
EDUCATING INITIAL SOLUTIONS FOR GENETIC ALGORITHMS:

A CHIP PLANNING OPTIMIZATION EXAMPLE

O. Peyran W. Zhuang

Institute of High Performance Computing,

1 Science Park Road, #01-01 The Capricorn

Singapore 117528, Singapore

ABSTRACT

This paper aims at addressing a particular aspect of multi-

objective optimization problems in Electronic Design

Automation (EDA). More specifically, we will present

our study of the impact on quality and performance of

evolutionary algorithms initial solutions. A new scheme

for initial population generation is presented, which

improves the quality and efficiency of chip planning

optimization using genetic algorithm. The underlying

concept is to educate the initial solutions by artificially

introducing high quality genes that will only show up in

the natural evolutionary process. Since these genes are

initially hidden, they do not impose their strength in the

early phase of evolution, therefore preventing any

premature convergence.

1. INTRODUCTION

The increasing density in semiconductor technologies has

brought new difficulties in the design automation area.

The EDA industry has moved into the multi-dimension

multi-objective system optimization era, where tools are

performing optimization designers cannot handle

anymore. Combining different objectives in an

optimization problem may however lead to more than

increasing complexity. This is particularly true with EDA

problems, where optimization criteria are often correlated

and conflicting (for instance minimizing wire length and

reducing routing congestion).

Multi-objective evolutionary algorithms (MOEAs)

have become very popular over the last decade to solve

such problems. Many techniques have been presented in

the literature ([1][2] for reviews). A first discriminator

among them is the decision method used to sort and select

solutions. The first approach consists in combining all the

criteria into a single fitness function. If this approach is

easily implemented, it has the drawback of only focusing

on a portion of the optimal set of solutions. An alternative

is to use several fitness functions and to rank the solutions

using the concept of pareto dominance: solution x

dominates solution y if none of x’s fitness values is worst

than y’s and if at least one of them is better. The objective

is then to find the best pareto-optimal set (set of solutions

that are not dominated by any other).

Pareto-based selection techniques are currently the

most popular choices in MOEAs. If they all share the

same objective, that is reaching the true-Pareto optimal

set in the shortest time, they differ by a multitude of

variations. One can cite [3][4] for the ranking methods.

Several studies have been presented regarding the

impact on efficiency of population diversity. In [5] Hanne

introduced the efficiency preservation (resp. negative

efficiency preservation) properties expressing that the

dominating set is reduced (resp. increased) during the

evolution and studied the different schemes. Osyczka and

Krenich [6] proposed a filtration method in which less

important Pareto optimal solutions are removed from the

existing set in order to reduce the computation time.

Even though the quality of initial solutions can have

a strong impact on efficiency, little research exists

concerning the choice of initial population. Initial

populations are usually randomly generated in order to

provide unbiased starting point. Indeed, good quality

initial solutions may lead to premature convergence to

local optima for one given optimization criterion. An

alternative is to introduce seeds of good solutions into a

randomly generated population. In [7] Valenzuela and

Smith showed that seeding could achieve substantial

improvements. On the other hand, it did not have any

impact for some of the problems considered in [8]. A

reason could be that, though these solutions are of good

quality, there is no insurance that their genes will be

transmitted to the rest of the population, since the quality

genes are present only in very few initial solutions. In [9],

Hill modified the random generation method of the whole

population in order to force the generation of feasible

solutions for the knapsack problem. This approach did

not have an impact on the quality of the final result, since

no the initial solution quality was not altered.

Our approach is to prepare all the initial solutions by

artificially introducing good quality genes for a given

optimization criterion. The fitness of the initial solution is

not noticeably affected, therefore preventing from

converging prematurely, but the hidden genes provide the

background for the future generation of high quality

solutions. These “education” of initial solutions is

demonstrated with a chip planning optimization problem.

The remainder of this paper is organized as follows:

in the next section, the chip planning problem is defined;

in section 3 we demonstrate our approach of initial

solution generation and present an algorithm for the chip-

planning problem; section 4 shows experimental results.

2. THE CHIP PLANNING PROBLEM

Chip planning is the task of optimizing the top-level

floorplan of block-based designs. The need for such an

optimization comes from the long interconnection delays

between physical blocks that may have a critical impact

on timing closure and routing congestion.

Chip planning can be considered at very early design

phases when only the system specification is known. At

this stage, the design is defined as a set of interconnected

blocks. These blocks can be either hard intellectual

property blocks (IPs) or “soft blocks”. Hard IPs have

fixed physical implementations (block shape and pin

assignment). Soft blocks are functional blocks that have

not been synthesized yet. Though it is possible, based on

experience, to evaluate the area of such blocks, their

shape and pin assignment are flexible.

The chip-planning problem is formulated as follows:

- Given a set of hard or soft interconnected blocks

- Find the best shape and best pin assignment for soft

blocks and the best position for all blocks

- In order to optimize criteria such as

o Timing closure (interconnection delays)

o Area

o Top-level routing congestion

o Chip aspect ratio

Many solutions to this problem have been proposed.

They can be segregated between local [10] and global

optimizations [11][12][13]. The local approach is usually

based on constructive heuristics. These heuristics are not

very suitable for multi-objective optimizations since the

quality of results decreases rapidly with the problem size.

For global multi-objective optimization, genetic

algorithms are quite effective since they simultaneously

deal with a population of possible solution. Moreover,

their stochastic aspect makes them a good candidate to

solve problems with intricating optimization criteria.

The main drawback of global optimizations is the

long computation time. In the following section, we

present a method to educate GA initial population in

order to improve both quality and performance.

3. EDUCATING THE INITIAL SOLUTIONS

The theoretical foundations of GA rely on the concept of

schema - a template allowing exploration of similarities

among solutions. Genetic algorithms converge to near-

optimal results through the juxtaposition of short, low-

order, high-performance schemata [14].

Our approach is to alter the random generation of

initial solutions by artificially introducing high-

performance schemata. The generated solutions are not so

much expected to be of better quality compared to

randomly generated ones, but, more importantly, they are

more fitted for the optimization process. In other words,

instead of providing some selected experts in one

criterion – seeding – or a wide diversity of randomly

chosen candidates, we educate the initial solutions in

order to prepare them for the following optimization.

We have evaluated our approach by generating initial

solutions of a multi-objective chip-planning problem that

are trained for delay optimization. These initial solutions

are then globally optimized by a genetic algorithm for

area, maximum interconnection delay, routing congestion

and chip aspect ratio. The initial solutions differ from

randomly generated ones in the sense that highly

interconnected blocks are kept close to each other. The

idea is that the final solutions will show the same

characteristic (schema), leading to good delays. The

random aspect is still dominant in order to ensure a wide

diversity of solutions.

3.1 Genetic Algorithm for chip planning optimization

In this paper, we will focus on the results for area and

delay optimization. Before presenting the algorithm to

generate initial solutions, we introduce the format and

metrics used in the GA.

A solution to the problem is defined by the position

of each block, their aspect ratio and pin assignment. The

evaluation of the delay is done using critical-sink Steiner

trees for Elmore delay optimization [15]. The metric for

area evaluation is the area of the smallest rectangle

bounding all the blocks, after compaction. The ratio for

each block is chosen randomly. The characteristics of the

GA operators will not be discussed in this paper.

The binary representation of the block placement is

done using a reverse polish expression (RPE)

representing slicing structures. A slicing structure is a

placement that can be recursively vertically or

horizontally partitioned [16]. Binary trees are used to

represent slicing structures, with V={1,2,…,n, +, *} being

the set of vertices, where {1,…, n} is the set of leaves and

represent the indexes of the n blocks while + and *

respectively represent a horizontal or vertical cut between

two sub-trees. A RPE can be obtained by a post-order

traversal of the slicing tree. A RPE is made up of n blocks

and n-1 operators. When reading the RPE from left to

right, at any position we have n nBlo nOp + 1,

with nOp the number of operators encountered (+ or *)

and nBlo the number of blocks. Fig. 1 shows an example

of slicing structure, slicing tree and RPE.

The random generation for the initial structures is

made as follows (G[i] is the element of the RPE of index

i when reading from left to right; random() is a function

returning the value OP with a probability of 0.5):

nOp=nBlo=0
For i=0 to 2*n-2 do
If (n>nBlo>nOp+1)
f random() = OP
G[i] = random choice of operator
nOp++
lse
G[i] = random choice of block among
non-selected ones
nBlo++

Else If n = nBlo
 G[i] = random choice of operator
 nOp++
Else If nBlo = nOp+1

 G[i] = random choice of block among

 nBlo++

I
Fig. 2: Solution repartition according to delay

E

Fig. 1: Slicing structure, slicing tree and RPE

non-selected ones

RPE: 2 1 + 4 3 + *

+ +

*

2 1 4 3

Slicing tree

1

2 4

Slicing structure

3

3.2 Introducing schemata into initial solutions3.2 Introducing schemata into initial solutions

We propose an education system based on the previous

random generation algorithm. It relies on a connectivity

matrix that evaluates the block interconnectivity based on

the path definitions.

We propose an education system based on the previous

random generation algorithm. It relies on a connectivity

matrix that evaluates the block interconnectivity based on

the path definitions.

A path is an alternating sequence of blocks and pins,

with each pin belonging to the block immediately

preceding it and being connected to a pin of the block

succeeding it. From one path, we generate the complete

graph G consisting of all the blocks in the path. From P,

the set of all the complete graphs generated by all the

paths, we define the interconnection matrix as follows:

A path is an alternating sequence of blocks and pins,

with each pin belonging to the block immediately

preceding it and being connected to a pin of the block

succeeding it. From one path, we generate the complete

graph G consisting of all the blocks in the path. From P,

the set of all the complete graphs generated by all the

paths, we define the interconnection matrix as follows:

In other words, Mij represents the number of times

that blocks i and j are in the same path.

In other words, Mij represents the number of times

that blocks i and j are in the same path.

The education algorithm modifies the “random

choice of block among non-selected ones”. Instead of a

random choice, if a new block has to be selected, the

choice is “the block mostly-connected to the already

chosen blocks”.

The education algorithm modifies the “random

choice of block among non-selected ones”. Instead of a

random choice, if a new block has to be selected, the

choice is “the block mostly-connected to the already

chosen blocks”.

We call “block mostly-connected to a set of blocks

Vprev” the block j, among all the not previously selected

blocks, that maximizes i Mij, with i Vprev.

We call “block mostly-connected to a set of blocks

Vprev” the block j, among all the not previously selected

blocks, that maximizes i Mij, with i Vprev.

Moreover, instead of “filling” the RPE from left to

right, we fill it from either its left or right end. The first

block is the most connected block, i.e. the block j that

maximizes i Mij, with i [1..n]. Then the next position

to be filled will be either to the left or to the right of the

first block. The choice to fill the left or right position is

made randomly.

Moreover, instead of “filling” the RPE from left to

right, we fill it from either its left or right end. The first

block is the most connected block, i.e. the block j that

maximizes i Mij, with i [1..n]. Then the next position

to be filled will be either to the left or to the right of the

first block. The choice to fill the left or right position is

made randomly.

The block selection considers the most connected

block to the, at most, P consecutive blocks preceding the

new position (if we have chosen the right position) or

following it (if we have chosen the left position). The

selection is repeated until all the positions are filled.

The block selection considers the most connected

block to the, at most, P consecutive blocks preceding the

new position (if we have chosen the right position) or

following it (if we have chosen the left position). The

selection is repeated until all the positions are filled.

Using a benchmark with 49 blocks (ami49), a

statistical analysis was performed by generating one

million initial solutions randomly and using the education

system. The results are shown on Fig. 2.

Using a benchmark with 49 blocks (ami49), a

statistical analysis was performed by generating one

million initial solutions randomly and using the education

system. The results are shown on Fig. 2.

As expected, the randomly generated solutions have

poor delay and very poor area. The educated solutions

show on average a better delay, though the best-generated

delay (7.89ns) is far from the best known result after

optimization (6.75ns). The area and congestion are, on

average, equivalent to the random generation.

As expected, the randomly generated solutions have

poor delay and very poor area. The educated solutions

show on average a better delay, though the best-generated

delay (7.89ns) is far from the best known result after

optimization (6.75ns). The area and congestion are, on

average, equivalent to the random generation.

4. OPTIMIZING EDUCATED SOLUTIONS 4. OPTIMIZING EDUCATED SOLUTIONS

We have presented in the previous section an algorithm to

generate initial solutions for a chip planning optimization

problem. This section presents the quality and

performance of the GA using educated vs. randomly

generated initial solutions.

We have presented in the previous section an algorithm to

generate initial solutions for a chip planning optimization

problem. This section presents the quality and

performance of the GA using educated vs. randomly

generated initial solutions.
}/),(;{ ,,, pji

p

jippp

p

jiji EvvePEVGeM

4.1 Test methodology4.1 Test methodology

The fitness function of our genetic algorithm that

evaluates the quality of a given solution is based on a

ranking among the various optimization criteria. The

ranking is dynamic and takes into consideration the target

The fitness function of our genetic algorithm that

evaluates the quality of a given solution is based on a

ranking among the various optimization criteria. The

ranking is dynamic and takes into consideration the target

Fig. 4: Educated vs. Random. Area target 48.86
Fig. 3: Educated vs. Random. Area target 52

value for each criterion. The benchmark used is a 49-

block design (ami49) with only flexible blocks (therefore

the block ratios have to be optimized as well). Three

target values were considered for area: 52, for easy area

optimization; 48.86, for reasonably difficult area

optimization (the value is 10% over the lower bound of

the chip area); 0, for intensive area optimization. Each

test was run ten times in order to get a statistical

approach.

After 4 hours, the GA with educated initial solutions

converges to a result satisfying the area constraint with a

delay of 7ns. The GA using random initial solutions only

converges after eight hours for a delay 5% higher. We

actually ran the optimization for random solutions for

fourteen hours. In the end, the best delay is still 3%

higher compared to educated solutions.

In other words, thanks to educated initial solutions,

we manage to reach a quality of result that random initial

solution based GA cannot reach even using three times

more computational time.4.2 Experimental results

Fig. 3, 4 and 5 show the experimental results for the

different area targets. Each figure represents the best

results over the ten different runs (using the same

parameters). A point in the graph depicts a new non-

dominated solution. The horizontal axis indicates the time

when the solution is generated.

4.2.3 Area target 0: intensive area optimization

In this test, the optimization focus is on area though the

genetic algorithm still needs to optimize the delay. Initial

solutions that have been educated for delay are still

making a difference. Indeed, the initial preparation for

delay gives more computational resources for area

optimization. As a result, random and educated based GA

both converge to the same value for delay (Fig. 5).

However, the educated based GA gives much better area

compared to the random one.

4.2.1 Area target 52: focus on delay

The target for area is reached after roughly twenty

minutes, as shown in Fig. 3. The curve for area is similar

for random or educated initial solutions. Once the area

target is met, the GA focuses on delay optimization. After

ninety minutes, the GA using educated solutions

stabilizes to around 6.8ns. At the same time the GA using

random solutions has generated results with 5% higher

delay. After a while, since all the optimization is now

focus on the delay, the random solution based GA

converged to the same value as the educated one.

Considering the trend of area quality improvement

for the random-based GA, it would take, using the

traditional approach, a prohibitively long computation

time to reach the same quality as the one attained by the

educated-based GA in four hours.

Fig. 5: Educated vs. Random. Area target 0

This test shows that when the optimization effort is

focused primarily on the criterion for which the solutions

have been trained, educated initial solutions brings an

advantage in terms of performance. The final result could

be reached in half of the computation time needed by the

random initial solution approach.

4.2.2 Area target 48.86: medium area optimization

Fig. 4 shows the result of an optimization with area target

10% over the lower bound of the chip area. We can see

that when two criteria have to be optimized concurrently,

educated solutions make a difference.

[2] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective

Evolutionary Algorithms: Analyzing the State-of-the-Art”,

Evolutionary Computation, 8 (2), pp 125-147, 2000.

[3] C. M. Fonseca and P. J. Fleming, “Multiobjective

Optimization and Multiple Constraint Handling with

Evolutionary Algorithms – Part I: A Unified Formulation”,

IEEE Transactions on Systems, Man and Cybernetics –

Part A: Systems and Humans, 28(1):26–37, 1998.

[4] N. Srinivas and K. Deb, “Multiobjective Optimization

Using Nondominated Sorting in Genetic Algorithms”,

Evolutionary Computation, 2(3):221–248, 1994.
Fig. 6: Results for area target 48.86 over 10 runs

4.2.4 Statistical results [5] T. Hanne, “Global Multiobjective Optimization with

Evolutionary Algorithms: Selection Mechanisms and

Mutation Control”, EMO 2001, LNCS 1993, Springer-

Verlag, pp 197-212, 2001.

The previous figures showed the best performance over

time among ten different runs. Fig. 6 shows all the final

results for area target 48.86 after 8 hours. The fifty best

solutions of the ten runs are represented consecutively. [6] A. Osyczka and S. Krenich, “Evolutionary Algorithms for

Multicriteria Otpimization with Selecting a Representative

Subset of Pareto Optimal Solutions”, EMO 2001, LNCS

1993, Springer-Verlag, pp 141-153, 2001.

One can see that nine times out of ten, educated

solutions improve the overall quality of result. Only one

run gave similar results for random and educated initial

solutions. The best result (first fifty indexes) is the final

result of the optimization represented in Fig.4.
[7] J. Valenzuela and A. E. Smith, “A Seeded Memetic

Algorithm for Large Unit Commitment Problems”, Journal

of Heuristics, Kluwer Academic, 8, p173-195, 2002. For a given set of parameters, we also studied the

importance of the quality of the initial educated solutions.

It appears that the best results are not necessarily

achieved with the educated solutions of highest quality. In

other words, the impact of educated solutions is not due

to their initial fitness (i.e. the initial value for the various

optimization criteria). This observation confirms that the

fitness of initial solutions is not important and that the

aptitude to improve lies in the hidden high-performance

schemata that have been artificially introduced.

[8] R. A. Arapoglu, B. A. Norman and A. E. Smith, “Locating

Input and Output Points in Facilities Design – A

Comparison of Constructive, Evolutionary, and Exact

Methods”, IEEE Transactions on Evolutionary

Computation, Vol. 5, no. 3, pp 192-203, 2001.

[9] R. R. Hill, “A Monte Carlo Study of Genetic Algorithm

Initial Population Generation Methods”, proceedings of the

1999 Winter Simulation Conference, pp 543-547.

[10] B. W. Kernighan and S. Lin, “An efficient Heuristic

Procedure for Partitioning Graphs”, Bell System Technical

Journal, 1970
5. CONCLUSION

[11] C. Sechen, “Chip-Planning, Placement and Global Routing

of Macro/Custom Cell Integrated Circuits Using Simulated

Annealing”, Proceedings of the 25th Design Automation

Conference, pp 73-80, 1988.

We have presented a methodology to improve the quality

and performance of multi-objective genetic algorithms.

The example of a genetic algorithm for the chip planning

optimization problem was studied.

Our methodology consists of preparing the initial

solutions on which the optimization will operate. Instead

of generating high quality initial solutions, which

generally leads to premature convergence, we artificially

introduce high performance schemata in randomly

generated solutions. In our case, these solutions were

“educated” to generate solutions of good delay by putting

highly connected blocks close to each other.

[12] H-M. Chen, H. Zhou, F.Y. Young, D.F. Wong, H.H. Tang

and N. Sherwani, “Integrated Floorplanning and

Interconnect Planning”, proceedings of the International

Conference on Computer Aided Design, pp 354-357, 1999

[13] H. Esbensen and E.S. Kuh, “EXPLORER: An Interactive

Floorplanner for Design Space Exploration”, proceedings

of the European Design Automation Conference, 1996.

[14] J.H. Holland, “Adaptation in Natural and Artificial

Systems”, Univ. of Michigan Press, Ann Harbor, 1975 Extensive experimental results showed that our

approach substantially improves both quality of result and

performance.
[15] K.D. Boese, A.B. Kahng and G. Robins, “High

Performance Routing Trees With Identified Critical Sinks”,

proceedings of the 30th Design Automation Conference, pp

182-187, 1993.
6. REFERENCES

[16] D.F. Wong and C.L. Liu, “A New Algorithm for Floorplan

Design”, proceedings of the 23rd Design Automation

Conference, pp 101-107, 1986.

[1] C. A. Coello Coello, “A short tutorial on Evolutionary

Mutliobjective Optimization”, EMO 2001, LNCS 1993,

Springer-Verlag, pp 21-40, 2001.

