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Abstract 

The multiobjective genetic algorithm (MOGA) has been applied to various real-world 
problems in a variety of fields, most prominently in control systems engineering, with 
considerable success. However, a recent empirical analysis of multiobjective evolutionary 
algorithms (MOEAs) has suggested that a MOGA-based algorithm performed poorly across a 
diverse set of two-objective test problems. In this report, it is shown that a conventional 
MOGA with standard settings can provide improved performance, but this still compares 
unfavourably to the best-performing contemporary MOEA, the Strength Pareto Evolutionary 
Algorithm (SPEA). The importance of the MOEA as a framework is stressed and, 
consequently, a real-coded MOGA for real-parameter multi-criterion problems is developed 
using modern guidelines for the design of evolutionary algorithms. This MOGA is shown to 
outperform all other published results across the benchmark problems. This does not suggest 
that MOGA is the ‘best’ MOEA, rather that a considered implementation of the methodology 
is required in order to reap full rewards. This study also questions the effectiveness of the 
traditional fitness sharing method of niching, with respect to the current set of multiobjective 
benchmark problems. 
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1 Introduction 
Research into evolutionary multicriterion optimisation (EMO) has continued to escalate in 
popularity since the field’s inception in the mid-1980s. Various multiobjective evolutionary 
algorithms (MOEAs) have been introduced and developed, with Pareto-based methods 
receiving the most attention. Fonseca and Fleming’s [1993] MOGA, Horn and Nafpliotis’ 
[1993] NPGA, and Srinivas and Deb’s [1994] NSGA were the first three Pareto-based 
MOEAs. All three algorithms have proved popular in EMO applications, and have attracted 
continued development. Recently, Zitzler and Thiele’s [1999] SPEA has established itself as 
another viable Pareto-based approach. 

Predictably, the existence of alternative algorithms has instigated a degree of algorithmic 
competition into the EMO arena. Various multiobjective test suites have been devised in order 
to assess the ability of an MOEA in terms of various problem characteristics, such as non-
convexity, multimodality, and non-uniformity. In a recent study by Zitzler et al [2000], an 
implementation of MOGA, labelled as FFGA, was found to perform poorly across a set of test 
problems with varying characteristics, relative to the performance of other MOEAs. 

The motivation for this report is to explore the performance of MOGA on the Zitzler et al 
[2000] test suite in order to identify those aspects of the algorithm that are critical to success 
under various conditions. Throughout this report, the importance of the MOEA methodology 
is stressed rather than a tit-for-tat comparison of various algorithms. 

After a general introduction to EMO and the MOGA methodology in Section 2, the 
performance of the FFGA, as described by Zitzler et al [2000], is validated using a MOGA 
with FFGA settings. In Section 4, the performance of the contemporary MOGA (defined in 
Fonseca and Fleming [1995, 1998]) is established and compared to that of the FFGA. 
Analysis of discrepancies is then simplified by making small changes to the FFGA settings 
and recording the results. 

In Section 5, using the design approach intelligently expounded by Michalewicz and Fogel 
[2000], a MOGA is developed specifically for application to real-parameter problems. The 
performance of this MOGA on the five real-parameter problems in the Zitzler et al [2000] test 
suite is subsequently investigated in Section 6. 

The report concludes in Section 7 by offering thoughts on the performance of MOGA, the 
benefits of empirical comparisons of different MOEAs, and the validity of the existing 
multiobjective test suite. 
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2 An introduction to MOGA 

2.1 Overview 
Multiobjective optimisation is the search for acceptable solutions to problems that incorporate 
multiple performance criteria. Often separate criteria, or objectives, are in competition with 
one another. In this case, a trade-off exists between the objectives, where improvement in one 
objective cannot be achieved without detriment to another. It is very rare for a multiobjective 
optimisation problem to admit a single optimal solution; rather a family of equally valid 
solutions will exist. This is illustrated in Figure 1. 
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Figure 1: A trade-off between two competing objectives 

Formally, and without loss of generality, multiobjective optimisation can be expressed as: 

 Minimise f(x),  

 where f(x)  = {f1(x) .. fn(x)} is a vector of objective functions, 

  n is the number of objectives or criteria to be considered, 

  x = {x1 .. xp} is a vector of decision variables, and 

  p is the number of decision variables that comprise the complete solution.   

In the absence of preference information, solutions to multiobjective problems are compared 
using the notion of Pareto dominance. A particular solution x, with associated performance 
vector u, is said to dominate, or be better than, another solution y with performance vector v 
(x �  y) if the former performs at least as well as the latter across all objectives, and exhibits 
superior performance in at least one objective. The formal definition is given in Equation 1. 

 { }[ ] { }[ ]iiii vunivuni <∈∃≤∈∀ :,...,1,,...,1iff           v u ��  (1) 

 y x v  u �� ⇔  

 where ui / vi  is the ith criterion value of the performance vector u / v. 

A solution is said to be Pareto optimal if it is not dominated by any other possible solution, as 
described by Equation 2. The Pareto-front is the set of points in criterion-space that 
correspond to the Pareto-optimal solutions. These concepts are illustrated in Figure 2. 
Without a priori or progressive preference articulation, a multiobjective search engine will 
generally aim to discover a family of solutions that provide a good representation of the 
Pareto front. 

 x yy  x �:iff UX PO ∈∃∈  (2) 
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 where  XPO is the set of Pareto optimal solutions, and 

  U is the set of all feasible solutions. 
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Key:
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dominated solution

dominated feasible region

actual Pareto front

identified Pareto front

elements of vector objective function f  

Figure 2: Pareto optimality 

Genetic algorithms were first proposed as multiobjective optimisers by Schaffer [1984]. 
However, the first Pareto-based multiobjective evolutionary algorithm (MOEA) to be 
published was the multiobjective genetic algorithm (MOGA) developed by Fonseca and 
Fleming [1993]. Genetic algorithms are suitable search engines for multiobjective problems 
primarily because of their population-based approach. An MOEA is capable of supporting 
diverse, simultaneous, solutions in the search environment. A carefully designed GA is robust 
in the face of ill-behaved cost landscapes featuring attributes such as multimodality and 
discontinuity. Furthermore, the GA methodology offers a flexible choice of decision variables 
and objective specifications. Refer to Veldhuizen and Lamont [2000] and Coello [1999] for 
recent surveys of MOEA research. A general schematic of the MOGA is shown in Figure 3. 
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Figure 3: MOGA schematic 

The MOGA framework can be seen to incorporate all the elements of the standard, single 
objective, genetic algorithm. A population of potential solutions is instantiated, then assessed 
and manipulated over a number of iterations in order to obtain a good solution or set of 
solutions. Performance assessment, selection, genetic operators (such as crossover and 
mutation), and reinsertion phases are functionally, in a general sense, the same for the MOGA 
as for the standard GA. Population distribution analysis, in which a measure of the density of 
the population is made, has also been applied in the single objective case to cater for 
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multimodal cost landscapes. The results of this analysis are used in niching and mating 
restriction schemes. These schemes can take on a somewhat different meaning for MOEAs, 
as discussed in Sections 2.3 and 2.4. Multiobjective ranking, which impacts primarily on 
fitness assignment, is the key discrepancy between the MOGA and a standard GA. This 
aspect receives further attention in Section 2.2. 

Interaction with a decision-maker (DM), or group of decision-makers, is made explicit in 
Figure 3. The DM may choose to introduce a priori information into the initial population (at 
the very least, this would include appropriate limits on decision variables), as is sometimes 
the case in standard GA applications. With the MOGA, the DM can also seek to influence the 
search whilst it is in progress by expressing preference for particular solutions or, more 
generally, the likely attributes of a good solution. This is discussed further in the following 
sub-section. 

2.2 Multiobjective ranking 
The essential difference between a MOGA and a single objective GA is the method by which 
fitness is assigned to potential solutions. Each solution will have a vector describing its 
performance across the set of criteria. This vector must be transformed into a scalar fitness 
value for the purposes of the GA. This process is achieved by ranking the population of 
solutions relative to each other, and then assigning fitness based on rank. Individual solutions 
are compared in terms of Pareto dominance. This notion was introduced into the field of 
genetic algorithms by Goldberg [1989]. In Goldberg’s formulation, the population at each 
generation is searched for nondominated solutions. These are assigned rank 0 and are then 
temporarily removed from the population. Nondominated solutions are then identified in the 
remaining population, and these are assigned rank 1 and removed from contention. The 
process continues until all individuals have been ranked. In effect, this process creates a series 
of nondominated fronts. Srinivas and Deb [1994] adopted this approach for their 
Nondominated Sorting Genetic Algorithm (NSGA). 

MOGA uses a variation of Goldberg’s proposition in order to determine ranks. Each 
individual is assigned a rank based on the number of individuals by which it is dominated. 
This is illustrated in Figure 4. 
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Figure 4: Multiobjective ranking 

It should be noted that, in the other early Pareto-based approach, Horn and Nafpliotis [1993] 
avoided a global ranking scheme through the implementation of Pareto domination 
tournaments. In this approach, binary tournaments are conducted in which the winner is 
deemed to be the individual that is dominated by fewer solutions chosen from a random 
sample of the population. 

In the absence of preference information, Pareto dominance is used to discriminate between 
two competing solutions. However, by involving a decision-maker (DM) in the search, other 
factors can be used to determine superiority. Fonseca and Fleming [1998] introduced a 
preferability operator, which discriminates between solutions on the basis of which is 
preferred by the DM. 
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In Fonseca and Fleming’s scheme, the DM can set goal levels and priorities for each of the 
objectives. These can be refined as the search progresses. This information feeds into the 
preferability operator, which is used to rank solutions in a similar fashion to the standard 
Pareto-based approach. Each potential solution is given a rank based on how many other 
solutions are preferred to it. The mathematical definition of the operator is quite involved and 
is omitted from this discussion. For a complete definition refer to [Fonseca and 
Fleming, 1998]. 

The preferability operator can be seen as a unification of several popular preference 
articulation schemes adopted in the wider operational research community. Pareto optimality, 
the lexicographic method, goal programming, constraint satisfaction, and constrained 
optimisation can all be described by special cases of the preferability operator. 

2.3 Niching 

2.3.1 Overview 
Niching refers to the deliberate formation of clusters of individuals from the wider GA 
population in either solution-space or criterion-space. Since multiobjective problems contain a 
distributed family of Pareto-optimal solutions, niching is undertaken in order to achieve a 
good spread of discovered solutions to present to the decision-maker. Without niching, the 
population may converge to a localised region, in a phenomenon known as genetic drift. 
Furthermore, given that the family of Pareto-optimal solutions may be large, relative to the 
size of the GA’s population, niching can prevent the GA from being swamped by solutions all 
with identical fitness. 

Various forms of niching have been implemented, both for single objective and 
multiobjective problems [Goldberg, 1989]. Fitness sharing is the most popular technique for 
achieving niching, in which the fitness assignment mechanism is modified to account for the 
local population distribution around each individual, as indicated in Figure 3. Two approaches 
to fitness sharing are discussed in the following sub-sections. 

There has been some debate as to whether sharing should be performed in either the solution-
space (the parameters manipulated by the GA) or the criterion-space (the results 
corresponding to the chosen parameters). Sharing in solution-space should provide a good 
distribution of alternative solutions, but this approach cannot guarantee a good distribution in 
criterion-space. The opposite is true for criterion-space sharing. Essentially, as suggested by 
Horn et al [1994], sharing should be performed in the space where a good distribution is 
deemed the most important. Of course, there is no reason why sharing cannot be performed in 
both domains. Note that a good distribution across the Pareto-front (which exists in criterion-
space) is important in order to understand the trade-offs between the various objectives. 

When multiobjective ranking is used as a means of fitness assignment, fitness sharing is often 
only applied to individuals of equal rank (the connection is made explicit in Figure 3). This is 
because genetic drift becomes most apparent when the fitnesses of different individuals are 
equivalent (which implies that the ranks are identical).  

2.3.2 Goldberg and Richardson’s approach 
Fitness sharing was introduced by Goldberg and Richardson [1987] in order to encourage the 
formation of sub-populations on the various peaks of a multimodal cost function, thus 
avoiding sub-optimal convergence. This technique was originally devised for single objective 
problems but has found use in the multiobjective domain. 

In essence, the fitness of each solution is reduced by a factor, known as the niche count, 
which depends on its ‘closeness’ to other solutions in the population. Niche counts are found 
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by comparing a particular individual with all individuals in the population (including itself) 
on a pair-wise basis. The niche count for an individual is taken as the sum of all pair-wise 
counts. The equation used to calculate a single element of the niche count is shown in 
Equation 3. 
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 where sh is the contribution to the individual’s share count, 

  d is the distance between two individuals, measured over some metric 
(normally L-2), 

  �share  is the niche size, and 

  � is a shaping parameter. 

Note that ‘closeness’ requires a definition of distance, prior to defining what is regarded as a 
close distance. Euclidean distance is a common choice for real-parameter functions. Having 
defined the unit of distance, closeness – embodied by the niche size - must then be defined. 
This is not an easy task, and requires a subjective judgement to be made, given the size of the 
search space. Deb and Goldberg [1989] suggested a method of calculating the niche size, 
originally applied to solution-space niching for single objective problems (see Equation 4). 
Fonseca and Fleming [1993] suggested an alternative method for calculating the niche size in 
criterion-space for multiobjective problems, but this has largely been superseded in favour of 
Epanechnikov fitness sharing (described in the following sub-section).   
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 where p is the number of decision variables within the solution x, 

  xk,max/min is the maximum / minimum value for the kth decision variable, and 

  q is the required number of niches. 

Goldberg and Richardson’s power law sharing functions (Equation 3) have proved to be a 
popular choice for niche formation in both single objective and multiobjective spaces. 
However, choice of the niche size parameter is often difficult, and can be crucial to the 
success of the algorithm. This limitation has lead to increased research into alternatives to the 
standard fitness sharing algorithm, especially techniques that do not require explicit setting of 
the niche size.  

2.3.3 Epanechnikov niching 
In light of the above concerns, Fonseca and Fleming [1995] proposed an alternative fitness 
sharing algorithm. They reinterpreted the share count as the estimation of the population 
density at the points defined by each individual (in either solution- or criterion-space). This 
estimate is achieved using kernel density techniques. The critical benefit of this approach is 
that statisticians have developed techniques to determine good values for the parameter 
analogous to niche size [Silverman, 1986]. 
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Fitness sharing Kernel density estimation 

Sharing function Kernel function 

Niche size, �share Smoothing parameter, h 

Niche count, �sh Density estimate, �Ke 

Table 1: The analogy between sharing and kernel estimation 

Fonseca and Fleming used the Epanechnikov kernel as a sharing function. The kernel is 
described by Equation 5. Note the resemblance to the standard sharing function shown in 
Equation 3. The analogy is explicitly made in Table 1. 
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 where p is the number of decision variables in the decision vector, 

  cp is the volume of the unit p-dimensional sphere, 

  d/h is the normalised L-2 distance between individuals, and 

  h is the kernel smoothing parameter. 

The kernel smoothing parameter, h, is directly analogous to Goldberg and Richardson’s niche 
size parameter, �share. A good value for this parameter can be found using Equation 6 
[Silverman, 1986]. This value is approximately optimal in the least-mean-integrated-squared-
error sense if the population follows a multivariate normal distribution and has identity 
covariance matrix. For a population with arbitrary covariance matrix, S, the population should 
be transformed through multiplication by a matrix R, where RRT = S-1. 
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1 /248
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 where N is the population size, and other parameters are defined as before. 

It should be noted that the Epanechnikov-method has been adopted as the sharing method of 
choice in current MOGA applications [Chipperfield and Fleming, 1996; Griffin et al, 2000; 
Schroder et al 2001]. 

2.4 Mating restriction 
When niching was implemented in single objective problems, Deb and Goldberg [1989] noted 
that recombination between chromosomes in different niches often produced unsuccessful 
offspring, known as lethals. This led to a degradation of GA performance. In order to remedy 
the problem, Deb and Goldberg decided to restrict mating over some distance metric, a 
technique previously considered for niche formation. The chosen distance measure was 
Euclidean distance in phenotypic solution-space. This follows logically from the choice of 
distance metric for fitness sharing, as described in Section 2.3. The maximum distance at 
which mating was permitted was chosen to be the same value as for the niche size used in 
fitness sharing. This makes some sense, since the niche size should be directly related to the 
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spacing between niches. This convention has been adopted in most niching schemes that use 
mating restriction. 

Mating restriction, as developed by Deb and Goldberg, has been directly applied to MOGA, 
as indicated in Figure 3. However, Fonseca and Fleming [1993] noted that the effectiveness of 
the technique may be diminished for multiobjective problems. 

2.5 Summary 
In this section, an methodology for solving multiobjective problems was developed using an 
evolutionary computing approach. It is stressed that, in very much the same way as the GA 
itself, MOGA represents a framework for problem-solving rather than a panacea-like tool or 
piece of software. There are two fundamental aspects to MOGA, namely: 

• its population-based nature, and 

• its Pareto-based method of comparing solutions that facilitates a priori and 
progressive preference articulation. 

MOGA is proving to be an increasingly popular technique across a growing range of 
applications. Since its conception, it has found great interest amongst control and systems 
engineers. Some sample applications are listed in Table 2 below. 

Application Reference 

Radiotherapy treatment planning Haas et al [1997] 

Supersonic wing shape optimisation Obayashi et al [2000] 

H-infinity design of a maglev vehicle Dakev et al [1997] 

Identification of NARMAX models Rodríguez-Vázquez et al [1997] 

On-line controller tuning (prior to usage) Schroder et al [2001] 

Table 2: Sample MOGA applications 
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3 Validation of published results 

3.1 Introduction 
In their comparison of multiobjective evolutionary algorithms, Zitzler et al [2000] report that 
their implementation of MOGA, based on the paper by Fonseca and Fleming [1993], 
performs poorly in comparison to other MOEAs. Zitzler et al refer to this implementation of 
MOGA as the FFGA. In this section, the published results are validated on Ziztler et al’s test 
functions, derived from those developed by Deb [1999], using a MOGA with the same 
specification as the FFGA. 

3.2 Baseline MOGA – the ‘FFGA’ 
The MOGA used to validate the FFGA results was developed to the specifications described 
in Table 3. These settings were defined in [Zitzler et al, 2000]. 

MOEA parameter Setting 

General GA  

Population size 100 

Total generations 250 

Coding Binary, 30 bits per decision variable (except where varied, as 
shown in Zitzler et al [2000]). 

Selection Stochastic universal sampling [Baker, 1987] 

Recombination Single-point binary crossover, probability = 0.8 

Mutation Element-wise bit-flipping, probability = 0.01  

Generational gap Zero 

Random injection Zero random chromosomes per generation 

Elitism None 

Multiobjective GA  

Fitness assignment Fonseca and Fleming’s [1993] multiobjective ranking (see 
Section 2.2). Transformation from rank to fitness using linear 
fitness assignment with rank-wise averaging. 

External population Off-line storage of nondominated solutions 

Niching  

Fitness sharing Rank-wise Goldberg and Richardson [1987] fitness sharing in 
criterion-space. Parameters: alpha = 2, niche size = 0.48862. 

Mating restriction None 

Table 3: MOGA emulation of the FFGA 
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3.3 Results 
A summary of the functions in the test suite is provided in Table 4. For a full description of 
the functions, including the equations, refer to Zitzler et al [2000]. 

Test number Features 

ZDT-T1 Convex Pareto front. 

ZDT-T2 Non-convex Pareto front. 

ZDT-T3 The Pareto front consists of several non-
contiguous convex parts.  

ZDT-T4 Contains 219 local fronts, with a single 
contiguous global Pareto-optimal front. 

ZDT-T5 Deceptive problem. 

ZDT-T6 Non-uniform distribution of solutions along a 
non-convex Pareto front 

Table 4: Multiobjective test suite 

The investigation conducted here mirrors that in Zitzler et al [2000]. Each configuration of 
MOGA is applied thirty times to each test problem. The results across the first five 
replications are amalgamated, and the nondominated solutions are extracted, for each problem 
in the test suite. This sub-set of results, shown in Figures 5 through 10, is used for visual 
analysis. The baseline MOGA (bMOGA) results (depicted by �) are compared with Zitzler et 
al’s published FFGA results (�) and the results for the Strength Pareto Evolutionary 
Algorithm (SPEA) [Zitzler and Thiele, 1999], which achieved the best results across all test 
problems in Zitzler et al’s study (�). The global Pareto front is indicated by the solid curve. 

As illustrated in Figure 5, the baseline MOGA offers a significant improvement over the 
reported FFGA results for ZDT-T1, both in terms of closeness to the global front and 
distribution across the front. However, SPEA clearly outperforms the bMOGA on both these 
aspects. 

 

Figure 5: Results for ZDT test function 1 (�– FFGA; � – bMOGA, � – SPEA) 
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Results for ZDT-T2 are shown in Figure 6. The ordering of the MOEAs in terms of 
performance is clearly the same as for ZDT-T1. Interestingly, the relative degrees of 
performance are very similar for both problems. Note that all three algorithms struggle to 
provide good coverage of the region of the front where objective f1 tends towards zero.  

 

Figure 6: Results for ZDT test function 2 (�– FFGA; � – bMOGA, � – SPEA) 

Again, for ZDT-T3, the relative degree of attainment is closely matched to that observed in 
the previous tests, as shown in Figure 7. The baseline MOGA clearly exhibits a superior 
distribution of Pareto optimal solutions than its FFGA equivalent. 

 

Figure 7: Results for ZDT test function 3 (�– FFGA; � – bMOGA, � – SPEA) 

The baseline MOGA and the FFGA both struggle to provide acceptable results for ZDT-T4. 
This is illustrated in Figure 8. bMOGA is able to find solutions significantly closer to the 
global front, but neither algorithm is capable of finding a good distribution of solutions. 
SPEA is evidently able to produce a suitable distribution of locally nondominated points, but 
the closeness to the global front is similar to that of bMOGA. None of the MOEAs tested by 
Zitzler et al [2000] were capable of identifying the true Pareto front for this multi-fronted 
problem. 
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Figure 8: Results for ZDT test function 4 (�– FFGA; � – bMOGA, � – SPEA) 

According to the results presented by Zitzler et al [2000], ZDT-T5 is the only test function for 
which the performance of different MOEAs seems to converge somewhat. Indeed, bMOGA 
produces results closer to the front than SPEA, although the latter algorithm provides a 
superior distribution at large values of objective f1. Note that the FFGA appears to struggle 
with the central region of the front (where, if both objectives are of similar importance, 
attractive compromise solutions may reside) but that this behaviour was not replicated by the 
bMOGA. The ZDT-T5 results are displayed in Figure 9. 

 

Figure 9: Results for ZDT test function 5 (�– FFGA; � – bMOGA, � – SPEA) 

Baseline MOGA and FFGA are uncompetitive with SPEA on ZDT-T6 (see Figure 10). The 
latter algorithm is capable of accurately finding the global front, although distribution across 
the front is somewhat sparse. bMOGA has been able to identify the extremes of the front 
(with low accuracy), but the FFGA has discovered the non-convex central region (although, 
again, this is some distance away from the global front). 
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Figure 10: Results for ZDT test function 6 (�– FFGA; � – bMOGA, � – SPEA) 

The performance metric described by Zitzler et al [2000] can also be used as a basis for 
comparing different MOEAs. A coverage metric is used, which expresses the proportion of 
solutions found by one MOEA that are equal to or dominate (� ) the solutions found by a 
second MOEA. This is described by Equation 7. 

 
{ }

B

AB
BAC

b  aa b �:;
),(

∈∃∈
=  (7) 

where A, B are each a set of nondominated criterion vectors, and 

 a, b are particular criterion-vectors from sets A and B respectively. 

A measure of coverage is obtained for each pair-wise run of two MOEAs. The results for all 
thirty runs are summarised by the box plots in Figures 11 and 12. Each column in the figure 
represents a box plot of the results for a particular test function. Each box plot encodes the 
results of the thirty coverage comparisons. The thick, unbroken, horizontal line indicates the 
median level of coverage of the thirty results. The box itself represents 50% of the 
distribution, where the upper and lower ends of the box represent the upper and lower 
quartiles respectively. The appendages to the box indicate the shape and spread of the tails of 
the distribution. Outliers are represented by crosses. Refer to Cleveland [1993] for a good 
introduction to box plots and other methods for visualising data. 

A comparison of bMOGA and FFGA is shown in Figure 11. With the exception of a single 
outlier, bMOGA comprehensively outperforms its FFGA equivalent across all test functions 
using the coverage performance metric. Coverage of bMOGA fronts by FFGA-discovered 
fronts is zero. 
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Figure 11: Performance comparison - (a) C(bMOGA, FFGA); (b) C(FFGA, bMOGA) 

When comparing bMOGA and SPEA (see Figure 12), the latter algorithm completely 
surpasses the former across the first three test functions, apart from a small number of outliers 
on ZDT-T3 where coverage is less than 100%. Some variability exists in the results for ZDT-
T4, perhaps suggesting that bMOGA can provide superior accuracy to SPEA on occasions but 
that the algorithm is hampered by poor distribution (clearly indicated by the visual 
presentation in Figure 8). There is also significant variability in the results for ZDT-T5. When 
considering the median level of coverage in isolation, it could be strongly argued that 
bMOGA has produced the better results. This validates the outcome shown in Figure 9. There 
is also some variation in the results for ZDT-T6, although SPEA clearly produces solutions 
that cover many of those found by bMOGA. There is zero coverage of SPEA solutions by 
bMOGA solutions. 

 

Figure 12: Performance comparison - (a) C(bMOGA, SPEA); (b) C(SPEA, bMOGA) 

3.4 Conclusion 
The validated results suggest that the implementation of bMOGA described in this report does 
not perform as poorly as Zitzler et al’s FFGA implementation. Note that both 
implementations are based on Fonseca and Fleming’s 1993 paper. This difference in results 
can perhaps be explained by differing interpretations of that paper. 

However, it is clear that both the bMOGA and the FFGA fail to produce results to match 
those of the SPEA. In the next section, modifications to the baseline MOGA are sought that 
will improve the performance of the algorithm. The current MOGA algorithm, that described 
in [Fonseca and Fleming, 1995] and [Fonseca and Fleming, 1998], is also applied to the test 
functions. The eventual aim is to determine a set of recommended settings for MOGA that 
apply to the test suite and, thus, to any inferred classes of problems. 



 16

4 Analysis and improvement of MOGA performance 

4.1 Introduction 
Results in the previous section indicated that a MOGA with the settings described in Zitzler et 
al [2000] did not perform as poorly as the said authors’ FFGA. However, performance was 
still distinctly inferior to that of other MOEAs, in particular the SPEA. Contemporary 
benchmark settings for MOGA (see Fonseca and Fleming [1995, 1998], Chipperfield and 
Fleming [1996], and Schroder et al [2001]) differ somewhat from the settings described by 
Zitzler et al. Hence, in this section, the performance of the contemporary MOGA 
implementation is tested and assessed on the ZDT test functions. Subsequently, various 
simple adjustments to the FFGA-esque baseline MOGA (bMOGA) are considered in order to 
identify the particular aspects of the algorithm to which performance is sensitive.  

4.2 Contemporary MOGA 
Settings for the de facto MOGA, as used today, are shown in Table 5. The bMOGA settings 
are also included for comparison purposes. Whilst it is stressed that MOGA is a methodology 
rather than a specific algorithm, these settings can be regarded as a benchmark from which 
other MOGAs will vary. Note that population size, number of generations, and decision 
variable resolution are chosen in line with Zitzler et al [2000]. Differences between bMOGA 
and MOGA are highlighted in bold typeface. 

MOEA parameter bMOGA setting MOGA setting 

General GA   

Population size 100 100 

Total generations 250 250 

Coding Binary, 30 bits per decision 
variable (except where varied, as 
shown in Zitzler et al [2000]). 

Gray, 30 bits per decision 
variable (except where varied, as 
shown in Zitzler et al [2000]). 

Selection Stochastic universal sampling 
[Baker, 1987] 

Stochastic universal sampling 
[Baker, 1987] 

Recombination Single-point binary crossover, 
probability = 0.8 

Single-point binary crossover, 
probability = 0.7 

Mutation Element-wise bit-flipping, 
probability = 0.01  

Element-wise bit-flipping, 
expectation of 1 bit per 
chromosome  

Generational gap Zero Zero 

Random injection Zero random chromosomes per 
generation 

2 random chromosomes per 
generation 

Elitism None None 

Table 5: Benchmark MOGA 
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MOEA parameter bMOGA setting MOGA setting 

Multiobjective GA   

Fitness assignment Fonseca and Fleming’s [1993] 
multiobjective ranking (see 
Section 2.2). Transformation from 
rank to fitness using linear fitness 
assignment with rank-wise 
averaging. 

Fonseca and Fleming’s [1993] 
multiobjective ranking (see 
Section 2.2). Transformation 
from rank to fitness using linear 
fitness assignment with rank-wise 
averaging. 

External 
population 

Off-line storage of nondominated 
solutions 

Off-line storage of nondominated 
solutions 

Niching   

Fitness sharing Rank-wise Goldberg and 
Richardson [1987] fitness sharing 
in criterion-space. Parameters: 
alpha = 2, niche size = 0.48862. 

(Parameter-less) Epanechnikov 
fitness sharing [Fonseca and 
Fleming, 1995]. Implemented in 
criterion-space.  

Mating restriction None Mating restriction 
implemented: distance set to the 
niche size parameter found by the 
Epanechikov fitness sharing 
algorithm. 

Table 5: Benchmark MOGA (continued) 

Real-world applications of MOGA have tended to vary in their choice of sharing domain. 
Some applications, such as [Fonseca and Fleming, 1998], have implemented criterion-based 
sharing, whilst others, for example [Chipperfield and Fleming, 1996], have preferred a 
solution-based approach. In this empirical study of the contemporary MOGA, solution-based 
sharing is initially considered in order to facilitate an easier comparison with the results in 
[Zitzler et al, 2000]. 

Results for the contemporary MOGA with benchmark settings are shown in Figures 13 to 18. 
The performance of the algorithm is compared to that of the baseline MOGA (see Section 3.2) 
and the best performing algorithm identified in Zitzler et al’s [2000] study, the SPEA. The 
first six figures show a unification of the first five runs for each algorithm on each test 
problem. From these plots, it is possible to obtain a feel for the accuracy and distribution of 
each identified Pareto front. From a statistical viewpoint, given the small sample size, 
confidence is not high. The coverage metric (Equation 7), which takes into account the results 
for all thirty runs, provides a mechanism for increased confidence, but does not provide the 
ease of comparison of the more informal visual presentation. Coverage results are displayed 
in Figures 19 to 22. 
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Figure 13: ZDT-T1 results (� – bMOGA, � – MOGA, � – SPEA) 

 

Figure 14: ZDT-T2 results (� – bMOGA, � – MOGA, � – SPEA) 
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Figure 15: ZDT-T3 results (� – bMOGA, � – MOGA, � – SPEA) 

 

Figure 16: ZDT-T4 results (� – bMOGA, � – MOGA, � – SPEA) 

 



 20

 

Figure 17: ZDT-T5 results (� – bMOGA, � – MOGA, � – SPEA) 

 

Figure 18: ZDT-T6 results (� – bMOGA, � – MOGA, � – SPEA) 

It is clearly evident that the contemporary MOGA with benchmark settings performs better 
than the baseline MOGA (bMOGA) across all the test functions, with the possible exception 
of ZDT-T5. The difference in performance is apparent in the coverage box plots of Figure 19, 
in addition to the visual presentation above. This distinction is particularly marked for ZDT-
T4 (Figure 16) where, unlike the bMOGA, the contemporary MOGA is capable of obtaining a 
good distribution of solutions across the Pareto front. On ZDT-T5, the median levels of 
coverage are both high, indicating that the discovered fronts are similar. 
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Figure 19: Coverage metric – (a) C(MOGA, bMOGA); (b) C(bMOGA, MOGA) 

It will be noted that the performance of MOGA is still inferior to that of the SPEA on test 
functions 1, 2, 3, and 6. However, MOGA provides a significant improvement over the SPEA 
on test function 4. The results in Figure 16 suggest that MOGA outperforms the SPEA in 
terms of both closeness to the global front and distribution across the front. This is borne out 
by the coverage metric box plots in Figure 20 where, despite a degree of variability in the 
distribution, the median level of coverage of SPEA by MOGA is 100%, whereas the reverse 
comparison is 0%. On ZDT-T5, MOGA is able to produce results of similar accuracy to 
SPEA, but the latter algorithm provides a better distribution as the value of objective f1 
increases. Judging by the results in Figure 18, MOGA can produce a superior distribution 
along the trade-off surface to SPEA. However, since the SPEA results are closer to the actual 
front, the MOGA results are largely covered (see Figure 20). 

Note that the distribution obtained by MOGA on ZDT-T2 is still poor as the value for 
objective f1 approaches zero, relative to the remainder of the front. 

 

Figure 20: Coverage metric – (a) C(MOGA, SPEA); (b) C(SPEA, MOGA) – sharing in criterion-space 

In addition to criterion-space fitness sharing, a contemporary MOGA was also developed to 
incorporate solution-space sharing instead. Performance is empirically compared to that of the 
previous MOGA directly in Figure 21, and indirectly through comparison with the SPEA in 
Figure 22. Results are somewhat mixed. Poorer performance is observed on test functions 1, 
2, 3, and 6 for the solution-space MOGA. Performance on ZDT-T4 and ZDT-T5 is evidently 
better, with a particularly marked difference for the multimodal test function. 
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Figure 21: Coverage metric – (a) C(objective, parameter); (b) C(parameter, objective) 

 

Figure 22: Coverage metric – (a) C(MOGA, SPEA); (b) C(SPEA, MOGA) – sharing in solution-space 

4.3 Variations 
In the previous sub-section, the contemporary MOGA was found to produce significantly 
better results than the baseline MOGA across the test suite (apart from the deceptive ZDT-
T5). However, since there are several differences between the two MOGA implementations, it 
is difficult to determine which settings, or combinations of settings, are acting as 
discriminants. Therefore, in this sub-section, attention in returned to the baseline MOGA and 
simple modifications are sought that lead to a significant improvement in performance. 

Zitzler et al [2000] state that the performance of MOGA may improve using a lower mutation 
rate than that applied in their work (0.01), due to the fact that MOGA uses stochastic 
universal sampling as the selection mechanism whilst all other MOEAs use binary 
tournament selection with continuously updated sharing. The stated reason for this 
discrepancy was that MOGA requires a generational selection mechanism (indeed, the default 
setting is SUS), but it should be stressed that there is no inherent difficulty with implementing 
the latter selection mechanism within a generational framework. In these experiments, the 
accepted standard of an expected mutation of 1 bit per chromosome is used [Mühlenbein and 
Schlierkamp-Voosen, 1993]. For problems with thirty variables, each encoded over thirty bits, 
this results in a mutation rate of 1/900. This rate is a factor of 10 less than that used by Zitzler 
et al. 

Preliminary investigations revealed that this adjustment in mutation rate did lead to improved 
performance, but that superior results were achieved by coupling this mutation rate with Gray 
encoding of decision variables (the coupling of these two factors produced better results than 
either individually). Note that choice of coding strategy is not applicable to ZDT-T5. To 
complete the MOGA variation, immigration of two random chromosomes was added. This 



 23

did not produce a significant change in results, but random injection may guard against 
premature convergence. It is especially useful in time-varying optimisation problems, and is 
hence not regarded as a critical parameter for the set of test functions considered here. 

Further preliminary investigations concerned with varying the niche size parameter for fitness 
sharing seemed to indicate that very low values of niche size produced the best results. Thus, 
as a further modification, fitness sharing was removed from the MOGA. In all, four separate 
MOGAs were implemented, as described in Table 6. 

Name of MOGA Description 

bMOGA The baseline MOGA, described in Section 3.2. 

nsMOGA The baseline MOGA with niching removed. 

mMOGA The baseline MOGA with an expected mutation rate of 1 bit per 
chromosome, Gray encoding, and random injection of 2 individuals per 
generation. 

mnsMOGA mMOGA with niching removed. 

Table 6: MOGA variations 

Unified results for the first five runs of each algorithm, for each test problem, are shown in 
Figures 23 to 28. A purely visual analysis is used to determine a good-performing MOGA 
implementation. This MOGA is then compared to the SPEA using the coverage metric. 

 

Figure 23: ZDT-T1 results (� – bMOGA, � – nsMOGA, � – mMOGA, � - mnsMOGA) 
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Figure 24: ZDT-T2 results (� – bMOGA, � – nsMOGA, � – mMOGA, � - mnsMOGA) 

 

Figure 25: ZDT-T3 results (� – bMOGA, � – nsMOGA, � – mMOGA, � - mnsMOGA) 

The results obtained for the first three test functions suggest that adjustment of mutation rate 
and encoding choice to their widely recommended settings can lead to a noticeable 
improvement in results. Progress is largely in terms of accuracy, although some improvement 
in distribution can be seen. Note that the presence of criterion-space niching does not make a 
visually significant difference for these test functions. However, perhaps most surprisingly, 
MOGA without sharing can be regarded as the superior algorithm with respect to the 
coverage metric (coverage results for mMOGA and mnsMOGA are shown in Figure 29). 
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Figure 26: ZDT-T4 results (� – bMOGA, � – nsMOGA, � – mMOGA, � - mnsMOGA) 

Results for ZDT-T4, as depicted in Figure 26, suggest that criterion-space niching can offer 
an improvement over a non-niching implementation, when combined with appropriate 
choices for mutation rate and encoding. This is also evident in the Figure 29 box plot, 
although some variation in coverage does exist. 

 

Figure 27: ZDT-T5 results (� – bMOGA, � – nsMOGA, � – mMOGA, � - mnsMOGA) 

All four MOGAs exhibit very close levels of performance when applied to ZDT-T5, as shown 
in Figure 27. Recall that the baseline MOGA itself was found to perform well, when 
compared to other MOEAs, on this deceptive test function. In terms of accuracy, the best 
result obtained here is for bMOGA with niching removed, although good distribution is lost 
for larger values of objective f1. 
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Figure 28: ZDT-T6 results (� – bMOGA, � – nsMOGA, � – mMOGA, � - mnsMOGA) 

Relative performance of the niching / non-niching variants would appear to be similar for 
ZDT-T6 as for the initial three test functions. However, in terms of coverage, mMOGA can 
be considered as the better performer (see the associated box plots in Figure 29). 

 

Figure 29: Coverage metric – (a) C(mMOGA, mnsMOGA); (b) C(mnsMOGA, mMOGA) 

It is apparent that the best results can be obtained by MOGAs with modified mutation and 
coding strategy, regardless of the application of a niching strategy. When implemented, 
criterion-space fitness sharing offers an improvement in results for the multimodal and non-
uniform test functions. However, fitness sharing does prove somewhat detrimental to 
performance on the first three test functions. Since the magnitude of these downgrades is, 
arguably, more than offset by improvements on the other test problems, the mMOGA has 
been selected for comparison with the SPEA. The comparison is made, through use of the 
coverage metric, in Figure 30. SPEA still performs substantially better on the first three 
problems, although the completeness of its dominance has been reduced somewhat. On test 
function 4, MOGA is seen to produce a very high degree of coverage over SPEA. 
Performance on ZDT-T5 is still largely variable (this is a deceptive problem that generates 
mediocre results for all algorithms) although the median level of coverage of SPEA by 
MOGA is greater than the converse case. Finally, SPEA produces better results for the biased 
distribution problem. 
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Figure 30: Coverage metric – (a) C(mMOGA, SPEA); (b) C(SPEA, mMOGA) 

The results presented in this section have implied that criterion-space niching (by means of 
Goldberg and Richardson’s [1987] fitness sharing methodology) does not offer a definitive 
improvement in performance, in terms of either closeness to the true Pareto front or 
distribution along the trade-off surface. To conclude this part of the investigation, the 
performance of solution-space niching is established using an mMOGA. Solution-space 
niching has been implemented in the same manner as for the NSGA tested by Zitzler et al 
[2000]. Rank-wise Goldberg and Richardson [1987] fitness sharing was applied in the 
phenotypic solution-space (except for ZDT-T5, where a genotypic approach was required). 
Parameter  in Equation 3 was set equal to 2, whilst the niche size share was set to 0.48862 
(phenotypic) or 34 (genotypic), as per the specification provided by Zitzler et al. 

Coverage results for the criterion-space and solution-space versions of mMOGA are shown in 
Figure 31. The latter MOGA is also compared to its non-sharing equivalent in Figure 32. The 
MOGA with solution-space niching is shown to produce significantly inferior results to both 
criterion-space mMOGA and the mnsMOGA across all test functions. Note, however, that 
performance is still somewhat better than the baseline MOGA. 

 

Figure 31: Coverage metric for mMOGA– (a) C(criterion,solution); (b) C(solution, criterion) 
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Figure 32: Coverage metric for mMOGA with solution-space fitness sharing –  

(a) C(mnsMOGA, mMOGA); (b) C(mMOGA, mnsMOGA) 

4.4 Conclusion 
In this section it was shown that by choosing a MOGA with settings widely regarded as 
standard by the research community, performance can be significantly improved across the 
set of test problems. However, of particular concern was the exhibited effect of fitness 
sharing. Whilst criterion-space niching offered some improvement in performance over 
several of the test functions, the use of niching was also found to be detrimental to 
performance on other test functions. Furthermore, the MOGA with solution-space fitness 
sharing exhibited very poor results, most worryingly even when compared to a non-niching 
algorithm. These are important results that receive further consideration in Section 6. 

Note that SPEA still offers significant improvements over the MOGA, with the exceptions of 
ZDT-T4 and ZDT-T6. Further tuning of the MOGA settings could be attempted, but a more 
intelligent approach to problem solving is desirable. Five of the test functions in the suite 
consist of real-number variables. Hence, in the spirit of fitting the tool to the problem, it may 
be more appropriate to use a GA with real-number chromosomes. In Section 5, a real-coded 
MOGA is designed for the purposes of real-parameter function optimisation. In Section 6, the 
algorithm is tested and compared to the SPEA. 
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5 A real-coded genetic algorithm for function 
optimisation 

5.1 Introduction 
The modern approach to genetic algorithm design stresses the need for intelligent choice of 
objective function, representation, and search operators [Michalewicz and Fogel, 2000]. 
Choice of representation should be natural to the problem at hand. Many real-number decision 
variables, such as those in five of the ZDT test functions, can be intuitively represented by 
floating-point elements. In a classical genetic algorithm, these variables would be encoded as 
binary genotypes. Here, a conversion process is required to translate between the genotypic 
representation and phenotypic representation and vice versa. Floating-point representations do 
not require a conversion process, making them faster to manipulate. Furthermore, they permit 
greater precision than binary code, constrained only by machine precision. 

In this section, a real-coded GA is devised for the purposes of real-parameter function 
optimisation. Particular attention is paid to the genetic operators that drive the search. In the 
following sub-section, a simple recombination operator from the literature is analysed. In the 
subsequent passage, a Gaussian-variant mutation operator is proposed. This adaptable 
operator is designed to work in synergy with the recombination operator and to effectively 
manage limits on decision variables. 

5.2 Recombination 
In this study, single-point crossover is used. This operator functions in exactly the same way 
for real-coded chromosomes as for the binary equivalent. Two chromosomes are chosen and a 
crossover point is randomly selected. Genetic material is exchanged at all loci to the right of 
the crossover point to produce two offspring. This process is illustrated in Figure 33. 
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Figure 33: Single point crossover for real-number chromosomes 

For real-coded chromosomes, the crossover point can only occur in-between decision 
variables (they are, essentially, atomic entities). For binary chromosomes, this restriction need 
not apply. It can be shown that, for real variables encoded as binary strings, if crossover 
occurs mid-parameter then the offspring will contain symmetrical perturbations of this 
parameter [Wright, 1991]. These new values for the decision variable cannot be achieved 
using standard point-wise crossover for real chromosomes. This is not necessarily a problem, 
but indicates that a high level of mutation may be required in order to improve genetic 
diversity. Without mutation, the values for the parameters that exist in the initial population 
would be all that are available. A similar problem does exist for binary representations, but 
tends to be less limiting (the values available depend on the chosen resolution and on the 
discrepancies between parents). 

Note that the above behaviour does not apply to real-encoded GAs per se. Many real 
chromosome recombination operators have been developed in the literature, some of which 
seek to emulate the crossing-over of binary chromosomes. Herrera et al [1998] present a good 
review of potential approaches. They also provide a nice graphical summary of the rôle of 
crossover, reproduced in Figure 34. Crossover can act both as an exploratory operator and in 
its traditionally viewed rôle as an exploiter of genetic code. When applied to a binary 
encoding of parameters, the perturbations instilled by crossover can be viewed as a form of 
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relaxed exploitation. Crossover operators have been devised for real-encodings of parameters 
that simulate this effect. These operators tend to be simpler to analyse than binary crossover, 
since the range covered by the perturbations of the latter approach is potentially non-
continuous and depends on the variety, in terms of bits, between the parent chromosomes. 

L                    RL        A                               B          RU                 U

Exploitation ExplorationExploration

Relaxed Exploitation
Key:
A,B parent values
U/L upper / lower 

limit on variable
RU/L upper / lower 

outer limit on 
perturbation  

Figure 34: The rôle of crossover 

5.3 Mutation 
The mutation operator chosen in this study is similar to the standard element-wise operator for 
binary chromosomes. In the binary case, each element is probabilistically tested to undergo 
mutation. If mutation is to occur, the current value is swapped for an alternative. In the binary, 
or general discrete, case this is quite straightforward. However, in the real number case, an 
infinite set of alternatives exists. Gaussian mutation is an attractive method of choosing an 
alternative. This operator generates a new value based on a normal distribution, centred over 
the current value. The standard deviation defines the likelihood of generating a value close to 
the original. The advantage of this operator is that the standard deviation is amenable to 
variation during the search, hence providing an adaptable operator. 

5.3.1 Maintaining feasibility with controlled bias 
An evident problem with the Gaussian mutation operator is that it can produce infeasible 
solutions when applied to decision variable values towards the edge of the feasible region. 
This closeness to the edge can be defined in terms of standard deviations of the mutation 
operator. In this section, an approach to constraint handling is developed that ensures feasible 
solutions with minimal bias. 

The simple solution to this problem is to crop any infeasible values to their nearest feasible 
equivalent. However, this will generate bias in the search towards the extreme values. In order 
to counter this, the standard deviation of the mutation function can be reduced, thus reducing 
the possibility of a required crop. Indeed, by predefining the number of standard deviations 
that must produce feasible results, it is possible to specify the acceptable level of bias. 

Let n be the number of standard deviations (�) from the current value that must produce 
feasible values, and let x be the shortest distance from a limit on the variable to the current 
value. If n� is greater than x, then � must be rescaled to x/n in the direction of the limit (the 
value for � away from the limit should remain unchanged). This procedure will create a 
discontinuity in the Gaussian function. Note that n� should be chosen so that a distance n� 
will be feasible in either direction from the central point between limits. Note that � may vary 
over a chromosome, since the limits on decision variables may differ. Gaussian mutation 
applied to a single decision variable is illustrated in Figure 35. 



 31

infeasible
region

infeasible
region

upper limit
on variable

lower limit
on variable

ÇUÇL

current
value

xL xU

Key:

xU/L distance to upper / lower bound

ÇU/L standard deviation of upper / 
lower Gaussian distribution

 

Figure 35: A Gaussian mutation operator  

In this implementation, the probability of selecting either half of the distribution during 
mutation (defining the direction of mutation) varies with �-rescaling. If no rescaling is 
necessary, this probability is 50-50. If rescaling is required, the probability of moving towards 
the nearest infeasible region is reduced to (1/2)(x/n�). This leads to more exploration away 
from the infeasible region when the infeasible region is close. In effect, the probability density 
under each half is rescaled in light of any necessary changes to �. 

Note that further action would be required for more complicated feasible regions on decision 
variables. This situation does not occur for the test functions under investigation here. 

5.3.2 Adaptive mutation 
In any search method, a trade-off exists between exploration of the search space and 
exploitation of promising regions of that space. The Gaussian mutation operator provides an 
opportunity to influence this trade-off by adapting the standard deviation over the course of a 
run. In this study, a sigmoidal function (Equation 8) is used to vary the standard deviation 
over the generations. The parameter a in Equation 8 defines the accentuation of the S-shape of 
the sigmoid. This function, coupled with a suitably large � (for example, 40% of the search 
space for each variable) provides copious global exploration early in the search and much 
local exploration late in the search. The exact levels are defined by the a parameter. Larger 
values of a will detain the search at a global level and micro level for longer (at the expense 
of intermediate levels of mutation). 
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 where s is the mutation scaling factor, 

  gen is the current generation number, 

  gmax is the maximum generation number, and 

  a is a shaping parameter. 
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5.4 Incorporation into a genetic algorithm 
The genetic representation and operators described above must be integrated with selection, 
fitness assignment, and reinsertion mechanisms in order to construct a genetic algorithm. In 
the multiobjective case, Fonseca and Fleming’s [1993] Pareto ranking was applied, prior to 
linear fitness assignment. 

In this work, two selection mechanisms were considered: stochastic universal sampling (SUS) 
[Baker, 1987] and deterministic BGA selection [Mühlenbein and Schlierkamp-Voosen, 
1993]. The BGA methodology of selecting the best individuals for breeding works well in the 
single objective case, but was not so suitable for multiobjective problems where a distribution 
of optimal (in the Pareto sense) solutions was to be identified. SUS was found to be better for 
this latter case. 

When considering reinsertion, elitism was again more suitable for single objective problems 
than multiobjective tasks, where large numbers of nondominated individuals can lead to a 
directionless search. In this implementation, all offspring replaced all parents. Two randomly 
generated chromosomes were introduced at each generation to maintain a constant supply of 
diversity. 

5.5 Conclusion 
In this section, a genetic algorithm for the solution of real-parameter function optimisation 
problems was designed from basic evolutionary computing principles. In particular, the GA 
uses a natural expression for potential solutions, and offers customised search operators to 
support this representation. The Gaussian mutation operator developed during this study 
permits an explicit and adaptive specification of the search neighbourhood, thus providing a 
degree of control over the exploration-exploitation trade-off. In the following section, the GA 
is integrated into Fonseca and Fleming’s [1993] MOGA framework, and is subsequently 
applied to the solution of the real-parameter ZDT problems. 
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6 Real-encoded MOGA results and analysis 

6.1 Introduction 
The real-coded MOGA, developed in the previous section using the guidelines suggested by 
Michalewicz and Fogel [2000], is now applied to the five real-parameter problems in the 
Zitzler et al [2000] test suite. The settings for the MOGA are detailed in Table 7. Two 
implementations were considered, namely: with and without criterion-space niching. These 
MOGAs are labelled rMOGA and rnsMOGA respectively. 

MOEA parameter Setting 

General GA  

Population size 100 

Total generations 250 

Coding Real number encoding (accuracy bounded by machine precision) 

Selection Stochastic universal sampling [Baker, 1987] 

Recombination Single-point binary crossover, probability = 0.8 (crossover points 
are restricted to between decision variables) 

Mutation Gaussian mutation with initial standard deviation of 40% of 
variable range. The standard deviation is adapted using 
sigmoidal scaling (as a function of %age generations complete). 
Sigmodal parameter = 17.5. Bias: at least one standard deviation 
from the current value is required to be within the limits of the 
decision variable (by appropriate modification if necessary). 
Expected mutation rate of 1 element per chromosome.  

Generational gap Zero 

Random injection 2 random chromosomes per generation 

Elitism None 

Multiobjective GA  

Fitness assignment Fonseca and Fleming’s [1993] multiobjective ranking (see 
Section 2.2). Transformation from rank to fitness using linear 
fitness assignment with rank-wise averaging. 

External population Off-line storage of nondominated solutions 

Niching  

Fitness sharing When fitness sharing is implemented, Goldberg and 
Richardson’s [1987] method is used, with niche size calculated 
using the equation in [Deb and Goldberg, 1989]. 

Mating restriction None. 

Table 7: Real-coded MOGA settings 



 34

Niching is implemented according to the format given in [Goldberg and Richardson, 1987]. A 
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are aimed for (q = 10). The niche size has been calculated using the formula devised by Deb 
and Goldberg [1989], thus: 
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The criterion-space results are normalised to [0 1]2 space prior to application of fitness 
sharing. This normalisation is achieved by utilising the population maximum and minimum 
values for each objective at each generation. Hence, the transformation to normalised space is 
a dynamic operator. 

Note that fitness sharing is applied in criterion-space rather than solution-space in order to 
obtain a good distribution of solutions across the approximated Pareto front. This will 
maximise the amount of information concerning the trade-off between the two objectives to 
be presented to the decision-maker. In this set of tests, performance is not directly analysed in 
terms of distribution in solution-space. Hence, the quality of this distribution is not of 
immediate concern. 

6.2 Results 
The results for the two real-coded MOGA implementations are shown in the subsequent 
figures. Results for the SPEA, as obtained by Zitzler et al [2000], are displayed for reference 
purposes. The Pareto optimal unified results of the first five runs of each algorithm are shown 
for each test function in Figures 36 through 40. Box plots of the thirty run-wise coverage 
metrics are shown for each test function in Figures 41 to 43. In Figure 41, the twin coverage 
results for rMOGA and rnsMOGA are shown. In Figure 42, rMOGA is compared to SPEA, 
whilst in Figure 43 rnsMOGA is compared to SPEA. 

 

Figure 36: ZDT-T1 results: � - rMOGA; � - rnsMOGA; � - SPEA 

As expected, approximately ten sub-populations are visible for rMOGA on ZDT-T1, as 
shown in Figure 36. In terms of accuracy, rMOGA is somewhat on a par with SPEA. 
However, it loses out in terms of smoothness of distribution. This is perhaps expected since 
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fitness sharing was set to provide ten niches across the Pareto front. rnsMOGA exhibits 
superior performance to SPEA in terms of both accuracy and distribution, as confirmed by the 
coverage results in Figure 43. The smoothness of the distribution can be attributed to the fact 
that niching was not implemented for this MOGA. Note that, in a MOEA that utilises fitness 
sharing, smoothness would be expected to increase as the niche size decreases. Results for the 
rnsMOGA are slightly concentrated towards f1�0. This may be due to the lack of penalties 
for overcrowding. However, total convergence to one part of the front has been avoided 
without the need for explicit action. 

rnsMOGA may be producing more accurate results than rMOGA because it has an increased 
level of selective pressure. The fitness sharing algorithm in rMOGA tends to reduce the 
average fitness of the population. Since an individual’s fitness relates directly to the expected 
number of times it is selected for reproduction, reducing fitness reduces the selective pressure. 
Hence, after a fixed number of function evaluations, rnsMOGA would be expected to have 
converged more than rMOGA. Thus, rnsMOGA could be postulated to be closer to the front 
but, given further generations, rMOGA would produce this level of accuracy. 

 

Figure 37: ZDT-T2 results: � - rMOGA; � - rnsMOGA; � - SPEA 

Both real-coded MOGAs struggle to produce a uniform distribution of solutions as f1�1 for 
ZDT-T2 (see Figure 37). This behaviour is also exhibited by all MOEAs in Zitzler et al’s 
[2000] study. rnsMOGA comprehensively outperforms SPEA, whilst rMOGA is relatively on 
a par with the latter algorithm. These results are evident both from Figure 37, and the 
coverage results in Figure 42 and Figure 43. 

Results for ZDT-T3 (refer to Figure 38) are very tightly packed. However it can be seen that 
rnsMOGA outperforms SPEA in terms of closeness to the global front. This result is borne 
out by the associated box plots in Figure 43.  
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Figure 38: ZDT-T3 results: � - rMOGA; � - rnsMOGA; � - SPEA 

 

Figure 39: ZDT-T4 results: � - rMOGA; � - rnsMOGA; � - SPEA 

Results for ZDT-T4 are shown in Figure 39. Both real-coded MOGAs exhibit markedly better 
performance than the SPEA on this test problem. The coverage box plots in Figure 42 and 
Figure 43 are a testament to this. Niches can apparently be seen for rMOGA although, 
somewhat curiously, sub-populations are also present for the non-niching rnsMOGA. Note 
that all MOEAs have difficulty in representing the trade-off surface as f1�1, although SPEA 
has identified the extreme values. 
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Figure 40: ZDT-T6 results: � - rMOGA; � - rnsMOGA; � - SPEA 

SPEA identifies the global front for ZDT-T6 with very high accuracy and a uniformly spread 
distribution, albeit with significant gaps between solutions. Neither MOGA is able to match 
SPEA for repeatable accuracy, although rnsMOGA achieves similar results in the densest area 
of criterion space (f1�0). rMOGA finds a good distribution of solutions, demonstrating the 
key benefit of fitness sharing on biased problems, but with comparatively low accuracy 
(possibly for the reasons outlined earlier). 

Note that, despite its apparent domination regarding the unified results of the first five runs on 
ZDT-T6, SPEA does not comprehensively outperform rnsMOGA across all thirty 
replications. Indeed the median value for coverage of SPEA by rnsMOGA is actually greater 
than the converse case (see Figure 43).  

 

Figure 41: Coverage metric – (a) C(rMOGA, rnsMOGA); (b) C(rnsMOGA, rMOGA) 
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Figure 42: Coverage metric – (a) C(rMOGA, SPEA); (b) C(SPEA, rMOGA) 

 

Figure 43: Coverage metric – (a) C(rnsMOGA, SPEA); (b) C(SPEA, rnsMOGA) 

6.3 Conclusion 
In conclusion, the real-encoded MOGA developed for the purposes of real-parameter function 
optimisation performs better overall than any of the MOEAs examined by Zitzler et al [2000]. 
This does not mean that the MOGA, as a technique, is superior to other MOEAs. Real-coded 
versions of other MOEAs are likely to produce similar results. The critical conclusion to be 
drawn, as elucidated by Michalewicz and Fogel [2000], is that an evolutionary computing 
approach to problem-solving requires care and thought in order to achieve good results, given 
that the problem is considered amenable to an evolutionary solution. Mass empirical testing 
of algorithms, with lumped settings, is unlikely to provide a confident basis from which a 
hierarchy of MOEAs can be deduced. 

Results in this section have confirmed, as indicated by results from previous sections, that the 
application of niching via fitness sharing is not producing the benefits anticipated of such an 
approach. This is discussed further in the following, and concluding, section of this report.  
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7 Conclusion 

7.1 General conclusions 
In this report, the multiobjective genetic algorithm (MOGA) was analysed using the test suite 
proposed by Zitzler et al [2000]. The emulation of Zitzler et al’s FFGA MOGA 
implementation, labelled here as the bMOGA, was found to outperform the results published 
in that article. This discrepancy may be attributed to differing interpretations of the paper by 
Fonseca and Fleming [1993] upon which the algorithm is based. However, bMOGA was 
clearly uncompetitive with other popular MOEAs, in particular the Strength Pareto 
Evolutionary Algorithm (SPEA) developed by Zitzler and Thiele [1999]. 

The specification of the bMOGA does not match that of contemporary MOGA 
implementations. When a standard MOGA was applied to the test problems, significant 
increases in performance were evident although, as before, performance did not compare 
favourably to that of the SPEA on the majority of the test problems. 

It has been stressed throughout that MOGA represents a methodology rather than a specific, 
unalterable, algorithm. In light of this, and using the guidelines described by Michalewicz and 
Fogel [2000], a MOGA has been designed specifically for real-parameter multiobjective 
function optimisation. This MOGA has been shown to outperform all the MOEAs assessed by 
Zitzler et al [2000]. This is not a statement to the effect that MOGA is the best MOEA. All 
that has been demonstrated is that, through thoughtful use of the evolutionary computing 
framework, an MOEA can be designed in a straightforward fashion to provide good solutions 
to real-parameter bi-objective test problems. Drawing on the vast experience that the GA 
research community has gained from single objective problems, this result was highly 
predictable. The EA does not represent a panacea to problem-solving. 

This is not to say that the development of test problems and the analysis of performance is not 
a worthwhile activity. Indeed, it is an essential part of the collective research effort. It is 
important to identify what action is required to effectively manage various problem attributes, 
such as multimodality and non-uniformity. However, it is equally important to devise 
methods for identifying these attributes in the cost landscapes of real-world problems. Test 
problems are required that are tractable yet sufficiently complex to offer realistic 
multiobjective scenarios. In particular, these problems must feature more than a small number 
of objectives. The recent work by Deb et al [2001] represents an important step in this 
direction. 

7.2 Niching and the ZDT test problems 
The results presented in this report suggest that several of the ZDT test problems do not 
require niching, and furthermore that niching can degrade performance given a limited 
number of function evaluations. However, on problems where a random scattering of 
solutions produces a biased distribution on the front, criterion-space niching has a positive 
impact. Criterion-space niching was also found to be useful for problems with a multimodal 
system of fronts. Niching will also be valuable when the Pareto front is relatively large with 
respect to the total search environment and the MOEA population size. In these 
circumstances, the MOEA can be swamped by a high number of equal-fitness solutions 
(essentially reducing the algorithm to the status of a random walk and thus increasing the 
likelihood of genetic drift). Real-world applications show that the possibility of this 
occurrence increases with the number of objectives [Fonseca and Fleming, 1998], perhaps 
suggesting why it has not been evident for these two-objective test functions. Niching is one 
of the tools to counter this problem, along with preference articulation [Fonseca and Fleming, 
1998] and structured-population approaches. 
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Horn et al [1994] communicate the sensible belief that sharing should be performed in the 
space “we care more about”. Hence, if a good distribution in criterion-space is required, then 
criterion-space niching should be applied. It seems somewhat unusual that the NSGA in 
Zitzler et al [2000] should use solution-space niching when performance was clearly defined 
in the objective domain. Also, if niching is functioning as expected, sub-populations should 
surely be evident in the results. This was true for the MOGAs with criterion-space niching 
investigated in this report. The empirical results suggest that SPEA does not produce niches in 
the Goldberg and Richardson [1987] sense. Indeed its performance more closely resembles 
that of an MOEA without a niching scheme. This may be of concern for application to larger 
test problems, especially where none of the objectives are completely defined by a single 
decision variable. However, it may also be true that the SPEA’s non-conventional method of 
fitness assignment is actively producing a good distribution in criterion-space. If so, the SPEA 
would appear to offer the further benefit of a continuous distribution, rather than the 
somewhat forced sub-population structure that results from fitness sharing. 

Note that sub-populations are visible in the results for the NSGA presented in Zitzler et al 
[2000], despite the fact that NSGA was implemented with solution-space niching. This result 
may be an artefact of the test problems. Since one of the objectives is actually a decision 
variable, a direct correlation exists between distances in solution-space and distances in 
criterion-space. Thus, sharing in solution-space is closely related to sharing in criterion-space. 
On problems with more complicated functional relationships between the two domains, 
niching in solution-space could not be expected to produce a good distribution of sub-
populations in criterion-space. Note that solution-space sharing is still important in an MOEA 
for its original purpose: avoiding premature convergence within the cost landscape. 
Furthermore, as highlighted by Deb [1999], solution-based sharing should result in a diverse 
set of solutions to present to the decision-maker. 

The remarkable performance of algorithms that do not use fitness sharing should be regarded 
with caution. These results may be an artefact of the test problems. Since one decision 
variable has complete control over the distribution of one objective, genetic drift towards one 
part of the Pareto front is not a great problem. This is especially true for real-coded 
chromosomes because a single mutation can potentially cover the entire range of the objective 
(whereas for a binary chromosome, the range would depend on the significance of the 
mutated bit). In the test functions proposed by Deb [1999], once good performance is 
achieved in f2, a single decision variable can be used to manipulate f1 to generate solutions 
across the Pareto front (although decision variable mapping can be introduced to prevent this, 
at a greater cost in terms of test function complexity). However in situations where good 
performance, in terms of accuracy and distribution, must be steadily developed using a 
building-block approach, premature convergence in an objective can pose a severe problem. It 
would be unlikely that random mutation would prove sufficient to refresh the population. 
Niching will prove very valuable in these latter cases. 
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