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ABSTRACT

This paper aims at addressing a particular aspect of multi-

objective optimization problems in Electronic Design 

Automation (EDA). More specifically, we will present 

our study of the impact on quality and performance of 

evolutionary algorithms initial solutions. A new scheme 

for initial population generation is presented, which 

improves the quality and efficiency of chip planning 

optimization using genetic algorithm. The underlying 

concept is to educate the initial solutions by artificially 

introducing high quality genes that will only show up in 

the natural evolutionary process. Since these genes are 

initially hidden, they do not impose their strength in the 

early phase of evolution, therefore preventing any 

premature convergence. 

1. INTRODUCTION

The increasing density in semiconductor technologies has 

brought new difficulties in the design automation area. 

The EDA industry has moved into the multi-dimension 

multi-objective system optimization era, where tools are 

performing optimization designers cannot handle 

anymore. Combining different objectives in an 

optimization problem may however lead to more than 

increasing complexity. This is particularly true with EDA 

problems, where optimization criteria are often correlated 

and conflicting (for instance minimizing wire length and 

reducing routing congestion).  

Multi-objective evolutionary algorithms (MOEAs) 

have become very popular over the last decade to solve 

such problems. Many techniques have been presented in 

the literature ([1][2] for reviews). A first discriminator 

among them is the decision method used to sort and select 

solutions. The first approach consists in combining all the 

criteria into a single fitness function. If this approach is 

easily implemented, it has the drawback of only focusing 

on a portion of the optimal set of solutions. An alternative 

is to use several fitness functions and to rank the solutions 

using the concept of pareto dominance: solution x

dominates solution y if none of x’s fitness values is worst 

than y’s and if at least one of them is better. The objective 

is then to find the best pareto-optimal set (set of solutions 

that are not dominated by any other).  

Pareto-based selection techniques are currently the 

most popular choices in MOEAs. If they all share the 

same objective, that is reaching the true-Pareto optimal 

set in the shortest time, they differ by a multitude of 

variations. One can cite [3][4] for the ranking methods.  

Several studies have been presented regarding the 

impact on efficiency of population diversity. In [5] Hanne   

introduced the efficiency preservation (resp. negative 

efficiency preservation) properties expressing that the 

dominating set is reduced (resp. increased) during the 

evolution and studied the different schemes. Osyczka and 

Krenich [6] proposed a filtration method in which less 

important Pareto optimal solutions are removed from the 

existing set in order to reduce the computation time.  

Even though the quality of initial solutions can have 

a strong impact on efficiency, little research exists 

concerning the choice of initial population. Initial 

populations are usually randomly generated in order to 

provide unbiased starting point. Indeed, good quality 

initial solutions may lead to premature convergence to 

local optima for one given optimization criterion. An 

alternative is to introduce seeds of good solutions into a 

randomly generated population. In [7] Valenzuela and 

Smith showed that seeding could achieve substantial 

improvements. On the other hand, it did not have any 

impact for some of the problems considered in [8]. A 

reason could be that, though these solutions are of good 

quality, there is no insurance that their genes will be 

transmitted to the rest of the population, since the quality 

genes are present only in very few initial solutions. In [9], 

Hill modified the random generation method of the whole 

population in order to force the generation of feasible 

solutions for the knapsack problem. This approach did 

not have an impact on the quality of the final result, since 

no the initial solution quality was not altered. 

Our approach is to prepare all the initial solutions by 



artificially introducing good quality genes for a given 

optimization criterion. The fitness of the initial solution is 

not noticeably affected, therefore preventing from 

converging prematurely, but the hidden genes provide the 

background for the future generation of high quality 

solutions. These “education” of initial solutions is 

demonstrated with a chip planning optimization problem. 

The remainder of this paper is organized as follows: 

in the next section, the chip planning problem is defined; 

in section 3 we demonstrate our approach of initial 

solution generation and present an algorithm for the chip-

planning problem; section 4 shows experimental results. 

2. THE CHIP PLANNING PROBLEM 

Chip planning is the task of optimizing the top-level 

floorplan of block-based designs. The need for such an 

optimization comes from the long interconnection delays 

between physical blocks that may have a critical impact 

on timing closure and routing congestion. 

Chip planning can be considered at very early design 

phases when only the system specification is known. At 

this stage, the design is defined as a set of interconnected 

blocks. These blocks can be either hard intellectual 

property blocks (IPs) or “soft blocks”. Hard IPs have 

fixed physical implementations (block shape and pin 

assignment). Soft blocks are functional blocks that have 

not been synthesized yet. Though it is possible, based on 

experience, to evaluate the area of such blocks, their 

shape and pin assignment are flexible. 

The chip-planning problem is formulated as follows: 

- Given a set of hard or soft interconnected blocks 

- Find the best shape and best pin assignment for soft 

blocks and the best position for all blocks 

- In order to optimize criteria such as  

o Timing closure (interconnection delays) 

o Area

o Top-level routing congestion 

o Chip aspect ratio 

Many solutions to this problem have been proposed. 

They can be segregated between local [10] and global 

optimizations [11][12][13]. The local approach is usually 

based on constructive heuristics. These heuristics are not 

very suitable for multi-objective optimizations since the 

quality of results decreases rapidly with the problem size.  

For global multi-objective optimization, genetic 

algorithms are quite effective since they simultaneously 

deal with a population of possible solution. Moreover, 

their stochastic aspect makes them a good candidate to 

solve problems with intricating optimization criteria.   

The main drawback of global optimizations is the 

long computation time. In the following section, we 

present a method to educate GA initial population in 

order to improve both quality and performance. 

3. EDUCATING THE INITIAL SOLUTIONS 

The theoretical foundations of GA rely on the concept of 

schema - a template allowing exploration of similarities 

among solutions. Genetic algorithms converge to near-

optimal results through the juxtaposition of short, low-

order, high-performance schemata [14]. 

Our approach is to alter the random generation of 

initial solutions by artificially introducing high-

performance schemata. The generated solutions are not so 

much expected to be of better quality compared to 

randomly generated ones, but, more importantly, they are 

more fitted for the optimization process. In other words, 

instead of providing some selected experts in one 

criterion – seeding – or a wide diversity of randomly 

chosen candidates, we educate the initial solutions in 

order to prepare them for the following optimization. 

We have evaluated our approach by generating initial 

solutions of a multi-objective chip-planning problem that 

are trained for delay optimization. These initial solutions 

are then globally optimized by a genetic algorithm for 

area, maximum interconnection delay, routing congestion 

and chip aspect ratio. The initial solutions differ from 

randomly generated ones in the sense that highly 

interconnected blocks are kept close to each other. The 

idea is that the final solutions will show the same 

characteristic (schema), leading to good delays. The 

random aspect is still dominant in order to ensure a wide 

diversity of solutions.  

3.1 Genetic Algorithm for chip planning optimization 

In this paper, we will focus on the results for area and 

delay optimization. Before presenting the algorithm to 

generate initial solutions, we introduce the format and 

metrics used in the GA.  

A solution to the problem is defined by the position 

of each block, their aspect ratio and pin assignment. The 

evaluation of the delay is done using critical-sink Steiner 

trees for Elmore delay optimization [15]. The metric for 

area evaluation is the area of the smallest rectangle 

bounding all the blocks, after compaction. The ratio for 

each block is chosen randomly. The characteristics of the 

GA operators will not be discussed in this paper. 

The binary representation of the block placement is 

done using a reverse polish expression (RPE) 

representing slicing structures. A slicing structure is a 

placement that can be recursively vertically or 

horizontally partitioned [16]. Binary trees are used to 

represent slicing structures, with V={1,2,…,n, +, *} being 

the set of vertices, where {1,…, n} is the set of leaves and 

represent the indexes of the n blocks while + and *

respectively represent a horizontal or vertical cut between 

two sub-trees. A RPE can be obtained by a post-order 

traversal of the slicing tree. A RPE is made up of n blocks 



and n-1 operators. When reading the RPE from left to 

right, at any position we have n   nBlo    nOp + 1, 

with nOp the number of operators encountered (+ or *)

and nBlo the number of blocks. Fig. 1 shows an example

of slicing structure, slicing tree and RPE.

The random generation for the initial structures is

made as follows (G[i] is the element of the RPE of index

i when reading from left to right; random() is a function

returning the value OP with a probability of 0.5):

nOp=nBlo=0
For i=0 to 2*n-2 do
If (n>nBlo>nOp+1) 
f random() = OP 
G[i] = random choice of operator 
nOp++
lse
G[i] = random choice of block among
non-selected ones 
nBlo++

Else If n = nBlo 
  G[i] = random choice of operator 
  nOp++ 
Else If nBlo = nOp+1

     G[i] = random choice of block among

  nBlo++

I
Fig. 2: Solution repartition according to delay
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We propose an education system based on the previous

random generation algorithm. It relies on a connectivity

matrix that evaluates the block interconnectivity based on

the path definitions.

We propose an education system based on the previous

random generation algorithm. It relies on a connectivity

matrix that evaluates the block interconnectivity based on

the path definitions.

A path is an alternating sequence of blocks and pins,

with each pin belonging to the block immediately

preceding it and being connected to a pin of the block

succeeding it. From one path, we generate the complete

graph G consisting of all the blocks in the path. From P,

the set of all the complete graphs generated by all the

paths, we define the interconnection matrix as follows:
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the set of all the complete graphs generated by all the

paths, we define the interconnection matrix as follows:

  

In other words, Mij represents the number of times

that blocks i and j are in the same path. 

In other words, Mij represents the number of times

that blocks i and j are in the same path. 

The education algorithm modifies the “random

choice of block among non-selected ones”. Instead of a 

random choice, if a new block has to be selected, the

choice is “the block mostly-connected to the already 

chosen blocks”.

The education algorithm modifies the “random
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random choice, if a new block has to be selected, the

choice is “the block mostly-connected to the already 

chosen blocks”.

We call “block mostly-connected to a set of blocks

Vprev” the block j, among all the not previously selected

blocks, that maximizes i Mij, with i Vprev.

We call “block mostly-connected to a set of blocks

Vprev” the block j, among all the not previously selected

blocks, that maximizes i Mij, with i Vprev.

Moreover, instead of “filling” the RPE from left to

right, we fill it from either its left or right end. The first

block is the most connected block, i.e. the block j that

maximizes i Mij, with i [1..n]. Then the next position

to be filled will be either to the left or to the right of the

first block. The choice to fill the left or right position is 

made randomly.
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maximizes i Mij, with i [1..n]. Then the next position
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The block selection considers the most connected

block to the, at most, P consecutive blocks preceding the 

new position (if we have chosen the right position) or

following it (if we have chosen the left position). The 

selection is repeated until all the positions are filled.

The block selection considers the most connected

block to the, at most, P consecutive blocks preceding the 

new position (if we have chosen the right position) or

following it (if we have chosen the left position). The 

selection is repeated until all the positions are filled.

Using a benchmark with 49 blocks (ami49), a 

statistical analysis was performed by generating one 

million initial solutions randomly and using the education

system. The results are shown on Fig. 2. 

Using a benchmark with 49 blocks (ami49), a 

statistical analysis was performed by generating one 

million initial solutions randomly and using the education

system. The results are shown on Fig. 2. 

As expected, the randomly generated solutions have 

poor delay and very poor area. The educated solutions

show on average a better delay, though the best-generated

delay (7.89ns) is far from the best known result after

optimization (6.75ns). The area and congestion are, on 

average, equivalent to the random generation.

As expected, the randomly generated solutions have 

poor delay and very poor area. The educated solutions

show on average a better delay, though the best-generated

delay (7.89ns) is far from the best known result after

optimization (6.75ns). The area and congestion are, on 

average, equivalent to the random generation.
  

4. OPTIMIZING EDUCATED SOLUTIONS 4. OPTIMIZING EDUCATED SOLUTIONS 
  

We have presented in the previous section an algorithm to

generate initial solutions for a chip planning optimization

problem. This section presents the quality and

performance of the GA using educated vs. randomly

generated initial solutions.

We have presented in the previous section an algorithm to

generate initial solutions for a chip planning optimization

problem. This section presents the quality and

performance of the GA using educated vs. randomly

generated initial solutions.
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4.1 Test methodology4.1 Test methodology
  

The fitness function of our genetic algorithm that

evaluates the quality of a given solution is based on a 

ranking among the various optimization criteria. The 

ranking is dynamic and takes into consideration the target

The fitness function of our genetic algorithm that

evaluates the quality of a given solution is based on a 

ranking among the various optimization criteria. The 

ranking is dynamic and takes into consideration the target



Fig. 4: Educated vs. Random. Area target 48.86 
Fig. 3: Educated vs. Random. Area target 52 

value for each criterion. The benchmark used is a 49-

block design  (ami49) with only flexible blocks (therefore

the block ratios have to be optimized as well). Three 

target values were considered for area: 52, for easy area 

optimization; 48.86, for reasonably difficult area

optimization (the value is 10% over the lower bound of

the chip area); 0, for intensive area optimization. Each

test was run ten times in order to get a statistical

approach.

After 4 hours, the GA with educated initial solutions 

converges to a result satisfying the area constraint with a

delay of 7ns. The GA using random initial solutions only

converges after eight hours for a delay 5% higher. We

actually ran the optimization for random solutions for 

fourteen hours. In the end, the best delay is still 3%

higher compared to educated solutions.

In other words, thanks to educated initial solutions,

we manage to reach a quality of result that random initial

solution based GA cannot reach even using three times

more computational time.4.2 Experimental results 

Fig. 3, 4 and 5 show the experimental results for the

different area targets. Each figure represents the best

results over the ten different runs (using the same

parameters). A point in the graph depicts a new non-

dominated solution. The horizontal axis indicates the time

when the solution is generated.

4.2.3 Area target 0: intensive area optimization

In this test, the optimization focus is on area though the

genetic algorithm still needs to optimize the delay. Initial

solutions that have been educated for delay are still

making a difference. Indeed, the initial preparation for

delay gives more computational resources for area 

optimization. As a result, random and educated based GA

both converge to the same value for delay (Fig. 5).

However, the educated based GA gives much better area

compared to the random one.

4.2.1 Area target 52: focus on delay

The target for area is reached after roughly twenty

minutes, as shown in Fig. 3. The curve for area is similar

for random or educated initial solutions. Once the area 

target is met, the GA focuses on delay optimization. After

ninety minutes, the GA using educated solutions

stabilizes to around 6.8ns. At the same time the GA using

random solutions has generated results with 5% higher

delay. After a while, since all the optimization is now

focus on the delay, the random solution based GA 

converged to the same value as the educated one.

Considering the trend of area quality improvement

for the random-based GA, it would take, using the

traditional approach, a prohibitively long computation

time to reach the same quality as the one attained by the 

educated-based GA in four hours. 

Fig. 5: Educated vs. Random. Area target 0

This test shows that when the optimization effort is

focused primarily on the criterion for which the solutions

have been trained, educated initial solutions brings an

advantage in terms of performance. The final result could

be reached in half of the computation time needed by the 

random initial solution approach. 

4.2.2 Area target 48.86: medium area optimization

Fig. 4 shows the result of an optimization with area target

10% over the lower bound of the chip area. We can see

that when two criteria have to be optimized concurrently,

educated solutions make a difference. 
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