
THE MULTIOBJECTIVE GENETIC ALGORITHM
APPLIED TO BENCHMARK PROBLEMS

- AN ANALYSIS

R. C. PURSHOUSE P. J. FLEMING

Department of Automatic Control and Systems Engineering
University of Sheffield

Sheffield, S1 3JD
UK

Research Report No. 796
August 2001

 1

The multiobjective genetic algorithm applied to
benchmark problems – an analysis

R. C. Purshouse and P. J. Fleming
Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street,
Sheffield, S1 3JD, UK.

Abstract

The multiobjective genetic algorithm (MOGA) has been applied to various real-world
problems in a variety of fields, most prominently in control systems engineering, with
considerable success. However, a recent empirical analysis of multiobjective evolutionary
algorithms (MOEAs) has suggested that a MOGA-based algorithm performed poorly across a
diverse set of two-objective test problems. In this report, it is shown that a conventional
MOGA with standard settings can provide improved performance, but this still compares
unfavourably to the best-performing contemporary MOEA, the Strength Pareto Evolutionary
Algorithm (SPEA). The importance of the MOEA as a framework is stressed and,
consequently, a real-coded MOGA for real-parameter multi-criterion problems is developed
using modern guidelines for the design of evolutionary algorithms. This MOGA is shown to
outperform all other published results across the benchmark problems. This does not suggest
that MOGA is the ‘best’ MOEA, rather that a considered implementation of the methodology
is required in order to reap full rewards. This study also questions the effectiveness of the
traditional fitness sharing method of niching, with respect to the current set of multiobjective
benchmark problems.

 2

1 Introduction
Research into evolutionary multicriterion optimisation (EMO) has continued to escalate in
popularity since the field’s inception in the mid-1980s. Various multiobjective evolutionary
algorithms (MOEAs) have been introduced and developed, with Pareto-based methods
receiving the most attention. Fonseca and Fleming’s [1993] MOGA, Horn and Nafpliotis’
[1993] NPGA, and Srinivas and Deb’s [1994] NSGA were the first three Pareto-based
MOEAs. All three algorithms have proved popular in EMO applications, and have attracted
continued development. Recently, Zitzler and Thiele’s [1999] SPEA has established itself as
another viable Pareto-based approach.

Predictably, the existence of alternative algorithms has instigated a degree of algorithmic
competition into the EMO arena. Various multiobjective test suites have been devised in order
to assess the ability of an MOEA in terms of various problem characteristics, such as non-
convexity, multimodality, and non-uniformity. In a recent study by Zitzler et al [2000], an
implementation of MOGA, labelled as FFGA, was found to perform poorly across a set of test
problems with varying characteristics, relative to the performance of other MOEAs.

The motivation for this report is to explore the performance of MOGA on the Zitzler et al
[2000] test suite in order to identify those aspects of the algorithm that are critical to success
under various conditions. Throughout this report, the importance of the MOEA methodology
is stressed rather than a tit-for-tat comparison of various algorithms.

After a general introduction to EMO and the MOGA methodology in Section 2, the
performance of the FFGA, as described by Zitzler et al [2000], is validated using a MOGA
with FFGA settings. In Section 4, the performance of the contemporary MOGA (defined in
Fonseca and Fleming [1995, 1998]) is established and compared to that of the FFGA.
Analysis of discrepancies is then simplified by making small changes to the FFGA settings
and recording the results.

In Section 5, using the design approach intelligently expounded by Michalewicz and Fogel
[2000], a MOGA is developed specifically for application to real-parameter problems. The
performance of this MOGA on the five real-parameter problems in the Zitzler et al [2000] test
suite is subsequently investigated in Section 6.

The report concludes in Section 7 by offering thoughts on the performance of MOGA, the
benefits of empirical comparisons of different MOEAs, and the validity of the existing
multiobjective test suite.

 3

2 An introduction to MOGA

2.1 Overview
Multiobjective optimisation is the search for acceptable solutions to problems that incorporate
multiple performance criteria. Often separate criteria, or objectives, are in competition with
one another. In this case, a trade-off exists between the objectives, where improvement in one
objective cannot be achieved without detriment to another. It is very rare for a multiobjective
optimisation problem to admit a single optimal solution; rather a family of equally valid
solutions will exist. This is illustrated in Figure 1.

���������	�
���
�

�	����������	����

Figure 1: A trade-off between two competing objectives

Formally, and without loss of generality, multiobjective optimisation can be expressed as:

 Minimise f(x),

 where f(x) = {f1(x) .. fn(x)} is a vector of objective functions,

 n is the number of objectives or criteria to be considered,

 x = {x1 .. xp} is a vector of decision variables, and

 p is the number of decision variables that comprise the complete solution.

In the absence of preference information, solutions to multiobjective problems are compared
using the notion of Pareto dominance. A particular solution x, with associated performance
vector u, is said to dominate, or be better than, another solution y with performance vector v
(x � y) if the former performs at least as well as the latter across all objectives, and exhibits
superior performance in at least one objective. The formal definition is given in Equation 1.

 { }[] { }[]iiii vunivuni <∈∃≤∈∀ :,...,1,,...,1iff v u �� (1)

 y x v u �� ⇔

 where ui / vi is the ith criterion value of the performance vector u / v.

A solution is said to be Pareto optimal if it is not dominated by any other possible solution, as
described by Equation 2. The Pareto-front is the set of points in criterion-space that
correspond to the Pareto-optimal solutions. These concepts are illustrated in Figure 2.
Without a priori or progressive preference articulation, a multiobjective search engine will
generally aim to discover a family of solutions that provide a good representation of the
Pareto front.

 x yy x �:iff UX PO ∈∃∈ (2)

 4

 where XPO is the set of Pareto optimal solutions, and

 U is the set of all feasible solutions.

f1

f2

f1

f2

Key:

f1,2

nondominated solution

dominated solution

dominated feasible region

actual Pareto front

identified Pareto front

elements of vector objective function f

Figure 2: Pareto optimality

Genetic algorithms were first proposed as multiobjective optimisers by Schaffer [1984].
However, the first Pareto-based multiobjective evolutionary algorithm (MOEA) to be
published was the multiobjective genetic algorithm (MOGA) developed by Fonseca and
Fleming [1993]. Genetic algorithms are suitable search engines for multiobjective problems
primarily because of their population-based approach. An MOEA is capable of supporting
diverse, simultaneous, solutions in the search environment. A carefully designed GA is robust
in the face of ill-behaved cost landscapes featuring attributes such as multimodality and
discontinuity. Furthermore, the GA methodology offers a flexible choice of decision variables
and objective specifications. Refer to Veldhuizen and Lamont [2000] and Coello [1999] for
recent surveys of MOEA research. A general schematic of the MOGA is shown in Figure 3.

decision
maker

MO
ranking

population
distribution

analysis

performance
assessment

fitness
assignment

selectio
n

cro
sso

ver

m
u

tatio
n

rein
sertio

n

initial
population

preference
articulation

mating restriction

fitness sharing

raw
performance
vector

new
population

Figure 3: MOGA schematic

The MOGA framework can be seen to incorporate all the elements of the standard, single
objective, genetic algorithm. A population of potential solutions is instantiated, then assessed
and manipulated over a number of iterations in order to obtain a good solution or set of
solutions. Performance assessment, selection, genetic operators (such as crossover and
mutation), and reinsertion phases are functionally, in a general sense, the same for the MOGA
as for the standard GA. Population distribution analysis, in which a measure of the density of
the population is made, has also been applied in the single objective case to cater for

 5

multimodal cost landscapes. The results of this analysis are used in niching and mating
restriction schemes. These schemes can take on a somewhat different meaning for MOEAs,
as discussed in Sections 2.3 and 2.4. Multiobjective ranking, which impacts primarily on
fitness assignment, is the key discrepancy between the MOGA and a standard GA. This
aspect receives further attention in Section 2.2.

Interaction with a decision-maker (DM), or group of decision-makers, is made explicit in
Figure 3. The DM may choose to introduce a priori information into the initial population (at
the very least, this would include appropriate limits on decision variables), as is sometimes
the case in standard GA applications. With the MOGA, the DM can also seek to influence the
search whilst it is in progress by expressing preference for particular solutions or, more
generally, the likely attributes of a good solution. This is discussed further in the following
sub-section.

2.2 Multiobjective ranking
The essential difference between a MOGA and a single objective GA is the method by which
fitness is assigned to potential solutions. Each solution will have a vector describing its
performance across the set of criteria. This vector must be transformed into a scalar fitness
value for the purposes of the GA. This process is achieved by ranking the population of
solutions relative to each other, and then assigning fitness based on rank. Individual solutions
are compared in terms of Pareto dominance. This notion was introduced into the field of
genetic algorithms by Goldberg [1989]. In Goldberg’s formulation, the population at each
generation is searched for nondominated solutions. These are assigned rank 0 and are then
temporarily removed from the population. Nondominated solutions are then identified in the
remaining population, and these are assigned rank 1 and removed from contention. The
process continues until all individuals have been ranked. In effect, this process creates a series
of nondominated fronts. Srinivas and Deb [1994] adopted this approach for their
Nondominated Sorting Genetic Algorithm (NSGA).

MOGA uses a variation of Goldberg’s proposition in order to determine ranks. Each
individual is assigned a rank based on the number of individuals by which it is dominated.
This is illustrated in Figure 4.

�

�

�

�

�

�

)�

)�

Figure 4: Multiobjective ranking

It should be noted that, in the other early Pareto-based approach, Horn and Nafpliotis [1993]
avoided a global ranking scheme through the implementation of Pareto domination
tournaments. In this approach, binary tournaments are conducted in which the winner is
deemed to be the individual that is dominated by fewer solutions chosen from a random
sample of the population.

In the absence of preference information, Pareto dominance is used to discriminate between
two competing solutions. However, by involving a decision-maker (DM) in the search, other
factors can be used to determine superiority. Fonseca and Fleming [1998] introduced a
preferability operator, which discriminates between solutions on the basis of which is
preferred by the DM.

 6

In Fonseca and Fleming’s scheme, the DM can set goal levels and priorities for each of the
objectives. These can be refined as the search progresses. This information feeds into the
preferability operator, which is used to rank solutions in a similar fashion to the standard
Pareto-based approach. Each potential solution is given a rank based on how many other
solutions are preferred to it. The mathematical definition of the operator is quite involved and
is omitted from this discussion. For a complete definition refer to [Fonseca and
Fleming, 1998].

The preferability operator can be seen as a unification of several popular preference
articulation schemes adopted in the wider operational research community. Pareto optimality,
the lexicographic method, goal programming, constraint satisfaction, and constrained
optimisation can all be described by special cases of the preferability operator.

2.3 Niching

2.3.1 Overview
Niching refers to the deliberate formation of clusters of individuals from the wider GA
population in either solution-space or criterion-space. Since multiobjective problems contain a
distributed family of Pareto-optimal solutions, niching is undertaken in order to achieve a
good spread of discovered solutions to present to the decision-maker. Without niching, the
population may converge to a localised region, in a phenomenon known as genetic drift.
Furthermore, given that the family of Pareto-optimal solutions may be large, relative to the
size of the GA’s population, niching can prevent the GA from being swamped by solutions all
with identical fitness.

Various forms of niching have been implemented, both for single objective and
multiobjective problems [Goldberg, 1989]. Fitness sharing is the most popular technique for
achieving niching, in which the fitness assignment mechanism is modified to account for the
local population distribution around each individual, as indicated in Figure 3. Two approaches
to fitness sharing are discussed in the following sub-sections.

There has been some debate as to whether sharing should be performed in either the solution-
space (the parameters manipulated by the GA) or the criterion-space (the results
corresponding to the chosen parameters). Sharing in solution-space should provide a good
distribution of alternative solutions, but this approach cannot guarantee a good distribution in
criterion-space. The opposite is true for criterion-space sharing. Essentially, as suggested by
Horn et al [1994], sharing should be performed in the space where a good distribution is
deemed the most important. Of course, there is no reason why sharing cannot be performed in
both domains. Note that a good distribution across the Pareto-front (which exists in criterion-
space) is important in order to understand the trade-offs between the various objectives.

When multiobjective ranking is used as a means of fitness assignment, fitness sharing is often
only applied to individuals of equal rank (the connection is made explicit in Figure 3). This is
because genetic drift becomes most apparent when the fitnesses of different individuals are
equivalent (which implies that the ranks are identical).

2.3.2 Goldberg and Richardson’s approach
Fitness sharing was introduced by Goldberg and Richardson [1987] in order to encourage the
formation of sub-populations on the various peaks of a multimodal cost function, thus
avoiding sub-optimal convergence. This technique was originally devised for single objective
problems but has found use in the multiobjective domain.

In essence, the fitness of each solution is reduced by a factor, known as the niche count,
which depends on its ‘closeness’ to other solutions in the population. Niche counts are found

 7

by comparing a particular individual with all individuals in the population (including itself)
on a pair-wise basis. The niche count for an individual is taken as the sum of all pair-wise
counts. The equation used to calculate a single element of the niche count is shown in
Equation 3.








<





−=

.otherwise,0

,1)(share
share

d
d

dsh σ
σ

α

 (3)

 where sh is the contribution to the individual’s share count,

 d is the distance between two individuals, measured over some metric
(normally L-2),

 �share is the niche size, and

 � is a shaping parameter.

Note that ‘closeness’ requires a definition of distance, prior to defining what is regarded as a
close distance. Euclidean distance is a common choice for real-parameter functions. Having
defined the unit of distance, closeness – embodied by the niche size - must then be defined.
This is not an easy task, and requires a subjective judgement to be made, given the size of the
search space. Deb and Goldberg [1989] suggested a method of calculating the niche size,
originally applied to solution-space niching for single objective problems (see Equation 4).
Fonseca and Fleming [1993] suggested an alternative method for calculating the niche size in
criterion-space for multiobjective problems, but this has largely been superseded in favour of
Epanechnikov fitness sharing (described in the following sub-section).

()

p

p

k minkmaxk

share
q

xx

2
1

2
,,∑ =

−
=σ (4)

 where p is the number of decision variables within the solution x,

 xk,max/min is the maximum / minimum value for the kth decision variable, and

 q is the required number of niches.

Goldberg and Richardson’s power law sharing functions (Equation 3) have proved to be a
popular choice for niche formation in both single objective and multiobjective spaces.
However, choice of the niche size parameter is often difficult, and can be crucial to the
success of the algorithm. This limitation has lead to increased research into alternatives to the
standard fitness sharing algorithm, especially techniques that do not require explicit setting of
the niche size.

2.3.3 Epanechnikov niching
In light of the above concerns, Fonseca and Fleming [1995] proposed an alternative fitness
sharing algorithm. They reinterpreted the share count as the estimation of the population
density at the points defined by each individual (in either solution- or criterion-space). This
estimate is achieved using kernel density techniques. The critical benefit of this approach is
that statisticians have developed techniques to determine good values for the parameter
analogous to niche size [Silverman, 1986].

 8

Fitness sharing Kernel density estimation

Sharing function Kernel function

Niche size, �share Smoothing parameter, h

Niche count, �sh Density estimate, �Ke

Table 1: The analogy between sharing and kernel estimation

Fonseca and Fleming used the Epanechnikov kernel as a sharing function. The kernel is
described by Equation 5. Note the resemblance to the standard sharing function shown in
Equation 3. The analogy is explicitly made in Table 1.

() ()[]





 <−+=

−

.otherwise0

1/if/12
2

1
)/(

21 hdhdpchdK p
e

 (5)

 where p is the number of decision variables in the decision vector,

 cp is the volume of the unit p-dimensional sphere,

 d/h is the normalised L-2 distance between individuals, and

 h is the kernel smoothing parameter.

The kernel smoothing parameter, h, is directly analogous to Goldberg and Richardson’s niche
size parameter, �share. A good value for this parameter can be found using Equation 6
[Silverman, 1986]. This value is approximately optimal in the least-mean-integrated-squared-
error sense if the population follows a multivariate normal distribution and has identity
covariance matrix. For a population with arbitrary covariance matrix, S, the population should
be transformed through multiplication by a matrix R, where RRT = S-1.

 ()())4/(1
1 /248

+
−





 +=

pp

p Npch π (6)

 where N is the population size, and other parameters are defined as before.

It should be noted that the Epanechnikov-method has been adopted as the sharing method of
choice in current MOGA applications [Chipperfield and Fleming, 1996; Griffin et al, 2000;
Schroder et al 2001].

2.4 Mating restriction
When niching was implemented in single objective problems, Deb and Goldberg [1989] noted
that recombination between chromosomes in different niches often produced unsuccessful
offspring, known as lethals. This led to a degradation of GA performance. In order to remedy
the problem, Deb and Goldberg decided to restrict mating over some distance metric, a
technique previously considered for niche formation. The chosen distance measure was
Euclidean distance in phenotypic solution-space. This follows logically from the choice of
distance metric for fitness sharing, as described in Section 2.3. The maximum distance at
which mating was permitted was chosen to be the same value as for the niche size used in
fitness sharing. This makes some sense, since the niche size should be directly related to the

 9

spacing between niches. This convention has been adopted in most niching schemes that use
mating restriction.

Mating restriction, as developed by Deb and Goldberg, has been directly applied to MOGA,
as indicated in Figure 3. However, Fonseca and Fleming [1993] noted that the effectiveness of
the technique may be diminished for multiobjective problems.

2.5 Summary
In this section, an methodology for solving multiobjective problems was developed using an
evolutionary computing approach. It is stressed that, in very much the same way as the GA
itself, MOGA represents a framework for problem-solving rather than a panacea-like tool or
piece of software. There are two fundamental aspects to MOGA, namely:

• its population-based nature, and

• its Pareto-based method of comparing solutions that facilitates a priori and
progressive preference articulation.

MOGA is proving to be an increasingly popular technique across a growing range of
applications. Since its conception, it has found great interest amongst control and systems
engineers. Some sample applications are listed in Table 2 below.

Application Reference

Radiotherapy treatment planning Haas et al [1997]

Supersonic wing shape optimisation Obayashi et al [2000]

H-infinity design of a maglev vehicle Dakev et al [1997]

Identification of NARMAX models Rodríguez-Vázquez et al [1997]

On-line controller tuning (prior to usage) Schroder et al [2001]

Table 2: Sample MOGA applications

 10

3 Validation of published results

3.1 Introduction
In their comparison of multiobjective evolutionary algorithms, Zitzler et al [2000] report that
their implementation of MOGA, based on the paper by Fonseca and Fleming [1993],
performs poorly in comparison to other MOEAs. Zitzler et al refer to this implementation of
MOGA as the FFGA. In this section, the published results are validated on Ziztler et al’s test
functions, derived from those developed by Deb [1999], using a MOGA with the same
specification as the FFGA.

3.2 Baseline MOGA – the ‘FFGA’
The MOGA used to validate the FFGA results was developed to the specifications described
in Table 3. These settings were defined in [Zitzler et al, 2000].

MOEA parameter Setting

General GA

Population size 100

Total generations 250

Coding Binary, 30 bits per decision variable (except where varied, as
shown in Zitzler et al [2000]).

Selection Stochastic universal sampling [Baker, 1987]

Recombination Single-point binary crossover, probability = 0.8

Mutation Element-wise bit-flipping, probability = 0.01

Generational gap Zero

Random injection Zero random chromosomes per generation

Elitism None

Multiobjective GA

Fitness assignment Fonseca and Fleming’s [1993] multiobjective ranking (see
Section 2.2). Transformation from rank to fitness using linear
fitness assignment with rank-wise averaging.

External population Off-line storage of nondominated solutions

Niching

Fitness sharing Rank-wise Goldberg and Richardson [1987] fitness sharing in
criterion-space. Parameters: alpha = 2, niche size = 0.48862.

Mating restriction None

Table 3: MOGA emulation of the FFGA

 11

3.3 Results
A summary of the functions in the test suite is provided in Table 4. For a full description of
the functions, including the equations, refer to Zitzler et al [2000].

Test number Features

ZDT-T1 Convex Pareto front.

ZDT-T2 Non-convex Pareto front.

ZDT-T3 The Pareto front consists of several non-
contiguous convex parts.

ZDT-T4 Contains 219 local fronts, with a single
contiguous global Pareto-optimal front.

ZDT-T5 Deceptive problem.

ZDT-T6 Non-uniform distribution of solutions along a
non-convex Pareto front

Table 4: Multiobjective test suite

The investigation conducted here mirrors that in Zitzler et al [2000]. Each configuration of
MOGA is applied thirty times to each test problem. The results across the first five
replications are amalgamated, and the nondominated solutions are extracted, for each problem
in the test suite. This sub-set of results, shown in Figures 5 through 10, is used for visual
analysis. The baseline MOGA (bMOGA) results (depicted by �) are compared with Zitzler et
al’s published FFGA results (�) and the results for the Strength Pareto Evolutionary
Algorithm (SPEA) [Zitzler and Thiele, 1999], which achieved the best results across all test
problems in Zitzler et al’s study (�). The global Pareto front is indicated by the solid curve.

As illustrated in Figure 5, the baseline MOGA offers a significant improvement over the
reported FFGA results for ZDT-T1, both in terms of closeness to the global front and
distribution across the front. However, SPEA clearly outperforms the bMOGA on both these
aspects.

Figure 5: Results for ZDT test function 1 (�– FFGA; � – bMOGA, � – SPEA)

 12

Results for ZDT-T2 are shown in Figure 6. The ordering of the MOEAs in terms of
performance is clearly the same as for ZDT-T1. Interestingly, the relative degrees of
performance are very similar for both problems. Note that all three algorithms struggle to
provide good coverage of the region of the front where objective f1 tends towards zero.

Figure 6: Results for ZDT test function 2 (�– FFGA; � – bMOGA, � – SPEA)

Again, for ZDT-T3, the relative degree of attainment is closely matched to that observed in
the previous tests, as shown in Figure 7. The baseline MOGA clearly exhibits a superior
distribution of Pareto optimal solutions than its FFGA equivalent.

Figure 7: Results for ZDT test function 3 (�– FFGA; � – bMOGA, � – SPEA)

The baseline MOGA and the FFGA both struggle to provide acceptable results for ZDT-T4.
This is illustrated in Figure 8. bMOGA is able to find solutions significantly closer to the
global front, but neither algorithm is capable of finding a good distribution of solutions.
SPEA is evidently able to produce a suitable distribution of locally nondominated points, but
the closeness to the global front is similar to that of bMOGA. None of the MOEAs tested by
Zitzler et al [2000] were capable of identifying the true Pareto front for this multi-fronted
problem.

 13

Figure 8: Results for ZDT test function 4 (�– FFGA; � – bMOGA, � – SPEA)

According to the results presented by Zitzler et al [2000], ZDT-T5 is the only test function for
which the performance of different MOEAs seems to converge somewhat. Indeed, bMOGA
produces results closer to the front than SPEA, although the latter algorithm provides a
superior distribution at large values of objective f1. Note that the FFGA appears to struggle
with the central region of the front (where, if both objectives are of similar importance,
attractive compromise solutions may reside) but that this behaviour was not replicated by the
bMOGA. The ZDT-T5 results are displayed in Figure 9.

Figure 9: Results for ZDT test function 5 (�– FFGA; � – bMOGA, � – SPEA)

Baseline MOGA and FFGA are uncompetitive with SPEA on ZDT-T6 (see Figure 10). The
latter algorithm is capable of accurately finding the global front, although distribution across
the front is somewhat sparse. bMOGA has been able to identify the extremes of the front
(with low accuracy), but the FFGA has discovered the non-convex central region (although,
again, this is some distance away from the global front).

 14

Figure 10: Results for ZDT test function 6 (�– FFGA; � – bMOGA, � – SPEA)

The performance metric described by Zitzler et al [2000] can also be used as a basis for
comparing different MOEAs. A coverage metric is used, which expresses the proportion of
solutions found by one MOEA that are equal to or dominate (�) the solutions found by a
second MOEA. This is described by Equation 7.

{ }

B

AB
BAC

b aa b �:;
),(

∈∃∈
= (7)

where A, B are each a set of nondominated criterion vectors, and

 a, b are particular criterion-vectors from sets A and B respectively.

A measure of coverage is obtained for each pair-wise run of two MOEAs. The results for all
thirty runs are summarised by the box plots in Figures 11 and 12. Each column in the figure
represents a box plot of the results for a particular test function. Each box plot encodes the
results of the thirty coverage comparisons. The thick, unbroken, horizontal line indicates the
median level of coverage of the thirty results. The box itself represents 50% of the
distribution, where the upper and lower ends of the box represent the upper and lower
quartiles respectively. The appendages to the box indicate the shape and spread of the tails of
the distribution. Outliers are represented by crosses. Refer to Cleveland [1993] for a good
introduction to box plots and other methods for visualising data.

A comparison of bMOGA and FFGA is shown in Figure 11. With the exception of a single
outlier, bMOGA comprehensively outperforms its FFGA equivalent across all test functions
using the coverage performance metric. Coverage of bMOGA fronts by FFGA-discovered
fronts is zero.

 15

Figure 11: Performance comparison - (a) C(bMOGA, FFGA); (b) C(FFGA, bMOGA)

When comparing bMOGA and SPEA (see Figure 12), the latter algorithm completely
surpasses the former across the first three test functions, apart from a small number of outliers
on ZDT-T3 where coverage is less than 100%. Some variability exists in the results for ZDT-
T4, perhaps suggesting that bMOGA can provide superior accuracy to SPEA on occasions but
that the algorithm is hampered by poor distribution (clearly indicated by the visual
presentation in Figure 8). There is also significant variability in the results for ZDT-T5. When
considering the median level of coverage in isolation, it could be strongly argued that
bMOGA has produced the better results. This validates the outcome shown in Figure 9. There
is also some variation in the results for ZDT-T6, although SPEA clearly produces solutions
that cover many of those found by bMOGA. There is zero coverage of SPEA solutions by
bMOGA solutions.

Figure 12: Performance comparison - (a) C(bMOGA, SPEA); (b) C(SPEA, bMOGA)

3.4 Conclusion
The validated results suggest that the implementation of bMOGA described in this report does
not perform as poorly as Zitzler et al’s FFGA implementation. Note that both
implementations are based on Fonseca and Fleming’s 1993 paper. This difference in results
can perhaps be explained by differing interpretations of that paper.

However, it is clear that both the bMOGA and the FFGA fail to produce results to match
those of the SPEA. In the next section, modifications to the baseline MOGA are sought that
will improve the performance of the algorithm. The current MOGA algorithm, that described
in [Fonseca and Fleming, 1995] and [Fonseca and Fleming, 1998], is also applied to the test
functions. The eventual aim is to determine a set of recommended settings for MOGA that
apply to the test suite and, thus, to any inferred classes of problems.

 16

4 Analysis and improvement of MOGA performance

4.1 Introduction
Results in the previous section indicated that a MOGA with the settings described in Zitzler et
al [2000] did not perform as poorly as the said authors’ FFGA. However, performance was
still distinctly inferior to that of other MOEAs, in particular the SPEA. Contemporary
benchmark settings for MOGA (see Fonseca and Fleming [1995, 1998], Chipperfield and
Fleming [1996], and Schroder et al [2001]) differ somewhat from the settings described by
Zitzler et al. Hence, in this section, the performance of the contemporary MOGA
implementation is tested and assessed on the ZDT test functions. Subsequently, various
simple adjustments to the FFGA-esque baseline MOGA (bMOGA) are considered in order to
identify the particular aspects of the algorithm to which performance is sensitive.

4.2 Contemporary MOGA
Settings for the de facto MOGA, as used today, are shown in Table 5. The bMOGA settings
are also included for comparison purposes. Whilst it is stressed that MOGA is a methodology
rather than a specific algorithm, these settings can be regarded as a benchmark from which
other MOGAs will vary. Note that population size, number of generations, and decision
variable resolution are chosen in line with Zitzler et al [2000]. Differences between bMOGA
and MOGA are highlighted in bold typeface.

MOEA parameter bMOGA setting MOGA setting

General GA

Population size 100 100

Total generations 250 250

Coding Binary, 30 bits per decision
variable (except where varied, as
shown in Zitzler et al [2000]).

Gray, 30 bits per decision
variable (except where varied, as
shown in Zitzler et al [2000]).

Selection Stochastic universal sampling
[Baker, 1987]

Stochastic universal sampling
[Baker, 1987]

Recombination Single-point binary crossover,
probability = 0.8

Single-point binary crossover,
probability = 0.7

Mutation Element-wise bit-flipping,
probability = 0.01

Element-wise bit-flipping,
expectation of 1 bit per
chromosome

Generational gap Zero Zero

Random injection Zero random chromosomes per
generation

2 random chromosomes per
generation

Elitism None None

Table 5: Benchmark MOGA

 17

MOEA parameter bMOGA setting MOGA setting

Multiobjective GA

Fitness assignment Fonseca and Fleming’s [1993]
multiobjective ranking (see
Section 2.2). Transformation from
rank to fitness using linear fitness
assignment with rank-wise
averaging.

Fonseca and Fleming’s [1993]
multiobjective ranking (see
Section 2.2). Transformation
from rank to fitness using linear
fitness assignment with rank-wise
averaging.

External
population

Off-line storage of nondominated
solutions

Off-line storage of nondominated
solutions

Niching

Fitness sharing Rank-wise Goldberg and
Richardson [1987] fitness sharing
in criterion-space. Parameters:
alpha = 2, niche size = 0.48862.

(Parameter-less) Epanechnikov
fitness sharing [Fonseca and
Fleming, 1995]. Implemented in
criterion-space.

Mating restriction None Mating restriction
implemented: distance set to the
niche size parameter found by the
Epanechikov fitness sharing
algorithm.

Table 5: Benchmark MOGA (continued)

Real-world applications of MOGA have tended to vary in their choice of sharing domain.
Some applications, such as [Fonseca and Fleming, 1998], have implemented criterion-based
sharing, whilst others, for example [Chipperfield and Fleming, 1996], have preferred a
solution-based approach. In this empirical study of the contemporary MOGA, solution-based
sharing is initially considered in order to facilitate an easier comparison with the results in
[Zitzler et al, 2000].

Results for the contemporary MOGA with benchmark settings are shown in Figures 13 to 18.
The performance of the algorithm is compared to that of the baseline MOGA (see Section 3.2)
and the best performing algorithm identified in Zitzler et al’s [2000] study, the SPEA. The
first six figures show a unification of the first five runs for each algorithm on each test
problem. From these plots, it is possible to obtain a feel for the accuracy and distribution of
each identified Pareto front. From a statistical viewpoint, given the small sample size,
confidence is not high. The coverage metric (Equation 7), which takes into account the results
for all thirty runs, provides a mechanism for increased confidence, but does not provide the
ease of comparison of the more informal visual presentation. Coverage results are displayed
in Figures 19 to 22.

 18

Figure 13: ZDT-T1 results (� – bMOGA, � – MOGA, � – SPEA)

Figure 14: ZDT-T2 results (� – bMOGA, � – MOGA, � – SPEA)

 19

Figure 15: ZDT-T3 results (� – bMOGA, � – MOGA, � – SPEA)

Figure 16: ZDT-T4 results (� – bMOGA, � – MOGA, � – SPEA)

 20

Figure 17: ZDT-T5 results (� – bMOGA, � – MOGA, � – SPEA)

Figure 18: ZDT-T6 results (� – bMOGA, � – MOGA, � – SPEA)

It is clearly evident that the contemporary MOGA with benchmark settings performs better
than the baseline MOGA (bMOGA) across all the test functions, with the possible exception
of ZDT-T5. The difference in performance is apparent in the coverage box plots of Figure 19,
in addition to the visual presentation above. This distinction is particularly marked for ZDT-
T4 (Figure 16) where, unlike the bMOGA, the contemporary MOGA is capable of obtaining a
good distribution of solutions across the Pareto front. On ZDT-T5, the median levels of
coverage are both high, indicating that the discovered fronts are similar.

 21

Figure 19: Coverage metric – (a) C(MOGA, bMOGA); (b) C(bMOGA, MOGA)

It will be noted that the performance of MOGA is still inferior to that of the SPEA on test
functions 1, 2, 3, and 6. However, MOGA provides a significant improvement over the SPEA
on test function 4. The results in Figure 16 suggest that MOGA outperforms the SPEA in
terms of both closeness to the global front and distribution across the front. This is borne out
by the coverage metric box plots in Figure 20 where, despite a degree of variability in the
distribution, the median level of coverage of SPEA by MOGA is 100%, whereas the reverse
comparison is 0%. On ZDT-T5, MOGA is able to produce results of similar accuracy to
SPEA, but the latter algorithm provides a better distribution as the value of objective f1
increases. Judging by the results in Figure 18, MOGA can produce a superior distribution
along the trade-off surface to SPEA. However, since the SPEA results are closer to the actual
front, the MOGA results are largely covered (see Figure 20).

Note that the distribution obtained by MOGA on ZDT-T2 is still poor as the value for
objective f1 approaches zero, relative to the remainder of the front.

Figure 20: Coverage metric – (a) C(MOGA, SPEA); (b) C(SPEA, MOGA) – sharing in criterion-space

In addition to criterion-space fitness sharing, a contemporary MOGA was also developed to
incorporate solution-space sharing instead. Performance is empirically compared to that of the
previous MOGA directly in Figure 21, and indirectly through comparison with the SPEA in
Figure 22. Results are somewhat mixed. Poorer performance is observed on test functions 1,
2, 3, and 6 for the solution-space MOGA. Performance on ZDT-T4 and ZDT-T5 is evidently
better, with a particularly marked difference for the multimodal test function.

 22

Figure 21: Coverage metric – (a) C(objective, parameter); (b) C(parameter, objective)

Figure 22: Coverage metric – (a) C(MOGA, SPEA); (b) C(SPEA, MOGA) – sharing in solution-space

4.3 Variations
In the previous sub-section, the contemporary MOGA was found to produce significantly
better results than the baseline MOGA across the test suite (apart from the deceptive ZDT-
T5). However, since there are several differences between the two MOGA implementations, it
is difficult to determine which settings, or combinations of settings, are acting as
discriminants. Therefore, in this sub-section, attention in returned to the baseline MOGA and
simple modifications are sought that lead to a significant improvement in performance.

Zitzler et al [2000] state that the performance of MOGA may improve using a lower mutation
rate than that applied in their work (0.01), due to the fact that MOGA uses stochastic
universal sampling as the selection mechanism whilst all other MOEAs use binary
tournament selection with continuously updated sharing. The stated reason for this
discrepancy was that MOGA requires a generational selection mechanism (indeed, the default
setting is SUS), but it should be stressed that there is no inherent difficulty with implementing
the latter selection mechanism within a generational framework. In these experiments, the
accepted standard of an expected mutation of 1 bit per chromosome is used [Mühlenbein and
Schlierkamp-Voosen, 1993]. For problems with thirty variables, each encoded over thirty bits,
this results in a mutation rate of 1/900. This rate is a factor of 10 less than that used by Zitzler
et al.

Preliminary investigations revealed that this adjustment in mutation rate did lead to improved
performance, but that superior results were achieved by coupling this mutation rate with Gray
encoding of decision variables (the coupling of these two factors produced better results than
either individually). Note that choice of coding strategy is not applicable to ZDT-T5. To
complete the MOGA variation, immigration of two random chromosomes was added. This

 23

did not produce a significant change in results, but random injection may guard against
premature convergence. It is especially useful in time-varying optimisation problems, and is
hence not regarded as a critical parameter for the set of test functions considered here.

Further preliminary investigations concerned with varying the niche size parameter for fitness
sharing seemed to indicate that very low values of niche size produced the best results. Thus,
as a further modification, fitness sharing was removed from the MOGA. In all, four separate
MOGAs were implemented, as described in Table 6.

Name of MOGA Description

bMOGA The baseline MOGA, described in Section 3.2.

nsMOGA The baseline MOGA with niching removed.

mMOGA The baseline MOGA with an expected mutation rate of 1 bit per
chromosome, Gray encoding, and random injection of 2 individuals per
generation.

mnsMOGA mMOGA with niching removed.

Table 6: MOGA variations

Unified results for the first five runs of each algorithm, for each test problem, are shown in
Figures 23 to 28. A purely visual analysis is used to determine a good-performing MOGA
implementation. This MOGA is then compared to the SPEA using the coverage metric.

Figure 23: ZDT-T1 results (� – bMOGA, � – nsMOGA, � – mMOGA, � - mnsMOGA)

 24

Figure 24: ZDT-T2 results (� – bMOGA, � – nsMOGA, � – mMOGA, � - mnsMOGA)

Figure 25: ZDT-T3 results (� – bMOGA, � – nsMOGA, � – mMOGA, � - mnsMOGA)

The results obtained for the first three test functions suggest that adjustment of mutation rate
and encoding choice to their widely recommended settings can lead to a noticeable
improvement in results. Progress is largely in terms of accuracy, although some improvement
in distribution can be seen. Note that the presence of criterion-space niching does not make a
visually significant difference for these test functions. However, perhaps most surprisingly,
MOGA without sharing can be regarded as the superior algorithm with respect to the
coverage metric (coverage results for mMOGA and mnsMOGA are shown in Figure 29).

 25

Figure 26: ZDT-T4 results (� – bMOGA, � – nsMOGA, � – mMOGA, � - mnsMOGA)

Results for ZDT-T4, as depicted in Figure 26, suggest that criterion-space niching can offer
an improvement over a non-niching implementation, when combined with appropriate
choices for mutation rate and encoding. This is also evident in the Figure 29 box plot,
although some variation in coverage does exist.

Figure 27: ZDT-T5 results (� – bMOGA, � – nsMOGA, � – mMOGA, � - mnsMOGA)

All four MOGAs exhibit very close levels of performance when applied to ZDT-T5, as shown
in Figure 27. Recall that the baseline MOGA itself was found to perform well, when
compared to other MOEAs, on this deceptive test function. In terms of accuracy, the best
result obtained here is for bMOGA with niching removed, although good distribution is lost
for larger values of objective f1.

 26

Figure 28: ZDT-T6 results (� – bMOGA, � – nsMOGA, � – mMOGA, � - mnsMOGA)

Relative performance of the niching / non-niching variants would appear to be similar for
ZDT-T6 as for the initial three test functions. However, in terms of coverage, mMOGA can
be considered as the better performer (see the associated box plots in Figure 29).

Figure 29: Coverage metric – (a) C(mMOGA, mnsMOGA); (b) C(mnsMOGA, mMOGA)

It is apparent that the best results can be obtained by MOGAs with modified mutation and
coding strategy, regardless of the application of a niching strategy. When implemented,
criterion-space fitness sharing offers an improvement in results for the multimodal and non-
uniform test functions. However, fitness sharing does prove somewhat detrimental to
performance on the first three test functions. Since the magnitude of these downgrades is,
arguably, more than offset by improvements on the other test problems, the mMOGA has
been selected for comparison with the SPEA. The comparison is made, through use of the
coverage metric, in Figure 30. SPEA still performs substantially better on the first three
problems, although the completeness of its dominance has been reduced somewhat. On test
function 4, MOGA is seen to produce a very high degree of coverage over SPEA.
Performance on ZDT-T5 is still largely variable (this is a deceptive problem that generates
mediocre results for all algorithms) although the median level of coverage of SPEA by
MOGA is greater than the converse case. Finally, SPEA produces better results for the biased
distribution problem.

 27

Figure 30: Coverage metric – (a) C(mMOGA, SPEA); (b) C(SPEA, mMOGA)

The results presented in this section have implied that criterion-space niching (by means of
Goldberg and Richardson’s [1987] fitness sharing methodology) does not offer a definitive
improvement in performance, in terms of either closeness to the true Pareto front or
distribution along the trade-off surface. To conclude this part of the investigation, the
performance of solution-space niching is established using an mMOGA. Solution-space
niching has been implemented in the same manner as for the NSGA tested by Zitzler et al
[2000]. Rank-wise Goldberg and Richardson [1987] fitness sharing was applied in the
phenotypic solution-space (except for ZDT-T5, where a genotypic approach was required).
Parameter in Equation 3 was set equal to 2, whilst the niche size share was set to 0.48862
(phenotypic) or 34 (genotypic), as per the specification provided by Zitzler et al.

Coverage results for the criterion-space and solution-space versions of mMOGA are shown in
Figure 31. The latter MOGA is also compared to its non-sharing equivalent in Figure 32. The
MOGA with solution-space niching is shown to produce significantly inferior results to both
criterion-space mMOGA and the mnsMOGA across all test functions. Note, however, that
performance is still somewhat better than the baseline MOGA.

Figure 31: Coverage metric for mMOGA– (a) C(criterion,solution); (b) C(solution, criterion)

 28

Figure 32: Coverage metric for mMOGA with solution-space fitness sharing –

(a) C(mnsMOGA, mMOGA); (b) C(mMOGA, mnsMOGA)

4.4 Conclusion
In this section it was shown that by choosing a MOGA with settings widely regarded as
standard by the research community, performance can be significantly improved across the
set of test problems. However, of particular concern was the exhibited effect of fitness
sharing. Whilst criterion-space niching offered some improvement in performance over
several of the test functions, the use of niching was also found to be detrimental to
performance on other test functions. Furthermore, the MOGA with solution-space fitness
sharing exhibited very poor results, most worryingly even when compared to a non-niching
algorithm. These are important results that receive further consideration in Section 6.

Note that SPEA still offers significant improvements over the MOGA, with the exceptions of
ZDT-T4 and ZDT-T6. Further tuning of the MOGA settings could be attempted, but a more
intelligent approach to problem solving is desirable. Five of the test functions in the suite
consist of real-number variables. Hence, in the spirit of fitting the tool to the problem, it may
be more appropriate to use a GA with real-number chromosomes. In Section 5, a real-coded
MOGA is designed for the purposes of real-parameter function optimisation. In Section 6, the
algorithm is tested and compared to the SPEA.

 29

5 A real-coded genetic algorithm for function
optimisation

5.1 Introduction
The modern approach to genetic algorithm design stresses the need for intelligent choice of
objective function, representation, and search operators [Michalewicz and Fogel, 2000].
Choice of representation should be natural to the problem at hand. Many real-number decision
variables, such as those in five of the ZDT test functions, can be intuitively represented by
floating-point elements. In a classical genetic algorithm, these variables would be encoded as
binary genotypes. Here, a conversion process is required to translate between the genotypic
representation and phenotypic representation and vice versa. Floating-point representations do
not require a conversion process, making them faster to manipulate. Furthermore, they permit
greater precision than binary code, constrained only by machine precision.

In this section, a real-coded GA is devised for the purposes of real-parameter function
optimisation. Particular attention is paid to the genetic operators that drive the search. In the
following sub-section, a simple recombination operator from the literature is analysed. In the
subsequent passage, a Gaussian-variant mutation operator is proposed. This adaptable
operator is designed to work in synergy with the recombination operator and to effectively
manage limits on decision variables.

5.2 Recombination
In this study, single-point crossover is used. This operator functions in exactly the same way
for real-coded chromosomes as for the binary equivalent. Two chromosomes are chosen and a
crossover point is randomly selected. Genetic material is exchanged at all loci to the right of
the crossover point to produce two offspring. This process is illustrated in Figure 33.

�������������������

�������������������

�������������������

�������������������

parents offspring

Figure 33: Single point crossover for real-number chromosomes

For real-coded chromosomes, the crossover point can only occur in-between decision
variables (they are, essentially, atomic entities). For binary chromosomes, this restriction need
not apply. It can be shown that, for real variables encoded as binary strings, if crossover
occurs mid-parameter then the offspring will contain symmetrical perturbations of this
parameter [Wright, 1991]. These new values for the decision variable cannot be achieved
using standard point-wise crossover for real chromosomes. This is not necessarily a problem,
but indicates that a high level of mutation may be required in order to improve genetic
diversity. Without mutation, the values for the parameters that exist in the initial population
would be all that are available. A similar problem does exist for binary representations, but
tends to be less limiting (the values available depend on the chosen resolution and on the
discrepancies between parents).

Note that the above behaviour does not apply to real-encoded GAs per se. Many real
chromosome recombination operators have been developed in the literature, some of which
seek to emulate the crossing-over of binary chromosomes. Herrera et al [1998] present a good
review of potential approaches. They also provide a nice graphical summary of the rôle of
crossover, reproduced in Figure 34. Crossover can act both as an exploratory operator and in
its traditionally viewed rôle as an exploiter of genetic code. When applied to a binary
encoding of parameters, the perturbations instilled by crossover can be viewed as a form of

 30

relaxed exploitation. Crossover operators have been devised for real-encodings of parameters
that simulate this effect. These operators tend to be simpler to analyse than binary crossover,
since the range covered by the perturbations of the latter approach is potentially non-
continuous and depends on the variety, in terms of bits, between the parent chromosomes.

L RL A B RU U

Exploitation ExplorationExploration

Relaxed Exploitation
Key:
A,B parent values
U/L upper / lower

limit on variable
RU/L upper / lower

outer limit on
perturbation

Figure 34: The rôle of crossover

5.3 Mutation
The mutation operator chosen in this study is similar to the standard element-wise operator for
binary chromosomes. In the binary case, each element is probabilistically tested to undergo
mutation. If mutation is to occur, the current value is swapped for an alternative. In the binary,
or general discrete, case this is quite straightforward. However, in the real number case, an
infinite set of alternatives exists. Gaussian mutation is an attractive method of choosing an
alternative. This operator generates a new value based on a normal distribution, centred over
the current value. The standard deviation defines the likelihood of generating a value close to
the original. The advantage of this operator is that the standard deviation is amenable to
variation during the search, hence providing an adaptable operator.

5.3.1 Maintaining feasibility with controlled bias
An evident problem with the Gaussian mutation operator is that it can produce infeasible
solutions when applied to decision variable values towards the edge of the feasible region.
This closeness to the edge can be defined in terms of standard deviations of the mutation
operator. In this section, an approach to constraint handling is developed that ensures feasible
solutions with minimal bias.

The simple solution to this problem is to crop any infeasible values to their nearest feasible
equivalent. However, this will generate bias in the search towards the extreme values. In order
to counter this, the standard deviation of the mutation function can be reduced, thus reducing
the possibility of a required crop. Indeed, by predefining the number of standard deviations
that must produce feasible results, it is possible to specify the acceptable level of bias.

Let n be the number of standard deviations (�) from the current value that must produce
feasible values, and let x be the shortest distance from a limit on the variable to the current
value. If n� is greater than x, then � must be rescaled to x/n in the direction of the limit (the
value for � away from the limit should remain unchanged). This procedure will create a
discontinuity in the Gaussian function. Note that n� should be chosen so that a distance n�
will be feasible in either direction from the central point between limits. Note that � may vary
over a chromosome, since the limits on decision variables may differ. Gaussian mutation
applied to a single decision variable is illustrated in Figure 35.

 31

infeasible
region

infeasible
region

upper limit
on variable

lower limit
on variable

ÇUÇL

current
value

xL xU

Key:

xU/L distance to upper / lower bound

ÇU/L standard deviation of upper /
lower Gaussian distribution

Figure 35: A Gaussian mutation operator

In this implementation, the probability of selecting either half of the distribution during
mutation (defining the direction of mutation) varies with �-rescaling. If no rescaling is
necessary, this probability is 50-50. If rescaling is required, the probability of moving towards
the nearest infeasible region is reduced to (1/2)(x/n�). This leads to more exploration away
from the infeasible region when the infeasible region is close. In effect, the probability density
under each half is rescaled in light of any necessary changes to �.

Note that further action would be required for more complicated feasible regions on decision
variables. This situation does not occur for the test functions under investigation here.

5.3.2 Adaptive mutation
In any search method, a trade-off exists between exploration of the search space and
exploitation of promising regions of that space. The Gaussian mutation operator provides an
opportunity to influence this trade-off by adapting the standard deviation over the course of a
run. In this study, a sigmoidal function (Equation 8) is used to vary the standard deviation
over the generations. The parameter a in Equation 8 defines the accentuation of the S-shape of
the sigmoid. This function, coupled with a suitably large � (for example, 40% of the search
space for each variable) provides copious global exploration early in the search and much
local exploration late in the search. The exact levels are defined by the a parameter. Larger
values of a will detain the search at a global level and micro level for longer (at the expense
of intermediate levels of mutation).







−−







−−

+

=
2

1

2

1

1

)(

max

max

g

gen
a

g

gen
a

e

e
gens (8)

 where s is the mutation scaling factor,

 gen is the current generation number,

 gmax is the maximum generation number, and

 a is a shaping parameter.

 32

5.4 Incorporation into a genetic algorithm
The genetic representation and operators described above must be integrated with selection,
fitness assignment, and reinsertion mechanisms in order to construct a genetic algorithm. In
the multiobjective case, Fonseca and Fleming’s [1993] Pareto ranking was applied, prior to
linear fitness assignment.

In this work, two selection mechanisms were considered: stochastic universal sampling (SUS)
[Baker, 1987] and deterministic BGA selection [Mühlenbein and Schlierkamp-Voosen,
1993]. The BGA methodology of selecting the best individuals for breeding works well in the
single objective case, but was not so suitable for multiobjective problems where a distribution
of optimal (in the Pareto sense) solutions was to be identified. SUS was found to be better for
this latter case.

When considering reinsertion, elitism was again more suitable for single objective problems
than multiobjective tasks, where large numbers of nondominated individuals can lead to a
directionless search. In this implementation, all offspring replaced all parents. Two randomly
generated chromosomes were introduced at each generation to maintain a constant supply of
diversity.

5.5 Conclusion
In this section, a genetic algorithm for the solution of real-parameter function optimisation
problems was designed from basic evolutionary computing principles. In particular, the GA
uses a natural expression for potential solutions, and offers customised search operators to
support this representation. The Gaussian mutation operator developed during this study
permits an explicit and adaptive specification of the search neighbourhood, thus providing a
degree of control over the exploration-exploitation trade-off. In the following section, the GA
is integrated into Fonseca and Fleming’s [1993] MOGA framework, and is subsequently
applied to the solution of the real-parameter ZDT problems.

 33

6 Real-encoded MOGA results and analysis

6.1 Introduction
The real-coded MOGA, developed in the previous section using the guidelines suggested by
Michalewicz and Fogel [2000], is now applied to the five real-parameter problems in the
Zitzler et al [2000] test suite. The settings for the MOGA are detailed in Table 7. Two
implementations were considered, namely: with and without criterion-space niching. These
MOGAs are labelled rMOGA and rnsMOGA respectively.

MOEA parameter Setting

General GA

Population size 100

Total generations 250

Coding Real number encoding (accuracy bounded by machine precision)

Selection Stochastic universal sampling [Baker, 1987]

Recombination Single-point binary crossover, probability = 0.8 (crossover points
are restricted to between decision variables)

Mutation Gaussian mutation with initial standard deviation of 40% of
variable range. The standard deviation is adapted using
sigmoidal scaling (as a function of %age generations complete).
Sigmodal parameter = 17.5. Bias: at least one standard deviation
from the current value is required to be within the limits of the
decision variable (by appropriate modification if necessary).
Expected mutation rate of 1 element per chromosome.

Generational gap Zero

Random injection 2 random chromosomes per generation

Elitism None

Multiobjective GA

Fitness assignment Fonseca and Fleming’s [1993] multiobjective ranking (see
Section 2.2). Transformation from rank to fitness using linear
fitness assignment with rank-wise averaging.

External population Off-line storage of nondominated solutions

Niching

Fitness sharing When fitness sharing is implemented, Goldberg and
Richardson’s [1987] method is used, with niche size calculated
using the equation in [Deb and Goldberg, 1989].

Mating restriction None.

Table 7: Real-coded MOGA settings

 34

Niching is implemented according to the format given in [Goldberg and Richardson, 1987]. A
����������	
������	�
�����	
�������	����	��������	��	
��	����	��������	� 	�	��	���	���	���
��	
are aimed for (q = 10). The niche size has been calculated using the formula devised by Deb
and Goldberg [1989], thus:

() ()
2236.0

102

01

2 2

2

1

2

1

2
,,

=
−

=
−

=
∑∑ == k

p

p

k minkmaxk

share
q

xx
σ

The criterion-space results are normalised to [0 1]2 space prior to application of fitness
sharing. This normalisation is achieved by utilising the population maximum and minimum
values for each objective at each generation. Hence, the transformation to normalised space is
a dynamic operator.

Note that fitness sharing is applied in criterion-space rather than solution-space in order to
obtain a good distribution of solutions across the approximated Pareto front. This will
maximise the amount of information concerning the trade-off between the two objectives to
be presented to the decision-maker. In this set of tests, performance is not directly analysed in
terms of distribution in solution-space. Hence, the quality of this distribution is not of
immediate concern.

6.2 Results
The results for the two real-coded MOGA implementations are shown in the subsequent
figures. Results for the SPEA, as obtained by Zitzler et al [2000], are displayed for reference
purposes. The Pareto optimal unified results of the first five runs of each algorithm are shown
for each test function in Figures 36 through 40. Box plots of the thirty run-wise coverage
metrics are shown for each test function in Figures 41 to 43. In Figure 41, the twin coverage
results for rMOGA and rnsMOGA are shown. In Figure 42, rMOGA is compared to SPEA,
whilst in Figure 43 rnsMOGA is compared to SPEA.

Figure 36: ZDT-T1 results: � - rMOGA; � - rnsMOGA; � - SPEA

As expected, approximately ten sub-populations are visible for rMOGA on ZDT-T1, as
shown in Figure 36. In terms of accuracy, rMOGA is somewhat on a par with SPEA.
However, it loses out in terms of smoothness of distribution. This is perhaps expected since

 35

fitness sharing was set to provide ten niches across the Pareto front. rnsMOGA exhibits
superior performance to SPEA in terms of both accuracy and distribution, as confirmed by the
coverage results in Figure 43. The smoothness of the distribution can be attributed to the fact
that niching was not implemented for this MOGA. Note that, in a MOEA that utilises fitness
sharing, smoothness would be expected to increase as the niche size decreases. Results for the
rnsMOGA are slightly concentrated towards f1�0. This may be due to the lack of penalties
for overcrowding. However, total convergence to one part of the front has been avoided
without the need for explicit action.

rnsMOGA may be producing more accurate results than rMOGA because it has an increased
level of selective pressure. The fitness sharing algorithm in rMOGA tends to reduce the
average fitness of the population. Since an individual’s fitness relates directly to the expected
number of times it is selected for reproduction, reducing fitness reduces the selective pressure.
Hence, after a fixed number of function evaluations, rnsMOGA would be expected to have
converged more than rMOGA. Thus, rnsMOGA could be postulated to be closer to the front
but, given further generations, rMOGA would produce this level of accuracy.

Figure 37: ZDT-T2 results: � - rMOGA; � - rnsMOGA; � - SPEA

Both real-coded MOGAs struggle to produce a uniform distribution of solutions as f1�1 for
ZDT-T2 (see Figure 37). This behaviour is also exhibited by all MOEAs in Zitzler et al’s
[2000] study. rnsMOGA comprehensively outperforms SPEA, whilst rMOGA is relatively on
a par with the latter algorithm. These results are evident both from Figure 37, and the
coverage results in Figure 42 and Figure 43.

Results for ZDT-T3 (refer to Figure 38) are very tightly packed. However it can be seen that
rnsMOGA outperforms SPEA in terms of closeness to the global front. This result is borne
out by the associated box plots in Figure 43.

 36

Figure 38: ZDT-T3 results: � - rMOGA; � - rnsMOGA; � - SPEA

Figure 39: ZDT-T4 results: � - rMOGA; � - rnsMOGA; � - SPEA

Results for ZDT-T4 are shown in Figure 39. Both real-coded MOGAs exhibit markedly better
performance than the SPEA on this test problem. The coverage box plots in Figure 42 and
Figure 43 are a testament to this. Niches can apparently be seen for rMOGA although,
somewhat curiously, sub-populations are also present for the non-niching rnsMOGA. Note
that all MOEAs have difficulty in representing the trade-off surface as f1�1, although SPEA
has identified the extreme values.

 37

Figure 40: ZDT-T6 results: � - rMOGA; � - rnsMOGA; � - SPEA

SPEA identifies the global front for ZDT-T6 with very high accuracy and a uniformly spread
distribution, albeit with significant gaps between solutions. Neither MOGA is able to match
SPEA for repeatable accuracy, although rnsMOGA achieves similar results in the densest area
of criterion space (f1�0). rMOGA finds a good distribution of solutions, demonstrating the
key benefit of fitness sharing on biased problems, but with comparatively low accuracy
(possibly for the reasons outlined earlier).

Note that, despite its apparent domination regarding the unified results of the first five runs on
ZDT-T6, SPEA does not comprehensively outperform rnsMOGA across all thirty
replications. Indeed the median value for coverage of SPEA by rnsMOGA is actually greater
than the converse case (see Figure 43).

Figure 41: Coverage metric – (a) C(rMOGA, rnsMOGA); (b) C(rnsMOGA, rMOGA)

 38

Figure 42: Coverage metric – (a) C(rMOGA, SPEA); (b) C(SPEA, rMOGA)

Figure 43: Coverage metric – (a) C(rnsMOGA, SPEA); (b) C(SPEA, rnsMOGA)

6.3 Conclusion
In conclusion, the real-encoded MOGA developed for the purposes of real-parameter function
optimisation performs better overall than any of the MOEAs examined by Zitzler et al [2000].
This does not mean that the MOGA, as a technique, is superior to other MOEAs. Real-coded
versions of other MOEAs are likely to produce similar results. The critical conclusion to be
drawn, as elucidated by Michalewicz and Fogel [2000], is that an evolutionary computing
approach to problem-solving requires care and thought in order to achieve good results, given
that the problem is considered amenable to an evolutionary solution. Mass empirical testing
of algorithms, with lumped settings, is unlikely to provide a confident basis from which a
hierarchy of MOEAs can be deduced.

Results in this section have confirmed, as indicated by results from previous sections, that the
application of niching via fitness sharing is not producing the benefits anticipated of such an
approach. This is discussed further in the following, and concluding, section of this report.

 39

7 Conclusion

7.1 General conclusions
In this report, the multiobjective genetic algorithm (MOGA) was analysed using the test suite
proposed by Zitzler et al [2000]. The emulation of Zitzler et al’s FFGA MOGA
implementation, labelled here as the bMOGA, was found to outperform the results published
in that article. This discrepancy may be attributed to differing interpretations of the paper by
Fonseca and Fleming [1993] upon which the algorithm is based. However, bMOGA was
clearly uncompetitive with other popular MOEAs, in particular the Strength Pareto
Evolutionary Algorithm (SPEA) developed by Zitzler and Thiele [1999].

The specification of the bMOGA does not match that of contemporary MOGA
implementations. When a standard MOGA was applied to the test problems, significant
increases in performance were evident although, as before, performance did not compare
favourably to that of the SPEA on the majority of the test problems.

It has been stressed throughout that MOGA represents a methodology rather than a specific,
unalterable, algorithm. In light of this, and using the guidelines described by Michalewicz and
Fogel [2000], a MOGA has been designed specifically for real-parameter multiobjective
function optimisation. This MOGA has been shown to outperform all the MOEAs assessed by
Zitzler et al [2000]. This is not a statement to the effect that MOGA is the best MOEA. All
that has been demonstrated is that, through thoughtful use of the evolutionary computing
framework, an MOEA can be designed in a straightforward fashion to provide good solutions
to real-parameter bi-objective test problems. Drawing on the vast experience that the GA
research community has gained from single objective problems, this result was highly
predictable. The EA does not represent a panacea to problem-solving.

This is not to say that the development of test problems and the analysis of performance is not
a worthwhile activity. Indeed, it is an essential part of the collective research effort. It is
important to identify what action is required to effectively manage various problem attributes,
such as multimodality and non-uniformity. However, it is equally important to devise
methods for identifying these attributes in the cost landscapes of real-world problems. Test
problems are required that are tractable yet sufficiently complex to offer realistic
multiobjective scenarios. In particular, these problems must feature more than a small number
of objectives. The recent work by Deb et al [2001] represents an important step in this
direction.

7.2 Niching and the ZDT test problems
The results presented in this report suggest that several of the ZDT test problems do not
require niching, and furthermore that niching can degrade performance given a limited
number of function evaluations. However, on problems where a random scattering of
solutions produces a biased distribution on the front, criterion-space niching has a positive
impact. Criterion-space niching was also found to be useful for problems with a multimodal
system of fronts. Niching will also be valuable when the Pareto front is relatively large with
respect to the total search environment and the MOEA population size. In these
circumstances, the MOEA can be swamped by a high number of equal-fitness solutions
(essentially reducing the algorithm to the status of a random walk and thus increasing the
likelihood of genetic drift). Real-world applications show that the possibility of this
occurrence increases with the number of objectives [Fonseca and Fleming, 1998], perhaps
suggesting why it has not been evident for these two-objective test functions. Niching is one
of the tools to counter this problem, along with preference articulation [Fonseca and Fleming,
1998] and structured-population approaches.

 40

Horn et al [1994] communicate the sensible belief that sharing should be performed in the
space “we care more about”. Hence, if a good distribution in criterion-space is required, then
criterion-space niching should be applied. It seems somewhat unusual that the NSGA in
Zitzler et al [2000] should use solution-space niching when performance was clearly defined
in the objective domain. Also, if niching is functioning as expected, sub-populations should
surely be evident in the results. This was true for the MOGAs with criterion-space niching
investigated in this report. The empirical results suggest that SPEA does not produce niches in
the Goldberg and Richardson [1987] sense. Indeed its performance more closely resembles
that of an MOEA without a niching scheme. This may be of concern for application to larger
test problems, especially where none of the objectives are completely defined by a single
decision variable. However, it may also be true that the SPEA’s non-conventional method of
fitness assignment is actively producing a good distribution in criterion-space. If so, the SPEA
would appear to offer the further benefit of a continuous distribution, rather than the
somewhat forced sub-population structure that results from fitness sharing.

Note that sub-populations are visible in the results for the NSGA presented in Zitzler et al
[2000], despite the fact that NSGA was implemented with solution-space niching. This result
may be an artefact of the test problems. Since one of the objectives is actually a decision
variable, a direct correlation exists between distances in solution-space and distances in
criterion-space. Thus, sharing in solution-space is closely related to sharing in criterion-space.
On problems with more complicated functional relationships between the two domains,
niching in solution-space could not be expected to produce a good distribution of sub-
populations in criterion-space. Note that solution-space sharing is still important in an MOEA
for its original purpose: avoiding premature convergence within the cost landscape.
Furthermore, as highlighted by Deb [1999], solution-based sharing should result in a diverse
set of solutions to present to the decision-maker.

The remarkable performance of algorithms that do not use fitness sharing should be regarded
with caution. These results may be an artefact of the test problems. Since one decision
variable has complete control over the distribution of one objective, genetic drift towards one
part of the Pareto front is not a great problem. This is especially true for real-coded
chromosomes because a single mutation can potentially cover the entire range of the objective
(whereas for a binary chromosome, the range would depend on the significance of the
mutated bit). In the test functions proposed by Deb [1999], once good performance is
achieved in f2, a single decision variable can be used to manipulate f1 to generate solutions
across the Pareto front (although decision variable mapping can be introduced to prevent this,
at a greater cost in terms of test function complexity). However in situations where good
performance, in terms of accuracy and distribution, must be steadily developed using a
building-block approach, premature convergence in an objective can pose a severe problem. It
would be unlikely that random mutation would prove sufficient to refresh the population.
Niching will prove very valuable in these latter cases.

 41

Acknowledgements

The authors would like to express their gratitude to Eckart Zitzler for the on-line availability
of the performance data from the Zitzler et al [2000] study. They would also like to thank
Dr Zitzler for his response to queries on the associated paper.

Data

The MOGA results presented in this report are available for download from the following
site: http://www.shef.ac.uk/~acse/research/students/r.c.purshouse/.

 42

References

Baker, J. E., 1987, Reducing bias and inefficiency in the selection algorithm, Proceedings of
the Second International Conference on Genetic Algorithms, Ed. Grefenstette, J. J., Lawrence
Erlbaum Associates, pp14-21.

Chipperfield, A. and Fleming P., 1996, Multiobjective Gas Turbine Engine Controller Design
Using Genetic Algorithms, IEEE Transactions on Industrial Electronics, Vol. 43, No. 5, pp1-
5, October 1996.

Cleveland, W. S., 1993, Visualizing Data, Hobart Press, Summit, New Jersey.

Coello Coello, C. A., 1999, A Comprehensive Survey of Evolutionary-Based Multiobjective
Optimization Techniques, Knowledge and Information Systems. An International Journal,
Vol. 1, No. 3, pp269-308, August 1999.

Dakev, N. V., Whidborne, J. F., Chipperfield, A. J., and Fleming, P. J., 1997, Evolutionary H-
infinity design of an electromagnetic suspension control system for a maglev vehicle,
Proceedings of the Institution of Mechanical Engineers, Vol. 211, Part I, pp345-355.

Deb, K., 1999, Multi-objective Genetic Algorithms: Problem Difficulties and Construction of
Test Problems, Evolutionary Computation, Vol. 7, No. 3, pp205-230.

Deb, K. and Goldberg, D. E., 1989, An Investigation of Niche and Species Formation in
Genetic Function Optimization, in: Schaffer, J. D. (Ed.), Proceedings of the Third
International Conference on Genetic Algorithms, pp42-50, Morgan Kaufmann, San Francisco,
CA.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E., 2001, Scalable Test Problems for
Evolutionary Multi-Objective Optimization, TIK-Technical Report No. 112, ETH Zürich,
Switzerland.

Fonseca, C. M. and Fleming, P. J., 1993, Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization, Genetic Algorithms: Proceedings of the Fifth
International Conference, Morgan Kaufmann, San Mateo, CA, pp416-423.

Fonseca, C. M. and Fleming, P. J., 1995, Multiobjective Genetic Algorithms Made Easy:
Selection, Sharing and Mating Restriction, Proceedings of GALESIA ’95 (Genetic
Algorithms in Engineering Systems: Innovations and Applications), pp45-52.

Fonseca, C. M. and Fleming, P. J., 1998, Multiobjective Optimization and Multiple Constraint
Handling with Evolutionary Algorithms – Part I: A Unified Formulation and Part II:
Application Example, IEEE Transactions on Systems, Man, and Cybernetics – Part A:
Systems and Humans, Vol. 28, No. 1, pp26-37 and pp38-47, January 1998.

Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization and Machine Learning,
Reissue, Addison-Wesley Publishing Company.

Goldberg, D. E. and Richardson, J., 1987, Genetic Algorithms with Sharing for Multimodal
Function Optimization, in: Grefenstette (Ed.), Proceedings of the Second International
Conference on Genetic Algorithms, pp41-49.

Griffin, I. A., Schroder, P., Chipperfield, A. J., and Fleming, P. J., 2000, Multi-objective
optimization approach to the ALSTOM gasifier problem, Proceedings of the Institution of
Mechanical Engineers, Vol. 214, Part I, pp453-468.

 43

Haas, O. C. L., Burnham, K. J., and Mills, J. A., 1997, On improving physical selectivity in
the treatment of cancer: a systems modelling and optimisation approach, Control Engineering
Practice, Vol. 5, No. 12, pp 1739-1745.

Herrera, F., Lozano, M., and Verdegay, J. L., 1998, Tackling Real-Coded Genetic Algorithms:
Operators and Tools for Behavioural Analysis, Artificial Intelligence Review, Vol. 12,
pp265-319.

Horn, J. and Nafpliotis, N., 1993, Multiobjective Optimization Using the Niched Pareto
Genetic Algorithm, Technical Report 930005, Illinois Genetic Algorithms Laboratory
(IlliGAL), University of Illinois, Urbana, Illinois.

Horn, J., Nafpliotis, N., and Goldberg, D. E., 1994, A Niched Pareto Genetic Algorithm for
Multiobjective Optimization, in Michalewicz, Z. (Ed.), Proceedings of the First IEEE
Conference on Evolutionary Computation, pp82-87, IEEE Press, Piscataway, NJ.

Michalewicz, Z. and Fogel, D. B., 2000, How to Solve It: Modern Heuristics, Corrected
Second Printing, Springer-Verlag, Berlin.

Mühlenbein, H. and Schlierkamp-Voosen, D., 1993, Predictive Models for the Breeder
Genetic Algorithm, Evolutionary Computation, Vol. 1, No. 1, pp25-49.

Obayashi, S., Sasaki, D., Takeguchi, Y., Hirose, N., 2000, Multiobjective Evolutionary
Computation for Supersonic Wing-Shape Optimization, IEEE Transactions on Evolutionary
Computation, Vol. 4, No. 2, July 2000, pp182-187.

Rodríguez-Vázguez, K., Fonseca, C. M., and Fleming P. J., 1997, Multiobjective Genetic
Programming: A Nonlinear System Identification Application, Late Breaking Papers at the
1997 Genetic Programming Conference, pp207-212.

Schroder, P., Green, B., Grum, N., and Fleming, P. J., 2001, On-line evolution of robust
control systems: an industrial active magnetic bearing application, Control Engineering
Practice, Vol. 9, No. 1, pp37-49, January 2001.

Silverman, B. W., 1986, Density Estimation for Statistics and Data Analysis, Monographs on
Statistics and Applied Probability 26, Chapman and Hall.

Srinivas, N. and Deb, K., 1994, Multiobjective Optimization Using Nondominated Sorting in
Genetic Algorithms, Evolutionary Computation, Vol. 2, No. 3, pp221-248.

Van Veldhuizen, D. A. and Lamont, G. B., 2000, Multiobjective Evolutionary Algorithms:
Analyzing the State-of-the-Art, Evolutionary Computation, Vol. 8, No. 2, pp125-147.

Wright, A. H., 1991, Genetic algorithms for real parameter optimisation, in: Rawlins, G. J. E.
(Ed.), Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp205-218.

Zitzler, E., Deb, K., and Thiele, L., 2000, Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results, Evolutionary Computation, Vol. 8, No. 2, pp173-195.

Zitzler, E. and Thiele, L., 1999, Multiobjective Evolutionary Algorithms: A Comparative Case
Study and the Strength Pareto Approach, IEEE Transactions on Evolutionary Computation,
Vol. 3, No. 4, pp257-271.

