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Abstract 

Elitism and sharing are two mechanisms that are believed to improve the performance of an 
evolutionary multi-criterion optimiser. The relative performance of the two most popular 
ranking strategies is largely unknown. Using a new empirical inquiry framework, this report 
studies the effect of elitism, sharing, and ranking design choices using a benchmark suite of 
two-criterion problems. Performance is assessed, via known metrics, in terms of both 
closeness to the true Pareto-optimal front and diversity across the front. Randomisation 
methods are employed to determine significant differences in performance. Informative 
visualisation of results is achieved using the attainment surface concept. Elitism is found to 
offer a consistent improvement in terms of both closeness and diversity, thus confirming 
results from other studies. Sharing can be beneficial, but can also prove surprisingly 
ineffective. Evidence presented herein suggests that parameter-less schemes are more robust 
than their parameter-based equivalents (including those with automatic tuning). Very little 
performance difference is evident between the two ranking strategies. A multi-objective 
genetic algorithm combining both elitism and parameter-less sharing is shown to offer very 
good performance across the test suite. 
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1 Introduction 
The number of multi-objective evolutionary algorithm (MOEA) schemes proposed in the 
literature has accelerated dramatically over the last few years. As a result, evolutionary multi-
criterion optimisation (EMO) practitioners are faced with a number of design choices beyond 
those encountered in a standard evolutionary algorithm (EA). In order to exploit the true 
potential of the evolutionary meta-heuristic, the optimiser should be tailored to the application 
rather than simply used as a black-box. The implementer should perhaps be encouraged to 
develop a bespoke MOEA rather than resort to a complete algorithm such as MOGA, NSGA-
II, or SPEA-2. Thus, the nature of a design choice would be, for example, ‘What mechanisms 
should be used to promote diversity in this application?’ rather than ‘Should NSGA-II be used 
instead of SPEA-2?’. 

Existing performance comparisons available in the literature tend to compare different brands 
of algorithm, thus obscuring the underlying components and interactions that are attributable 
to performance (a notable exception to this is the paper by Laumanns et al [2001b]). It would 
be helpful to understand how the performance of a component changes in particular 
circumstances, such as the nature of the underlying problem and remaining optimiser 
configuration. It is also useful to know when performance is largely insensitive to a particular 
design choice within a certain set of bounds. The aim of this report is to expose the effect of 
the following EMO strategies using a rigorous and tractable experimental procedure: 

• Elitism – the preservation and exploitation of known good solutions. 

• Sharing – the modification of selection probabilities to account for distribution. 

• Ranking – methods for scalarising performance using relative Pareto dominance. 

The experimental framework is introduced in Section 2. The benchmark suite of test problems 
used in the study is described (equations are provided in the Appendix), together with suitable 
performance metrics. A method for statistical significance testing is introduced, as is an 
appropriate visualisation technique. A baseline MOEA is developed in Section 3, and its 
performance is established. The effects of elitism, sharing, and ranking strategies are then 
considered with reference to this baseline. An elitist strategy is developed and tested in 
Section 4. Sharing methodologies for the promotion of diversity are discussed in Section 5, in 
which both parameter-based and parameter-less techniques are investigated. The 
performances of the established Epanechnikov method and a new ranking-based method are 
compared. The two most popular multi-criterion ranking strategies in the literature are 
contrasted in Section 6. In Section 7, a new MOGA incorporating both elitism and parameter-
less sharing is developed. Conclusions are offered in Section 8, together with 
recommendations for future work. 
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2 Experimental framework 

2.1 Overall methodology 
Evolutionary algorithms are complicated non-linear systems that have proved difficult to 
analyse. The large number of variables, and the interactions between them, can make a 
confident interpretation of results difficult. The EMO empirical inquiry framework presented 
in this section seeks to increase the benefit of empirical testing of algorithms. The following 
attributes of the methodology are emphasised: 

• Modular, traceable, configuration changes. 

• Transparent, understandable, test problems with realistic properties. 

• Appropriate, accurate, performance measures. 

• Rigorous, informative, analysis, including tests for statistical significance and 
visualisation. 

The test suite, performance metrics, and statistical and visual analysis techniques utilised in 
this study are discussed in detail in the following sub-sections. 

2.2 Test suite 
The established set of test problems developed by Zitzler et al [2000] is used in this study. 
The suite consists of six, tractable, two-criterion functions, with varying characteristics as 
summarised in Table 1. The corresponding mathematical definitions are provided in the 
Appendix. 

NAME ATTRIBUTES 

ZDT-1 Convex front 

ZDT-2 Non-convex front 

ZDT-3 Piece-wise continuous convex front 

ZDT-4 Many local fronts, single global front 

ZDT-5 Deceptive problem, discrete front 

ZDT-6 Non-uniform distribution across a non-convex front 

Table 1: Test function characteristics 

These functions cover many of the features that may be found in real-world problems and are 
comparatively easy to analyse. The main concern is that the first criterion is a function of only 
a single decision variable (mapped without modification in the first four test problems). In 
particular, this may cloud the issues surrounding diversity preservation. It should also be 
borne in mind that these test functions consist of two criteria only. Much care should be taken 
before transferring conclusions drawn from these functions to problems with a higher, and 
more realistic, number of criteria. 
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2.3 Measuring performance 
The performance of an MOEA can be decomposed into two, interacting, criteria: 

• Closeness – the nearness of the identified non-dominated solutions to the true Pareto-
optimal front, and 

• Diversity – the distribution of the identified solutions across the trade-off surface. This 
distribution is commonly expressed in criterion-space. 

The ideal outcome, at least for these comparatively low-dimensional test cases, is a final 
population with a uniform distribution of globally non-dominated solutions spread across the 
entire trade-off surface. This aim is largely feasible for two-criterion problems, but may prove 
problematic as the number of criteria is increased (where the trade-off surface becomes larger 
with respect to the size of the total search space). 

Various performance metrics have been proposed to measure accuracy, diversity, and in some 
cases both simultaneously. Some of these metrics involve measurements made with respect to 
the true trade-off surface, whilst others involve a purely relative comparison of two sets of 
results. The former approach requires that the true surface be known and can be sampled but 
is advantageous in that conventional statistical tests can be straightforwardly applied. A 
review of performance metrics is provided by Deb [2001, pp306-324]. 

This study utilises three known performance metrics: generational distance to measure 
accuracy, spread to measure diversity, and attainment surfaces to provide visualisations of 
the results. These metrics are described in further detail below. 

2.3.1 Generational distance 
The accuracy of each non-dominated point produced by an MOEA can be measured in terms 
of its distance to the closest part of the global trade-off surface. These distances can be 
averaged to provide a measure of accuracy of a single MOEA run. The definition of distance 
is dependent on the problem domain. Euclidean distance is an obvious choice for the ZDT test 
problems, and has been adopted in this work. Note that the objective values must be 
normalised if they are not of the same scale. The generational distance metric is formalised in 
Equation 1 [Veldhuizen, 1999]. 
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 where GD is the generational distance, 

  Q is the obtained set of non-dominated criterion vectors, 

   is the number of vectors in the set and, 

  d is the closest distance between vector q in Q and any vector in P*, where 

  P* is the set of globally non-dominated criterion vectors. 

The main advantages of this metric are its simplicity and its amenability to statistical analysis. 
The disadvantage is that the set P* must be obtained. This set should be sufficiently numerous 
and should be uniformly distributed across the trade-off surface in order to avoid bias. 
Fortunately, for the ZDT problems, the global Pareto-optimal front is explicitly defined in 
each case. For the continuous and piece-wise continuous trade-off curves, uniform parametric 
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sampling is quite straightforward (achieved, for example, using equations for curvature). The 
discrete trade-off surface of ZDT-5 can easily be enumerated.   

2.3.2 Spread 
Consider the distribution of distances between nearest-neighbour criterion vectors. In the case 
of a uniform distribution, all such distances will be identical and will equal the mean of the 
distribution. In the general case, uniformity can thus be measured by considering the 
difference between a nearest-neighbour distance and the mean of all such distances. Schott 
[1995] originally formulated the sum of all these differences as an indication of the uniformity 
of the identified trade-off surface. This was extended by Deb et al [2000] to include a 
measure of the extent of the obtained distribution. The resulting metric is shown in 
Equation 2. 
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 where  is the spread, 

  e
md  is the Euclidean distance from the extreme point in Q to the extreme point 

in P* for the mth criterion. 

  M is the number of criteria, 

  di is the Euclidean distance between consecutive criterion vectors in Q and, 

  d  is the mean of all di. 

The first term in the numerator of Equation 2 describes the extent of trade-off surface not 
included in Q.  The second term describes the non-uniformity of the Q distribution. The 
denominator seeks to normalise these measures with respect to the total magnitude of the 
trade-����������	
���	���
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The spread metric is a suitable diversity measuring metric for two-criterion problems. In the 
formulation given above, only the extreme members of P* must be known: therefore 
complete knowledge of P* is not required. However, the denominator in Equation 2 uses 
information in Q in order to normalise the metric. It is possible that this may overestimate the 
length of the trade-off surface and thus fal�	�
��	���	� 
��	��	�������
��	����	�����������	����
calculate the normalisation factor using P* (in which case much more of P* would have to be 
sampled). Also, in order to reduce the influence of the size of set Q, perhaps the second term 
in the numerator should be normalised with respect to this factor.  

In the form presented above, the spread metric cannot be used in problems with more than 
two criteria. This is because the concept of consecutive criterion vectors does not apply in 
higher dimensions. However, since an ordering can be performed on a criterion-wise basis, a 
neighbouring vector can be defined as one that is immediately adjacent in any criterion. A 
neighbour connection can then be established between the two vectors (in any suitable space, 
such as Euclidean). Repetition of neighbour connections is avoided. Thus, the distances used 
in the modified spread metric are the length of these neighbour connections. The measure of 
uniformity then proceeds as before. The extreme points on an n-dimensional trade-off surface 
can be obtained by performing all lexicographic optimisation permutations on the P* data. 
Again, repetition of extreme points should be avoided. The error in the extent of the front can 
then be computed as before. The suggested form of the metric is shown in Equation 3. 
Criterion vectors should be normalised prior to application of the metric. 
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 where  e
exd  is the closest Euclidean distance between Q and extremum ex, 

  EX is the total number of unique extrema in P*, 

  dne  is the Euclidean distance between two neighbours and, 

  NE is the total number of unique neighbour connections. 

If this new spread metric were to be normalised with respect to the magnitude of the trade-off 
surface, Equation 3 would be very similar to the original Equation 2 for two-criterion 
problems. 

2.3.3 Attainment surfaces 
Fonseca and Fleming [1996] introduced the concept of an attainment surface. Given a set of 
non-dominated vectors produced by a single run of an algorithm, the attainment surface is the 
boundary in criterion-space that separates the region that is dominated by or equal to the set 
from the region that is non-dominated. Note that this is fundamentally different to 
interpolating between the vectors. This latter approach is not, in general, correct because there 
is no guarantee that any intermediate vectors actually exist and, even if this were the case, the 
corresponding solutions are unknown. The concept of the attainment surface is illustrated in 
Figure 1. 

global Pareto front

feasible region

candidate
criterion vector

attainment surface

f1

f2

 

Figure 1: Example attainment surface 

Attainment surfaces serve two very useful purposes. One the one hand, they provide a 
convenient means of visualising the results from multiple runs of an optimiser. On the other, 
through the use of auxiliary lines, they allow for algorithm comparisons using well-known 
univariate statistical tests. In this study, the attainment surfaces are used purely for 
visualisation. Refer to Fonseca and Fleming [1996] and Knowles and Corne [2000] for 
examples of the comparative statistics work. 

The superposition of multiple attainment surfaces, as shown in Figure 2, provides a 
qualitative indication of the performance of a particular MOEA configuration. The regions of 
criterion-space created by the surfaces can be interpreted probabilistically. Given that both 
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criteria are to be minimised, the region below all the attainment surfaces contains 
performance vectors that were not matched by the MOEA in any run. The region above all the 
surfaces contains vectors that were exceeded by all runs. In the intermediate regions, the 
performance vectors were exceeded on a number of occasions. Thus, it is possible to obtain a 
family of vectors that, individually, would be obtained in a given percentage of runs. The 
heavy line in Figure 2 shows the 50%-attainment surface (akin to the median statistic). 
Similarly, the grey lines indicate the 25% and 75% surfaces (quartiles). The 0% and 100% 
surfaces are shown as the dotted lines. This means of visualisation is employed throughout 
this study. The attainment surfaces provide information on location, dispersion, and skewness, 
in a similar manner to the box plot [Cleveland, 1993]. This methodology provides more 
reliable information than the unification-of-runs approach adopted by Zitzler et al [2000] and 
Purshouse and Fleming [2001]. 
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Figure 2: The superposition of multiple attainment surfaces 

The attainment surface concept is extendable to any number of objectives, although 
visualisation becomes problematic at any dimension higher than three. Computational 
complexity also increases significantly. 

2.4 Analysing performance 
Upon completion of a single run of a specific MOEA configuration on a particular problem, 
three sets of non-dominated criterion vectors (and associated solutions) are obtained, namely: 

• final population – the non-dominated vectors in the final population of the algorithm, 

• on-line archive – the final elite set of vectors, and 

• off-line archive – the complete set of non-dominated vectors identified by the algorithm. 

The first of these sets is used for analysis and comparison purposes in this study since it 
provides the most appropriate measure of the on-line trade-off surface maintenance 
capabilities of an algorithm.  

An evolutionary algorithm is a stochastic process and, thus, multiple runs (samples) are 
required in order to infer reliable conclusions as to its performance. Hence, 35 runs have been 
conducted for each MOEA configuration when applied to a particular test problem. The 
performance of the algorithm is expressed in the resulting distributions of generational 
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distance and spread. A statistical comparison of two configurations is then possible through 
use of a test statistic. 

In this study, the mean difference between two generational distance (or, alternatively, 
spread) distributions is taken as the test statistic. The significance of this observed result is 
then assessed using randomisation testing. This is a simple, yet effective, technique that does 
not rely on any assumptions concerning the attributes of the underlying processes, unlike 
conventional statistical methods [Manly, 1991]. The central premise of the method is that, if 
the observed result has arisen by chance, then this value will not appear unusual in a 
distribution of results obtained through many random relabellings of the samples. The 
randomisation method proceeds as follows: 

1. Compute the difference between the means of the samples for each 
algorithm: this is the observed difference. 

2. Randomly reallocate half of all samples to one algorithm and half 
to the other. Compute the difference between the means as before. 

3. Repeat Step 2 until 5000 randomised differences have been 
generated, and construct a distribution of these values. 

4. If the observed value is within the central 99% of the 
distribution, then accept the null hypothesis. Otherwise consider 
the alternative hypotheses. This is a two-tailed test at the 1%-
level. 

The null hypothesis is that the observed value has arisen through chance and so there is no 
performance difference between the two configurations. The alternative hypotheses are that 
the difference is unlikely to have arisen through chance and that one configuration has 
outperformed the other (depending on which side of the distribution the observed difference 
falls, and the direction in which the difference has been calculated). By demanding a 1%-level 
of significance, the probability of making a Type II error (accepting the null hypothesis when 
it is false) is increased. However, given the rising popularity of EMO research, this increased 
danger of rejecting a truly significant improvement is unlikely to be damaging. 

Note that the observed value is included as one of the random relabellings since, if the null 
hypothesis is true, then this value is one of the possible randomisation results. 5000 
randomisations is regarded as an acceptable quantity for a test at the 1%-level [Manly, 1991]. 

The results of randomisation testing are simple to visualise, as shown by the example in 
Figure 3. The randomised results are described by the grey histogram, whilst the observed 
result is depicted as a filled black circle. Each row shows the performance on a particular test 
function (from ZDT-1 at the top, to ZDT-6 at the bottom). The left-hand column indicates the 
relative performance regarding closeness, and the right-hand column shows the corresponding 
difference in diversity. It is usually clear from the figure whether or not the observed result is 
statistically significant, although it may occasionally prove necessary to resort to a closer 
analysis of the underlying randomisation data.  



 9

Spread

ZDT−1    

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06

0

50

100

150

200

Generational distance

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
−4

0

50

100

150

200

250

ZDT−2    

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

0

50

100

150

200

−5 −4 −3 −2 −1 0 1 2 3 4

x 10
−4

0

50

100

150

200

250

ZDT−3    

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

0

50

100

150

200

−6 −4 −2 0 2 4 6

x 10
−4

0

20

40

60

80

100

120

140

ZDT−4    

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

0

50

100

150

200

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

0

50

100

150

200

ZDT−5    

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

0

50

100

150

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

0

20

40

60

80

100

120

140

ZDT−6    

♦ = observed difference
−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

50

100

150

difference between population means

fr
eq

ue
nc

y

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

50

100

150

 

Figure 3: Randomisation testing – example results 

In the example in Figure 3, given data for two algorithms A and B together with a test statistic 
of mean(B) – mean(A), then the following results are observed: 

• B obtains fronts closer to the true front than A for ZDT-1, 2, 3, and 4. 

• B produces a superior distribution of criterion vectors to A for ZDT-1, 3, and 4. 

• A offers a superior distribution to B on ZDT-5. 

• No other results are significant at the 1%-level, although clearly some of these 
cases offer more evidence against the null hypothesis than others. 
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3 Baseline MOGA 
The baseline optimiser used in this study has been developed according to the holistic design 
principles championed by Michalewicz and Fogel [2000] and has previously been shown to 
be effective at solving the ZDT test problems [Purshouse and Fleming, 2001]. A summary of 
the algorithm is provided in Table 2. 

The multi-criterion performance of a solution is scalarised using Fonseca and Fleming’s 
[1998] Pareto-based ranking procedure. A solution is ranked according to the number of 
solutions in the population that are preferred to it. If the entire Pareto-optimal front is to be 
identified, the preference relation collapses to a test for pure Pareto dominance. 

EMO 
COMPONENT 

STRATEGY 

General 
Population size 
Total generations 

 
100 per generation 
250 

Elitism None (zero generational gap). 
Evaluation [1] Fonseca and Fleming [1998] Pareto-based ranking. 

[2] Linear fitness assignment with rank-wise averaging. 
[3] No modification of fitness to account for population density. 

Selection Stochastic universal sampling [Baker, 1987] 
Representation 
Real parameter  
 
Binary function 

 
Concatenation of real number decision variables. Accuracy bounded 
by machine precision. 
Binary string, 80 bits in length. Defined by the problem. 

Search operators 
For real 
representations 
 
 
 
For binary 
representations 

 
[1] Naïve crossover. Probability = 0.8. 
[2] Gaussian mutation (initial search power of 40% of variable range; 
sigmoidal scaling set to 15; feasibility requirement of one standard 
deviation). Probability = Expected value of 1 phenotype per 
chromosome. 
[1] Single-point two-parent crossover. Probability = 0.8. 
[2] Simple bit-flipping mutation. Probability = 1/80. 

Table 2: Baseline configuration 

When ranking is complete, initial fitness values can be prescribed. The population is sorted 
according to rank and fitnesses are assigned by interpolating between the highest fitness value 
for the best rank and the lowest fitness value for the worst rank. In the baseline algorithm, 
linear interpolation is used and fitness is varied between the population size (highest) and 
unity (lowest). The ratio of these two fitnesses is a definition of the selective pressure of the 
assignment mechanism. Solutions of the same rank then have their fitnesses amended to the 
average of the original assignments for that rank. Since part of this study is concerned with 
the effect of diversity-preserving mechanisms, no manipulation of the above fitnesses through 
sharing is undertaken. 

Stochastic universal sampling has been chosen as the selection mechanism [Baker, 1987]. 
This method achieves maximum spread with minimal bias, but is non-parallelisable. As part 
of this procedure, the above fitness values are normalised to provide an expected number of 
selections for each solution. In total, 100 selections are required since the chosen reinsertion 
strategy is that all offspring replace all parents (no generational gap) and since for the chosen 
recombination operators two parents are required to produce two offspring. 
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Since five of the test problems feature real number decision variables, it is logical to use a real 
number representation for these problems. Hence, a candidate solution is described by a 
concatenation of phenotypic decision variables. This representation offers a number of 
advantages over a binary encoded approach [Michalewicz, 1992]. The other test problem 
explicitly uses binary variables, thus a binary representation is natural for this problem. 

Different representations require different search operators. For the binary chromosome case, 
the familiar single-point two-parent crossover and bit-flipping mutation operators are 
employed. Good results are known to be achievable using this simple approach [Zitzler et al, 
2000]. Various operators for real representations have been suggested [Herrera et al, 1998]. 
This study uses the so-called naïve crossover in conjunction with a Gaussian mutation 
operator. The former of these search tools is a very simple two-parent single-point crossover 
operator, where the crossover sites are limited to points between decision variables. This 
offers quite a low-power search, since it cannot generate any values for decision variables that 
were not present in the original population. However, when coupled with a complementary 
high-power search tool, the resulting search capabilities are considerable1. Gaussian mutation 
is one such operator. Its main benefit is that it provides tuneable search power in the form of 
the standard deviation. This can be exploited to provide on-line adaptation that avoids the 
generation of infeasible solutions and controls convergence speed by varying the search from 
near global early on to very local towards the end. Sigmoidal scaling, as a function of the 
percentage of generations completed, of the standard deviation is useful because it allows 
concentrated periods of high- and low-power search [Purshouse and Fleming, 2001]. 

Attainment surfaces illustrating the performance of the baseline algorithm are shown in 
Figures 4 through 9. 

                                                      

1 Coincidentally, the incorporation of naïve crossover largely prevents the convergence failures encountered by 
Ikeda et al [2001], thus showing that MOEA failure cannot be solely blamed on the use of Pareto ranking in these 
cases. 
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Figure 4: Attainment surface – baseline MOGA solving ZDT-1 
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Figure 5: Attainment surface – baseline MOGA solving ZDT-2 
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Figure 6: Attainment surface – baseline MOGA solving ZDT-3 
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Figure 7: Attainment surface – baseline MOGA solving ZDT-4 
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Figure 8: Attainment surface – baseline MOGA solving ZDT-5 
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Figure 9: Attainment surface – baseline MOGA solving ZDT-6 
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Particularly good results were achieved for ZDT-1, ZDT-2, and ZDT-3 (Figures 4, 5, and 6 
respectively) in terms of both closeness to the global Pareto front and diversity across the 
front. The tight envelopes of attainment indicate the high level of consistency achieved in 
these cases. Closeness was especially good for ZDT-3. As has been previously observed by 
Purshouse and Fleming [2001], the MOGA struggled to achieve good coverage of the surface 
as f1 approaches zero on ZDT-2. Note that this is a region where there is little trade-off 
between the objectives. 

As shown in Figure 7, the wider envelopes of attainment produced for the multi-fronted ZDT-
4 signify entrapment in a locally non-dominated front. On no occasions did the MOGA 
converge to the global trade-off surface although coverage across the identified fronts was 
good. 

The baseline MOGA achieved reasonable closeness to the global front on ZDT-5. 
Performance on this deceptive test function is depicted in Figure 8. Note that on no occasions 
was the algorithm able to identify the extreme right-hand section of the discrete trade-off 
surface. 

Rather poor performance was observed on the non-uniform ZDT-6, as shown in Figure 9. 
Coverage is especially poor on the less dense area of the front. This, together with the missing 
part of the ZDT-5 front, is the strongest indication that density-based sharing would be 
beneficial. Closeness to the true Pareto front is also not good. Only the 0%-attainment surface 
lies on the global front, where coverage is particularly poor. Furthermore, the position of this 
front with respect to the median and quartiles suggests that this result is something of an 
outlier. 

The study now progresses to consider the effects of elitism, sharing, and ranking choices, 
using this baseline algorithm. 
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4 Elitist strategy 
Elitism is the process of preserving previous high-performance solutions from one generation 
to the next. This is conventionally achieved by simply copying the solutions directly into the 
new generation. Elitism has long been considered an effective method for improving the 
efficiency of an EA [De Jong, 1975]. Various recent studies in the EMO community have 
indicated that the inclusion of an elitist element can considerably improve the performance of 
an MOEA [Zitzler et al, 2000; Deb et al, 2000]. 

The implementation of elitism is straightforward for single criterion problems, since there is 
typically only a single best individual in a population. For multi-criterion problems, the elitist 
strategy requires greater intricacy. An elite sub-population of currently non-dominated 
solutions can be defined, but the magnitude of this set can potentially reach the size of the 
population itself. This becomes a particular problem during the later stages of the search. 
Copying large numbers of solutions, without modification, into the new population will 
hamper the search process. Thus, the two main issues are (1) how to manage the size of the 
elite sub-population, and (2) how to use elitism to drive the search effectively. 

Zitzler and Thiele [1999] proposed a simple and effective elitist strategy for MOEAs, and 
implemented it in their Strength Pareto Evolutionary Algorithm (SPEA). The success of this 
algorithm across a diverse set of two-criterion problems has led to the widespread adoption of 
elitist schemes in the EMO community. 

The SPEA maintains an on-line archive of currently non-dominated solutions and uses this in 
the processes that generate new candidate solutions. The archive should be a representative 
subset of all non-dominated solutions found thus far. Note that MOEAs prior to SPEA 
(including MOGA) generally maintain an up-to-date off-line archive of all non-dominated 
solutions found, but these results are not explicitly used in the generation of new candidate 
solutions. 

The on-line archive requires a clustering mechanism in order to control the number of elite 
solutions. This set of solutions should represent the characteristics of the underlying off-line 
archive. Characteristics generally refer to the criterion vectors, although decision-space 
discrimination is also possible. The truncation procedure described in Zitzler et al [2001] is 
an effective means of elitism control for two-criterion problems. In these cases, this method 
can reduce an oversized archive without losing boundary solutions. This attribute is desirable 
in the search for diverse trade-off solutions. However, for problems with more than two 
criteria, extreme trade-off solutions can be lost by this method. This may be a particular 
problem if the focus is on a preferred region of the trade-off surface. It is also possible for the 
procedure to remove globally non-dominated solutions whilst retaining currently non-
dominated, yet sub-optimal, solutions [Laumanns et al, 2001a]. Both solutions are non-
dominated from the perspective of the truncation process, but the sub-optimal solution may be 
in a less-dense area of criterion-space. The truncation procedure is outlined below: 

To remove one member of the over-sized archive follow the subsequent 
procedure with k initialised to 1: 

1. Find the set of solutions, S, with the shortest distance 
between themselves and their kth nearest neighbours. 

2. If the size of this set is greater than one, increment k and 
repeat Step 1 using only solutions in S, otherwise select the 
individual in S for removal. 

If nearest neighbour information is exhausted, select randomly from 
the current set S. The above procedure should be repeated until the 
archive has been reduced to an acceptable size. 
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The elitist strategy adopted in this study is a variant on the universal elitism approach 
developed by Zitzler [1999] and is illustrated by the schematic in Figure 10. The key 
difference is that the archive size is allowed to vary within pre-defined limits, whilst the 
number of newly generated candidate solutions is varied such that the total population size 
(elites plus new solutions) is held constant. 

MO
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number required
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Figure 10: Elitist strategy employed in this study 

The on-line archive is initialised to the empty set, whilst the initial population is initialised to 
a random set of candidate solutions (possibly seeded with information provided by the 
decision-maker). The populations at subsequent iterations of the algorithm are the 
combination of new solutions and current elite solutions. The currently non-dominated 
solutions in the population are identified and are stored as the new, potentially over-sized, 
archive. Over-represented solutions are then eliminated from the archive, if necessary, using 
the truncation procedure defined above. For the test problems used in this study, the 
neighbourhood distance measure is defined as the Euclidean distance between two criterion 
vectors. 

When the new elite set has been finalised, the size of this set is known, and thus the number 
of new candidate solutions required to fill the population can be calculated. These solutions 
are created through the selection and genetic manipulation of members of the current 
population. The new solutions are then combined with the elite set to form the subsequent 
total population, which completely replaces the old population. 

This elitist strategy has been integrated within the baseline MOEA described in the previous 
section and has been applied to the six benchmark problems. The results of the randomisation 
testing between the elitist algorithm and the baseline algorithm are shown in Figure 11. 
Observed differences to the left of the randomisation distribution offer evidence in favour of 
the elitist version outperforming the baseline case.  
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Figure 11: Randomisation test: elitist versus baseline 

There is considerable evidence, clearly shown by the results in Figure 11, that the elitist 
algorithm produces results closer to the true front than the baseline for ZDT-1, 2, 3, 4, and 6. 
The observed result for ZDT-5 is not significant at the 1%-level, although it would have been 
significant at the 5%-level. Superior performance in terms of diversity is strongly suggested 
for ZDT-1, 2, 4, 5, and 6. 

The inclusion of elitism increases the convergence speed of the algorithm. The danger of sub-
optimal convergence is somewhat reconciled by the distributed nature of the elite set. High-
power search operators, such as the Gaussian mutation operator used in this work, can also 
reduce the risk of premature convergence. Hence, the increased successful convergence 
exhibited in this study is expected. 

The elitism scheme also maintains the characteristics of the currently identified trade-off 
surface within the on-line population. Thus, diversity of non-dominated solutions in the 
population is maintained and encouraged (through the thinning of similar criterion vectors) by 
the truncation mechanism. This helps to explain the improvement in diversity seen in the 
results. However, the truncation process only represents the current distribution: it does not, 
directly through fitness, drive the search towards a superior distribution. Despite this, the 
inclusion of elitism did lead to improved diversity on the non-uniformly distributed ZDT-6. 
Modifications to the fitness, such as those arising through sharing, may assist further in 
improving diversity across the trade-off surface. These issues receive further consideration in 
the next section. 
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5 Sharing strategy 

5.1 Introduction 
One of the aims of a multi-objective evolutionary algorithm is to obtain a suitable distribution 
of candidate solutions in regions of interest to the decision-maker. In an evolutionary 
algorithm, this can be achieved through the formation of sub-population clusters – known as 
niches – within the global population. Fitness sharing is the most popular method for 
fostering this niching process [Goldberg and Richardson, 1987]. In this approach, the raw 
fitness value of a candidate solution is reduced by a factor dependent on the local population 
density. This measure should be made in the domain over which a good distribution is of 
interest: usually criterion-space. 

5.2 Parameter-based methods 
Fitness sharing has been shown to combat the problem of genetic drift (population 
convergence to a single point due to stochastic selection errors), thus helping to attenuate the 
possibility of sub-optimal convergence and to enhance coverage of trade-off surfaces. 
However, the power law equation on which the technique is based requires a definition of 
closeness in order to calculate the population densities. This can be difficult to estimate in 
practice. Furthermore, the method is sensitive to choice of this niche size parameter. Several 
methods have been proposed in order to estimate the niche size, such as those of Deb and 
Goldberg [1989] and Fonseca and Fleming [1993], of which the dynamic approach presented 
by Fonseca and Fleming [1995] is particularly interesting. 

Fonseca and Fleming [1995] noted the similarity between the power law sharing function and 
the Epanechnikov kernel density estimator used by statisticians. The kernel smoothing 
parameter used in the estimator was found to be directly analogous to the fitness sharing niche 
size parameter. The key benefit of this is that statisticians have developed successful 
techniques for estimating the value of this parameter [Silverman, 1986]. Furthermore, the 
approach is amenable to update at each generation of the EA population. This approach can 
be regarded as parameter-based sharing with automatic tuning. Epanechnikov sharing has 
been used in several contemporary MOGA applications, although sharing has generally been 
performed in the decision-space in these instances [Griffin et al, 2000; Schroder et al, 2001]. 

Epanechnikov sharing has been added to the baseline MOEA used in this study and has been 
applied to the benchmark problems. Sharing is performed using the Euclidean distance metric 
in the criterion domain. Results of a randomisation comparison with the baseline algorithm 
are shown in Figure 12. Observed values that favour the sharing scheme will lie to the left of 
the randomisation distribution. 
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Figure 12: Epanechnikov versus baseline 

The inclusion of Epanechnikov sharing has improved both aspects of performance on ZDT-6. 
The non-uniform nature of this problem should particularly highlight the benefits of a sharing 
scheme. Note in particular that a method designed to improve diversity has also helped to 
improve convergence, thus suggesting the strong interaction between the two performance 
criteria. However, no improvements in either diversity or closeness have been achieved for 
any other test function. Indeed there is some evidence to suggest a deterioration in diversity 
on ZDT-1, although this is not significant at the 1%-level. The lack of improvement to 
diversity is of particular concern, since the elitist results in Section 4 have indicated that 
diversity can be greatly improved on these problems. 

5.3 Parameter-less methods 

5.3.1 Discussion 
The difficulty and inconvenience involved in determining the niche size value has led many 
researchers to investigate parameter-less methods for achieving niching [Deb et al, 2000; 
Zitzler and Thiele, 1999]. 

A rank-based niching technique is described herein. No definition of closeness is required. 
The new ranking increases the resolution of an existing multi-objective ranking. This latter 
ranking can be obtained using any method, including the popular Fonseca and Fleming [1993, 
1998] and Goldberg [1989] methods. 

In Fonseca and Fleming’s [1998] approach, a candidate solution is ranked according to how 
many other solutions in the current population are preferred to it. Given the minimum amount 
of preference information (a direction of monotonically increasing preference in each 
criterion), the comparison is made in terms of pure Pareto dominance. This concept is 
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illustrated in Figure 13.  In this simple example, both criteria are to be minimised. Criterion 
vectors for five candidate solutions {A, …, E} are shown. 
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Figure 13: Example of Fonseca and Fleming [1998] multi-objective ranking 

A solution is dominated by all other solutions within the hypercube defined by its own 
criterion vector and the utopian point (in this case{ }0,0 ). In this example, the domination 
hypercube for solution C is indicated by the grey rectangle. Solution C is seen to be 
dominated by solution B alone, and thus receives a multi-objective ranking of 1. The rankings 
for all solutions are shown in Table 3. 

CANDIDATE CRITERIA {f1, f2} RANK 

A {0.1 0.7} 0 

B {0.3 0.4} 0 

C {0.5 0.5} 1 

D {0.8 0.1} 0 

E {0.9 0.6} 3 

Table 3: Multi-objective ranking for the solutions in Figure 13 

The original multi-objective genetic algorithm [Fonseca and Fleming, 1993] uses the 
stochastic universal sampling selection mechanism because of its low stochastic error 
properties [Baker, 1987]. This technique requires a mapping between ranking and fitness 
value  (in contrast to tournament selection). This is achieved by sorting the population 
according to rank, assigning fitness according to some function, and then averaging the 
fitnesses for solutions of the same rank. This process is illustrated in Figure 14. The narrower 
bars show the pre-averaged fitness values, whilst the wider bars indicate the post-averaged 
fitnesses. 
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Figure 14: Rank to fitness assignment procedure 

The functional mapping between the sorted list and fitness is often either linear or 
exponential, although other forms are possible. It generally includes a selective pressure term 
that can be used to vary the rate of convergence. Two linear mappings are shown in Equations 
4 and 5 below. 
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 where  f is fitness, 

  r is the index in the sorted list (starting at zero), 

  N is the number of candidate solutions, 

  s1,2 is the selective pressure: 21 1 ≤≤ s ; ∞<≤ 21 s . 

The results in Figure 14 have been computed using Equation 5. The selective pressure has 
been set to the standard choice of 52 == Ns . 

The niching approach presented here increases the resolution of the above ranking procedure 
through the inclusion of population density information. An intra-ranking is performed on 
candidate solutions of identical multi-objective rank, discriminating on the basis of population 
density. Solutions in less dense areas receive a superior intra-ranking to their counterparts in 
denser regions. This approach requires a definition of distance but does not require a 
definition of closeness. The distance metric is likely to be problem dependent and could 
conceivably contain decision-maker preference information. Following the new fine-grained 
ranking, the fitness assignment procedure remains unchanged. This new diversity preserving 
measure is illustrated in Figure 15.  
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Figure 15: Fitness based on multi-obejctive ranking followed by diversity intra-ranking 

The density measure selected is the Euclidean distance to the nearest neighbour in criterion-
space (see Figure 13). Solutions A, B, and D all have the same Pareto rank, but solution D is 
the remotest and thus receives the highest fitness. Solutions A and B are an identical distance 
apart and thus share the next two available fitnesses equally. Note that A and B still receive a 
higher fitness than the solutions that they dominate (C and E). The associated fine-grained 
ranks are shown in Table 4, to the right of the original coarse-grained equivalents. 

CANDIDATE DISTANCE TO NEAREST 
NEIGHBOUR 

COARSE 
RANK 

FINE 
RANK 

A 0.361 0 0_1 

B 0.361 0 0_1 

C Infinite 1 1_0 

D 0.583 0 0_0 

E Infinite 3 3_0 

Table 4: Multi-objective and diversity-based ranking for Figure 15 

The proposed new scheme has a number of important properties, namely: 

• If one candidate solution is preferred over another, then the former is guaranteed to have 
a superior fitness value. This was not the case under the old fitness sharing scheme. 

• The cumulative fitness assigned to each ranking group remains unchanged. 

• When all solutions are currently non-dominated, discrimination is based purely on 
density. 

• When all solutions are currently non-dominated and the population density measure is 
globally uniform, all fitness values are identical. 

With any type of ranking scheme, information content is lost. The ranking indicates that one 
solution lies in a more densely packed region than another solution but the actual difference 
in density between the two is lost. This limits the amount of information available to the 
search procedure but protects against premature convergence to locally superfit solutions and 
removes the requirement for a niche size setting. 
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5.3.2 Results 
The results of randomisation testing, when comparing the new sharing method to the baseline 
(non-sharing) system are shown in Figure 16. Observed differences between sample means to 
the left of the randomisation distribution provide evidence in favour of the new scheme. 

Spread

ZDT−1    

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

0

50

100

150
Generational distance

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10−4

0

50

100

150

200

ZDT−2    

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

50

100

150

−8 −6 −4 −2 0 2 4 6 8

x 10−5

0

50

100

150

ZDT−3    

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

0

50

100

150

200

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10−4

0

50

100

150

ZDT−4    

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

20

40

60

80

100

120

140

160

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

0

20

40

60

80

100

120

140

160

ZDT−5    

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

0

20

40

60

80

100

120

140

160

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

0

20

40

60

80

100

120

140

ZDT−6    

♦ = observed difference
−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

0

50

100

150

difference between population means

fr
eq

ue
nc

y

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

0

20

40

60

80

100

120

140

 

Figure 16: Randomisation testing – New sharing versus no sharing 

The central aim of sharing is to improve the distribution of solutions in criterion-space and 
this should be primarily evident in the spread results. As shown in Figure 16, there is strong 
evidence to suggest that the new method improved spread on ZDT-3 and ZDT-4. The use of 
the Epanechnikov kernel, by contrast, did not improve results on these problems. In no cases, 
was the absence of a sharing mechanism shown to be preferable (whereas there was some 
evidence in Section 5.2 to suggest that the Epanechnikov kernel could cause a deterioration in 
diversity). However, there is no evidence to suggest that the use of sharing made any 
difference to the results for ZDT-6. This is particularly disappointing since this problem has a 
non-uniform distribution across its trade-off surface: a situation in which sharing is 
considered a highly appropriate strategy. On a more positive note, the new sharing scheme 
provided improved closeness on ZDT-1, 2, and 4. 
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6 Ranking strategy 

6.1 Introduction 
Many multi-objective evolutionary algorithms that are based on the concept of Pareto 
dominance use a derivative of one of the following multi-criterion ranking procedures: 

• Non-dominated sorting (NDS) [Goldberg, 1989] 

• Multi-objective ranking (MOR) [Fonseca and Fleming, 1993] 

Despite some comparative analysis in the literature, there remains much uncertainty over the 
relative worth of the two methodologies. In this section the empirical performance of both 
procedures, embedded in a MOGA, is obtained for the Zitzler et al [2000] test suite. Previous 
published comparisons have been between algorithm brands, in which it is difficult to decide 
on exactly what is responsible for the observed discrepancies in performance. By focusing 
solely on the ranking method, it is hoped that clearer evidence will be produced. The 
discussion herein is based on pure Pareto dominance, but it should be noted that it is equally 
applicable to other dominance measures such as preferability [Fonseca and Fleming, 1998]. 

6.2 Non-dominated Sorting 
Goldberg [1989, p201] proposed the first Pareto-based treatment of multi-criterion problems 
using an EA. Given a population of candidate solutions, each with its own criterion vector, 
Goldberg’s method identifies non-dominated waves of solutions. Initially, the solutions 
corresponding to the global (in a population sense) non-dominated criterion vectors are 
assigned the best rank (denoted as rank zero for consistency herein, although the labelling 
began at one in the original text). This set of solutions is then temporarily removed from the 
population and a further check is made for non-dominated solutions. This next set of solutions 
is assigned the next best rank (rank one) and is again removed from the remaining population. 
This process is continued until all solutions have been ranked. This process is illustrated in 
Figure 17. NDS was used by Srinivas and Deb [1994] in the NSGA, and subsequently by Deb 
et al [2000] in the NSGA-II. 
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Figure 17: Non-dominated Sorting 

6.3 Multi-objective Ranking 
Rather than producing a series of non-dominated fronts, Fonseca and Fleming’s [1993] 
method simply ranks a solution according to the number of solutions in the population by 
which it is dominated. Thus, non-dominated solutions are ranked as zero, whilst the worst 
possible ranking is the population size minus one. Note that not all possible ranks will 
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necessarily be represented. The method is illustrated, using the same data as for the NDS 
example, in Figure 18. MOR was used in the original Pareto-based EA, Fonseca and 
Fleming’s [1993] MOGA, many subsequent MOGA applications, and was also recently 
implemented in a multi-criterion estimation of distribution algorithm [Thierens and Bosman, 
2001]. 
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Figure 18: Multi-objective Ranking 

6.4 Discussion 
In their review of the EMO field, Veldhuizen and Lamont [2000] argue that there is no clear 
evidence to favour either ranking method overall. MOR is generally regarded as the more 
efficient method [Coello 1999; Veldhuizen and Lamont, 2000] and has been suggested to be 
easier to analyse [Fonseca and Fleming, 1997].  MOR has also been found to be the simpler 
method to extend [Hughes, 2001]. In the only direct empirical comparison of the two 
schemes, in the context of a single real-world problem, MOR was shown to provide a more 
accurate trade-off surface [Thomas, 1998]. 

In essence, MOR provides a more fine-grained ranking than NDS [Horn, 1997]. However, it 
is arguable whether or not this is a definite benefit. The MOR ranking of a solution describes 
how many other solutions in the population are preferable to itself, whereas NDS provides 
only a minimum number. Thus, current population density has more impact in the MOR 
scheme. This led Deb [2001] to suggest that MOR may be sensitive to the shape of the Pareto 
front and to the density of solutions in the search space. 

Both methods meet the fundamental aims of a multi-criterion ranking strategy: (1) that all 
preferred individuals are assigned the same rank, and (2) that all individuals are ranked higher 
than those that they are preferable to. Note that both methods produce identical rankings for a 
single-criterion problem. 

6.5 Evaluation 
Randomisation testing results for the two ranking methodologies when integrated within the 
baseline MOGA are displayed in Figure 19. Similar results for the elitist, sharing MOGA 
described later in Section 7 are shown in Figure 20. Observed differences to the left of the 
randomisation distribution favour the NDS technique. 

No significant evidence was found on any of the test problems for either performance metric 
to suggest that one of the ranking schemes was superior to the other. However, it should be 
noted that the remainder of the MOGA selection algorithm is that which was originally used 
with MOR, so it is possible that there may be implicit bias towards this ranking procedure. 
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Figure 19: Randomisation testing: NDS MOGA versus MOR MOGA (baseline) 
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Figure 20: Randomisation testing: NDS MOGA versus MOR MOGA (elitist, sharing) 
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7 Elitist sharing MOGA 
The use of an elitist strategy or a parameter-less sharing strategy in isolation has been shown 
to offer improved performance in terms of both closeness and diversity. It is instructive to 
now consider the effect of these schemes in combination. A schematic of the resulting 
algorithm is shown in Figure 21. 
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Figure 21: Elitist sharing MOGA schematic 

 

This optimiser has been applied to the problems in the ZDT test suite. The resulting 
attainment surfaces are shown in Figures 22 through 27. 
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Figure 22: Attainment surfaces – MOGA solving ZDT-1 
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Figure 23: Attainment surfaces – MOGA solving ZDT-2 
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Figure 24: Attainment surfaces – MOGA solving ZDT-3 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f
1

f
2

Figure 25: Attainment surfaces – MOGA solving ZDT-4 
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Figure 26: Attainment surfaces – MOGA solving ZDT-5 
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Figure 27: Attainment surfaces – MOGA solving ZDT-6 
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The envelopes of attainment are generally very tight, indicating good consistency in the 
results. As evident from Figure 25, closeness has been greatly improved on ZDT-4: indeed 
the 25%-attainment surface lies very close to the global front of this difficult test problem. 
Complete coverage of the right-hand section of the trade-off surface has been achieved for 
ZDT-5, as shown in Figure 26. Finally, closeness and diversity have been much improved on 
ZDT-6 (see Figure 27). 

A comparison with the baseline algorithm is made, via randomisation testing, in Figure 28. 
Observed differences between the means of each metric that lie to the left of the 
randomisation distribution favour the elitist, parameter-less sharing algorithm. 
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Figure 28: Randomisation testing: elitist sharing MOGA versus baseline MOGA 

Compelling evidence points to the new algorithm outperforming the baseline in terms of 
diversity across all six benchmark problems. Improved closeness was observed for ZDT-1, 2, 
4, and 6 (the result for ZDT-5 is not significant at the 1%-level). Of particular note is the 
improved diversity on ZDT-3. The combination of elitism and new sharing was required in 
order to achieve this significant improvement. Neither elitism nor sharing alone was capable 
of producing this result. Unfortunately, this benefit has been accompanied by degradation to 
the closeness results when compared the elitist-only algorithm described in Section 4.  

A direct comparison of the combined scheme with the elitist-only MOGA is shown in Figure 
29. Observed differences to the left of the randomisation distribution favour the combined 
scheme. There is substantial evidence that the incorporation of sharing has improved diversity 
still further on ZDT-1, 2, 3, and 4. As mentioned above, the improved diversity on ZDT-3 has 
been accompanied by attenuation of closeness but, as indicated in Section 3, the baseline 
results themselves were particularly good for this test problem. 
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Figure 29: Randomisation testing: elitist sharing MOGA versus elitist MOGA  
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8 Conclusion 
Using a progressive and tractable experimental approach, supported by appropriate statistical 
and visual analyses, this report has demonstrated that suitable elitist and sharing strategies can 
significantly improve the performance of an evolutionary multi-criterion optimiser. 

An empirical inquiry framework has been introduced for EMO studies, with the aim of 
identifying and helping to explain the components and interactions that provide good 
performance. The cornerstone of the framework is that suggested MOEA innovations and 
modifications are applied in a structured and tractable manner. This will ensure that if, as is 
often the case, theoretical analysis is particularly difficult then some useful empirical 
evidence is obtained. Statistical analysis of suitable closeness and diversity performance 
metrics, obtained via the final populations of multiple optimiser runs, should then be 
performed. The use of attainment surfaces is suggested as a means for obtaining information-
rich, reliable, visualisations. 

A baseline MOGA has been introduced and its performance has been obtained. Of particular 
note is that the algorithm does not include an explicit diversity-promoting mechanism. Thus, a 
benchmark can be established from which such mechanisms can be assessed. Many existing 
studies simply compare the relative performance of sharing schemes, without an assessment 
of whether this represents any improvement over complete inaction. The baseline MOGA has 
been shown to struggle with diversity preservation on ZDT-5 and ZDT-6, and converged to 
local non-dominated fronts on every occasion when applied to ZDT-4. 

The deployment of an elitist heuristic has again been shown to be highly beneficial, this time 
using a new experimental framework and in the context of MOGA. Zitzler’s [1999] universal 
elitism scheme, and variants thereof, is both simple and effective. It is possibly the purest 
EMO elitism technique, with respect to single-criterion EA methodologies. Elitism in this 
form improves convergence and diversity-preservation capabilities. Regarding diversity-
enhancing mechanisms, some possible shortcomings of the popular parameter-based sharing 
technique have been exposed, as have the dangers of relying too heavily on an automatic 
parameter-setting method. A new parameter-less method of sharing has been introduced and 
has been shown to be more reliable than the standard method. This method is designed to be 
used in conjunction with a multi-criterion ranking process. It would be interesting to study the 
similarity of this selection system with a two-step tournament selection mechanism (an initial 
dominance check, followed by a density comparison if required). Very good results were 
achieved when both elitism and parameter-less sharing were used together. These results 
generally improved still further on the elitist strategy in isolation. 

As a final word of caution, these results have been obtained for two-criterion problems: 
further research is required to ascertain the effectiveness of these strategies as the dimension 
of the problem increases. Future investigations will use the scalable test suite proposed by 
Deb et al [2001] and will consider real-world applications. 

 

 

 

 

The results detailed in this report are available for download from the following site: 

http://www.shef.ac.uk/~acse/research/students/r.c.purshouse/
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Appendix 
Definitions of the Zitzler et al [2000] set of test problems are provided below: 
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