results of MLPs for Caco-2 datasets based on 100-bootstrap are

presented in Table 8.11. According to these results GAFEAT selects relevant features and

helps us to build a better predictive model compared to using all features.

 141

Table 8.11 Predictive Results of MLPs for Caco-2 Datasets based on 100-bootstraps

q2 Q2 q2 Q2 q2 Q2

Without Feature Selection
(Using all features)

With Feature Selection
(Using 20 features selected by

GAFEAT)

Method

0.494

0.253

0.494

0.2560.174 0.179 0.158 0.165

0.575 0.582 0.554 0.558

Response: LogPC Response: LogPapp Response: LogPC
DATASET I (27-molecule) DATASET II (48-molecule)

8.7.4 Conclusions

One conclusion that can be easily drawn from the experimental results is that

GAFEAT selects a good initial subset of features and improves the predictive quality of

the learning algorithms. The predictive ability of the learning algorithms heavily depends

on the selection of the appropriate value for the inter-correlation penalty factor (α).

According to computational results, if a right alpha value is selected, GAFEAT can select

relevant features and help to build a better predictive model compared to using all

features. It has been found that the low values as well as high values for inter-correlation

penalty factor deteriorate the prediction error of the learning algorithms, and a good value

for α lies between 0.40 and 0.80.

Neural network sensitivity analysis is also useful tool to prune down the features

selected by GAFEAT and to lower the prediction error. If we compare GAFEAT and

sensitivity analysis as a stand-alone method, sensitivity analysis performs better than

GAFEAT. One of the reasons is that sensitivity analysis can be thought of as a wrapper

approach and takes the biases of the model into consideration. The other reason is that

sensitivity analysis is an iterative method that starts from full set of features and drops

insignificant features iteratively. On the other hand, one of the advantages of GAFEAT is

 142

that it scales only with the number of features. Therefore, GAFEAT does not require

extra computing cost if the number of the data points in a dataset increases. The

advantage of GAFEAT over the sensitivity analysis is that it requires less computation

time. Since the most of the wrapper methods require more computation time with respect

to the number of descriptors and data points, GAFEAT can be used as a filter to reduce

the number of descriptors for the wrapper methods.

 143

 CHAPTER 9

9GAFEAT-PLS: Genetic Algorithms with Partial Least

Squares Regression for Feature Selection

Partial least squares projections to latent structures (PLS) has a useful method for

modeling highly multidimensional scientific datasets with collinear features [103, 180-

182]. PLS regression is a Principal Component Regression (PCR) based on latent

variables, in which the direction of the latent variables is slightly shifted from the PCR

solution to obtain optimal correlation between the response variables and independent

variables [103].

In the past, PLS regression was considered to be almost insensitive to noise;

therefore, there was a common acceptance that no feature selection was necessary to

build a better predictive model [183]. Today, it has been widely accepted that a feature

selection has some advantages. Although PLS is a well-working method to model highly

multidimensional and collinear datasets, the interpretation and understanding of the

predictive model and its results are more difficult [182]. Feature selection can also help to

built a better predictive PLS model with fewer features [103, 183].

In this chapter, an error measure for PLS regression is integrated as a cost

function inside the genetic algorithm with the unique list representation developed in

section 8.3.3 in order to perform feature selection. First of all, detailed information about

PCR and PLS is presented. Second, a literature review related to feature selection with

evolutionary algorithms and PLS is reviewed. In later sections, the details of the proposed

 144

Genetic Algorithm with Partial Least Squares (GAFEAT-PLS) for feature selection and

its performance on two QSAR datasets (the Lombardo and HIVrt will be presented.

9.1 Data Compression

The basic idea behind a ‘data compression’ or ‘rank reduction’ is that the

information in the many observed data variables)x,...,x,x(x K21= can be compressed

into a few underlying latent variables (also called components, scores, regression factors

or just factors) A21 t,...,t,t [184]. This relationship can be mathematically expressed as

)}x,...,x,x{(h)t,...,t,t(K211A21 =

and these latent variables can be used as regressors to build a regression model with

response variable y.

e)}t,...,t,t{(hy A212 +=

In equation (9.2), e represents those contributions to y, which cannot be explained by

latent variables. The A latent variables (A < K) are assumed to represent the systematic

variation in the original data variables, which are important for predicting the response

variable y. The functions h1 and h2 in equations (9.1) and (9.2) can be combined together

to build a predictive regression model for y.

)}x(h{hŷ 12=

Data compression helps to simplify model-building phase by reducing the number

of model parameters and to solve the collinearity problem by guaranteeing an invertible

matrix in calculation of regression coefficients [104]. It can also simplify the

interpretation of the results since a few latent variables can reveal the main relationship

between large numbers of original variables. On the other hand, data compression has

)2.9(

)3.9(

)1.9(

 145

some disadvantages. Some useful information can be contained in the discarded latent

variables and/or a retained latent variable may not have predictive information [104,

184]. The interpretation of the results may be cumbersome since the latent variables are

some combinations of the original variables. Many different methods are available for

data compression. Principal Component Regression (PCR) and Partial Least Square

(PLS) Regression are well-known methods.

9.1.1 Principal Component Analysis (PCA) and Principal Component Regression

(PCR)

Principal Component Analysis (PCA) is a powerful visualization tool and is

widely used in explanatory data analysis and data compression (or rank reduction). PCA

is based on the fact that any set of M variables can be transformed to a set of M

orthogonal variables [104, 126].

X = TPT

The symbol T stands for the transpose of the matrix. X is the data matrix with N rows and

M columns, which correspond to the number of samples and independent variables,

respectively. T is the score matrix with N rows and M columns form the so-called

principal components of X and P is the loading matrix with M rows and N columns. The

columns of P are made up of the eigenvectors of XTX. The elements of the principal

components are the axes of the principal component line. The score matrix T is the

projection of the respective points on the principal component lines.

PCA is a classical statistical method and mostly used in data analysis where the X

variables are expected to be collinear. The collinearity means that the X data matrix has

)4.9(

 146

some dominating types of variability that explain most of the available information. PCA

is based on the concept of variation and built on the assumption that variation implies

information that might be classified as either relevant or irrelevant. Then, the purpose of

the PCA is to express dominant information in the data matrix X = {xm, m = 1, 2, … , M}

by a lower number of variables (principal components of X) TA={t1, t2, … , tA} where

A_<_M. [184]. Then, redundancy and smaller noise variability are removed. The PCA

provides a way to reduce the dimensionality of the data in such a way that linear

combinations of X variables account for maximal amount of variations. In this situation,

the first A columns of the score matrix T and the loading matrix P are considered.

T
AA PTX̂ =

where X̂ is an estimation of X.

Principal Component Regression (PCR) is obtained by regressing the dependent

variable Y on the score matrix T. In PCR, the variables of the X are replaced by those of

T, which are orthogonal to each other and span the same multidimensional space of X if

all principal components are combined [104].

T
AAPTX̂ =

AA PXT =

EBTY A +=

One of the advantages of the PCR is that it solves the ill conditioning in the

matrix inversion due to multi-collinearity problem in the calculation of the regression

coefficients (B) by producing orthogonal variables. A second advantage is that

eliminating some of the principal components can cause some random error elimination.

A key important advantage of the PCR is that, in contrast to MLR, it can also be applied

)5.9(

)8.9(

)7.9(

)6.9(

 147

to and give good results when there are more X-features than data points, as long as the

predictive information is in the first few principal components (eigenvectors) [184].

9.1.2 NIPALS Algorithm

The NIPALS (Nonlinear Iterative PArtial Least Squares) algorithm is the most

commonly used method for calculating the principal components for a dataset [151]. The

algorithm extracts one component a time and finds A principal components without

calculating all the eigenvectors [104]. It extracts 1t and T
1p from the data matrix X . The

outer product of T
11pt is subtracted from X in order to get residual the 1E . Then, 1E is

used to calculate 2t and T
2p .

...,ptEE,ptEE,ptXE T
3323

T
2212

T
111 −=−=−=

The implementation of the NIPALS algorithm is discussed more detail in [104, 184, 185].

The complete NIPALS algorithm is summarized in Appendix A.

9.1.3 Partial Least Squares (PLS) Regression

Partial Least Squares (PLS) is a general method of handling regression problems.

This method allows relationships between many blocks of data to be characterized and

modeled [105]. Also, this method can model data with strongly correlated and/or noisy or

numerous independent variables and several response variables [180]. The simplest type

of application of PLS methods is the PLS regression. The PLS regression is a

generalization of Multiple Linear Regression (MLR). The results of the PLS regression

are analogous to the MLR. In addition, the PLS regression also produces a set of plots

)9.9(

 148

(scores and loadings) that provide information about the correlation structure of the

variables and the structural similarities/dissimilarities between the compounds [180].

Both PCR (explained in section 9.1.1) and PLS regression are factor based

regression methods that produce factor scores as linear combinations of the original X

variables. On the other hand, PLS and PCR differ in their ways of extracting factor

scores. In the PLS regression the latent variables are extracted both to model X and to

correlate with Y , which is contrast to PCR, in which the latent variables only model X

[105].

In the PLS regression, a relationship is modeled between a response variable

matrix Y and a data matrix X . The modeling procedure begins with scaling the Y and

X columnwise with mean zero and variance one. The PLS model is built on the

properties of the NIPALS algorithm explained in section 9.1.2. There are many variants

of the NIPALS algorithms that normalize or do not normalize certain vectors [184].

The following explanation of the PLS regression is taken from Geladi and

Kowalski [104, 186]. A PLS model consists of outer relations (X and Y matrices

individually) and an inner relationship between both matrices. The outer relation for the

X data can be written as:

EptEPTX T
h

A

0h
h

T +=+= ∑
=

where A is the number of latent variables. The outer relation for the Y data also can be

written in the same way:

*T
h

A

0h
h

*T FquFQUY +=+= ∑
=

The regression part of the PLS is an inner relation, which is described as:

)10.9(

)11.9(

 149

hh tbû =

 where h
T
hh

T
hh tt/tub = and the “hat” indicates that the vector is an estimated one. The

mixed relation can be written as:

FQBTY T +=

where F has to be minimized with the condition that E in equation (9.10) is

minimized.

It is necessary to introduce weighting (w) to get orthogonal scores as in PCR. The

PLS model is obtained by using the residuals after each dimension, which can be written

as:

0
T
hh1hh EX;ptEE =−= −

0
T
hhh1hh FY;qtbFF =−= −

The complete PLS algorithm is given in the Appendix B.

9.1.4 Optimal Number of Latent Variables

An optimal number of latent variables (PLS regression components) (Aopt) needs

to be estimated. In general, Aopt is chosen as the model rank that minimizes some

criterion (e.g., prediction error on a validation set) for the different models

A_=_3,4,5,… ,Amax. There is a high risk for overfitting when working with dataset with

large number of inter-correlated features. Generally, this criterion is calculated with

cross-validation to test the predictive ability of the model, and the best one is chosen

[181]. When several models, e.g., A = 4, 5, 6 perform about the same based on the

criterion used, a lower-dimensional model is preferred [187].

)13.9(

)12.9(

)14.10(

)15.10(

 150

The HIVrt and Lombardo datasets are modeled with PLS regression with a

different number of latent variables under the leave-one-out cross-validation. The HIVrt

datasets has 64 molecules and 230 descriptive features and the Lombardo datasets has 62

molecules and 309 descriptive features (the datasets are pre-processed using

StripMinerTM program). The results of the leave-one-out cross validations for different

number of latent variables for the HIVrt and Lombardo datasets are presented in Tables

9.1 and 9.2, respectively. The plot of the prediction errors for the both datasets in terms of

Q2 versus the number of latent variables is shown in Figure 9.1. It is apparent from Figure

9.1 that the optimal number of latent variables for both datasets is four (lowest leave-one-

out prediction error).

Table 9.1 Leave-One-Out Cross-validation Results of the PLS Regression Model with
Different Latent Variables for the HIVrt Datasets

of latent
Variable r² R² q² Q²

3 0.7682 0.7682 0.3960 0.3974
4 0.8044 0.8043 0.3396 0.3400
5 0.8517 0.8517 0.3417 0.3464
6 0.8822 0.8822 0.3397 0.3494
7 0.9172 0.9170 0.3575 0.3790
8 0.9384 0.9381 0.3978 0.4283
9 0.9590 0.9585 0.4024 0.4522

10 0.9622 0.9617 0.4302 0.5005

HIVrt DATASET

Table 9.2 Leave-One-Out Cross-validation Results of the PLS Regression Model with
Different Latent Variables for the Lombardo Datasets

of latent
Variable r² R² q² Q²

3 0.8760 0.8760 0.2926 0.2932
4 0.9158 0.9157 0.2855 0.2868
5 0.9497 0.9496 0.2855 0.2910
6 0.9622 0.9621 0.2911 0.2992
7 0.9693 0.9692 0.3035 0.3170
8 0.9766 0.9765 0.3221 0.3464
9 0.9811 0.9809 0.3426 0.3805

10 0.9851 0.9850 0.3618 0.4108

LOMBARDO DATASET

 151

 Leave-One-Out Prediction Error (Q²) versus
Number of Latent Variables

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

3 4 5 6 7 8 9 10

Number of Latent Variables

Q²

 Q² HIVrt

 Q² Lombardo

Figure 9.1 Leave-One-Out Prediction Errors of the PLS Regression Models for the HIVrt

and Lombardo Datasets versus Number of Latent Variables

9.1.5 Nonlinear Partial Least Squares (PLS) Regression

In general, real datasets (e.g. QSAR datasets) exhibit significant nonlinear

characteristics, which cannot be properly modeled by linear regression methods. Non-

linearity can be handled either using models with a nonlinear function in the regression

step or making relationship between X and Y data linear and using ordinary least

squares methods [188].

In the first approach, the development of a nonlinear PLS model is to modify the

inner relationship of the linear PLS regression by introducing a nonlinear function (a

quadratic polynomial, a spline function) that relates the output scores u to input scores t

by keeping the X and Y data intact [189-191]. However, these methods require a

number of parameters (e.g. degree of the polynomial and spline knots placement) to be

 152

determined, which is difficult and adds additional complexity to the problem. These

methods also easily overfit the data since they are very flexible [192].

 In the second approach, a new expanded X dataset is constructed by including

higher order terms (e.g. quadratic terms, cross-product terms) of the original variables of

the X data. Then, a linear PLS regression is fitted into the new expanded X data and Y

data. This way, a nonlinear variant of the linear PLS algorithm can be produced by

integrating nonlinear variables within the linear framework [191]. The disadvantage of

this method is that if dataset has K features and quadratic nonlinearities are included, the

number of cross-product term will be
2

1)(KK −
, which increases rapidly when K

increases. Therefore, it is clearly seen that the full expansion of the features is not

suitable for QSAR datasets since a typical QSAR dataset for predicting an activity of

interest is characterized by a large number of descriptive features (300-1000).

Berglund and Wold [192] proposed a simple way to develop nonlinear PLS

models within the linear PLS framework. Since PLS produces a model in which each

latent variable is a linear combination of the original X variables, if Y is a nonlinear

function of these latent variables; then, the X data must be expanded in such a way that

the square and cross-product terms of the latent variables exist in the model. They show

that by simply adding squared variables of the X data, both the square and cross product

terms of the latent variables are implicitly included in the resulting linear PLS model.

This method, which is called as INLR (Implicit Nonlinear Latent variable Regression),

works well when X data is well modeled by a projection model)PTX(T≈ and for

continuous rather than binary features. Therefore, if a latent structure is present in the X ,

 153

the cross-product terms of the variables of the X can be excluded in the polynomial

expansion.

The principle of the INLR taken from [192] is the following:

Let Y be a nonlinear function in T (in the simplest case, polynomially quadratic):

∑ ∑
= =

++=
A

1a

A

ab
imabmibiim

T
im fdtt}Q{TY

The relationship in equation (9.16) can be modeled by estimating the coefficients (abmd)

and the latent variables at , 2
at , and 1aa tt + . On the other hand, it can be shown that this

relationship can be modeled by the expanded predictor matrix (2XX) that includes only

original variables of the X data and their squares. Let’s assume TPTX ≈ , the squared

term can be written as

∑ ∑
= =

+=
A

1a

A

ab
ikbkakibia

2
ik eppttx

Equation (9.17) shows that by expanding X with only the squared terms, both the

quadratic and the cross-product terms of latent variables are implicitly included in the

PLS model of the X block. This can be shown on a simple example of a X matrix with

rank two (A=2):

)0E(ptptPTX T
22

T
11

T =+==

Let’s consider only the first element of X , 11x , then 2121111111 ptptx += . The squared

term of 11x is calculated as

)ptpt(2)pt()pt()ptpt()x(21211111
2

2121
2

1111
2

21211111
2

11 ++=+=

)16.9(

)17.9(

)18.9(

)19.9(

 154

Equation (9.19) is equal to Equation (9.18). The same approach is also valid for the cubic

extension of X data. This is a logical extension of the ordinary linear PLS, if there is a

latent structure in the data that is related to the response variables [188]. The underlying

assumptions are that the X data has a latent structure and that there are enough X -

variables to support the increased dimensionality of the expansion. Therefore, the number

of latent variables A must be substantially smaller than the number of variables and the

initial number of variables (K) should be larger than three times the rank of X [192].

When comparing a number of different approaches to non-linear PLS modeling (PLS

with non-linear inner relationship [190], neural network PLS [193, 194]) with INLR

[192], it has been pointed out that all except INLR are somewhat cumbersome to use and

have tendency to be too flexible, causing overfitting, especially in small datasets [195].

9.2 Feature Selection with Evolutionary Algorithms and PLS

Regression

An evolutionary approach, the MUSEUM (MUtation and SElection Uncover

Models) algorithm, was proposed in [101, 103] for feature selection in the regression and

PLS analyses for QSAR datasets. The MUSEUM algorithm starts from an arbitrary

regression model and adds or drops features to or from this model based on a mutation

mechanism. The fitness of a model is defined by a certain criterion, e.g. the standard

deviation or the Fischer significance value F of the regression model. If a mutated model

has higher fitness than that of its parent, it is taken as a new breeding model that will be

further mutated by feature additions or eliminations. If no improved model is obtained

after a predetermined number of mutation operations, the mutation rate is increased. If a

 155

better model still cannot be found, the current best model is accepted as an intermediate

result. In the next step, in order to check whether all feature combinations have been

considered by mutation operations, all features not included and included by the current

best model are systematically added and eliminated, one at a time. If an improved model

is obtained, the MUSEUM algorithm starts again with this improved model. On the other

hand, if there is no improved model found, all features included by the model are tested

for significance at 95% confidence level and insignificant features are eliminated.

Leardi et al. proposed a modified binary genetic algorithm for feature selection in

regression and PLS analyses for QSAR datasets [7, 183, 196]. In a GA applied to a

dataset with k features for feature selection, the structure of a chromosome consists of

binary string with the size of k in which each gene is represented a single bit (0 =

corresponding feature is absent, 1 = corresponding feature is present). The objective of

the GA is to find a feature subset that maximizes the percentage of predicted variance

(R2). As an example, an individual could be 0010011001 for a dataset with 10 features.

The fitness of this individual will be the variance predicted by the PLS model computed

by taking into account features 3, 6, 7, and 10. The following modifications were applied

to the binary GA to take into account some peculiarities of the feature selection problem:

i) An initial population is formed by individual corresponding to subsets of only a few

features in each. At stage of the creation of the initial population, the probability of

having ‘1’ is much lower than that of having ‘0’.

ii) Since the fitness function requires a full multivariate analysis (MLP, PLS, etc.) to

obtain a predicted value using cross-validation, the time required by the fitness

 156

evaluation can be excessive. For this reason, the population size of the GA is kept

as low as possible (30 individuals).

iii) A high degree of elitism is introduced to GA by allowing parents and their children

coexist if their fitness’s are higher respect to population.

iv) The best individual containing C number of features is added into next generation

regardless of its fitness value unless an individual with a same or lower number of

features give a better fitness value. This rule forces the GA to have solutions

containing as few features as possible since a feature subset with a few features

leads to an easier mathematical model and sometimes to lower the computational

cost. At the end of the run, the evolution of the fitness as a function of the number

of selected features can be tracked in the individuals of the last population.

v) The GA is hybridized with stepwise selection. A backward stepwise selection is

performed on the best individual of each GA generation and resulting individual is

considered as an offspring.

Hesegawe et al. employed the modified GA proposed by Leardi et al. to obtain a

PLS model with high internal predictivity using a small number of features in QSAR

datasets [197]. They applied the GAPLS to the inhibitory activity of calcium channel

antagonists. As a result, they selected the features strongly contributing to the inhibitory

activity and estimated the structural requirements for the inhibitory activity in an

effective manner.

Genetic Partial Least Square (GPLS) was proposed to construct QSAR models by

Duns et al. [99]. The GPLS method uses a GA to select appropriate basis functions

(features) to be used to model a QSAR data. The initial models are generated by

 157

randomly selecting a number of features using the user-specified basis function type, and

then, constructing the models from random sequences of these basis functions. In GPLS,

individuals are a series of basis functions. The lengths of the series (individuals) are

predetermined. For each individual, a QSAR model is construct by using PLS regression

to generate the regression coefficients for the basis functions. The fitness of the

individuals (models) is rated using a modified form of Friedman’s ‘lack of fit’ (LOF)

[198]. LOF is defined as in equation 10.5

2

N
1)(dc

1

LSELOF





 +−

=

The terms in the equation 10.5 are defined as follows. LSE is the least-square error, N is

the number of compound in the dataset, d is a smoothing parameter, and c is the number

of basis functions (independent variables) in the model. The objective of the GPLS is to

minimize LOF since the smaller the LOF is the better model. GPLS uses classical one

point uniform crossover. The parents for crossover are chosen based on the inverse of

their LOF scores.

9.3 The Proposed GAFEAT-PLS

In the Genetic Algorithm proposed in this thesis with Partial Least Square

Regression (GAFEAT-PLS), the PLS regression is integrated as a cost function into the

GA with unique list representation developed in section 8.3.3. Given a dataset containing

T features, each chromosome represents a legal subset containing N features. In this

representation, a chromosome is an integer array with size N, where N is the

predetermined number of features to be selected out of total T features. Each gene

)5.10(

 158

represents the corresponding feature in the dataset. A flow diagram describing the

procedure of GAFEAT-PLS is presented in the Figure 9.2.

Initialize Population
An initial population of Np individuals

is randomly generated

Evaluation
Calculated the fitness of each individual
by using the PLS based on 20-bootstap

sample in terms of R 2

Selection
Rank Selection

Crossover
Partially-Mapped

Crossover

Mutation
Selected gene is replaced

with a unique one

Evaluation
Calculated the fitness of each individual
by using the PLS based on 20-bootstap

sample in terms of R 2

Next Generation

Elitist Strategy
Make sure that the best individual

survives

Selected Population

Are the terminationYES

NO

STOP
criteria met?

Figure 9.2 Flow Diagram of GAFEAT-PLS Algorithm

9.3.1 Creation of the Initial Population

The initial population is created randomly as explained in section 8.3.1. In the

initial population, all features in each individual are guaranteed to be different (i.e., there

are no duplicated feature). Although the optimal number of chromosomes (individuals)

depends on the number of features in the dataset under scrutiny, a population size of 100

is sufficient large for GAFEAT-PLS to converge for up to 1500 features for small

datasets.

 159

9.3.2 Evaluation of the Fitness

The fitness of each individual (chromosome) is evaluated by the predictivity of

the PLS model derived from the feature subset represented by the corresponding

individual. R2 is used as a yardstick for estimating the prediction ability of the PLS

models (see section 6.4). GAFEAT-PLS calculates the fitness of each individual based on

a certain number of bootstrap samples. In this implementation, the (n-h) compounds

(samples) for the training set are drawn without replacements, where n is the number of

compounds in the data set and h is the number of samples left in the holdout set. The

number of samples left in the holdout set is generally around 10 percent of the total

number of samples in the dataset. Note that this holdout set is neither test nor validation

set and is never used for any purposes such as preventing over-fitting. There are no

overlap between training and holdout sets for a bootstrap sample. After the PLS model is

constructed by using the training set, R2 is calculated on this training set. This process is

repeated 20 times and the fitness of each individual in the population is obtained based on

the average R2 for 20 bootstrap samples. The fitness of the individual k is given by

∑
=

=
20

1i

2
ik R

20
1

Fitness .

The objective of GAFEAT-PLS is to find the individuals maximizing this fitness

function. The values of the fitness function will be between ∞− and +1, since the values

for R2 lie between ∞− and +1.

In order to show how GAFEAT-PLS calculates the fitness for individuals, let’s

assume that the objective of GAFEAT-PLS is to select 10 features from a dataset with 62

molecules and 694 descriptive features. Figure 9.3 graphically illustrates this example.

For each individual, 56 molecules are randomly drawn without replacement from the

 160

total of 62 molecules to construct a training set that contains only the features represented

by the corresponding individual. A PLS regression is fitted this training set and the

goodness-of-fit of this model is measured in terms of R2 statistic. This process is repeated

20 times and the final fitness of the individual is calculated based on the average of these

R2 of 20 bootstrap training sets.

Original Dataset
62 molecules
694 features

Training Dataset
(56 molecules)

R2
1 of Bootstrap 1

R2
2 of Bootstrap 2

.

.
R2

20 of Bootstrap 20

Hold-out Dataset
(6 molecules)
Bootstrap 1
Bootstrap 2

.

.
Bootstrap 20

Individual 1 663 125 490 388 274 312 666 465 580 473

Individual 2 348 52 117 103 577 432 47 91 304 573

Individual 3 71 393 12 537 127 656 557 69 300 207

Individual 100 96 562 554 201 423 319 299 316 112 379

.

.

.

.

.

.

.

.

.

(selected features)

∑
=

=
20

1i

2
ik R

20
1

Fitness

Figure 9.3 Illustration of the Fitness Evaluation in GAFET-PLS Algorithm

9.3.3 Selection Mechanism

Selection is the process of deciding on which individuals will survive for the next

iteration in the algorithm. GAFEAT-PLS employs a rank-based selection, which means

that only the rank ordering of the fitness of the individuals within the current population

determines the survival probabilities. There are many methods to assign the survival

probability based on ranking (see [8, 199]). GAFEAT-PLS assigns new fitness values to

the individuals of the population based on their ranking using the following function:

 161

θ+−=)1ranksize_pop(Fitness)(rank

This function returns a new fitness value of an individual ranked in position in rank,

where pop_size is the number of individuals in the population and rank = 1, 2, 3, … ,

pop_size (rank = 1 means the best individual and rank = pop_size means the worst

individual in the population based on the actual fitness). Individuals for the next

generation are selected proportionally to their new fitness values rather than the actual

objective function values. θ is a user-defined parameter that allows the users to influence

the selective pressure. The acceptable range for the θ parameter is between 0 and 10. θ =

0 means that there is no selective pressure and all individuals have the same survival

probability regardless of their actual fitnesses. If value of θ increases the survival

probability of the better individuals increases. Figure 9.4 shows the ranking versus the

survival probabilities for different selective pressures (θ) of 0.0, 1.0, 1.8, 5.0, and 10.0 for

a population containing 100 individuals.

 Survival Probability versus Ranking

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 10 20 30 40 50 60 70 80 90 100

Rank of the individual

S
ur

vi
va

l P
ro

ba
bi

lit
y

θ = 10.0

θ = 5.0

θ = 1.8

θ = 1.0

θ = 0.0

Figure 9.4 Survival Probability for a Population Size of 100 individuals versus Ranking

for Different Selective Pressure (θ) Values

 162

9.3.4 Crossover and Mutation

In the proposed GAFEAT-PLS, after the rank-based selection (or sampling)

mechanism, a recombination (crossover) operator is applied to the individuals selected

based on a predefined crossover probability. GAFEAT-PLS employs a sexual (two

parents) reproduction, namely partially mapped crossover (PMX) explained in section

8.3.4 so that the resulting two offspring contain maximal characteristics from both

parents. The proportion of the population that undergoes crossover during a generation is

determined by the crossover probability. For example, if the probability of crossover is

90 percent, we expect that on average 90 percent of the population will undergo

crossover and these individuals are paired off as parents.

After the crossover operation, mutation follows. The mutation operator randomly

chooses a gene position in the chromosome and tries to exchange it with a unique random

value. Here, the unique value means that the mutated gene position must have a different

value (indicating a new feature) than all values for a given individual. If a unique value

cannot be found a certain number of trials then the parent chromosome is copied without

any change.

9.3.5 Stopping Criteria

A key issue is deciding when to stop evolving solutions with a genetic algorithm.

The proposed GAFEAT-PLS uses two termination criteria: the allowed maximum

number of generation and the early stopping. Once one of them is satisfied, GAFEAT-

PLS stops running and reports the last population and the fittest individual of the GA run.

 163

The allowed maximum number of generation must be large enough to allow GAFEAT-

PLS to converge.

The second termination criterion is the early stopping. The fitness function of

GAFEAT-PLS explained in the Section 10.6.2. The objective of GAFEAT-PLS is to find

the solutions (feature subsets) maximizing the fitness function defined by

∑
=

=
20

1i

2
ik R

20
1

Fitness

The values of the fitness function will be between ∞− and 1. GAFEAT-PLS stops

running if an individual with fitness value equal to 1 has been found. However, the

threshold value for the fitness can be specified as a value less than 1 in order to halt a

GAFEAT-PLS run early.

9.4 Validation of GAFEAT-PLS

The main goal of the feature selection is to select a subset of the original features

such that the resulting model can perform well on unseen future data points (compounds)

[200]. The commonly used validation strategy for the feature selection consists of the

following two steps:

Step 1. The selection of features by using all the data points,

Step 2. The model obtained with the selected features is validated under a

validation scheme (cross-validation, bootstrapping, etc.).

Because the selection of the features and model validation are performed on the

same data points, the predictive model is only partially validated [200, 201]. Figure 9.5

illustrates the classical (partial) validation approach to feature selection. It has been

reported that the prediction quality or ability of a predictive model validated in this way

 164

is optimistically biased, since the data points used for the feature selection is also

employed in the model building and validation step [6, 196, 200, 201].

MODEL
VALIDATION

Validating
Predictive Model

FEATURE
SELECTION

METHOD

DATASET

MODEL
SELECTION

Building Predictive
Model

Reduced
Dataset

External validation
Cross-validation
Bootstrapping

Figure 9.5 Classical (Partial) Validation Approach to Feature Selection

It has been pointed out by many researchers that in order to perform a full

validation, the feature selection, model selection, and model validation must be

performed under the same validation scheme [6, 196, 201]. The full validation approach

to feature selection is illustrated in Figure 9.6.

MODEL
VALIDATION

Validating
Predictive Model

FEATURE
SELECTION

METHOD

DATASET

MODEL
SELECTION

Building Predictive
Model

Reduced
Dataset

External validation
Cross-validation
Bootstrapping

Figure 9.6 Full Validation Approach to Feature Selection

 165

Any QSAR model needs to be properly validated prior to use for predicting

biological activities of new untested molecules. QSAR models have a theoretical

foundation as semi-empirical analogy models such that they usually have local validity,

and that they can only predict molecules that are chemically and biologically similar to

those of the training set [202]. Therefore, the most important step in building a sound and

robust OSAR model is the selection of an informative and representative training set. The

validation process, in general, is a very important step and must be carried out in the right

way. The most commonly used methods for a model validation are the use of an external

validation (test) set and cross-validation. A randomization test is also commonly used for

the validation of QSAR models [124]. These validation methods are explained in more

detail in the following sections.

9.4.1 External (Independent) Validation Set

The most reliable method for model validation uses an external validation set for

confirmation. This requires that the dataset under examination is sufficiently large, which

is often not the case in the QSAR studies. If the dataset has a sufficiently large number of

data points (i.e., molecules or compounds in QSAR) then, the dataset can be split up in a

training and an external validation sets. This division can be made in several ways such

as the D-optimal design [202], stratified validation samples etc. However, it is very

important that both datasets should be representative and informative (i.e., they should

span approximately similar ranges of the biological responses and the structural

properties [203]).

 166

Martens and Dardenne [187] demonstrated that for small datasets, independent

validation test set are wasteful and still uncertain with sometimes over-optimistic

estimates of future predictive error. The reason is that removing samples from an already

limited set of available samples to an independent validation test set seriously biases the

feature selection process and therefore reduces the predictive ability of the models, and

while at the same time give uncertain, systematically over-optimistic assessment of the

predictive ability of the models (because of “over-fitted” features).

In the absence of an external validation set, two reasonable ways of model

validation can be performed by either a cross-validation that simulates how well the

model predicts new data, or model re-estimation after randomization that estimates the

chance probability to obtain a good fit with randomly shuffled response values [181].

9.4.2 Cross-validation and Bootstrapping without Replacement

Cross-validation is also called internal validation, since all the data points

belong to same dataset that was also used in the training or building of a predictive

model. In cross-validation, a dataset is divided into k subsets of approximately equal size.

A k-fold-cross-validation procedure requires the fitting the model into dataset k times; at

each time a subset is left out once, and only once, as a validation set and the remaining

datasets are combined as a training set. If k is equal to the number of data points; then, it

is called leave-one-out-cross-validation (LOOCV). If k is less than the number of data

points; then, it is called as leave-several-out-cross-validation (LSOCV).

The LSOCV leaves out a certain portion of the dataset; therefore, it creates a

constant perturbation in the structure. On the other hand, the LOOCV perturbs the data

 167

structure by removing one data points at a time; therefore, causes an increasingly smaller

perturbation with increasing the number of data points. Hence, (1-Q2) of LOOCV

approaches R2 of LOOCV in the limit [203]. Therefore, LOOCV gives an over-optimistic

result that is an underestimation of the true prediction error. On the other hand, LSOCV

(leaving approximately 7 molecules in the validation set) is recommend in order to get an

unbiased estimation of the model quality [203].

In this dissertation, bootstrapping without replacement is employed for model

validation instead of cross-validation. Bootstrapping without replacement is explained in

section 8.7.1. The reason behind this choice is that there is a relationship between the

bootstrapping without replacement and cross-validation methods. Since the cross-

validation estimate is a heuristic estimate that depends on the division of data into folds,

repeating cross-validation multiple times using different splits into folds and combining

those estimates gives more accurate estimate. A complete cross-validation estimate is a

combination of the estimates of all 





k/n
n possibilities for choosing k/n instances out of

n, where n is the number of data points and k is the number of folds [204]. The

bootstrapping without replacement can be thought of as a better Monte Carlo estimate to

the corresponding complete cross-validation.

9.4.3 Randomization test (Randomization of the Response Values)

A randomization test is based on repetitive random reassignments (or shuffling)

of the order of the original values of the response (Y) variable in the training set. Then, a

model is built on each of the modified (randomized) datasets and its prediction error is

calculated. If in each case the modified (randomized) dataset gives significantly higher

 168

Q2 values than the original dataset; then, it can be inferred that the real QSAR model is

relevant and predictive. In general, some hundreds of modeling of modified datasets are

required, but randomization of the Y data a number of times (at least 10 times) gives a

fairly good idea of the significance of the real QSAR model [203]. A target level of

confidence for the randomization test can be set to 90, 95, 98, or 99 percent by comparing

the resulting scores with the score of the original QSAR equation generated with the non-

randomized (original) data. The higher the confidence level, the more randomization tests

are to be performed. It is suggested that for a 90% confidence level, 9 trials are to be

performed, 19 trials at 95%, 49 trials at 98%, and 99 trials at 99% [205]. If the training

and prediction error of the random models are comparable to that of model with the

original dataset, it can be concluded that either noise is modeled or the set of observations

is not sufficient to support to build a predictive model.

A randomization test is very useful tool for the validation of the models with

features selected by genetic algorithms in such situations [183]:

i) A dataset is very noisy (especially response variable).

ii) A dataset has a large number of descriptive features for a relatively small

number of molecules.

If a GA is used for building a predictive model on these kinds of datasets, the GA may

simply model the noise. A randomization test can be a useful validation tool to verify it.

9.4.4 Validation Strategy for GAFEAT-PLS

In order to properly validate the proposed GAFEAT-PLS feature selection method

for small datasets, a combination of partial and full validation approaches is used. Partial

 169

validation is applied to all models by using 100-bootstrap samples after the GAFEAT-

PLS feature selection step. Full validation is applied to GAFEAT-PLS feature selection

by employing a randomization test. The validation strategy consists of the following three

steps:

i) The models constructed with features selected by GAFEAT-PLS are validated

based on 100 bootstrap samples as explained in section 9.4.2. The main advantage of the

bootstrapping without replacement over a LSOCV is that the former method gives a better

estimation.

ii) In the literature, some researchers have reported that although the wrapper

feature selection methods have certain advantages, they select an optimal feature subset

biased to a particular learning algorithm [6]. Since any learning algorithm is biased to

some degree, selecting feature subsets tailored to a particular learning algorithm is

equivalent to customizing the data to fit into that particular learning algorithm. The

purpose of the feature selection is not only to build a good predictive model but also to

explain and interpret to some degree how and why the model works. Therefore,

especially in QSAR studies, a good feature subset, which is independent of any learning

algorithm, will give more useful information that can be easily interpretable. Since

GAFEAT-PLS is a wrapper feature selection method in which the PLS regression is used

as a cost function, the quality of the selected feature subsets are also measured by another

learning algorithm, in this case Support Vector Machines (SVM) regression, in addition

to the PLS models.

iii) A randomization test is performed for the full GAFEAT-PLS feature selection

method in order to verify that GAFEAT-PLS selects a good feature subset that model

 170

information available in the dataset. To evaluate the statistical significance of a QSAR

model constructed with features selected by a GAFEAT-PLS for an actual dataset, a

standard hypothesis testing approach proposed by Zheng and Tropsha [100] is used. The

null (H0) and alternative (HA) hypothesis are formulated as following:

µ=h:H0

µ<h:HA or µ>h:HA

where h is the Q2
 or R2 value for the model constructed with the selected features by

GAFEAT-PLS from the original dataset and µ is the average value of the Q2
 or R2 for

the models constructed with the selected features by GAFEAT-PLS from random

datasets. The null hypothesis states that the model for the original dataset is not

significantly better than random models. If the training (R2) and prediction (Q2) error of

the random models are comparable to that of model with the original dataset based on the

hypothesis testing, it can be concluded that either GAFEAT-PLS simply models the noise

(overfitting) or the set of observations is not sufficient to support to build a predictive

model.

In standard hypothesis testing, the sampling distribution of the statistic is assumed

to normal and the formula shown below is used for calculating the standardized test

statistic (Z).

σ
µ−= hZ

where σ is the standard error of Q2 or R2 of the models constructed with the selected

features by GAFEAT-PLS from random datasets. Value of the Z determines whether it is

 171

appropriate to reject or not reject the null hypothesis based on a target level of confidence

(e.g. 90, 95, 98, or 99 percent).

9.5 Computational Evaluation of GAFEAT-PLS

There are two QSAR datasets that have been used to evaluate the performance of

GAFEAT-PLS: i) the Lombardo dataset originally with 62 compounds and 694

descriptive features (see section 7.2). ii) the HIVrt dataset with 64 compounds and 620

descriptive features (see section 7.3).

The first step is to use objective feature selection (e.g. removing non-changing,

highly inter-correlated (cousin features), and 4-sigma outlier features) to remove features

that contain redundant, minimal information or distorted information. The StripMiner

program [4], which is a general purpose data preprocessing and modeling program for the

scientific data mining of large datasets, is used to perform objective feature selection. The

StripMiner program removes cousin (highly inter-correlated) features in the following

way: if two features are correlated with each other above a pre-specified correlation

threshold, StripMiner removes the feature that is less correlated with the response

variable. In general, this correlation threshold is set to 95%. StripMiner is also used to

remove the 4σ outliers. Since the QSAR datasets studied in this dissertation are

characterized by a large number of descriptive features for a relatively small number of

molecules, only the outlier features rather than molecules with outlier features are

removed.

 172

9.5.1 The Lombardo Dataset

The Lombardo dataset was pre-processed with StripMiner in order to remove

non-changing, highly inter-correlated (%95 and above) features, and features with 4σ

outlier. After pre-processing, 309 descriptive features were retained in the Lombardo

dataset.

Since GAFEAT-PLS conducts a search for a good feature subset using the PLS

regression itself as part of the fitness function, the accuracy estimation of the PLS model

may be overly optimistic (overfits to the PLS regression model). Therefore, another

learning algorithm, namely the SVM regression, is used for constructing a predictive

model and its accuracy estimation (validation error) is compared with that of the PLS

regression model. In a summary, it is desired to find a good feature subset, which give

consistent results for both the PLS and SVM regression models.

First of all, the StripMiner [4] program is employed to construct predictive

models (the PLS and SVM regression) of the Lombardo dataset with 309 original

features. The predictive abilities of the PLS and SVM regression models are obtained

based on 100-bootstrapping samples by leaving out 6 molecules in each validation set.

The PLS regression models described in this dissertation used four latent variables for all

calculations. However, the SVM regression in the StripMiner [4] automatically

computes the parameters of the SVM regression model (the kernel parameter σ, the trade-

off constant C, and the value of ε) for each bootstrapping sample by using a pattern

search algorithm [146, 149]. For this reason, validations of the SVM regression models

are computationally expensive. The results of the 100 bootstrap validation of the PLS and

SVM regression models with all features are presented in the Table 9.3.

 173

Table 9.3 100-bootstrap Validation of Full Lombardo Dataset

Training Error Validation Error Learning Models r2 R2 q2 Q2
PLS 0.9228 0.9228 0.2853 0.2858
SVM 0.9846 0.9822 0.3098 0.3105

GAFEAT-PLS is applied on the Lombardo dataset to select a good feature subset

with a minimum number of features. Since the number of selected features is

predetermined, several of GAFEAT-PLS runs with different numbers of features are

performed in order to determine the most informative feature subset with the minimum

number of descriptive features. The parameters of GAFEAT-PLS used for the Lombardo

dataset are listed in the Table 9.4.

Table 9.4 Parameters of GAFEAT-PLS for the Lombardo Dataset

Population
Size

Crossover
Probability

Mutation
Probability

Maximum # of
Generation

Number of Latent
Variables

100 0.90 0.02 1000 4

Number of Bootstraps in

the Fitness Evaluation
Number of Molecules

in the Training Set
Number of Molecules
in the Validation Set

20 56 6

 GAFEAT-PLS is executed 5 times to select 10, 20, 30, 40, and 50 features from

the Lombardo dataset with 309 features. Each selected feature subset is modeled by the

PLS and SVM regression, and are further validated with 100-boostrap samples by leaving

56 molecules in training sets and 6 molecules in the validation sets. The feature subset

validation results of the PLS and SVM regression models are presented in the Tables 9.5

and 9.6, respectively.

 174

Table 9.5 100-bootstrap Validation Results of PLS Models of the Feature Subset
Selected by GAFEAT-PLS from the Lombardo Dataset

r2 R2 q2 Q2

10 0.9122 0.9122 0.1710 0.1729
20 0.9719 0.9719 0.0809 0.0822
30 0.9812 0.9812 0.0669 0.0677
40 0.9801 0.9801 0.0749 0.0755
50 0.9828 0.9828 0.0831 0.0871

Number of
Selected
Features

Training Error Validation Error

Table 9.6 100-bootstrap Validation Results of SVM Models of the Feature Subset
Selected by GAFEAT-PLS from the Lombardo Dataset

r2 R2 q2 Q2

10 0.9320 0.9309 0.1922 0.1951
20 0.9731 0.9705 0.0962 0.0966
30 0.9810 0.9795 0.0719 0.0733
40 0.9821 0.9802 0.0950 0.0955
50 0.9824 0.9795 0.0981 0.1018

Number of
Selected
Features

Training Error Validation Error

Figure 9.7 shows the number of features selected by GAFEAT-PLS versus 100-

bootstrap validation errors of the PLS and SVM regression models of the corresponding

selected feature subsets in terms of Q2 statistics. The PLS and SVM regression models

with the selected features are significantly more predictive than those models containing

all the features. It can be seen that the subset with 30 features is the best subset since its

validation error is the lowest one (also relatively low) when compared with other feature

subsets. ‘Relatively low validation error’ means that a feature subset gives the lowest

error as the average of the validation errors of the SVM and PLS regression models. It is

 175

hypothesized in this dissertation that a good feature subset should give similar results for

the PLS and SVM regression models.

100-bootstrap Validation Error (Q2) of PLS and SVM Models of
Selected Feature Subsets by GAFEAT-PLS from Lombardo Dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

10 20 30 40 50 All
Number of Selected Features by GAFEAT-PLS

Q2

 Q² PLS
 Q² SVM

Figure 9.7 100-bootstrap Validation Errors (Q2) of the PLS and SVM Regression Models

of Selected Feature Subsets by GAFEAT-PLS from the Lombardo Dataset

9.5.2 The HIVrt Dataset

HIVrt dataset has been pre-processed by StripMiner [4] to remove non-

changing, highly correlated (%95 and above) and 4σ outlier features. After pre-

processing, 230 descriptive features left in the HIVrt dataset. The StripMiner program

is employed to construct predictive models (the PLS and SVM regressions) of the HIVrt

dataset with 230 original features. The obtained PLS and SVM models are validated

 176

based on 100-bootstrapping samples by leaving 58 molecules in training set and 6

molecules in the validation set. These validation results are presented in the Table 9.7.

Table 9.7 100-bootstrap Validation of Full HIVrt Dataset

Training Error Validation Error Learning Models r2 R2 q2 Q2
PLS 0.8129 0.8129 0.3354 0.3368
SVM 0.9276 0.9159 0.3690 0.3718

GAFEAT-PLS is applied to select a good feature subset with the minimum

number of features for the HIVrt dataset. The parameters of GAFEAT-PLS used for the

HIVrt dataset is presented in the Table 9.8. Since the number of feature to be selected is

predetermined, a several of GAFEAT-PLS runs are performed to obtain the most

informative and predictive feature subset with the minimum number of features.

Table 9.8 Parameters of GAFEAT-PLS for the HIVrt Dataset

Population
Size

Crossover
Probability

Mutation
Probability

Maximum # of
Generation

Number of Latent
Variables

100 0.90 0.02 1000 4

Number of Bootstraps in

the Fitness Evaluation
Number of Molecules

in the Training Set
Number of Molecules
in the Validation Set

20 58 6

GAFEAT-PLS executed to select 10, 20, 30, 40, and 50 features from the HIVrt

dataset with 230 features. Each selected feature subset is modeled by the PLS and SVM

regression techniques, and these models are further validated with 100-boostrapping

 177

samples by leaving 58 molecules in training set and 6 molecules in the validation set. The

feature subset validation results for the PLS and SVM regression models are presented in

the Tables 9.9 and 9.10, respectively.

Table 9.9 100-bootstrap HIVrt Feature Subset Validation with PLS Regression

r2 R2 q2 Q2

10 0.8712 0.8712 0.1843 0.1858
20 0.9142 0.9142 0.1592 0.1593
30 0.9362 0.9362 0.1840 0.1851
40 0.9379 0.9379 0.1966 0.1969
50 0.9299 0.9299 0.1912 0.1915

Training Error Validation ErrorNumber of
Selected
Features

Table 9.10 100-bootstrap HIVrt Feature Subset Validation with SVM Regression

r2 R2 q2 Q2

10 0.8807 0.8793 0.2194 0.2218
20 0.9218 0.9182 0.1865 0.1872
30 0.9753 0.9749 0.1456 0.1470
40 0.9796 0.9788 0.1602 0.1618
50 0.9703 0.9683 0.2220 0.2237

Number of
Selected
Features

Training Error Validation Error

Figure 9.8 shows the plot of the number of selected features by GAFEAT-PLS versus the

100-bootstrap validation errors of the PLS and SVM models for the corresponding

selected feature subsets in terms of Q2 statistics. It is seen from Figure 9.8 that the feature

subset with 30 features is the best subset since whose validation error is relatively lower

when compared to other feature subsets.

 178

100-bootstrap Validation Error (Q2) of PLS and SVM Models of
Selected Feature Subsets by GAFEAT-PLS from the HIVrt Dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

10 20 30 40 50 All
Number of selected features by GAFEAT-PLS

Q2

 Q² PLS
 Q² SVM

Figure 9.8 100-bootstrap Validation Errors (Q2) of the PLS and SVM Regression Models

of Selected Feature Subsets by GAFEAT-PLS from the HIVrt Dataset

9.6 Computational Validation of GAFEAT-PLS with a Randomization

Test

As explained in section 9.4.4, the validation (robustness) of GAFEAT-PLS method

is examined with a standard hypothesis testing where the results of a real dataset is

compared to those of randomized datasets. The randomization test validation of

GAFEAT-PLS is performed on the Lombardo and HIVrt datasets. Full validation result of

GAFEAT-PLS based on 10 fold cross-validation and leave-one-out cross-validation on

the Lombardo and HIVrt datasets are presented in the Appendix C. These full validation

results are presented in the appendix, since full validation approach for feature selection

in small datasets is not conclusive as explained in section 9.4.

 179

9.6.1 The Lombardo Dataset

Ten randomization trails were performed in which the biological activity data was

randomized with respect to the dataset. A full GAFEAT-PLS feature selection method is

performed for each randomized dataset. Randomization of data, GAFEAT-PLS feature

selection, and subsequent model evaluation are performed to assess the statistical validity

of QSAR models and the overall GAFEAT-PLS feature selection method. Each selected

feature subset is modeled using a PLS regression with 4 latent variables and the

predictive quality of the resulting model is measured based on 100 bootstrap samples

leaving 56 molecules in the training sets and 6 molecules in the validation sets. Figures

9.9 and 9.10 show the results of randomization test of GAFEAT-PLS feature selection

method on the Lombardo dataset in terms of the Q2 and R2 statistics, respectively.

100-bootstrap Validation Erorr (Q²) of the PLS models of Selected Feature

Subsets by GAFEAT-PLS from Randomized Lombardo Dataset for Different
Randomization Trials

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

10 20 30 40 50 All

Number of Selected Features by GAFEAT-PLS

Q²

Randomized 1

Randomized 2

Randomized 3

Randomized 4

Randomized 5

Randomized 6

Randomized 7

Randomized 8

Randomized 9

Randomized 10

Original Data

Figure 9.9 100-bootstrap Validation Errors (Q2) of the PLS Models of Feature Subsets

Selected by GAFEAT-PLS from Randomized Lombardo Dataset for Different
Randomization Trials

 180

Quality of the Fit (R²) of the PLS models of Selected Feature Subsets by
GAFEAT-PLS from Randomized Lombardo Dataset for Different

Randomization Trials

0.5

0.6

0.7

0.8

0.9

1.0

1.1

10 20 30 40 50 All

Number of Selected Features by GAFEAT-PLS

R²

Randomized 1

Randomized 2

Randomized 3

Randomized 4

Randomized 5

Randomized 6

Randomized 7

Randomized 8

Randomized 9

Randomized 10

Original Data

Figure 9.10 Quality of the Fit (R2) of the PLS Models of Selected Feature Subsets by
GAFEAT-PLS from the Randomized Lombardo Dataset for Different Randomization

Trials

It appears from Figures 9.9 and 9.10 that in each randomization test the

randomized data give much higher Q2 and much lower R2 values than those of the

original data. As explained in section 9.4.4, the validation (robustness) of GAFEAT-PLS

method is carried out by standard hypothesis testing where the results of a real dataset is

compared to those of randomized datasets. The hypothesis testing results based on R2 and

Q2 are presented in Tables 9.11 and 9.12, respectively. Z score and P value represent the

test statistics and its probability that is the smallest probability leading to rejection of the

null hypothesis, respectively.

 181

Table 9.11 Standard One-Tail Hypothesis Testing of GAFEAT-PLS on the Lombardo
Dataset Based on R2

Number of
Selected
Features

Original Data
Mean of the

Randomization
Trials

Std. Dev. of the
Randomization

Trials
Z score P value

10 0.9122 0.6495 0.0650 4.0398 0.0000
20 0.9719 0.8269 0.0435 3.3340 0.0004
30 0.9812 0.8821 0.0290 3.4196 0.0003
40 0.9801 0.8992 0.0273 2.9618 0.0015
50 0.9828 0.9047 0.0253 3.0881 0.0010
All 0.9228 0.7062 0.0446 4.8570 0.0000

Table 9.12 Standard One-Tail Hypothesis Testing of GAFEAT-PLS on the Lombardo
Dataset Based on Q2

Number of
Selected
Features

Original Data
Mean of the

Randomization
Trials

Std. Dev. of the
Randomization

Trials
Z score P value

10 0.1729 0.5435 0.1089 -3.4014 0.0003
20 0.0822 0.5452 0.1807 -2.5626 0.0052
30 0.0677 0.6109 0.1944 -2.7947 0.0026
40 0.0755 0.7354 0.2702 -2.4424 0.0073
50 0.0871 0.8122 0.2653 -2.7328 0.0031
All 0.2858 1.3286 0.2677 -3.8956 0.0000

Based on P values, it can be concluded with a 90 percent of confidence that

GAFEAT-PLS models on original datasets give consistently higher R2 and lower Q2 than

those of GAFEAT-PLS models obtained on the ten different randomized datasets.

9.6.2 The HIVrt Dataset

Ten randomization trails were performed in which the biological activity data was

randomized with respect to the dataset. A full GAFEAT-PLS feature selection is

performed for each randomized HIVrt dataset. Randomization of data, GAFEAT-PLS

feature selection and subsequent model evaluations are performed to assess the statistical

validity of the QSAR model and GAFEAT-PLS feature selection method. Each selected

 182

feature subset is modeled using the PLS algorithm with 4 latent variables and the

predictive quality of the resulting model is measured based on 100 bootstrap samples

leaving 6 molecules in the validation set. Figures 9.11 and 9.12 show the results of

randomization test of GAFEAT-PLS feature selection method on the HIVrt dataset.

100-bootstrap Validation Erorr (Q²) of the PLS models of Selected Feature
Subsets by GAFEAT-PLS from Randomized HIVrt Dataset for Different

Randomization Trials

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

10 20 30 40 50 All

Number of Selected Features by GAFEAT-PLS

Q²

Randomized 1

Randomized 2

Randomized 3

Randomized 4

Randomized 5

Randomized 6

Randomized 7

Randomized 8

Randomized 9

Randomized 10

Original Data

Figure 9.11 100-bootstrap Validation Errors (Q2) of the PLS Models of Selected Feature

Subsets by GAFEAT-PLS from the Randomized HIVrt Dataset for Different
Randomization Trials

 183

Quality of the Fit (R²) of the PLS models of Selected Feature Subsets by
GAFEAT-PLS from Randomized HIVrt Dataset for Different Randomization

Trials

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 All

Number of Selected Features by GAFEAT-PLS

R²

Randomized 1

Randomized 2

Randomized 3

Randomized 4

Randomized 5

Randomized 6

Randomized 7

Randomized 8

Randomized 9

Randomized 10

Original Data

Figure 9.12 Quality of the Fit (R2) of the PLS Models of Selected Feature Subsets by
GAFEAT-PLS from the Randomized HIVrt Dataset for Different Randomization Tests

It appears from the Figures 9.11 and 9.12 that in each randomization test the

randomized data give much higher Q2 and much lower R2 values than those of the

original data. The hypothesis testing results based on R2 and Q2 are presented in Tables

9.13 and 9.14, respectively. Z score and P value represent the test statistics and its

probability that is the smallest probability leading to rejection of the null hypothesis,

respectively.

Table 9.13 Standard One-Tail Hypothesis Testing of GAFEAT-PLS on the HIVrt Dataset
Based on R2

Number of
Selected
features

Original Data
Mean of the

Randomization
Trials

Std. Dev. of the
Randomization

Trials
Z score P value

10 0.8712 0.5929 0.0754 3.6903 0.0001
20 0.9142 0.7535 0.0579 2.7733 0.0028
30 0.9362 0.7895 0.0453 3.2417 0.0006
40 0.9379 0.7929 0.0524 2.7699 0.0028
50 0.9299 0.7923 0.0546 2.5203 0.0059
All 0.8129 0.5648 0.0596 4.1616 0.0000

 184

Table 9.14 Standard One-Tail Hypothesis Testing of GAFEAT-PLS on the HIVrt Dataset
Based on Q2

Number of
Selected
features

Original Data
Mean of the

Randomization
Trials

Std. Dev. of the
Randomization

Trials
Z score P value

10 0.1858 0.6228 0.1408 -3.1033 0.0010
20 0.1593 0.6179 0.1878 -2.4419 0.0073
30 0.1851 0.7852 0.2780 -2.1587 0.0154
40 0.1969 0.8510 0.3219 -2.0319 0.0211
50 0.1915 0.9347 0.2366 -3.1419 0.0008
All 0.3368 1.2436 0.2219 -4.0862 0.0000

Based on the P values of the test statistics, it can be concluded with a 90 percent of

confidence that GAFEAT-PLS models on original datasets give consistently higher R2

and lower Q2 than those of GAFEAT-PLS models obtained on the ten different

randomized datasets.

9.7 Computational Evaluation of the Implicit Nonlinear GAFEAT-PLS

It is worth mentioning that PLS model is a linear while the SVM model is non-

linear. If the relationship between the predictor data (X) and response data (Y) is linear,

then it is expected that nonlinear model (SVM) will converge to a linear model. However,

almost all of the real datasets (i.e., such as QSAR datasets used in this dissertation)

exhibit moderate nonlinear characteristics. Since PLS is a linear model, GAFEAT-PLS

selects feature subsets based on a linear criterion, even though the dataset has some

nonlinear characteristics. These feature subsets selected by GAFEAT-PLS may also

contain some nonlinear characteristics depending on the dataset under scrutiny. These

nonlinear characteristics cannot be taken into consideration by GAFEAT-PLS, since the

PLS algorithm only models linear relationships. Depending on the existing nonlinearities

in the selected feature subsets, the SVM regression models sometimes may perform

better than PLS. It is expected that if PLS regression could also model for nonlinearities,

 185

its performance will be similar to that of the SVM model. This issue is addressed by

applying the INLR method proposed in [192] on the Lombardo and HIVrt datasets. The

INLR method has been explained in the section 9.1.5.

9.7.1 The Lombardo dataset

Lombardo dataset originally had 62 compounds and 694 descriptive features (see

section 7.2). First, the squares of the features were added into the Lombardo dataset and

the total number of features at the onset of the analysis became 1388. The expanded

Lombardo dataset has been pre-processed with StripMinerTM in order to remove non-

changing, highly correlated (%95 and above) and the 4σ outlier features. After pre-

processing, 442 descriptive features remained in the expanded Lombardo dataset (241

original features and 241 squared features).

The StripMiner [4] program is then employed to construct PLS and SVM

predictive regression models of the expanded Lombardo dataset consisting of 442

features. The obtained PLS and SVM regression models are validated based on 100-

bootstrapping samples by leaving out 6 molecules in the validation set each time. These

validation results are presented in the Table 9.15.

 Table 9.15 100-bootstrap Validation of the Expanded Lombardo Full Dataset

Training Error Validation Error Learning Models r2 R2 q2 Q2
PLS 0.9315 0.9315 0.2595 0.2595
SVM 0.9482 0.9404 0.2798 0.2802

 186

GAFEAT-PLS is applied to the expanded Lombardo dataset to select a good

subset with the minimum number of descriptive features. The same parameter set listed in

the Table 9.4 is used for GAFEAT-PLS. GAFEAT-PLS is run to select 10, 20, 30, 40,

and 50 features from the expanded Lombardo dataset with 442 features. Each selected

feature subset is modeled by the PLS and SVM regression in the StripMiner [4] and are

further validated with 100-boostrapping samples by leaving 56 molecules in training set

and 6 molecules in the validation set. These feature subset validation results for the PLS

and SVM regression models are presented in the Tables 9.16 and 9.17, respectively.

Table 9.16 100-bootstrap the Expanded Lombardo Feature Subset Validation with PLS
Regression

r2 R2 q2 Q2

10 0.9122 0.9122 0.1710 0.1729
20 0.9794 0.9794 0.0511 0.0513
30 0.9840 0.9840 0.0570 0.0571
40 0.9877 0.9877 0.0559 0.0572
50 0.9890 0.9890 0.0544 0.0567

Number of
Selected
Features

Training Error Validation Error

Table 9.17 100-bootstrap the Expanded Lombardo Feature Subset Validation with SVM
Regression

r2 R2 q2 Q2

10 0.9320 0.9309 0.1922 0.1951
20 0.9859 0.9855 0.0565 0.0569
30 0.9913 0.9911 0.0591 0.0593
40 0.9888 0.9875 0.0532 0.0548
50 0.9934 0.9928 0.0504 0.0521

Number of
Selected
Features

Training Error Validation Error

 187

Figure 9.13 shows the number of selected features from the expanded Lombardo

dataset by GAFEAT-PLS versus the 100-bootstrap validation errors of the PLS and SVM

regression models of the corresponding selected feature subsets in terms of Q2 statistics.

The PLS and SVM regression models with the selected features are significantly more

predictive than those models with all features. Here, although feature subsets with 20, 30,

40, and 50 features give almost similar validation error, it is seen that the feature subset

with 20 features is the best subset since its validation error is relatively lower and

contains less number of features when compared with other feature subsets.

100-bootstrap Validation Error (Q2) of PLS and SVM Models of
Selected Feature Subsets by GAFEAT-PLS from the Expanded

Lombardo Dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

10 20 30 40 50 All

Number of selected features by GAFEAT-PLS

Q2

 Q² PLS
 Q² SVM

Figure 9.13 100-bootstrap Validation Errors of the PLS and the SVM Regression Models

of Selected Feature Subsets by GAFEAT-PLS from the Expanded Lombardo Dataset

 188

9.7.2 The HIVrt dataset

HIVrt dataset originally had 64 compounds and 620 descriptive features (see

section 7.3). First, the squares of the features were added into the HIVrt dataset and the

total number of features became 1240. The expanded HIVrt dataset has been pre-

processed in order to remove non-changing, the highly correlated (%95 and above) and

the 4-sigma outlier features. After pre-processing, 369 descriptive features remained in

the HIVrt dataset (197 original features and 172 squared features).

The StripMiner [4] program is employed to construct PLS and SVM predictive

regression models of the expanded HIVrt dataset containing 369 features. The obtained

PLS and SVM models are validated based on 100-bootstrapping samples by leaving out 6

molecules in the validation set each time. These validation results are presented in the

Table 9.18.

 Table 9.18 100-bootstrap Validation of the Expanded HIVrt Full Dataset

Training Error Validation Error Learning Models r2 R2 q2 Q2
PLS 0.8103 0.8103 0.3326 0.3349
SVM 0.9319 0.9215 0.3546 0.3546

GAFEAT-PLS is applied to the expanded HIVrt dataset to select a good feature

subset with the minimum number. The same parameter set listed in the Table 9.4 is used

for GAFEAT-PLS. GAFEAT-PLS is used to select 10, 20, 30, 40, and 50 features from

the expanded HIVrt dataset with 369 features. Each selected feature subset is modeled by

the PLS and SVM regression methods, and these models are further validated with 100-

 189

boostrapping samples. These feature subset validation results for the PLS and the SVM

regressions are presented in the Tables 9.19 and 9.20, respectively.

Table 9.19 100-bootstrap the Expanded HIVrt Feature Subset Validation with PLS

r2 R2 q2 Q2

10 0.8805 0.8805 0.1581 0.1610
20 0.9149 0.9149 0.1337 0.1347
30 0.9366 0.9366 0.1073 0.1089
40 0.9272 0.9272 0.1401 0.1437
50 0.9336 0.9336 0.1157 0.1204

Number of
Selected
Features

Training Error Validation Error

Table 9.20 100-bootstrap the Expanded HIVrt Feature Subset Validation with SVM

r2 R2 q2 Q2

10 0.8976 0.8976 0.1937 0.1957
20 0.9252 0.9200 0.1652 0.1690
30 0.9554 0.9521 0.1336 0.1371
40 0.9416 0.9366 0.2072 0.2128
50 0.9464 0.9406 0.1855 0.1901

Number of
Selected
Features

Training Error Validation Error

Figure 9.14 shows the number of selected features from the expanded HIVrt

dataset by GAFEAT-PLS versus the 100-bootstrap validation errors of the PLS and SVM

regression models of the corresponding selected feature subsets in terms of Q2 statistics.

The PLS and SVM regression models with the selected features are significantly more

predictive than those models with all features. Here, it is seen that the feature subset with

30 features is the best subset since whose validation error is the lowest (also relatively

lowest) when compared with other feature subsets.

 190

 100-bootstrap Validation Error (Q2) of PLS and SVM Models of
Selected Feature Subsets by GAFEAT-PLS from the Expanded HIVrt

Dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

10 20 30 40 50 All

Number of selected features by GAFEAT-PLS

Q2

 Q² PLS
 Q² SVM

Figure 9.14 100-bootstrap Validation Errors of the PLS and the SVM Regression Models

of Selected Feature Subsets by GAFEAT-PLS from the Expanded HIVrt Dataset

9.7.3 Comparisons of GAFEAT-PLS and Implicit Nonlinear GAFEAT-PLS

Like multiple regression models, PLS models give a linear relationship between X

and Y data. However, almost all of the real datasets (i.e. such as QSAR datasets used in

this dissertation) exhibit nonlinear characteristics in some degree. A wide degree of non-

linearity (from mild to severe) may exist between sets of variables, and the mildest non-

linearities can be modeled by quadratic polynomials [195]. Berglund et al. point out that

if a dataset has mild non-linear characteristics, the INLR method works well, and if non-

linearities are more severe than quadratically polynomial, they cannot be modeled by the

INLR method [195].

GAFEAT-PLS feature selection method integrated with the INLR method has

been applied to the Lombardo and HIVrt datasets in sections 9.7.1 and 9.7.2, respectively.

 191

The comparisons of GAFEAT-PLS feature selection method without and with the INLR

method are presented for the Lombardo and HIVrt datasets in Figures 9.15 and 9.16,

respectively. It is clearly seen from these computational results that the INLR models

perform better than the PLS models on the datasets with all features (without feature

selection). As we previously pointed out that if the PLS regression is able to model the

nonlinearities, and then its performance will be similar to that of the SVM model. This

can be apparently seen from the Lombardo dataset. The performances of the PLS and

SVM regression models with feature subsets selected by GAFEAT-PLS from the

expanded Lombardo dataset give very similar prediction error in terms of Q2 statistics

calculated based on 100 bootstrap sample (see Figure 9.15-A). These results confirm that

the Lombardo dataset has mild non-linear characteristics, which can be modeled by

quadratic polynomials.

100-bootstrap Validation Error (Q2) of PLS and SVM Models of
Selected Feature Subsets by GAFEAT-PLS from Lombardo Dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

10 20 30 40 50 All

Number of Selected Features by GAFEAT-PLS

Q2

 Q² PLS
 Q² SVM

(A)

100-bootstrap Validation Error (Q2) of PLS and SVM Models of Selected
Feature Subsets by GAFEAT-PLS from the Expanded Lombardo

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

10 20 30 40 50 All

Number of selected features by GAFEAT-PLS

Q2

 Q² PLS
 Q² SVM

(B)

Figure 9.15 Lombardo Dataset (A) GAFEAT-PLS (B) GAFEAT-PLS with the INLR
Method

 192

The results of the HIVrt dataset show that the HIVrt dataset has more severe non-

linearities than quadratically polynomial, and they cannot be modeled by the INLR

method totally (see Figure 9.16). As mentioned in the section 7.3 the HIVrt dataset is a

more non-linear dataset that contains 64 molecules representing five structural classes of

reverse transcriptase inhibitors. Although the INLR method helps improving the

predictive quality of the PLS models, there are more non-linearities remained as a noise.

This can be seen from Figure 9.16 that there are some discrepancies between

performances of the PLS and SVM regression models.

 100-bootstrap Validation Error (Q2) of PLS and SVM Models of
Selected Feature Subsets by GAFEAT-PLS from the Expanded HIVrt

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

10 20 30 40 50 All
Number of selected features by GAFEAT-PLS

Q2

 Q² PLS
 Q² SVM

(A)

100-bootstrap Validation Error (Q2) of PLS and SVM Models of
Selected Feature Subsets by GAFEAT-PLS from the HIVrt Dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

10 20 30 40 50 All
Number of selected features by GAFEAT-PLS

Q2

 Q² PLS
 Q² SVM

(B)

Figure 9.16 HIVrt Dataset (A) GAFEAT-PLS (B) GAFEAT-PLS with the INLR Method

Computational results show that GAFEAT-PLS is able to selected good feature

subsets that result more predictive models than that of full dataset. The integration of the

INLR method with GAFEAT-PLS further improves the quality of the feature subsets by

taking into consideration mild non-lineraties in the datasets.

 193

9.8 Convergence of GAFEAT-PLS

The effectiveness of GAFEAT-PLS is demonstrated on real QSAR (HIVrt and

Lombardo) datasets. The feature subsets selected by GAFEAT-PLS apparently lead to

more predictive models with fewer features than the models that incorporate all features.

Although GAFEAT-PLS efficiently and effectively explores a large feature space and

finds good predictive feature subsets based on a defined criterion, it cannot be known

whether the features subsets are optimal (the best) for the criterion used. The only way to

be sure of the convergence of GAFEAT-PLS would be to enumerate and evaluate all the

possible PLS models. Since the whole search space in a feature subset selection problem

with T features is 2T, an exhaustive search is not applicable to the studied QSAR datasets

that have over 200 features. Even though the number of features to be selected is

predefined in GAFEAT-PLS, the optimal feature subset of size N chosen from a total of

T features can be found by enumerating and testing all possibilities, which requires

)!NT(!N
!T

N
T

−
=



 PLS models to be evaluated. This is also prohibitively expensive in

computing time when T becomes larger. For instance, if T = 100, and N = 20, the number

of models evaluated will be 5.35983E+20.

Instead of enumerating all possible subsets for the QSAR datasets, the

convergence of GAFEAT-PLS is tested by using the subsets of features selected by

GAFEAT-PLS. Since GAFEAT-PLS uses a cost function based on R2, which is similar

to that of the best subsets regression method, the best subset regression method can be

used to test the convergence of GAFEAT-PLS.

The best subsets regression is a way to select a group of "best subsets" for further

analysis by selecting the smallest subset that fulfills certain statistical criteria (e.g.

 194

Mallow’s Cp statistic, adj.R2, RMSE). The subset model may actually estimate the

regression coefficients and predict future responses with smaller variance than the full

model using all predictors [206]. In the best subsets regression method, all possible

regressions are performed, and the highest R2 at each model size is recorded. It is then

possible to explore the trade-offs between model fit and size by plotting this information.

However, R2 always increases with the size of the subset [126]. For instance, the best

regression model with 5 features will always have a higher R2 than that of the best model

with 4 features. Therefore, R2 is a useful criterion when comparing linear regression

models of the same size. In this situation, choosing the linear regression model with the

highest R2 is equivalent to choosing the model with the smallest sum of square of error

(SSE). The adjusted R2 (adj.R2) is more appropriate when comparing linear regression

models with different number of features since adj.R2 adjusts (penalizes) for the number

of predictors (features) in the model [126]. The formula for adj.R2 is defined by

∑

∑

=

=

−−

−−
−=

n

1i

2
i

n

1i

2
ii

2

)1n()yy(

)pn()ŷy(
1R.adj ,

where n is the number of data points and p is the number of predictors in the model. In

this case, choosing the linear regression model with the highest adj.R2 is equivalent to

choosing the model with the smallest mean square error (MSE). The best subset

regression method becomes intractable due to the exponential growth of the number of

possible subsets when the number of features becomes large. Minitab, a statistical

program, can perform the best subsets regression for small size of regression problems

(up to 20 features). The S-PLUS statistical program performs All-Subset Regressions by

using leaps and bounds method [207] up to 30 features.

 195

It can be hypothesized that a feature subset with size N selected by GAFEAT-PLS

from a dataset with T features is a good feature subset if and only if it has no feature

subsets performing better than itself and the N is less than or equal to the size of the best

feature subset for the dataset with T features.

Using the adj.R2 as a feature selection criterion, the best subsets regression of

Minitab release 12.2 and all-subsets regression of S-PLUS 4.5 are used to evaluate

feature subsets selected by GAFEAT-PLS from the Lombardo and HIVrt datasets up to 30

features. It has been found that no subsets of those subsets with up to 20 features selected

by GAFEAT-PLS performed better than the original feature subsets based on the adj.R2.

This results are consistent with GAFEAT-PLS feature selection analysis applied on the

HIVrt and Lombardo datasets since the size of the optimal feature subsets for both

datasets are greater than 20.

As an example to this experiment, the results of a feature subset with 20 features

selected by GAFEAT-PLS from the Lombardo dataset are presented in Figure 9.17 in

which the adj.R2 and RMSE of the best 5 models of each dimensionality versus

dimensionality are plotted. It can be clearly seen from Figure 9.17 that the best

dimensionality is 20, which means that none of the 1,048,575 evaluated feature subsets

performed better than the original subset selected by GAFEAT-PLS.

If GAFEAT-PLS had not been able to convergence to a good feature subset there

would have been a dimensionality less than 20. In order to demonstrate this case, 20

features are randomly selected from the Lombardo dataset and the best subset regression

is applied to this feature subset. The results of the best subset regression are presented in

 196

the Figure 9.18. It is apparently seen that the best dimensionality for the random feature

subset is 10, which is less 20 features.

Adjusted R² versus Dimensionality

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20

Dimensionality

Adj. R²

(A)

Root Mean Square Error (RMSE) versus Dimensionality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Dimensionality

RMSE

(B)

Figure 9.17 The Best Subset Regression Results of the Subset with 20 Features Selected
by GAFEAT-PLS from the Lombardo Dataset (A) Adj.R2 versus Dimensionality (B)

RMSE versus Dimensionality

Adjusted R² versus Dimensionality

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

Dimensionality

Adj. R²

(A)

Root Mean Square Error (RMSE) versus Dimensionality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Dimensionality

RMSE

(B)

Figure 9.18 The Best Subset Regression Results of the Subset with 20 Features
Randomly Selected from the Lombardo Dataset (A) Adj.R2 versus Dimensionality (B)

RMSE versus Dimensionality

 197

The other well-known feature selection criterion for linear regression is the

Mallow’s Cp [125]. The Mallow's Cp statistic also measures how well a model fits data,

but with a penalty for adding extra independent variables. Since predicted values

obtained from a subset regression model are biased, the mean square error of prediction

consists of two components: the variance of prediction arising from estimation, and a bias

arising from the deletion of variables. Mallow’s Cp statistics is defined as

)np2(
2̂

SSEp
Cp −+

σ
=

where 2σ̂ is the estimate of the variance of the random error, which is calculated from

the full regression model. The expected value of the Cp is p when there is no bias in the

model. Therefore, it is wanted to select a model in which the value of Cp is close to the

number of terms, including the constant term, in the model.

Using the Mallow’s Cp statistic as a feature selection criterion, the best subsets

regression of Minitab release 12.2 and all-subsets regression of S-PLUS 4.5 are also used

to evaluate feature subsets selected by GAFEAT-PLS from the Lombardo and HIVrt

datasets up to 30 features. It has been found that no subsets of those subsets (with up to

20 features) selected by GAFEAT-PLS performed better than the original feature subsets

based on the Mallow’s Cp statistic. As an example to this computational experiment, the

Cp plots of a subset with 20 features selected by GAFEAT-PLS and a subset with 20

feature randomly selected from the Lombardo dataset are presented in Figures 9.19-A

and 9.19-B, respectively. The values of Cp of the best 5 models of each dimensionality

versus dimensionality are plotted. It can be clearly seen from Figure 9.19-A that the best

dimensionality for the subset of GAFEAT-PLS is 20 based on Cp criterion, which means

 198

that none of feature subsets are performed better than the original subset selected by

GAFEAT-PLS. The best dimensionality for the randomly subset selected subset is 7.

Cp versus Dimensionality
The Subset with 20 features selected by GAFEAT-

PLS from the Lombardo Dataset

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Dimensionality

Cp

(A)

Cp versus Dimensionality
The Subset with 20 Features Randomly Selected

from the Lombardo Dataset

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Dimensionality

Cp

(B)

Figure 9.19 The Best Subset Regression Results Cp versus Dimensionality (A) the
Subset with 20 Features Selected by GAFEAT-PLS from the Lombardo Dataset (B) the

Subset with 20 Features Randomly Selected from the Lombardo Dataset

GAFEAT-PLS was executed to select 10, 20, 30, 40, and 50 features from the

HIVrt and Lombardo datasets in order to find the most informative subsets with the

minimum number of features. Therefore, the obtained best subsets with minum number

of features are relative to the number of GAFEAT-PLS runs carried out for the datasets.

Hovewer, it is always possible to zoom in to determine the exact subset with minimum

number of features. Our experiments show that even though the selected feature subsets

consist of more features than the fine-tuned (the actual optimal) feature subsets, the

predictive performance of the models were not effected severely. GAFEAT-PLS feature

selection on the expanded Lombardo dataset in section 9.5.6 is a example since the size

 199

of the optimal feature subset is 20 but subsets with sizes of 20, 30, 40, and 50 features

also give close prediction error (Q2) based on a 100 bootstrap validation. All-subsets

regression of S-PLUS 4.5 are used to evaluate the subset with 30 features selected by

GAFEAT-PLS from the expanded Lombardo dataset based on both adj.R2 and Mallow’s

Cp criteria. These results are presented in the Figure 9.20. It can be clearly seen from

Figures 9.20-A and 9.20-B that even though a lower dimensional regression models

exists based on both adj.R2 and the Mallow’s Cp criteria, their performances are very

close to each other.

Dimensionality

C
p

5 10 15 20 25 30

0
5

10
15

20
25

30

Cp versus Dimensionality

(A)

Dimensionality

A
dj

. R
²

0 5 10 15 20 25 30

40
50

60
70

80
90

10
0

Adjusted R² versus Dimensionality

(B)

Figure 9.20 The Best Subset Regression Results of the Subset with 30 Features Selected
by GAFEAT-PLS from the Expanded Lombardo Dataset (A) Cp versus Dimensionality

(B) Adj.R2 versus Dimensionality

 200

 CHAPTER 10

10GAFEAT-LL: Genetic Algorithms with Local

Learning for Feature Selection

The traditional approach to supervised learning is global modeling describing the

relationship between the input and output with an analytical function over the whole

input domain [208]. For example, neural networks, Support Vector Machines, and PLS

are global modeling techniques. One of the advantages of the global models is that after

deriving a global model, there is no need to save the training data for prediction;

therefore, it requires a small memory for the prediction on new data. The other advantage

is that global models are very fast in the prediction phase. On the other hand, the global

modeling approaches are typically slow and analytically intractable when they are

applied to the highly nonlinear and complex input/output relations [208]. For this reason,

local modeling has become an alternative to global modeling in the research community.

Local modeling is a divide-and-conquer strategy, which is based on attacking a complex

problem by dividing the problem into simpler problems whose solutions can be combined

to obtain a solution to the original problem [208].

In this chapter, a local learning algorithm is integrated as an evaluation function

into the genetic algorithm with the unique list representation developed in section 8.3.3.

First of all, some information about the local learning algorithm is presented. Second, a

literature review related to feature selection with evolutionary algorithms with LL is

presented. In later sections, the details of the proposed Genetic Algorithm with Local

 201

Learning (GAFEAT-LL) and its performance on two QSAR datasets (the Lombardo and

HIVrt) will be presented.

10.1 Local Learning

Memory-based learning refers to a family of algorithms that process training data

until a query needs to be answered [142]. These algorithms store all of the training data in

a memory and wait for a query to do further calculation to answer this particular query.

The query is answered by finding relevant training data points. Relevance is generally

calculated using a distance function. This type of learning is also called Lazy Learning

[142]. Some of the memory-based learning algorithms find a set of nearest neighbors

around a query point and answer the query by fitting a parametric function in its

neighborhood. This type of memory-based learning is referred to as Local Learning (LL)

[142, 144, 209]. Nearest neighbor, weighted average, and locally weighted regression are

examples to local learning methods [142]. These methods, unlike to global modeling

methods such as PLS, are 'locally parametric' and do not produce a 'visible' model of the

data. Instead they make predictions based on local models generated on a query point

basis. Although LL is a non-parametric regression technique, it does have several

'parameters' that must be tuned in order to obtain good predictive results.

 One of the most important is the notion of neighborhood. Given a query point q, it

needs to be decided which training cases will be used to fit a local polynomial around the

query point. This procedure involves defining a distance metric over the multi-

dimensional space defined by the input variables. With this metric, a distance function

can be specified, which allows finding the nearest training cases of any query point.

 202

There are other issues to be addressed, such as weighting of the variables within the

distance calculations (feature weighting) and the number of training cases (L) that enters

the local fit (known as the bandwidth selection problem, generally chosen as 3 or 5)

[144]. After determining the bandwidth specification, it is required to weight the

contribution of the training cases within the bandwidth. This is usually accomplished by a

weighting function or kernel function. Weighing the data can be viewed as re-

emphasizing the relevant instances and de-emphasizing irrelevant instances. In other

words, nearer instances to the query point contribute more into local fit [142, 144].

In this dissertation, the distance function is the Euclidean distance. A distance

d(xi,q) between the query point q and a data point i (between their input features) is

defined by

)qx()qx()qx()q,x(d iTi
N

1j

2
j

i
j

i −−=−= ∑
=

where, N is the number of features and i
jx is the jth component of the vector xi.

The weighting function (kernel function) K() is defined by

θ−= d)d(K

where d is the distance d(xi,q) and θ is a user defined weight factor that allow the user to

influence the contribution of the nearer data points (θ > 0). A value of 1.3 for the

parameter θ ?is used for all calculations in this dissertation. The outcome (qŷ) for a query

point q is estimated by local learning model from the target outcomes of its L nearest

neighbor (iy) according to:

 203

∑

∑

=

== L

1i

i

L

1i

i
i

q

))q,x(d(K

))q,x(d(Ky
ŷ

A value 5 for the parameter L (the number of training cases that enters the local fit) is

used for all calculations in this dissertation.

10.2 Feature Selection with Evolutionary Algorithms and Local

Learning

Embrechts et al. [144, 209] propose a novel approach for the supervised training of

regression systems. The proposed method, Supervised Scaled Regression Clustering with

Genetic Algorithms (SSRCGA), relies on a GA supervised clustering algorithm with

local learning. The chromosomes of the GA represent the coordinates of the clusters. For

instance, if the dimensionality of the data is D and number of predetermined cluster

centers is K, the number of genes in a chromosomes will be D*K. The GA is a floating-

point GA that uses arithmetic crossover and uniform mutation [8]. SSRCGA tries to

minimize a fitness function F, which is defined by

RE M)NJ(F α+γ±= ,

where J is the classical cluster dispersion measure, γ is a “dummy cluster” penalty/bonus

factor, EN is the number of empty clusters, RM is the penalty factor proportional to the

total regression error, and α is the regularization parameter. The SSRCGA starts out with

a relatively large predetermined number of clusters and allows the number of clusters to

vary by adding a penalty/bonus term for empty clusters. A cluster is empty when it has no

members. Empty clusters do not effectively contribute to cluster dispersion and it

 204

depends on the particular application whether a penalty or bonus is the more appropriate

approach. For each cluster, local learning method is applied to calculate the outcome. The

clustering itself is influenced by the results of the local learning model)M(R . The

regularization parameterα can be problem dependent and needs to be specified by the

user or determined by trial and error. In SSRCGA, the local learning is supervised in the

sense that the prediction quality is incorporated as a penalty term added to the cost

function of the genetic algorithm. Adaptive dimension scaling is also added into the

SSRCGA. This is implemented by adding a number of genes, representing scaling

factors, into the chromosomes corresponding to the dimensionality (D). Each dimension

(feature) is multiplied by its corresponding scaling factor in order to discourage irrelevant

features. The sum of the scaling factors is normalized to unity to prevent a trivial

solution. The GA adaptively adjusts appropriate scaling factors and the most relevant

features for the dataset under scrutiny are the ones with the larger scaling factor. The

SSRCGA has advantages compared to traditional neural network approaches. These

advantages are: i) the simplicity of the idea; ii) the flexibility of its implementation by

allowing the user to modify the cost function and the penalty terms (e.g. the

misclassification error measure); iii) a straightforward methodology for feature selection

via scaling; and iv) a good general performance, even for high-dimensional datasets. On

the other hand, the SSRCGA has some disadvantages compared to traditional neural

network approaches. These disadvantages are: i) possible excessive demands on

computing time and memory; ii) poor scaling of the speed of the algorithm with the

number of data points; and iii) the ad-hoc problem choice for problem dependent

regularization parameters.

 205

Zheng and Tropsha [100] developed an automated variable selection method for

quantitative structure-activity relationship (QSAR) based on an integration of k-Nearest

Neighbor (kNN) principle into simulated annealing as a cost function. The basic idea

behind this method (kNN QSAR) is that similar compounds display similar profiles of

pharmacological activities. The activity of each compound is predicted as an average

activity of k most chemically similar compounds from the dataset. The kNN QSAR

algorithm searches for both optimum k value and an optimal subset with a predefined

number of descriptors, which together build a QSAR model with the best predictive

ability in terms of leave-one-out prediction error. Since the number of features is

predefined, it needs to be optimized by setting to different values in several different

runs. They demonstrated the robustness of the QSAR models by comparing them to those

derived from randomized datasets.

K-nearest-neighbors (kNN) methods are commonly used for analyzing datasets that

cannot be assumed to have a normal distribution [210]. Pure kNN classifiers cannot

perform well on datasets, which have noisy input data, outliers, and correlated features.

Weighting the feature axes according to their relative importance can help kNN

classifiers. If there is a priori knowledge of the relative contribution of the each feature,

then features can be weighted accordingly. If there is no such prior information available,

it is impossible to weight features. Genetic algorithms have been widely used to learn

feature weights for the kNN classifiers [210-212]. In these implementations, the length

of a chromosome is equal to the number of features in the dataset. A chromosome is a

vector consisting of a real-valued weight for each of the features. The GA is used to

 206

assign weights to features in order to discourage the irrelevant and weakly relevant

features and reward the relevant features.

Raymer et al. [210, 211] have applied genetic algorithms to the problem of feature

selection. In their work, the genetic algorithm performs feature selection and extraction in

combination with a k-nearest-neighbors (kNN) classifier, which is used to evaluate the

classification performance of each subset features selected by the GA. The GA is used to

perform simultaneous feature selection and feature extraction. The GA uses both a

feature weight vector and a masking (selection) vector on its chromosomes. A feature

selection vector consists of a single bit for each feature, with a ‘1’ indicating that the

feature is included in the kNN classification, and a ‘0’ indicating that it is omitted. A

feature weight vector consists of a real-valued weight for each of the features. Each

feature is multiplied by both its weight and mask values prior to classification by the

kNN classifier. One of the advantages of this method is that the GA can test the effect of

eliminating a feature completely from the classification by setting its mask value to zero

without reducing the associated feature weight to zero. This prevents losing the

previously learned weights and makes the search efficient and faster.

10.3 The Proposed GAFEAT-LL

In the proposed Genetic Algorithm with Local Learning (GAFEAT-LL), local

learning algorithm is integrated as a cost function into the GA with unique list

representation developed in section 8.3.3. Given a dataset containing T features, each

chromosome represents a legal subset containing N features. In this representation, a

chromosome is as an integer array with size N, where N is the predetermined number of

 207

features to be selected out of total T features. Each gene represents the number for

corresponding feature in the dataset. The details of the genetic algorithm are explained in

section 9.3. The only difference now is the cost function where PLS regression is

replaced with the Local Learning algorithm explained in section 10.1.

10.4 Computational Evaluation of GAFEAT-LL

Two QSAR datasets (the Lombardo and HIVrt datasets), which were used to

evaluate the performance of GAFEAT-PLS, have been used to evaluate the performance

of GAFEAT-LL. The first step is to use objective feature selection (e.g. removing non-

changing, highly inter-correlated (cousin features), and 4σ outlier features) to remove

features that contain redundant, minimal or distorted information. StripMiner [4] is

employed to perform the objective feature selection.

Since GAFEAT-LL conducts a search for a good feature subset using the local

learning algorithm itself as part of the fitness function, the accuracy estimation of the LL

models can be overly optimistic (over-fitting). Therefore, another predictive methods,

namely the SVM regression is used for constructing predictive models for the selected

subsets by GAFEAT-LL and accuracy estimations of SVM regression models (validation

errors) are compared with that of LL models. PLS regression method is also used for

modeling the selected feature subset to see how selected subsets effects the linear

method.

 208

10.4.1 The Lombardo Dataset

After pre-processing, 309 descriptive features remained in the Lombardo dataset. The

StripMiner [4] program is employed to construct predictive models (the LL, PLS, and

SVM models) of the Lombardo dataset with 309 original features, and these models are

validated based on 100-bootstrap samples by leaving out 6 molecules in the validation

sets. The LL models described in this dissertation used five nearest neighbors and weight

factor θ is set to 1.3 for all calculations. The PLS regression models used 4 latent

variables for all calculations. These validation results are presented in the Table 10.1.

Table 10.1 100-bootstrap Validation of Full Lombardo Dataset with PLS, SVM, and LL

Training Error Validation Error Learning Models r2 R2 q2 Q2
LL 0.5563 0.5531 0.3665 0.3689

PLS 0.9228 0.9228 0.2853 0.2858
SVM 0.9846 0.9822 0.3098 0.3105

GAFEAT-LL is applied on the Lombardo dataset to select a good feature subset with a

minimum number of features. The parameters of GAFEAT-LL are presented in the Table

10.2. Since the number of feature to be selected is predetermined, a several of GAFEAT-

LL runs are performed to find the most informative feature subset with the minimum

number of descriptive features. GAFEAT-LL is run to select 10, 20, 30, 40, and 50

features from the Lombardo dataset with 309 features. Each selected feature subset is

modeled by the LL, PLS, and SVM algorithms and these models are further validated

with 100-bootsrap samples by leaving 56 molecules in training sets and 6 molecules in

 209

the validation sets. The feature subset validation results for the LL, PLS, and SVM

models are presented in the Tables 10.3, 10.4, and 10.5, respectively.

Table 10.2 Parameters of GAFEAT-LL for the Lombardo Dataset

Population
Size

Crossover
Probability

Mutation
Probability

Maximum # of
Generation

Number of Latent
Variables

100 0.90 0.02 1000 4

of Bootstraps in the

Fitness Evaluation
of Molecules

in the Training Set
#of Molecules

in the Validation Set
Learning Weight

Factor (θ)
20 56 6 1.3

Table 10.3 LL 100-bootstrap Validation Results for Feature Subsets Selected by
GAFEAT-LL from the Lombardo Dataset

r2 R2 q2 Q2

10 0.8957 0.8878 0.0981 0.1037
20 0.8645 0.8605 0.1178 0.1204
30 0.8867 0.8782 0.0962 0.1031
40 0.8968 0.8770 0.0998 0.1140
50 0.8884 0.8775 0.1212 0.1301

Training Error Validation ErrorNumber of
Selected
Features

Table 10.4 PLS 100-bootstrap Validation Results for Feature Subsets Selected by
GAFEAT-LL from the Lombardo Dataset

r2 R2 q2 Q2

10 0.8284 0.8284 0.2267 0.2275
20 0.8619 0.8619 0.2140 0.2157
30 0.8933 0.8933 0.2185 0.2223
40 0.9272 0.9272 0.1964 0.1984
50 0.9171 0.9171 0.2191 0.2235

Training ErrorNumber of
Selected
Features

Validation Error

 210

Table 10.5 SVM 100-bootstrap Validation Results for Feature Subsets Selected by
GAFEAT-LL from the Lombardo Dataset

r2 R2 q2 Q2

10 0.8371 0.8363 0.3008 0.3016
20 0.8494 0.8430 0.2412 0.2426
30 0.8851 0.8781 0.2392 0.2392
40 0.9197 0.9116 0.2237 0.2255
50 0.904 0.8906 0.2278 0.2291

Number of
Selected
Features

Training Error Validation Error

Figure 10.1 shows the number of features selected by GAFEAT-LL versus 100-

bootstrap validation errors of the LL, PLS, and SVM models of the corresponding

selected feature subsets in terms of Q2 statistics. Although the performances of the SVM

and PLS regression models constructed with the feature subsets selected by GAFEAT-LL

are similar and better than the dataset with all features, the performances of the LL

models are significantly better than the PLS and SVM regression models; indicating

possibly a bias (i.e., overfitting) in the selected features.

100-bootstrap Validation Error (Q2) of LL, SVM, and PLS Models of
Selected Feature Subsets by GAFEAT-LL from the Lombardo Dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

10 20 30 40 50 All
Number of Selected Features by GAFEAT-LL

Q2

 Q² SVM
 Q² PLS
 Q² LL

Figure 10.1 100-bootstrap Validation Errors (Q2) of the LL, SVM, and PLS Models of

Selected Feature Subsets by GAFEAT-LL from the Lombardo Dataset

 211

It has been hypothesized that a good feature subset selected by GAFEAT-LL should give

similar results for the SVM regression. Since LL can be thought of as a non-linear

method, GAFEAT-LL feature selection method selects features describing the non-linear

relationship existing in the dataset. The results show that the PLS models have a slightly

better performance than the SVM models, although the PLS regression is a linear

modeling approach. These results may indicate that GAFEAT-LL feature selection

method simply overfit the data. Therefore, a randomization test will be applied to

GAFEAT-LL feature selection in section 10.5 in order to verify whether the feature

subsets selected by GAFEAT-LL model noise instead of the underlying information in

the dataset.

10.4.2 The HIVrt Dataset

After pre-processing, 230 descriptive features left in the HIVrt dataset. The

StripMiner [4] program is employed to construct predictive models (the LL, PLS and

SVM models) of the HIVrt dataset with 230 original features. The obtained LL, PLS and

SVM models are further validated based on 100-bootstrapping samples by leaving 58

molecules in training set and 6 molecules in the validation sets. These validation results

are presented in the Table 10.6.

Table 10.6 100-bootstrap Validation of HIVrt Full Dataset with LL, PLS, and SVM

Training Error Validation Error Learning Models r2 R2 q2 Q2
LL 0.6233 0.6228 0.4956 0.5045

PLS 0.8129 0.8129 0.3354 0.3368
SVM 0.9276 0.9159 0.3690 0.3718

 212

GAFEAT-LL is applied to select a good feature subset with the minimum number

of features on the HIVrt dataset. The parameters of GAFEAT-LL used for the HIVrt

dataset is presented in the Table 10.7. Several different GAFEAT-LL runs were executed

in order to find the most informative feature subset with the minimum number of

features.

Table 10.7 Parameters of GAFEAT-LL for the HIVrt Dataset

Population
Size

Crossover
Probability

Mutation
Probability

Maximum # of
Generation

Number of Latent
Variables

100 0.90 0.02 1000 4

of Bootstraps in the

Fitness Evaluation
of Molecules

in the Training Set
#of Molecules

in the Validation Set
Learning Weight

Factor (θ)
20 58 6 1.3

GAFEAT-LL was executed to select 10, 20, 30, 40, and 50 features from the

HIVrt dataset with 230 features. Each selected feature subset is modeled by the LL, PLS,

and SVM algorithms and these models are further validated with 100-boostrap samples

by leaving 58 molecules in training set and 6 molecules in the validation set. The feature

subset validation results for the LL, PLS, and SVM models are presented in the Tables

10.8, 10.9, and 10.10, respectively.

 213

Table 10.8 LL 100-bootstrap Validation Results for Feature Subsets Selected by
GAFEAT-LL from the HIVrt Dataset

r2 R2 q2 Q2

10 0.7877 0.7827 0.1827 0.1828
20 0.8278 0.8252 0.1663 0.1686
30 0.8141 0.8126 0.2042 0.2044
40 0.8123 0.8122 0.2097 0.2111
50 0.7845 0.7802 0.2162 0.2172

Training Error Validation ErrorNumber of
Selected
Features

Table 10.9 PLS 100-bootstrap Validation Results for Feature Subsets Selected by
GAFEAT-LL from the HIVrt Dataset

r2 R2 q2 Q2

10 0.5073 0.5073 0.6319 0.6526
20 0.6522 0.6522 0.5041 0.5275
30 0.7049 0.7048 0.4887 0.5030
40 0.7458 0.7458 0.4121 0.4248
50 0.7043 0.7043 0.4494 0.4682

Training ErrorNumber of
Selected
Features

Validation Error

Table 10.10 SVM 100-bootstrap Validation Results for Feature Subsets Selected by
GAFEAT-LL from the HIVrt Dataset

r2 R2 q2 Q2

10 0.9706 0.9692 0.2232 0.2237
20 0.9640 0.9611 0.1973 0.2019
30 0.9814 0.9789 0.2107 0.2119
40 0.9281 0.9219 0.2224 0.2224
50 0.9981 0.9981 0.1766 0.1841

Number of
Selected
Features

Training Error Validation Error

Figure 10.2 shows the number of selected features by GAFEAT-PLS versus the 100-

bootstrap validation errors of the LL, PLS and SVM models of the corresponding

selected feature subsets in terms of Q2 statistics.

 214

100-bootstrap Validation Error (Q2) of LL, SVM, and PLS Models
of Selected Feature Subsets by GAFEAT-LL from HIVrt Dataset

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

10 20 30 40 50 All
Number of Selected Features by GAFEAT-LL

Q2

 Q² PLS
 Q² SVM
 Q² LL

Figure 10.2 100-bootstrap Validation Errors (Q2) of the LL, SVM, and PLS Models of

Selected Feature Subsets by GAFEAT-LL from the Lombardo Dataset

It is clear from these results that PLS regression method is not able to model the

dataset with the features selected by GAFEAT-LL, most likely because PLS is a linear

regression method. On the other hand, the performances of the SVM and LL models with

the selected feature subsets are very similar and better than the models with the all

features. Before, analyzing the performance of GAFEAT-LL in detail, the validation of

GAFEAT-LL is performed with a randomization test in the following section.

 215

10.5 Computational Validation of GAFEAT-LL with a Randomization

Test

As explained in section 9.4.4, like GAFEAT-PLS, the validation (robustness) of

GAFEAT-LL method is examined with a standard hypothesis testing where the results of

a real dataset is compared to those of the dataset with randomly shuffled response values.

The randomization test validation of GAFEAT-LL is performed on the Lombardo and

HIVrt datasets.

10.5.1 The Lombardo Dataset

Ten randomization trials were performed in which the biological activity data was

randomized with respect to the dataset. A full GAFEAT-LL feature selection method is

performed for each randomized dataset. Randomization of data, GAFEAT-LL feature

selection, and subsequent model evaluation are performed to assess the statistical validity

of QSAR models and GAFEAT-LL feature selection method. Each selected feature

subset is modeled using the LL algorithm (with 5 nearest neighbors and weighting factor

θ 1.3) and the predictive quality of the resulting models is measured based on 100

bootstrap samples leaving 56 molecules in the training set and 6 molecules in the

validation set. Figures 10.3 and 10.4 show the results of randomization test of GAFEAT-

LL feature selection method on the Lombardo dataset.

 216

100-bootstrap Validation Erorr (Q²) of the LL models of the Selected
Feature Subsets by the GAFEAT-LL from Randomized Lombardo

Dataset for Different Randomization Trials

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10 20 30 40 50 All
Number of Selected Features by GAFEAT-LL

Q²

Randomized 1

Randomized 2

Randomized 3

Randomized 4

Randomized 5

Randomized 6

Randomized 7

Randomized 8

Randomized 9

Randomized 10

Original Data

Figure 10.3 100-bootstrap Validation Errors (Q2) of the LL Models of Feature Subsets

Selected by GAFEAT-LL from Randomized Lombardo Dataset for Different
Randomization Trials

Quality of the Fit (R²) of the LL models of the Selected Feature Subsets
by GAFEAT-LL from the Randomized Lombardo Dataset for Different

Randomization Trials

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 All
Number of Selected Features by GAFEAT-LL

R²

Randomized 1

Randomized 2

Randomized 3

Randomized 4

Randomized 5

Randomized 6

Randomized 7

Randomized 8

Randomized 9

Randomized 10

Original Data

Figure 10.4 Quality of the Fit (R2) of the LL Models of Selected Feature Subsets by
GAFEAT-LL from the Randomized Lombardo Dataset for Different Randomization

Trials

 217

It appears from Figures 10.3 and 10.4 that in each randomization test the randomized data

give much higher Q2 and much lower R2 values than those of the original data. As

explained in section 9.4.4, the validation (robustness) of GAFEAT-LL method is carried

out by standard hypothesis testing where the results for the real dataset are compared to

those of randomized datasets. The hypothesis testing results based on R2 and Q2 are

presented in Tables 10.11 and 10.12, respectively. Z score and P value represent the test

statistics and its probability (i.e., the smallest probability leading to rejection of the null

hypothesis) respectively.

Table 10.11 Standard One-Tail Hypothesis Testing of GAFEAT-LL on the Lombardo
Dataset Based on R2

Number of
Selected
Features

Original Data
Mean of the

Randomization
Trials

Std. Dev. of the
Randomization

Trials
Z score P value

10 0.8878 0.4627 0.0826 5.1452 ~0
20 0.8605 0.4731 0.0845 4.5863 0.0000
30 0.8782 0.4856 0.1067 3.6780 0.0001
40 0.877 0.4447 0.0733 5.8971 ~0
50 0.8775 0.3602 0.1297 3.9897 0.0000
All 0.5531 -0.2297 0.1568 4.9926 0.0000

Table 10.12 Standard One-Tail Hypothesis Testing of GAFEAT-LL on the Lombardo
Dataset Based on Q2

Number of
Selected
Features

Original Data
Mean of the

Randomization
Trials

Std. Dev. of the
Randomization

Trials
Z score P value

10 0.1037 0.5396 0.0860 -5.0674 ~0
20 0.1204 0.5365 0.0706 -5.8936 ~0
30 0.1031 0.5091 0.0981 -4.1384 0.0000
40 0.114 0.5636 0.0904 -4.9722 0.0000
50 0.1301 0.6397 0.1310 -3.8899 0.0001
All 0.3689 1.2343 0.1469 -5.8916 ~0

 218

Based on P values, it can be concluded with 90 percent confidence that GAFEAT-

LL models on original datasets give consistently higher R2 and lower Q2 than those of

GAFEAT-LL models obtained on the ten different randomized datasets.

10.5.2 The HIVrt Dataset

Ten randomization trials were performed in which the biological activity data was

randomized with respect to the dataset. A full GAEFAT-LL feature selection and

modeling method is performed for each randomized HIVrt dataset. Each selected feature

subset is modeled using the LL algorithm (with 5 nearest neighbors and weighting factor

θ 1.3) and the predictive quality of the resulting models is measured based on 100

bootstrap samples leaving 6 molecules in the validation set. Figures 10.5 and 10.6 show

the results of randomization testing of the GAFEAT-LL feature selection method on the

HIVrt dataset.

 219

100-bootstrap Validation Erorr (Q²) of the LL models of Selected Feature
Subsets by GAFEAT-LL from Randomized HIVrt Dataset for Different

Randomization Trials

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

10 20 30 40 50 All

Number of Selected Features by GAFEAT-LL

Q²

Randomized 1

Randomized 2

Randomized 3

Randomized 4

Randomized 5

Randomized 6

Randomized 7

Randomized 8

Randomized 9

Randomized 10

Original Data

Figure 10.5 100-bootstrap Validation Errors (Q2) of the LL Models of Selected Feature

Subsets by GAFEAT-LL from the Randomized HIVrt Dataset for Different
Randomization Trials

Quality of the Fit (R²) of the LL models of Selected Feature Subsets by
GAFEAT-LL from Randomized HIVrt Dataset for Different

Randomization Trials

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 All
Number of Selected Features by GAFEAT-LL

R²

Randomized 1

Randomized 2

Randomized 3

Randomized 4

Randomized 5

Randomized 6

Randomized 7

Randomized 8

Randomized 9

Randomized 10

Original Data

Figure 10.6 Quality of the Fit (R2) of the LL Models of Selected Feature Subsets by
GAFEAT-LL from the Randomized HIVrt Dataset for Different Randomization Tests

 220

It appears from the Figures 10.5 and 10.6 that in each randomization test the randomized

data give much higher Q2 and much lower R2 values than those of the original data. The

hypothesis testing results based on R2 and Q2 are presented in the Tables 10.13 and 10.14,

respectively. Z score and P value represent the test statistics and its probability (i.e., the

smallest probability leading to rejection of the null hypothesis).

Table 10.13 Standard One-Tail Hypothesis Testing of GAFEAT-LL on the HIVrt Dataset
Based on R2

Number of
Selected
Features

Original Data
Mean of the

Randomization
Trials

Std. Dev. of the
Randomization

Trials
Z score P value

10 0.7827 0.3863 0.1240 3.1962 0.0007
20 0.8252 0.3675 0.0965 4.7457 0.0000
30 0.8126 0.3513 0.0814 5.6676 ~0
40 0.8122 0.2933 0.1104 4.7011 0.0000
50 0.7802 0.2391 0.1037 5.2153 ~0
All 0.6228 -0.1796 0.1509 5.3174 ~0

Table 10.14 Standard One-Tail Hypothesis Testing of GAFEAT-LL on the HIVrt Dataset
Based on Q2

Number of
Selected
Features

Original Data
Mean of the

Randomization
Trials

Std. Dev. of the
Randomization

Trials
Z score P value

10 0.1828 0.5846 0.1095 -3.6697 0.0001
20 0.1686 0.5977 0.0740 -5.8005 ~0
30 0.2044 0.6214 0.0829 -5.0303 ~0
40 0.2111 0.6657 0.0967 -4.7023 0.0000
50 0.2172 0.7215 0.0968 -5.2069 ~0
All 0.5045 1.1475 0.1177 -5.4650 ~0

Based on P values, it can be concluded with a 90 percent of confidence that

GAFEAT-LL models on the original dataset give consistently higher R2 and lower Q2

than those of GAFEAT-LL models obtained from ten different randomized datasets.

 221

10.6 Final Remarks on GAFEAT-LL Feature Selection

The results of the randomization tests of GAFEAT-LL on the Lombardo and HIVrt

datasets showed the robustness of the LL models constructed with the feature subsets

selected by GAFEAT-LL as well as the robustness of the GAFEAT-LL feature selection

method. Computational results of GAFEAT-LL on the Lombardo and HIVrt datasets

showed that GAFEAT-LL was able to selected good feature subsets that resulted more

predictive models than that of that of the model with all features.

The results of the Lombardo dataset in section 10.4.1 showed that the PLS models

of the feature subsets selected by GAFEAT-LL performed slightly better than those of

the SVM models, and that the performances of the LL models were significantly better

than the PLS and SVM regression models. According to the performance of GAFEAT-

LL on HIVrt dataset, the SVM and LL models performed similar but the performances of

the PLS models were significantly worse than those of the SVM and LL models. This

result would be expected since LL method can be thought of as a non-linear method and

the GAFEAT-LL selects feature subsets describing the non-linear characteristics of the

dataset. It is also known that the molecules in the HIVrt dataset are clustered in to five

classes; therefore, this dataset is known to more non-linear. The basic idea behind the

local learning method is that structurally similar compounds should have similar

biological activities [100]. Based on the performances of GAFEAT-LL on the Lombardo

and HIVrt datasets, it can be concluded that GAFEAT-LL feature selection method

works better in datasets in which several classes of chemical compounds are encountered.

Since the PLS and LL algorithms are used as a fitness function by GAFEAT-PLS

and GAFEAT-LL, respectively, the prediction errors of the resulting PLS and LL models

 222

can be overly optimistic (e.g. bias to the specific method). For this reason, all three

methods are compared based on the performance of the SVM models on the feature

subsets selected by the corresponding feature selection method. It is also worth

mentioning that GAFEAT-PLS selects features based on a linear criterion, since PLS

regression is a linear method. On the other hand, GAFEAT-LL selects features based on a

non-linear criterion. If the relationship between the selected features and response

variable is linear, then it is expected that SVM regression, which is a nonlinear model,

will converge to the linear model.

Comparison of the feature selection methods on the Lombardo and HIVrt datasets

based on the best SVM models are presented in the Tables 10.15 and 10.16, respectively.

The results were calculated based on 100 bootstrap samples. GAEFAT-PLS with INLR

method performs better than the GAFEAT-PLS and GAFEAT-LL methods. Although the

performance of GAFEAT-LL on the Lombardo dataset is significantly worse than

GAFEAT-PLS methods, its performance on the HIVrt dataset is comparable to GAFEAT-

PLS. In conclusion, based on results of the Lombardo and HIVrt datasets, three feature

selection methods (GAFEAT-PLS, GAFEAT-PLS with INLR method, and GAFEAT-

LL) worked well for selecting feature subsets that results more predictive models than

that of the model with all features.

 223

Table 10.15 Comparison of the Feature Selection Methods on the Lombardo Dataset
Based on the Best SVM Models

r2 R2 q2 Q2

GA-PLS 30 0.9810 0.9795 0.0719 0.0733
GA-PLS with INLR 50 0.9934 0.9928 0.0504 0.0521
GA-LL 40 0.9197 0.9116 0.2237 0.2255

Number of Selected
Features

Training Error Validation ErrorFeature Selection
Method

Table 10.16 Comparison of the Feature Selection Methods on the HIVrt Dataset Based on
the Best SVM Models

r2 R2 q2 Q2

GA-PLS 30 0.9753 0.9749 0.1456 0.1470
GA-PLS with INLR 30 0.9554 0.9521 0.1336 0.1371
GA-LL 50 0.9981 0.9981 0.1766 0.1841

Feature Selection
Method

Number of Selected
Features

Training Error Validation Error

 224

CHAPTER 11

11Conclusions and Scope of Future Work

The contributions of this dissertation can be categorized into four main areas:

• The design of novel evolutionary algorithms for solving the Traveling Salesman

Problem.

• The design of novel evolutionary algorithms for feature selection problem: i)

genetic algorithm with floating-point representation, ii) genetic algorithm with

unique list representation iii) evolutionary programming algorithm with unique

list representation.

• A novel correlation based feature selection method (GAFEAT) and its

hybridization with the sensitivity analysis.

• Applications of the developed evolutionary algorithms to predictive data mining

problems, especially in drug design (QSAR) problems.

Novel genetic algorithms for the TSP with a modified Partially Mapped

Crossover (PMX) operator were developed where the concept of PMX is carried further.

The PMX was originally proposed by Goldberg and Lingle [1]. An algorithm for the TSP

based on evolutionary programming was also developed. The proposed evolutionary

programming algorithm, Evolutionary Programming with Constant Population (EPC), is

different from the standard evolutionary programming algorithm in the sense that EPC

always keeps a constant number of individuals in the population similar to genetic

 225

algorithms and that EPC uses a selection scheme (i.e., simulated annealing) with a

mutation operation.

Novel genetic algorithms for feature selection problem based on floating-point

and unique list representations were developed. An evolutionary programming algorithm

for feature selection was also developed based on the unique list representation. The

computational results have demonstrated that the proposed evolutionary algorithms are

capable of converging to optimal or near optimal solutions depending on the specific

objective function criterion used. The proposed evolutionary algorithms for feature

selection require a predetermined number of descriptive features as an input. The idea

behind the fixing the number of features to be selected for each run of an evolutionary

algorithm is to make search efficient. The proposed evolutionary algorithms can also be

allowed to determine this parameter automatically (optimal dimension), but this strategy

can potentially cause the algorithm to convergence prematurely. Since each dimension

(subset size) has its global optima (the best subset), and the search spaces of the subsets

are not equally represented in the total search space, the evolutionary algorithms have the

tendency to converge to subsets with a few or with more features.

GAFEAT, a novel GA-based feature selection methodology, is based on the

correlation matrix. The GA determines which descriptive features have the best

correlation with the response, but have a relatively weak inter-correlation. The

advantages of GAFEAT are (i) the generally robust subset of selected features, and (ii)

that it scales linearly with the number of descriptive features (with only a weak

dependency on the number of molecules in the dataset). The disadvantages of GAFEAT

are the ad-hoc heuristics for determining the control parameters in the algorithm, and the

 226

user generally does not know the right number of selected features. For QSAR studies

selecting about 40 features, a conservative number, ensures that important features are

included in the model.

A hybrid feature selection method, which combines GAFEAT selection method

with neural network sensitivity analysis, was also proposed. The drawback of the neural

network sensitivity analysis methodology is that the method is time consuming and does

not scale-up well to very large data sets. The consideration of computational efficiency

for large datasets favors a combination of methods. Applying GAFEAT for coarse feature

selection followed by a sensitivity-based fine-tuning for feature selection demonstrated

indeed that GAFEAT was picking features with valuable information content.

GAFEAT is independent on the learning algorithm and is used as a filter to

conduct a search for a good feature subset using a correlation-based evaluation function.

GAFEAT can be thought of as a filter method, which selects features based on the

training data alone and does not take the biases of modeling algorithms into

consideration. The main disadvantage of filter methods is that they totally ignore the

effect of the selected feature subset on the performance of the learning algorithm. In

order to take into account the biases of the modeling algorithms, Partial Least Square

(PLS) regression has been integrated into the GA as a fitness function.

A typical QSAR predictive data-mining problem dataset is characterized by a

large number of highly inter-correlated descriptive features (300-1000) for a relatively

small number of molecules. PLS regression is a useful tool to model datasets in which the

number of features exceeds the number of observations and/or a high level of multi-

collinearity among those features exists. GAFEAT-PLS feature selection method was

 227

applied onto two QSAR datasets (the Lombardo and HIVrt datasets) in order to analyze

its performance. GAFEAT-PLS was able to identify feature subsets for models with good

prediction. GAFEAT and GAFEAT-PLS choose feature subsets based on linear criteria.

If a dataset has underlying linear characteristics, the selected subsets by GAFEAT-PLS

produce better predictive linear (e.g. PLS) as well as non-linear models (e.g. SVM).

However, generally real datasets (e.g. QSAR datasets) can exhibit significant nonlinear

characteristics, which cannot be properly accounted for with linear methods. Most of the

real datasets exhibit nonlinear characteristics to some degree. A wide degree of non-

linearity (from mild to severe) may exist between sets of variables, and the mildest non-

linearities can be modeled by quadratic polynomials [195]. Berglund and Wold [192]

proposed a simple way to develop nonlinear PLS models (Implicit Nonlinear Latent

variable Regression) within the linear PLS framework. They point out that if a dataset

has mild non-linear characteristics, the INLR method works well. Therefore, the INLR

method was combined with the GAs for feature selection. The results of GAFEAT-PLS

with the INLR showed that by introducing the quadratic non-linearities into the linear

PLS framework, the selected feature subset resulted more predictive models.

If the non-linearities cannot be accounted for with a quadratic polynomial, the

INLR approach fails. The severe non-linearities make data look discontinuous and

clustered, and the data cannot be modeled by any single continuous model [195]. In order

to take into the consideration more complex non-linearities in the feature selection phase,

GA algorithms combined with a Local Learning algorithm (GAFEAT-LL). Local

modeling is a divide-and-conquer strategy, which is based on attacking a complex

problem by dividing the problem into simpler problems whose solutions is combined to

 228

obtain a solution to the original problem [208]. Computational results have shown that

the GAFEAT-LL feature selection method performed better for clustered datasets with

many separate classes. It is worth noting that the selected feature subsets by GAFEAT-

LL produced better predictive model with the non-linear modeling methods (e.g. SVM)

since GAFEAT-LL selects the features based on non-linear criterion and linear model can

only model the linear relationship. In this dissertation, the aim was to find good feature

subsets with lower dimensionality, which gave similar results for the linear (e.g. PLS)

and non-linear (e.g. SVM) predictive models. If the relationship between the predictor

data (X) and response data (Y) is linear, then it is expected that non-linear model (SVM)

can converge to a linear model. Therefore, the feature subsets selected by GAFEAT-PLS

and GAFEAT-PLS with INLR method produced a better model with linear and non-

linear methods.

The GA feature selection could be implemented with other methods, which could

take into consideration the more severe non-linearities in data. One of these methods is

the GIFI approach [188, 195, 213]. In the GIFI approach, each variable of the X data is

divided into a number of bins, and each bin represents a new variable. In other words,

each original variable is represented by a set of new variables. This new representation

allows for a non-linear representation for the corresponding original variable. This

approach can be used for the GAFEAT-PLS to select appropriate feature subsets to

model non-linear datasets. A second approach is the combination of the GAs feature

selection with non-linear methods such as kernel PLS and SVM regression. In this

approach, it is essential to develop an efficient algorithm, which can be trained very fast,

 229

since GAs are population-based algorithms and can be slow due to the large number of

required objective function evaluation.

 230

CITED LITERATURE

[1] D. E. Goldberg and J. Lingle, R., "Alleles, Loci, and the Traveling Salesman
Problem," presented at an International Conference on Genetic Algorithms and
Their Applications, J. J. Grefenstette Eds., Lawrence Erlbaum, Hillsdale, New
Yersey, pp. 154-159, Pittsburg, PA, 1985.

[2] C. Hansch, A. Leo, D. Hoekman, and P. Li, "A Comprehensive Approach to

Structure-Activity Relationships," presented at Solute/Solvent Interactions, pp.
105-137, Aberdeen Proving Ground, Maryland, 1992.

[3] M. J. Embrechts, F. Arciniegas, M. Ozdemir, C. M. Breneman, K. P. Bennett, and

L. Lockwood, "Bagging Neural Network Sensitivity Analysis for Feature
Reduction in QSAR Problems," presented at IJCNN-IEEE International Joint
Conference in Neural Networks (July 14-19), IEEE Press, vol. 4, pp. 2478-2482,
Washington, D.C., 2001.

[4] M. J. Embrechts, F. Arciniegas, M. Ozdemir, and M. Momma, "Scientific Data

Mining with StripMinerTM.," presented at 2001 SMCia Mountain Workshop on
Soft Computing in Industrial Applications (June 25-27), M. J. Embrechts, H. F.
VanLandingham, and S. Ovaska Eds., IEEE Press, pp. 13-16, Blacksburg -
Virginia, 2001.

[5] M. Ozdemir, M. J. Embrechts, F. Arciniegas, C. M. Breneman, L. Lockwood, and

K. P. Bennett, "Feature Selection for In-silico Drug design Using Genetic
Algorithms and Neural Networks," presented at IEEE SMCia-01 Mountain
Workshop on Soft Computing in Industrial Applications, M. J. Embrechts, H. F.
VanLandingham, and S. Ovaska Eds., IEEE Press, pp. 53-57, Blacksburg -
Virginia, 2001.

[6] R. Kohavi and G. H. John, "The Wrapper Approach," presented at Feature

Selection for Knowledge Discovery and Data Mining, H. Liu and H. Motoda
Eds., Kluwer Academic Publishers, pp. 33-50, 1998.

[7] R. Leardi, R. Boggia, and M. Terrile, "Genetic Algorithms as a Strategy for

Feature Selection," Journal of Chemometrics, vol. 6, pp. 267-281, 1992.

[8] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3

ed. New York: Springer-Verlag, 1996.

[9] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning. New York: Addison-Wesley Publishing Company, Inc., 1989.

[10] H. P. Schwefel, Evolution and Optimum Seeking. New York: John Willey and

Sons, 1995.

 231

[11] C. M. Fonseca and P. J. Fleming, "Genetic Algorithms for Multi-objective

Optimization: Formulation, Discussion and Generalization," presented at the Fifth
International Conference on Genetic algorithms, S. Forrest Eds., Morgan
Kaufmann, pp. 141-153, San Mateo, California, 1993.

[12] K. Deb, "Genetic Algorithms for Function Optimization," in Genetic Algorithms

and Soft Computing, F. Herrera and J. L. Verdegay, Eds.: Physica-Verlag, pp. 1-
29, 1995.

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated

Annealing," Science, vol. 220, 4598, pp. 671-680, 1983.

[14] E. H. L. Aarts and J. Korst, Simulated Annealing and Boltzman Machines: A

Stochastic Approach to Combinatorial and Neural Computing. New York: John
Willey and Sons, 1989.

[15] E. H. L. Aarts, J. H. M. Korst, and P. J. M. Van Laarhoven, "Simulated

Annealing," in Local Search in Combinatorial Optimization, E. Aarts and K.
Lenstra, Eds. New York: John Wiley and Sons, pp. 91-120, 1997.

[16] F. Glover, "Heuristics for Integer Programming using Surrogate Constraints,"

Decision Sciences, vol. 8, pp. 156-166, 1977.

[17] F. W. Glover and M. Laguna, Tabu Search: Kluwer Academic Publishers, 1997.

[18] L. J. Fogel, "A Retrospective View and Outlook on Evolutionary Algorithms," in

Computational Intelligence: Theory and Applications, 5th Fuzzy Days, B. Reusch,
Ed. Berlin: Springer-Verlag, pp. 337-342, 1997.

[19] P. Field, "A Multary Theory for Genetic Algorithms: Unifying Binary and

Nonbinary Problem Representations," Ph.D. Thesis, Department of Computer
Science. London: University of London, 1995.

[20] A. J. F. Van Rooji, L. C. Jain, and R. P. Johnson, Neural Networks Training

Using Genetic Algorithms. New York: World Scientific, 1996.

[21] M. D. Vose, The Simple Genetic Algorithm: Foundations and Theory. Cambridge,

Massachussets: MIT Press, 1999.

[22] D. B. Fogel, Evolutionary Computation: Towards a New Philosophy of Machine

Intelligence. Piscataway, New Jersey: IEEE Pres, 1995.

[23] D. Dasgupta and Z. Michalewicz, "Evolutionary Algorithms: An Overview," in

Evolutionary Algorithms in Engineering Applications, D. Dasgupta and Z.
Michalewicz, Eds. New York: Springer, pp. 3-28, 1997.

 232

[24] J. R. Koza, "Genetic Programming: A Paradigm for Genetically Breeding
Populations of Computer Programs to Solve Problems," Stanford University
Computer Science Department STAN-CS-90-1314, June 1990.

[25] D. B. Fogel, "The Advantages of Evolutionary Computation," in Bio-Computing

and Emergent Computation, D. Lundh, B. Olsson, and A. Narayanan, Eds.
Singapore: World Scientific Press, pp. 1-11, 1997.

[26] D. H. Wolpert and W. G. Macready, "No Free Lunch Theorems for Search," The

Santa Fe Institute SFI-TR-95-02-010, 1995.

[27] H. P. Schwefel, "Advantages (and disadvantages) of evolutionary computation

over other approaches," in Evolutionary Computation 1. Basic Algorithms and
Operators, T. Back, D. B. Fogel, and M. Michalewicz, Eds. Philadelphia: Institute
of Physics Publishing, pp. 20-22, 2000.

[28] S. Lin and B. W. Kernighan, "An Effective Heuristic Algorithm for the Traveling-

Salesman Problem," Operations Research, vol. 21, 2, pp. 498-516, 1973.

[29] L. Kucera, Combinatorial Algorithms. Philadelphia: Adam Hilger, 1990.

[30] D. Johnson and L. A. McGeoch, "The Traveling Salesman Problem: a Case

Study," in Local Search in Combinatorial Optimization, E. Aarts and K. Lenstra,
Eds. New York: John Wiley and Sons, pp. 215-310, 1997.

[31] E. H. L. Aarts and H. P. Stehouwer, "Neural Networks and the Traveling

Salesman Problem," presented at Proceedings of the International Conference on
Artificial Neural Networks, S. Gielen and B. Kappan Eds., Springer, pp. 950-955,
Berlin, 1993.

[32] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,

Michigan: University of Michigan Press, 1975.

[33] M. Melanie, An Introduction to Genetic Algorithms. Cambridge, Massachusetts:

The MIT Press, 1996.

[34] D. E. Goldberg, "Real-coded Genetic Algorithms, Virtual Alphabets, and

Blocking," Complex Systems, 5, pp. 139-167, 1991.

[35] N. N. Schraudolph and R. K. Belew, "Dynamic Parameter Encoding for Genetic

Algorithms," Machine Learning, vol. 9, pp. 9-21, 1992.

[36] S. Rana and D. Whitley, "Bit Representations with a Twist," presented at the

International Conference on Genetic Algorithms, T. Baeck Eds., Morgan
Kaufmann, 1997.

 233

[37] S. Rana and D. Whitley, "Search, Binary Representations, and Counting Optima,"
presented at the Workshop on Evolutionary Algorithms, Springer, vol. 111, pp.
177-190, New York, 1999.

[38] D. Whitley and S. Rana, "Representation, Search, and Genetic Algorithms,"

presented at the 14th National Conference on Artificial Intelligence (AAAI-97),
AAAI Press/MIT Press, 1997.

[39] A. H. Wright, "Genetic Algorithms for Real Parameter Optimization," in

Foundations of Genetics Algorithms, G. J. E. Rawlins, Ed. San Mateo, California:
Morgan Kaufman, pp. 205-221, 1991.

[40] D. Whitley, Starkweather, and D. Shaner, "Scheduling Problems and Traveling

Salesman: Genetic Edge Recombination Operator," presented at the Third
International Conference on Genetic Algorithms, J. Schaffer Eds., Morgan
Kauffman Publishers, pp. 133-140, Los Altos, CA, 1989.

[41] L. J. Eshelman, "Genetic Algorithms," in Evolutionary Computation 1. Basic

Algorithms and Operators, T. Back, B. D. Fogel, and T. Michalewicz, Eds. New
York: Institute of Physics Publishing, pp. 64-80, 2000.

[42] A. E. Eiben, "Multi-parent Recombination," in Handbook of Evolutionary

Computation, T. Bäck, D. Fogel, and M. Michalewicz, Eds.: IOP Publishing Ltd.
and Oxford University Press, 1998.

[43] A. E. Eiben, P. E. Raué, and Z. S. Ruttkay, "Genetic Algorithms with Multi-

parent Recombination," presented at the 3rd Conference on Parallel Problem
Solving from Nature, Y. Davidor, H.-P. Schwefel, and R. Männer Eds., pp. 78-87,
1994.

[44] A. E. Eiben, C. H. M. Van Kemenade, and K. J.N., "Orgy in the Computer: Multi-

parent Reproduction in Genetic Algorithms," presented at the 3rd European
Conference on Artificial Life, F. Moran, A. Moreno, J. J. Merelo, and P. Chacon
Eds., Springer-Verlag, pp. 934-945, 1995.

[45] A. E. Eiben and V. K. C. H. M., "Diagonal Crossover in Genetic Algorithms for

Numerical Optimization," Journal of Control and Cybernetics, vol. 26, 3, pp.
447-465, 1997.

[46] J. Lis and A. E. Eiben, "A Multisexual Genetic Algorithm for Multicriteria

Optimization," presented at the 4th IEEE Conference on Evolutionary
Computation, pp. 59-64, 1997.

[47] D. A. Van Veldhuizen and G. B. Lamont, "Multiobjective Evolutionary

Algorithms: Analyzing the State-of-the-Art," Evolutionary Computation, vol. 8, 2,
pp. 125-147, 2000.

 234

[48] K. Deb, "Introduction to Selection," in Evolutionary Computation 1: Basic

Algorithms and Operators, T. Back, B. D. Fogel, and M. Michalewicz, Eds.
Bristol, United Kingdom: Institute of Physics Publishing, pp. 166-171, 2000.

[49] A. Brindle, "Genetic Algorithm for Function Optimization," Ph.D. Thesis,

Department of Computing Science. Edmonton: University of Alberta, 1981.

[50] D. E. Goldberg, K. Deb, and B. Korb, "Do not Wory, Be Messy," presented at the

Fourth International Conference on Genetic Algorithms, R. K. Belew and L.
Booker Eds., Morgan Kaufmann Publishers, pp. 24-30, San Mateo, CA, 1991.

[51] K. A. De Jong, "Analysis of the Behavior of a Class of Genetic Adaptive

Systems," Ph.D. Thesis, Department of Computer and Communication Sciences:
University of Michigan, 1975.

[52] J. Baker, "Adaptive Selection Methods for Genetic Algorithms," presented at The

First International Conference on Genetic Algorithms and Their Applications, J. J.
Grefenstette Eds., Lawrence Erlbaum Associates (Hillsdale), pp. 101-111, 1985.

[53] D. Whitley, "The GENITOR Algorithm and Selection Pressure: Why Rank-based

Allocation of Reproductive Trials is Best," presented at the Third International
Conference on Genetic Algorithms, J. D. Schaffer Eds., Morgan Kaufmann., pp.
116-121, San Mateo, CA., 1989.

[54] L. R. Karg and G. L. Thompson, "A Heuristic Approach to Solving Travelling

Salesman Problems," Management Science, vol. 10, 2, pp. 225-248, 1964.

[55] D. J. Rozenkrantz, R. E. Stearns, and P. M. Lewis, "An Analysis of Several

Heuristics for the Traveling Salesman Problem," SIAM Journal on Computing,
vol. 6, pp. 563-581, 1977.

[56] N. J. Radcliffe and P. D. Surry, "Formal Memetic Algorithms," in Lecture Notes

in Computer Science. New York: Springer-Verlag, pp. 1-16, 1994.

[57] P. Merz and B. Freisleben, "Genetic Local Search for the TSP: New Results,"

presented at International Conference on Evolutionary Computation (ICEC 97
April 13-16), N. F. F. Ebecken Eds., Wit Press/Computational Mechanics
Publications, Boston, 1997.

[58] F. Glover, "Future Paths for Integer Programming and Links to Artificial

Intelligence," Computers and Operations Research, vol. 13, 5, pp. 533-549, 1986.

[59] M. Zachariasen and M. Dam, "Tabu Search on the Geometric Traveling Salesman

Problem," presented at Metaheuristics International Conference, I. H. Osman and
J. P. Kelly Eds., pp. 571-587, Colorado, 1995.

 235

[60] O. C. Martin and S. W. Otto, "Combining Simulated Annealing with Local Search
Heuristics," Annals of Operations Research, vol. 63, pp. 57-75, 1996.

[61] J. J. Hopfield and D. W. Thank, "Neural Computation of Decisions in

Optimization Problems," Biological Cybernetics, 52, pp. 141-152, 1985.

[62] T. Kohonen, "The Self-organizing Map," IEEE, vol. 78, 9, pp. 1464-1480, 1990.

[63] B. Fritzke and P. Wilke, "A Neural Network For the Traveling Salesman Problem

With Linear Time And Space Complexity," presented at the Internatioanal Joint
Conference on Neural Networks (IJCNN), IEEE Service Center, pp. 929-934,
Singapore, 1991.

[64] M. Dorigo and L. M. Gambardella, "Ant Colony System: A Cooperative Learning

Approach to the Traveling Salesman Problem," IEEE Transaction on
Evolutionary Computation, vol. 1, 1, 1997.

[65] M. Dorigo and L. M. Gambardella, "Ant Colonies for the Traveling Salesman

Problem," BioSystems, vol. 43, pp. 73-81, 1997.

[66] P. Jog, J. Y. Suh, and D. V. Gucht, "Parallel Genetic Algorithms Applied to the

Traveling Salesman Problem," SIAM Journal on Optimization, vol. 1, 4, pp. 515-
529, 1991.

[67] K. F. Pal, "Genetic Algorithms for the Traveling Salesman Problem Based on a

Heuristic Crossover Operation," Biological Cybernetics, 69, pp. 539-546, 1993.

[68] C. L. Valenzuela and L. P. Williams, "Improving Simple Heuristic Algorithms for

the Travelling Salesman Problem using a Genetic Algoritm," presented at the
Seventh International Conference on Genetic Algortihms, pp. 458-464, 1997.

[69] W. Lin, J. G. Delgado-frias, D. C. Gause, and S. Vassiliadis, "Hybrid Newton-

Raphson Genetic Algorithm for the Traveling Salesman Problem," Cybernetics
and Systems: An Internatonal Journal, vol. 26, pp. 387-412, 1995.

[70] S. J. Louis and G. Li, "Case Injection Genetic Algorithms for Traveling Salesman

Problems," Information Sciences, pp. 201-225, 2000.

[71] J. P. Watson, C. Ross, V. Eisele, J. Bins, C. Guerra, L. D. Whitley, and A. Howe,

"The Traveling Salesrep Problem: Edge Assembly Crossover," presented at
Parallel Problem Solving from Nature V, A. E. Eiben Eds., Springer-Verlag,
1998.

[72] V. M. Kureichick, V. V. Miagkikh, and A. P. Topchy, "Genetic Algorithm for

Solution of the Traveling Salesman Problem with New Features against
Premature Convergence," presented at ECDC - 96, Plymouth, UK, 1996.

 236

[73] I. M. Oliver, D. J. Smith, and J. R. C. Holland, "A Study of Permutation
Crossover Operators on the TSP," presented at the Second International
Conference on Genetic Algorithms and Their Applications, J. J. Grefenstette Eds.,
Lawrence Erlbaum, pp. 224-230, Hilldale, New Jersey, 1987.

[74] S. S. Lam, K. W. C. Tang, and X. Cai, "Genetic Algorithm with Pigean-hole

Coding Scheme for Solving Sequencing Problems," Applied Artificial
Intellingence, vol. 10, pp. 239-256, 1996.

[75] M. Gorges-Schleuter, "Asparagos96 and the Traveling Salesman Problem,"

presented at IEEE International Conference on Evolutionary Computation, pp.
171-174, 1997.

[76] Y. Nagata and S. Kobayashi, "Edge Assembly Crossover: A High-power Genetic

Algorithm for the Traveling Salesman Problem," presented at the ICGA'97, pp.
450-457, 1997.

[77] J. Bean, "Genetic Algorithms and Random Keys for Sequencing and

Optimization," ORSA Journal on Computing, vol. 6, 2, pp. 154-160, 1994.
[78] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design. New York:

John Willey and Son, Inc., 1997.

[79] L. Davis, "Applying Adaptive Algorithms to Epistatic Domains," presented at the

International Joint Conference on Artificial Intelligence, D. Dasgupta and Z.
Michalewicz Eds., Springer, pp. 162-164, New York, 1985.

[80] D. Whitley, Starkweather, and D. Shaner, "The Traveling Salesman and Sequence

Scheduling: Quality Solutions Using Genetic Edge Recombination," in Handbook
of Genetic Algorithms, L. Davis, Ed. New York: Van Nostrand Reinhold, pp. 350-
376, 1991.

[81] B. R. Fox and M. B. McMahon, "Genetic Operators for Sequencing Problems," in

Foundations of Genetics Algorithms, G. J. E. Rawlins, Ed. San Mateo, California:
Morgan Kaufman, pp. 284-300, 1991.

[82] D. R. Frantz, "Non-linearities in Genetic Adaptive Search," Ph.D. Thesis,

Department of Computer and Communication Sciences: University of Michigan,
1972.

[83] S. Chatterjee, C. Carrera, and L. A. Lynch, "Genetic Algorithms and Traveling

Salesman Problems," European Journal of Operational Research, vol. 93, pp.
439-450, 1996.

[84] TSPLIB, "http://softlib.rice.edu/softlib/tsplib/,"., 1995.

 237

[85] L. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through Simulated
Evolution. New York: Wiley Publishing, 1966.

[86] B. D. Fogel, "Applying Evolutionary Programming to Selected Traveling

Salesman Proplem," Cybernetics and Systems: An Internatonal Journal, vol. 24,
pp. 27-36, 1993.

[87] D. B. Fogel, "An Evolutionary Approach to the Traveling Salesman Problem,"

Biological Cybernetics, vol. 60, 2, pp. 139-144, 1988.

[88] S. Eilon, C. D. T. Watson-Gandy, and N. Christofides, "Distribution

Management: Mathematical Modeling and Practal Analysis," Operational
Research Quarterly, vol. 20, pp. 37-53, 1969.

[89] C. Guerra-Salcedo and D. Whitley, "Genetic Search for Feature Subset Selection:

A Comparison Between CHC and GENESIS," Proceedings of the Symposium on
Genetic Algorithms, 1998.

[90] S. Choenni, "On the Suitability of Genetic-based Algorithms for Data Mining,"

Nationaal Lucht- en Ruimtevaarlabaratorium National Aerospace Laboratory
NLR NLR-TP-98484, November 1998.

[91] C. J. Meneses and G. G. Grinstein, "Categorization and Evaluation of Data

Mining Techniques," presented at International Conference on Data Mining, N.
F. F. Ebecken Eds., Wit Press/Computational Mechanics Publications, pp. 54-69,
Boston, 1998.

[92] R. Kewley, M. J. Embrechts, and C. M. Breneman, "Neural Network Analysis for

Data Strip Mining Problems," in Intelligent Engineering Systems through
Artificial Neural Networks, vol. 8, C. Dagli, Ed. Nashville - Missouri: ASME
Press, pp. 391-396, 1998.

[93] C. Emmanouilidis, A. Hunter, and J. MacIntyre, "A Multi Objective Evolutionary

Setting for Feature Selection and a Commonality-Based Crossover Operator,"
presented at 2000 Congress on Evolutionary Computation, IEEE Service Center,
vol. 1, pp. 309-316, Piscataway, New Jersey., 2000.

[94] J. H. Friedman, "On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality,"

Data Mining and Knowledge Discovery., vol. 1, pp. 55-77, 1997.

[95] K. Deng and A. Moore, "On the Greediness of Feature Selection Algorithms,"

presented at International Conference of Machine Learning (ICML '98), H. J. Van
den Herik and T. Weijters Eds., Universiteit Maastricht, The Netherlands, 1998.

 238

[96] J. Devillers, "Genetic Algorithms in Computer-aided Molecular Design," in
Genetics Algorithms in Molecular Modeling, J. Devillers, Ed. San Diego:
Harcourt Brace & Company, pp. 1-35, 1996.

[97] F. Arciniegas, K. P. Bennett, C. M. Breneman, and M. J. Embrechts, "Molecular

Database Mining using Self-Organizing Maps for the Design of Novel
Pharmaceuticals," presented at Intelligent Engineering Systems Through Artificial
Neural Networks (ANNIE) Conference in Cooperation with the IEEE Neural
Network Council, C. Dagli Eds., ASME Press, vol. 10, pp. 477-482, St. Louis,
Missouri, 2000.

[98] G. Schneider, "Neural Networks are Useful Tools for Drug Design," Neural

Networks, 13, pp. 15-16, 2000.

[99] W. J. Dunn and D. Rogers, "Genetic Partial Least Squares in QSAR," in Genetic

Algorithms in Molecular Modeling, J. Devillers, Ed. New York: Academic Press,
pp. 109-129, 1996.

[100] W. Zheng and A. Tropsha, "Novel Variable Selection Quantitative Structure -

Property Relationship Approach Based on the k-Nearest-Neighbor Principle,"
Journal of Chemical Information and Computer Sciences, vol. 40, pp. 185-194,
2000.

[101] H. Kubinyu, "Variable Selection in QSAR Studies. I. An Evolutionary

Algorithm," Quant. Struct.-Act. Relat., vol. 13, pp. 285-294, 1994.

[102] H. Kubinyu, "Variable Selection in QSAR Studies. II. A Highly Efficient

Combination of Systematic Search and Evolution," Quant. Struct.-Act. Relat., vol.
13, pp. 393-401, 1994.

[103] H. Kubinyu, "Evolutionary Variable Selection in Regression and PLS Analyses,"

Journal of Chemometrics, vol. 10, pp. 110-133, 1996.

[104] P. Geladi and B. Kowalski, "Partial Least Squares Regression: A Tutorial,"

Chimica Acta, vol. 185, pp. 1-17, 1986.

[105] M. A. Sharaf, D. L. Ilman, and B. Kowalski, Chemometrics. New York: John

Willey & Sons, 1986.

[106] M. Baroni, G. Costantino, G. Cruciani, D. Riganelli, R. Valigi, and S. Clementi,

"Generating Optimal Linear PLS Estimations (GOLPE): An Advanced
Chemometric Tool for Handling 3D-QSAR Problems," Quantitative Structure-
Activity Relationship, vol. 12, pp. 9-20, 1993.

[107] S. Wold, E. Johansson, and M. Cocchi, in 3D QSAR in Drug Design: Theory,

Methods, and Applications, H. Kubinyu, Ed. Leiden: ESCOM, pp. 523-550, 1993.

 239

[108] F. Lindgren, P. Geladi, S. Rannar, and S. Wold, "Interactive Variable Selection
(IVS) for PLS. Part 1: Theory and Algorithms," Journal of Chemometrics, vol. 8,
5, pp. 349-363, 1994.

[109] G. Cruciani, S. Clementi, and M. Baroni, in 3D QSAR in Drug Design: Thoeory,

Methods, and Applications, H. Kubinyu, Ed. Leiden: ESCOM, pp. 551-564, 1993.

[110] S. Rännar, F. Lindgren, P. Geladi, and S. Wold, "A PLS Kernel Algorithm for

Data Sets with Many Variables and Fewer Objects. Part 1: Theory and
Algorithm," Journal of Chemometrics, vol. 8, 2, pp. 111-126, 1996.

[111] N. Kettanehwold, J. F. Macgregor, B. Dayal, and S. Wold, "Multivariate Design

of Process Experiments (M-Dope)," Chemometrics and Intelligent Laboratory
Systems, vol. 23, pp. 39-50, 1994.

[112] F. Lindgren, P. Geladi, A. Berglund, M. Sjöström, and S. Wold, "Interactive

Variable Selection (IVS) for PLS. Part II: Chemical Applications," Journal of
Chemometrics, vol. 9, 5, pp. 331-342, 1995.

[113] A. Ajay, "A Unified Framework for Using Neural Networks to Build QSARs,"

Journal Medicinal Chemistry, vol. 36, pp. 3565-3571, 1993.

[114] D. T. Manallack, D. D. Ellis, and D. J. Livingstone, "Analysis of Linear and

Nonlinear QSAR Data Using Neural Networks," Journal Medicinal Chemistry,
vol. 37, pp. 3758-3767, 1994.

[115] T. J. Hou, J. M. Wang, N. Liao, and X. J. Xu, "Applications of Genetic

Algorithms on the Structure-Activity Relationship Analysis of Some
Cinnamamides," Journal of Chemical Information and Computer Sciences, vol.
39, pp. 775-781, 1999.

[116] D. Liu, H. Jiang, K. Chen, and R. Ji, "A New Approach to Design of

Combinatorial Library with Genetic Algorithm Based on 3D Grid Property,"
Journal of Chemical Information and Computer Sciences, vol. 38, pp. 233-242,
1998.

[117] H. Chen, J. Zhou, and G. Xie, "PARM: A Genetic Evolved Algorithm to Predict

Bioactivity," Journal of Chemical Information and Computer Sciences, vol. 38,
pp. 243-250, 1998.

[118] B. T. Hoffman, T. Kopajtic, L. Katz, and A. H. Newman, "2D QSAR Modeling

and Preliminary Database Searching for Dopamine Transporter Inhibitors Using
Genetic Algorithm Variable Selection of Moconn Z Descriptors," Journal of
Chemical Information and Computer Sciences, vol. 43, pp. 4151-4159, 2000.

 240

[119] T. Kimura, K. Hasegawa, and K. Funatsu, "GA Strategy for Variable Selection in
QSAR Studies: GA-Based Region Selection for CoMFA Modeling," Journal of
Chemical Information and Computer Sciences, vol. 38, pp. 276-282, 1998.

[120] K. Hasegawa, T. Kimura, and K. Funatsu, "GA Strategy for Variable Selection in

QSAR Studies: Application of GA-based Region Selection to a 3D-QSAR Study
of Acetylcholinesterase," Journal of Chemical Information and Computer
Sciences, vol. 39, pp. 112-120, 1999.

[121] B. T. Luke, "Evolutionary Programming Applied to the Development of

Quantitative Structure-Activity Relationships and Quantitative Structure-Property
Relationships," Journal of Chemical Information and Computer Sciences, vol. 34,
pp. 1279-1287, 1994.

[122] C. L. Waller and M. P. Bradley, "Development and Validation of a Novel

Variable Selection Technique with Application to Multidimensional Quantitative
Structure- Activity Relationship Studies," Journal of Chemical Information and
Computer Sciences, vol. 39, 345-355, 1999.

[123] M. D. Wessel, P. C. Jurs, J. W. Tolan, and S. M. Muskal, "Prediction of Human

Intestinal Absorption of Drug Compounds from Molecular Structure," Journal of
Chemical Information and Computer Sciences, vol. 38, pp. 726-735, 1998.

[124] S. R. Johnson and P. C. Jurs, "Prediction of Acute Mammalian Toxicity from

Molecular Structure for a Diverse Set of Substituted Anilines Using Regression
Analysis and Computational Neural Networks," in Computer-Assisted Lead
Finding and Optimization, H. Van De Waterbeemd, B. Testa, and G. Folkers,
Eds. New York: Wiley-VCH, pp. 29-48, 1997.

[125] C. L. Mallows, "Some Comments on Cp," Technometric, vol. 15, pp. 661-675,

1973.

[126] S. Chatterjee, A. S. Hadi, and B. Price, Regression Analysis by Example, Third ed.

New York: Wiley Series, 2000.

[127] M. L. Thompson, "Selection of Variables in Multiple Regression. Part 1. A

Review and Evaluation," International Statistical Review, vol. 46, pp. 1-19, 1978.

[128] M. L. Thompson, "Selection of Variables in Multiple Regression. Part 2. Chosen

Procedures, Computations and Examples," International Statistical Review, vol.
46, pp. 129-146, 1978.

[129] H. Akaike, "A New Look at the Statistical Identification Model," IEEE

Transactions on Automatic Control, vol. 19, pp. 716-723, 1974.

 241

[130] G. Schwarz, "Estimating the Dimension of a Model," Annals of Statistics, vol. 6,
pp. 461-464, 1978.

[131] P. Leray and P. Gallinari, "Feature Selection with Neural Networks," the

Laboratoire d'Informatique de Paris 6. Université Pierre et Marie Curie LIP6 TR
1998-012, 1998.

[132] D. Skalak, "Prototype and Feature Selection by Sampling and Random Mutation

Hill Climbing Algorithms," presented at Eleventh International Machine Learning
Conference, Morgan Kaufmann, pp. 293-301, New Brunswick, NJ, 1994.

[133] H. Vafaie and K. De Jong, "Genetic Algorithms as a Tool for Feature Selection in

Machine Learning," presented at the 4th International Conference on Tools with
Artificial Intelligence, pp. 200-204, Arlington, VA., 1992.

[134] J. J. Grefenstette, "GENESIS: A System for Using Genetic Search Procedures,"

presented at the Conference on Intelligent Systems and Machines, pp. 161-165,
1984.

[135] L. J. Eshelman, "The CHC Adaptive Search Algorithm: How to Have Safe Search

When Engaging in Nontraditional Genetic Recombination," in Foundations of
Genetic Algorithms: Morgan Kaufmann, pp. 265-283, 1991.

[136] A. Yasri and D. Hartsough, "Toward an Optimal Procedure for Variable Selection

and QSAR Model Building," Journal of Chemical Information and Computer
Sciences, vol. 41, pp. 1218-1227, 2001.

[137] V. Vapnik, The Nature of Statistical Learning. New York: Springer, 1995.

[138] F. Z. Brill, D. E. Brown, and W. N. Martin, "Fast Genetic Selection of Features

for Neural Networks Classifiers," IEEE Transactions on Neural Networks, vol. 3,
pp. 324-328, 1992.

[139] F. M. Ham and I. Kostanic, Principles of Neurocomputing for Science and

Engineering. New York: McGraw Hill, 2001.

[140] S. Haykin, Neural Networks: A Comprehensive Foundation. Upper Saddle River,

New Jersey: Prentice-Hall, Inc., 1999.

[141] P. Werbos, "Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences,".: Harward, 1974.

[142] C. G. Atkeson, A. W. Moore, and S. Schaal, "Locally Weighted Learning,"

Artificial Intelligence Review, vol. 11, pp. 11-73, 1997.

 242

[143] L. Bottou and V. N. Vapnik, "Local Learning Algorithms," Neural Computation,
vol. 4, 6, pp. 888-900, 1992.

[144] M. J. Embrechts, D. Devogelaere, and M. Rijckaert, "Supervised Scaled

Regression Clustering: an Alternative to Neural Networks," presented at IEEE-
INNS-ENNS International Conference (IJCNN) (July, 24-27), vol. 6, pp. 571-
576, Como. Italy, 2000.

[145] A. J. Smola and B. Scholkopf, "A Tutorial on Support Vector Regression,"

NeuroCOLT2 Technical Report NC2-TR-1998-030, 1998.

[146] M. Momma and K. P. Bennett, "A Pattern Search Method for Model Selection of

Support Vector Regression," presented at SIAM International Conference on Data
Mining, Arlington, VA, 2002.

[147] K. P. Bennett, A. Demiriz, C. M. Breneman, and M. J. Embrechts, "Support

Vector Machine Regression in Chemometrics," presented at 33rd Symposium on
the Interface of Computing Science and Statistics, Interface'01: Frontiers in Data
Mining and Bioinformatics, Costa Mesa - CA, 1991.

[148] R. Collobert and S. Bengio, "Support Vector Machines for Large-Scale

Regression Problems,", IDIAP-RR-00-17, 2000.

[149] J. E. Dennis and V. J. Torczon, "Derivative-Free Pattern Search Methods for

Multidisciplinary Design Problems," presented at the 5th AIAA/
USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization (Sept. 7-9), pp. 922-932, Panama City, FL, 1994.

[150] O. Chapelle and V. N. Vapnik, "Model Selection for Support Vector Machines,"

presented at Advances in Neural Information Processing Systems, S. A. Solla, T.
K. Leen, and M. K. R. Eds., pp. 230-236, Cambridge, MA, 2000.

[151] S. Wold, A. Ruhe, H. Wold, and W. J. Dunn III, "The Collinearity Problem in

Linear Regression. The Partial Least Squares (PLS) Approach to Generalized
Inverses," SIAM Journal of Scientific Statistical Computing, vol. 5, 3, pp. 735-
743, 1984.

[152] D. Livingstone, Data Analysis for Chemists. Oxford: Oxford Science

Publications, 1995.

[153] J. M. Zurada, A. Malinowski, and A. Cloete, "Sensitivity Analysis for

Minimization of Input Dimension for Feedforward Neural Networks," presented
at IEEE International Symposium on Circuits and Systems (May 30 -June 3), vol.
6, pp. 447-450, London, 1994.

 243

[154] Y. LeCun, J. S. Denker, and S. A. Solla, "Optimal Brain Damage," presented at
Advances in Neural Information Processing Systems, D. S. Touretzky Eds.,
Morgan Kaufmann, vol. 2, pp. 598-605, San Mateo, CA., 1990.

[155] F. Arciniegas, "Feature Selection and Statistical Alternatives for Machine

Learning Applied to In-Silico Drug Design," Unpublished Ph.D. Thesis, Decision
Sciences and Engineering Systems. Troy, New York: Rensselaer Polytechnic
Institute, 2002.

[156] B. Efron, The Jackknife, the Bootstrap, and Other Resampling Plans.

Philadelphia, PA., 1982.

[157] B. Efron and R. Tibshirani, "Cross-validation and the Bootstrap: Estimating the

Error Rate of a Prediction Rule," Department of Statistics, Stanford University
1995.

[158] C. M. Breneman, T. R. Thompson, M. Rhem, and M. Dung, "Electron Density

Modeling of Large Systems Using the Transferable Atom Equivalent Method,"
Computers & Chemistry, vol. 19, 3, pp. 161-179, 1995.

[159] C. M. Breneman and M. Rhem, "A QSPR Analysis of HPLC Column Capacity

Factors for a Set of High-Energy Materials Using Electronic Van der Waals
Surface Property Descriptors Computed by the Transferable Atom Equivalent
Method," Journal of Computational Chemistry, vol. 18, 2, pp. 182-197, 1997.

[160] R. J. Zauhar and W. J. Welsh, "Application of the "Shape Signatures" Approach

to Ligand- and Receptor-based Drug Design," presented at American Chemical
Society 220, Washington D.C., 2000.

[161] C. M. Sundling and C. M. Breneman, "Advances in Electronic Property-encoded

Molecular Shape Descriptors," presented at American Chemical Society (April,
2001) Poster presentation, San Diego, 2001.

[162]. Chemical Computing Group, http://www.chemcomp.com/.

[163] C. M. Breneman, N. Sukumar, K. P. Bennett, M. J. Embrechts, M. Sundling, and

L. Lockwood, "Wavelet Representations of Molecular Electronic Properties:
Applications in ADME, QSPR, and QSAR," presented at ACS National Meeting,
Washington D.C., 2000.

[164] F. Lombardo, J. F. Blake, and W. J. Curatolo, "Computation of Brain-Blood

Partitioning of Organic Solutes via Free Energy Calculations," Journal Medicinal
Chemistry, vol. 39, pp. 4750-4755, 1996.

 244

[165] R. Garg, S. P. Gupta, H. Gao, M. S. Babu, A. K. Debnath, and C. Hansch,
"Comparitive QSAR Studies on Anti-HIV Drug," Chemistry Reviews, vol. 99, pp.
3525-3601, 1999.

[166] H. J. Breslin, M. J. Kukla, D. W. Ludovici, R. Mohrbacher, W. Ho, M. Miranda,

J. D. Rodgers, T. K. Hitchens, G. Leo, D. A. Gauthier, C. Y. Ho, M.K. Scott, E.
D. Clerq, R. Pauwels, K. Andries, M. A. C. Janssen, and P. A. J. Janssen,
"Synthesis and Anti-HIV-1 Activity of 4,5,6,7-Tetrahydro-5-methylimidazo-
[4,5,1-jk]benzodiazepin-2(1H)-one (TIBO) Derivatives," Journal Medicinal
Chemistry, vol. 37, pp. 771-793, 1995.

[167] H. Tanaka, H. Takashima, M. Ubasawa, K. Sekiya, I. Nitta, M. Baba, S. Shigeta,

R. T. Walker, E. D. Clerq, and T. Miyasaka, "Structure-Activity Relationships of
1-[(2-hydroxyethoxy)methyl]-6-(phenythio)thymine Analogues: Effect of
Substitutions at the C-6 Phenyl Ring and at the C-5 Position on Anti-HIV-1
Activity," Journal Medicinal Chemistry, vol. 35, pp. 337-345, 1992.

[168] A. San-Felix, V. Sonsoles, M.-J. Perez-Perez, J. Balzarini, E. De Clerq, and M. J.

Camarasa, "Novel Series of TSAO-T Derivatives, Synthesis and Anti-HIV-1
Activity of 4-, 5-, and 6-Substituted Pyrimidine Analogs," Journal Medicinal
Chemistry, vol. 37, pp. 453-460, 1994.

[169] R. Alvarez, S. Velazquez, A. San-Felix, S. Aquaro, E. De Clerq, C.-F. Perno, A.

Karlsson, J. Balzarini, and M. J. Camarasa, "1,2,3-Triazole-[2,5-Bis-O-(tert-
butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole
2'',2''-dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity," Journal
Medicinal Chemistry, vol. 37, pp. 4185-4194, 1994.

[170] Y. Hanasaki, H. Watanabe, K. Katsuura, H. Takayama, S. Shirakawa, K.

Yamaguchi, S.-I. Sakai, K. Ijichi, and M. Fujiwara, "Thiadiazole Derivatives:
Highly Potent and Specific HIV-1 Reverse Transcriptase Inhibitors," Journal
Medicinal Chemistry, vol. 38, pp. 2038-2040, 1995.

[171] A. K. Debnath, "Three Dimensional QSAR Study on Cyclic Urea Dervatives as

HIV-1 Protease Inhibitors: Application of COMFA," Journal Medicinal
Chemistry, vol. 42, pp. 249-259, 1999.

[172] J. Fogh and G. Trempe, "New Human Tumor Cell Lines," in Human Tumor Cells

in Vitro, J. Fogh, Ed. New York: Plenum, pp. 115-141, 1975.

[173] J. Fogh and T. Orfeo, "One Hundred and Twenty-seven Cultured Human Tumor

Cell Lines Producing Tumors in Nude Mice," Journal of the National Cancer
Institute, vol. 59, pp. 221-225, 1977.

[174] P. Stenberg, K. Luthman, and P. Artursson, "Virtual Screening of Intestinal Drug

Permeability," Journal of Controlled Release, vol. 65, 1-2, pp. 231-243, 2000.

 245

[175] P. Stenberg, U. Nornider, K. Luthman, and P. Artursson, "Experimental and

Computational Screening Models for the Prediction of Intestinal Drug
Absorption," Journal of Medicinal Chemistry, vol. 44, 12, pp. 1927-1937, 2001.

[176] M. Yazdanian, S. L. Glynn, J. L. Wright, and A. Hawi, "Correlating Partitioning

and Caco-2 Cell Permeability of Structurally Diverse Small Molecular Weight
Compounds," Pharm. Res., vol. 9, 15, pp. 1490-1494, 1998.

[177] W. A. Spears, K. A. De Jong, T. Baeck, D. B. Fogel, and H. De Garis, "An

Overview of Evolutionary Computation," presented at European Conference on
Machine Learning, P. V. Brazdil Eds., Springer Verlag, vol. 667, pp. 442-459,
1993.

[178] M. A. Hall, "Correlation-based Feature Selection for Machine Learning," Ph.D.

Thesis, Department of Computer Science. Hamilton, New Zeland: The University
of Waikato, 1999.

[179] G. Keller, B. Warrack, and H. Bartel, Statistics for Management and Economics,

3 ed. Belmont, California: Duxbury Press, 1994.

[180] S. Wold, "PLS for Multivariate Linear Modeling," in Chemometric Methods in

Molecular Design, H. Van De Waterbeemd, Ed. Weinheim: VCH Publishers,
Inc., pp. 197-218, 1995.

[181] S. Wold, "PLS-regression: A Basic Tool of Chemometrics," Chemometrics and

Intelligent Laboratory Systems, vol. 58, pp. 109-130, 2001.

[182] S. Wold, N. Kettaneh, and K. Tjessem, "Hierarchical Multiblock PLS and PC

Models for Easier Model Interpretation and as an Alternative to Variable
Selection," Journal of Chemometrics, vol. 10, pp. 463-482, 1996.

[183] R. Leardi and A. L. Gonzales, "Genetic Algorithms Applied to Feature Selection

in PLS Regression: How and When to Use Them," Chemometrics and Intelligent
Laboratory Systems, vol. 41, pp. 195-207, 1998.

[184] H. Martens and T. Naes, Multivariate Calibration. New York: John Wiley &

Sons, 1989.

[185] M. C. Dehman, "Implementing Partial Least Squares," Statistics and Computing,

vol. 5, pp. 191-202, 1995.

[186] P. Geladi and B. Kowalski, "An Example of 2-Block Predictive Partial Least -

Squares Regression with Simulated Data," Analytica Chimica Acta, vol. 185, pp.
19-32, 1986.

 246

[187] H. A. Martens and P. Dardenne, "Validation and Verification of Regression in
Small Data Sets," Chemometrics and Intelligent Laboratory Systems, vol. 44, pp.
99-121, 1998.

[188] S. Wold, J. Trygg, A. Berglund, and H. Antti, "Some Recent Development in PLS

Modeling," Chemometrics and Intelligent Laboratory Systems, vol. 58, pp. 131-
150, 2001.

[189] S. Wold, N. Kettaneh, and B. Skagerberg, "Non-linear PLS Modeling,"

Chemometrics and Intelligent Laboratory Systems, vol. 7, pp. 53-65, 1989.

[190] S. Wold, "Non-linear Partially Least Squares Modelling. II Splines Inner

Functions," Chemometrics and Intelligent Laboratory Systems, vol. 14, pp. 71-84,
1992.

[191] G. Baffi, E. B. Martin, and A. J. Morris, "Non-linear Projection to Latent

Structures Revisited: The Quadratic PLS Algorithm," Computers and Chemical
Engineering, vol. 23, pp. 395-411, 1999.

[192] A. Berglund and S. Wold, "INLR, Implicit Non-linear Latent Variable

Regression," Journal of Chemometrics, vol. 11, pp. 141-156, 1997.

[193] T. R. Holcomb and M. Morari, "PLS/Neural Networks," Computers and

Chemical Engineering, vol. 16, 4, pp. 393-411, 1992.

[194] S. J. Qin and T. J. Macovay, "Nonlinear PLS Modeling using Neural Networks,"

Computers and Chemical Engineering, vol. 16, 4, pp. 379-391, 1992.

[195] A. Berglund, N. Kettaneh, L. Uppgard, S. Wold, N. Bendwell, and D. R.

Cameron, "The GIFI Approach to Non-linear PLS Modeling," Journal of
Chemometrics, vol. 15, pp. 321-336, 2001.

[196] R. Leardi, "Genetic Algorithm in Feature Selection," in Genetic Algorithms in

Molecular Modeling, J. Devillers, Ed. London: Academic Press, pp. 67-87, 1996.

[197] K. Hasegawa, Y. Miyashita, and K. Funatsu, "GA Strategy for Variable Selection

in QSAR Studies: GA-based PLS Analysis of Calcium Channel Antagonists,"
Journal of Chemical Information and Computer Sciences, vol. 37, pp. 306-310,
1997.

[198] J. Friedman, "Multivariate Adaptive Regression Splines," Laboratory for

Computational Statistics, Department of Statistics, Stanford University, Palo Alto,
CA 1988.

[199] J. J. Grefenstette, "Rank-based Selection," in Introduction to Selection, in

Evolutionary Computation 1: Basic Algorithms and Operators, T. Back, B. D.

 247

Fogel, and M. Michalewicz, Eds. Bristol, United Kingdom: Institute of Physics
Publishing, pp. 187-194, 2000.

[200] R. Leardi, "Application of a Genetic Algorithm to Feature Selection Under Full

Validation Conditions and to Outlier Detection," Journal of Chemometrics, vol. 8,
pp. 65-79, 1994.

[201] S. Lanteri, "Full Validation Procedures for Feature Selection in Classification and

Regression Problem," Chemometrics and Intelligent Laboratory Systems, vol. 15,
pp. 159-169, 1992.

[202] L. Eriksson, E. Johansson, M. Muller, and S. Wold, "On the Selection of the

Training Set in Environmental QSAR Analysis When Compounds are Clustered,"
Journal of Chemometrics, vol. 14, pp. 599-616, 2000.

[203] S. Wold and L. Eriksson, "Statistical Validation of QSAR Results," in

Chemometric Methods in Molecular Design, H. Van De Waterbeemd, Ed.
Weinheim: VCH Publishers, Inc, pp. 309-318, 1995.

[204] R. Kohavi, "A Study of Cross-Validation and Bootstrap for Accuracy Estimation

and Model Selection," presented at International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1137-1145, 1995.

[205] "Cerius² Relase 4.5 User Manual,"., 2000.

[206] W. W. Hauck and A. Donner, "Wald’s Test as Applied to Hypotheses in Logit

Analysis," Journal of the American Statistical Association, vol. 72, pp. 851-853,
1977.

[207] G. M. Furnival and R. W. J. Wilson, "Regressions by Leaps and Bounds,"

Technometrics, vol. 16, pp. 499-511, 1974.

[208] G. Bontempi, "Local Learning Techniques for Modeling, Prediction, and

Control," Ph.D. Thesis, Applied Sciences. Brucelles, Belgium: Universite' Libre
de Bruxelles, 1999.

[209] M. J. Embrechts, A. Demiriz, and K. P. Bennett, "Supervised Scaled Regression

Clustering With Genetic Algorithms," Intellingent Engineering Systems through
Artificial Neural Networks, vol. 9, pp. 457-462, 1999.

[210] M. L. Raymer, P. C. Sanschagrin, W. F. Punch, S. Venkataraman, E. D.

Goodman, and L. A. Kuhn, "Predicting Conserved Water-mediated and Polar
Ligand Interactions in Proteins using a K-nearest-neighbors Genetic Algorithm,"
Journal of Molecular Biology, vol. 265, pp. 445-464, 1997.

 248

[211] M. L. Raymer, W. F. Punch, E. D. Goodman, P. C. Sanschagrin, and L. A. Kuhn,
"Simultaneous Feature Scaling and Selection using a Genetic Algorithm,"
presented at the 7 th International Conference on Genetic Algorithms (July, 19-
23, 1997), T. Back Eds., Morgan Kaufmann, pp. 561-567, East Lansing, MI.,
1997.

[212] G. Demiroz and H. Guvenir, "Genetic Algorithms to Learn Feature Weights for

the Nearest Neighbor Algorithm," presented at 6th Belgian-Dutch Conference on
Machine Learning (BENELEARN-96) (September 20, 1996), H. J. van den Herik
and T. Weijters Eds., pp. 117-126, Universiteit Maastricht, The Netherlands,
1996.

[213] J. Michailidis and J. d. Leeuw, "The GIFI System of Descriptive Multivariate

Analysis," Stat. Sci., vol. 13, pp. 307-336, 1998.

[214] D. Steinberg and P. Colla, CART: A Salford Systems Implementation of the

Original Program by Leo Breiman, Jerome Freidman, Richard Olshen, and
Charles Stone: Salford Systems, 1997.

[215] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression

Trees. Pacific Grove: Wadsworth, 1984.

 249

 APPENDICES
APPENDIX A

A. The NIPALS Algorithm

X -variables are pre-scaled to ensure that comparable noise level. Then, the average

value of each column (variable) of X is calculated and subtracted from corresponding

column (mean-centering). The NIPALS algorithm extracts one principal component a

time. The NIPALS algorithm proceeds as follows [104], where the symbol T stands for

the transpose of the matrix or the vector:

Step 1. Take a vector jx from X and call it jhh xt:t =

Step 2. Calculate
h

T
h

T
hT

h
T
h tt

Xt
p:p =

Step 3. Normalize T
hp to length 1: T

h)old(

T
h)old(T

h)new(p

p
p =

Step 4. Calculate
h

T
h

h
hh pp

pX
t:t =

Step 5. Calculate the residual T
hhh ptXE −=

Step 6. Compare the ht used in the Step 2 with that calculated in Step 4. If both are the

same stop (the iteration has converged), else set hEX = and go to Step 2.

 250

APPENDIX B

B. The PLS Algorithm

Graphical representation of the dimensions of the matrices and vectors used in PLS

algorithm is depicted in the Figure B.1.The symbol T stands for the transpose of the

matrix or the vector. The PLS algorithm proceeds as follows [104]:

Step 0. X and Y are mean-centered and scaled to unit variance.

Step 1. As starting values, take 1ih Yu =

Step 2.
h

T
h

T
hT

h uu

Xu
w =

Step 3. T
hw is normalized to unity: T

h)old(

T
h)old(T

h)new(
w

w
w =

Step 4.
h)new(

T
h)new(

h)new(T
h ww

wX
t =

Step 5.
h

T
h

T
hT

h tt
Yt

q =

Step 6. T
hq is normalized to unity: T

h)old(

T
h)old(T

h)new(
q

q
q =

Step 7.
h)new(

T
h)new(

h)new(
h qq

qY
u =

 251

Step 8. Perform a convergence check to see if the u used in Step 2 with that calculated

in Step 7 are the same or not within a predetermined range. If δ<− h)7step(h)2step(uu

where δis some predefined threshold; then go to Step 9. Else return to Step 2 using the

new value of u from Step 7. (If Y has only one column steps 5 through 8 can be

omitted by putting q = 1, and no more iteration is necessary.)

Steps 9 through 12 calculate X loadings and rescale the scores and weights accordingly:

Step 9.
h

T
h

T
hT

h tt
Xt

p =

Step 10. T
hp is normalized to unity: T

h)old(

T
h)old(T

h)new(
p

p
p =

Step 11.
T

h)old(
T
h

T
h)new(ptt =

Step 12.
T

h)old(
T

h)old(
T

h)new(pww =

Save
T

h)new(p T
h)new(q and

T
h)new(w for prediction.

Step 13. Find the regression coefficient hb for inner relationship:

h)new(

T
h)new(

h)new(
T

h tt

tu
b =

Step 15. Calculate the residual hE and hF for the X-block and for the Y-block,

respectively.

The general outer relation for the X-block for the component h:

 252

T

h)new(h)new(1hh ptEE −= − ; 0EX =

The mixed relation for the Y-block for the component h:

T

h)new(h)new(h1hh qtbFF −= − ; 0FY =

Step 16. Replace X and Y with their corresponding residual matrices hE and hF :

 hEX = ; hFY =

Step 17. Go to Step 1 to implement the procedure for the next component.

Figure B.1 A Graphical Representation of the Matrices and Vectors used in PLS
Algorithm

 253

APPENDIX C

C. Full Validation Results of GAFEAT-PLS

In this Appendix, full validation approach was applied to GAFEAT-PLS feature selection

with 10-fold and Leave-One-Out cross-validation for the Lombardo and HIVrt datasets.

 In cross-validation, a dataset is divided into k subsets of approximately equal size.

A k-fold-cross-validation procedure requires the fitting the model into dataset k times; at

each time a subset is left out once, and only once, as an external test (validation) set and

the remaining datasets are combined as a training set. If k is equal to the number of data

points, it is called Leave-One-Out-Cross-validation.

In the full cross-validation of GAFEAT-PLS, GAFEAT-PLS performed feature

selection k times (e.g. as many times as the number of cross-validation subsets) for a

given dataset and at each time, the reduced training dataset (training dataset with only

selected features) was modeled with the Partial Least Squares (PLS) regression. Then, the

performance of the model was measured on the corresponding reduced external test set

(test set with only selected features) in terms of Q2 statistics. The PLS models described

in this appendix used four latent variables for all calculations. GAFEAT-PLS was

executed to select 30 descriptive features from each dataset. The PLS models obtained

with feature subsets selected by GAFEAT-PLS were also compared with those of dataset

with all features in terms of Q2 statistics.

 254

C.1 Results of Full 10-fold Cross-validation of GAFEAT-PLS for the
 Lombardo Dataset

Table C.1 Parameters of GAFEAT-PLS for the Lombardo Dataset with Full 10-fold
Cross-validation. Number of features to be selected is set to 30 features

Population

Size
Crossover
Probability

Mutation
Probability

Maximum # of
Generation

Number of Latent
Variables

100 0.90 0.02 1000 4

Number of Bootstraps in
the Fitness Evaluation

Number of Molecules
in the Training Set

Number of Molecules
in the Validation Set

20 Depends on fold 4

Table C.2 Result of Full 10-fold Cross-validation of GAFEAT-PLS for the Lombardo

Dataset

 Full Data (without feature selection) GA-PLS (with feature selection)
Fold r2 R2 q2 Q2 r2 R2 q2 Q2

1 0.9223 0.9215 0.0999 0.1482 0.9826 0.9824 0.1461 0.1610
2 0.9453 0.9447 0.3106 0.6356 0.9858 0.9853 0.2905 0.5084
3 0.9183 0.9177 0.1239 0.2839 0.9761 0.9761 0.1648 0.1898
4 0.9266 0.9266 0.9435 1.7527 0.9871 0.9870 0.6881 1.1869
5 0.9299 0.9288 0.4619 1.0786 0.9877 0.9867 0.4323 1.1076
6 0.9316 0.9313 0.3161 0.3739 0.9884 0.9884 0.5692 0.8647
7 0.9137 0.9137 0.0644 0.0706 0.9847 0.9846 0.1562 0.6803
8 0.9125 0.9121 0.1214 0.1537 0.9839 0.9837 0.0559 0.0962
9 0.9291 0.9281 0.2072 0.3234 0.9883 0.9881 0.4211 0.4556
10 0.9158 0.9157 0.2951 0.3404 0.9834 0.9832 0.4344 0.5479

Overall 0.2872 0.2901 0.3099 0.3638

 255

(A)

With all features (without feature selection)

(B)

With GAFEAT-PLS (with feature selection)
Figure C.1 Overall Results of Full 10-fold Cross-validation for the Lombardo Dataset

Lombardo Dataset with all features

Result of Fold 1

GAFEAT-PLS (Lombardo Dataset)

Result of Fold 1

Lombardo Dataset with all features

Result of Fold 2

GAFEAT-PLS (Lombardo Dataset)

Result of Fold 2

 256

Lombardo Dataset with all features

Result of Fold 3

GAFEAT-PLS (Lombardo Dataset)

Result of Fold 3

Lombardo Dataset with all features

Result of Fold 4

GAFEAT-PLS (Lombardo Dataset)

Result of Fold 4

Lombardo Dataset with all features

Result of Fold 5

GAFEAT-PLS (Lombardo Dataset)

Result of Fold 5

 257

Lombardo Dataset with all features

Result of Fold 6

GAFEAT-PLS (Lombardo Dataset)

Result of Fold 6

Lombardo Dataset with all features

Result of Fold 7

GAFEAT-PLS (Lombardo Dataset)

Result of Fold 7

Lombardo Dataset with all features

Result of Fold 8

GAFEAT-PLS (Lombardo Dataset)

Result of Fold 8

 258

Lombardo Dataset with all features

Result of Fold 9

GAFEAT-PLS (Lombardo Dataset)

Result of Fold 9

Lombardo Dataset with all features

Result of Fold 10

GAFEAT-PLS (Lombardo Dataset)

Result of Fold 10
Figure C.2 Comparison of the Individual Fold of the Full 10-fold Cross-validation of

GAFEAT-PLS with Full Dataset

 259

C.2 Results of Full Leave-One-Out Cross-validation of GAFEAT-PLS
 for the Lombardo Dataset

Table C.3 Parameters of GAFEAT-PLS for the Lombardo Dataset with Full Leave-One-

Out Cross-validation. Number of features to be selected is set to 30 features.

Population
Size

Crossover
Probability

Mutation
Probability

Maximum # of
Generation

Number of Latent
Variables

100 0.90 0.02 1000 4

Number of Bootstraps in
the Fitness Evaluation

Number of Molecules
in the Training Set

Number of Molecules
in the Validation Set

20 56 6

(A)

With all features (without feature selection)

(B)

With GAFEAT-PLS (with feature selection)
Figure C.3 Overall results of Leave-One-Out Cross-validation for the Lombardo Dataset

 260

C.3 Results of Full 10-fold Cross-validation of GAFEAT-PLS
 for the HIVrt Dataset

Table C.4 Parameters of GAFEAT-PLS for the HIVrt Dataset with Full 10-fold Cross-
validation. Number of features to be selected is set to 30 features.

Population

Size
Crossover
Probability

Mutation
Probability

Maximum # of
Generation

Number of Latent
Variables

100 0.90 0.02 1000 4

Number of Bootstraps in
the Fitness Evaluation

Number of Molecules
in the Training Set

Number of Molecules
in the Validation Set

20 Depends on fold 4

Table C.5 Result of Full 10-fold Validation of GAFEAT-PLS for the HIVrt Dataset

 Full Data (without feature selection) GA-PLS (with feature selection)
Fold r2 R2 q2 Q2 r2 R2 q2 Q2

1 0.8146 0.8131 0.2269 0.3996 0.9521 0.9508 0.4839 0.6375
2 0.8348 0.8336 0.7033 1.2646 0.9607 0.9583 0.7483 1.5513
3 0.7917 0.7915 0.1504 0.2119 0.9502 0.9501 0.3207 0.3232
4 0.8164 0.8161 0.4342 0.6128 0.9475 0.9473 0.3933 0.7025
5 0.7991 0.7991 0.3047 0.3243 0.9474 0.9474 0.7488 1.6040
6 0.7876 0.7849 0.4844 1.1770 0.9428 0.9408 0.2196 0.7333
7 0.8289 0.8289 0.7157 0.7335 0.9616 0.9609 0.8538 1.0954
8 0.8221 0.8209 0.1055 0.5683 0.9508 0.9481 0.2640 1.4951
9 0.8233 0.8222 0.2128 0.6086 0.9401 0.9399 0.6387 3.7095
10 0.8172 0.8164 0.1687 0.3187 0.9508 0.9498 0.6328 0.7168

Overall 0.3656 0.3679 0.5624 0.7188

 261

(A)

With all features (without feature selection)

(B)

With GAFEAT-PLS (with feature selection)
Figure C.4 Overall Results of Full 10-fold Cross-validation for the HIVrt Dataset

HIVrt Dataset with all features

Result of Fold 1

GAFEAT-PLS (HIVrt Dataset)

Result of Fold 1

HIVrt Dataset with all features

Result of Fold 2

GAFEAT-PLS (HIVrt Dataset)

Result of Fold 2

 262

HIVrt Dataset with all features

Result of Fold 3

GAFEAT-PLS (HIVrt Dataset)

Result of Fold 3

HIVrt Dataset with all features

Result of Fold 4

GAFEAT-PLS (HIVrt Dataset)

Result of Fold 4

HIVrt Dataset with all features

Result of Fold 5

GAFEAT-PLS (HIVrt Dataset)

Result of Fold 5

 263

HIVrt Dataset with all features

Result of Fold 6

GAFEAT-PLS (HIVrt Dataset)

Result of Fold 6

HIVrt Dataset with all features

Result of Fold 7

GAFEAT-PLS (HIVrt Dataset)

Result of Fold 7

HIVrt Dataset with all features

Result of Fold 8

GAFEAT-PLS (HIVrt Dataset)

Result of Fold 8

 264

HIVrt Dataset with all features

Result of Fold 9

GAFEAT-PLS (HIVrt Dataset)

Result of Fold 9

HIVrt Dataset with all features

Result of Fold 10

GAFEAT-PLS (HIVrt Dataset)

Result of Fold 10
Figure C.5 Comparison of the Individual Fold of the Full 10-fold Cross-validation of

GAFEAT-PLS with Full Dataset

 265

C.4 Results of Full Leave-One-Out Cross-validation of GAFEAT-PLS
 for the HIVrt Dataset

Table C.6 Parameters of GAFEAT-PLS for the HIVrt Dataset with Full Leave-One-Out

Cross-validation. Number of features to be selected is set to 30 features.

Population
Size

Crossover
Probability

Mutation
Probability

Maximum # of
Generation

Number of Latent
Variables

100 0.90 0.02 1000 4

Number of Bootstraps in
the Fitness Evaluation

Number of Molecules
in the Training Set

Number of Molecules
in the Validation Set

20 58 6

(A)

All features (without feature selection)

(B)

GAFEAT-PLS (with feature selection)
Figure C.6 Overall results of Leave-One-Out Cross-validation for the HIVrt Dataset

 266

APPENDIX D

D. Comparison of the Proposed Evolutionary
Algorithms for Feature Selection with CART

In this Appendix, the feature subsets selected from the Lombardo and HIVrt datasets by

the proposed evolutionary algorithms (GAFEAT-PLS, GAFEAT-PLS with INLR, and

GAFEAT-LL) will be compared with that of CART (Classification And Regression

Trees) method. The following brief information about CART was taken from [214].

D.1 CART Methodology

CART is a statistical procedure introduced by Breiman, Friedman, Olshen, and C.

Stone in 1984 [215]. CART procedure can be used to analyze either categorical

(classification problem) or continuous data (regression problem). The CART

methodology is known as binary recursive partitioning. The process is binary since parent

nodes are always split into exactly two child nodes. The process is recursive since it can

be repeated by treating each child node as a parent. The key elements of a CART analysis

are a set of rules for:

i) Splitting each node in a tree;

ii) Deciding when a tree is complete; and

iii) Assigning each terminal node to a class outcome for classification

problems (or predicted value for regression problem).

CART presents its results in the form of decision trees and therefore it is a

significant departure from more traditional statistical analysis procedure. CART uses a

 267

decision tree to display how data may be classified or predicted. By asking a series of

“yes/no” questions concerning database fields, CART automatically searches for

important relationships and uncovers hidden structure even in highly complex datasets.

D.2 Feature Selection with CART

CART is often employed to select a manageable number of relevant features from

datasets with hundreds of features. Since one of the goals of CART is to develop a simple

tree structure for data, relatively few variables may appear explicitly in the splitting

criteria. This can be interpreted that other variables are not important in understanding or

predicting the response variable. Unlike a linear regression model, a variable in CART

can be considered highly important even if it never appears as a primary node splitter,

since CART keeps track of surrogate splits in the tree-growing process and the

contribution a variable can make in prediction is not determined only by primary splits.

The importance score of a variable in CART is calculated in the following way:

CART looks at the improvement measure attributable to each variable in its role as a

surrogate to the primary split. The value of these improvements are summed over each

node and totaled, and scaled relative to the best performing variable. The variable with

the highest sum of improvement is scored to 100, and all other variables will have lower

scores ranging downwards towards to zero.

It is noted that the importance score measures a variable’s ability to mimic the

chosen tree and to play a role as a stand-in for variables appearing in primary splits. The

importance score does not say anything about the value of any variable in the

construction of other trees. Therefore, the importance score does not indicate an absolute

 268

information value of a variable and ranking of the variables are strictly relative to a given

tree structure.

D.3 CART Analysis for the Lombardo and HIVrt Datasets

CART program was used to select important features from the Lombardo and HIVrt

datasets. The default setting of the CART program was used to analyze these QSAR

datasets. The importance of the variables (features) was obtained from the best CART

tree for both datasets. 11 variables for the Lombardo and 12 variables for the HIVrt were

identified as important features based on the best CART tree. Important variables for the

Lombardo and HIVrt datasets were presented in the Tables D.1 and D.2, respectively.

Table D.1 Importance of Variables of the Lombardo Dataset Calculated from the Best
CART Tree

Variable ID Variable Name Score
V16 AbsDRN7 100.00 ||
V2 drns1 92.77 |||||||||||||||||||||||||||||||||||||||
V1 SHWHBD_358 82.04 ||||||||||||||||||||||||||||||||||
V24 dknd3 74.91 |||||||||||||||||||||||||||||||
V4 AbsDRN5 72.25 ||||||||||||||||||||||||||||||
V43 AbsL7 68.37 ||||||||||||||||||||||||||||
V199 lapld7 16.46 ||||||
V167 AbsDRN1 15.96 ||||||
V95 lapld8 15.96 ||||||
V28 Gmax_100 13.49 |||||
V294 fuks3 11.87 ||||

Table D.2 Importance of Variables of the HIVrt Dataset Calculated from the Best CART
Tree

Variable ID Variable Name Score
V17 pips8 100.00 ||
V88 pips1 90.83 ||||||||||||||||||||||||||||||||||||||
V1 Del.G.NIA 78.95 |||||||||||||||||||||||||||||||||
V3 pips6 62.49 ||||||||||||||||||||||||||
V28 HMax.99 51.69 |||||||||||||||||||||
V8 SHsOH.91 51.69 |||||||||||||||||||||
V172 AbsBNP7 44.43 ||||||||||||||||||
V18 SaasC.119 30.15 ||||||||||||
V38 AbsDRN4 28.15 |||||||||||
V15 SssCH2.111 25.46 ||||||||||
V32 dxp4.49 25.21 ||||||||||
V149 CssCH2.202 23.94 |||||||||

 269

The performances of the feature subsets selected by CART on PLS and SVM

regression models were calculated based on 100-bootstrap sample by leaving 6 and 8

molecules in the validation sets for the Lombardo and HIVrt datasets, respectively. These

results are present in Tables D.3 and D.4 for the Lombardo and HIVrt datasets,

respectively.

Table D.3 100-bootstrap Validation for the Selected 11 Features from the Lombardo
Dataset by CART

Training Error Validation Error Learning Models
r2 R2 q2 Q2

PLS 0.7723 0.7723 0.3112 0.3129
SVM 0.8721 0.8712 0.2332 0.2333

Table D.4 100-bootstrap Validation for the Selected 12 Features from the HIVrt Dataset
by CART

Training Error Validation Error Learning Models
r2 R2 q2 Q2

PLS 0.6535 0.6534 0.5240 0.5415
SVM 0.8987 0.8953 0.2987 0.3058

D.4 Comparison of CART with the Proposed Feature Selection Methods

In order to compare the feature subsets selected by CART with those of the

proposed evolutionary algorithms (GAFEAT-PLS, GAFEAT-PLS with INLR, and

GAFEAT-LL), SVM regression was used to model the CART feature subsets. Since

CART selected 11 features from the Lombardo and 12 features from HIVrt datasets, the

proposed feature selection algorithms were executed to select feature subsets of size 10

for both datasets for a fair comparison. Tables D.5 and D.6 present the comparison of

feature selection methods based on SVM regression model with 100-bootstrap validation

 270

for the Lombardo and HIVrt datasets, respectively. Figures D.1 and D.2 also depict these

results graphically.

Table D.5 Comparison of Feature Selection Methods based on SVM regression Model
with 100-bootstrap Validation for the Lombardo Dataset

Feature Selection Method
Number of Selected

Features
 Q² SVM

GAFEAT-LL 10 0.3016
GAFEAT-PLS 10 0.1951
GAFEAT-PLS with INLR 10 0.1951
CART 11 0.2333

Table D.6 Comparison of Feature Selection Methods based on SVM regression Model
with 100-bootstrap validation for the HIVrt Dataset

Feature Selection Method Number of Selected
Features

 Q² SVM

GAFEAT-LL 10 0.2237
GAFEAT-PLS 10 0.2218
GAFEAT-PLS with INLR 10 0.1957
CART 12 0.3058

Comparison of Feature Selection Methods on the
Lombardo Dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

GAFEAT-LL GAFEAT-PLS GAFEAT-PLS with
INLR

CART

Feature Selection Methods

Q² SVM

Figure D.1 Comparison of Feature Selection Methods based on SVM regression Model

with 100-bootstrap Validation for the Lombardo Dataset

 271

Comparison of Feature Selection Methods on the HIVrt

Dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

GAFEAT-LL GAFEAT-PLS GAFEAT-PLS with
INLR

CART

Feature Selection Methods

Q² SVM

Figure D.2 Comparison of Feature Selection Methods based on SVM regression Model

with 100-bootstrap Validation for the HIVrt Dataset

It is clear from figures D.1 and D.2 that the proposed feature selection methods

give comparable, or even better, results than those of CART. It should be noted that even

if the subsets of size 10 selected by the proposed feature selection algorithms are not the

best subset for the Lombardo and HIVrt datasets, these subsets still give comparable

results to that of CART.

