
Attribute Selection with
a Multiobjective Genetic Algorithm

Gisele L. Pappa, Alex A. Freitas, Celso A.A. Kaestner

Pontifícia Universidade Catolica do Parana (PUCPR),
Postgraduated Program in Applied Computer Science,

Rua Imaculada Conceicao, 1155, Curitiba - PR, 80215-901, Brazil
{gilpappa, alex, kaestner}@ppgia.pucpr.br

http://www.ppgia.pucpr.br/~alex

Abstract. In this paper we address the problem of multiobjective attribute
selection in data mining. We propose a multiobjective genetic algorithm (GA)
based on the wrapper approach to discover the best subset of attributes for a
given classification algorithm, namely C4.5, a well -known decision-tree
algorithm. The two objectives to be minimized are the error rate and the size of
the tree produced by C4.5. The proposed GA is a multiobjective method in the
sense that it discovers a set of non-dominated solutions (attribute subsets),
according to the concept of Pareto dominance.

1 Introduction

The amount of data stored in real-world databases grows much faster than our abilit y
to process them, so that the challenge is to extract useful knowledge from data. This is
the core idea of the field of data mining, where the goal is to discover, from real-
world data sets, knowledge that is accurate, comprehensible, and useful for the user.

The complexity and large size of real-world databases have motivated researchers
and practitioners to reduce the data dimensionality, for data mining purposes. This
dimensionality reduction can be done in two main directions. First, one can select a
random sample of the available records, reducing the number of records to be mined.
Second, one can select a subset of the available attributes [10], [11], which can also
reduce the number of records to be mined. The latter is the direction followed in this
paper.

Attribute selection is important because most real-world databases were collected
for purposes other than data mining [8]. Hence, a real-world database can have many
attributes that are irrelevant for data mining, so that by discarding the irrelevant
attributes one can actually improve the performance of a data mining algorithm. In
addition, providing a data mining algorithm with a subset of attributes reduces the
computational time taken by that algorithm, by comparison with using the entire set
of available attributes. As a result, attribute selection is an active research area in data
mining.

The goal of attribute selection is to discover a subset of attributes that are relevant
for the target data mining task. In this paper we address the task of classification,
where the goal is to predict the class of an example (a record) based on the values of
the predictor attributes for that example. In the context of this task, in general two

important objectives of attribute selection are to minimize the error rate of the
classification algorithm and the complexity of the knowledge discovered by that
algorithm. These are the two objectives to be minimized in this work.

Note that attribute selection, like many other data mining problems, involve the
“simultaneous” optimization of more than one objective. However, such a
simultaneous optimization is not always possible. The objectives to be optimized can
be conflicting with one another, and they normally are non-commensurable – i.e.,
they measure different aspects of the target problem.

In order to solve problems involving more than one objective, recently there has
been a growing amount of research in the area of multiobjective optimization [3]. The
basic idea is to return to the user, as the result of the problem-solving algorithm, a set
of optimal solutions (rather than a single solution) by taking both objectives into
account, without a priori assigning greater priority to one objective or the other. The
ultimate choice about which solution should be used in practice is left to the user,
which can use his/her background knowledge and experience to choose the “best”
solution for his/her needs a posteriori, among all the returned optimal solutions. The
motivation for multiobjective optimization will be discussed in more detail i n section
3.

Casting the attribute selection problem as a multiobjective optimization problem,
this paper proposes a multiobjective genetic algorithm (GA) for attribute selection in
the classification task of data mining. The paradigm of GA was chosen for the
development of our attribute selection method mainly for the following reasons. First,
GAs are a robust search method, capable of effectively exploring large search spaces,
which is usually the case in attribute selection. Note that the size of the search space
in attribute selection is 2M, where M is the number of attributes – i.e., the size of the
search space grows exponentially with the number of attributes. Second, unlike many
search algorithms which perform a local, greedy search, GAs perform a global search
[5]. In the context of data mining, this global search means that GAs tend to cope
better with attribute interaction than greedy search methods [6], [7]. Finally, it is
important to notice that multiobjective optimization requires a problem-solving
algorithm that is capable of considering a set of optimal solutions at each iteration,
and this requirement is naturally satisfied by GAs, which work with a population of
individuals, or candidate solutions [3].

The remainder of this paper is organized as follows. Section 2 reviews the main
concepts of attribute selection. Section 3 discusses multiobjective optimization.
Section 4 describes the proposed multiobjective GA for attribute selection. Section 5
reports computational results. Finally section 6 presents the conclusions of this work.

2 Attribute Selection

Attribute selection is one of the main preprocessing tasks for the application of a data
mining algorithm [10]. As mentioned in the Introduction, the general goal of attribute
selection is to select a subset of attributes that are relevant for the target data mining
task, out of all available attributes. In the classification task, which is the task
addressed in this work, an attribute is deemed relevant if it is useful for discriminating
examples belonging to different classes.

More specific goals of attribute selection are as follows:
• Improving the performance of a data mining algorithm with respect to several

criteria, such as reducing the classification error rate and/or complexity (size)
of discovered knowledge and reducing the processing time of the data mining
algorithm;

• Removing noisy and/or irrelevant attributes, reducing the dimensionality of
the data (which not only helps to improve the performance of the data mining
algorithm, but also saves storage space, in the case of very large data sets).

There are many methods that can be used for attribute selection. They can be
characterized mainly with respect to the search strategy used to explore the space of
candidate attribute subsets and with respect to the evaluation function used to measure
the quality of a candidate attribute subset.

With respect to the search strategy, two well-known methods are forward
sequential selection (FSS) and backward sequential selection (BSS) [10]. In essence,
FSS starts with an empty set of selected attributes and it adds one attribute at a time to
that set until a stopping criterion is met – e.g., until the quality of the current set of
selected attributes cannot be improved by adding another attribute to that set. BSS
follows the opposite strategy. It starts with the full set of original attributes, and it
removes one attribute at a time from that set until a stopping criterion is met. In both
methods, the attribute chosen to be added or removed at each step is the one
maximizing the value of some evaluation function. Hence, both are greedy methods,
working with one attribute at a time, and therefore having the drawback of being
sensitive to attribute interaction.

With respect to the evaluation function, attribute selection methods can be
classified into the filter approach or the wrapper approach. This classification is
independent of the search strategy used by the attribute selection method. It depends
on whether or not the evaluation function uses the target data mining algorithm
(which will be eventually applied to the ultimate set of selected attributes) to evaluate
the quality of a candidate attribute subset. In the filter approach the attribute selection
method does not use the data mining algorithm, whereas in the wrapper approach the
attribute selection method uses the data mining algorithm to evaluate the quality of a
candidate attribute subset. Note that the data mining algorithm is used as a black box.

The wrapper approach tends to obtain a predictive accuracy better than the filter
approach, since it finds an attribute subset “customized” for a given data mining
algorithm. However, the wrapper approach is considerably more computationally
expensive than the filter approach, since the former requires many runs of the data
mining algorithm.

3 Multiobjective Optimization

Many real-world problems involve the optimization of multiple objectives. However,
the majority of methods used to solve these problems avoids the complexities
associated with multiobjective optimization. As a result, many methods have been
proposed to convert multiobjective problems into single objective problems [3]. Some
of them can be found in [9], [14].

Once several conversion methods are available, it has been forgotten that, in
reality, a single objective optimization problem is a degenerated case of a

multiobjective optimization problem, and that there are crucial differences between
the two kinds of problems. The main difference concerns the desired number of
optimal solutions. In single objective optimization one usually wants to discover a
single optimal solution. By contrast, assuming that the different objectives to be
optimized represent conflicting goals (such as improving the quality of a product and
reducing its cost), in multiobjective optimization the optimization of each objective
corresponds to an optimal solution. Therefore, in multiobjective optimization one
usually wants to discover several optimal solutions, taking all objectives into account,
without assigning greater priority to one objective or the other. The ultimate choice
about which solution should be used in practice is left to the user, which can use
his/her background knowledge and experience to choose the “best” solution for her
needs, among all returned optimal solutions.

In other words, in a multiobjective optimization framework the user has the
advantage of being able to choose the solution representing the best trade-off between
conflicting objectives a posteriori, after examining a set of high-quality solutions
returned by the multiobjective problem-solving algorithm. Intuitively, this is better
than forcing the user to choose a trade-off between conflicting goals a priori, which is
what is done when a multiobjective optimization problem is transformed into a single-
objective one.

In multiobjective optimization, in order to take all the objectives into account as a
whole during the search for optimal solutions, one uses the concept of Pareto
dominance, as follows. A given solution x1 dominates another solution x2 if and only
if:

1. Solution x1 is not worse than solution x2 in any of the objectives;
2. Solution x1 is strictly better than solution x2 in at least one of the objectives.

A
cc

id
en

t
R

at
e

B

A

C

D

Pare to Op t ima l F ron t

C o s t

Fig. 1: Example of Pareto dominance in a two-objective problem [2]

The solutions that are not dominated by any other solution are considered Pareto-
optimal solutions. Figure 1 shows a set of possible solutions for a hypothetical
problem with two objectives to be minimized, namely accident rate and cost. Note
that solution A has a small cost but a large accident rate. Solution B has a large cost
but a small accident rate. Assuming that minimizing both objectives is important, one
cannot say that solution A is better than B, nor vice-versa. In addition, solution D
cannot be considered better than A or B. The three solutions A, B, and D are Pareto-
optimal solutions: none of them is dominated by other solutions. These solutions are
included in the Pareto front, represented by the dotted line in Figure 1. Note that
solution C is not a Pareto-optimal solution, since it is dominated, for instance, by
solution B (which is better than C with respect to both objectives).

4 The Proposed Multiobjective GA for Attribute Selection

A genetic algorithm (GA) is a search algorithm inspired by the principle of natural
selection. The basic idea is to evolve a population of individuals, where each
individual is a candidate solution to a given problem. Each individual is evaluated by
a fitness function, which measures the quality of its corresponding solution. At each
generation (iteration) the fittest (the best) individuals of the current population survive
and produce offspring resembling them, so that the population gradually contains
fitter and fitter individuals – i.e., better and better candidate solutions to the
underlying problem. For a comprehensive review of GAs in general the reader is
referred to [12], [5]. For a comprehensive review of GAs applied to data mining the
reader is referred to [7].

This work proposes a multiobjective genetic algorithm (GA) for attribute selection.
As mentioned in the Introduction, our motivation for developing a GA for attribute
selection, in a multiobjective optimization framework, was that: (a) GAs are a robust
search method, capable of effectively exploring the large search spaces often
associated with attribute selection problems; (b) GAs perform a global search [7], [4],
so that they tend to cope better with attribute interaction than greedy search methods
[6], [7], which is also an important advantage in attribute selection; and (c) GAs
already work with a population of candidate solutions, which makes them naturally
suitable for multiobjective problem solving [3], where the search algorithm is
required to consider a set of optimal solutions at each iteration.

The goal of the proposed GA is to find a subset of relevant attributes that leads to a
reduction in both the classification error rate and the complexity (size) of the rule set
discovered by a data mining algorithm (improving the comprehensibility of
discovered knowledge).

In this paper the data mining algorithm is C4.5 [15], a very well-known decision
tree algorithm. The proposed GA follows the wrapper approach, evaluating the
quality of a candidate attribute subset by using the target classification algorithm
(C4.5). Hence, the fitness function of the GA is based on the error rate and on the size
of the decision tree built by C4.5. These two criteria (objectives) are to be minimized
according to the concept of Pareto dominance. The main aspects of the proposed GA
are described in the next subsections.

4.1 Individual Encoding

In the proposed GA, each individual represents a candidate subset of selected
attributes, out of all original attributes. Each individual consists of M genes, where M
is the number of original attributes in the data being mined. Each gene can take on the
value 1 or 0, indicating that the corresponding attribute occurs or not (respectively) in
the candidate subset of selected attributes.

4.2 Fitness Function

The fitness (evaluation) function measures the quality of a candidate attribute subset
represented by an individual. Following the principle of multiobjective optimization,
the fitness of an individual consists of two quality measures: (a) the error rate of C4.5;

and (b) the size of the decision tree built by C4.5. Both (a) and (b) are computed by
running C4.5 with the individual’s attribute subset only, and by using a hold-out
method to estimate C4.5’s error rate, as follows. First, the training data is partitioned
into two mutually-exclusive data subsets, the building subset and the validation
subset. Then we run C4.5 using as its training set only the examples (records) in the
building subset. Once the decision tree has been built , it is used to classify examples
in the validation set. The two components of the fitness vector are then the error rate
in the validation set and the size (number of nodes) of the tree built by C4.5.

4.3 Selection Method and Genetic Operators

At each generation (iteration) of the GA, the selection of individuals to reproduce is
performed as follows. First the GA selects all the non-dominated individuals (the
Pareto front) of the current population. These non-dominated individuals are passed
unaltered to the next generation by eliti sm [1]. Eliti sm is a common procedure in
GAs, and it has the advantage of avoiding that good individuals disappear from the
population due to the stochastic nature of selection.

Let N be the total population size (which is fixed for all generations, as usual in
GAs), and let Nelit be the number of individuals reproduced by eliti sm. Then the other
N - Nelit individuals to reproduce are chosen by performing N - Nelit times a tournament
selection procedure [12], as follows. First, the GA randomly picks k individuals from
the current population, where k is the tournament size, a user-specified parameter
which was set to 2 in all our experiments. Then the GA compares the fitness values of
the two individuals playing the tournament and selects as the winner the one with the
best fitness values.

The selection of the best individual is based on the concept of Pareto dominance,
taking into account the two objectives to be minimized (error rate and decision tree
size). Given two individuals I1 and I2 playing a tournament, there are two possible
situations. The first one is that one of the individuals dominates the other. In this case
the former is selected as the winner of the tournament.

The second situation is that none of the individuals dominates the other. In this
case, as a tie-breaking criterion, we compute an additional measure of quality for each
individual by taking both objectives into account. Following the principle of Pareto
dominance, care must be taken to avoid that this tie-breaking criterion assigns greater
priority to any of the objectives. Hence, we propose the following tie-breaking
criterion. For each of the two individuals Ii, i=1,2, playing a tournament, the GA
computes Xi as the number of individuals in the current population that are dominated
by Ii, and Yi as the number of individuals in the current population that dominate Ii.
Then the GA selects as the winner of the tournament the individual Ii with the largest
value of the formula: Xi - Yi. Finally, if I1 and I2 have the same value of the formula Xi-
Yi (which is rarely the case), the tournament winner is simply chosen at random.

Individuals selected by tournament selection undergo the action of two standard
genetic operators, crossover and mutation, in order to create new offspring [12]. In
essence, crossover consists of swapping genes (bits, in our individual encoding)
between two individuals, whereas mutation replaces the value of a gene with a new
randomly-generated value. In our individual encoding, where each gene is a bit,
mutation consists simply of flipping the value of a bit. These operators are applied
with user-specified probabiliti es. In all our experiments the probabiliti es of crossover

and mutation were set to 80% and 1%, respectively, which are relatively common
values in the literature.

The population size N was set to 100 individuals, which evolve for 50 generations.
These values were used in all our experiments. The pseudocode of the GA is shown,
at a high level of abstraction, in Algorithm 1. (Note that this pseudocode abstracts
away details such as the fact that crossover and mutation are applied with user-
defined probabilities. It shows only an overview of the flow of processing of the GA.)

Create initial population
FOR EACH generation DO
 FOR EACH Individual DO
Run C4.5 with attribute subset represented by the individual
Compute multiobjective fitness // error rate and tree size
 END FOR
 Add non-dominated individuals to next generation’s population
 FOR i ← 1 to (N - N

elit
)/2 DO

 Perform tournament selection twice, to select two parent
 individuals, P

1
 and P

2

 Perform crossover of P
1
 and P

2
, producing children C

1
 and C

2

 Perform mutation on C
1
 and C

2

 Add C
1
 and C

2
 to the next generation’s population

 END FOR
END FOR
Compute fitness of the individuals of the last generation
Return all non-dominated individuals of the last generation

Algorithm 1. Pseudocode of the proposed multiobjective GA

5 Computational Results

We have performed experiments with six public-domain, real-world data sets
obtained from the UCI (University of California at Irvine)’s data set repository [13].
The number of examples, attributes and classes of these data sets is shown in Table 1.

Table 1. Main characteristics of the data sets used in the experiments

Data Set # examples # attributes # classes
Dermatology 366 36 6

Vehicle 846 18 4
Promoters 106 57 2
Ionosphere 351 34 2

Crx 690 15 2
Arritymia 452 269 16

All the experiments were performed by using a well-known 10-fold stratified
cross-validation procedure, as follows. For each data set, all the available data is
divided into 10 mutually-exclusive and exhaustive partitions having approximately
the same size. In addition, each partition has approximately the same class
distribution (stratified cross validation). Then the GA and C4.5 are run 10 times. In
the i-th run of the algorithms, i=1,...,10, the i-th partition is used as the test set and the
other 9 partitions are used as the training set. All results reported in this paper refer to

average results in the test set over the 10 iterations of the cross-validation procedure.
At each iteration of the cross-validation procedure, a GA run is performed as

follows. For each individual of the GA, out of the 9 partitions used as the training set,
8 partitions (the building subset mentioned in subsection 4.2) are used by C4.5 to
build a decision tree, and the remaining partition (the validation subset mentioned in
subsection 4.2) is used to compute the error rate of C4.5. We emphasize that the
examples in the test set are never used during the evolution of the GA.

Finally, for each iteration of the cross-validation procedure, once the GA run is
over we compare the performance of C4.5 using all the original attributes with the
performance of C4.5 using only the attributes selected by the GA. In both runs of
C4.5, the decision tree is built using the entire training set (9 partitions), and then we
measure C4.5’s error rate in the test set.

Therefore, the GA can be considered successful to the extent that the attributes
subsets selected by it lead to a reduction in the error rate and size of the tree built by
C4.5, by comparison with the use of all original attributes.

There is a final point concerning the evaluation of the solutions returned by the
GA. It should be noted that, as explained before, the solution for a multiobjective
optimization problem consists of all non-dominated solutions (the Pareto front).
Hence, each run of the GA outputs the set of all non-dominated solutions (attribute
subsets) present in the last generation’s population. In a real-world application, it
would be left to the user the final choice of the solution to be used in practice.
However, in our research-oriented work, involving public-domain data sets, no user
was available. Hence, in order to evaluate the quality of the non-dominated attribute
subsets found by the GA in an automatic, data-driven manner – as usual in the
majority of the data mining and machine learning literature – we measure the error
rate and the size of the decision tree built by C4.5 using each of the non-dominated
attribute subsets returned by the GA. The ultimate results associated with the
attributes selected by the GA, which are the results reported in the following, are the
corresponding arithmetic average over all non-dominated solutions returned by the
GA.

The results of our experiments are reported in Table 2. The first column indicates
the name of the data set. The second and third columns indicate the error rate obtained
by C4.5 using only the attributes selected by the GA and using all original attributes,
respectively. The fourth and fifth columns indicate the size of the decision tree built
by C4.5 using only the attributes selected by the GA and using all original attributes,
respectively. In each cell of the table, the value before the “±” symbol is the average
result over the 10 iterations of the cross-validation procedure, and the value after the
“±” symbol is the corresponding standard deviation. In addition, in the second and
fourth columns the values of a given cell are shown in bold when the corresponding
result in that cell is significantly better than the result in the third and fifth columns,
respectively. A result is considered significantly better than another when the
corresponding intervals, taking into account the standard deviations, do not overlap.

As shown in Table 2, the error rate associated with the attributes selected by the
GA is better than the one associated with all attributes in three data sets, a nd the
difference between the two error rates is significant in one data set. In the other three
data sets, although the error rate associated with the attributes selected by the GA is
somewhat worse than the one associated with all attributes, the differences between
the two error rates are not significant – i.e., the corresponding intervals (taking into

account the standard deviations) overlap.

Table 2. Computational Results with 10-fold stratified cross validation

Data Set Error Rate (%) Decision Tree Size
C4.5 + GA C4.5 alone C4.5 + GA C4.5 alone

Dermatology 5.5 ± 1.46 4.2 ± 0.96 14.8 ±± 1.08 17.1 ± 0.34
Vehicle 29.9 ±0.70 29.6 ±1.15 151.9 ±± 8.32 181 ±3.24

Promoters 14.1 ±± 4.02 21.2 ± 3.05 16.8 ± 1.32 17.6 ± 0.99
Ionosphere 10.2 ± 1.16 8.5 ±1.20 20.8 ±±1.62 24 ±1.2

Crx 14.4 ± 1.38 16.3 ± 1.2 8.6 ±± 0.71 69.4 ± 2.72
Arritymia 31.6 ± 2.6 32.0 ± 2.36 64.1 ±± 2.3 75.4 ± 1.7

In Table 2 we also note that the tree size associated with the attributes selected by
the GA is better than the one associated with all attributes in all the six data sets, and
the difference is significant in five data sets.

In summary, the use of the GA has led to a significant reduction in the size of the
trees built by C4.5 in five data sets, without significantly increasing C4.5’s error rate
in any data set – and even significantly reducing C4.5’s error rate in one data set.

One disadvantage of the use of the GA is that it is computationally expensive. In
the two largest data sets used in our experiments, Vehicle (with the largest number of
examples) and Arritymia (with the largest number of attributes, viz. 269), a single run
of the GA took about 25 minutes and 5 hours and 15 minutes, respectively; whereas a
single run of C4.5 took less than one minute and one and half minute, respectively.
(The results were obtained in a Pentium-IV PC with clock rate of 1.7 GHz and 512
Mb of RAM.) We believe the increase in computational time associated with the GA
is a relatively small price to pay for its associated increase in the comprehensibility of
discovered knowledge. Data mining is typically an off-line task, and it is well-known
that in general the time spent on running a data mining algorithm is a small fraction
(less than 20%) of the total time spent with the entire knowledge discovery (KD)
process. Hence, in many applications, even if a data mining algorithm is run for
several days, this is acceptable, at least in the sense that it is not the bottleneck of the
KD process. In any case, if necessary the computational time associated with the GA
can be greatly reduced by using parallel processing techniques, since GAs can be
easily parallelized [7].

6 Conclusions and Future Work

In this paper we have proposed a multiobjective genetic algorithm (GA) for attribute
selection in the classification task of data mining. The goal of the GA is to select a
subset of attributes that minimizes both the error rate and the size of the decision tree
built by C4.5. The latter objective involves a commonplace measure of simplicity (or
comprehensibility) in the data mining and machine learning literature. The smaller the
size of a decision tree, the simpler it is, and so the more comprehensible to the user it
tends to be. We emphasize that, in data mining, maximizing comprehensibility tends
to be at least as important as minimizing error rate [7], [15]. In order to minimize the
two objectives at the same time, the GA uses the concept of Pareto dominance, so that

each GA run returns, as its output, the set of all non-dominated solutions found during
the search.

We have done experiments with six data sets, comparing the error rate and the size
of the decision tree built by C4.5 in two cases: using only the attributes selected by
the GA and using all attributes. The results of these experiments have shown that, on
average over all non-dominated solutions (attribute subsets) returned by the GA, the
use of the GA as an attribute selection method has led to: (a) a significant reduction of
the size of the tree built by C4.5 in five out of the six data sets; and (b) a significant
reduction of C4.5’s error rate in one data set. There was no case where the use of the
GA as an attribute selection method has led to an error rate or tree size significantly
worse than the ones associated with the use of all attributes.

With respect to future research, we have noted that in some cases the GA
population converges very fast, possibly corresponding to a premature convergence of
the population. We are currently investigating the use of a niching method to promote
greater population diversity, in order to reduce this premature convergence problem.

References

1. Bhattacharyya, S., Evolutionary Algorithms in Data mining: Multi -Objective Performance
Modeling for Direct Marketing. In: Proc KDD-2000, ACM Press (2000) 465-471

2. Deb, K, Multi -Objective Evolutionary Algorithms: Introducing Bias Among Pareto-Optimal
Solutions. Kanpur Genetic Algorithms Laboratory Report nº 99002, India (1999)

3. Deb, K., Multi -Objective Optimization using Evolutionary Algorithms, John Wiley & Sons,
England (2001)

4. Fidelis, M.V., Lopes, H.S., Freitas, A.A., Discovering Comprehensible Classification Rules
with a Genetic Algorithm. In: Proc. Congress on Evolutionary Computation (2000)

5. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company (1989)

6. Freitas, A. A.; Understanding the Crucial Role of Attribute Interaction in Data Mining. In:
Artificial Intell igence Review 16, Kluwer Academic Publishers (2001) 177-199

7. Freitas, A.A., Data Mining and Knowledge Discovery with Evolutionary Algorithms
(forthcoming book). Springer-Verlag (2002)

8. Holsheimer, M., Siebes, A., Data Mining – The Search for Knowledge in Databases. Report
CS-R9406, Amsterdam: CWI (1991)

9. Ishibuchi, H., Nakashima, T., Multi -objective Pattern and Feature Selection by a Genetic
Algorithm. In: Proc. Genetic and Evolutionary Computation Conf. (GECCO–2000), Morgan
Kaufmann (2000) 1069-1076

10. Liu, H.; Motoda, H., Feature Selection for Knowledge Discovery and Data Mining. Kluwer
Academic Publishers (1998)

11. Martín-Bautista, M. J., Vila, M. A., A Survey of Genetic Feature Selection in Mining
Issues. In: Proc. IEEE Conference on Evolutionary Computation, Washington (1999) 1314-
1321.

12. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn.
Springer-Verlag (1996)

13. Murphy, P.M., Aha, D.W., UCI Repository of Machine Learning databases.
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of Cali fornia,
Departament of information and Computer Science (1994)

14. Rozspyal, A., Kubat, M., Using Genetic Algorithm to Reduce the Size of a Nearest-
Neighbor Classifier and Select Relevant Attributes. Proc. Int. Conf. Machine Learning
(ICML-2001), Morgan Kauf. (2001)

15. Quinlan, J.R., C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

