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Abstract

This paper presents a control architecture with a neural
controller and a conventional linear controller for nonmini-
mum phase systems. The objective is to minimize overall
position errors as well as to maintain small undershooting.
These attributes make it difficult to obtain the optimal so-
lution which satisfied all individual objectives. Moreover,
heuristic attempts of a proper combination of several objec-
tives may produce a feasible solution but not necessarily op-
timal one. With the concept of Pareto optimality and evolu-
tionary programming, we train the controller more effectively
and obtain a valuable set of optimal solutions. According to
the preference, we can easily determine the most suitable so-
lution from a pool of optimal candidates.

LIntroduction

Artificial neural networks, known as good universal ap-
proximators, have been widely used as a computational tool
to effectively learn unknown nonlinear functions[1]. They
provide a complex solution easily from learning by exam-
ples without explicit programming. This makes them draw-
ing much interest as a powerful tool in designing controllers
of complex systems in control community. Practically in-
dustrial control systems makes mainly use of proportional-
integral-derivative(PID) typed controllers in spite of many
well-developed control theories. Although the controllers
provide a simple structure and understandability, fine tun-
ing of controller gains to guarantee good control performance
still necessitates experts’ sophisticated knowledge about both
control theory and dynamic process of a specific system. It
is well known that control of nonminimum phase systems
is a difficult task because of their inherent tendency of un-
natural undershooting. The systems having zeros or poles
at the right-hand of an s-plane can be found in many indus-
trial areas such as missile, plane, and power plant, etc. Early
works on design of the controllers have been developed by
many researchers[2],[3]. Even though they proposed efficient
methods to find gains of a linear controller, their approaches
are not capable of solving nonminimum zero phenomena like
undershooting at the transient region because of the limita-
tion of the linear controller. Widrow and Stearns[4] pro-
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posed an (adaline-typed) adaptive controller for special cases
of nonminimum phase systems under some relaxed assump-
tions. On the other hand, the unstable pole-zero cancellation
method cannot be applied in the design of controllers of the
systems because of an internal stability problem[5]. Park et
al.[6] proposed a new control structure which consisted of a
conventional PID typed controller and a supplementary non-
linear neural controller in parallel. To reduce the undershoot-
ing and shorten the settling time of the systems, they adopted
evolutionary programming(EP) as an effective training algo-
rithm of weight values of the neural network. EP has an ad-
vantage of a global evaluation without any differential infor-
mation of output errors. It is generally impossible to train
the controller with online because EP cannot utilize instant
performance evaluation of the underling controller. The cost
function consisted of two conflict objectives, minimization of
undershooting and overall position errors, and was defined
with a weighted linear combination of two. The weighting
factors were selected by trial and error.

Since there existed a tradeoff between small undershoot
and fast rising time, it was not easy to obtain suitable factors
in order to provide an (sub)optimal solution which satisfied
individual objectives. The neural controller was trained with
EP to optimize the prespecified cost function in the step re-
sponse.

Although the proposed method of Park et al. alleviates the
nonminimum phase phenomena and improves overall con-
trol performance to some degree, it does not guarantee real
optimality. In general, for this kind of multiobjective prob-
lems, there exists a set of non-dominated, Pareto, solutions
that present the optimal tradeoff relationship among objec-
tives. Any solution in the Pareto set cannot improve all costs
simultaneously(7]. Although there are many mathematical
optimization procedures such as linear programming, inte-
ger programming, and nonlinear programming, the inherent
parallel structure of EP provides some important advantages
in multiobjective optimization such as easy handling of the
Pareto optimal set[8]. We apply the concept of multiobjec-
tive technique(MO) to this problem to produce integrated op-
timization solutions and compare them with the previous so-
lution found by the single EP approach.

This paper is organized as follows: Control structure and
design methodology are briefly described in the following
section. Also, to guarantee good control performance over
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nonminimum phase phenomena, we devise a new cost func-
tion. In Section III, multiobjective evolutionary program-
ming(MOEDP) as a learning algorithm of the neural network is
presented. The Pareto optimal sets on several nonminimum
phase system are presented based on computer simulations in
Section IV. Finally, several conclusions are made, and further
research direction is suggested.

2.Design of a Neural Controller

The overall structure and the neural controller are shown
in Fig.1 where the integrator is used to reduce the effect of
the high frequency of the control output on the controlled sys-
tem. The neural controller is designed to activate mainly in
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Figure 1: (a) Overall block diagram of the proposed con-
troller. (b) Structure of the neural controller.

the undershoot regions where a PID typed controller does not
give good performance. Analysis on the step response of the
controlled system-and its error curve provides proper physi-
cal quantities as an input of the neural controller, Undershoot
phenomena appears when inequality (1) holds

de . ,

| 7 xe>0. 1)
Applying the product term of the error(e) and the error
derivative(%) as one of inputs of the neural controller, we
can dominantly activate the neural controller in undershoot-
ing regions.

The cost function in a design of the controller consists of two
conflict objectives as shown in (2)—(5)

Ey = By + Eh, )
{ By =|min((52f29),0) | when Og4(t) = 1,

By =| max(("5507),0) | when Ou(t) = 1,

Ey = Ey; + Eo, (3)

By =[ max(("5597"),0)| when 04(t) =0,
Ep =|min((%253),0)|  when 04(t) = 0,

0<t<T
T
Ea= [ (0ut) - &)at, @
0
E4:OLX(E1+E2)+,3XE3 (5)

where Oq(t) and £,(¢) are the desired step response and the
actual one, respectively. T' is a training time interval, and o
and 3 are the weighting factors. Equation (5) is a weighted
linear combination of two different objectives: E;, E,, and
Ej3 are absolute magnitudes of undershooting(E1;, Es;) and
overshooting(E15, Ej2) at each rising and falling period
and the overall summation of squared position errors. This
enables us to evaluate the extent to which each chromosome
is suitable for the given criteria such as small undershooting
and overshooting together with a minimization of overall
position errors.

3.Multiobjective Optimization using EP

Since conventional training algorithms of a neuro-
controller do not work well when the plant has nonminimum
phase characteristics[9], We devise a training method with
EP to improve global performance of the proposed controller
for the given cost function of (5). EP is a stochastic search
and optimization algorithm which uses concepts of evolution
and natural selection[10]. It is based on a real number rep-
resentation as a genotype. Its converging speed is relatively
fast in finding near-optimal solutions. In addition, it has an
advantage of finding an (sub)optimal solution fast without
explicit mathematical formulations and gradient information,
even when cost function is complicated and non convex. Due
to such characteristics, EP has been successfully adopted as a
parameter optimization tool for many real world applications.
However, it is not easy to guarantee real optimality only with
the original EP(OEP) approach.

Many real world problems involve multiple measures of
performance, or objectives, which should be optimized
simultaneously[7]. It is reasonable to treat them in point
of multiobjective optimization. In general, such problems
are optimized through a single objective formulation like a
popular weighted-sum or constrained approach. However,
weighting factors between objectives are not only difficult
to determine but also seriously affect overall performance.
The purpose of multiple optimization is to treat each ob-
jective independently and provides feasible solutions which
cannot decrease all objectives simultaneously. The solutions
are called non-dominated, and all feasible non-dominated
solutions belong to Pareto optimal set(Pareto optimal fron-
tier) as shown in Fig.2. We can divide the objective space
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Figure 2: Pareto Optimal Set(frontier) when minimizing each
objective.

into 3 regions: feasible, infeasible, and Pareto optimal fron-
tier(surface). Therefore, the pareto frontier defines the opti-
mal range of all objectives and the respective tradeoff. There
has been much research related to multiobjective optimiza-
tion and we adopt the Pareto-based niche and the sharing
method as an optimization tool[11). The Pareto-based tech-
niques proposed by Goldberg have been a major research di-
rection of MOEP(12]. In Pareto schemes, the fitness of an
individual is defined in terms of rank. By assigning equal
probability of reproduction to all non-dominated individuals
in the population, they explicitly make use of the definition
of Pareto optimality. The sharing method prevents solutions
from concentrating on only one area of the pareto surface by
penalizing members of the population that gather close to-
gether within a niche size. Although there exist many mathe-
matical programming methods in dealing with multiobjective
optimization techniques, EP provides important advantages
in MO analysis: (1) its inherent parallel structure and (2) with
carefully designed control parameters, chromosomes in the
population can be directly converged to the set of the Pareto
optimal solutions in a single run. A main difference between
the single EP and the multiobjective EP(MOEP) is a selection
strategy[13]. The latter selects non-dominated chromosomes
with high probability from the population and uses a sharing
function and niche concept to spread solutions uniformly over
a wide solution region.

To adopt the concept of the multiobjective optimization, we
reformulated the cost function of (5) with the two dimen-
sional form in the objective space.

flw) = (fi(w), f2(w)) (6)

with fi(w) = E; + E and f2(w) = Ej3, where w denotes
a chromosome, i.e., weights of the neural controller. E; and
E, are added together as the second component because they
represent transient performance of undershooting and over-
shooting.

4.Simulations

We carried out computer simulations on the following two
nonminimum phase systems to test the performance of the
proposed control structure(6].

s—1
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The first system has a nonminimum zero only and the second
both nonminimum pole and zero. The sampling time of these
systems are 0.05 sec. and 0.2 sec., respectively. As men-
tioned before, with only the PI controller, we cannot guar-
antee good performance and it is not easy to find out proper
gains of the controller of the second system because of its
inherent unstability. We compared performance of the pro-
posed controllers in OEP and MOEP approaches. As the in-
puts of the neural controller, we selected 6 components of
e(t),e(t) —e(t—1),e(t) * (e(t) — e(t — 1)) and each delayed
value. We made use of 200 population for each approach.
Figs.3 and 5 show the Pareto frontiers found by MOEP and a
solution of OEP in the objective space. Although OEP pro-
vides faster convergent speed than MOERP, its solution is not a
real optimal in the sense of multiobjective optimization. The
solutions are far from the Pareto frontier and dominated. OEP
may search a solution at a more complex landscape according
to the weighting factors or end with premature convergence.
And the convergent solution highly depends on the weighting
factors or control parameters like mutation rate. Figs.4 and
6 show performance comparisons of each approach through
the outputs of the controlled systems for each nonminimum
phase system. Also, we can see the neural controller activate
dominantly at the local region from Fig. 7. Table 1 provides
final objective values of considered controllers for the given
reference signals. Two solutions of MOEP 1 and 2 are non-
dominated for each objective and can be chosen as the neu-
ral controller according to user’s preference. Since MOEP
provides a variety of optimal solutions and the compromise
between them, user can easily select an solution pertinent to
the final decision. Simulation results show that multiobjec-
tive optimization approach using EP is useful to effectively
design the proposed neural controller.

5.Summary and Further Works

In this paper, we have proposed a parallel control archi-
tecture which consists of a conventional PID typed controller
and a neural controller to control nonminimum phase sys-
tems. The nonlinear neural controller mainly activates to
control the system in local operating region or local environ-
ment where the linear controller only cannot fulfill the given
desired performance. The control objective is to minimize
overall position errors as well as the undershooting simulta-
neously. Since this cost function causes a confliction between

I-535



Table 1: Performance Comparisons betwéen two solu-
tions(M1 and M2) of the Pareto frontier and a single solution
of OEP. E; + E5; is the maximum magnitude of undershoot-
ing after falling and rising of the step response. System I and
1I are the controlled systems of (7) and (8), respectively.

System I System II
EP | M1 | M2 || EP | M1 [ M2
Fix100 T 126 [ 80 | 39 [J208[136] 7.6
F, 1444 [ 1422 [ 173.6 || 36.5 ] 34.8 [ 39.9
Ey + Eg 4.0 4.0 1.9 6.6 5.0 3.6

each attribute, we cannot find the optimal solution which min-
imizes individual objectives simultaneously. Although EP
can provide an optimal solution for the given weighted com-
bination of the objectives, it may produce a dominated solu-
tion at the feasible region but not necessarily optimality be-
cause of the premature convergence. We have compared per-
formance of a single EP and MOEP in a design of a neural
controller for nonminimum phase systems. Computer simu-
lations show that the MO technique using EP is very efficient
in dealing with this kind of multiobjective problems. The pro-
posed controller trained with MOEP provides a variety of op-
timal solutions which guarantee the successful improvement
of the performance such as less undershooting and faster set-
tling time. For a further work, it is necessary to develop a
more effective cost function and MOEP algorithm.

6.Acknowledgment
This work was supported by a project(95-21) from Elec-
trical Engineering & Science Research Institute.

References

[1] Hornik, K., Strinchcombe, M., and White, H., “Multi-
layer Feedforward Networks are Universal Approxima-
tors,” Neural Networks, Vol.2, pp.359-366 (1989).

[2

—_—

Elliott, H., “Direct Adaptive Pole Placement with Ap-
plication to Nonminimum Phase systems,” IEEE Trans.
Automat. Contr., Vol.AC-27, 3, pp.720-721 (1982).

3

o

Praly, L., “Towards a Globally Stable Direct Adaptive
Control Scheme for Not Necessarily Minimum Phase
Systems,” IEEE Trans. Automat. Contr., Vol.AC-29, 10,
pp.946-949 (1984).

[4] Widrow, B. and Stearns, S.D., Adaptive Signal Process-
ing, Englewood Cliffs, NJ: Prentice-Hall, 1985.

[5] Doyle, J.C., Francis, B.A., and Tannenbaum, AR,
Feedback Control theory, New York:Macmillan, 1992.

[6] Park, S., Park, L-J., and Park, C.H., “A Neuro-
Genetic Controller for Nonminimum Phase Systems,”
IEEE Trans. Neural Networks, Vol.6, 5, pp.1297-1300
(1995).

{7] Fonseca, C.M. and Fleming, P.J., “An Overview of Evo-
lutionary Algorithms in Multiobjective Optimization,”
Evolutionary Computation, Vol.3, pp.1-16 (1995).

[8] Loughlin, D.H., and Ranjithan, S.R., “The Neighbor-
hood Constraint Method :- A Genetic Algorithm-Based
Multiobjective Optimization Technique,” Proceedings
of the seventh International Conference on Genetic Al-
gorithm, pp. 665-673 (1997).

[9] Park, YM., Hyun, S.H., and Lee, J.H., “An Inverse
Dynamics Controller for Power System Stabilizing us-
ing Artificial Neural Networks,” Proceedings of Inter-
national Conference on Power System Technology, Vol.
2, pp.1326-1329 (1994).

[10] Fogel,D.B.,Evolutionary Computation, IEEE Press,
1995.

[11] Horn, J. and Nafpliotis, N.,“Multiobjective Optimiza-
tion using the Niched Pareto Genetic Algorithm,” Ii-
LiGAL Technical Report 93005, Univ. of Illinois at
Urbano-Champaign.

[12] Goldberg,D.E.,Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning, Reading, MA:Addison-
Wesley, 1989.

[13] Nam, D., Seo., Y.D., Park, L-J., Park, C.H., and Kim, B,

" “ Parameter Optimization of a Voltage Reference Cir-

cuit using EP,” to appear in Proceedings of International
Conference on Evolutionary Computation (1998).

I-536



43 v ———

70 T —— T T T T T A2 — v T
Parcto Optimal Se(MOEP) ~4— Pursto Opsienal Se(MOEP) 4—
‘Origiaal EMOEF) + ‘Original ERGER) +
« 4
160
. ]
7 ol T J
& i«
] £
] H
Z L A
3 140 £ 4
] H
] 3
£ =
»
120 p 1 M
x| 4
o 3 " s s . " P
4 2% 6 s 10 1 20 u

1 14 16
F1 % 100(Tragsient crvors)

Figure 3: Pareto Optimal frontier found by MOEP and a so-  Figure 5: Pareto Optimal frontier found by MOEP and a so-

: s—1 . . s—1
lution of OEP for =% <. ‘ lution of OEP for ;5% "5z
LS e ' " ) ) j ) 3 i 'Rnlcmlcc i'.m =
T / MOEP2 i 1
!
4 g .
§ : H
K\
oYy S—
T w wm  m me _me w m m e
L L = L “Time x 0.2 sec.
o 200 800 1000

Time x 0,08 se¢.

. . Figure 6: Performance of the proposed controller in OEP and
Figure 4: Performance of the proposed controller in OEP and MOEP. At OEP, the solution is obtained with @ = 60 and
MOEDP. At OEP, the solution is obtained with a = 60 and B=1 ) ’

B8=0.1.

o8 T — — — —TT T T
Total control command ~—
Newaf controller ==+~

Pl controlier -+

06 |- 4

04 L h\.,

3 s s s
0 50 100 150 200 300 350 400 450 500

50
Time x 0.2 sec.

Figure 7: Torque profiles of the proposed controller when
MOEP 1 is applied.
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