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Almost every real world problem involves simultaneous optimization of several incommensurable and often
competing objectives which constitutes a multi-objective optimization problem. In multi-objective optimization
problems the optimal solution is not unique as in single-objective optimization problems. This paper is concerned
with large-scale structural optimization of skeletal structures such as space frames and trusses, under static
and=or seismic loading conditions with multiple objectives. Combinatorial optimization methods and in particular
algorithms based on evolution strategies are implemented for the solution of this type of problems. In treating
seismic loading conditions a number of accelerograms are produced from the elastic design response spectrum of
the region. These accelerograms constitute the multiple loading conditions under which the structures are
optimally designed. This approach for treating seismic loading is compared with an approximate design
approach, based on simplifications adopted by the seismic codes, in the framework of multi-objective optimization.
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1 INTRODUCTION

In single-objective optimization problems the optimal solution is usually clearly defined since

it is the minimum or maximum value of the objective function. This does not hold in real

world problems where multiple and conflicting objectives frequently exist. Instead of a single

optimal solution, there is usually a set of alternative solutions, generally denoted as the set of

Pareto optimal solutions. These solutions are optimal in the wider sense since no other

solution in the search space is superior to them when all objectives are considered. In the

absence of preference information, none of the corresponding trade-offs can be said to be

better than the others. On the other hand, the search space can be very large and complex,

which is the usual case of real world problems, hence the implementation of gradient

based optimizers for this type of problem becomes even more cumbersome. Thus, efficient

optimization strategies are required able to deal with the presence of multiple objectives

and the complexity of the search space. Evolutionary Algorithms (EA) have several
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characteristics that are desirable for this kind of problem and most frequently outperform the

deterministic optimizers such as gradient based optimization algorithms.

There are some standard methods for dealing with multi-objective optimization problems,

such as the linear weighting method, the distance function method and the constraint method

[1–3], that have to be combined with the optimization algorithm. The application of EA in

multi-objective optimization problems has received considerable attention in the last five

years due to this difficulty of conventional optimization techniques, to be extended to

multi-objective optimization problems [4]. EA optimizers employ multiple individuals that

can search simultaneously for multiple solutions. Implementing some modifications on the

operators used by the EA optimizers, the search process can be driven to a family of solutions

representing the set of Pareto optimal solutions.

Structural sizing optimization since its early stages of development was mostly single-

objective. The aim was to minimize the weight of the structure under certain restrictions

imposed by design codes. Optimization of large-scale structures, such as sizing optimization

of multi-storey 3D frames and trusses is a computationally intensive task. The optimization

problem becomes more intensive when dynamic loading is involved [5]. The feasible

design space in structural optimization problems under dynamic constraints is often discon-

nected or disjoint [6] which cause difficulties for many conventional optimizers. Due to the

uncertain nature of the seismic loading, structural designs are often based on design response

spectra of the region and on some simplified assumptions of the structural behavior under

seismic loading. In the case of a direct consideration of seismic loading the optimization

of structural systems requires the solution of the dynamic equations of motion which can

be orders of magnitude more computationally intensive than the case of static loading.

The performance of the proposed method for handling optimization problems with multi-

ple objectives is examined in two test examples, one space frame and one space truss. In the

case of the space truss only static loading conditions have been considered. In the case of the

space frame, both a rigorous approach and a simplified one with respect to the loading

condition are implemented and their efficiency is compared in the framework of finding

the optimum design of a structure under multiple objectives. In the context of the rigorous

approach a number of artificial accelerograms are produced from the design response

spectrum of the region for elastic structural response, which constitutes the multiple loading

conditions under which the structures are optimally designed. The elastic design response

spectrum can be seen as an envelope of response spectra, for a specific damping ratio, of

different earthquakes most likely to occur in the region. This approach is compared with

the approximate one based on simplifications adopted by the seismic codes. The Pareto

sets obtained for a characteristic problem indicate differences between the two Pareto sets

obtained by the rigorous approach and the simplified one.

2 SINGLE-OBJECTIVE STRUCTURAL OPTIMIZATION

In sizing optimization problems the aim is to minimize a single objective function, usually

the weight of the structure, under certain behavioral constraints on stress and displacements.

The design variables are most frequently chosen to be dimensions of the cross-sectional areas

of the members of the structure. Due to fabrication limitations the design variables are not

continuous but discrete since cross-sections belong to a certain set. A discrete structural

optimization problem can be formulated in the following form

min f ðsÞ

subject to gjðsÞ � 0 j ¼ 1; . . . ; k
si 2 Rd i ¼ 1; . . . ; n

ð1Þ
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where Rd is a given set of discrete values and the design variables siði ¼ 1; . . . ; nÞ can take

values only from this set.

In the optimal design of frames the constraints are the member stresses and nodal displace-

ments or inter-storey drifts. For rigid frames with I-shapes, the stress constraints, under

allowable stress design requirements specified by Eurocode 3 [7], are expressed by the

following formula

Nsd

Afy=gM1

þ
My;sd

Wpl;y fy=gM1

þ
Mz;sd

Wpl;z fy=gM1

� 1:0 ð2Þ

where Nsd , Msd;y, Msd;z are the stress resultants, Wpl;y, Wpl;z are the plastic first moment of

inertia, and fy is the yield stress. The safety factor gM1 is a Eurocode 1 [8] box value usually

taken as 1.10.

Space truss structures usually have the topology of single or multi-layered flat or curved

grids that can be easily constructed in practice. In the optimal design of trusses the con-

straints are the member stresses, nodal displacements, or frequencies. The stress constraints

can be written as jsj � jsaj, where s is the maximum axial stress in each element group for

all loading cases, sa ¼ fy=gM1 is the allowable axial stress. Similarly, the displacement

constraints can be written as jdj � da, where da is the limiting value of the displacement

at a certain node, or the maximum nodal displacement.

Euler buckling is also considered as a stress-type constraint in truss structures. This is

enforced when the magnitude of a member’s compressive stress is greater than a critical stress

which usually is taken as the first buckling mode of a pin-connected member:

sb ¼
Pb

A
¼ �

1

A

p2EI

L2

� �
ð3Þ

where Pb is the computed compressive axial force, I is the moment of inertia, L is the

member length. Thus, the compressive stress should be less (in absolute values) than the

critical Euler buckling stress jsj � jsbj.

3 MULTI-OBJECTIVE STRUCTURAL OPTIMIZATION

In practical applications of structural optimization of 3D frames and trusses the material

weight rarely gives a representative measure of the performance of the structure. In fact,

several conflicting and incommensurable criteria usually exist in real-life design problems,

that have to be dealt with simultaneously. This situation forces the designer to look for a

good compromise design between the conflicting requirements. These kinds of problems

are called optimization problems with many objectives. The consideration of multi-objective

optimization in its present sense originated towards the end of the 19th century when Pareto

presented the optimality concept in economic problems with several competing criteria [9].

Since then, although many techniques have been developed in order to deal with multi-

objective optimization problems the corresponding applications were confined strictly to

mathematical functions. The first applications in the field of structural optimization with

multiple objectives appeared at the end of the 1970s. However only a few Pareto structural

optimization problems have been considered and those were restricted to multi-objective

optimization problems with static loading conditions [10–16].
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3.1 Criteria and Conflict

The designer looking for the optimum design of a structure is faced with the question of

selecting the most suitable criteria for measuring the economy, the strength, the serviceability

or any other factor that affects the performance of a structure. Any quantity that has a direct

influence on the performance of the structure can be considered as a criterion. On the other

hand, those quantities that must satisfy some imposed requirements are not criteria but they

can be treated as constraints. Most of the structural optimization problems are treated with

one single-objective usually the weight of the structure, subjected to some strength con-

straints. These constraints are set as equality or inequality constraints using some upper

and lower limits. When there is a difficulty in selecting these limits, then these parameters

are better treated as criteria.

One important basic property in the multicriterion formulation is the conflict that may or

may not exist between the criteria. Only those quantities that are competing should be treated

as independent criteria whereas the others can be combined into a single criterion to represent

the whole group. The local conflict between two criteria can be defined as follows: The func-

tions fi and fj are called locally collinear with no conflict at point s if there is c > 0 such that

HfiðsÞ ¼ cHfjðsÞ. Otherwise, the functions are called locally conflicting at s. According to this

definition any two criteria are locally conflicting at a point of the design space if their maxi-

mum improvement is achieved in different directions. The global conflict between two

criteria can be defined as follows: The functions fi and fj are called globally conflicting in

the feasible region F of the design space when the two optimization problems

mins2F fiðsÞ and mins2F fjðsÞ have different optimal solutions.

3.2 Formulation of a Multiple Objective Optimization Problem

In formulating an optimization problem the choice of the design variables, criteria and con-

straints represents undoubtedly the most important decision made by the engineer. In general

the mathematical formulation of a multi-objective problem includes a set of n design vari-

ables, a set of m objective functions and a set of k constraint functions and can be defined

as follows:

mins2F ½ f1ðsÞ; f2ðsÞ; . . . ; fmðsÞ�
T

subject to gjðsÞ � 0 j ¼ 1; . . . ; k
si 2 Rd i ¼ 1; . . . ; n

ð4Þ

where the vector s ¼ ½s1s2 � � � sn�
T represents a design variable vector and F is the feasible set

in design space Rn. It is defined as the set of design variables that satisfy the constraint func-

tions g(s) in the form:

F ¼ fs 2 RnjgðsÞ � 0g ð5Þ

Usually there exists no unique point which would give an optimum for all m criteria simul-

taneously. Thus the common optimality condition used in single-objective optimization must

be replaced by a new concept, the so-called Pareto optimum: A design vector s� 2 F is

Pareto optimal for the problem of Eq. (5) if and only if there exists no other design vector

s 2 F such that

fiðsÞ � fiðs
�Þ for i ¼ 1; 2; . . . ;m ð6Þ

with fjðsÞ < fjðs
�Þ for at least one objective j.
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The solutions of optimization problems with multiple objectives constitute the set of the

Pareto optimum solutions. The problem of Eq. (5) can be regarded as being solved when

the set of Pareto optimal solutions has been determined. In practical applications, however,

the designer seeks for a unique final solution. Thus a compromise should be made among the

available Pareto optimal solutions.

3.3 Solving the Multi-objective Optimization Problem

Standard methods for generating the Pareto optimal set combine the objectives into a single,

parameterized objective function. Basically, this procedure is independent of the incorporated

optimization algorithm. Three previously used methods in the literature are briefly discussed

and are compared in this study with the proposed modified ES in terms of computational time

and efficiency for treating multi-objective optimization problems.

3.3.1 Linear Weighting Method

The first method, called the linear weighting method [3], combines all the objectives into a

single scalar parameterized objective function by using weighting coefficients. If wi,

i ¼ 1; 2; . . . ;m are the weighting coefficients the problem of Eq. (5) can be written as

follows:

min
s2F

Xm
i¼1

wi fiðsÞ ð7Þ

With no loss of generality the following normalization of the weighting coefficients is

employed

Xm
i¼1

wi ¼ 1 ð8Þ

By varying these weights it is now possible to generate the set of Pareto optimal solutions for

the problem of Eq. (5). The values of the weighting coefficients are adjusted according to the

importance of each criterion. Every combination of those weighting coefficients corresponds

to a single Pareto optimal solution, thus by performing a set of optimization processes using

different weighting coefficients it is possible to generate the full set of Pareto optimal

solutions.

In real world problems different units correspond to different objectives leading to varia-

tions of some orders of magnitude between the values of the objectives. It is therefore

advisable that the objectives should be normalized according the following expression:

~ffiðsÞ ¼
fiðsÞ � fimin

fimax � fimin

ð9Þ

where the normalized objectives ~ffiðsÞ 2 ½0; 1�; i ¼ 1; 2; . . . ;m, share the same design space

with the non-normalized ones, while fimin and fimax are the minimum and maximum values

of the objective function i.

3.3.2 Distance Function Method

The distance methods [1] are based on the minimization of the distance between the set of

the objective function values and some chosen reference points belonging to the so-called
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criterion space. Criterion space is defined as the set of the objective function values that

correspond to design vectors of the feasible domain. The resulting scalar problem is:

min
s2F

dpðsÞ ð10Þ

where the distance function can be written as follows:

dpðsÞ ¼
Xm
i¼1

wi½ fiðsÞ � zi�
p

( )1=p

ð11Þ

and p is an integer number.

This technique has been implemented in structural optimization in Ref. [17]. The reference

point zid 2 Rm that is selected by the designer is also called the ideal or utopian point. A refer-

ence point that is frequently used is the following:

zid ¼ ½ f1 min f2 min � � � fmmin�
T

ð12Þ

where fimin is the optimum solution of the single-objective optimization problem where the

ith objective function is treated as the unique objective. The normalization function, Eq. (8),

for the weighting factors wi is also used. In the case that p ¼ 1 Eq. (10) is transformed to the

minimax problem:

min
s2F

max
i
½wi fiðsÞ�; i ¼ 1; 2; . . . ;m ð13Þ

In the case of p ¼ 1 the formulation of the distance method is equivalent to the linear method

when the reference point used is the zero ẑz ¼ 0, while the case of p ¼ 2 the method is called

the weighted quadratic method.

3.3.3 Constraint Method

According to this method the original multicriterion problem is replaced by a scalar problem

where one criterion fk is chosen as the objective function and all the other criteria are

removed into the constraints [2]. By introducing parameters ei into these new constraints

an additional feasible set is obtained:

F kðeiÞ ¼ fs 2 Rnj fiðsÞ � ei; i ¼ 1; 2; . . . ;m with i 6¼ kg ð14Þ

If the resulting feasible set is denoted by �FFk ¼ F \ F k the parameterized scalar problem can

be expressed as:

min
s2 �FFk

fkðsÞ ð15Þ

The constraint method gives the opportunity to obtain the full domain of optimum solutions,

in the horizontal or vertical direction using one criterion as objective function and the other

as constraint.

3.3.4 Modified Evolution Strategies for Multi-objective Optimization

The three above-mentioned methods for multi-objective optimization have been used in the

past with mathematical programming optimization algorithms where at each optimization
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step one design point was examined as an optimum design candidate. in order to locate the

set of Pareto optimum solutions a family of optimization runs have to be executed. On the

other hand, evolutionary algorithms work simultaneously with a population of design

points, instead of a single design point, which constitute a population of optimum design

candidates in the space of design variables. Due to this characteristic, evolutionary algorithms

have a great potential in finding multiple optima in a single optimization run, which is very

useful in Pareto optimization problems. Since the early 1990s a number of researchers have

suggested the use of evolutionary algorithms in multi-objective optimization problems

[4, 18–21].

In this study the method of Evolution Strategies (ES) is applied for the first time in

structural multi-objective optimization problems. To this purpose some modifications have

to be made in the random operators in order to guide the convergence to a population that

represent the set of Pareto optimal solutions. These changes refer to (i) the selection of

the parent population at each generation that has to be modified in order to guide the search

procedure towards the set of Pareto optimum solutions, and (ii) the prevention from conver-

gence to a single design point and preservation of diversity of the population in every gene-

ration step. The first demand is possible to be fulfilled using random selection of the

objective according to which the individual will be chosen for reproduction [18]. In order

to preserve diversity in the population and fulfil the second requirement, fitness sharing is

implemented.

The idea behind sharing is to degrade those individuals that are represented by higher per-

centages in the population. the expression for the modified objectives after sharing is given by:

f 0i ðsÞ ¼
fiðsÞP

h shðdðs; hÞÞ
ð16Þ

where the sharing function used in the current study is the following

shðdðs; hÞÞ ¼
1 �

dðs; hÞ

sshare

� �a

if dðs; hÞ < sshare

0 otherwise

8<
: ð17Þ

and the distance function used is in the objective space takes the form

dðs; hÞ ¼ k f ðsÞ � f ðhÞk ð18Þ

4 STRUCTURAL DESIGN UNDER DYNAMIC LOADING

The equations of equilibrium for a finite element system in motion for the ith design vector

can be written in the usual form

MðsiÞ €uut þ CðsiÞ _uut þKðsiÞut ¼ Rt ð19Þ

where MðsiÞ;CðsiÞ, and KðsiÞ are the mass, damping and stiffness matrices for the ith design

vector si; Rt is the external load vector, while u, _uu and €uu are the displacement, velocity, and

acceleration vectors of the finite element assemblage, respectively. The solution methods of

direct integration of equations of motion and of response spectrum modal analysis, which is

based on the mode superposition approach, will be considered in the following paragraphs.
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The Newmark integration scheme is adopted in the present study to perform the direct time

integration of the equations of motion where the equilibrium equations (19) are discretized in

time as follows

MðsiÞ €uutþDt þ CðsiÞ _uutþDt þKðsiÞutþDt ¼ RtþDt ð20Þ

and the variation of velocity and displacement are given by

_uutþDt ¼ _uut þ ½ð1 � dÞ €uut þ d €uutþDt�Dt ð21Þ

utþDt ¼ ut þ _uutDt þ
1

2
� a

� �
€uut þ a €uutþDt

� �
Dt2 ð22Þ

where a and d are parameters that can be determined to obtain integration accuracy and sta-

bility. Solving for €uutþDt in terms of utþDt from Eq. (22) and substituting for €uutþDt in Eq. (21)

yields equations for €uutþDt and _uutþDt in terms of the unknown displacements utþDt only. These

two relations for €uutþDt and _uutþDt are then substituted into Eq. (20) to solve for utþDt. As a

result of this substitution the following well-known equilibrium equation is obtained at

each time step

Keff ðsiÞutþDt ¼ Reff
tþDt ð23Þ

4.1 Creation of Artificial Accelerograms

The selection of the proper external loading Rt to perform structural analyses under seismic

loading conditions for design purposes is not an easy task due to the uncertainties involved in

the seismic loading. For this reason a rigorous treatment of the seismic loading is to assume

that the structure is subjected to a set of real and=or artificial earthquakes that are likely to

occur in the region where the structure is located. These artificial seismic excitations are

produced as a series of artificial accelerograms compatible with the elastic design response

spectrum of the region.

In this work the implementation published by Taylor [22] for the generation of statistically

independent artificial acceleration time histories is adopted. This method is based on the fact

that any periodic function can be expanded into a series of sinusoidal waves

xðtÞ ¼
X
k

Ak sinðok t þ jkÞ ð24Þ

where Ak is the amplitude, ok is the cyclic frequency and jk is the phase angle of the kth

contributing sinusoid. By fixing an array of amplitudes and then generating different arrays

of phase angles, different motions can be generated which are similar in general appearance

but different in the ‘‘details’’. The computer uses a random number generator subroutine to

produce strings of phase angles with a uniform distribution in the range between 0 and 2p.

The amplitudes Ak are related to the spectral density function in the following way

GðokÞDo ¼
A2
k

2
ð25Þ

where GðokÞDo may be interpreted as the contribution to the total power of the motion from

the sinusoid with frequency ok. The power of the motion produced by Eq. (24) does not vary
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with time. To simulate the transient character of real earthquakes, the steady-state motions are

multiplied by a deterministic envelope function I ðtÞ

ZðtÞ ¼ I ðtÞ
X
k

Ak sinðok t þ jkÞ ð26Þ

The resulting motion is stationary in frequency content with peak acceleration close to the

target peak acceleration. In this study a trapezoidal intensity envelope function is adopted.

The generated peak acceleration is artificially modified to match the target peak acceleration,

which corresponds to the chosen elastic design response spectrum. An iterative procedure is

then implemented to smooth the calculated spectrum and improve the matching [22].

The elastic design response spectrum considered in the current study is depicted in Figure 1

for damping ratio x ¼ 2:5%. Five artificial uncorrelated accelerograms, produced by the pre-

viously discussed procedure and shown in Figure 2, have been used as the input seismic

excitation for the numerical tests. The corresponding response spectrum of the first artificial

accelerogram is also depicted in Figure 1.

4.2 Response Spectrum Modal Analysis

The response spectrum modal analysis is based on a simplification of the mode superposition

approach with the aim to avoid the time history analyses which are required by both the direct

integration and mode superposition approaches. In the case of the response spectrum modal

analysis Eq. (4) is modified according to the modal superposition approach, for the ith design

vector, in the following form

�MMðsiÞ €uut þ �CCðsiÞ _uut þ �KKðsiÞut ¼ �RRt ð27Þ

where

�MMðsiÞ ¼ U
T
i MiUi ð28Þ

�CCðsiÞ ¼ U
T
i CiUi ð29Þ

�KKðsiÞ ¼ U
T
i KiUi ð30Þ

�RRt ¼ U
T
i Rt ð31Þ

FIGURE 1 Elastic design response spectrum of the region and response spectrum of the first artificial
accelerogram (x¼ 2.5%).
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are the generalized values of the corresponding matrices and the loading vector, while Ui is

an eigenmode shape matrix to be defined later. For simplicity MðsiÞ, CðsiÞ, KðsiÞ are denoted

by Mi, Ci, Ki, respectively. These matrices correspond to the design, which is defined by the

ith vector of the design parameters. According to the modal superposition approach the

system of N simultaneous differential equations is transformed to a set of N independent

normal-coordinate equations.

FIGURE 2 The five artificial accelerograms.
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In the response spectrum modal analysis a number of different formulas have been pro-

posed to obtain reasonable estimates of the maximum response based on the spectral values

without performing time history analyses for a considerable number of transformed dynamic

equations. The simplest and most popular of these is the square root of the sum of the squares

(SRSS) of the modal responses. According to this estimate the maximum total displacement

is approximated by

umax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1;max þ u2
2;max þ � � � þ u2

N ;max

q
ð32Þ

where uj;max corresponds to the maximum displacement calculated from the jth transformed

dynamic equations over the complete time period. The use of the Eq. (32) permits this type of

‘‘dynamic’’ analysis by knowing only the maximum modal coordinates uj;max.

The following steps summarize the response spectrum modal analysis adopted in this

study and by a number of seismic codes around the world:

1. Calculate a number m0 < N of eigenfrequencies and the corresponding eigenmode shape

matrices, which are classified in the following order ðo1
i ;o

2
i ; . . . ;o

m0

i Þ, Ui ¼

½f 1
i ;f

2
i ; . . . ;f

m0

i �, respectively, where o j
i ;f

j
i are the jth eigenfrequency–eigenmode

FIGURE 2 (Continued).
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corresponding to the ith design vector. m0 is a user specified number, based on experi-

ence or on previous test analyses, which has to satisfy the requirement of Step 6.

2. Calculate the generalized masses:

�mm
j
i ¼ f j

i

T
Mif

j
i ð33Þ

3. Calculate the coefficients L
j
i:

L
j
i ¼ f j

i

T
Mir ð34Þ

where r is the influence vector, which represents the displacements of the masses

resulting from static application of a unit ground displacement.

4. Calculate the modal participation factor Gj
i:

G|
i ¼

L
|
i

�mm
j
i

ð35Þ

5. Calculate the effective modal mass for each design vector and for each eigenmode:

m
j
eff ;i ¼

L
j
i

2

�mm
j
i

ð36Þ

6. Calculate a number m < m0 of the important eigenmodes. According to Eurocode the

minimum number of eigenmodes that have to be taken into consideration is defined by

the following assumption: The sum of the effective eigenmasses must not be less than

the 90% of the total vibrating mass mtot of the system. Thus the first m eigenmodes that

satisfy the equation

Xm
j¼1

m
j
eff ;i � 0:90mtot ð37Þ

are taken into consideration.

7. Calculate the values of the spectral acceleration RdðTjÞ that correspond to each eigen-

period Tj of the m important modes from the response spectrum of the region.

8. Calculate the modal displacements according to equation

ðSDÞj ¼
RdðTjÞ

o2
j

¼
RdðTjÞ � T

2
j

4p2
; j ¼ 1; . . . ;m ð38Þ

9. Calculate the maximum modal displacements for

uj;max ¼ Gj
i � f

j
i � ðSDÞj; j ¼ 1; . . . ;m ð39Þ

10. The total maximum displacement is calculated by superimposing the maximum modal

displacements according to Eq. (32).
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5 SOLUTION OF THE OPTIMIZATION PROBLEM

Evolutionary Computation (EC) encompasses methods of simulating evolution on computing

systems. Evolutionary Algorithms (EA) belong to EC and represent the probabilistic

category of optimization methods. The first attempt in the field of evolutionary computation

was focused on building a computer program that would simulate the process of evolution in

nature. Evolutionary algorithms have been found to be capable of producing very powerful

and robust search mechanisms although the similarity between these algorithms and natural

evolution is based on a crude imitation of biological reality. The resulting evolutionary algo-

rithms are based on a population of individuals, which are subjected to processes of

mutation, recombination=crossover and selection.

In structural optimization problems, where the objective function and the constraints are

highly non-linear functions of the design variables, the computational effort spent in gradient

calculations required by the mathematical programming algorithms is usually large. In two

studies [23, 24] it was found that probabilistic search algorithms are computationally efficient

even if greater number of optimization cycles is needed to reach the optimum. These cycles

are computationally less expensive than in the case of mathematical programming algorithms

since they do not need gradient evaluation. Furthermore, probabilistic methodologies were

found to be more robust in finding the global optimum, due to their random search, whereas

mathematical programming algorithms may be trapped in local optima.

5.1 ES for Discrete Optimization Problems

Evolution strategies (ES) methodology represents a probabilistic search and optimization

algorithm based on principles of organic evolution and was proposed for parameter optimiza-

tion problems in the 1970s [25]. The multi-membered ES adopted in the current study, based

on the discrete formulation [26], uses three operators: recombination, mutation and selection

operators that can be included in the algorithm as follows:

Step 1 (recombination and mutation) The population of m parents at the gth generation

produces l offsprings. The genotype of any descendant differs only slightly from that of its

parents. For every offspring vector a temporary parent vector ~ss ¼ ½~ss1; ~ss2; . . . ; ~ssn�
T is first built by

means of recombination. For discrete problems the following recombination cases can be used

~ssi ¼

sa;i or sb;i randomly ðAÞ

sm;i or sb;i randomly ðBÞ

sbj;i ðCÞ

sa;i or sbj;i randomly ðDÞ

sm;i or sbj;i randomly ðEÞ

8>>>><
>>>>:

ð40Þ

~ssi is the ith component of the temporary parent vector ~ss, sa;i and sb;i are the ith components of

the vectors sa and sb which are two parent vectors randomly chosen from the population. The

vector sm is not randomly chosen but is the best of the m parent vectors in the current

generation. In case (C) of Eq. (40), ~ssi ¼ sbj;i means that the ith component of ~ss is chosen

randomly from the ith components of all m parent vectors. From the temporary parent ~ss an

offspring can be created following the mutation operator.

The mutation operator generates an offspring so, from the temporary parent vectors, whose

genotype is slightly different from the parental one:

so ¼ ~ssþ z ð41Þ
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where z ¼ ½z1; z2; . . . ; zn�
T is a random vector. The random vector z is properly generated in

order to force the offspring vector to move to another set of discrete values. The fact that the

difference between any two adjacent values can be relatively large is contrary to the require-

ment that the variance s2
i should be small. For this reason it is suggested that not all the com-

ponents of a parent vector, but only a few of them (e.g. ‘), should be randomly changed in

every generation. This means that n� ‘ components of the randomly changed vector zðgÞ will

have zero value. In other words, the terms of vector zðgÞ are derived from

z
ðgÞ
i ¼

ðkþ 1Þdsi for ‘ randomly chosen components

0 for n� ‘ other components

�
ð42Þ

where dsi is the difference between two adjacent values in the discrete set and k is a random

integer number, which follows the Poisson distribution

pðkÞ ¼
ðgÞk

g!
e�g ð43Þ

g is the standard deviation as well as the mean value of the random number k.

Step 2 (selection) There are two different types of the multi-membered ES:

(mþ l)-ES: The best m individuals are selected from a temporary population of ( mþ l)

individuals to form the parents of the next generation.

(m; l)-ES: The m individuals produce l offsprings ( m � l) and the selection process

defines a new population of m individuals from the set of l offsprings only.

In order to implement ES in Pareto optimization problems the selection operator is based

on a randomly chosen objective. For discrete optimization the procedure terminates when one

of the following termination criteria is satisfied: (i) when the best value of the objective

function in the last 4nm=l generations remains unchanged, (ii) when the mean value of the

objective values from all parent vectors in the last 2nm=l generations has not been improved

by less than a given value eb (¼0:0001), (iii) when the relative difference between the best

objective function value and the mean value of the objective function values from all parent

vectors in the current generation is less than a given value ec (¼0:0001), (iv) when the ratio

mb=m has reached a given value ed (¼0:5 to 0.8) where mb is the number of the parent vectors

in the current generation with the best objective function value.

5.2 ES in Multi-objective Structural Optimization Problems

The application of evolutionary algorithms in multi-objective optimization problems has

attracted the interest of a number of researchers in the last five years due to the difficulty

of conventional optimization techniques, such as gradient based methods, to be extended

to multi-objective optimization problems. EA, however, have been recognized to be more

appropriate to multi-objective optimization problems since early in their development [1].

Multiple individuals can search for multiple solutions simultaneously, taking advantage of

any similarities available in the family of possible solutions to the problem.

In the first implementation where the standard methods are used, the optimization pro-

cedure, in order to generate a set of Pareto optimal solutions, initiates with a set of parent

design vectors needed by the ES optimizer and a set of weighting coefficients for the

combination of all objectives into a single scalar parameterized objective function. These
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weighting coefficients are not set by the designer but are systematically varied by the opti-

mizer after a Pareto optimal solution has been achieved. There is an outer loop which

systematically varies the parameters of the parameterized objective function, and is called

the decision making loop. The inner loop is the classical ES process, starting with a set

of parent vectors. If any of these parent vectors gives an infeasible design then this parent

vector is modified until it becomes feasible. Subsequently, the offsprings are generated and

checked if they are in the feasible region. According to the ðmþ lÞ selection scheme, in

every generation the values of the objective function of the parent and the offspring vectors

are compared and the worst vectors are rejected, while the remaining ones are considered to

be the parent vectors of the new generation. On the other hand, according to the ðm; lÞ
selection scheme only the offspring vectors of each generation are used to produce the

new generation. This procedure is repeated until the chosen termination criterion is

satisfied. The number of parents and offsprings involved affects the computational effi-

ciency of the multi-membered ES discussed in this work. It has been observed that when

the values of m and l are equal to the number of the design variables better results are

produced.

Two ES algorithms for multi-objective structural optimization applications under seismic

loading are compared and tested in the subsequent section:

(i) The ES algorithm combined with the standard methods which can be stated as follows:

Outer loop – Decision making loop

Set the parameters wi of the parameterized objective function

Inner loop – ES loop

1. Selection step: selection of si ði ¼ 1; 2; . . . ; mÞ parent vectors of the design variables

2. Analysis step: solve MðsiÞ €uuþ CðsiÞ _uuþKðsiÞu ¼ RðtÞ ði ¼ 1; 2; . . . ; mÞ
3. Evaluation of parameterized objective function

4. Constraints check: all parent vectors become feasible

5. Offspring generation: generate sj; ð j ¼ 1; 2; . . . ; lÞ offspring vectors of the design

variables

6. Analysis step: solve MðsjÞ €uuþ CðsjÞ _uuþKðsjÞu ¼ RðtÞ ð j ¼ 1; 2; . . . ; lÞ
7. Evaluation of the parameterized objective function

8. Constraints check: if satisfied continue, else change sj and go to Step 5

9. Selection step: selection of the next generation parents according to ðmþ lÞ or ðm; lÞ
selection schemes

10. Convergence check: If satisfied stop, else go to step 5

End of Inner loop

End of Outer loop

(ii) The modified ES algorithm (ESMO) as described in Section 3.3.4 which can be stated

as follows:

1. Selection step: selection of si ði ¼ 1; 2; . . . ; mÞ parent vectors of the design variables

2. Analysis step: solve MðsiÞ €uuþ CðsiÞ _uuþKðsiÞu ¼ RðtÞ ði ¼ 1; 2; . . . ; mÞ
3. Evaluation of the objective functions

4. Constraints check: all parent vectors become feasible

5. Offspring generation: generate s j; ð j ¼ 1; 2; . . . ; lÞ offspring vectors of the design

variables

6. Analysis step: solve MðsjÞ €uuþ CðsjÞ _uuþKðsjÞu ¼ RðtÞ ð j ¼ 1; 2; . . . ; lÞ
7. Evaluation of the objective functions

8. Constraints check: if satisfied continue, else change sj and go to Step 5
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9. Selection step: random selection of the potential objective for the each individual and

selection of the next generation parents according to ðmþ lÞ or ðm; lÞ selection schemes

10. Fitness sharing

11. Convergence check: If satisfied stop, else go to Step 5

6 NUMERICAL RESULTS

The performance of the multi-objective optimization methods discussed in this paper is

investigated in two benchmark test examples: A six storey space frame and a multi-layered

space truss. The following abbreviations are used in this section: DTI refers to the Newmark

Direct Time Integration method. RSMA to the Response Spectrum Modal Analysis. LWM

refers to the Linear Weighting Method, DFM to the Distance Function Method and CM to

the Constraint Method for treating multi-objective optimization problems. Finally ESMO

refers to the proposed Evolution Strategies for treating Multi-objective Optimization

problems.

6.1 Six Storey Space Frame

The objective functions considered for this problem are the weight of the structure, the maxi-

mum displacement and the first eigenperiod. The first two objective functions have to be

minimized while the third one has to be maximized. Constraints are imposed on the inter-

storey drifts and for each element group on the maximum non-dimensional ratio q of

Eqs. (2) and (3) under a combination of axial force and bending moments. The test example

was run on a Silicon Graphics Power Challenge computer.

The space frame consists of 63 elements with 180 degrees of freedom as shown in

Figure 3(a). The length of the beams and the columns are L1 ¼ 7:32 m and L2 ¼ 3:66 m,

respectively. The structure is loaded with a 19:16 kPa gravity load on all floor levels and a

static lateral load of 109 kN applied at each node in the front elevation along the z direction.

FIGURE 3 (a) Six storey space frame, (b) element groups.
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The element members are divided into 5 groups, as shown in Figure 3(b), each one having

two design variables resulting in ten total design variables. The cross section of each

member is assumed to be an I-shape and for each member two design variables are consi-

dered as shown in Figure 4. The modulus of elasticity is 200 GPa and the yield stress is

sy ¼ 250 MPa.

The Pareto optimal set of solutions was first computed with the LWM. The performance of

this method for the case of seeking the simultaneous minimization of weight and maximum

displacement is depicted in Figures 5 and 6 for both static and seismic loading conditions. In

Figures 5 and 6 the performance of the DFM and ESMO methods are also presented. For the

case of the DFM the zero (0) point was considered as the utopian point, while four different

schemes of the DFM were examined. p ¼ 1: equivalent to the LWM, p ¼ 2: called quadratic

LWM and p ¼ 8: equivalent to the p ¼ 1. The case when the weight and the first eigen-

period are considered as the objectives of the problem is depicted in Figure 7.

FIGURE 5 Six storey frame: performance of the methods for static and combined static and seismic loading
conditions.

FIGURE 4 I-shape cross section.
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The CM is implemented with the following two variations: (i) The weight as the only

criterion and the maximum displacement or the first eigenperiod as constraint; and (ii) the

maximum displacement or the first eigenperiod as the only criterion and the weight as con-

straint. Figures 8 and 9 show the performance of the CM, for the simultaneous minimization

of the weight and the maximum displacement. These sets of Pareto optimal solutions, are

produced for the following cases: (i) different upper limits for the maximum displacement,

FIGURE 6 Six storey frame: performance of the methods for static and combined static and seismic loading
conditions.

FIGURE 7 Six storey frame: performance of the methods for combined static and seismic loading conditions.
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and (ii) different upper limits of the weight of the structure. Figure 10 shows the performance

of the CM for the simultaneous minimization of weight and the first eigenperiod and for

the cases: (i) different upper limits for the first eigenperiod, and (ii) different upper limits

of the weight of the structure.

From Figures 6 and 9 it can also be seen that the Pareto optimal solutions achieved by the

direct time integration approach under the multiple loading conditions of the five artificial accel-

erograms are lower than the corresponding designs given by the response spectrum modal ana-

lysis. Moreover, in Figures 5 and 6 and in Figures 7 and 10 it can be seen that there is little

FIGURE 8 Six storey frame: performance of the methods for combined static and seismic loading conditions.

FIGURE 9 Six storey frame: performance of linear ( p¼ 1), distance and ESMO methods.
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difference in the performances of the standard methods and the ESMO method, while, as can be

seen from Table I, there is a substantial variation in the computing time.

6.2 Multi-layered Space Truss

The optimum design with multiple objectives of a long span three layered aircraft hangar is

investigated. The objective functions considered for the problems are the weight of the struc-

ture and the maximum deflection, both of which are to be minimized. This hangar is a triple

layer space truss with a 5-layered front girder spanning 130:9 m. The front girder is formed

by adding two layers, one at the top and the other at the bottom of the space truss (Fig. 11).

The heavily stressed top and bottom layers are designated as ‘flanges’ consisting of longi-

tudinal and cross-girders, which are closed box sections. The diagonal members connecting

the top and bottom flanges to the top and bottom chords of the triple-layer space frame are

also closed box sections. The members of the space truss were grouped as follows: Group 1:

Longitudinal members of the top and bottom flanges (Fig. 11). Group 2: Cross girders of

the top and bottom flanges. Group 3: Bracing diagonals connecting the top and bottom

flanges to the top and bottom chords. Group 4: Top and bottom chords of the space truss.

FIGURE 10 Six storey frame: performance of linear ( p¼ 1), constraint and ESMO methods.

TABLE I Six Storey Frame: Performance of the Standard and ESMO Methods for
Dealing with Multi-objectives for Dynamic Loading Conditions.

Method Generations FE analyses CPU Time (sec)

LWM (Combined-DTI) 372 2609 254,112
ESMO (Combined-DTI) 28 367 35,788
LWM (Combined-RSMA) 411 2901 109,803
ESMO (Combined-RSMA) 31 401 15,171
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Group 5: Diagonal bracing members connecting the top and bottom chords to middle

chords. Group 6: Middle chords of the space truss. The hangar comprises 3614 nodes

(10,638 d.o.f.) and 12,974 members. Members of Group 1 to 3 are to be selected from

the structural sections listed in Table II and members of Groups 4 to 6 from the tube sizes

given in Table III. Taking advantage of the symmetry of the structure, the formulation of

the problem was made for one half of the hangar depicted in Figure 12 which results in a

model with 5269 d.o.f.

For this test example two cases are considered: (i) The weight as the only criterion and the

maximum displacement as a constraint; and (ii) The maximum displacement as the only

criterion and the weight as a constraint. The performance of the LWM for the case of the

simultaneous minimization of weight and maximum displacement is depicted in Figure 13.

In this figure the results of DFM with p ¼ 1, 2 and 8 and ESMO methods are also presented.

Figure 14 depicts the performance of the CM, for the simultaneous minimization of weight

FIGURE 11 Cross-section of the space hangar. 1: Longitudinal members of the top and bottom flanges. 2: Cross
girders of the top and bottom flanges. 3: Bracing diagonals connecting top and bottom flanges to top and bottom
chords of the space hangar. 4: Top and bottom chords of the space hangar. 5: Diagonal bracing members connecting
top and bottom chords of space hangar to middle chords. 6: Middle chords of the space hangar.

TABLE II Properties of the Structural Members (Database 1).

Section number Type Description

1 ISMC 100 Single channel
2–12 2� ISMC (75, 100, 125, 150, 175,

200, 225, 250, 300, 350, 400)
Closed box section made-up of

2 channels
13–16 2� ISMC 400 with 2� (8, 12, 16,

25 mm) thick MS plates
Closed box section made-up of

2 channels with 2 plates welded
at top and bottom

17 4� ISMC 400 Closed double box section made-up
of 4 channels

18–22 4� ISMC 400 with 2� (8, 16, 20,
25, 32 mm) thick MS plates

Closed double box section made-up
of 4 channels with 2 plates
welded at top and bottom

23–27 4� ISMC 400 with 4� (20, 25, 32,
40, 50 mm) thick MS plates

Closed double box section made-up
of 4 channels with 4 plates
welded at top and bottom
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FIGURE 12 Multi-layered space truss.

TABLE III Properties of the Tubular Structural Members (Database 2).

Section number Outer diameter Thickness Area (mm2)

1 60.30 3.25 582.73
2 76.10 4.50 1012.63
3 88.90 4.85 1281.16
4 114.30 5.40 1848.19
5 139.70 5.40 2279.26
6 152.40 5.40 2494.8
7 165.10 5.40 2710.34
8 193.70 5.90 3482.35
9 219.10 5.90 3953.34

10 273.00 5.90 4952.8
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and maximum displacement. These sets of Pareto optimal solutions, are produced for differ-

ent upper limits for the maximum displacement and for different upper limits of the weight

of the structure. In Figures 13 and 14 it can be seen that there is little difference in the

results obtained by the standard methods and the ESMO method while, as can be seen

from Table IV, there is a substantial improvement in the computing time with the proposed

implementation.

FIGURE 13 Multi-layered space truss: performance of linear, distance and ESMO methods.

FIGURE 14 Multi-layered space truss: performance of linear, constraint and ESMO methods.
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7 CONCLUSIONS

Evolution Strategies can be considered as an efficient tool for multi-objective design optimi-

zation of structural problems such as space frames and multi-layered space trusses under

static and seismic loading conditions. The proposed modified evolution strategies method

for treating multi-objective optimization problems proved to be a robust and reliable optimi-

zation tool giving almost identical results compared to those obtained by the standard

methods used in the past such as the linear weighting, distance function and constraint

methods.

In terms of computational efficiency it appears that all three standard methods considered

require similar computational effort with approximately the same number of generation steps.

On the other hand, the proposed method requires almost one order of magnitude less

computing time than the standard methods. The presented results show that it is possible

to achieve an optimal design under seismic loading and multiple objectives. Both design

methodologies based on a number of artificially generated earthquakes and the response

spectrum modal analysis adopted by the seismic codes have been implemented and

compared. The dynamic approach based on time history analyses gives more economic

designs than the approximate response spectrum modal analysis, at the expense of requiring

more computational effort.
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