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Summary

Evolutionary algorithms based on the concept of Pareto dominance are popular and suc-

cessful techniques for multi-objective optimisation. Such algorithms are required to obtain a

good approximation (in terms of proximity and diversity) to trade-off surfaces of interest to

the decision-maker.

To achieve good performance, the design of an evolutionary optimiser should be component-

based and application-focused. Multi-objective algorithms tend to be analysed as composites

using empirical approaches that lack statistical rigour. This severely limits the availability of

process knowledge, itself essential for component-level design. The thesis addresses this issue

with a new, structured, framework for algorithm development and assessment. A rigorous,

nonparametric statistical methodology is applied to appropriate performance indicators for

proximity and spread. Applications of the framework can be found throughout the thesis.

Evolutionary multi-objective theory mainly considers bi-objective problems. However,

multi-objective applications often consider many more objectives. Thus, more theoretical

work into the optimisation of many objectives is required. A platform for such research is

established via consideration of the relationships that may exist between pairs of objectives.

Three relationships — conflict, harmony, and independence — are identified, and issues and

current research are discussed for each relationship.

The effect of many conflicting objectives on a class of popular evolutionary multi-objective

optimisers is considered in a detailed, exploratory investigation. The study reveals that

conclusions drawn from bi-objective analysis cannot be generalised to higher numbers of

conflicting objectives. The probable mechanisms that underpin the observed variation in

behaviour are also identified and discussed.

The thesis also demonstrates, using the rigorous empirical framework, that if indepen-

dence exists in a multi-objective problem, then identification and exploitation of this relation-

ship can produce improved optimiser results. An innovative method for identifying suitable

objective-space decompositions on-line is subsequently developed, based on concepts from

parallel evolutionary topologies and nonparametric statistics. Excellent results are obtained

in a proof-of-principle assessment.
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Nomenclature

Acronyms (AGA to OR)

AGA adaptive grid archiving

BMDA bivariate marginal distribution algorithm

BOA Bayesian optimisation algorithm

D1,2 decompositions of NSGA-II

DC divide-and-conquer

DM decision-maker

DTLZ Deb, Thiele, Laumanns, and Zitzler

EA evolutionary algorithm

EC evolutionary computing

EDA estimation of distribution algorithm

e-e exploration versus exploitation

EMO evolutionary many-objective optimisation

EMO evolutionary multi-objective optimisation

ES evolution strategies

GA genetic algorithm

IC independent collection

IFAC International Federation of Automatic Control

MCDM multi-criteria decision-making

M many-objective

MIDEA multi-objective mixture-based iterated density estimation EA

MO multi-objective optimisation

MOEA multi-objective evolutionary algorithm

MOGA multi-objective genetic algorithm

NFL no-free-lunch theorem

NN nearest neighbour

NPGA niched Pareto genetic algorithm

NSGA non-dominated sorting genetic algorithm

NSGA-II elitist non-dominated sorting genetic algorithm

OR operations research
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Acronyms (PAES to ZDT)

PAES Pareto archived evolution strategy

PBIL population-based incremental learning

p.d.f. probability density function

PESA(-II) Pareto envelope selection algorithm (revised)

PROMETHEE preference ranking organisation method for enrichment evalua-

tions

ROI region of interest

SBX simulated binary crossover

SOM self-organising map

SPEA(2) strength Pareto evolutionary algorithm (revised)

TSP travelling salesman problem

VEGA vector evaluated genetic algorithm

ZDT Zitzler, Deb, and Thiele

Greek Symbols

α fitness sharing shaping parameter

β parameter internal to polynomial mutation

γi parent value for the ith decision variable

∆ spread metric

δ parameter internal to SBX

εi DM indifference threshold on the ith objective

ζM volume of the unit M -dimensional hypersphere

ηc SBX distribution parameter

ηm polynomial mutation distribution parameter

κ dimension of quadratic bowl in DTLZ2 g functional

λ maximum spread indicator

ρ index in sorted list

σmate mating restriction neighbourhood size

σshare fitness sharing niche size

ψ number of independent collections
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Roman Symbols (a to Q)

a index to an objective vector instance

b index to a different objective vector instance

ci child value for the ith decision variable

D Hoeffding or Blum-Kiefer-Rosenblatt statistic

d distance metric

fi fitness of the ith solution

g proximity-related functional

GD generational distance metric

h smoothing parameter

i index variable

IP proximity indicator

IS spread indicator

j index variable

K Kendall sample correlation coefficient

k index in sorting of nearest neighbours to a candidate solution

Ke Epanechnikov kernel density estimator

L local region of decision-space

li lower bound on the ith decision variable

M number of objectives

n number of decision variables

ñ number of decision variables per sub-problem

pc probability of applying recombination to a solution

pe probability of exchanging recombined decision variables

Pi ith sub-problem

pic probability of applying recombination to a decision variable

pm probability of mutating a decision variable

p(mutate) probability of applying mutation to a solution

p(recombine) probability of applying recombination to a solution

P [t] population at time t

Q number of objectives in independent collection



viii

Roman Symbols (q to ZR)

q index variable

R transformation matrix

ri random number generated uniformly from [0 1]

S hypervolume metric

s selection process

Sh sharing function

ss selection-for-survival process

sv selection-for-variation process

T sample covariance matrix

t time or iteration number

U feasible region of decision-space

u candidate solution

ui upper bound on the ith decision variable

v candidate solution

v variation process

X∗ Pareto optimal solution set

X
ε

∗
ε-Pareto optimal solution set

xi ith decision variable

Z set of all realisable objective vectors

Z∗ Pareto optimal region of objective-space

ZA approximation set

zi ith objective

ZR region of interest in objective-space
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Chapter 1

Introduction

1.1 Motivation

The human species sometimes finds inspiration in the natural world when searching for meth-

ods to solve problems. Such methods excite interest because of the aid to understanding em-

bodied in the use of metaphor, and the potential for the methods to solve problems regarded

as otherwise difficult because of the limitations of intuition and standard mathematical tech-

niques.

One observation from the natural world is that organisms living in a particular environ-

ment have special attributes that enable them to be successful in that environment. Evo-

lutionary biology explains that the organisms have arisen, over time, through a process of

adaptation. Thus, can an abstraction of this concept be used as a methodology for finding

solutions that perform well in a given problem environment?

This question has been explored by, amongst others, engineers, evolutionary biologists,

and theoretical computer scientists for much of the second half of the twentieth century. These

research efforts have resulted in the modern-day concept of the evolutionary algorithm, which

is now a popular and successful multi-disciplinary subject area.

A solution to a problem will generally need to be assessed against multiple performance

objectives. If conflict is experienced between the objectives then multiple solutions, each

representing a particular performance trade-off between the objectives, can be considered

optimal. Evolutionary algorithms have special utility for multi-objective problems since they

can search for a family of individually distinct solutions and do not require objectives to be

1



CHAPTER 1. INTRODUCTION 2

aggregated.

Evolutionary computing methodologies that explicitly recognised the multi-objective na-

ture of problems were first introduced in the mid-1980s. Many evolutionary algorithms have

since been developed specifically as multi-objective optimisers, and have subsequently been

applied to real-world problems. As a measure of the continuing popularity of this branch of

evolutionary computing, the first international conference devoted to the subject took place

in 2001 in Zürich, Switzerland (Zitzler, Deb, Thiele, Coello and Corne 2001). This has now

been established as a successful biennial event, with the second conference held in 2003 in

Faro, Portugal (Fonseca, Fleming, Zitzler, Deb and Thiele 2003).

This thesis explores the methodology of evolutionary multi-objective optimisation (EMO).

In particular, it seeks to identify which processes within a multi-objective evolutionary al-

gorithm have a significant effect on performance within a particular environment. A largely

unanswered question in the research field is how the algorithms behave when many objectives

must be optimised simultaneously. The thesis aims to promote this area of research, improve

the knowledge of optimiser behaviour in these circumstances, and develop an underlying

understanding of this behaviour.

1.2 Outline of the Thesis

Chapter 2 provides the necessary background material for the thesis. It discusses the pro-

cesses that are involved in problem-solving, and introduces theoretical concepts from multi-

objective optimisation. The requirements of a multi-objective optimiser are also discussed.

Evolutionary algorithms are introduced as a general methodology at both a fundamental and

a more advanced level. The various multi-objective evolutionary techniques are subsequently

described from the perspective of how they address the required optimisation aims.

Chapter 3 develops an empirical framework for identifying the components of a global

algorithm that are responsible for the greater part of the observed performance of that al-

gorithm. The methodology argues the importance of baselining and the use of appropriate

statistical confidence tests. The framework is then applied to an exploration of multi-objective

evolutionary algorithm components on some popular bi-objective problems.

Chapter 4 argues the requirement for more research into the simultaneous optimisation

of many objectives. This need is based on the reality that most theoretical development is
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undertaken in the bi-objective domain, whilst applications can feature many more objectives.

A platform for new research in this area is introduced in the chapter, based on the consid-

eration of the different relationships that can exist between objectives. Known issues and

related research from both the evolutionary and classical multi-objective communities are

summarised for the relationships of conflict, harmony, and independence.

Chapter 5 considers the optimisation of many conflicting objectives. Using a slightly

modified framework to that described in Chapter 3 to cope with the increase in dimension-

ality, the behaviour of a class of modern evolutionary optimisers (represented by a popular

algorithm and its derivatives) is studied as the number of objectives is varied.

Chapter 6 explores the effect of independence between objectives in a many-objective

problem. The effectiveness of a priori decomposition approaches are analysed. Subsequently,

an adaptive divide-and-conquer strategy (that automatically determines a suitable decompo-

sition) is proposed and tested on a benchmark problem.

Chapter 7 presents conclusions on the work undertaken and offers perspectives on the

future of evolutionary multi-objective optimisation.

1.3 Contributions

The main contributions of this thesis are:

• A contemporary review of EMO from a new perspective. The review considers

isolated components that have been devised to meet the three major aims of multi-

objective optimisation (a diverse and accurate representation of the trade-off surface in

a defined region of interest). This approach contrasts to the standard holistic review of

algorithm brands.

• A new framework for empirical algorithm analysis. The framework enables

the effect of components and component structures to be analysed, through the use of

baselining and the randomisation testing of appropriate performance indicators. The

framework is applied to a standard benchmark suite to analyse the performance of

various components, including a new method for diversity promotion. This contribution

has been published as Purshouse and Fleming (2002).
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• Promotion of the requirement for more research into optimisation problems

with many objectives. A platform for such research is established via consideration of

the relationships between objectives. This contribution has been published as Purshouse

and Fleming (2003b).

• New knowledge and understanding of behaviour under many conflicting

objectives. The inquiry into many-objective conflict has identified for the first time

that difficulties, in terms of approximation set quality, can arise for larger numbers

of conflicting objectives that are not evident for smaller numbers of such objectives.

The factors responsible for this behaviour — primarily active diversity promotion in

combination with dominance resistance — are also believed to have been identified.

This knowledge should assist in the development of new algorithms, especially for real-

world applications. This contribution has been published as Purshouse and Fleming

(2003c).

• First demonstration of the benefits of many-objective problem decomposi-

tion. An innovative technique for multi-objective divide-and-conquer is also proposed,

using concepts from nonparametric statistics and parallel evolutionary algorithms. The

methodology is successfully evaluated using the general framework proposed in the

thesis. This contribution has been published as Purshouse and Fleming (2003a).

A number of additional contributions have resulted from the work undertaken during the

development of this thesis. For the sake of brevity and clarity, these contributions are not

explicitly documented within the monograph itself but are briefly described below:

• A contemporary review of evolutionary algorithms in control systems engi-

neering. The survey, commissioned as an International Federation of Automatic Con-

trol (IFAC) Professional Brief, considers applications in which the special properties

of evolutionary algorithms have been most notably exploited (Fleming and Purshouse

2001b). This contribution has been published as Fleming and Purshouse (2002) and,

in an abridged form, as Fleming and Purshouse (2001a).

• Enhancement of evolutionary algorithm toolbox for Matlab
1. Many new com-

ponents have been developed for the University of Sheffield’s GA Toolbox (Chipperfield,

1
Matlab is a software package for technical computing, developed by The MathWorks, Inc.
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Fleming, Pohlheim and Fonseca 1994) during the course of the work documented in

this thesis. The availability of these components will facilitate the practice of further

component-based design in the spirit of Michalewicz and Fogel (2000).



Chapter 2

Review of Evolutionary

Multi-Objective Optimisation

2.1 Introduction

2.1.1 Solving Problems

From planning a walk of the English coast-to-coast path from St Bees to Robin Hood’s Bay,

to solving Fermat’s Last Theorem, to the design of a nuclear fusion power plant, the problem

is ubiquitous. When a problem exists, a solution is naturally sought. Michalewicz and Fogel

(2000) offer the following definitions:

A problem exists when there is a recognized disparity between the present and

desired state. Solutions, in turn, are ways of allocating the available resources so

as to reduce the disparity between the present and desired state.

Michalewicz and Fogel (2000) also point out that for a problem to exist there must be

a corresponding “purpose-driven decision-maker”. The decision-maker (DM) is some entity

that has defined present and desired states and aims to transform the former into the latter.

Problem-solving also involves an entity called the analyst, who helps the decision-maker

to perform actions with the available resources to transform the state and thus solve the

problem. The analyst and the decision-maker roles are not restricted to humans, although

this is commonly the case, and may each be composed of multiple, conflicting elements. It is

also possible that a single entity may encapsulate both roles.

6
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Problem-solving requires consideration of the following questions:

1. Who are the decision-makers and stakeholders in the problem?

2. What objectives and preferences are possessed by each of the DMs?

3. What are the decision variables that comprise a solution to the problem?

4. What constraints exist for the problem?

5. By what methods can a candidate solution be assessed in the context of the problem?

6. What methods will be used to search for good candidate solutions?

7. How can a final solution be validated?

Each decision-maker has a set of performance criteria or objectives that a candidate

solution to the problem will be evaluated against. For example, when choosing a new home,

these may include the purchase price, the amount of renovation required, the proximity

to good schools, the proximity to good transport links, local crime levels, and the size and

orientation of the garden. In almost all cases, it is not possible to obtain the best performance

across all the objectives simultaneously. Thus, the DM makes use of preference information

for each objective in order to ultimately focus on a single solution. The DM may express a

preference hierarchy or priority between objectives, for example, “proximity to a good school

is more important than proximity to a motorway”. The DM may also specify an attainment

level or goal that is desired to be reached in an objective, such as “the purchase price should

be less than £150,000”. At a more abstract level of reasoning, the DM may wish to make

comparisons at a holistic level between competing candidate solutions, for example “52 Festive

Road is far better than 29 Acacia Road”. The actual expression of DM preferences must be

flexible. A technique should be chosen with which the DM is comfortable. From the above

discussion, the utility of fuzzy methods in preference capture is clear.

A candidate solution to a problem involves a number of actions that must be performed.

These relate to settings for decision variables in a problem. In the case of buying a house, one

major decision variable is the address of the property. Other decision variables may relate

to the choice of mortgage, and choice of solicitors. A further variable is the offer price to

be made. Decision variables may be of different types: for example, the choice of solicitor
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is from a discrete set of alternatives, whereas the offer price is of a more continuous nature.

Different settings for decision variables correspond to different candidate solutions to the

problem. Candidate solutions can be fairly complex in nature — such as settings for 10,000

Bezier curves for an aircraft airfoil — and may be of a hierarchical nature. The level of

influence of each decision variable on the objectives can differ, and the influence of a single

decision variable may vary within the context of choices for other variables.

Typically the solution to a problem will have a number of constraints placed upon it.

These may be hard constraints that must be satisfied, or may be soft constraints where the

degree of satisfaction may be subject to compromise. Some constraints arise naturally in the

problem domain (such as rate limits on an actuator). An example of a hard constraint is the

stability of a system. Goals for objectives, as discussed earlier, are often representative of

softer constraints. Note that in some cases, such as scheduling applications, it can often prove

very difficult to find any solution that will simultaneously meet all the problem constraints.

In order to find a good solution to the problem, some means of assessing the worth of

a candidate solution (against the defined set of objectives) is required. This is achieved by

using models of the real-world problem developed by the analyst. Models may take many

forms, such as analytical, empirical, and simulation, and are a simplification of the actual

processes involved. For example, in order to assess the levels of drag on an airfoil design, a

finite element computer simulation may be employed. In order to assess job waiting times

in a scheduling system, a discrete event simulation may be used. The model should be as

accurate as possible. However, there is a trade-off between accuracy and complexity (the

latter being measured in terms of development resources required, computational resources

required, and amenability to an analytical solution). At the very least, a model should be

able to provide accurate discrimination between the performance of two competing solutions.

Once a model has been developed to permit evaluation of candidate solutions, a search

technique can be used to find a good solution for the model. If the model is mathematically

well-behaved (that is, it is unimodal, continuously differentiable, deterministic, and convex)

then standard analytical techniques can be used to find a globally optimal solution. The

key difficulty here is that the assumptions required to generate such a model are usually so

great that the optimal solution to the model is not a good solution from the perspective

of the true problem. Thus, in order to find good solutions to high fidelity models, less
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orthodox techniques are required. The class of techniques known as metaheuristics (those

that work with knowledge of previous solutions to generate new solutions, using processes

that are metaphors of observed ‘natural’ behaviour) are popular and successful methods for

solving general models. A key advantage is that domain-specific information can be readily

incorporated into the search. The main disadvantage of such methods is that they can (in

most cases) only approximate the globally optimal solution.

Once the DM has selected a solution from the set recommended by the search method,

this must be validated prior to implementation in the real-world. A key stage of validation

is sensitivity analysis, in which the appropriateness of the solution is tested for small (likely)

perturbations of both the solution and model. Thus, the behaviour of the solution in the pres-

ence of uncertainty is tested. Uncertainties can arise, for example, because of manufacturing

tolerances on solution components or modelling errors. The solution may also be appraised

on higher fidelity models or limited real-world test environments (which would have been

prohibitive for use at the search stage because of the high complexity costs involved).

Problem-solving is generally a dynamic and iterative process. Experience of early abortive

attempts at the solving process aid the development of new approaches. As the search

progresses, the extent of the early uncertainty is decreased, and the DM has the opportunity

to learn more about the problem environment. This may lead the DM to revise the pre-

specified objectives and goals. The model may also be subject to change as more information

is gathered, or the actual problem itself changes (for example, if product demand fluctuates).

This stresses the need for flexibility in the solving techniques being used.

2.1.2 Contents of the Review

The notion of optimising multiple objectives simultaneously is formally introduced in Sec-

tion 2.2. The fundamental concepts of solution comparison and optimality are described in

Section 2.2.1. The aims of a generic multi-objective optimiser are outlined in Section 2.2.3.

The soft computing methodology known as evolutionary computing (EC) is introduced in

Section 2.3, and its special utility for multi-objective optimisation (MO) is explained in Sec-

tion 2.4.1. A thorough review of the evolutionary methods developed to meet the aims of

multi-objective optimisation is provided in Section 2.4.
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2.2 Multi-Objective Optimisation

2.2.1 Fundamental Concepts

As discussed in Section 2.1.1, a general problem to be solved will have a defined set of

objectives to be optimised. This is formally defined in Definition 2.1. If a consistent DM line

of preference (Edgeworth 1932) exists for each objective then candidate solution comparisons,

and consequently optimality, can be defined using Pareto concepts (Coello, Veldhuizen and

Lamont 2002). Minimisation is assumed throughout without loss of generality.

Definition 2.1 (Multi-Objective Optimisation Problem) Minimise the M components

of a vector function z with respect to a vector variable x = (x1, . . . , xn) in a universe U , i. e.,

min z(x) = [z1(x), . . . , zM (x)]

An example multi-objective problem domain is shown in Figure 2.1. The left-hand il-

lustration shows a decision-space with two decision vectors. Constraints on these vectors

lead to a feasible region, U , as identified in grey. Each decision vector in the decision-space

maps uniquely to an objective-vector in objective-space as shown in the right-hand illustra-

tion. Note that the inverse mapping may be non-unique. In the example, two objectives are

shown. However, in general, the number of objectives may be any positive integer. This is

also true of the number of decision variables.

Consider a pair of candidate solutions, u and v. Solution u can be considered superior to

v if u performs as least as well as v across all the objectives and performs better than v in

at least one objective. In the language of multi-objective optimisation, solution u dominates

solution v. This comparison is formalised in Definition 2.2 and shown graphically, for the

two objective case, in Figure 2.2.

Definition 2.2 (Pareto Dominance) Given two candidate solutions u and v from U , vec-

tor z(u) is said to dominate vector z(v) (denoted by z(u) ≺ z(v)) if and only if,

∀i ∈ {1, . . . ,M}, zi(u) ≤ zi(v) ∧ ∃i ∈ {1, . . . ,M} : zi(u) < zi(v)

If no feasible solution, v, exists that dominates solution u then u is classified as a non-

dominated or Pareto optimal solution. This is formally defined in Definition 2.3. There
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Figure 2.1: The multi-objective problem domain
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Figure 2.2: Example of Pareto dominance in two objectives
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are no superior solutions to the problem than u, although there may be other equally good

solutions in the absence of further DM preference information.

Definition 2.3 (Pareto Optimality) The candidate solution u ∈ U is Pareto optimal if

and only if,

¬∃v ∈ U : z(v) ≺ z(u)

The collection of all candidate solutions that meet Definition 2.3 are known as the Pareto

optimal, or efficient, set, X∗. The corresponding objective vectors are described as the

Pareto front or trade-off surface. An example of the relationship is shown in Figure 2.1. The

terminology non-dominated is sometimes used when referring to either the Pareto optimal

set or the Pareto front (although strictly this only applies to the latter vectors). The above

definitions are all provided in their global sense. Local definitions (such as locally non-

dominated) can be obtained by substituting universe U for a local space L ⊆ U .

2.2.2 Advanced Concepts

An approximate version of the Pareto dominance concept, known as ε-Pareto dominance was

established in the operations research (OR) community during the mid-1980s (refer to Helbig

and Pateva (1994) for a review). Under ε-dominance, the conditions required for one solution

to dominate another are relaxed. Various forms of ε-dominance have been proposed, of which

the multiplicative form is provided in Definition 2.4. From a practical perspective, the value

of ε can be regarded as the maximum change in the value of an objective that is regarded as

unimportant by the decision-maker (the so-called indifference threshold).

Definition 2.4 (ε-Pareto Dominance) If z(L) ⊆ R
+M then, given two candidate solu-

tions u and v in L, vector z(u) is said to ε-dominate vector z(v) (denoted by z(u) ≺ε z(v))

if and only if,

∀i ∈ {1, . . . ,M}, (1 − εi)zi(u) ≤ zi(v),

where εi is the DM indifference threshold on the ith objective.

An illustration of multiplicative ε-dominance in the bi-objective case is shown in Fig-

ure 2.3. The shaded area indicates the region of objective-space that is ε-dominated by

solution u. This region is composed of the area that would normally be dominated by u plus
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areas that would otherwise be non-dominated with respect to u or would in fact dominate u.

Thus, solution v that is non-dominated with respect to u (according to the pure definition

of dominance) is also ε-dominated by u.

z1

z2

z u( )

z v( )

(1- )ze1 1

(1- )ze
2 2

region -dominated
by ( )
assuming minimisation
of

e

z u

z

Figure 2.3: Example of multiplicative ε-Pareto dominance in two objectives

A set of solutions that together ε-dominate the universe U is known as an ε-approximate

Pareto optimal set. Such a set is generally non-unique. This concept was refined further by

Laumanns, Thiele, Deb and Zitzler (2002) to the case where all the solutions within the set

are also globally Pareto optimal. This set is then termed ε-Pareto Optimal and is formalised

in Definition 2.5 below.

Definition 2.5 (ε-Pareto Optimal Set) The set of candidate solutions X
ε

∗
∈ L, where

z(L) ⊆ R
+M , is an ε-Pareto optimal set if and only if,

∀v ∈ L,∃u ∈ Uε : z(u) ≺ε z(v) ∧ u ∈ X∗

2.2.3 Requirements of a Multi-Objective Optimiser

The globally optimal trade-off surface of a multi-objective problem can contain a potentially

infinite number of Pareto optimal solutions. The task of a multi-objective optimiser is to

provide an accurate and useful representation of the trade-off surface to the decision-maker.
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The set of solutions generated by the optimiser is known as an approximation set (Zitzler,

Thiele, Laumanns, Fonseca and Grunert da Fonseca 2003). Three aspects of solution set

quality can be considered. These are listed below, and shown graphically in Figure 2.4.

• Proximity. The approximation set should contain solutions whose corresponding ob-

jective vectors are close to the true Pareto front.

• Diversity. The approximation set should contain a good distribution of solutions,

in terms of both extent and uniformity. Good diversity is commonly of interest in

objective-space, but may also be required in decision-space. In objective-space, the

approximation set should extend across the entire range of the true Pareto front with

a parametrically uniform distribution across the surface.

• Pertinency. The approximation set should only contain solutions in the decision-

maker region of interest (ROI). In practice, and especially as the number of objectives

increases, the DM is interested only in a sub-region of objective-space. Thus, there

is little benefit in representing trade-off regions that lie outside the ROI. Focusing on

pertinent areas of the search space helps to improve optimiser efficiency and reduces

unnecessary information that the DM would otherwise have to consider.

2.3 Evolutionary Algorithms

2.3.1 Fundamental Concepts

Evolutionary computation is a search discipline based on the evolutionary biology concepts

of natural selection (Darwin 1859) and population genetics (Fisher 1930). The term evolu-

tionary algorithm (EA) has no rigorous definition, but can generally be used to describe any

population-based, stochastic, direct search method. Many such algorithms exist.

Contemporary evolutionary algorithms have their origins in two originally independent

and highly influential evolutionary models: the German evolution strategy (ES) (Rechenberg

1973) and the American genetic algorithm (GA) (Holland 1975). The distinctions between

the fields have weakened considerably over the last thirty years, with modern researchers

encouraged to think in broader EA terms (Michalewicz and Fogel 2000). Note that other,
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similar, early evolutionary models were also proposed, but these have not enjoyed the same

level of influence as GAs and ES.

The fundamental idea in an evolutionary search is to iteratively apply variation (v) and

selection (s) processes to a population of candidate solutions until some termination criterion

is satisfied. This core concept is described in Equation 2.1, in which P [t] is the population

at time t (Michalewicz and Fogel 2000).

P [t+ 1] = s(v(P [t])) (2.1)

Probabilistic changes are made to solutions in the population to yield a set of new candi-

date solutions. Solutions are then selected for inclusion in the population at the next iteration

(or generation), P [t + 1], based on their ability to solve the problem at hand. Variation is

then applied to the new population to generate yet another set of new solutions, and so on.

The aim of the EA is thus to progressively develop better solutions to the problem by making

modifications to previous solutions that exhibited good performance within their peer group.

2.3.2 A Generalised Evolutionary Algorithm

Expanding slightly on the fundamental evolutionary search mechanism given in Equation

2.1, the general form of a modern EA can be captured as shown in Equation 2.2. The

central difference is that the overall selection operation has been split into two processes,

selection-for-variation (sv) and selection-for-survival (ss), which are described in more detail

below.

P [t+ 1] = ss(v(sv(P [t])), P [t]) (2.2)

Selection-for-Variation

At the selection-for-variation stage, solutions from P [t] are chosen for inclusion in the so-

called mating pool, to which variation operators are applied to create new solutions. The

performance of every solution is evaluated for the problem at hand, by whatever means. This

raw evaluation is then transformed into a scalar fitness value that is an overall measure of

solution performance. Larger fitness values correspond to better solutions. All EA selection

operators use fitness value as the selection discriminator. Fitness ultimately represents the

expected number of times that a solution will be selected. The mapping between the two
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quantities is often implicit to the selection procedure used.

Several different selection operators have been proposed in the literature, including tour-

nament selection (Brindle 1981) and stochastic universal sampling (Baker 1987). The reader

is referred to Goldberg and Deb (1991) for a review and analysis. The ideal selection mech-

anism has a low computational complexity, is parallelisable, has minimal spread (defined as

the maximum sample deviation from the expected number of selections of an individual),

and minimal bias (defined as the difference between the sampling probability of selection for

an individual and the true expected value). Such an ideal mechanism is difficult to obtain in

practice.

All selection operators have a property known as selective pressure. This is the ratio

between the number of expected selections of the best performing solution and the mean

performing solution. In proportionate selection schemes this value is explicitly defined by the

user, whilst it is implicit to tournament selection mechanisms.

Variation

The variation operators use the genetic material of the solutions in the mating pool to create

new candidate solutions. The operators work on a representation of the solutions (known as

the genotype) rather than the actual solutions themselves (known as the phenotype). Thus,

coding and decoding processes are required between genotype and phenotype. In genetic

algorithms, the genotype is traditionally a binary string, whereas in evolution strategies it

is a concatenation of real numbers (direct operation on the phenotype). However, there

is no restriction as to representation, providing that variation operators can be devised to

handle it. Contemporary wisdom is to use whatever representation seems most appropri-

ate for the task at hand (Michalewicz and Fogel 2000). For instance, genetic algorithms

solving real-parameter function optimisation problems generally use real-parameter variation

operators (Herrera, Lozano and Verdegay 1998). Block diagram representations, and other

structures such as trees, are also popular (Koza 1992). In one example, Gray, Murray-Smith,

Li, Sharman and Weinbrunner (1998) describe a potential methodology for the structural

identification of a system using a block diagram approach.

Variation operators can be classified according to whether one solution or multiple solu-

tions (known as parents) are used to create the new solutions (known as children or offspring).
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Single parent operators are commonly described as mutations. The classic example for the

original genetic algorithm is known as bit-flipping mutation, in which each element, or locus,

of the genotype is probabilistically tested for possible mutation. Consider the parent geno-

type 1111: if only the third locus of the genotype is to be mutated then the resulting child

genotype is 1101. In the classic evolution strategies approach, mutation is achieved by means

of a Gaussian probability density function (p.d.f.) centred on the parent decision variable.

The p.d.f. is sampled to obtain a child value on the real number range.

Multi-parent variation operators are commonly known as recombination or crossover op-

erators. This can be illustrated by the original genetic algorithm technique known as single-

point binary crossover, in which two parents are partitioned at randomly determined equiva-

lent positions and then the genetic material is swapped between the two genotypes in one of

the segments to form two children. Consider an example with parents 1111 and 0000: if the

crossover site is chosen as the third locus, then the children are 1100 and 0011. Recombina-

tion was absent from early ES approaches but special versions have now been developed for

this domain (Whitley 2001).

Every variation operator has an associated probability of application. Good values for this

probability depend on the problem to be solved and the interaction with selection mechanisms.

In genetic algorithms, general heuristics exist for both crossover and mutation (Goldberg

1989). The probability of crossover between a parent pair is usually quite high (values such

as 0.7 or 0.8 are common). Conversely, the probability of applying mutation to a particular

locus on the genotype is usually quite low (often set to be equivalent to an expectation of one

mutation per solution). These values are based on the assumption that both operators are

to be applied at each generation. In evolution strategies, a self-adaptive approach is usually

employed, in which the variation probability is itself subject to evolution (Whitley 2001).

Selection-for-Survival

Following the application of the variation operators, two sets of solutions exist: the current

population, P [t], and the child population, v(sv(P [t])). Since the size of an EA population

over the generations is typically static, more solutions now exist than can be retained. Thus,

a selection-for-survival stage is required in order to determine the new population, P [t+ 1].

In ES, this concept is embodied in the so-called (µ, λ) and (µ + λ) schemes, where µ is the
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current population and λ is the child population. In the (µ, λ) method, only child solutions

can survive to P [t+ 1], whereas in the (µ+λ) approach the child and P [t] solutions compete

for inclusion in the subsequent population. In the genetic algorithm field the concept of

a generational gap was conceived, in which sufficient children were generated to replace a

certain percentage of P [t]. Selection-for-survival is often a deterministic process in which the

best solutions are selected from a fitness-based hierarchy. However, stochastic schemes are

also possible. ss schemes that force the retention of high-performance members of P [t] are

described as elitist.

Exploration versus Exploitation

One of the fundamental issues in any search algorithm is the trade-off between exploration of

the undiscovered regions of search space and detailed exploitation of promising areas already

identified. Good performance can be heavily dependent on an appropriate choice of e-e

trade-off. In an EA, this choice is controlled by means of EA operators and associated free

parameters. Classically, in the EA community, variation is seen as an explorative operator,

whilst selection is viewed as exploitative. This links cleanly with the evolutionary biologist’s

view of natural selection as being a process that reduces the variation within a population,

and the effect of genetic mutations to increase the aforementioned variation. However, in the

context of a general EA search, this is an oversimplification. In particular, the e-e trade-off

can often be heavily varied entirely within the EA variation operator, by means of a single

control parameter: blend crossover is one such example (Eshelman and Schaffer 1993). The

selective pressure, described earlier, is another means of control.

Obtaining the correct e-e balance for the task at hand is the black art of EA design

(although this area is becoming increasingly understood). Essentially, it requires the ex-

ploitation of a priori knowledge about the problem landscape under consideration. Note

that the required e-e setting may change as the optimisation progresses (for example, ex-

pected variation perturbations should probably be reduced as the algorithm converges on a

final solution). Some automatic schemes for controlling the e-e trade-off within the variation

operator have been suggested: examples are described by Bäck (1996) and Deb and Agrawal

(1995).
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2.3.3 Advanced EA Concepts

Many variants on the original genetic algorithms and evolution strategies have been proposed

in the literature. Some of the key areas of extension are briefly reviewed in this section.

Probabilistic Models

There exists a class of search techniques, known as estimation of distribution algorithms

(EDAs), that attempt to build a probabilistic model of current high performance areas of

the search space and generate new candidate solutions from this model. These solutions

are then used to update the model, depending on their performance (Pelikan, Goldberg and

Lobo 1999).

EDAs are very closely related to evolutionary algorithms. The main difference is that the

variation operators of the EA are replaced by probabilistic sampling from a model. Probabilis-

tic modelling and sampling can create a substantial overhead in the algorithm (significantly

larger than that of standard variation operators), but offers the advantage that relationships

between decision variables are explicitly considered and exploited to provide a more efficient

search in terms of required solution evaluations.

EDAs can be classified according to the complexity of the models they are capable of

building. Higher fidelity models can effectively solve a wide range of problems, but the costs

of model building and sampling can be considerable. A comprehensive review of EDAs can

be found in Pelikan et al. (1999). Simple EDAs, such as population-based incremental learn-

ing (PBIL) (Baluja 1994), assume that there are no interactions between variables. Such

approaches will work well so long as the epistasis in the problem is limited. The next step in

complexity is to consider pair-wise relationships between decision variables, as in Pelikan and

Mühlenbein’s (1999) bivariate marginal distribution algorithm (BMDA). Various pair-wise

topologies are possible, of which BMDA’s forest is the most flexible. In order to overcome

the limitations of the pair-wise interaction algorithms, research has continued into more

powerful and complicated algorithms that are capable of handling general multivariate inter-

actions. These require computationally expensive methods to build the associated models.

The methods also tend to be greedy, thus reducing the probability of generating a globally

optimal model. The Bayesian optimisation algorithm (BOA) models promising solutions by

learning Bayesian networks (Pelikan, Goldberg and Cantú-Paz 1998).
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Most EDAs require that the decision variables be represented by fixed length strings

defined over a finite alphabet, which can seriously hamper the flexibility of the algorithms

as a general problem-solving tool. Some work has, however, been undertaken into the in-

corporation of real-parameter representations (Bosman and Thierens 1999). Research has

also considered representing the high-performance solution region by more than one proba-

bility model, through the use of solution clustering and mixture distributions (Bosman and

Thierens 2000, Pelikan and Goldberg 2000).

Population Topology

The topology of an EA population can be any of three basic forms: global, island, or diffusion

(Chipperfield and Fleming 1995). In the global model, all the candidate solutions reside

within a single population, within which every solution competes with every other solution

for selection. Also, for multi-parent variation schemes, any solution can usually participate

with any other. This scheme is the most popular in practice, largely because it is simple and

can produce acceptable results.

In the island model, separate sub-populations of solutions (known as demes) exist which

evolve largely independently. Migration is possible, in which some solutions on one island are

transferred to another. An example island model is depicted in Figure 2.5, in which four sub-

populations are shown in a ring topology. Migration is only possible between neighbouring

islands on the ring. Note that other topologies are also (equally) acceptable.

Island models require extra design choices to be made, including the number and ar-

rangement of the sub-populations, the standard EA settings for the evolution of each sub-

population, and also the choice and frequency of migrants. However, the island concept offers

coarse-grained parallelisation through the assignment of different demes to different proces-

sors, and there is some empirical evidence to suggest that island schemes can produce good

results in fewer overall solution evaluations than an equivalent global model (see, for example,

Cohoon, Martin and Richards (1991)).

A finer-grained parallelisation can be obtained through use of the diffusion model. In

this approach, single solutions or small groups are assigned to nodes in a grid (with each

node potentially hosted on a separate processor). Various grid geometries are possible, such

as ring, torus, and hypercube. EA operations are then performed in local neighbourhoods
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Figure 2.5: The island model: four demes arranged in a ring topology

within the overall grid. It has been claimed that the diffusion model is more efficient (in terms

of required solution evaluations) than the island model (Gordon, Whitley and Böhm 1992).

However, the diffusion topology is the least frequently used, perhaps because of the limited

availability of fine-grained parallel computing systems.

An example diffusion model is shown in Figure 2.6. Twenty-five population nodes are

shown, each of which will be assumed to contain a single candidate solution. A simple

rectangular grid configuration is shown. This model could be easily extendible to a torus by

allowing nodes on one edge to communicate directly with nodes on the opposite edge. In

the example a solution has been chosen for recombination, as indicated by the black circle.

A new solution is then created for consideration at this node by performing recombination

with one of the neighbouring nodes on the grid (these are indicated in Figure 2.6 by the grey

circles). The neighbourhood connections are indicated by the heavier lines on the grid.

Genetic Drift Countermeasures

If multiple solutions in the current EA population have identical fitness values then, over

generations, the population will tend to converge to one of these solutions. This behaviour

is also known to occur in biological population genetics and is termed genetic drift (De

Jong 1975). The drift occurs because of cumulative sampling errors on expected selection

rates due to the use of a finite population.
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Figure 2.6: The diffusion model: 25 solutions arranged in a simple rectangular grid

Explicit processes are required in an EA to prevent the problem of genetic drift and to

enhance diversity in the population. The methods are aimed at so-called niche formation: the

maintenance of multiple, distinct sub-populations within the context of the global population.

The two classic niching methods are crowding (De Jong 1975) and sharing (Goldberg and

Richardson 1987). In the former scheme, the solution from a sample of P [t] that is most

similar to a child solution is replaced by the child in P [t + 1] at the selection-for-survival

stage of the EA. In the sharing method, solution fitnesses are degraded if they are within

a certain distance of other solutions. The notions of similarity and distance are usually

problem-dependent.

Goldberg and Richardson’s (1987) sharing concept makes use of the power law sharing

function shown in Equation 2.3, where σshare is a parameter to control the extent of sharing,

d is a distance metric, and α shapes the function.

Sh(d) =







1 −
(

d
σshare

)α
if d < σshare,

0 otherwise.
(2.3)

The fitness of the ith solution is modified by all the other solutions (including itself) that

reside within the neighbourhood defined by σshare as shown in Equation 2.4, where f̄i is the
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modified fitness, fi is the original fitness, N is the number of solutions in the population, and

di,j is the distance between solution i and solution j.

f̄i =
fi

∑N
j=1 Sh(di,j)

(2.4)

A suitable setting for σshare is critical to the success of the method. A method to assist

in the choice of the parameter in the context of single-objective optimisation (sharing in

decision-space) has been proposed by Deb and Goldberg (1989). Approaches have also been

proposed specifically for multi-objective optimisation (where sharing is normally computed

in objective-space). These methods are discussed further in Section 2.4.4 but it should be

noted that most of the schemes can equally be applied to decision-space.

Constraint Handling Methods

Most real-world problems involve constraints on the solution. If a solution can meet all

constraints it is described as feasible. If any of the constraints are breached it is described

as infeasible. In applications such as scheduling, the identification of even a single feasible

solution can be a challenging task. Several methods have been developed to handle constraints

in EAs, as comprehensively reviewed by Coello (2002). A summary of the main approaches

is detailed below:

• Coding. The most efficient approach is to design the representation and variation

operators in such a way that infeasible solutions cannot be generated. In practice, this

can be quite a difficult task to achieve. Decoders are sometimes used to translate an

indirect solution representation into the solution itself. The genotype is often ‘read’

sequentially, with the interpretation of later parts of the genotype depending on the

decoding of previous elements. This approach can be of great help in ensuring feasibility

but it can prove very difficult to analyse the effect of variation operators in these

conditions. An example of decoder use is described by Shaw and Fleming (1997).

• Penalties. The use of penalty functions has proved popular in the EA community

(Coello 2002). In this approach, the fitness values of infeasible solutions are reduced,

usually as some function of their ‘distance’ to being feasible. The use of penalties is

rather inelegant, but has proved effective in practice.
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• Repairs. Specialist repair algorithms have been suggested to convert infeasible solu-

tions into related feasible solutions. Typically, the fitness of such a solution is reduced

in relation to the ‘cost’ of the associated repair.

• Multi-objective formulation. Rather than modifying an infeasible solution or reduc-

ing its overall fitness, it is also possible to draw a distinction between the performance of

a solution on the objectives and its performance on the constraints. In a multi-objective

formulation, a constraint can thus become a further axis of performance. In these cir-

cumstances Pareto-type solutions to the problem can be sought, using comparison op-

erators such as preferability (Fonseca and Fleming 1998a) and constrained-domination

(Deb, Pratap, Agarwal and Meyarivan 2002).

Competent Evolutionary Algorithms

In order to use an EA, in addition to domain-specific considerations such as representation

and variation, a set of design choices must be made with respect to population size, selective

pressure, and variation operator application probabilities. It is a non-trivial task to deter-

mine good settings for these parameters, which requires substantial practical experience of

EA implementations. However, based on theoretical results from the binary coded genetic

algorithm field, Lobo and Goldberg (2001) and Reed, Minsker and Goldberg (2000) have

devised design methodologies for so-called competent evolutionary algorithms which help the

user to determine appropriate parameter settings. This is an area that demands urgent fur-

ther work, but will always carry a high degree of complexity because of the intrinsic flexibility

of the EA methodology for general problem-solving. In particular, guidelines need to be as

representation-free as possible.

2.3.4 Advantages and Disadvantages

The fundamental advantage of the EA methodology over alternative schemes is the aston-

ishing flexibility that the method permits. Since the EA is a direct search method, there

are no theoretical restrictions on the evaluation function: simulation and human response to

solutions are both possible. In addition, there are no restrictions on the representation of a

solution. Any data type is permitted for which suitable variation operators can be devised.

Variation operators can, and should, be domain-specific. Since the EA is a population-based
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and stochastic methodology, it offers increased robustness to multimodality and randomness

over conventional methods.

The flexibility of the EA is a two-sided coin, however. The design of an EA requires a

number of choices to be made. Poor choices, for example the wrong probability of mutation for

the landscape at hand in the context of the selective pressure, will lead to poor performance.

Furthermore, the ‘Swiss army knife’ nature of the EA means that it will tend not to be

competitive with domain-specific tools (Michalewicz and Fogel 2000). If a good method

exists to solve the task at hand without the involvement of any harmful assumptions or

simplifications then that method should certainly be used. EAs rely on an iterative search

over a population of solutions. Thus, if solution evaluation is time-consuming then the

resulting optimisation process can be a very computationally intensive business. EA design

in such circumstances requires special care. The requirement for a completed search within

a reasonable time-frame has motivated research into parallel evolutionary algorithms (such

as the island and diffusion models described earlier) and metamodelling (the approximation

of solution performance using faster, lower accuracy models) (Bull 1999).

2.4 Evolutionary Multi-Objective Optimisation

Evolutionary algorithms are a popular tool for multi-objective optimisation. The mecha-

nisms that underpin their special utility are described in Section 2.4.1. A brief history of

the evolutionary multi-objective optimisation (EMO) field is provided in Section 2.4.2. As

discussed previously in Section 2.2, a multi-objective optimiser is required to produce an ap-

proximation set that is close to globally Pareto optimal and that contains a rich distribution

of solutions in regions of interest to the decision-maker. Distinct EA components have been

developed to address each aspect of approximation set quality. In Section 2.4.3, methods for

obtaining good proximity to the global Pareto front are reviewed. In Section 2.4.4, methods

for obtaining a suitable distribution are discussed. Techniques for developing and focusing

on the DM ROI are outlined in Section 2.4.5.

2.4.1 Why Use EAs for MO?

In addition to the general benefits of using an EA as a search tool, outlined in Section 2.3.4, the

EA concept is particularly suitable for multi-objective tasks. The population-based nature
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of the algorithm permits objectives to be treated distinctly through the notion of Pareto

dominance and permits a family of trade-off solutions to be produced in a single execution

of the algorithm. The fundamental benefit of this latter factor over multiple-start strategies

is the potential for a cooperative search for ultimately different solutions, thus saving on

the total number of solution evaluations required. As discussed in Section 2.4.4, given the

implementation of a suitable process, a multi-objective evolutionary algorithm (MOEA) can

work toward a good solution distribution. In multi-start strategies that rely on particular

parameter settings to provide direction toward a particular area of the Pareto front, there is

generally no guarantee that a good distribution of parameter settings will ultimately lead to

a good distribution of solutions on the trade-off surface.

The key EMO benefit of not requiring objectives to be aggregated in some way to form

an overall cost function cannot be overemphasised. It is generally very difficult to aggre-

gate objectives in a manner that precisely captures the DM preferences. Also, the required

normalisation of non-commensurable objectives can be far from straightforward. The EMO

Pareto-based approach offers flexibility and information-richness with regard to solution per-

formance discrimination, and assists the DM in learning about the problem as the search

progresses.

2.4.2 History of EMO

The first evolutionary algorithms that were purposefully designed to obtain an approximation

set were proposed in the mid-1980s (Schaffer 1985, Fourman 1985, Kursawe 1991). In these

schemes, a proportion of the population was selected according to each individual objective.

The main difficulty with this approach is that it often creates a phenomenon known as

speciation, in which solutions arise in the population that are particularly strong in a single

objective and particularly poor in others. Thus, important compromise solutions remain

undiscovered, since the recombination of solutions from different extreme regions of the trade-

off surface cannot usually be assumed to generate an ‘intermediate’ compromise.

In the weighted-sum approach to MO, performance is captured in a single objective,

calculated as a weighted-sum of individual performance in each of the original individual

objectives. The well-known drawbacks of this approach are the difficulty in setting values

for the weights, and the necessary condition for convexity of the trade-off surface that is
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required to obtain all Pareto optimal solutions (Censor 1977). Thus, no combination of

weights exists that can generate solutions in non-convex regions of the trade-off surface, as

shown geometrically by Fleming and Pashkevich (1985). However, EMO schemes based on

weighted-sums have also been proposed. Haleja and Lin (1992) included the weight vector in

the solution genotype and allowed multiple weight combinations to be propagated through

the population during evolution. Jin, Okabe and Sendhoff (2001a) varied the weight vector

over the evolution, and have also provided theoretical justification for the method (Jin, Okabe

and Sendhoff 2001b, Okabe, Jin and Sendhoff 2002).

Unlike these early attempts, the majority of modern EMO approaches are based on the

concept of Pareto dominance given in Definition 2.2 (Coello et al. 2002). The use of Pareto

dominance as a basis for solution comparison in EAs was first suggested by Goldberg (1989),

together with the use of a niching technique to encourage solution distribution across the

trade-off surface. In the early-1990s, three much-cited techniques emerged based on Gold-

berg’s ideas: Fonseca and Fleming’s (1993) multi-objective genetic algorithm (MOGA), Horn

and Nafpliotis’s (1993) niched Pareto genetic algorithm (NPGA) and Srinivas and Deb’s

(1994) non-dominated sorting genetic algorithm (NSGA), although early less well-known im-

plementations by Ritzel (1992) and Cieniawski (1993) have also been reported (Horn and

Nafpliotis 1993, Fonseca and Fleming 1995b). The techniques differ slightly in the way in

which fitness is derived from Pareto comparisons of solutions. MOGA, NPGA, and NSGA

all use fitness sharing for diversity promotion (Goldberg and Richardson 1987).

In the late-1990s, new methods were proposed to improve on the performance of the

earlier Pareto-based algorithms. The innovations were usually evaluated on bi-objective test

problems. Research efforts have focused particularly on the selection-for-survival aspect of

an MOEA, with new methods for preserving and using identified (relatively) good solutions.

Techniques for population density estimation and its use in diversity-promotion schemes

have also been the focus of contemporary research. These ideas have been implemented in

algorithms such as Zitzler and Thiele’s (1998) strength Pareto evolutionary algorithm (SPEA),

Corne, Knowles and Oates’s (2000) Pareto envelope-based selection algorithm (PESA), and

Deb, Pratap, Agarwal and Meyarivan’s (2002) elitist non-dominated sorting genetic algorithm

(NSGA-II). A schematic that summarises the key developments in EMO research is provided

in Figure 2.7.
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year

1985

First EMO algorithm

Schaffer (1985) introduces the first explicit
MOEA. In the

(VEGA), selection is based on
performance on individual objectives.

vector evaluated genetic
algorithm

Concept of modern MOEA

Goldberg (1989) suggests the use of Pareto-
based selection and niching mechanisms.

First Pareto-based MOEA

Fonseca and Fleming (1993) develop an EA
with (i) Pareto selection for good proximity, (ii)
fitness sharing for good diversity, and (iii)
incorporation of DM preferences to focus on the
ROI.

1993

1989

Link to density estimation

Fonseca and Fleming (1995a) identify the
similarity between fitness sharing and density
estimation techniques in statistics.

First elitist MOEA

Tamaki (1994) introduce the first MOEA to
incorporate an active selection-for-survival
process.

et al

Popularisation of elitist MOEAs

Zitzler (2000) perform a benchmark bi-
objective study that highlights the performance
advantages of elitism.

et al

Importance of -dominancee

Laumanns, Thiele, Deb, and Zitzler (2002)
develop a selection-for-survival mechanism that
guarantees optimal proximity and diversity in the
limit.

Unification of EMO

Laumanns (2000) consider MOEAs at an
abstract level.

et al

1995

2000

1994

2000

2002

Figure 2.7: Key developments in EMO history
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2.4.3 Methods for Obtaining Good Proximity

The selection methods that discriminate in favour of locally non-dominated solutions over

dominated counterparts are the corner-stone for evolving the population toward the globally

optimal surface. The methodologies are based on a partial ordering, or ranking, of the

population. Following the terminology of Zitzler (2002), these schemes make use of the

following information for each solution that can be drawn from the current population:

• Dominance rank. The number of solutions in the population that dominate the

solution under consideration.

• Dominance count. The number of solutions in the population that are dominated

by the solution under consideration.

• Dominance depth. The rank of the solution in the non-dominated sorting of the

population.

Non-dominated sorting was the original Pareto-based EA approach proposed by Goldberg

(1989). The locally non-dominated solution in the population are identified, assigned rank 0,

and are removed temporarily. In the remaining population, the new locally non-dominated

solutions are identified, assigned rank 1, and are removed. This process is continued until all

solutions have been assigned a rank.

Fonseca and Fleming (1993) achieved a ranking with greater resolution simply through

use of the dominance rank, in a scheme called Pareto-based ranking which was originally

implemented in the MOGA. A further example of its use can be found in Thierens and

Bosman’s (2001b) multi-objective mixture-based iterated density estimation evolutionary al-

gorithm (MIDEA). Note that Khan, Goldberg and Pelikan (2002) also implemented a prob-

abilistic model-building scheme based on non-dominated sorting. A still greater degree of

granularity is achieved in Zitzler and Thiele’s (1998) strength-based approach, originally im-

plemented in SPEA, which makes use of both dominance rank and dominance count. A

modified version has also been proposed in the SPEA2 (Zitzler, Laumanns and Thiele 2001).

In another variation on the dominance rank theme, Lu and Yen (2002) proposed an

automatic accumulated ranking strategy in which the rank of a solution is the sum of the

ranks of the solutions that dominate it. A sample-based approximation to a Pareto-based

ranking of the entire population was proposed by Horn and Nafpliotis (1993).
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Proximity Promotion in Selection-for-Variation

Fonseca and Fleming (1993) and Srinivas and Deb (1994) map rank values to fitness values,

via some (typically linear) transformation, and then apply proportional selection methods

in order to form the mating pool: stochastic universal sampling and stochastic remainder

sampling respectively (Baker 1987). Binary tournament selection-for-variation operates di-

rectly on the strength-based fitness measure in the SPEA family approaches (Zitzler and

Thiele 1998, Zitzler, Laumanns and Thiele 2001) and on the dominance depth in Deb, Pratap,

Agarwal and Meyarivan’s (2002) NSGA-II.

In some methodologies, such as the PESA family of algorithms (Corne et al. 2000, Corne,

Jerram, Knowles and Oates 2001), selection-for-variation operates purely on locally non-

dominated solutions and thus no Pareto-based selection is required at this stage. Comparisons

are based purely on density issues, as discussed in the forthcoming Section 2.4.4.

Proximity Promotion in Selection-for-Survival

In the early Pareto-based MOEAs, such as MOGA and NSGA, all of the child solutions that

result from the variation stage replace all the parents during selection-for-survival. This is a

non-elitist concept that is identical to the (µ, λ)-ES approach. Note that, in these schemes,

there is an often implicit assumption that an infinite memory of all non-dominated solutions

found during the course of the optimisation is maintained (the so-called off-line archive).

Selection-for-survival can be considered inactive in these approaches.

Active selection-for-survival systems, often labelled as elitism, on-line archiving, or sec-

ondary population, have proved very popular in recent years (Deb 2001a). Much of this

popularity springs from a study that compared elitist algorithms favourably with non-elitist

algorithms on a variety of real-parameter bi-objective test functions (Zitzler, Deb and Thiele

2000). Elitism (in certain forms) is also a required element for an EA to guarantee conver-

gence in the limit to the global optimum, but the general aim of active selection-for-survival

is to improve the quality of approximation sets (in terms of both proximity and diversity)

that can be obtained within a given finite number of candidate solution evaluations. The

proximity elements of such schemes are considered here.

Following the terminology of Zitzler (2002), selection-for-survival can be incremental or

en bloc. In the former scheme, solutions are sequentially considered for inclusion in the new
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population (thereby the order of presentation can affect the outcome). In the latter approach,

the solutions are considered simultaneously (order is unimportant).

Selection-for-survival often contains a large deterministic element. The (µ+ λ)-ES tech-

nique is used by Deb, Pratap, Agarwal and Meyarivan (2002) in the NSGA-II. The best

ranked individuals from the combined child and current population pools are retained to

form the new population. Tied ranks are decided by diversity considerations, followed by

random selection if required. For the most part, this is a deterministic method. The scheme

is en bloc.

In SPEA, Zitzler and Thiele (1998) used the classical GA generational gap approach, in

which a proportion (symbolised by Zitzler and Thiele (1998) as an external population) of

the old population is preserved. The actual proportion chosen represents a form of elitism

intensity (Laumanns, Zitzler and Thiele 2001). As usual, locally non-dominated solutions

are preserved. According to Zitzler (1999), this type of approach was first used by Tamaki,

Mori, Araki, Mishima and Ogai (1994). Since the number of non-dominated individuals may

be greater than the designated fraction of the population to be retained, diversity-based

clustering is used to reduce the set as detailed in Section 2.4.4. Zitzler (1999) generalises this

scheme as universal elitism and relates the mechanism back to its origins in single-objective

EAs (De Jong 1975) and earlier multi-objective extensions. In these latter approaches, the

reduction criterion could be random (Cieniawski, Eheart and Ranjithan 1995, Ishibuchi and

Murata 1996), time-based (Parks and Miller 1998), or single-objective-based (Anderson and

Lawrence 1996, Murata, Ishibuchi and Tanaka 1996, Todd and Sen 1997). In the SPEA2

mechanism, dominated points are also preserved if space permits (Zitzler, Laumanns and

Thiele 2001). The generational gap strategy, when combined with truncation, is an en bloc

approach.

In the PESA family of methods, objective-space is divided into a set of non-overlapping

hyperboxes (Knowles and Corne 1999, Corne et al. 2000, Corne et al. 2001). Non-dominated

points are retained in the population until a pre-specified maximum size is reached. Solutions

are then rejected based on a histogram-type density count of the number of solutions in each

hyberbox. Only locally non-dominated solutions are preserved from one generation to the

next, regardless of the number of such solutions discovered in relation to the population

ceiling. The inclusion of non-dominated children (and removal of dominated or crowded
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current population members) is done on an incremental basis, in contrast to universal elitism.

The methods describe above have all been implemented with a global population topology,

although they are easily extendible to the island model (Veldhuizen, Zydallis and Lamont

2003). The promotion of proximity was considered for the diffusion topology for EMO by

Rowe, Vinsen and Marvin (1996). In this approach, dominance-based comparisons are made

between the child and parent at a grid node to determine the survivor.

Proximity Promotion Under Uncertainty

Objective-vector values may have an element of uncertainty due to general modelling errors

and the stochastic nature of some models. The critical issue here is how dominance should

be interpreted in order to provide correct proximity-based discrimination. Hughes (2001)

developed methods to determine the probability of correctly determining dominance between

two vectors with Gaussian uncertainty. The probability can be used directly in the ranking

process. Hughes (2001) implemented the method within the context of Fonseca and Flem-

ing’s (1993) Pareto-based ranking. Teich (2001) developed similar probabilities for uniform

uncertainty distributions.

Schemes for good proximity do not directly address the MO requirement for a good

distribution of solutions in the approximation set. Thus, diversity-promotion elements have

also been considered in EMO. These processes may be entirely distinct from the proximity

enhancement processes, but are often embedded and intertwined with these latter processes

in the overall system. A review of diversity enhancement mechanisms is provided below.

2.4.4 Methods for Obtaining Good Diversity

Density Estimation in EMO

Many of the EMO methodologies devised to obtain a good distribution of solutions in the

approximation set require some measure of the density of the population in the neighbourhood

of each solution. Various density estimators have been proposed and used in an EMO context.

Some of the estimators have been specifically devised for EMO, whilst others have been

imported from other scientific disciplines.

The importance of niching in EMO was motivated by Goldberg (1989). The original

density estimator proposed for EMO was fitness sharing which is a classical EA method
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of effecting niching behaviour. Fitness sharing, as discussed earlier in Section 2.3.3, was

originally proposed to combat genetic drift on single-objective, multimodal, cost landscapes.

Multi-objective problems can also in a sense be considered multimodal, since the optimal

solutions that describe the trade-off surface form one or more plateaus of equal fitness from a

Pareto perspective. Since its implementation in MOEAs by Fonseca and Fleming (1993) and

Srinivas and Deb (1994), in objective-space and decision-space respectively, fitness sharing

has been a very popular approach to diversity enhancement. There has been some discussion

in the literature concerning which space (objective or decision) fitness sharing should be

performed in. Essentially, as argued by Horn (1997), sharing should be performed in the

space within which the DM is most concerned to obtain a good distribution. This is likely to

be objective-space, may possibly be decision-space, and indeed a good distribution may be

required in both spaces simultaneously. A combined objective-decision scheme is described

by Rowe et al. (1996). Horn and Nafpliotis (1993) used a continuously-updated sharing

scheme (to avoid possible instability when used with tournament selection (Oei, Goldberg

and Chang 1991)). Horn and Nafpliotis (1993) also suggested joint objective-space-decision-

space sharing methods.

As described in the introduction to fitness sharing provided earlier, the success of the

technique relies to a significant extent on the chosen value for the niche size parameter,

σshare. Methods for selecting the niche size have been developed by Deb and Goldberg (1989),

Fonseca and Fleming (1993), Tan, Lee and Khor (1999), and Ray, Kang and Chye (2001).

The essential similarity between fitness sharing and kernel density estimation was first noted

by Fonseca and Fleming (1995a). The importance of this finding is that it exposes EMO

to a new set of techniques for finding a parameter analogous to σshare that already exist in

the statistics domain. Fonseca and Fleming (1995a) used Silverman’s (1986) approach for

the Epanechnikov estimator to provide an automatic method of niche size selection. This

technique has subsequently been pursued successfully in several EMO applications, such as

that described by Griffin, Schroder, Chipperfield and Fleming (2000).

Estimators other than fitness sharing have also been proposed and used in EMO. Histogram-

based techniques are a popular alternative, in which the density estimate is a count of the

number of solutions that reside in a particular hyperbox of objective-space. The hyperboxes

are obtained through a simple gridding of objective-space. In Knowles and Corne’s (1999)
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Pareto archived evolution strategy (PAES), an adaptive grid spacing is determined by a user-

specified number of bisections of the objective range defined by the locally non-dominated

solutions. This scheme has been modified to provide restricted limit convergence properties

(Knowles and Corne 2003b). The main advantage of this adaptive grid archiving (AGA)

method is that it permits a pre-specified approximation set size (unlike the method of Lau-

manns, Thiele, Deb and Zitzler (2002) that also provides convergence in the limit under less

strict assumptions).

Histogram density estimation techniques have also been suggested by Lu and Yen (2002),

wherein an adaptive cell count similar to PAES is used in the rank density-based genetic

algorithm. Coello and Toscano Pulido’s (2001) micro-genetic algorithm is a further method

that uses histogram binning. The main advantage of these methods is that they do not

require a distance metric that combines non-commensurable objectives. This feature (when

expressed in terms of the dominance operator) is argued as one of the key reasons for preferring

an MOEA over classical, aggregation-based methods but, as critics have pointed out, the

use of aggregation-based density estimators (such as fitness sharing) then undermines these

claims of superiority. The main disadvantages of grid-based methods are that the imposed

grid structure may be unsuitable for the actual structure of the trade-off surface and the

computational complexity of the estimator is exponential in the number of objectives.

Nearest-neighbour (NN) estimators are also prevalent in the EMO community. Zitzler,

Laumanns and Thiele (2001) use the kth NN in Euclidean objective-space as a density esti-

mate, where k is determined according to a statistical heuristic based on the square root of

the sample size. Abbass, Sarker and Newton (2001) proposed the mean Euclidean distance

of the two NN of a solution as a density estimator, which was extended to the mean of the M

nearest solutions by Sarker, Liang and Newton (2002). This is similar to the NSGA-II crowd-

ing distance estimator, which is defined as the mean side length of the hypercube formed

using the first NN in each objective as vertices. The advantage of the NN estimators is that

they are conceptually simple and have a computational complexity that is linear in the num-

ber of objectives (although quadratic in sample size). The fundamental disadvantage is that

they require the forced cohesion of potentially non-commensurable objectives. In addition

to scaling requirements, the methods may also be sensitive to the parameter k (techniques

based on first NN are sometimes misleadingly regarded as ‘parameter free’). Thus, a typical
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implementation of the NN methodology would be problem-specific. Euclidean distances tend

to be popular in the literature for the simple reason that real-valued objective functions tend

to be considered in benchmark problems.

Diversity Promotion in Selection-for-Variation

The promotion of diversity is the sole aim of selection-for-variation operators from the PESA

family, since all population members are locally non-dominated in these schemes. In PESA

itself, binary tournament selection is used: from two individual solutions chosen at random

from the population, the solution that is selected for inclusion in the mating pool is that

with the lowest density, as defined by the hyperbox bin count (Corne et al. 2000). The major

innovation in the related PESA-II algorithm is that selection-for-variation is region-based

rather than (the usual) individual-based. In this new approach, the binary tournament takes

place between populated hyperboxes of objective-space rather than between solutions. The

hyperbox chosen during selection is then that with the lowest number of solutions within it.

A solution from within this hyperbox is randomly chosen for inclusion in the mating pool.

In methods that include the fitness sharing technique, diversity concerns tend to form a

secondary means of fitness assignment. After initial fitness values have been prescribed by

a transformation of Pareto rank information, fitness values are modified by the application

of Equation 2.4 on a rank-wise basis (Fonseca and Fleming 1993). Thus, fitness sharing

tends to solely differentiate between solutions of the same Pareto rank (although this is not

guaranteed by the original method, as discussed by Deb (2001a)). The modified fitness values

can then be used in any selection mechanism (typical selection schemes are discussed earlier

for proximity promotion in Section 2.4.3).

Methods that are not directly based on fitness sharing often use the similar idea of diversity

promotion as a secondary consideration to proximity promotion. This is understandable since,

as stated by Bosman and Thierens (2003):

... since the goal is to preserve diversity along an approximation set that is as

close as possible to the Pareto optimal front, rather than to preserve diversity

in general, the exploitation of diversity should not precede the exploitation of

proximity.

In the SPEA2 fitness assignment scheme, the kth NN estimator is used to add a value
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to solution cost, with a maximum value that is less than the smallest addition that can

be made via dominance (Zitzler, Laumanns and Thiele 2001). Thus, a discriminator is

provided that will differentiate only between solutions of the same Pareto rank. This is very

similar in nature to the NSGA-II crowded comparison operator (Deb, Pratap, Agarwal and

Meyarivan 2002). In this latter technique, binary tournaments are primarily decided based

on respective membership of dominance equivalence classes. If the solutions have the same

rank, then the individual with the smallest density estimate (as calculated via the crowding

distance estimator) is selected. Note that, in the case of a tie on density estimate, selection

is random.

Diversity Promotion in Selection-for-Survival

During selection-for-survival, diversity promotion tends to become the central consideration

when there exist more locally non-dominated solutions than can be retained in the popu-

lation. In these circumstances, diversity considerations are used to reduce the number of

non-dominated solutions to a representative subset.

In the ss methodology implemented in PAES, if the population is full then a child solution

that is non-dominated with respect to both other child solutions and the current population

can only enter the archive if the hyperbox into which it would be placed (its density estimate)

is less populated than the most populated hyperbox in the current population. In this case,

the new solution is included and a solution with the greatest density is removed from the

current population. In the PESA schemes, the ‘less-than’ requirement on the density estimate

is relaxed to ‘less-than-or-equal-to’ and selection is thus random in the case of a tie. This

method forms one step toward creating the new population using the PESA incremental

update strategy.

Laumanns, Thiele, Deb and Zitzler (2002) also suggested a histogram-based scheme, in

which the grids are defined using ε-dominance according to the method proposed by Pa-

padimitriou and Yannakakis (2000). A maximum of only one solution is permitted to reside

in each hyperbox. A child solution can only be accepted for inclusion in the new population

if it resides in a non-dominated hyperbox that is otherwise empty or contains a solution from

the current population that the child dominates. Such current solutions are removed from the

population, as are those that reside in dominated hyperboxes. Laumanns, Thiele, Deb and
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Zitzler’s (2002) method ensures convergence in the limit to an ε-Pareto optimal set (refer to

Section 2.2.2 for a brief discussion on ε-dominance) with a finite, if possibly unknown, bound

on the population size. The distribution of the solutions is guaranteed to be optimal in the

limit, according to the ε-Pareto definition of optimality. The disadvantage of the method is

that the resolution of ε cannot be increased from its initial specification during the optimi-

sation run (although it can be reduced by merging neighbouring hyperboxes). Laumanns,

Thiele, Deb and Zitzler (2002) suggests the use of a multiple restart strategy to overcome

this problem.

In the universal elitism approach promoted by Zitzler (1999), if the combined non-

dominated solutions from the child and current population pools are more numerous than can

be preserved, density-based clustering methods are used to reduce the number of solutions

to the required quantity. Methods of this nature were previously suggested in the classical

OR community (Morse 1980, Rosenman and Gero 1985). The average linkage method, based

on the Euclidean distance metric, is used in SPEA (Zitzler and Thiele 1999). A problem

with this approach is that boundary solutions can be lost. To remedy this, an alternative

clustering method was proposed in SPEA2. In this approach, at each step of the truncation

algorithm the solution identified for removal is that with the minimum Euclidean distance

to the kth NN, where k is incremented sequentially from unity until a single solution can be

identified (note that removal may have to be random in some pathological cases).

In the SPEA-type clustering methods, density information must be updated after the

removal of each rejected solution. Another population truncation scheme of this nature was

implemented by Abbass et al. (2001), in which non-dominated solutions are systematically

rejected based on the highest densities (the estimator was mean distance to the first and

second NN). However, in some approaches, the density information is only calculated at

the start of the truncation process. In NSGA-II selection-for-survival, elements from the

child and current solution populations are included in the new population based primarily

on dominance. If the cut-off point for inclusion resides within a particular dominance-based

equivalence class then ss is made from this class based on a hierarchy of density estimates.

The lowest density estimates, as measured by the crowding distance, are deterministically

included (Deb, Pratap, Agarwal and Meyarivan 2002).

An innovative approach to selection-for-survival was developed by Farhang-Mehr and
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Azarm (2002), who noted that the information metric entropy could also be used as a density

estimator. In this approach, the selected solutions from the combined child and current

population pools are those that maximise an entropy measure. This process is an optimisation

task in itself, and is handled by Farhang-Mehr and Azarm (2002) using Monte Carlo methods.

The advantages and disadvantages of the different schemes can broadly be captured by

the trade-off between the capability to capture a representative subset and the computational

complexity of the technique. For example, the standard NSGA-II approach uses a simple

estimator and requires only one density calculation for each solution during the entire ss

stage. By contrast, SPEA2 uses a more complex estimator and requires a complete re-

estimation of the remaining population for each solution identified for rejection. This form of

clustering can be very computationally expensive. However, the quality of the approximation

set distribution that can be developed by the latter method has been shown to be significantly

higher than that of the former method (Deb, Thiele, Laumanns and Zitzler 2002). This

motivated Deb, Mohan and Mishra (2003) to consider SPEA2 and ε-dominance diversity

techniques within the context of NSGA-II mechanisms.

The rejection of locally non-dominated solutions at the selection-for-survival stage can

cause an MOEA to exhibit partial deterioration and consequent oscillatory behaviour, wherein

solutions that are ‘lost’ are rediscovered and preserved later by the algorithm. This can ham-

per progress toward the global surface. The ε-dominance gridding technique proposed by

Laumanns, Thiele, Deb and Zitzler (2002) can be used to prevent this behaviour whilst

also permitting rejection of non-dominated solutions. Alternatively, as argued by Everson,

Fieldsend and Singh (2002), all non-dominated solutions can be preserved during selection-

for-survival. This can lead to a large (potentially infinite) number of solutions in the EA

population. Thus, Everson et al. (2002) implemented diversity-based selection-for-variation

based on a uniform sampling from the current set of locally non-dominated solutions. Com-

putationally efficient methods, based on tree-like data structures, are used to perform the

dominance checks.

Diversity Through Parallel Evolutionary Topologies

Distributed population topologies have occasionally been used to provide good approxima-

tion set diversity. Rowe et al. (1996) used the diffusion model to obtain a natural diversity



CHAPTER 2. REVIEW OF EMO 40

across the parallel topology, but pointed out the potential for redundancy in the structure.

The island model has also been used in EMO. Okuda, Hiroyasu, Miki and Watanabe (2002)

used such a model with M + 1 islands (recall that M is the number of objectives to be opti-

mised). In this approach, one of the islands contains a multi-objective EA, whilst the others

are single-objective EAs for each of the objectives in the problem. The best solutions for the

ith objective are migrated using a star topology (with the MOEA at the centre). Deb, Zope

and Jain (2003) also used an island model, with each island focusing on a particular region

of objective-space. Each MOEA uses the guided domination approach of Branke, Kaußler

and Schmeck (2001) to bias the search in a particular direction. A method based on directed

cosines is used to obtain the necessary weights for each modified dominance definition in order

to cover the entire trade-off surface with minimal overlap. In a further island-type approach,

Hiroyasu, Miki and Watanabe (2000) determined the population composition of each island

by dividing the global population based on the scale of a particular objective every few gener-

ations, with the aim of achieving diversity across the range of the objective. A comprehensive

review, discussion, and extensions of parallel MOEAs is provided by Veldhuizen et al. (2003).

Diversity Through Probabilistic Model-Building

After initial empirical analysis suggested that an approach based on a single model could

not adequately search for and represent a complete approximation set, Thierens and Bosman

(2001a) considered the use of mixture models to preserve diversity across the trade-off surface.

In this approach, clustering methods are used to group elements of the population that

reside in similar areas of objective-space. Model estimators are then fitted to each cluster.

Laumanns and Ocenasek (2002) stressed the importance of diversity maintenance in decision-

space when using probabilistic models in order to avoid redundancy and provide enough

information to build an acceptable model.

Miscellaneous Diversity Enhancement Concepts

Mating restriction. In the context of a study on multimodality, Deb and Goldberg (1989)

suggested that the recombination of parent solutions from separate regions (of either objective

or decision-space) often lead to poor child solutions, known as lethals. Thus, these researchers

suggested that recombination between remote solutions should be prohibited where possible,
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in an approach known as mating restriction. This method was originally conceived of by

Booker (1982) in order to promote diversity in the population (Deb and Goldberg 1989). Since

the Pareto front spans a (potentially expansive) region of objective-space, it has therefore

been suggested that mating restriction might be necessary to improve MOEA search efficiency

(recombination from spatially remote areas of the trade-off surface may produce lethals)

(Fonseca and Fleming 1993). The key parameter in mating restriction is the distance over

which recombination will be prohibited, σmate. This is often obtained in the same way as

for the fitness sharing parameter σshare. In practice, the definition of distance may also be

challenging to determine, since (as for fitness sharing) it may involve the forced cohesion of

non-commensurable objectives.

Lateral diversity. Sometimes it may prove necessary to preserve diversity in dominated

areas of the search space in order to ultimately achieve an approximation set with good

proximity and diversity. Thus a trade-off exists between diversity exploitation and proximity

exploitation (Bosman and Thierens 2003). Methods for controlling this trade-off, through

the preservation of lateral diversity, have been proposed by Deb and Goel (2001), Laumanns

et al. (2001), Laumanns and Ocenasek (2002), and Bosman and Thierens (2003). In Deb

and Goel’s (2001) scheme, a proportion of the population is allocated to each non-dominated

front according to a pre-specified plan. Interestingly, in the classic fitness sharing scheme for

EMO implemented in MOGA, dominated points can receive a greater selection probability

than non-dominated counterparts, thus promoting lateral diversity (Fonseca and Fleming

1993). Until recently, this attribute was regarded as a weakness of the MOGA framework

(Deb 2001a).

Target vectors approach. The use of a target vector in objective-space has been proposed

in the classical OR community, and used in EAs, as a method for scalarising performance.

The task is to minimise some scalar measure of solution distance to this vector (Wienke,

Lucasius and Kateman 1992). This approach has been extended in the multi-objective EA

community to permit multiple target objective vectors (Lohn, Kraus and Haith 2002). Can-

didate solutions gain fitness by meeting various target vectors. If a vector is met by several

solutions then the fitness associated with that vector is shared between them, thus encour-

aging solution diversity.
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2.4.5 Preference-Based Methods

Introduction

Decision-maker preferences are required in order to focus the approximation set on to a

desired sub-region (ROI) of the overall trade-off surface. Several preference-based schemes

exist in the EMO literature, although this particular facet of research tends to have been

somewhat overlooked.

Preference-based schemes can be classified according to when the preference information

is used to influence the search. Thus, a priori schemes exist, in which DM preferences are

incorporated before the search begins. In progressive methods, DM preferences are incorpo-

rated during the search. The key advantage of these techniques over a priori methods is that

the DM may be unsure of his or her preferences at the beginning of the procedure and may

be informed and influenced by information that becomes available during the search. The

final class of methods is a posteriori, in which a solution is chosen from the approximation set

returned by the optimiser. Many EMO researchers apparently view this approach as stan-

dard, with the actual preference articulation process lying outside the pure EMO domain.

This mindset is possibly due to the EMO focus on bi-objective problems.

A review of the literature on preference methods for EMO is offered below. Refer to

Coello (2000) for an alternative survey.

A Priori Preference Methods

Branke et al. (2001) suggested the creation of a weighted-sum of objectives for each objective

in turn. This is achieved by adding weighted terms of other objectives together with a unit

weight on the initial objective. Each weight represents how much gain would be required

in another objective for a unit loss in the objective under consideration. Solutions are then

compared in terms of performance on these new weighted-sums. This approach, in effect,

modifies the dominance operator such that each solution dominates a potentially larger region

(it can also be viewed as applying the standard definition of dominance to a transformation

of objective-space). This method suffers from the standard difficulties of a weighted-sum

approach: it cannot handle non-convex regions of the search space and requires a priori

knowledge of the trade-offs between objectives.

An alternative method of the use of weights was proposed by Parmee, Cvetković, Watson
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and Bonham (2000). The weights are obtained by using fuzzy binary preference relations on

objectives (which can also be used to obtain an ordering on the importance of the objectives).

Note that this method assumes transitivity and infers relations in order to prevent possible

contradictions (Cvetković and Parmee 2002). Once the weights have been obtained, Parmee

et al. (2000) propose that these are used in a standard weighted-sum (prior to solution by

a single-objective EA) or are used in the weighted Pareto method. In this latter approach,

the global dominance relation is decomposed into a count of pair-wise ‘less-than-or-equal-to’

comparisons between the objectives. The results of each comparison can be weighted prior to

being included in the count. The necessary total required for dominance can also be adjusted.

Existing preference articulation approaches developed in the operational research com-

munity can also be integrated within an evolutionary computing scheme. Rekiek, De Lit,

Pellichero, L’Eglise, Falkenauer and Delchambre (2000) used the PROMETHEE II outrank-

ing system to order the population of an EA in terms of preference at each generation. The

ordering was then used to select individuals for reproduction. An a priori approach was

taken, although a progressive scheme could be formulated by updating PROMETHEE II

during the search.

The aim of preference articulation is to concentrate on particular, distinct sub-regions

of the trade-off surface. Hence, instead of developing a uniform distribution of solutions

(as is the case for a standard MOEA) a preference-based algorithm aims to develop a biased

distribution. One of the key EA techniques to obtain a suitable distribution is fitness sharing,

as described in Section 2.3.3. Deb (1999b) exploited this operator by introducing bias into

its calculations. Normalised weights for each objective are included in the distance metric

computation. Thus, the density of solutions should become more numerous in more important

objectives. Note that this approach requires weights to be specified.

Deb (2001b) also investigated the use of MOEAs for goal programming (Aouni and Kettani

2001). The traditional approach to goal programming is to minimise a weighted-sum of

the deviations from unmet goals. However, this approach encounters the usual difficulties

with weighting non-commensurable objectives, normalising the objectives, and with handling

non-convexity. Thus, Deb (1999a) formulated the problem as one of minimising deviations

from unmet goals, where each deviation is treated as a separate objective. An NSGA-based

algorithm was used to find a family of Pareto optimal solutions (in terms of deviations from
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goals). Note that the solutions in the ‘Pareto optimal’ set may only be satisficing solutions

(acceptable to the DM but not globally optimal), since the method does not attempt to

optimise past the goal levels of the DM.

In a somewhat different approach to those mentioned above, Shaw and Fleming (2000)

embedded preference information within the workings of the EA (rather than expressing direct

preferences on the objectives). In a factory scheduling problem, the DM can set pseudo-fuzzy

preferences on product-to-line mappings. This data is then used by a schedule builder, which

interprets EA chromosomes in order to produce a schedule (refer to Section 2.3.3). In the

application, these mappings were elicited prior to the run of the optimiser, but they could be

provided in a progressive manner if required. Shaw and Fleming (2000) also suggested the

use of Fonseca and Fleming’s (1998a) progressive objective-level preference system, which is

described next.

Progressive Preference Methods

The first truly progressive MOEA scheme was introduced by Fonseca and Fleming (1998a)

as an extension to the Pareto-based ranking described in Section 2.4.3 (Fonseca and Fleming

1993). The preferability operator represents the state-of-the-art in MOEA preference articu-

lation. In this scheme, the DM can set goal values and priority levels for any objective. This

can be done at any time during the run of the MOEA and can be updated when required. The

data feeds into a modified definition of dominance, which provides a unification of Pareto

optimality, the lexicographic method, goal programming, constraint satisfaction, and con-

strained optimisation. All these methods, plus hybrids, can be derived from the preference

operator. Fonseca and Fleming (1998a) also developed an on-line user interface that featured

the parallel coordinates method of visualising trade-offs between objectives (Inselberg 1985).

Deb, Pratap, Agarwal and Meyarivan (2002) developed a constrained-domination ap-

proach that is very similar to the preferability operator. The main distinction is that, in this

new scheme, an overall quantity of goal violation is calculated. This enhances the amount

of information available to the search, but requires the forced cohesion of objectives. An-

other similar scheme known as favour has been proposed by Drechsler, Drechsler and Becker

(2001). Tan, Khor, Lee and Sathikannan (2003) developed logical connectives to allow a DM

to make alternative preference scenarios for a problem in the context of preferability-type
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schemes.

Todd and Sen (1999) proposed an alternative progressive scheme, which incorporates

learning and automation of DM preferences. Rather than setting goals and priorities, the

DM is asked to make judgements on a set of potential solutions at various intervals during

the optimisation process. This approach is described further in the section on automating

the decision process. Note that this scheme may be more DM-intensive than Fonseca and

Fleming’s (1998a) method.

A Posteriori Preference Methods

Deb (2001a) suggests three possible techniques for obtaining a subset of solutions from a final

population of Pareto optimal candidate solutions. Compromise programming can be used to

select a solution that is closest to some specified reference point (Zeleny 1973). Alternatively,

the solution with the ‘best’ marginal rate of substitution for each pair of objectives (the

amount of improvement in one objective that can be obtained by making a unit sacrifice in

another) can be chosen. Finally, pseudo-weight vectors can be computed for each solution

in the family. A solution is chosen that corresponds to a vector that is closest to a set of

weights specified by the DM. Massebeuf, Fonteix, Kiss, Marc, Pla and Zaras (1999) used

the PROMETHEE II outranking method to choose a solution from the final set of solutions

found by an MOEA.

Semi-Automation of the Decision Process

Preference articulation schemes can require the DM to study and comment on a large amount

of information. It is important not to overwhelm the DM with information, since this will

reduce the quality of the preference information gathered. This issue is especially pertinent

to progressive methods. In order to reduce the demands placed on the DM, and to im-

prove search efficiency, researchers are beginning to look at means of automating parts of

the decision-making process. Two such schemes, which use neural networks to model the

preference structure of the DM, are discussed below.

Todd and Sen (1999) used an elitist MOEA with a (conceptually) external population of

Pareto optimal solutions. In addition to a Pareto rank, each solution also carried a preference

score between 0 (least preferable) and 1 (most preferable). The preference score was used
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as a fitness value to insert members of the Pareto population into the mating pool. The

DM provided preference scores for a selection of ten individuals every ten generations. The

individuals were chosen to provide a good spread of preference. This data was used to train a

neural network model of the DM preferences. The neural network then determined preference

values for all other individuals automatically.

Sun, Stam and Steuer (2000) also used a neural network to learn the DM preference struc-

ture, this time in the context of the multi-criterion decision-making (MCDM) Tchebycheff

method (Steuer 2001). The DM is invited to assign values to, or to make pair-wise com-

parisons of, a subset of solutions. The assignment process results in a reciprocal comparison

matrix, the normalised principal eigenvector of which can be viewed as the ‘priority’ given to

each solution. Thus, a neural network is trained using normalised objective values as input

data and preference values as output data. The network is used to filter non-dominated so-

lutions found by the Tchebycheff method, with the predicted most preferred solutions being

shown to the DM. The process then continues as before. Sun et al. (2000) reported that the

technique provided superior results to the standard Tchebycheff procedure across benchmark

problems of various magnitudes.

In both of the above methods, further research is required to explore how imprecise and

inconsistent preference data can be successfully handled.

2.5 Summary

This chapter has sought to introduce multi-objective optimisation within the context of an

overall problem-solving framework. The key concept of Pareto dominance has been explained,

and the three key requirements of a multi-objective optimiser — to produce an approximation

set with good proximity and diversity in regions of interest to the decision-maker — have

been described.

The class of metaheuristic techniques known as evolutionary algorithms have been in-

troduced and the special utility of these methods for multi-objective optimisation has been

described. The various EMO components that have been developed to meet each of the above

requirements — from the simple to the more complex — have been introduced in some detail.

Elitism and advanced diversity promotion methods have been particularly concentrated

on in the contemporary EMO community. But can these new innovations really be said to
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produce improved approximation sets over the basic mechanisms sketched by Goldberg (1989)

and implemented in the MOGA, NPGA, and NSGA? In the following chapter this question

is explored by considering the effect of advanced elitism and diversity-promotion schemes in

the context of the original EMO algorithm, MOGA. The familiar benchmark problems are

reconsidered using a rigorous experimental framework.



Chapter 3

Enhancements to the

Multi-Objective Genetic Algorithm

3.1 Introduction

As evident from the review of evolutionary multi-objective optimisation in Chapter 2, there

have been many algorithmic developments in this very active research field since the first

published implementation of a Pareto-based MOEA by Fonseca and Fleming (1993). As a

result, EMO practitioners are faced with a number of design choices beyond those encountered

in a standard evolutionary algorithm. In order to exploit the true potential of the evolutionary

meta-heuristic, the optimiser should be tailored to the application rather than used simply

as a black-box (Michalewicz and Fogel 2000). The analyst should perhaps be encouraged to

develop a bespoke MOEA rather than resort to an algorithm brand such as MOGA, NSGA-II,

or SPEA2. Thus, the nature of a design choice would be, for example, ‘What mechanisms

should be used to promote diversity in this application?’ rather than ‘Should NSGA-II be

used instead of SPEA2?’.

There is a tendency in the EMO research community to compare different brands of algo-

rithms, treating each one as an inseparable entity. However, as is clear from the description

of EMO methods in Section 2.4, the actual mechanisms responsible for performance reside

within each algorithm. By considering algorithms at a decomposed and abstracted level, it

should become easier to identify the underlying components, and interactions between com-

ponents, to which the observed performance can be attributed. One of the rare examples

48
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where this approach has been taken is the excellent study by Laumanns et al. (2001) based

on abstract EMO mechanisms identified by Laumanns, Zitzler and Thiele (2000).

In order for the analyst to make informed EMO design choices, knowledge is required of

how the performance of each fundamental component changes with context, such as the class

of application and the partner components that together comprise the complete MOEA.

It is also useful to understand the performance sensitivity of a design choice within some

defined contextual boundary. With these considerations in mind, this chapter aims to more

accurately expose the performance of the following popular EMO strategies using a rigorous

and tractable experimental procedure:

Ranking: two methods for determining Pareto-based performance in order to achieve good

proximity in the approximation set (see Section 2.4.3).

Sharing: two methods to modify the expected probability of selection in order to promote

a good distribution in the approximation set (see Section 2.4.4).

Elitism: a selection-for-survival method aimed at obtaining both good proximity and good

diversity (see Section 2.4.3).

The experimental framework is introduced in Section 3.2. The benchmark suite of test

problems used in the study is described, together with suitable performance indicators. A

method for statistical significance testing is introduced, as is an appropriate visualisation

technique. A baseline MOEA is developed in Section 3.3, and its performance is established.

The effects of the various advanced EMO design choices are then considered with reference to

this baseline. The two most popular multi-objective ranking strategies in the literature are

contrasted in Section 3.4. Selection-for-variation methodologies for the promotion of diver-

sity are discussed in Section 3.5, in which the performances of the established Epanechnikov

method and a generalised ranking-based method are compared. An elitist strategy is devel-

oped and tested in Section 3.6. In Section 3.7, a state-of-the-art MOEA incorporating both

elitism and rank-based sharing is considered.
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Table 3.1: Test function characteristics

Name Attributes

ZDT-1 Convex front
ZDT-2 Non-convex front
ZDT-3 Piece-wise continuous convex front
ZDT-4 Many local fronts, single global front
ZDT-5 Deceptive problem, discrete front
ZDT-6 Non-uniform distribution across a non-convex front

3.2 Experimental Framework

3.2.1 Overall Methodology

Evolutionary algorithms are complicated non-linear systems that have proved very challenging

to analyse. The large number of free parameters, and the interactions between them, can form

obstacles to a confident interpretation of performance. The EMO empirical inquiry framework

presented in this section seeks to increase the benefit of empirical testing of algorithms. The

following attributes of the methodology are emphasised:

• Modular, traceable, MOEA configuration changes.

• Transparent, understandable, test problems with realistic properties.

• Appropriate, accurate, performance measures.

• Rigorous, informative, analysis, including tests for statistical significance and visuali-

sation.

The test suite, performance indicators, and statistical and visual analysis techniques used

in this study are discussed in detail in the following sub-sections.

3.2.2 Test Suite

The established set of test problems developed by Zitzler et al. (2000) is used in this study.

The suite consists of six, tractable, bi-objective functions, with varying characteristics as

summarised in Table 3.1. Equations for the various functions are provided in Appendix A.

These functions cover many of the features that may be found in real-world problems and

are comparatively straightforward to analyse. The main concern is that, for each problem, one
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of the objectives is a function of only a single decision variable (mapped without modification

in the first four test problems). In particular, this direct mapping between decision-space and

objective-space may cloud the issues surrounding diversity preservation. It should also be

noted that these test functions consist of two objectives only. Much care should be taken

before transferring conclusions drawn from these functions to problems with a higher, and

more realistic, number of objectives.

3.2.3 Measuring Performance

As described in Section 2.2.3, the performance of an MOEA can be decomposed into three

interacting criteria: (i) the proximity of the identified non-dominated solutions to the true

Pareto front, (ii) the diversity of the approximation set across the trade-off surface, and

(iii) the pertinence of the solutions to the decision-maker. In this study, the ROI will be

assumed to be the entire Pareto front. Therefore, only proximity and diversity performance

are considered further.

Various performance indicators have been proposed to measure these aspects of quality

(Deb 2001a). They can typically be classified according to function (which part of overall

performance they measure) and provide a scalar value that represents the quality of a locally

non-dominated set. Many indicators are unary (they describe the absolute performance of

one approximation set), although a few are binary (they describe the relative performance

of two sets). Some unary indicators require a reference set with which a comparison can

be made. This often necessitates that the true surface is known to the analyst and can be

sampled. Unary methods are advantageous, however, in that conventional statistical tests

can be straightforwardly applied. A review of performance indicators is provided by Deb

(2001a).

Zitzler et al. (2003) have shown that no finite combination of unary measures can indicate

whether one approximation set is superior to another (from the perspective of the dominance

relation). Thus, care must be taken when making statements about global performance. This

study adopts the functional approach described by Deb and Jain (2002). Specific unary indi-

cators are used to evaluate specific aspects of performance. There is no attempt to describe

global performance using a unary indicator or indeed a combination of such indicators. Thus

the failure of an indicator to respect the dominance operator is not of immediate concern.
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This study uses three known performance indicators: generational distance to measure

proximity, spread to measure diversity, and attainment surfaces to provide visualisation of

the results. These indicators are described in further detail below.

Generational Distance

The proximity of each non-dominated point produced by an MOEA can be measured in

terms of its distance to the closest part of the global trade-off surface. These distances can

be averaged to provide a measure of accuracy for a complete approximation set. The definition

of distance is dependent on the problem domain. Euclidean distance is a natural choice for the

ZDT test problems, and has been adopted in this work. Note that the objective values must be

normalised if they are not of the same scale. The generational distance indicator is formalised

in Equation 3.1, where GD is the generational distance, ZA is the obtained approximation

set, and di is the closest distance between the ith objective vector ∈ ZA and any vector in

Z∗, where Z∗ is the set of globally non-dominated objective vectors (Veldhuizen 1999).

GD =
1

|ZA|

|ZA |
∑

i=1

di (3.1)

The main advantages of this indicator are its computational simplicity and its amenability

to statistical analysis. The disadvantage is that the set Z∗ is required. Given that the size

of this set may be infinite, a finite representation is required for computational purposes.

This latter set should be sufficiently numerous and should be (parametrically) uniformly

distributed across the trade-off surface in order to avoid bias. Fortunately, for the ZDT

problems, the global Pareto front is explicitly defined in each case. For the continuous and

piece-wise continuous trade-off curves, uniform parametric sampling is quite straightforward

(achieved, for example, using equations for curvature). The discrete trade-off surface of

ZDT-5 can easily be enumerated.

Spread

Consider the distribution of distances between nearest-neighbour objective vectors. In the

case of a uniform distribution, all such distances will be identical and will equal the mean

of the distribution. In the general case, uniformity can thus be measured by considering the
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difference between a nearest-neighbour distance and the mean of all such distances. Schott

(1995) originally formulated the sum of all these differences as an indication of the uniformity

of the identified trade-off surface. This was extended by Deb, Pratap, Agarwal and Meyarivan

(2002) to include a measure of the extent of the obtained distribution. The resulting indicator

is shown in Equation 3.2, where∆ is the spread, dem is the Euclidean distance from the extreme

point in ZA to the extreme point in Z∗ for the mth objective, M is the number of objectives,

dj is the Euclidean distance between consecutive objective vectors in ZA and, d̄ is the mean

of all dj .

∆ =





M
∑

m=1

dem +

|ZA−1|
∑

j=1

|dj − d̄|





/

[

M
∑

m=1

dem + |ZA − 1|d̄
]

(3.2)

The first term in the numerator of Equation 3.2 describes the extent of the trade-off

surface that is not represented in ZA. The second term describes the non-uniformity of the

ZA distribution. The denominator seeks to normalise these measures with respect to the

total magnitude of the trade-off surface. Smaller values of ∆ indicate superior diversity to

larger values.

The spread metric is a suitable diversity-measuring indicator for bi-objective problems.

However, in the form presented in Equation 3.2, the spread metric cannot be used in problems

with more than two objectives because the concept of consecutive vectors does not exist in

higher dimensions.

Attainment Surfaces

Fonseca and Fleming (1993) introduced the concept of an attainment surface. Given a set

of non-dominated vectors produced by a single run of an algorithm, the attainment surface

is the boundary in objective-space that separates the region that is dominated by or equal

to the set from the region that is non-dominated. Note that this is fundamentally different

to interpolating between the vectors. This latter approach is not, in general, correct because

there is no guarantee that any intermediate vectors actually exist and, even if this were the

case, the corresponding solutions are unknown. The concept of the attainment surface is

illustrated in Figure 3.1.

Attainment surfaces serve two very useful purposes. One the one hand, they provide

a convenient means of visualising the results from multiple runs of an optimiser. On the
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Figure 3.1: Example attainment surface

other, through the use of auxiliary lines, they allow for algorithm comparisons using well-

known univariate statistical tests. In this study, the attainment surfaces are used purely

for visualisation. Refer to Fonseca and Fleming (1996) and Knowles and Corne (2000) for

examples of the comparative statistics work.

The superposition of multiple attainment surfaces, as shown for the bi-objective example

in Figure 3.2, provides a qualitative indication of the performance of a particular MOEA

configuration. The regions of objective-space partitioned by the surfaces can be interpreted

probabilistically. Given that both objectives are to be minimised, the region below all the

attainment surfaces contains performance vectors that were not matched by the MOEA in

any run. The region above all the surfaces contains vectors that were exceeded by all runs. In

the intermediate regions, the performance vectors were exceeded on an intermediate number

of occasions. Thus, it is possible to obtain a family of vectors that, individually, would be

obtained in a given percentage of runs. The heavy line in Figure 3.2 shows the 50%-attainment

surface (akin to the median statistic). Similarly, the grey lines indicate the 25% and 75%

surfaces (quartiles). The 0% and 100% surfaces are shown as the dotted lines. This method of

visualisation is employed throughout this study. The attainment surfaces provide information
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on location, dispersion, and skewness, in a similar manner to the box plot (Cleveland 1993).

This methodology provides more reliable information than the unification-of-runs approach

adopted by Zitzler et al. (2000). It also has a quantitative performance equivalent, developed

by Grunert da Fonseca, Fonseca and Hall (2001).
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Figure 3.2: The superposition of multiple attainment surfaces

The attainment surface concept can be extended to any number of objectives, although

visualisation becomes problematic at any dimension higher than three. Computational com-

plexity also increases significantly.

3.2.4 Analysing Performance

Upon completion of a single run of a specific MOEA configuration on a particular problem,

two sets of non-dominated objective vectors (and associated solutions) are obtained, namely:

final population the non-dominated vectors in the final population of the algorithm.

off-line archive the complete set of non-dominated vectors identified by the algorithm.
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The first of these sets is used for analysis and comparison purposes in this study since it

provides the most appropriate measure of the on-line trade-off surface maintenance capabil-

ities of an algorithm. An evolutionary algorithm is a stochastic process and, thus, multiple

runs (samples) are required in order to infer reliable conclusions as to its performance. Hence,

35 runs have been conducted for each MOEA configuration when applied to a particular test

problem. The performance of the algorithm is expressed in the resulting distributions of

generational distance and spread. A statistical comparison of two configurations is then

possible through the use of a test statistic. In this study, the mean difference between two

generational distance (or, alternatively, spread) distributions is taken as the test statistic.

The significance of this observed result is then assessed using randomisation testing. This

is a simple, yet effective, technique that does not rely on any assumptions concerning the

attributes of the underlying processes, unlike conventional statistical methods (Manly 1991).

The central premise of the method is that, if the observed result has arisen by chance, then

this value will not appear unusual in a distribution of results obtained through many random

relabellings of the samples. The randomisation method proceeds as follows:

1. Compute the difference between the means of the samples for each algorithm: this is

the observed difference.

2. Randomly reallocate half of all samples to one algorithm and half to the other. Compute

the difference between the means as before.

3. Repeat Step 2 until 5000 randomised differences have been generated, and construct a

distribution of these values.

4. If the observed value is within the central 99% of the distribution, then accept the null

hypothesis. Otherwise consider the alternative hypotheses. This is a two-tailed test at

the 1%-level.

The null hypothesis is that the observed value has arisen through chance and so there is

no performance difference between the two configurations. The alternative hypotheses are

that the difference is unlikely to have arisen through chance and that one configuration has

outperformed the other (depending on which side of the distribution the observed difference

falls, and the direction in which the difference has been calculated). By demanding a 1%-level



CHAPTER 3. ENHANCING MOGA 57

of significance, the probability of making a Type II error (accepting the null hypothesis when

it is false) is increased. This conservative criterion provides improved confidence that the

detected difference is truly reflective of structural differences between algorithms.

Note that the observed value is included as one of the random relabellings since, if the

null hypothesis is true, then this value is one of the possible randomisation results. 5000

randomisations is regarded as an acceptable quantity for a test at the 1%-level (Manly 1991).

The results of randomisation testing are simple to visualise, as shown by the example in

Figure 3.3. The randomised results are described by the grey histogram, whilst the observed

result is depicted as a filled black circle. Each row shows the performance on a particular

test function (from ZDT-1 at the top, to ZDT-6 at the bottom). The left-hand column

indicates the relative performance regarding proximity, and the right-hand column shows the

corresponding difference in diversity. It is usually clear from the figure whether or not the

observed result is statistically significant, although it may occasionally prove necessary to

resort to a closer analysis of the underlying randomisation data.
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Figure 3.3: Randomisation testing — example results
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In the example in Figure 3.3, given data for two algorithms A and B together with a test

statistic of mean(B) −mean(A), then the following results are observed:

• B obtains fronts closer to the true front than A for ZDT-1, 2, 3, and 4.

• B produces a superior distribution of objective vectors to A for ZDT-1, 3, and 4.

• A offers a superior distribution to B on ZDT-5.

No other results are significant at the 1%-level, although clearly some of these cases offer

more evidence against the null hypothesis than others.

3.3 Baseline MOEA

The baseline optimiser used in this study has been developed according to the holistic design

principles championed by Michalewicz and Fogel (2000) and has previously been shown to

be effective at solving the ZDT test problems (Purshouse and Fleming 2001). A summary of

the algorithm is provided in Table 3.2.

The multi-objective performance of a solution is scalarised using Fonseca and Fleming’s

(1998a) Pareto-based ranking procedure. A solution is ranked according to the number of

solutions in the population that are preferred to it. If the entire Pareto front is to be identified,

the preference relation collapses to a test for pure Pareto dominance.

When ranking is complete, initial fitness values can be prescribed. The population is

sorted according to rank and fitnesses are assigned by interpolating between the highest

fitness value for the best rank and the lowest fitness value for the worst rank. In the base-

line algorithm, linear interpolation is used and fitness is varied between the population size

(highest) and unity (lowest). The ratio of these two fitnesses is a definition of the selective

pressure of the assignment mechanism, as explained in Section 2.3.2. Solutions of the same

rank then have their fitnesses amended to the mean of the original assignments for that rank.

Since part of this study is concerned with the effect of diversity-preserving mechanisms, no

manipulation of the above fitnesses through sharing is undertaken.

Stochastic universal sampling has been chosen as the selection-for-variation mechanism

(Baker 1987). This method achieves maximum spread with minimal bias, but is non-

parallelisable. As part of this procedure, the above fitness values are normalised to provide an
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Table 3.2: Baseline configuration

EMO Component Strategy

General
Population size 100 per generation.
Total generations 250
Representation
Real parameter Concatenation of real number decision variables.

Accuracy bounded by machine precision.
Binary function Binary string, 80 bits in length. Defined by the problem.
Selection-for- Non-elitist: (µ, λ) = (100, 100) (no generational gap).
survival
Selection-for- [1] Fonseca and Fleming (1998a) Pareto-based ranking.
variation [2] Linear fitness assignment with rank-wise averaging.

[3] No modification of fitness to account for population density.
[4] Mechanism: stochastic universal sampling. (Baker 1987)

Variation
For real [1] Näıve crossover. Probability = 0.8.
representations [2] Gaussian mutation (initial search power of 40% of variable range;

sigmoidal scaling set to 15; feasibility requirement of one standard de-
viation). Probability = Expected value of 1 variable per chromosome.

For binary [1] Single-point two-parent crossover. Probability = 0.8.
representations [2] Simple bit-flipping mutation. Probability = 1/80.

expected number of selections for each solution. In total, 100 selections are required since the

chosen selection-for-survival strategy is that all offspring replace all parents (no generational

gap) and since for the chosen recombination operators two parents are required to produce

two offspring. In effect, this is the classic (µ, λ) approach.

Since five of the test problems feature real number decision variables, it is logical to use

a real number representation for these problems. Hence, a candidate solution is described

by a concatenation of phenotypic decision variables. This representation offers a number

of advantages over a binary encoded approach: it is faster to manipulate, it is empirically

associated with more consistent optimiser performance, it permits much greater precision,

and it is intuitively closer to the problem-space (Michalewicz 1992). The other test problem

explicitly uses binary variables, thus a binary representation is natural for this problem.

Different representations require different search operators. For the binary chromosome

case, the familiar single-point two-parent crossover and bit-flipping mutation operators are

employed. Good results are known to be achievable using this simple approach (Zitzler

et al. 2000). Various operators for real representations have been suggested (Herrera et al.

1998). This study uses the so-called näıve crossover in conjunction with a Gaussian mutation
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operator. The former of these search tools is a very simple single-point two-parent crossover

operator, where the crossover sites are limited to points between decision variables. This offers

quite a low level of exploration, since it cannot generate any values for decision variables that

were not present in the original population. However, when coupled with a complementary

highly explorative search tool, the resulting search capabilities are considerable. Gaussian

mutation is one such operator.

Gaussian mutation was first used in the early ES algorithms and was briefly described in

Section 2.3.2. Each decision variable within a candidate solution is probabilistically tested

for individual mutation. A major benefit of the p.d.f. approach is that the exploration-

exploitation trade-off is directly controllable through the standard deviation of the mutation

distribution. In this study, the standard deviation is scaled using a function of the proportion

of optimiser iterations completed (assuming that a maximum number of such iterations has

been provided a priori as the termination criterion). A sigmoidal function is used herein

because it can be shaped to allow both substantial periods of macro- and micro-mutations

(respectively, large- and small-scale expected mutation perturbations with respect to the

decision variable range).

A potential difficulty with Gaussian mutation is that it can produce infeasible solutions

when the decision variable range is bounded, through the generation of child solutions with

decision variable values outside of the defined range. A simple solution to this problem is to

crop infeasible values to the nearest feasible equivalent, but this can cause a large bias in the

search toward extreme decision variable values. Thus, in this study, the standard deviation

of the operator is manipulated to control the amount of bias that is permitted. If the analyst

predefines the number of standard deviations of the p.d.f. that must be associated with

feasible child solutions (or, alternatively and equivalently, the probability that the mutation

will produce a feasible solution) then the standard deviation can simply be rescaled on-line

to ensure that this condition is met. In the study, the overall probability distribution is

also manipulated to provide a more exploratory search away from the infeasible region by

scaling the probability of mutation in either direction along the decision variable as a (linear)

function of the standard deviation rescaling found to be required. Further details on the

specialised Gaussian mutation operator are provided by Purshouse and Fleming (2001).

Attainment surfaces illustrating the performance of the baseline algorithm are shown in
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Figures 3.4 through 3.9.
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Figure 3.4: Attainment surface — baseline MOEA solving ZDT-1

Particularly good results were achieved for ZDT-1, ZDT-2, and ZDT-3 (Figures 3.4, 3.5,

and 3.6 respectively) in terms of both proximity to the global Pareto front and diversity

across the front. The tight envelopes of attainment indicate the high level of consistency

achieved in these cases. Proximity was especially good for ZDT-3. As has been previously

observed by Purshouse and Fleming (2001), the MOEA struggled to achieve good coverage

of the surface as z1 approaches zero on ZDT-2. Note that this is a region where there is

relatively little trade-off between the objectives.

As shown in Figure 3.7, the wider envelopes of attainment produced for the multi-fronted

ZDT-4 signify entrapment in a locally non-dominated front. On no occasions did the MOEA

converge to the global trade-off surface although coverage across the identified fronts was

good.

The baseline MOEA achieved reasonable proximity to the global front on ZDT-5. Per-

formance on this deceptive test function is depicted in Figure 3.8. Note that on no occasions

was the algorithm able to identify the extreme right-hand section of the discrete trade-off
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Figure 3.5: Attainment surface — baseline MOEA solving ZDT-2
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Figure 3.6: Attainment surface — baseline MOEA solving ZDT-3



CHAPTER 3. ENHANCING MOGA 63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

z1

z2

Figure 3.7: Attainment surface — baseline MOEA solving ZDT-4
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Figure 3.8: Attainment surface — baseline MOEA solving ZDT-5
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Figure 3.9: Attainment surface — baseline MOEA solving ZDT-6

surface.

Rather poor performance was observed on the non-uniform ZDT-6, as shown in Figure 3.9.

Coverage is especially poor on the less naturally dense area of the front. This, together with

the missing part of the ZDT-5 front, is the strongest indication that an explicit diversity

enhancement mechanism would be beneficial. Proximity to the true Pareto front is also not

good: only the 0%-attainment surface lies on the global front, where coverage is particularly

poor. Furthermore, the position of this front with respect to the median and quartiles suggests

that this result is something of an outlier.

The chapter now progresses to consider the effects of an alternative scheme for proximity

promotion, the introduction of methods for diversity promotion, and a contemporary ss

scheme that incorporates elements to encourage improved proximity and diversity, using the

baseline algorithm explored in this section.
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3.4 Obtaining Good Proximity: The Ranking Strategy

3.4.1 Introduction

As explained in Section 2.4.3, many multi-objective evolutionary algorithms that are based

on the concept of Pareto dominance use a derivative of one of the following multi-objective

ranking procedures:

• Dominance depth (Goldberg 1989)

• Dominance rank (Fonseca and Fleming 1993)

Despite some comparative analysis in the literature, there remains much uncertainty over

the relative worth of the two methodologies. In this section the empirical performance of

both procedures, in the context of the baseline MOEA, is obtained for the Zitzler et al.

(2000) test suite. Previous published comparisons have been between algorithm brands, in

which it is difficult to decide on exactly what is responsible for the observed discrepancies

in performance. By focusing solely on the ranking method, it is hoped that clearer evidence

will be produced. The discussion herein is based on pure Pareto dominance, but it should be

noted that it is equally applicable to other dominance measures such as preferability (Fonseca

and Fleming 1998a).

3.4.2 Preliminary Analysis

In a review of the EMO research field, Veldhuizen and Lamont (2000) argue that there is

no clear evidence to favour either ranking method overall. Dominance rank is generally

regarded as the more efficient method (Coello 1999, Veldhuizen and Lamont 2000) and has

been suggested to be easier to analyse (Fonseca and Fleming 1997). Dominance rank has also

been found to be the simpler method to extend (Hughes 2001). In the only direct empirical

comparison of the two schemes, in the context of a single real-world problem, dominance rank

was shown to provide a more accurate trade-off surface (Thomas 1998).

In essence, dominance rank provides a more fine-grained ranking than dominance depth

(Horn 1997). However, it is arguable whether or not this is a definite benefit. The dominance

rank of a solution describes how many other solutions in the population are preferable to

itself, whereas dominance depth provides only a minimum number. Thus, current population
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density has more impact in the dominance rank scheme. This led Deb (2001a) to suggest

that dominance rank may be sensitive to the shape of the Pareto front and to the density of

solutions in the search space.

Both methods meet the fundamental aims of a multi-objective ranking strategy: (i) that

all preferred individuals are assigned the same rank, and (ii) that all individuals are ranked

higher than those that they are preferable to. Note that both methods produce identical

rankings for a single-objective problem.

3.4.3 Evaluation

Randomisation testing results for the two ranking methodologies when integrated within the

selection-for-variation stage of the baseline MOEA are displayed in Figure 3.10. Observed

differences to the left of the randomisation distribution favour the dominance depth technique.

No significant evidence was found on any of the test problems for either performance

indicator to suggest that one of the ranking schemes was superior to the other. However, it

should be noted that the remainder of the baseline selection-for-variation algorithm is that

which was originally used with dominance rank (Fonseca and Fleming 1993), so it is possible

that there may be implicit bias toward this ranking procedure.

3.5 Promoting Diversity: The Sharing Strategy

3.5.1 Introduction

As explained in Chapter 2 and reinforced in Section 3.2.3, a multi-objective evolutionary al-

gorithm is required to produce a suitable distribution of candidate solutions for presentation

to the decision-maker. The baseline MOEA described in Section 3.3 does not include any

special diversity-promoting mechanisms. Thus, it is a matter of some interest (and largely

unvalidated to-date) whether or not the incorporation of explicit diversity-promotion tech-

niques actually produces approximation sets with a superior diversity. In this section, this

matter is explored for the classic fitness sharing methodology and a variant on two contem-

porary approaches. It is assumed throughout that the DM requires a good distribution in

objective-space and has no interest in the underlying solution distribution.
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Figure 3.10: Randomisation test: dominance depth MOEA versus dominance rank MOEA
(baseline)
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3.5.2 Epanechnikov Fitness Sharing

Further to the brief review of the technique in Section 2.3.3, fitness sharing was originally

proposed by Goldberg and Richardson (1987) to mitigate the problem of genetic drift in

single-objective optimisation. It was then proposed as a possible method for encouraging

niche formation across a multi-objective trade-off surface (Goldberg 1989). The main issue

with the technique is the criticality of the niche size, σshare, setting for the achievement of

good performance. Appropriate values for σshare can be difficult to obtain in practice.

Fonseca and Fleming (1995a) noted the similarity between the power law sharing function,

previously given in Equation 2.3, and the Epanechnikov kernel density estimator Ke used by

statisticians and described in Equation 3.3, where M is the dimension of the data (or the

number of objectives for estimation in objective-space), ζM is the volume of the unit M -

dimensional hypersphere, h is a smoothing parameter, and d
h is the normalised Euclidean

distance between individual vectors.

Ke

(

d

h

)

=







1
2ζ

−1
M (M + 2)

(

1 −
(

d
h

)α
)

if d
h < 1,

0 otherwise.
(3.3)

The kernel smoothing parameter used in the estimator was shown by Fonseca and Fleming

(1995a) to be directly analogous to the fitness sharing niche size parameter. The key benefit

of this insight is that statisticians have developed successful techniques for estimating the

value of h (and, thus correspondingly, σshare) (Silverman 1986). An example approach, which

is approximately optimal in a mean-squared error sense if the data follows a multivariate

normal distribution, is given in Equation 3.4 in which N is the number of samples (objective

vectors). Fonseca and Fleming (1995a) explain that a population with an arbitrary sample

covariance matrix T can be transformed to a form suitable for this estimator by multiplying

by a matrix R, such that RR
T = T

−1. This approach is amenable to update at each iteration

of the evolutionary optimiser and can be regarded as fitness sharing with automatic tuning

of σshare. Note that absolute fitness values are modified using Equation 2.4 as usual.

h =
(

8ζ−1
M (M + 4)

(

2
√
π
)M

/N
)

1

M+4

(3.4)
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Epanechnikov fitness sharing has been incorporated within the selection-for-variation

mechanism of the baseline MOEA and has been applied to the benchmark problems. Shar-

ing is performed using the Euclidean distance metric in objective-space. The results of a

randomisation comparison with the baseline algorithm are shown in Figure 3.11. Observed

values that favour the sharing scheme will lie to the left of the randomisation distribution.
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Figure 3.11: Randomisation test: Epanechnikov versus baseline

The inclusion of Epanechnikov sharing has improved both aspects of performance on

ZDT-6. The non-uniform nature of this problem should particularly highlight the benefits

of such a sharing scheme. Note in particular that a method designed to improve diversity

has also helped to improve proximity, thus suggesting the strong interaction between the two

optimiser requirements. However, no improvements in either diversity or proximity have been

achieved for any other test function. Indeed there is some evidence to suggest a deterioration

in diversity on ZDT-1, although this is not significant at the 1%-level.
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3.5.3 Rank-Based Methods

Discussion

The difficulty and inconvenience involved in determining the niche size value has encouraged

many researchers to investigate alternative methods for diversity promotion. A review of

techniques has been provided in Section 2.4.4. Deb, Pratap, Agarwal and Meyarivan (2002)

used solution density estimates as a secondary discriminator in binary tournament selection-

for-variation when the two candidate solutions were of equal dominance depth. Zitzler,

Laumanns and Thiele (2001) added the inverse density estimate to the raw strength value

in SPEA2. The maximum amount of fitness that can be added is limited to ensure that

the resulting fitness hierarchy respects the original inter-equivalence-class, dominance-based

results. The strength is then used in binary tournament selection-for-variation. The density

enhancement mechanisms in these two schemes are identical. All performance differences are

completely attributable to the actual underlying process used for density estimation. In the

NSGA-II, this is the crowded distance, whilst in SPEA2 it is kth NN. An appropriate value

for k is obtained via statistical heuristics (Silverman 1986).

In this section, the above mechanism is generalised as a methodology that increases the

resolution of an existing ranking obtained through Pareto considerations. The primary dif-

ference between this approach and fitness sharing is that the density estimate is only used

for ranking purposes rather than to make an absolute modification to fitness. This may help

to reduce the sensitivity of the technique to the actual density estimate computed.

In terms of the actual density estimators note that there is no difference, in terms of

the number of free parameters, between Deb, Pratap, Agarwal and Meyarivan’s (2002) and

Zitzler, Laumanns and Thiele’s (2001) schemes and fitness sharing: a value of k in the kth

NN is effectively required in both of the former estimators, whilst σshare is needed in the

power-law sharing equation. However, the NN approach exploits relative distances in the

current population distribution whilst the sharing approach requires an absolute distance to

be ascertained. This self-adaptation characteristic can also be hypothesised to benefit per-

formance. The rank-based diversity enhancement scheme is implemented within the baseline

MOEA as described below.

In Fonseca and Fleming’s (1998a) approach, a candidate solution is ranked according to

how many other solutions in the current population are preferred to it. Given the minimum
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amount of preference information (a direction of monotonically increasing preference in each

objective), the comparison is made in terms of pure Pareto dominance. This concept is

illustrated in Figure 3.12. In this simple example, both objectives are to be minimised.

Objective vectors for five candidate solutions {A, . . . , E} are shown.
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Figure 3.12: Example of ranking based on the dominance rank approach

A solution is dominated by all other solutions within the hypercube defined by its own

objective vector and the Utopian point (in this case {0, 0}). In this example, the domination

hypercube for solution C is indicated by the grey rectangle. Solution C is seen to be dom-

inated by solution B alone, and thus receives a multi-objective ranking of 1. The rankings

for all solutions are shown in Table 3.3.

The original multi-objective genetic algorithm (Fonseca and Fleming 1993) uses the

stochastic universal sampling selection-for-variation mechanism because of its low stochastic

error properties (Baker 1987). This technique requires a mapping between ranking and fit-

ness value (in contrast to tournament selection, where this is implicit to the tournament size).

This is achieved by sorting the population according to rank, assigning fitness according to
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Table 3.3: Multi-objective ranking for the solutions in Figure 3.12

Candidate Objectives {z1, z2} Rank, ρ

A {0.1, 0.7} 0
B {0.3, 0.4} 0
C {0.5, 0.5} 1
D {0.8, 0.1} 0
E {0.9, 0.6} 3

some function, and then averaging the fitnesses for solutions of the same rank. This process

is illustrated in Figure 3.13. The narrower bars show the pre-averaged fitness values, whilst

the wider bars indicate the post-averaged fitnesses.
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Figure 3.13: Rank-to-fitness assignment procedure

The functional mapping between the partially-ordered list and fitness is often either linear

or exponential, although other forms are possible. It generally includes a parameter related to

selective pressure that can be used to vary position on the exploration-exploitation trade-off

(although this may be implicit to the procedure). A linear mapping is used in this chapter,
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where fitness is assigned in unit increments to a sorting of the population based on the

obtained multi-objective ranking. This process is shown in Equation 3.5, where f is fitness,

ρ is the index in the sorting of the population (with position zero corresponding to a solution

with a multi-objective rank of zero), and N is the number of candidate solutions.

f(ρ) = N − ρ (3.5)

The results in Figure 3.13 have been computed using Equation 3.5, where N = 5. Note

that the selective pressure of this scheme is implicit to the number of solutions in the popu-

lation. For standard population sizes, the selective pressure is close to 2. Note that, in any

linear scheme, the selective pressure is always bounded between 1 and 2.

The niching approach presented here increases the resolution of the above ranking proce-

dure through the inclusion of population density information. An intra-ranking is performed

on candidate solutions of identical dominance-based rank, discriminating on the basis of

population density. Solutions in less dense areas receive a superior intra-ranking to their

counterparts in denser regions. The distance metric is likely to be problem dependent and

could conceivably contain decision-maker preference information. Following the new fine-

grained ranking, the fitness assignment procedure remains unchanged. This new diversity

preserving measure is illustrated in Figure 3.14.

The density measure selected is the Euclidean distance to the first-nearest neighbour in

objective-space (see Figure 3.12). Solutions A, B, and D all have the same Pareto rank, but

solution D is the remotest and thus receives the highest fitness. Solutions A and B are an

identical distance apart and thus share the next two available fitnesses equally. Note that A

and B still receive a higher fitness than the solutions that they dominate (C and E). The

associated fine-grained ranks are shown in Table 3.4, to the right of the original coarse-grained

equivalents.

The proposed new scheme has a number of important properties, namely:

• If one candidate solution is preferred over another, then the former is guaranteed to

have a superior fitness value. This was not the case under the original fitness sharing

scheme of Fonseca and Fleming (1993).

• The cumulative fitness assigned to each ranking group remains unchanged.
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Figure 3.14: Fitness based on multi-objective ranking followed by diversity intra-ranking

Table 3.4: Multi-objective and diversity-based ranking for Figure 3.14

Candidate Distance to nearest neighbour Coarse rank Fine rank

A 0.361 0 0 1
B 0.361 0 0 1
C ∞ 1 1 0
D 0.583 0 0 0
E ∞ 3 3 0
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• When all solutions are currently non-dominated, discrimination is based purely on

density.

• When all solutions are currently non-dominated and the population density measure is

globally uniform, all fitness values are identical.

With any type of ranking scheme, information content is lost. The ranking indicates

that one solution lies in a more densely packed region than another solution but the actual

difference in density between the two is lost. This limits the amount of information available to

the search procedure but protects against premature convergence to locally superfit solutions

and reduces the sensitivity to any free parameters of the density estimator.

Results

The results of randomisation testing, when comparing the contemporary diversity enhance-

ment method to the baseline (non-sharing) system are shown in Figure 3.15. Observed dif-

ferences between sample means to the left of the randomisation distribution provide evidence

in favour of the new scheme.

The central aim of sharing is to improve the distribution of solutions in objective-space and

this should be primarily evident in the spread results. As shown in Figure 3.15, there is strong

evidence to suggest that the new method improved spread on ZDT-3 and ZDT-4. The use of

the Epanechnikov kernel, by contrast, did not improve results on these problems. In no cases,

was the absence of the contemporary sharing mechanism shown to be preferable (whereas

there was some evidence in Section 3.5.2 to suggest that the Epanechnikov kernel could cause

a deterioration in diversity). However, there is no evidence to suggest that the use of sharing

made any difference to the results for ZDT-6. This is particularly surprising because of the

naturally non-uniform distribution across the trade-off surface for this problem — a situation

in which the positive effect of explicit diversity enhancement should be most evident. In

terms of closeness of the approximation set to the global Pareto front, the contemporary

mechanism was found to be associated with improved proximity on ZDT-1, 2, and 4.
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Figure 3.15: Randomisation test: Rank-based sharing versus no sharing
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3.6 Obtaining Good Proximity and Good Diversity: an Elitist

Strategy

Elitism is the process of actively preserving previous high-performance solutions during the

selection-for-survival stage of an MOEA. Elitism has long been considered an effective method

for improving the efficiency (in terms of convergence speed to a good approximate solution)

of an EA (De Jong 1975). Various studies in the EMO community have indicated that

the inclusion of an elitist element can considerably improve the performance of an MOEA

(Zitzler et al. 2000, Deb, Pratap, Agarwal and Meyarivan 2002). In particular, the success

of the SPEA algorithm (which contains an elitist element) across a diverse set of bi-objective

problems has led to the widespread adoption of elitist schemes in the EMO community (Zitzler

et al. 2000). Refer to Section 2.4 for a review of elitist strategies in MOEAs.

This study will consider the effect of the elitism technique proposed by Zitzler and Thiele

(1999) which was implemented in the SPEA. The method is based on the generational gap

approach to selection-for-survival, where a clustering technique is used to maintain a repre-

sentative subset of good solutions in P [t] to be preserved. Generational gap techniques are

common in the genetic algorithm community, from which the baseline MOEA used in this

study has its origins. For this reason, and because of the impressive results reported in the

literature for SPEA, it has been chosen for analysis herein.

The SPEA (conceptually) maintains an on-line archive of currently non-dominated so-

lutions and uses this in the processes that generate new candidate solutions. The archive

should be a representative subset of all the non-dominated solutions found thus far. Note

that MOEAs developed prior to SPEA generally maintain an up-to-date off-line archive of

all non-dominated solutions found, but these results are not explicitly used in the generation

of new candidate solutions.

The on-line archive requires a clustering mechanism in order to control the number of elite

solutions. This set of solutions should represent the characteristics of the underlying off-line

archive: generally referring to the objective vectors, although decision-space discrimination is

also possible. The truncation procedure described in Zitzler, Laumanns and Thiele (2001) is

an effective means of elitism control for bi-objective problems. In these cases, this method can

reduce an over-sized archive without losing boundary solutions. This attribute is desirable
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in the search for diverse trade-off solutions. However, for problems with more than two

objectives, extreme trade-off solutions can be lost by this method. It is also possible for

the procedure to remove globally non-dominated solutions whilst retaining currently non-

dominated, yet sub-optimal, solutions (both solutions would be non-dominated from the

perspective of the truncation process, but the truly sub-optimal solution would be in a less-

dense area of objective-space) (Laumanns, Thiele, Deb and Zitzler 2002). The truncation

procedure is outlined below:

To remove one member of the over-sized archive follow the subsequent procedure with k

initialised to 1:

1. Find the set of solutions, XS, with the shortest (objective-space) distance between

themselves and their kth nearest neighbours.

2. If the size of this set is greater than one, increment k and repeat Step 1 using only

solutions in XS, otherwise select the individual in XS for removal.

If nearest neighbour information is exhausted, select randomly from the current set XS.

The above procedure should be repeated until the archive has been reduced to an acceptable

size.

The elitist strategy adopted in this study is a variant on the universal elitism approach

developed by Zitzler (1999) and is illustrated by the schematic in Figure 3.16. The key

difference is that the archive size is allowed to vary within pre-defined limits, whilst the

number of newly generated candidate solutions is varied such that the total population size

(elites plus new solutions) is held constant.

The on-line archive is initialised to the empty set, whilst the initial population is ini-

tialised to a random set of candidate solutions (possibly seeded with information provided by

the decision-maker). The populations at subsequent iterations of the algorithm are the com-

bination of new solutions and current elite solutions. The currently non-dominated solutions

in the population are identified and are stored as the new, potentially over-sized, archive.

Over-represented solutions are then eliminated from the archive, if necessary, using the trun-

cation procedure defined above. For the test problems used in this study, the neighbourhood

distance measure is defined as the Euclidean distance between two objective vectors.

When the new elite set has been finalised, the size of this set is known, and thus the number
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Figure 3.16: Elitist strategy employed in this study
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of new candidate solutions required to fill the population can be calculated. These solutions

are created through the selection and genetic manipulation of members of the current popu-

lation. The new solutions are then combined with the elite set to form the subsequent total

population, which completely replaces the old population.

This elitist strategy has been integrated within the baseline MOEA described in the

previous section and has been applied to the six benchmark problems. The results of the

randomisation testing between the elitist algorithm and the baseline algorithm are shown in

Figure 3.17. Observed differences to the left of the randomisation distribution offer evidence

in favour of the elitist version outperforming the baseline case.
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Figure 3.17: Randomisation test: elitist versus baseline

There is considerable evidence, clearly shown by the results in Figure 3.17, that the elitist

algorithm produces results closer to the true front than the baseline for ZDT-1, 2, 3, 4, and 6.

The observed result for ZDT-5 is not significant at the 1%-level, although it would have been

significant at the 5%-level. Superior performance in terms of diversity is strongly suggested

for ZDT-1, 2, 4, 5, and 6.
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The inclusion of elitism increases the convergence speed of the algorithm. The danger of

sub-optimal convergence is somewhat reconciled by the distributed nature of the elite set.

Variation operators with the potential for a high degree of exploration, such as the Gaussian

mutation operator used in this work, can also reduce the risk of premature convergence.

Hence, the increased successful convergence exhibited in this study could perhaps be expected.

The elitism scheme also maintains the characteristics of the currently identified trade-off

surface within the on-line population. Thus, diversity of non-dominated solutions in the

population is maintained and encouraged (through the thinning of similar objective vectors)

by the truncation mechanism. This helps to explain the improvement in diversity seen in

the results. However, the truncation process only represents the current distribution: it does

not, directly, promote improved diversity through multiple selection-for-variations of remote

solutions. Despite this, the inclusion of elitism did lead to improved diversity on the non-

uniformly distributed ZDT-6. The extra inclusion of diversity-promotion mechanisms during

selection-for-variation (as previously detailed in Section 3.5) may assist further in improving

diversity across the trade-off surface. The dual use of diversity enhancement mechanisms for

ss and sv receives further consideration in the next section.

3.7 State-of-the-Art MOEA: Enhanced ss and sv Mechanisms

The use of an elitist strategy or a sharing strategy in isolation has been shown to offer

improved performance in terms of both proximity and diversity. It is instructive to now

consider the effect of these schemes in combination. A schematic of the resulting algorithm

is shown in Figure 3.18.

This optimiser has been applied to the problems in the ZDT test suite. The resulting

attainment surfaces are shown in Figures 3.19 through 3.24.

The envelopes of attainment are generally very tight, indicating good consistency in the

results. As evident from Figure 3.22, proximity has been greatly improved on ZDT-4: indeed

the 25%-attainment surface lies very close to the global front of this difficult test problem.

Complete coverage of the right-hand section of the trade-off surface has been achieved for

ZDT-5, as shown in Figure 3.23. Finally, proximity and diversity have been much improved

on ZDT-6 (see Figure 3.24).

A comparison with the baseline algorithm is made, via randomisation testing, in Fig-
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Figure 3.19: Attainment surface — contemporary MOEA solving ZDT-1
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Figure 3.20: Attainment surface — contemporary MOEA solving ZDT-2
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Figure 3.21: Attainment surface — contemporary MOEA solving ZDT-3
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Figure 3.22: Attainment surface — contemporary MOEA solving ZDT-4
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Figure 3.23: Attainment surface — contemporary MOEA solving ZDT-5
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Figure 3.24: Attainment surface — contemporary MOEA solving ZDT-6
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ure 3.25. Observed differences between the means of each indicator that lie to the left of the

randomisation distribution favour the contemporary algorithm.
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Figure 3.25: Randomisation test: contemporary MOEA versus baseline MOEA

Compelling evidence points to the new algorithm substantially outperforming the base-

line in terms of diversity across all six benchmark problems. The combination of diversity

enhancement schemes at both selection-for-variation and selection-for-survival was required

in order to achieve this improvement. Neither scheme by itself was capable of producing this

result. Interestingly, this benefit has been accompanied by a reduction in the improvement

to the proximity result for ZDT-3 when compared to what can be achieved by the enhanced

selection-for-survival mechanisms in isolation (described in Section 3.6). However, improved

proximity was observed for ZDT-1, 2, 4, and 6 (the result for ZDT-5 is not significant at the

1%-level).

A direct comparison of the combined scheme with the MOEA from Section 3.6 is shown

in Figure 3.26. Observed differences to the left of the randomisation distribution favour the

combined scheme. There is substantial evidence that the incorporation of explicit diversity
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promotion at the sv stage has improved diversity still further on ZDT-1, 2, 3, and 4. As

mentioned above, the improved diversity on ZDT-3 has been accompanied by attenuation of

proximity. The reason for this is somewhat unclear.
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Figure 3.26: Randomisation test: contemporary MOEA versus elitist MOEA

3.8 Summary

In this chapter, a progressive and tractable experimental approach to the analysis of MOEA

performance has been presented. This methodology stresses the importance of baselining as

central to developing an understanding of the behaviour of various algorithmic components

and the interactions between them.

The experimental framework has been used to explore some of the benefits of using ad-

vanced selection strategies in EMO. The results apply primarily to the class of real-parameter,

bi-objective function optimisation problems. It has been demonstrated that performance

is largely invariant under either of the main Pareto ranking methods in the EMO field.
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Some evidence has been found to suggest that explicit diversity enhancement schemes during

selection-for-variation can offer a degree of improved diversity in the resulting approximation

sets. Much more obvious benefits were obtained for both diversity and proximity through

the use of an elitist selection-for-survival scheme. When advanced ss and sv schemes were

fused together, the improvements over the baseline were almost universal.

The fundamental limitation of these conclusions is that they — like the vast majority

of such conclusions in the literature — only apply to bi-objective problems. But how do

the extensions to the original EMO philosophy expounded by Goldberg (1989) perform when

applied to optimisation tasks with greater than two objectives? Indeed, how does the original

formulation perform? These are essential questions that face the theoretical EMO community.

Timely answers are required since many EMO applications have already considered many

objectives simultaneously. There is little theoretical support for this work at present.

In the next chapter, and the remainder of this thesis, the foundations are laid for research

into the simultaneous optimisation of more than two objectives.



Chapter 4

Evolutionary Many-Objective

Optimisation: An Introduction

4.1 Introduction

Theoretical evolutionary multi-objective optimisation studies, such as that detailed in Chap-

ter 3, generally consider a small number of objectives or criteria. The bi-objective case is

by far the most heavily studied. EMO applications, by contrast, are frequently more ambi-

tious, with the number of treated objectives reaching double figures in some cases (Coello

et al. 2002). Hence, there is a very clear need to develop an understanding of the effects of

increasing numbers of objectives on EMO. The phrase many-objective has been suggested

in the OR community to refer to optimisation problems with more than the standard two

or three objectives (Farina and Amato 2002). Following this, the terminology evolutionary

many-objective optimisation (EMO) is proposed herein to refer to EMO problems of increased

scale.

This chapter establishes a platform for research into EMO via consideration of the dif-

ferent types of pair-wise relationships between the objectives. A classification of possible

relationships is offered in Section 4.2, and the notation used to establish the concepts is in-

troduced. Conflict between objectives is discussed in Section 4.3, whilst Section 4.4 considers

harmonious objectives. The aim of a multi-objective evolutionary algorithm is generally re-

garded as to generate a sample-based representation of the Pareto optimal front, where the

samples lie close to the true front and are well distributed across the front. The effects of

89
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increasing numbers of each type of objective on both aspects of the quality of the trade-off

surfaces produced are described, together with a review of methods for dealing with the

difficulties that arise. The case where the global EMO problem can be decomposed into sub-

problems is introduced in Section 4.5. Qualitative studies of pair-wise relationships between

objectives are not uncommon in the EMO community, especially in the case of real-world

applications. These are discussed in Section 4.6, alongside similar quantitative methodologies

from the multi-criterion decision-making discipline.

Some of the concepts described in this chapter are illustrated using an example result from

the contemporary multi-objective genetic algorithm (MOGA), developed in Chapter 3, solv-

ing the 3-objective DTLZ2 benchmark problem (Deb, Thiele, Laumanns and Zitzler 2002).

This test function is described in Equation 4.1. Note that all objectives are to be minimised.

min. z1(x) = [1 + g(x3, . . . , x12)] cos (x1π/2) cos (x2π/2) ,

min. z2(x) = [1 + g(x3, . . . , x12)] cos (x1π/2) sin (x2π/2) ,

min. z3(x) = [1 + g(x3, . . . , x12)] sin (x1π/2) ,

w.r.t. x = [x1, . . . , x12] ,

where g(x3, . . . , x12) =
∑12

i=3 (xi − 0.5)2 ,

and 0 ≤ xi ≤ 1, for i = 1, . . . , 12.
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(4.1)

4.2 Relationships Between Objectives

4.2.1 Classification

In theoretical EMO studies, the objectives are generally considered to be in some form of con-

flict with each other. Thus, in the bi-objective case, the optimal solution is a one-dimensional

(parametrically speaking) trade-off surface upon which conflict is always observed between

the two objectives. However, other relationships can exist between objectives and these may

vary within the search environment. A basic classification of possible relationships is offered

in Figure 4.1. These relationships are explained in the remainder of the chapter.

The dependency classifications are not necessarily mutually exclusive. For example, in the

case of three conflicting objectives, there may be regions where two objectives can be improved

simultaneously at the expense of the third. This is illustrated in Figure 4.2 for the final

approximation set of a MOGA solving the 3-objective DTLZ2 problem (see Equation 4.1).
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Figure 4.1: Classification of relationships between objectives
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Figure 4.2: Final on-line archive of MOGA (depicted as circles) solving DTLZ2, superimposed
on the global trade-off surface

For example, ideal performance in z2 and z3 (evidence of harmony) can be achieved at

the expense of nadir performance in z1 (evidence of conflict), as indicated by the left-most

objective vector in the figure. However, on the far right of the figure, z1 and z3 are now in

harmony and are both in conflict with z2. Thus, the nature of the relationships change across

the Pareto front.
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Figure 4.3: Dependency relationship regions between a pair of objectives, i and j, identified
using the location of sample vector z

b relative to that of z
a

4.2.2 Notation

The following notation is used in the remainder of the chapter: M is the number of objectives

to be considered in the optimisation procedure, Z is the set of all realisable objective vectors

z ∈ R
M , and ZR is a particular region of interest in objective-space, ZR ⊆ Z. If ZR = Z

then the relationship is said to be global, otherwise it is described as local. The case ZR = Z∗,

where Z∗ is the Pareto optimal region, may be of particular interest since these are typically

the relationships that will be presented to the decision-maker.

Let i and j be indices to particular objectives: i, j ∈ [1, . . . ,M ]. Let a and b be indices

to individual objective vector instances: a, b ∈ [1, . . . , |ZR|]. Also let (a, b) denote a pair of

instances for which a 6= b. Minimisation is assumed throughout the discussions without loss

of generality.

The dependency relationships that can be identified via pair-wise analysis are summarised

in Figure 4.3. They are based on the position of objective vector z
b relative to the position of

z
a. These relationships are explored in more detail in Section 4.3 and Section 4.4 to follow.
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4.3 Conflicting Objectives

4.3.1 Definitions of Conflict

A relationship in which performance in one objective is seen to deteriorate as performance in

another is improved is described as conflicting. This is summarised by Definition 4.1 below

and can be related to the z
b-relative-to-za regions marked as conflicting in Figure 4.3.

Definition 4.1 (Conflict) Objectives i and j exhibit evidence of conflict according to the

condition (zai < z
b
i) ∧ (zaj > z

b
j). If ¬∃(a, b) for which the condition holds then there is no

conflict, if ∃(a, b) then there is conflict, whilst if the condition holds ∀(a, b) then there is total

conflict.

Note that no attempt has been made to define intermediate levels of conflict (or har-

mony, as discussed in Section 4.4) since this requires DM preference information beyond that

required for pure Pareto optimality.

4.3.2 Effect on EMO

ForM conflicting objectives, an (M−1)-dimensional trade-off hypersurface exists in objective-

space. The number of samples required to achieve an adequate representation of the surface

is exponential in M . Given a finite population, an evolutionary optimiser will encounter in-

tractable difficulties in representing the surface when large numbers of conflicting objectives

are considered. Even if such a representation were possible, the value to the DM of such a

large number of candidate solutions is questionable.

Deb (2001a) has shown that the proportion of locally non-dominated objective vectors in

a finite randomly-generated sample becomes very large as the number of objectives increases.

Similar results were reported in Fonseca and Fleming (1998b) for the final non-dominated

set of a real-world MOEA application. Since dominance-based discrimination is used to

determine the relative worth of current solutions, insufficient selective pressure may exist to

make progress toward the global Pareto front. The use of a large population can help to

reduce the proportion of locally non-dominated solutions, but this approach is impractical

for the many real-world problems in which evaluation of a single candidate solution is very

time-consuming. Also, the reduction in the proportion of locally non-dominated solutions
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that is achievable through the use of larger populations becomes progressively less as the

number of objectives increases.

Many MOEAs use some method of population density estimation, either to modify the

selection-for-variation probability of an individual or as part of the selection-for-survival ac-

ceptance procedure, to achieve a good distribution of solutions. Density estimation also

becomes increasingly difficult as the dimensionality of the problem-space in which the esti-

mates are to be computed is increased. This dimensionality is the number of objectives for

density estimation in objective-space. Due to the ‘curse of dimensionality’ (the sparseness of

data in high dimensions), the ability to fully explore surfaces in greater than five dimensions is

regarded as highly limited (Scott 1992). Statisticians generally use dimensionality reduction

techniques prior to application of the estimator. This assumes that the ‘true’ structure of the

surface is of lower dimension, but the potential for reduction may be limited for a trade-off

surface in which all objectives are in conflict with each other.

The effect of conflict in EMO, in the absence of any remedial measures, is explored

empirically in Chapter 5 to follow. Possible measures that have been considered previously

by the EMO community are described below.

4.3.3 Remedial Measures

Preferences

The exploitation of DM preferences, either a priori, a posteriori, or progressively, is arguably

the current best technique for handling large numbers of conflicting objectives. In the a

priori and progressive cases, the optimiser is required to represent only a limited DM region

of interest in objective-space. Thus, good proximity and good distribution of solutions is

only required in a sub-space of the global trade-off hypersurface. The classic weighted-sum

approach to objective aggregation has been applied extensively in EA applications, but has

considerable limitations. The aggregation of objectives is described further below, together

with a more powerful preference-based scheme based on dominance-like concepts. Supple-

mentary information on the use of preferences with EMO can be found in Section 2.4.5.

Aggregation. One popular method for reducing the number of conflicting performance

objectives is to combine several of them into a single optimisation objective. Aggregation
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may be achieved by means of a weighted-sum, or a more complicated function. In this

approach, the DM pre-specifies the trade-offs between the combined subset of objectives.

This eliminates the requirement for the optimiser to represent this portion of the global

trade-off surface. The inherent disadvantage of the approach is that the DM must be able to

specify the required trade-off a priori. Also, large adjustments to the preferences may require

a complete re-run of the optimisation. Nevertheless, this may be an appropriate technique,

especially when faced with very large numbers of objectives. Note that optimisers based on

the weighted-sum method of aggregation are unable to identify non-convex regions of the

trade-off surface (Censor 1977).

Goals and Priorities. Greater flexibility can be achieved in terms of objective reduction

by exploiting goal values and priorities for various objectives, if these can be elicited from

the DM. The preferability relation developed by Fonseca and Fleming (1998a) unifies various

classical operations research schemes based on goals and priorities and applies them within the

context of EMO. In essence, the method adaptively switches on or off different objectives, from

the perspective of the dominance relation, for each pair of vectors considered. The iterative

nature of the EA paradigm can be exploited to update the preferences as information becomes

progressively available to the DM. Similar schemes to that proposed by Fonseca and Fleming

(1998a) exist in the EMO literature, as documented in Chapter 2.

Dimension Reduction

Existing dimensionality reduction techniques could be used to transform objective-space into

a lower dimension. This could be done prior to the optimisation, based on some preliminary

analysis, or could be updated on-line as the MOEA evolves. The key benefit of the latter

approach is that, as the MOEA progressively identifies the trade-off surface, the reduction

is performed on a space more relevant to both the EA and the DM. If the reduction is to

be performed iteratively then the balance between capability and complexity of the applied

technique must be considered. For example, curvilinear component analysis (Demartines and

Hérault 1997) has good general applicability but a significant computational overhead, whilst

principal components analysis (Joliffe 1986) has the opposite features.

Dimension reduction methods can be applied directly to the density estimation process

to preserve trade-off diversity in information-rich spaces. However, since the methods do not



CHAPTER 4. MANY OBJECTIVES: AN INTRODUCTION 96

respect the dominance relation, they cannot be used directly in the Pareto ranking process

without modification (Collette, Siarry and Wong 2000).

Visualisation

Note that the ability to visualise the developing trade-off surface becomes increasingly dif-

ficult as the number of objectives increases. The method of parallel coordinates is a popu-

lar countermeasure for large numbers of objectives. Scatter-plots with brushing and glyph

approaches, such as Chernoff faces (Chernoff 1973), are amongst the possible alternatives

(Scott 1992, Cleveland 1993). Parallel coordinates and scatter-plots are both closely linked

to the concepts of conflict and harmony described in this paper, and are discussed further in

Section 4.6

Obayashi and Sasaki (2003) have used self-organising maps (SOMs) for visualisation

purposes in EMO. A SOM is an unsupervised neural network that performs a mapping of

data from a high dimension on to a lower dimensional structured lattice, whilst attempting

to preserve the topology of the data (Kohonen 1995). Obayashi and Sasaki (2003) used two-

dimensional neural lattices to highlight the relationships between the objectives and also to

cluster decision-space to discover overall qualitative categories of solution that correspond to

particular trade-off choices.

4.4 Harmonious Objectives

4.4.1 Definitions of Harmony

A relationship in which enhancement of performance in an objective is witnessed as another

objective is improved can be described as harmonious. If performance in the objective is unaf-

fected, the relationship is described as weakly harmonious. Complete definitions are provided

below and can be related to the relevant z
b-relative-to-za regions and lines in Figure 4.3.

Definition 4.2 (Harmony) Levels of harmony are determined by the condition (zai < z
b
i)∧

(zaj < z
b
j). If ¬∃(a, b) for which the condition holds then there is no harmony, if ∃(a, b) then

there is harmony, whilst if the condition holds ∀(a, b) then there is total harmony.

Definition 4.3 (Weak Harmony) Levels of weak harmony are determined by the condition
[

(zai < z
b
i ) ∧ (zaj = z

b
j)

]

∨
[

(zai = z
b
i ) ∧ (zaj < z

b
j)

]

. If ¬∃(a, b) for which the condition holds
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then there is no weak harmony, if ∃(a, b) then there is weak harmony, whilst if the condition

holds ∀(a, b) then there is total weak harmony.

Definition 4.4 (Neutrality) Neutrality is determined by the condition
(

z
a
i = z

b
i

)

∧
(

z
a
j = z

b
j

)

.

If ¬∃(a, b) for which the condition holds then there is no neutrality, if ∃(a, b) then there is

neutrality, whilst if the condition holds ∀(a, b) then there is total neutrality.

Harmonious relationships have been observed in several EMO application papers, where

they are indicated by non-crossing lines between pairs of objectives on a parallel coordinates

plot (see Section 4.6), including the following:

• passenger cabin acceleration versus control voltage in electromagnetic suspension con-

troller design for a maglev vehicle (Dakev, Whidborne, Chipperfield and Fleming 1997),

• gain margin versus phase margin, and 70% rise time versus 10% settling time, in

the design of a Rolls-Royce Pegasus low-pressure spool speed governor (Fonseca and

Fleming 1998b).

4.4.2 Effect on EMO

In either form of total harmony, one of the objectives can be removed without affecting

the partial ordering imposed by the Pareto dominance relation on the set ZR of candidate

solutions. This type of relationship has received some consideration in the classical OR

community, usually for ZR = Z∗, where one member of the objective pair is known variously

as redundant, supportive, or nonessential (Agrell 1997, Carlsson and Fullér 1995, Gal and

Hanne 1999). It remains an open question whether or not to include redundant objectives in

the optimisation process. Reasons to keep such objectives include:

• knowledge of the relationship may be of interest to the DM, especially if the rate of

harmonious behaviour changes over the course of the search space,

• the relationship may not be apparent from a random finite sample of the search space,

• inclusion does not, necessarily, harm the search,

• the DM may be more comfortable with the inclusion of the objective.
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Reasons to remove redundant objectives include:

• to eliminate the extra burden on the DM, who must inspect and make decisions on

matters that do not affect the search and may be misleading,

• to reduce the computational load, in terms of both performance evaluations and com-

parisons.

The inclusion of a redundant objective does not affect the partial ordering of candidate

solutions imposed by the Pareto dominance operator. Thus, EMO progress toward the global

Pareto front is unaffected. It is, however, possible that such an inclusion could affect the

diversity in the representation of the trade-off hypersurface. This depends on the definition of

distance between objective vectors used by the density estimator. For example, any procedure

using Euclidean distances or the NSGA-II crowding algorithm (Deb, Pratap, Agarwal and

Meyarivan 2002) could suffer from potential bias. Consider the case of three objectives: where

z1 and z2 totally conflict, z1 and z3 totally conflict, and z2 and z3 are in total harmony.

The resulting trade-off surface is one-dimensional, and can be represented by the conflict

between z1 and z2. A uniform distribution in the Euclidean sense may not be arrived at

across the normalised trade-off surface, even if such a distribution is achievable, because the

Euclidean distance calculation is biased in favour of z2 since {z2 z3} has greater influence

on the Euclidean distance measure than z1. Thus, a diversity preservation technique would

bias in favour of diversity in z2 on the trade-off surface. The overall effect of this depends on

the trade-off surface in question: sometimes, good diversity in z2 will naturally lead to good

diversity in z1 but this is not guaranteed to be the case.

4.4.3 Remedial Measures

Redundant objectives may be identified by (i) careful use of a priori DM knowledge and

(ii) using the sample set contained within the EA population for each objective and looking

for large positive correlations between the data sets for each pair of objectives. Redundant

objectives may be removed if this is felt appropriate for the problem in-hand. Alternatively,

the objectives may be selectively ignored in the density estimation process (and also the

ranking process in order to reduce the number of unnecessary comparisons) and yet still be

presented to the DM.
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Caution should be exercised when considering the removal of an objective identified as

redundant through the analysis of sample data. This is because the spatial relationships

between objectives can vary through objective-space and, thus, the relationship identified for

one set of sample data may not be representative of the relationship in the actual DM region

of interest (Z∗).

4.5 Independent Objectives

4.5.1 Independence in the Context of EMO

In this thesis, independence refers to the ability to decompose the global optimisation problem

into a group of sub-problems that can be solved separately from each other. Thus, different

objectives and decision variables will be allocated to different sub-problems.

In the context of the relationship between a pair of objectives, independence means that

the objectives can, in theory, be optimised completely separately from each other. As with a

harmonious relationship, it is possible to make improvements to both objectives simultane-

ously (from the perspective of the complete solution). The difference between independence

and harmony is that appropriate adjustments must be made to two distinct parts of the com-

plete solution in the former case, whilst in the latter case a single good decision modification

for one of the objectives will naturally produce improvement in the second objective.

If two objectives are independent then they do not form part of the same trade-off sur-

face. Thus multiple, distinct, trade-off surfaces exist, each of which should be represented

separately for inspection by the DM.

4.5.2 Effects of Independence on EMO

Consider a global problem, P, comprised of ψ independent sub-problems [P1, . . . ,Pψ ] with

associated independent collections of objectives [z1, . . . ,zψ] and independent collections of

decision variables [x1, . . . ,xψ]. If advance knowledge of these collections is available then the

global problem can be decomposed into the groups of sub-problems prior to optimisation.

Then a proportion of the total available resources (candidate solution evaluations) could be

exclusively allocated to the optimisation of each sub-problem. Both a global approach and the

aforementioned divide-and-conquer method should yield the same solution of ψ independent
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trade-off surfaces. From an EMO perspective, it then becomes a matter of interest as to which

technique produces superior results in terms of trade-off surface quality. Is the effort expended

identifying and exploiting the correct decompositions rewarded with improved results?

In the first study of its kind, Purshouse and Fleming (2003a) attempted to answer this

question. The study demonstrated that, for a simple test problem, a divide-and-conquer strat-

egy could substantially improve EMO performance. A priori decompositions were evaluated

in objective-space, decision-space, and both spaces simultaneously. Parallel EA models were

applied to each sub-problem. All three methods led to significantly higher-quality trade-off

surfaces than the global approach, with both-space decomposition proving the most attrac-

tive. Given that it may not be possible to accurately identify the sub-problems in advance of

the optimisation, an on-line adaptive divide-and-conquer strategy for MOEAs has also been

proposed and evaluated by Purshouse and Fleming (2003a). Bivariate statistical tests for in-

dependence are applied to the population sample data in order to identify the independence

relationships. The study is documented in Chapter 6 of this thesis.

4.6 Existing Methods for Identifying Pair-Wise Relationships

This chapter considers the relationships that exist between pairs of objectives, by comparing

pairs of objective vectors. In this approach, composite relationships must be inferred from

these simpler relations. However, the pair-wise methodology is very popular in multivariate

studies and forms a good foundation for analysis, with many qualitative and quantitative

techniques based on this approach. Methods that are closely linked to the definitions of

conflict and harmony described earlier are discussed in the remainder of this section.

4.6.1 Qualitative Methods

The method of parallel coordinates, first described by Inselberg (1985) and subsequently ap-

plied to EMO by Fonseca and Fleming (1993), reduces an arbitrary high-dimensional space

to two-dimensions. The parallel coordinates representation of the approximation set of Fig-

ure 4.2 is shown in Figure 4.4. Objective labels are located at discrete intervals along the

horizontal axis (and these should be interchangeable). Normalised performance in each ob-

jective is indicated on the vertical axis. A particular objective vector is displayed by joining

the performance levels in all adjacent objectives by straight lines. Then, considering two
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Figure 4.4: Parallel coordinates representation of the data shown in Figure 4.2

objective vector instances for a pair of objectives, the lines representing the two instances

will cross if conflict is exhibited according to Definition 4.1 or will fail to cross if harmony is

observed according to Definitions 4.2 or 4.3 (in the case of Definition 4.4, the lines will be

superimposed). Thus, the magnitude of conflict is heuristically visualised as ‘many’ crossing

lines.

Wegman (1990) presents some valuable insights and extensions toward using the parallel

coordinates representation as a high-dimensional data analysis tool. Statistical interpreta-

tions of the plots are possible, with features such as marginal densities, correlations, clusters,

and modes proving readily identifiable. Parallel coordinates plots can suffer from over-plotting

for large data sets and thus a density plot variant is also presented by Wegman (1990) to

overcome this.

Another popular method of pair-wise visualisation, which in its full form presents more

simultaneous comparisons than the standard parallel coordinates plot, is the scatterplot ma-

trix (Cleveland 1993). Such a plot for the MOGA approximation set of Figure 4.2 is shown

in Figure 4.5. Each element of the matrix of plots shows a particular bi-objective section of

the trade-off surface. For example, the upper central plot shows z2 on the horizontal axis and

z1 on the vertical axis. It can sometimes be difficult to extract information from these plots,
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Figure 4.5: Scatterplot matrix representation of the data shown in Figure 4.2

especially as the number of objectives increases. Highlighting of a particular objective vector

instance or group of instances — a technique known as brushing — can often aid higher-order

understanding. The filled circle in Figure 4.5 indicates one particular vector.

4.6.2 Quantitative Methods

Several pair-wise methods exist for quantifying conflict between objectives that use similar

concepts to the parallel coordinates notion of crossing lines. The Kendall sample correlation

statistic measures the difference between the number of concordant samples (as one variable

increases/decreases, the other follows suit) and the number of discordant samples (as one

variable increases/decreases, the other does the opposite) (Kendall 1938). Thus, discordance

produces crossing lines whilst concordance does not. The link to the multi-objective concepts

of conflict and harmony is clear. Fuzzy measures of conflict also use this type of approach:

see, for example, Lee and Kuo (1998).

Schroder (1998) developed a technique based directly on the method of parallel coordi-

nates. In this approach, each objective range is partitioned into a number of equally sized

regions. The level of conflict is then defined as a weighted-sum of the crossings between

pairs of regions (rather than actual solutions), where the weights are based on the separation
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between the regions. Crossings between distant regions are argued to be indicative of strong

conflict. The method also normalises conflict levels with respect to population density. This

may be appropriate if one particular region is thought to be over-sampled by the search, but

may not in general be correct because if vectors are similar in two objectives this does not

necessarily mean they are from the same region of the global trade-off surface. The method

also requires additional preference information, unlike the previous techniques, since it is not

based purely on ordinal data. However, more information can, potentially, be extracted using

this method.

4.7 Summary

EMO applications have long considered the simultaneous optimisation of large numbers of

objectives. However, EMO algorithm developers have tended to concentrate almost entirely

on the bi-objective domain. Thus, there is a present lack of understanding of how MOEAs

cope with larger numbers of objectives, and what functionality is required from an EMO

algorithm. This chapter has sought to lay foundations for future work in this direction by

considering how increasing numbers of objectives affect MOEA search performance.

Three relationships — conflict, harmony, and independence — have been identified. It

has been demonstrated how the relationship between two objectives can contain elements of

both conflict and harmony, resulting from interaction with other objectives.

It has been argued that increasing numbers of conflicting objectives will severely hamper

the ability of an MOEA to represent the global trade-off surface in a form that is of use

to a DM. Many candidate solution evaluations will be required to represent the naturally

high-dimensional trade-off surface of an EMO environment at a resolution considered the

norm for bi-objective tasks. Even if such a resolution were achievable, the resulting amount

of information is likely to cognitively overwhelm the DM, who must ultimately select a single

solution. Lower resolution approximations of the entire surface can be equally unsatisfactory

because the spaces between neighbouring solutions may be much greater than the DM indif-

ference values. Also, as argued in Chapter 2, for a many-objective problem the DM generally

has a limited region of interest within the overall trade-off space. Thus, the ‘pure’ EMO

aim of representation across the entire span of the surface is inefficient for many practical

applications. Furthermore, the dimension of the problem must be kept reasonably low for
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human DM analysis to remain tractable: twelve objectives has been suggested as an up-

per limit (Bouysson 1990). Aggregation of objectives, whilst anathematic to many EMO

researchers, may thus be necessary. DM preferences are an inescapable part of evolutionary

many-objective optimisation.

Even if the number of objectives is limited by DM considerations, it may still be prudent

to consider further dimensionality reduction in the context of the MOEA search. This can

be achieved by removing some objectives from certain comparisons (and thus preserving the

dominance relation) or by applying some form of transformation to a new set of coordinates

(the standard dimension reduction approach). The utility of methods based on the latter

approach is limited because they do not respect the dominance relation. They may, however,

be used to help achieve good diversity in information-rich spaces (where ‘information’ is

defined according to the chosen method).

Interactive preference articulation schemes, such as that described by Fonseca and Flem-

ing (1998a), are particularly valuable in problems with large numbers of conflicting objectives

and fit very nicely within the iterative EA framework. In such schemes, the attention of the

optimiser is focused on various sub-regions of the trade-off surface as the search progresses.

This is beneficial to the DM who may only be interested in learning about certain trade-offs

within the global problem. The progressive nature of the scheme suits the often changing

aspirations of the DM as more knowledge is uncovered. The main drawback of this approach

is that it can be rather DM-intensive.

To summarise, increasing numbers of conflicting objectives in a problem transforms the

aim of EMO from identification of a globally optimal solution set toward assisting the DM in

learning about the trade-offs between objectives and finding an acceptable solution. Harmo-

nious objectives, and the special case of redundancy, do not have the same severe impact on

EMO as does conflict. Convergence to the Pareto front is unaffected by increasing numbers of

totally harmonious objectives. Issues surrounding distribution of solutions across the surface

do require some care however. The decision on whether to eliminate any identified redundant

objectives from the search is perhaps best left to the discretion of the analyst and the DM.

The existence of independence within the global problem leads to multiple, separate, trade-

off surfaces. If independence can be identified then the deployment of a divide-and-conquer

strategy could potentially improve EMO performance. In conclusion, the simultaneous con-
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sideration of many objectives is arguably the greatest challenge facing the EMO community

at the present time. This challenge is met in the following two chapters of the thesis. Chap-

ter 5 seeks to reveal and explain contemporary MOEA performance in an environment of

many conflicting objectives. Chapter 6 considers the benefit of a divide-and-conquer strategy

for decomposable EMO tasks.



Chapter 5

The Effect of Increased Conflict in

EMO

5.1 Introduction

The previous chapter has identified the requirement for more theoretical work into the op-

timisation of many objectives using evolutionary algorithms. Consideration of the different

relationships between objectives — classified as conflict, harmony, and independence — has

been suggested as a route to understanding the behaviour of EMO algorithms.

In this chapter, the effect of many conflicting objectives on the performance of MOEAs

is explored. Recall that conflict is experienced between two objectives when improved per-

formance in the first objective can only be achieved at the expense of deterioration in the

performance of the second objective.

In Section 4.3.3 it was argued that the exploitation of decision-maker preferences is a key

technique for managing the optimisation of many conflicting objectives. The inherent diffi-

culties in solving many-objective problems have already lead EMO researchers to incorporate

preference-based schemes within their algorithms. These methods have been introduced in

Section 2.4.5 and a comprehensive review can be found in the work of Coello (2002). The

fundamental aim of these methods is to limit the search requirements of the optimiser to a

sub-region of overall objective-space. However, as argued by Knowles (2002), the potential

for an exclusively Pareto-based solution to the many-objective optimisation problem remains

a matter of some interest. Indeed, if the resolution of the obtained approximation set is

106
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regarded as a function of some maximum limit imposed on the size of the set (such as the

population size of an MOEA), then there is no a priori restriction such that the achieved

set should not be globally non-dominated and optimally distributed across the trade-off sur-

face. But is it possible to design an evolutionary algorithm that is capable of generating such

results, given finite resources, when faced with many conflicting objectives?

A family of tractable, real-parameter optimisation tasks that are scalable to any number

of conflicting objectives was proposed by Deb, Thiele, Laumanns and Zitzler (2002) to stim-

ulate research into many-objective optimisation. In the first known study of its kind, this

test suite was used by Khare, Yao and Deb (2003) to investigate the scalability of three con-

temporary MOEAS: Deb, Pratap, Agarwal and Meyarivan’s (2002) NSGA-II, Corne et al.’s

(2000) PESA, and Zitzler, Laumanns and Thiele’s (2001) SPEA2. The implementation of

PESA was found to produce approximation sets with good overall proximity of solutions to

the global Pareto front but with a poor distribution when solving for many conflicting objec-

tives. By contrast, the approximation sets obtained for the implementations of NSGA-II and

SPEA2 exhibited a good distribution of solutions but with poor proximity. However, since a

single design-space instance of each algorithm was used, and each algorithm is itself a compli-

cated structure of basic EMO components, it is not immediately clear from the study which

components and processes are critical from the many-objective optimisation perspective. In

particular, it is not clear why PESA should produce approximation sets of a fundamentally

different character to NSGA-II and SPEA2.

In this chapter, in a manner consistent with the approach developed in Chapter 3, MOEA

processes are considered at a component level rather than the brand-based approach adopted

by Khare et al. (2003). The observed EMO behaviour can subsequently be explained in

terms of fundamental search components and processes. In addition, results are generated

for a map of variation operator configuration settings. This permits analysis to be made in

terms of the exploration-exploitation trade-offs in EMO (Bosman and Thierens 2003) and for

regions of high performance configurations (sweet-spots) to be identified (Goldberg 1998).

The class of MOEAs studied in this chapter is introduced in Section 5.2, for which the

associated selection and variation processes are considered in detail. The empirical framework

of the inquiry is developed in Section 5.3, which draws on concepts from Chapter 3 and the

work of Laumanns et al. (2001). The optimisation task used in simulations is described at
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this stage, together with the indicators used to measure approximation set performance. The

presentation of results is also considered. Simulation results for mutation-based algorithms

are presented in Section 5.4. The results for recombination-based optimisers are included in

Section 5.5. The combined results from these two sections are then analysed in Section 5.6,

with respect to the underlying processes described in Section 5.2. Deb (2001a) suggests that

a potential technique for obtaining good EMO results is to increase the population size of an

MOEA as an, ideally exponential, function of the number of objectives. This is unlikely to be

a feasible approach in practice because of the computational resources demanded. However,

the potential benefits of this technique remain a matter of interest and a population sizing

study is thus explored in Section 5.7. Note that a more intensive investigation of conflict in

EMO to that recorded in this chapter is provided by Purshouse and Fleming (2003d).

5.2 Algorithms Considered

5.2.1 Introduction

The different multi-objective evolutionary optimisers proposed in the literature can generally

be categorised according to the manner by which selection-for-variation and selection-for-

survival are performed. A taxonomy of the various techniques is offered by Laumanns et al.

(2001). The representation and variation operators are problem-specific but interact heavily

with the selection operators (mainly in terms of the e-e trade-off) to form the complete

algorithm.

Each MOEA is comprised of a number of different selection mechanisms. As argued in

Section 3.1, it can often prove challenging to correctly determine which mechanisms and

combinations of mechanisms are chiefly responsible for the observed algorithm performance.

Thus, as was the case in Chapter 3, deconstructed algorithms are again used, but this time

to determine the fundamental processes that are responsible for the observed many-objective

behaviour of MOEAs.

NSGA-II components have specifically been chosen for this inquiry (Deb, Pratap, Agarwal

and Meyarivan 2002). These components tend to be computationally and conceptually simple

when compared to other algorithm processes in the literature. Also, the NSGA-II has been

heavily studied by the EMO community. As evident from the review of EMO in Section 2.4,
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the NSGA family of processes has strong similarities with other popular MOEAs, such as the

SPEA (Zitzler and Thiele 1999) and MOGA (Fonseca and Fleming 1993) families.

NSGA-II, like many other MOEAs, uses Pareto dominance and density estimation con-

siderations in its selection processes. Further to the review in Chapter 2, these are discussed

in detail in Section 5.2.2 to follow. Two algorithms are considered: NSGA-II and a decom-

position of NSGA-II.

The key issues that are identified from the many-objective analysis of these two algorithms

should be readily extendible to other MOEAs that share the following properties:

1. The selection mechanisms operate on a global population model, for which ss respects

a arbitrarily chosen specific integer upper bound on the population size.

2. Selective bias is primarily based on Pareto dominance.

3. Selective bias may be secondarily based on density estimation.

4. If two solutions have equal properties from both a dominance and density perspective

then selection should not favour one solution over the other.

Many of the selection mechanisms proposed in the literature, and described in Chapter 2,

share the above four properties. These include early algorithms, such as MOGA, NSGA,

and NPGA, and also contemporary MOEAs such as SPEA, SPEA2, and the state-of-the-art

MOGA described in Chapter 3.

An example of a methodology that is not represented by the processes considered in this

chapter is the ε-dominance selection-for-survival concept developed by Laumanns, Thiele,

Deb and Zitzler (2002). In this scheme, all locally non-dominated solutions can be retained

(within the restrictions imposed by ε), and the population size is increased dynamically to

account for this. The theoretical upper bound on population size is known but a specific size

cannot be specified. Thus, property 1 listed above is different for this scheme.

Properties 2 and 3 are met by most of the Pareto-based MOEAs. Clearly, approaches

based on classical OR methods (such as weighted-sum and target vector approaches) do not

have these properties and are not considered in this chapter.

The selection-for-survival method in the PAES algorithm does not respect property 4

(Knowles and Corne 2000). When a new locally non-dominated solution is considered for
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inclusion in P [t + 1], if the population size limit is reached then the solution can only be

included if it has a density estimate that is lower than that of any solutions in the partially

updated P [t + 1]. If these latter solutions all have the minimum possible density estimate

(each resides in a separate hyperbox) then the new solution cannot be included even if it also

unique to its associated hyperbox. Thus, despite being equal in terms of both dominance

and density, the new solution is maximally biased against (the probability of selection is

zero) when compared to the solutions in the partially updated P [t+ 1]. Note that the PAES

method can be made to respect property 4 by changing the < requirement on density to ≤.

If the four properties of selection are shared between two algorithms this does not imply

that the selection methods are directly equivalent. The properties can be implemented in a

different manner: for example, within either tournament selection or proportional selection.

Also, multiple levels of selective bias are possible: dominance and density discrimination

only occur at sv in NSGA but are implemented at both sv and ss in NSGA-II. Ultimately,

the differences between the mechanisms result in different selective pressures. Thus, even

allowing for stochastic errors, different mechanisms that share commonality via the four

properties listed above can still produce different results through the interaction of selective

pressure with the variation operator e-e configuration and the representation of the problem

landscape.

5.2.2 Selection Mechanisms

Algorithm D1

Algorithm D1 has a selective bias that is solely attributable to Pareto dominance. Binary

tournament selection is used at the sv stage. Of two solutions selected at random from the

current population (with replacement), the selected solution is the one that dominates the

other. If the solutions are non-dominated with respect to each other then one of the solutions

is selected at random.

At the ss stage of D1, the P [t] population and v(sv(P [t])) population are combined. This

new population is then ranked according to dominance depth. The new population, P [t+ 1]

is then formed by including the best of the ranks until the population size limit is breached.

Solutions that share the current rank under consideration in this situation are selected for

inclusion on a random basis. This is a (µ+ λ) strategy.
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Algorithm D2

Algorithm D2 extends the selective capabilities of D1 by including supplementary density

considerations in both sv and ss. The resulting algorithm is identical to the standard NSGA-

II algorithm proposed by Deb, Pratap, Agarwal and Meyarivan (2002).

As in D1, binary tournament selection is used at the sv stage. Of two solutions selected

at random from the current population (with replacement), the selected solution is the one

that dominates the other. If the solutions are non-dominated with respect to each other,

then the solution with the smallest density estimate is selected. If the density estimates are

also tied then a solution is chosen at random. Deb, Pratap, Agarwal and Meyarivan (2002)

define this method as the crowded-comparison operator.

The ss stage of D2 proceeds as for D1 until the population size limit is breached. At this

point, instead of selecting solutions at random from the current rank, D2 selects solutions

with the smallest densities from this rank until the new population is full. If the population

size limit is again breached because of a tie on density information, then the solutions that

are tied on both dominance depth and density are selected for inclusion on a random basis.

Any density estimator can potentially be used to provide the density information required

at the sv and ss stages of D2. A review of estimators that have been proposed in the

EMO community was undertaken in Section 2.4.4. This inquiry uses the crowding distance

estimator proposed for use in the original NSGA-II (Deb, Pratap, Agarwal and Meyarivan

2002). In this estimator, density is calculated as the mean side length of the hypercube

formed using the first-nearest-neighbour values in each objective as vertices. In this inquiry,

the boundary condition for an objective is set to the maximum non-boundary value calculated

for that objective (rather than being set to infinity as in the original method proposed by

Deb, Pratap, Agarwal and Meyarivan (2002)). This ensures that the estimator is unbiased

for the equilibrium condition of a perfectly distributed approximation set.

Crowding distance is a low complexity estimator with limited accuracy. It should be

noted that the relative effectiveness of the method when compared to other estimators has

been questioned by some researchers (Laumanns et al. 2001, Deb, Mohan and Mishra 2003).

However it is argued that the behaviour of D2 when compared to D1 will be generally in-

dicative of the effect of introducing any explicit diversity-promoting mechanism, when such

a mechanism is active.
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The activity — or otherwise — of the diversity promotion mechanisms is an important

point. Some estimators, such as fitness sharing and simple hypergrid counting, operate within

a defined local neighbourhood. If the neighbourhood is unsuitable for the current distribution

of solutions then density information is lost. For example, in the hypergrid scheme, if all the

solutions are contained within one hyperbox then they all have the same density estimate.

This is also the case if each solution resides in its own hyperbox (regardless of the relative

distances between occupied hyperboxes). This behaviour requires the careful selection of

neighbourhood size: a task that has been automated in approaches by, for example, Fonseca

and Fleming (1995a).

Estimators that are based on the nearest neighbour concept are not susceptible to infor-

mation loss in the above sense, since the neighbourhood is effectively scaled automatically.

However, the 1st-NN crowding distance can also fail in a different sense: if two vectors re-

side at the same location in objective-space then the estimates will be zero regardless of the

distance to other solutions. Thus, all solutions with copies in the population will receive an

identical density estimate. This is not generally the case for the schemes described above.

Note that the NN estimator used in the ss procedure of SPEA2 is more advanced than

crowding distance and is not susceptible to the same problem, although it carries a higher

complexity cost. In summary, it is not sufficient for a diversity mechanism to be present: it

must also be active.

5.2.3 Representation and Variation

This inquiry will simulate the many-objective performance of the selection mechanisms de-

scribed in the previous section using a real-parameter function optimisation problem (de-

scribed later in Section 5.3.2). Since the decision variables in the task are real-valued, the

choice of a real-valued genotype representation follows naturally for the reasons discussed in

Section 3.3. Thus each element of the genotype corresponds directly to a decision variable in

the problem.

Two frequently studied variation operators for real representations are described in this

section. The first is a one-parent mutation operator that produces a single child solution,

whilst the second is a two-parent recombination operator that produces two children. Both

operators have associated parameters that allow levels of exploration and exploitation to
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be controlled. The selection mechanisms in Section 5.2.2 can then be studied for a variety

of e-e trade-off settings. The interest is not primarily in which settings are good for the

problem considered, but rather in how the different selection methods perform with respect

to each other under various e-e conditions when simultaneously optimising various numbers

of conflicting objectives. The two operators are described in detail below.

Mutation

Deb and Goyal’s (1996) polynomial mutation operator is used in the inquiry. This varia-

tion operator is popular in real-parameter multi-objective optimisation tasks, and has previ-

ously been used to solve the example problem used in this chapter (Deb, Thiele, Laumanns

and Zitzler 2002, Khare et al. 2003). Variable-wise mutation is performed according to a

probability distribution function centred over the parent value. The operator is defined in

Equation 5.1, where γi is the parent value for the ith decision variable, ui and li are the

upper and lower bounds on the ith decision variable, ηm is a distribution parameter, ri is a

number generated uniformly at random from [0 1], and ci is the resulting child value for the

ith decision variable.

ci =







γi + (γi − li) δi

γi + (ui − γi) δi

if ri < 0.5,

otherwise.

δi =







(2ri)
1/(ηm+1) − 1

1 − [2 (1 − ri)]
1/(ηm+1)

if ri < 0.5,

otherwise.






















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(5.1)

Polynomial mutation has two controllable parameters: (i) the probability of applying

mutation to a chromosome element, pm, and (ii) a mutation distribution parameter, ηm. The

latter parameter controls the magnitude of the expected mutation of the candidate solution

variable. The normalised variation is likely to be of O(1/ηm). Thus, relatively speaking,

small values of ηm should produce large mutations whilst large values of ηm should produce

small mutations.

Mutation is applied independently to each element of each candidate solution with prob-

ability pm. Thus, the probability of mutating a candidate solution of n decision variables is
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defined as shown in Equation 5.2.

p(mutate) = 1 − (1 − pm)n (5.2)

Recombination

Deb and Agrawal’s (1995) simulated binary crossover (SBX) operator is also considered in

the inquiry as an alternative to polynomial mutation. Unlike the latter operator, SBX is a

two-parent variation operator that produces two new solutions. SBX has been considered

extensively in previous EMO studies using real-parameter representations (Deb, Thiele, Lau-

manns and Zitzler 2002, Khare et al. 2003), and is defined in Equation 5.3, where γ1,i and

γ2,i are the parent values for the ith decision variable, ηc is a distribution parameter, ri is

a number generated uniformly at random from [0 1], and c1,i and c2,i are the the resulting

child values for the ith decision variable.

c1,i = 0.5 [(1 + βi) γ1,i + (1 − βi) γ2,i]

c2,i = 0.5 [(1 − βi) γ1,i + (1 + βi) γ2,i]

βi =







(2ri)
1/(ηc+1)

[1/ (1 − ri)]
1/(ηc+1)

if ri < 0.5,

otherwise.
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(5.3)

SBX generates child values from a probability distribution, with standard deviation de-

rived from the distance between parent values and a distribution parameter ηc. The distance

determines the overall magnitude of the distribution, whilst ηc determines the shape of the

distribution. To generate child values for a decision variable, the distribution is centred over

each parent and a random value is generated from the distribution to create one child. The

second child is generated symmetrically to the first child about the mid-point between the

parents. The child values for a decision variable are then exchanged between the complete

child solutions with probability pe. For simplicity pe = 0 in the study. Note that child values

that are generated outside the range of a decision variable are cropped to the nearest feasible

value.

SBX is applied to a pair of parent solutions with probability pc. If a uniform recombi-



CHAPTER 5. MANY CONFLICTING OBJECTIVES 115

nation scheme is chosen, in which each individual decision variable is selected for variation

independently of any other (given that variation is to be applied to the selected parents), then

the probability of applying recombination to a pair of candidate solutions (each comprised of

n decision variables) can be expressed as shown in Equation 5.4

p(recombine) = pc [1 − (1 − pic)
n] (5.4)

pic is the probability of applying variation to a decision variable, given that recombination

is to be applied in general to the complete solution pair. In standard uniform recombination

schemes in the literature, pic is usually set to 0.5. However, by allowing this probability to

vary and setting pc to unity, the probability of applying two-parent SBX to a solution can

be viewed as equivalent to that expressed for polynomial mutation in Equation 5.2. This

factor will assist in making comparisons between the results obtained using the two variation

operators.

5.3 Inquiry Design

5.3.1 Introduction

The inquiry into the effect of increasing numbers of conflicting objectives in EMO combines

process analysis with simulations of algorithm performance. The optimisation task used

in the simulations is described in Section 5.3.2. The performance indicators chosen to re-

duce an approximation set to a more tractable number of summary statistics are presented

in Section 5.3.3. The experimental framework that has been developed to facilitate new

understanding of many-objective optimiser behaviour is introduced in Section 5.3.4. In Sec-

tion 5.3.5, an introduction is made to the empirical results detailed in the remainder of this

chapter.

5.3.2 Scalable Optimisation Task

This inquiry considers a real-parameter function optimisation task known as DTLZ2, which

is defined in Equation 5.5. This problem was previously used, in a three-objective instance,

to illustrate EMO concepts in Chapter 4. The task is taken from a highly tractable set

of problems developed by Deb, Thiele, Laumanns and Zitzler (2002) specifically for studies
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into many-objective optimisation. The global Pareto front is continuous and non-convex.

Distance from the front is determined by a single, unimodal cost function, g. M is the

number of objectives, n = M +κ− 1 is the number of decision variables, and κ is a difficulty

parameter (κ = 10 in this study).

min. z1(x) = [1 + g(xM)] cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) cos(xM−1π/2),

min. z2(x) = [1 + g(xM)] cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) sin(xM−1π/2),

min. z3(x) = [1 + g(xM)] cos(x1π/2) cos(x2π/2) . . . sin(xM−2π/2),
...

...
...

min. zM−1(x) = [1 + g(xM)] cos(x1π/2) sin(x2π/2),

min. zM (x) = [1 + g(xM)] sin(x1π/2),

w.r.t x = [x1, . . . , xn] ,

where g(xM ) =
∑

xi∈xM
(xi − 0.5)2 , with xM = [xM , . . . , xn],

and 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n, with n = M + κ− 1.
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(5.5)

DTLZ2 is comprised of decision variables of two distinct functional types: those that

control convergence toward the globally optimal surface (x1, . . . , xM−1) and those that control

distribution in objective-space (xM , . . . , xn). The convergence variables define the distance

of the solution vector from the true front via a κ-dimensional quadratic bowl, g, with global

minimum xM,...,n = 0.5. The distribution variables describe position on the positive quadrant

of the unit hypersphere. An M -objective instance of DTLZ2 is denoted by DTLZ2(M).

The DTLZ test suite encompasses many problem characteristics, such as multimodality,

discontinuity, and distributional bias. For small numbers of objectives, such as three, it is

a straightforward task to obtain a good sample-based approximation of the DTLZ2 global

Pareto front using an EMO optimiser (Deb, Thiele, Laumanns and Zitzler 2002). This is not

necessarily true for some of the other functions in the test suite, such as DTLZ4. However, as

will be demonstrated in Sections 5.4 and 5.5, the generation of a good quality approximation

set becomes significantly more challenging as the number of objectives is increased. Thus,

the DTLZ2 function in isolation is a sufficiently interesting example of real-parameter, many-

objective optimisation problems for the purposes of this study.
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5.3.3 Performance Indicators

In the context of this inquiry, as was also the case in Chapter 3, performance is regarded as the

quality of the trade-off surface discovered by an optimiser, given a finite number of candidate

solution evaluations. As explained in Section 2.2.3, quality is generally expressed in terms

of (i) the proximity of the obtained locally non-dominated vectors to the true Pareto surface

and (ii) the distribution of those vectors across the surface (Bosman and Thierens 2003).

Ideally, the optimiser should obtain solutions that are Pareto optimal (are of distance zero

from the global front), that extend across the full range of optimal objective values (assuming

that the DM is interested in complete trade-off information for the problem), and that are

as near uniformly distributed as the true surface permits.

Many performance indicators have been proposed for EMO and a discussion of these was

previously given in Section 3.2.3. Again, a functional approach is taken in this chapter, in

which specific unary indicators are used to evaluate specific aspects of performance.

Proximity Indicator

The proximity indicator measures a median level of proximity of the approximation set, ZA,

to the global surface. In terms of attainment across the objectives, an objective vector for

DTLZ2 will respect Equation 5.6. The equality condition will only hold for a globally optimal

vector. Thus, a specialised proximity indicator, IP , for DTLZ2 can naturally be described by

Equation 5.7. This is essentially the same as Veldhuizen’s (1999) generational distance metric

(previously used in Chapter 3 and described in Equation 3.1), for the case of a continuous

globally optimal reference set, Z∗.

1 ≤
[

M
∑

m=1

(zm)2

]1/2

(5.6)

IP = medianzA∈ZA







[

M
∑

m=1

(zAm
)2

]1/2

− 1







(5.7)

Distribution Indicators

A multi-objective optimiser is required to find a good distribution of candidate solutions

across the trade-off surface to present to the decision-maker: the identified non-dominated
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vectors should span the complete surface, with appropriate distances between each. Given

a direction of monotonically increasing DM preference in each objective and a continuous

trade-off surface, the vectors should be equal distances apart.

To achieve high quantisation of the non-dominated set, it would be advantageous to

express both aspects of distribution within a single indicator. This approach has been imple-

mented in Deb, Pratap, Agarwal and Meyarivan’s (2002) ∆metric and was used in Chapter 3.

Using this approach it can be somewhat unclear which aspect of the distribution — extent

or uniformity — is responsible for the observed indicator value. Thus in this study, in order

to manage the complexity of the inquiry, only the extent of solutions is considered further.

Spread Indicator The study uses a variant of Zitzler’s (1999) maximum spread indica-

tor. This metric measures the length of the diagonal of the hypercube with vertices set

to the extreme objective values observed in the achieved approximation set, as defined in

Equation 5.8.

λ =

[

M
∑

m=1

(

max
zA∈ZA

{zAm
} − min

zA∈ZA

{zAm
}
)2

]1/2

(5.8)

It is possible to achieve too much or too little spread. In the former case, the vectors

span regions that are not part of the global trade-off surface, (highlighting a relationship

between spread and proximity). In the latter case, the optimiser has converged to a sub-

region (that may be globally optimal). To highlight the requirement for an intermediate

spread value, the indicator, IS , is normalised with respect to the optimal spread, as indicated

in Equation 5.9. Indicator values decreasing from unity to zero now represent increasing levels

of population convergence to a sub-region. Thus, globally optimal regions of the surface are

missing. Indicator values increasing from unity demonstrate widespread dispersal of vectors

throughout non-optimal objective-space.

IS = λ

/[

M
∑

m=1

(

max
z∗∈Z∗

{z∗m
} − min

z∗∈Z∗

{z∗m
}
)2

]1/2

(5.9)

5.3.4 Investigative Framework

The inherent high dimensionality of many-objective optimisation presents both conceptual

and computational challenges to the analysis of algorithm behaviour. Thus, the inquiry
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framework is aimed toward exploratory data analysis rather than statistically significant

performance comparison. Following the methodology of Laumanns et al. (2001), single repli-

cation results are generated for a wide variety of configuration instances (each representing

a particular e-e trade-off setting) to yield a response map in optimiser design-space. The use

of multiple replications is still regarded as preferable, but this is computationally impractical

for this inquiry. Note that spatial similarity between optimiser responses arguably provides

some support for statistical confidence (or otherwise) in the observed behaviour. Laumanns

et al. (2001) also fitted a polynomial model response surface to the raw data map to obtain a

smooth representation. However, for the purposes of this inquiry, the raw data itself proves

sufficient to expose the spatial relationships in the data. For further details on response

surfaces, refer to Myers and Montgomery (2002).

The configuration of the variation operators, via both the probability and expected magni-

tude of variation, provides suitable control over the overall algorithm e-e trade-off. Optimiser

responses have been obtained for all pair-wise permutations from sample sets of probabilities

and magnitudes, with elements chosen according to a heuristic, pseudo-logarithmic scale that

helps to show relativity within and between different response maps. The maps themselves

portray scalar summary statistics for each overall response, such as proximity and spread

indicator values.

Responses for algorithms incorporating mutation are presented in Section 5.4. These are

measured over 1000 generations and are generated for a variety of values of M with the

population size fixed at 100. Similar results for recombination are presented in Section 5.5.

Results for both the variation operators are subsequently analysed in Section 5.6. Deb (2001a)

has suggested that a key method for coping with large M is to increase the population size,

since this will tend to reduce the proportion of the population that is non-dominated and

thus provide improved dominance-based discrimination. Whilst this approach is unlikely to

be practical in many real-world applications, where the computational cost of evaluating a

candidate solution may be very high, results for various population sizes are considered in

Section 5.7.



CHAPTER 5. MANY CONFLICTING OBJECTIVES 120

5.3.5 Introduction to Results

The types of response map shown in the results and analysis sections are introduced below,

together with an example of how the results are presented.

Types of Response Map

Two performance response maps are considered in the results, together with various other

process variable maps as described below:

Proximity is measured by subtracting the initial proximity indicator value, computed

as described in Equation 5.7, from the median of the values obtained from the final 100

iterations of the optimisation process. Thus, a proximity value of zero indicates no progress

from the initial population, a negative value indicates convergence toward the global trade-off

surface, and a positive value indicates divergence away from the true surface.

Spread is measured as the median value of the spread indicator, described in Equa-

tion 5.9, taken over the final 100 iterations of the optimiser. The optimal value of spread is

unity. Values less than unity indicate approximation set convergence to a region of objective-

space that is smaller than the true trade-off surface. Values larger than unity indicate that the

approximation set extends over a greater region than that described by the optimal surface.

Process measurements of other system variables assist the analysis of the observed

optimiser performance behaviour. Variation operator outcomes are particularly important.

Response maps for the outcomes listed below, measured over the first 10 generations of the

optimiser are presented during the analysis in Section 5.6. Values for system variables tend

to be dynamic over the course of the optimisation. Experience gained during simulation data

collection suggests that early measurements can be highly indicative of the general trend

of optimiser behaviour. For example, variation success rates may be initially high in an

algorithm that exhibits good performance, but these rates may decrease as the algorithm

converges close to the global surface. In an unsuccessful algorithm, early rates may be lower

but do not continue to decrease because successful convergence does not occur. It is important

to be able to draw a distinction between the summary success rates for these two algorithms.

Early measurements assist in meeting this aim.

• Copy rate. The proportion of child solutions that are direct copies of (at least) one

of their parents.



CHAPTER 5. MANY CONFLICTING OBJECTIVES 121

• Resistance rate. The proportion of child solutions that are non-dominated with

respect to all of their parents.

• Success rate. The proportion of child solutions that dominate at least one parent and

are not copies of any parent.

Presentation of Results

An example presentation of response maps for the proximity indicator, IP is shown in Fig-

ure 5.1. Part (a) of the figure, on the left, shows the response map for the algorithm D1 that

does not include any specific diversity promotion mechanisms. Part (b) of the figure, on the

right, shows the corresponding map for the algorithm D2 that does include such mechanisms.

The results have been collected for algorithms that use recombination: the range of expected

recombination magnitudes, ηc, is shown on the horizontal axis. The vertical axis shows the

range of recombination application probabilities, pic. If the algorithm had been using mu-

tation, the same ranges would be shown for ηm and pm respectively. Note that variation

magnitude is related to the inverse of the distribution parameter for both recombination and

mutation, and thus discussions relating to this will generally refer to large values of 1/ηc,m

rather than small values of ηc,m.

Performance for each {pic, ηc} setting is indicated by a grey-scale square at the appropriate

location. Lighter shades of grey indicate better proximity, as shown by the colour-bar of

indicator values to the right of each map. Considering Figure 5.1b, a range of good proximity

is thus evident for intermediate values of pic in the range [0.005 0.1]. Conversely, a region of

poor proximity is evident in the region of intermediate 1/ηc coupled with high pic, such as

{pic = 0.5, ηc = 5}.
The grid squares highlighted by a solid boundary correspond to configurations that exceed

a pre-defined performance threshold. For proximity, the performance threshold is -0.5. The

configuration {pic = 0.0025, ηc = 25} is one such example in Figure 5.1a. For the spread

response maps, performance is highlighted in the range [0.75 1.25] (within 25% of optimal).
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(b) D2

Figure 5.1: Example D-class proximity response maps

5.4 Results: Mutation

The three-objective proximity map for algorithm D1 is shown in Figure 5.2a. The cor-

responding results for algorithm D2 are shown in Figure 5.2b. Both algorithms produce

approximation sets with good proximity for a large region of mutation configuration choices.

However, in the region of high pm and large 1/ηm, the obtained proximity values are essen-

tially unchanged from those obtained for the initial population. This behaviour is slightly

more extensive for D2 than D1.

As the number of objectives is increased, the proximity sweet-spots contract for both D1

and D2. Proximity results for DTLZ2(6) are presented for D1 in Figure 5.2c, and for D2 in

Figure 5.2d. Some reduction in the sweet-spot is observed for D1, particularly for high pm

and large 1/ηm configurations. The behaviour is more pronounced in the case of D2: the

band of good proximity is noticeably thinner in regions of (i) low pm coupled with small 1/ηm

and (ii) high pm coupled with large 1/ηm. In these latter configurations, there is evidence

that D2 is producing approximation sets with a worse proximity than that obtained for the

initial population of the optimiser.

Further contraction in the proximity sweet-spot is observed as the number of conflicting

objectives is continued to be increased. Results for a 12-objective instance of DTLZ2 are

shown for D1 and D2 in Figure 5.2e and Figure 5.2f respectively. There is only a small

reduction in the sweet-spot for D1, but the sweet-spot for D2 has continued to decrease
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substantially. For this latter algorithm, in regions of high pm and large 1/ηm, the obtained

proximity is now considerably worse than that which would be expected from a random

sample of 100 solutions to DTLZ2(12).

Spread results for the three-objective instance of DTLZ2 are shown for algorithm D1

in Figure 5.3a and for algorithm D2 in Figure 5.3b. The sweet-spot for D1 is limited to a

band stretching from configurations of intermediate pm combined with large 1/ηm, such as

{pm = 0.05, ηm = 0}, to configurations of high pm coupled with intermediate 1/ηm, such

as {pm = 1, ηm = 10}. In the region where high pm is combined with large 1/ηm, spread

values are larger than unity. This indicates that the approximation set is spread widely

through objective-space. In regions of low pm and small 1/ηm, spread values are close to

zero. This indicates that the approximation set represents a region of objective-space that is

much smaller than optimal. The sweet-spot is considerably larger for D2, although the latter

two observations for D1 also hold in this case. Good spread values are identified in larger

regions at each end of the band previously identified for D1.

As the number of conflicting objectives is increased, the regions of good spread contract

for both D1 and D2. Results for DTLZ2(6) are shown for D1 and D2 in Figure 5.3c and

Figure 5.3d respectively. General thinning of the bands identified for DTLZ2(3) is evident

for both algorithms. Large magnitudes of spread can be seen for D2 in regions of high pm

coupled with large 1/ηm.

Spread results for the 12-objective instance of DTLZ2 are presented for D1 in Figure 5.3e

and for D2 in Figure 5.3f. Further contraction of the sweet-spots is shown for both algorithms,

but the level of deterioration is much lower between DTLZ2(6) and DTLZ2(12) than that

observed between DTLZ2(3) and DTLZ2(6).

EMO algorithms are required to produce approximation sets with both good proximity

and good diversity. From the results in Figure 5.2 and Figure 5.3 it is evident that mutation

operator configurations that produce approximation sets of this quality can be identified for

both D1 and D2 for all values of M considered. However, the number of such configurations

reduces with increasing M for both D1 and D2.

Good configurations for D1 are located in a different area of the map to those for D2. Con-

figurations with relatively high pm and relatively large 1/ηm, such as {pm = 0.25, ηm = 2.5},
produce approximation sets with both good proximity and good diversity for D1. However,
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(a) D1: M = 3
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(b) D2: M = 3
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(c) D1: M = 6
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(d) D2: M = 6
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(e) D1: M = 12
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(f) D2: M = 12

Figure 5.2: Proximity response maps for mutation
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(a) D1: M = 3
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(b) D2: M = 3
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(c) D1: M = 6
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(d) D2: M = 6
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(e) D1: M = 12
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(b) D2: M = 12

Figure 5.3: Spread response maps for mutation
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these settings are associated with poor proximity and large spread values for D2. Good con-

figurations for D2 arise in two areas: (i) intermediate pm together with large 1/ηm, such as

{pm = 0.01, ηm = 0.25}, and (ii) relatively high pm coupled with relatively low 1/ηm, such as

{pm = 0.25, ηm = 100}. Note that approximation sets for D1 tend to represent only a very

small fraction of objective-space for these configurations.

Polynomial mutation has been used as the variation operator when solving DTLZ2 in

previous studies in the literature. Both Deb, Thiele, Laumanns and Zitzler (2002) and

Khare et al. (2003) used an algorithm identical to D2 with pm = 1/n and ηm = 20 (in

combination with SBX recombination). From Figure 5.2 and Figure 5.3, it can be seen that

this configuration produces approximation sets with good proximity, but only over a very

small section of the trade-off surface, for both D1 and D2 when mutation is considered alone.

5.5 Results: Recombination

The proximity response maps for the D1 and D2 algorithms incorporating the SBX recom-

bination operator are shown in Figure 5.4. For the three-objective instance of DTLZ2, a

substantial region of good proximity is evident for intermediate to high pic when combined

with intermediate to large 1/ηc. The map for D1 is provided in Figure 5.4a, whilst the equiv-

alent for D2 is shown in Figure 5.4b. The sweet-spot for D2 is seen to extend further into

regions of lower pic and smaller 1/ηc than that for D1.

As the number of conflicting objectives to be optimised simultaneously is increased, the

proximity sweet-spots for both D1 and D2 are observed to decrease. As shown in Figure 5.4c,

there is a general contraction in the sweet-spot for D1 for DTLZ2(6). In particular, config-

urations of high pic coupled with large 1/ηc show little improvement in proximity over the

initial population. For the six-objective instance of DTLZ2, as indicated in Figure 5.4d, the

proximity sweet-spot for D2 is limited to regions of intermediate pic. Configurations of high

pic combined with intermediate 1/ηc, such as {pic = 1, ηc = 5}, produce approximation sets

with very poor proximity — considerably worse than that obtained for the initial population.

This result contrasts sharply with that for D1, where proximity remains good.

The D1 proximity response map for DTLZ2(12) is shown in Figure 5.4e, whilst the cor-

responding map for D2 is depicted in Figure 5.4f. The sweet-spot for D1 has reduced still

further to a region of intermediate pic. The D2 sweet-spot is slightly larger than that for D1
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and is located in a region of slightly lower pic. In regions of high pic, the proximity results

are very poor for D2. The region of divergence identified for DTLZ2(6) has expanded con-

siderably to include expected variation magnitudes in the range from intermediate to high

1/ηc.

Spread response maps for algorithms D1 and D2 optimising the three-objective instance

of DTLZ2 are shown in Figure 5.5. As indicated in Figure 5.5a, the spread sweet-spot

for D1 encompasses configurations of intermediate to high pic coupled with intermediate to

large 1/ηc. The majority of other SBX configurations produce approximation sets with very

small spread measures, thus indicating that the set represents only a very small region of

objective-space. D2 offers a more substantial region of good spread performance, as shown in

Figure 5.5b. The D2 sweet-spot extends further into configurations of lower pic and smaller

1/ηc. However, for low values of pic, spread values are close to zero.

Spread sweet-spots for the D1 and D2 algorithms using recombination contract as the

number of conflicting objectives is increased. The response map for D1 solving DTLZ2(6)

is shown in Figure 5.5c. Good spread performance is limited to the region of configurations

with large 1/ηc and pic ≈ 0.25. Spread values for high pic together with large 1/ηc indicate

approximation sets that represent a section of objective-space that is larger than optimal.

The spread response map for D2 solving DTLZ2(6) is shown in Figure 5.5d. In addition to

obtaining good spread for intermediate 1/ηc together with high pic, a narrow band of good

spread is seen to extend across the range of expected variation perturbation magnitudes.

Values of spread that are larger than optimal are observed for higher pic. Particularly large

values are identified for the region represented by {pic = 1, ηc = 5}. In this instance the

approximation set is spread widely throughout non-optimal regions of objective-space. The

relationship to poor proximity is clear through comparison with Figure 5.4d.

The spread response map for the 12-objective instance of DTLZ2 is shown for D1 in

Figure 5.5e, and for D2 in Figure 5.5f. The sweet-spot for D1 is now highly limited, {pic =

0.25, ηc = 2.5} being one such configuration. The band of good spread identified for D2

solving DTLZ2(6) has become thinner for DTLZ2(12). A substantial range of configurations

with high pic indicate approximation sets spread widely throughout non-optimal objective-

space.

Through considering Figure 5.4 and Figure 5.5 together, recombination operator config-
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(c) D1: M = 6
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(d) D2: M = 6
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(f) D2: M = 12

Figure 5.4: Proximity response maps for recombination
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(f) D2: M = 12

Figure 5.5: Spread response maps for recombination
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urations that produce approximation sets with both good proximity and good spread can

be identified for both D1 and D2 for all values of M assessed. For M = 3, the sweet-spots

for proximity and spread co-locate nicely for both algorithms. In particular, the evidence

suggests that a wide range of configuration choices for D2 will lead to approximation sets

that are good from the perspective of both axes of performance. As the number of conflicting

objectives is increased, the selection of configurations that produce overall good performance

decreases for both D1 and D2.

For the six-objective instance of DTLZ2, the regions of overall good performance are

reduced for both D1 and D2. The latter algorithm still retains a larger sweet-spot over

the former, but many of the configurations are similar. For example, configuration {pic =

0.1, ηc = 0.25} produces an approximation set with good proximity and good spread for both

D1 and D2. For DTLZ2(12), very few configurations of this nature are evident for either D1

or D2.

Like the polynomial mutation operator, the SBX recombination operator has also been

previously used in the D2 algorithm on DTLZ2 (Deb, Thiele, Laumanns and Zitzler 2002,

Khare et al. 2003). The configuration used in this work was {pic = 0.5, ηc = 15} with pc = 1

(the operator was also used in conjunction with polynomial mutation). From the results

shown in Figure 5.4 and Figure 5.5 this configuration is demonstrated to be appropriate

for the three-objective instance of DTLZ2 for D2. However, as the number of objectives

is increased, the settings appear to become increasingly unacceptable. A D2 optimisation

of DTLZ2(12) would be predicted to offer an approximation set with poor proximity, with

solutions spread widely throughout objective-space.

5.6 Analysis

5.6.1 Introduction

The results in Section 5.4 and Section 5.5 show that, for both algorithms D1 and D2, the

region of configuration-space that is associated with high quality approximation sets contracts

as the number of conflicting objectives, M , is increased. From the perspective of the proximity

indicator, divergence behaviour is observed for some configurations of D2. In these cases, the

proximity of the optimised approximation set is, sometimes considerably, worse than the
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proximity observed for the initial population. This behaviour is particularly evident for

recombination-based D2. It is not observed, in the case of either variation operator, for

algorithm D1.

Recall that, as described in the introduction to the algorithms in Section 5.2.2, selection

discrimination in D1 is based purely on Pareto dominance considerations. However, in D2,

discrimination is based on both dominance and density estimation. Thus, analysis of the D2

diversity promotion mechanism provides the key to understanding the behaviour of modern

MOEAs under varying M conditions.

5.6.2 Active Diversity Promotion Mechanisms

EMO researchers have previously observed that, for a fixed population size, the proportion

of the population that is locally non-dominated increases rapidly with increasing M (Fonseca

and Fleming 1998b, Deb 2001a). Empirical results for DTLZ2, for a variety of population

sizes and M -objective instances, are shown in Figure 5.6 (where each measurement is the

mean of 1000 random sample sets). For a population size of 100, the proportion increases

from approximately 0.3 for M = 3 to approximately 0.8 for M = 12. Note that this is only

the initial state for the optimisers. Future proportions, as experienced by the optimisers,

depend on the effect of repeated applications of sv, v, and ss.

D1 and D2 both discriminate in favour of non-dominance at the ss stage. The effect of

this is to quickly increase the proportion of non-dominated solutions in the population, as

shown for various M for algorithm D2 in Figure 5.7. For all values of M the proportion is

observed to rises rapidly to 1.0, regardless of the initial state. Thus, from the perspective of

the selection-for-variation mechanism, the majority of solutions are equivalent for D1. sv will

be random in this case. However, for D2, the secondary diversity enhancement mechanism is

now activated.

The operation of the density estimator used in D2 is illustrated by the schematic in Fig-

ure 5.8. The estimator assigns larger crowding distances (or, equivalently, smaller densities)

to:

• boundary solutions (which are assigned the largest distance found for that objective in

the boundary direction),

• other remote solutions, and
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Figure 5.8: Crowding distance density estimator

• immediate neighbours of remote solutions.

The volume of objective-space increases exponentially as the number of conflicting objec-

tives is increased linearly. For a fixed population size, this provides more opportunity for a

solution to be remote from others, be distant from the global trade-off surface, and yet still

be locally non-dominated. In these circumstances, active diversity promotion in D2 will bias

the search toward solutions with poor proximity to the global Pareto front.

The above selective bias will present difficulties if the variation operators have a low

expectation of success (defined in Section 5.3.4 as the probability of a child dominating its

parent or parents). Success rates for both recombination- and mutation-based D2, for the

three- and twelve-objective instances of DTLZ2, are shown in Figure 5.10. Note that the

results for D1 are very similar and are thus not reproduced herein. The results for both

variation operators show that success rates tend to decrease with increasing M . Therefore,

one of the factors required to explain the difficulties encountered by diversity-promoting

MOEAs is shown to become more apparent with increasing M .

If operator success rates are low and variation operators produce a high proportion of



CHAPTER 5. MANY CONFLICTING OBJECTIVES 134

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

η
m

p
m

   0 0.25  0.5    1  2.5    5   10   25   50  100  250  500

     0

 5e−05

 0.001

0.0025

 0.005

  0.01

 0.025

  0.05

   0.1

  0.25

   0.5

     1

(a) Mutation: M = 3
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(b) Mutation: M = 12
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(c) Recombination: M = 3
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(d) Recombination: M = 12

Figure 5.9: Proportion of children that dominate their parents for D2
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children that are dominated by their parents then the search is expected to simply stagnate

to solutions already discovered. This is because the primary dominance-based comparisons

will bias against the child solutions during ss. However, the D2 observations in Section 5.4

and Section 5.5 do not suggest stagnation of the search: rather, they suggest a directed search

away from regions of relatively good proximity, toward an approximation set with relatively

good diversity. This behaviour can be traced to the phenomenon of dominance resistance.

Dominance resistance was first identified, and introduced as terminology, by Ikeda, Kita

and Kobayashi (2001) in the context of real-parameter representations and associated vari-

ation operators for a specific class of multi-objective problems. Deb, Thiele, Laumanns

and Zitzler (2002) also encountered this behaviour for a set of real-parameter constraint

surface tasks that are scalable in the number of conflicting objectives. These researchers

also identified that the level of dominance resistance could increase with the dimension of

objective-space.

Response maps that show the proportion of children that are non-dominated but are

not equal to their parents are provided in Figure 5.10. For DTLZ2(3), a large proportion

of such solutions is indicated for high operator application rates for both mutation and

recombination (Figure 5.10a and Figure 5.10c respectively). As the number of objectives is

increased, depicted in Figure 5.10b and Figure 5.10d, the high proportion of non-dominated

children is observed to extend much further toward lower variation application probabilities.

This empirically demonstrated dominance resistance supports the heuristic notion that a

solution has more opportunity to be locally non-dominated as the number of dimensions of

objective-space is increased.

5.6.3 Inactive Diversity Promotion Mechanisms

For configurations corresponding to a low probability of variation operator application (the

upper regions of the response maps presented in this chapter), a large proportion of the

children produced during variation are identical copies of their parents. Empirical results for

D2, for both mutation and recombination, are shown in Figure 5.11. Note, again, that the

results for D1 are very similar to these and are thus omitted.

Since the density estimator used in D2 is a variant of first-nearest-neighbour, and equality

in decision-space corresponds to equality in objective-space for the deterministic DTLZ2,
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(a) Mutation: M = 3
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(b) Mutation: M = 12
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(c) Recombination: M = 3
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(d) Recombination: M = 12

Figure 5.10: Proportion of children that are non-dominated (but not equal) to their parents
for D2
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(a) Mutation: M = 3
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(b) Mutation: M = 12
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(c) Recombination: M = 3
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(d) Recombination: M = 12

Figure 5.11: Proportion of children that are equal to their parents for D2
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solutions with copies will have the maximum possible density estimate (corresponding to a

crowding distance of zero). For configurations of low pic or pm, this neutralises any density-

dependent selection mechanisms because the densities of most solutions are identical. Thus,

for the case of equivalence under dominance, selection is entirely random for both D1 and

D2. Thus, little difference is evident between these two algorithms under the aforementioned

configurations. This can be verified by comparing the upper region of the D1 response maps

in Figures 5.2, 5.3, 5.4, and 5.5 to the corresponding D2 equivalents.

5.6.4 Comparison Between Mutation and Recombination

There are clear differences between the response maps obtained for mutation in Section 5.4

and those for recombination in Section 5.5. Many of the differences are spatial and can be

attributed to subtle variations in the interaction between the operator mechanisms and the

DTLZ2 problem landscape. For example, configurations with high success rates for SBX are

located in a slightly different area of the map to those for polynomial mutation. However, the

fundamental difference between the mutation and recombination results is that the divergence

behaviour (measured in terms of proximity) is more severe in the recombination-based D2

than the mutation-based equivalent.

The key distinction between the two operators is that the e-e trade-off setting is fixed

for a particular configuration of polynomial mutation, but is dynamic over the course of the

optimisation for SBX recombination due to the self-adaptive nature of the SBX distribution.

Different e-e settings can occur within the process of creating a single pair of child solutions

for the latter operator. The fundamental difference between the mutation and recombination

results can arguably be attributed to this difference between the operators.

As explained in Section 5.2.3, in the context of a single decision variable, if the decision

variable values of the two parents are closer together then the expected SBX variation mag-

nitude is smaller than if the two parent values are further apart. If selection is (effectively)

biased toward poor proximity values, as discussed in Section 5.6.2, then convergence variable

values (see Section 5.3.2) will be clustered in regions that are associated with poor prox-

imity. The large proportion of parent values in these regions thus allows the self-adaptive

SBX operator to focus further on these regions (since non-diverse parent material leads to

more localised exploration). However, the diversity-promotion selection mechanisms in D2
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also ensure that genetic diversity remains intact for the distribution variables of DTLZ2.

Thus, large-scale exploration is still possible for these variables. So SBX is capable of simul-

taneously performing exploitation of poor proximity and exploration of diversity, leading to

approximation sets spread widely in objective-space with very poor overall proximity.

5.7 Effect of Population Size

5.7.1 Introduction

Deb (2001a) proposes the use of large population sizes as a potential method for achiev-

ing good many-objective optimisation results, since this will reduce the proportion of non-

dominated solutions in the population and thus provide improved Pareto-based discrimina-

tion.

In practice, the use of large population sizes is often prohibitive in real-world applications

because of the computational resources required to evaluate and process potential solutions.

Thus in many applications, such as that documented by Thompson, Chipperfield, Fleming

and Legge (1999), the population size is generally limited to fewer than 50 individuals.

The often high cost of solution evaluation is a serious issue for computational search and

optimisation techniques in general, rather than just affecting evolutionary algorithms. As a

result, a research field known as meta-modelling has arisen that is devoted to the development

and deployment of approximation models in solution evaluation (Bull 1999). A related topic

that is specific to evolutionary algorithms, known as fitness inheritance, also considers how

to reduce evaluation requirements (Smith, Dike and Stegmann 1995).

Given the above qualifications, the identification of the benefits — in terms of approxi-

mation set quality — that can be obtained for larger population sizes remains a matter of

interest. In this section, the six-objective experiments in Section 5.4 and Section 5.5 are re-

peated for alternative population sizes (to the value of 100 used in those sections) to produce

new results for algorithms D1 and D2 using both mutation and recombination. At present,

population sizes for generational MOEAs tend to lie between approximately 10 and 1000

(Coello et al. 2002). Thus, population sizes of three orders of magnitude — 10, 100, and 1000

— are considered in this section. The results for mutation are presented in Section 5.7.2,

followed by the results for recombination in Section 5.7.3. An analysis of the observations is
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offered in Section 5.7.4.

5.7.2 Mutation Results

The proximity response maps for the population-sizing study are shown in Figure 5.12. The

D1 response maps are presented in the right-hand column of the figure, whilst the D2 maps

are shown in the left-hand column. The upper row of maps, Figure 5.12a and Figure 5.12b

were obtained for a population size of 10. The maps in the middle row, Figure 5.12c and

Figure 5.12d, are for a population size of 100 and have previously been presented in Sec-

tion 5.4. The lower row of maps, Figure 5.12e and Figure 5.12f, show the proximity results

for a population size of 1000. Little variation is evident in the results obtained for either

D1 or D2 as the population size is increased. Thus, the relationship between D1 and D2

identified in Section 5.4 and analysed in Section 5.6 remains consistent across the range of

population sizes generally used in a generational MOEA implementation.

The spread response maps are presented in Figure 5.13. The layout of this figure corre-

sponds to that of the proximity results described above. Spread is generally seen to improve

with increasing population size for both D1 and D2. In map regions of low pm and low 1/ηm

the spread values are close to zero (especially for D1) for small population sizes. However,

the spread value is observed to increase toward the optimal value of unity for these config-

urations as the population size is increased. In intermediate map regions, and particularly

for configurations of low pm coupled with high 1/ηm, the sweet-spot for spread is seen to

dilate. However, in regions of high pm combined with large 1/ηm the spread values become

increasingly too large for both D1 and D2. The overall relationship identified in Section 5.4

between D1 and D2 is seen to be preserved: D2 has superior spread in general, but values

can be too large in the aforementioned region.

In terms of meeting the dual aims of both good proximity and good spread, the number

of such configurations for mutation is seen to increase for both D1 and D2 with increasing

population size. Also, more such configurations exist for D2 than D1 for each population

size. Note that, even for a population size as small as 10 individuals, both algorithms are

capable of producing an approximation set of good overall quality (in the terms defined by

the inquiry).
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(a) D1: population size = 10
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(b) D2: population size = 10
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(c) D1: population size = 100
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(d) D2: population size = 100
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(e) D1: population size = 1000
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(f) D2: population size = 1000

Figure 5.12: DTLZ2(6) proximity response maps for mutation for various population sizes
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(a) D1: population size = 10
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(b) D2: population size = 10
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(c) D1: population size = 100
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(d) D2: population size = 100
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(e) D1: population size = 1000
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(f) D2: population size = 1000

Figure 5.13: DTLZ2(6) spread response maps for mutation for various population sizes



CHAPTER 5. MANY CONFLICTING OBJECTIVES 143

5.7.3 Recombination Results

The proximity response maps for recombination-based implementations of D1 and D2 are

shown in Figure 5.14. The presentation of the results is equivalent to that described for

mutation in Section 5.7.2. The D1 and D2 maps for a population size of 10 are shown in

Figure 5.14a and Figure 5.14b respectively. Very little convergence toward the global surface

is evident for either algorithm, although a few configurations do attain the benchmark for

good performance of a 0.5 unit improvement in proximity. Divergence behaviour is observed

in D2 for configurations of high pic. When the population size is increased to 100, a proximity

sweet-spot is generated for configurations of intermediate pic combined with intermediate to

large values of 1/ηc for both algorithms as shown in Figure 5.14c and Figure 5.14d. In the

region of high pic together with intermediate 1/ηc, good proximity is observed for D1 but

poor proximity is evident for D2. When the population size is increased still further to 1000,

as shown in Figure 5.14e, the proximity sweet-spot for D1 expands further to include approx-

imately half of the configurations considered. In the corresponding case for D2, presented in

Figure 5.14f, the proximity sweet-spot is also seen to expand. The region of poor proximity

for high pic is still seen to exist, but the size is more restricted than for smaller population

sizes.

The spread response maps for the population sizing study are presented in Figure 5.15.

Spread is close to zero for almost all configurations for D1 with a population of 10 individuals,

as shown in Figure 5.15a. The D2 map shown in Figure 5.15b also indicates many such

configurations, but also includes a region of larger spread for high pic. When the population

size is increased to 100, more configurations produce improved spread values for both D1 and

D2 as shown in Figure 5.15c and Figure 5.15d respectively. The sweet-spot for D2 is more

extensive than that for D1. This relationship is retained for a population size of 1000, with

general improvements for both algorithms over the 100-individual implementations. The

1000-individual maps are provided in Figure 5.15e and Figure 5.15f. The region of very

large spread for high pic is somewhat more restricted for D2 with a population size of 1000,

reflecting the improvements previously witnessed for proximity.

There are no recombination configurations (of those studied) for a population size of 10 for

which approximation sets can be obtained with both good proximity and good spread. This

result is true for both algorithm D1 and algorithm D2. As the population size is increased,
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the number of configurations that relate to overall good quality increases considerably from

this parlous state for both D1 and D2.

5.7.4 Analysis

The proximity indicator results were demonstrated to be largely invariant of population size

for the mutation-based optimisers. However, improved results were obtained by increasing

the population size for the recombination-based optimisers. This difference is argued to be

attributable to the exploration-exploitation mechanisms in the two operators as described

below.

Polynomial mutation is a single-parent variation operator. Therefore its search capability,

when considered in isolation from selection mechanisms, is independent of the properties of

the remainder of the population from which the parent is drawn. The exploration-exploitation

setting is entirely determined by parameters defined by the analyst: the probability of appli-

cation, pm, and the expected magnitude of variation (relative to the problem landscape), ηm.

Hence, the convergence performance obtained for each configuration setting is largely equal

for each population size setting of a particular algorithm.

SBX recombination, by contrast, is a two-parent operator in which the diversity in the

genetic material of the parents is crucial to operator behaviour. If the parents contain identical

genetic material then the operator has zero exploratory capabilities: the children produced

are identical to the parents. Greater distinction between the genetic material of the parent

solutions provides greater exploratory capabilities. The level of genetic diversity available is

related closely to population size: the greater the number of candidate solutions randomly

generated in the initial population, the greater will be the amount of material available. Thus,

for small population sizes, there is often insufficient diversity available in decision-space for

SBX exploration and consequently the search stagnates. The e-e trade-off setting in SBX

is partially specified by the configuration parameters pic and ηc akin to those of polynomial

mutation, but is also dependent on population diversity. Thus, the improved results for large

population sizes are understandable.

The spread indicator results can also be argued to be attributable to the richness of

decision-space sampling inherent to larger population sizes. For a larger population, there is

a greater probability of sampling any given area of the search space and of potentially making
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(a) D1: population size = 10
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(b) D2: population size = 10
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(c) D1: population size = 100
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(d) D2: population size = 100
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(e) D1: population size = 1000
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(f) D2: population size = 1000

Figure 5.14: DTLZ2(6) proximity response maps for recombination for various population
sizes
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(a) D1: population size = 10
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(b) D2: population size = 10
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(c) D1: population size = 100
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(d) D2: population size = 100
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(e) D1: population size = 1000
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(f) D2: population size = 1000

Figure 5.15: DTLZ2(6) spread response maps for recombination for various population sizes
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multiple samples from one region. Thus, the spread is likely to be naturally superior for a

larger population, and the loss of one promising solution through sampling errors is less likely

to result in a region of interest becoming completely unrepresented. This argument applies

to both variation operators considered in the inquiry. Also, as explained above, SBX requires

diversity to facilitate exploratory behaviour. Thus, initial diversity is required in order to

search for further diversity.

5.8 Summary

This chapter has shown how the behaviour of MOEAs can change dramatically with the

number of conflicting objectives to be optimised. In particular, the behaviour observed for

an algorithm configuration for a small number of objectives cannot be generalised to an

arbitrary (larger) number of objectives.

Through consideration of algorithm processes at a component level, the diversity-promoting

selection mechanisms have been identified as highly influential to optimiser outcome. Of the

algorithms considered, only those that bias selection in favour of solutions with a low density

estimate have been found to exhibit final approximation sets with a worse overall proximity

value than that calculated for the initial population.

Analysis suggests that several factors are required for this divergence behaviour to occur:

• Inclusion of a diversity promotion selection mechanism.

• Activation of the diversity promotion mechanism, requiring (i) selection to be based on

density estimates and (ii) the estimator to be suitably configured to provide discrimi-

nation between solutions.

• Dominance resistance solutions: the variation operators produce a large proportion of

children that are non-dominated with respect to their parents.

• An objective-space of suitable volume and dimensionality, in which solutions can be

spatially remote, poor in terms of absolute proximity, and yet still be non-dominated.

These results suggest that active diversity promotion can pose a serious challenge to ob-

taining an approximation set with good proximity to the global trade-off surface. But such

a mechanism is positively required in EMO, since without it an EA will tend to experience
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genetic drift and thus converge on to a smaller region of objective-space than required. Di-

versity promotion is a crucial process in an MOEA, but its implementation requires some

care.

In terms of the performance differences observed between the optimisers when using the

alternative variation operators, the behaviour under mutation appears to vary less with dif-

ferent numbers of objectives and population sizes than the behaviour under recombination.

Thus, mutation may be favoured because performance can be more easily predicted. However,

based on the limited evidence available, the best configurations for recombination appear to

offer superiority in terms of both proximity and spread to their counterparts for mutation.

This observation is likely to have arisen because recombination can adapt the variation step-

size to the order of magnitude required for continued improvements. Note that this property

has also been suggested as the factor responsible for the very poor proximity values gener-

ated for some configurations of recombination when optimising more than a small number of

objectives.

In the introduction to this chapter, it was noted that a previous study found that PESA

produced fundamentally different results to NSGA-II and SPEA2 but that the reasons for

this discrepancy were not clear (Khare et al. 2003). Based on the conclusions above, it is

now possible to hypothesise that the density-based selection in PESA was inactive due to the

parameter settings chosen for the density estimator and thus the poor proximity behaviour

observed for NSGA-II and SPEA2 (where such selection was active) was not replicated. The

genetic drift observed for PESA in Khare et al.’s (2003) study provides further support for

this argument. In essence, the general inability of the estimator to discriminate between

solutions would cause the D2-type PESA algorithm to exhibit D1-type behaviour.

From a real-world perspective, the results of this inquiry provide some grounds for op-

timism. Real-world EMO applications have been undertaken since the early days of EMO

development, regardless of the lack of theoretical support for this work. Now, substantial

evidence has been collected to show that — for some configurations — standard MOEAs are

capable of producing approximation sets that satisfy the dual aims of good proximity and

good distribution (in an absolute sense, rather than being purely satisfactory from the per-

spective of the DM) when simultaneously optimising a large number of conflicting objectives.



Chapter 6

Independence in EMO: Effects and

Innovations

6.1 Introduction

6.1.1 Problem Decomposition

Decomposing a global problem into a hierarchy of smaller, tractable, sub-problems is a famil-

iar pan-disciplinary concept. The processes of problem decomposition, solution, and recompo-

sition are collectively known as a divide-and-conquer (DC) approach. Following the notation

of Watson (2002), a decomposable problem is defined as one for which interactions arise be-

tween various sub-components of a problem. If no interactions occur between sub-problem

elements then the problem can be described as separable. Sometimes the dependencies ex-

ist but are sufficiently insignificant for a separable approach to be acceptable, although this

approach concedes that the ultimate solution attained may not be globally optimal.

In Chapter 4 it was argued that treatments for the evolutionary optimisation of large

numbers of objectives can potentially be discovered through analysis of the relationships

between the objectives. This chapter considers the concept of independence between a pair

of objectives, in which performance in each objective is entirely unrelated to performance in

the other. Thus, in the terminology described above, the objectives are separable.

An independent collection (IC) is herein defined as a grouping whose members are linked

by dependencies, and for which no dependencies exist with elements external to the group.

149
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Consider a problem with ψ ICs of objectives [z1, . . . ,zψ] and associated ICs of decision

variables [x1, . . . ,xψ]. If knowledge of these collections is available then the global problem,

P, can be decomposed into a group of parallel sub-problems [P1, . . . ,Pψ] that can be optimised

independently of each other to ultimately yield ψ independent trade-off surfaces. The benefits

of adopting such an approach are investigated in this chapter.

6.1.2 Decomposition-Based Evolutionary Algorithms

Several evolutionary computing methodologies have been proposed to exploit the possibility

of problem decomposition. Watson (2002) proposes the following classification:

Implicit: The structure of the problem is addressed by the variation (or equivalent) opera-

tors. For example, in the estimation of distribution algorithms detailed in Section 2.3.3,

new solutions are sampled from a structured probability model to provide a more effi-

cient search.

Explicit: The division of available resources is explicitly defined for the family of sub-

problems. Thus, each component of the problem is distinctly evolved.

The latter approach is of special interest because of its links to biological concepts (Watson

2002). Each decomposed group of decision variables can be viewed as a species, with the

association of the species to form the complete solution emulating the concept of symbiosis.

This notion is embedded within the EA approach known as cooperative coevolution (Potter

and De Jong 2000). This is a multi-population approach, in which each species is represented

by a particular sub-population.

Two of the key issues in cooperative coevolution are (i) the development of collaboration

mechanisms for the composition of a complete solution and (ii) the method of assigning

fitness to individual components (the so-called credit assignment problem). Many different

techniques have been proposed. The most interesting, from a multi-objective perspective, is

Pareto coevolution in which the relative performance of a component (against others from

within its sub-population) is established in a dominance sense using the collaborators from

other species as the performance axes (Noble and Watson 2001).

A further desirable property of a divide-and-conquer mechanism is the ability to perform

the decomposition on-line with the minimum of a priori knowledge. This property is known
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in the EA field as emergence (Watson 2002). The decomposition is often based on heuristics

in the particular field of application. For example, Valenzuela and Jones (1994) used such

techniques in an evolutionary divide-and-conquer approach to large travelling salesman prob-

lems (TSPs). As described in Section 2.3.3, EDAs develop a model of the dependencies (and,

hence, independencies) in the structure of decision-space. This can naturally be used to indi-

cate the required decomposition for explicit DC schemes. This type of approach is discussed

and developed by Watson (2002). Tiwari and Roy (2002) considered neural networks, prob-

ability models and regression analysis to determine dependency structures in decision-space.

Tree diagrams and direct analysis were also used to highlight separable decision variables.

Note that all of the above EA schemes involve the decomposition of decision-space only.

Prior to the work documented in this chapter, and published as Purshouse and Fleming

(2003a), no research was identified for which objective-space had been subject to decom-

position. However, contemporaneously to this work, Gunawan, Farhang-Mehr and Azarm

(2003) also recognised the potential for global problem decomposition (in terms of both

objective-space and decision-space) and developed an EMO system to exploit this. A type

of farmer-worker concept was suggested, in which a global MOEA (the farmer) initialises a

number of individual MOEAs (the workers) to optimise sub-problems in parallel. The farmer

process then performs composition and diversity promotion operations on the results of these

algorithms. New worker processes are then instigated, and so forth. This methodology was

implemented and compared to a global EMO solution on a benchmark problem. The results

for the decomposition-based system were shown to be superior, but a rigorous test framework

was unfortunately not used. Also the main limitation of the technique is that it requires a

static, a priori decomposition of the problem-space. Both these matters are addressed by

the method described in this chapter.

6.1.3 Chapter Overview

This chapter demonstrates the benefit of using a divide-and-conquer strategy for ICs in

multi-objective optimisation when the correct decompositions are known in advance. It also

proposes a general methodology for identifying, and subsequently exploiting, the decompo-

sition during the optimisation process. An empirical framework is described in Section 6.2,

which is then used to establish the case for divide-and-conquer in Section 6.3. An on-line
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adaptive strategy is proposed in Section 6.4 that exploits the iterative, population-based

nature of the evolutionary computing paradigm. Independent collections of objectives are

identified using nonparametric statistical methods of independence testing. Sub-populations

are assigned to the optimisation of each collection, with migration between these occurring

as the decomposition is revised over the course of the optimisation. Proof-of-principle results

are presented in Section 6.5, together with a discussion of issues raised by the study.

6.2 Experimental Methodology

6.2.1 Baseline Algorithm

The baseline evolutionary multi-objective optimiser chosen in this work is a variant of the

elitist multi-objective genetic algorithm developed in Section 3.6. An overview is shown

in Table 6.1. Parameter settings are derived from the literature and tuning has not been

attempted.

Table 6.1: Baseline MOEA used in this chapter

EMO component Strategy

General Total population = 100ψ. Generations = 250.
Representation Concatenation of real number decision variables. Accuracy bounded by

machine precision.
Selection-for-
variation

Binary tournament selection using Pareto-based ranking (Fonseca and
Fleming 1993).

Variation Uniform SBX crossover with ηc = 15, exchange probability = 0.5, and
crossover probability = 1 (Deb and Agrawal 1995).
Element-wise polynomial mutation with ηm = 20 and mutation proba-
bility = (chromosome length)−1 (Deb and Goyal 1996).

Selection-for-
survival

Ceiling of 20%-of-population-size of non-dominated solutions pre-
served. Reduction using SPEA2 clustering (Zitzler, Laumanns and
Thiele 2001).

6.2.2 Test Functions

A simple way to create independent multi-objective test functions is to concatenate existing

test problems from the literature, in which dependencies exist between all objectives. In this

proof-of-principle study, only the test function ZDT-1 proposed by Zitzler et al. (2000) is

used. ZDT-1 is reproduced in Equation A.2 in Appendix A. The concatenated extension to

this bi-objective task for ψ sub-problems, denoted as C-ZDT-1(ψ), is shown in Equation 6.1.
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ñ is the number of decision variables per sub-problem, such that n = ψñ is the total number

of decision variables for the global problem.

min . z(x) = [z1(x1), z2(x1, . . . , xñ), . . . ,

z2ψ−1(x(ψ−1)ñ+1), z2ψ(x(ψ−1)ñ+1, . . . , xψñ)
]

,

w.r.t. x = [x1, . . . , xψñ] ,

where z2q−1(x) = x(q−1)ñ+1,

z2q(x) = 1 −
√

z2q−1/
(

1 + [9/(ñ − 1)]
∑qñ

j=(q−1)ñ+2 xj

)

,

and 0 ≤ xi ≤ 1 for i = 1, 2, . . . , ψñ.
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(6.1)

The global solution to this problem is a set of bi-objective trade-off surfaces (z1 versus

z2, z3 versus z4, and so forth). Each trade-off surface is a convex curve in the region [0 1]2

(for which the summation in Equation 6.1 is zero). The ideal vector is [0 0]. The anti-ideal

vector of worst possible performance in each objective is [1 10].

6.2.3 Performance Metrics

Hypervolume

A quantitative measure of the quality of a trade-off surface is made using the hypervolume S

unary performance metric (Zitzler 1999). The hypervolume metric measures the amount of

objective-space dominated by the obtained non-dominated front, and is one of the best unary

measures currently available, although it has limitations (Zitzler et al. 2003, Knowles and

Corne 2002). The anti-ideal vector is taken as the reference point. The metric is normalised

using the hypervolume of the ideal vector, as illustrated in Figure 6.1.

Attainment Surfaces

An introduction to the concept of attainment surfaces is provided in Section 3.2.3. Note that,

as was the case in Chapter 3, the technique is again used purely for visualisation purposes.

6.2.4 Analysis Methods

For the type of MOEA described in Table 6.1, the final population represents an appropri-

ate data set upon which to measure performance. 35 runs of each algorithm configuration
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Figure 6.1: Hypervolume metric

have been conducted in order to generate statistically reliable results. Quantitative perfor-

mance is then expressed in the distribution of obtained hypervolumes. A comparison between

configurations is made via the difference between the means of the distributions.

The significance of the observed result is assessed using the simple, yet effective, non-

parametric method of randomisation testing (Manly 1991). The methodology was used for

comparative performance testing in Chapter 3 and is described in detail in Section 3.2.4. A

two-tailed test at the 1%-level is used here as before.

Let S1 be the distribution of hypervolume metrics for algorithm 1, and let S2 be the

corresponding distribution for algorithm 2. The observed value is then found by subtracting

the mean of S2 from the mean of S1. An overall randomised distribution is then generated

for this test statistic.

Since optimal performance is achieved by maximising hypervolume, if the observed value

falls to the left of the distribution then there is strong evidence to suggest that algorithm 2

has outperformed algorithm 1. If the observed result falls to the right, then superior per-

formance is indicated for algorithm 1.



CHAPTER 6. INDEPENDENCE WITHIN MANY OBJECTIVES 155

(a) z = [z
1
 z

2
] (b) z = [z

1
 .. z

4
]

−4 −3 −2 −1 0 1 2 3 4

x 10−3

0

50

100

150

200

0 0.5 1
0

0.5

1

1.5

z
1
 v z

2

−0.01 −0.005 0 0.005 0.01 0.015 0.02

0

50

100

150

200

250

0 0.5 1
0

0.5

1

1.5

(d) z = [z
1
 .. z

8
]

z
3
 v z

4

−0.01 −0.005 0 0.005 0.01 0.015

0

50

100

150

200

0 0.5 1
0

0.5

1

1.5

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

50

100

150

200

0 0.5 1
0

1

2

3

z
7
 v z

8

(c) z = [z
1
 .. z

6
]

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

50

100

150

200

250

0 0.5 1
0

1

2

3

z
1
 v z

2

−0.04 −0.02 0 0.02 0.04 0.06

0

50

100

150

200

250

300

0 0.5 1
0

1

2

3

−0.04 −0.02 0 0.02 0.04 0.06 0.08

0

50

100

150

200

250

0 0.5 1
0

1

2

3

z
3
 v z

4

−0.04 −0.02 0 0.02 0.04 0.06

0

50

100

150

200

250

0 0.5 1
0

1

2

3

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

50

100

150

200

250

0 0.5 1
0

1

2

3

z
5
 v z

6

−0.04 −0.02 0 0.02 0.04 0.06

0

50

100

150

200

250

0 0.5 1
0

1

2

3

Figure 6.2: Example presentation of results: algorithm 1 versus algorithm 2

6.2.5 Presentation of Results

Comparisons of algorithm 1 versus algorithm 2 for ψ = [1, . . . , 4] are summarised within

a single figure such as Figure 6.2. Region (a) shows the validation case of one independent

collection, C-ZDT-1(1), whilst regions (b), (c), and (d) show two, three, and four collections

respectively. Within each region, each row indicates a bi-objective comparison. The left-

hand column shows the results of the randomisation test on hypervolume (if the observed

value, indicated by the filled circle, lies to the right of the distribution then this favours

algorithm 1), whilst the right-hand column shows the median attainment surfaces (the un-

broken line is algorithm 1).

The two figures in the top-left of Figure 6.2 show the comparison between algorithm 1

and algorithm 2 for the bi-objective problem z = [z1 z2]. Considering these two figures, the

left-hand figure shows the results of the randomisation test. The observed result, indicated

by the filled circle, is seen to lie very close to the centre of the distribution (shown as a

grey histogram). This suggests that there is no difference in performance between the two
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algorithms in terms of hypervolume. This result is confirmed by the attainment surface

plots in the right-hand figure. The two median surfaces are so closely located as to be

indistinguishable in the figure.

As a further example, consider the bottom-right cluster of pictures in Figure 6.2. These

are the results for a six-objective problem that is decomposable into three bi-objective sub-

problems. Within this portion of the overall Figure 6.2, results for each sub-problem are

shown on each row. The hypervolume results for each sub-problem show the observed result

to lie to the right of the randomisation distribution. This indicates that algorithm 1 exhibits

better performance (in terms of the hypervolume indicator) than algorithm 2. The attain-

ment surface visualisations in the left column also indicate the superiority of algorithm 1:

recalling that all objectives are to be minimised, the dashed-line median attainment surfaces

for this algorithm clearly dominate the corresponding unbroken-line surfaces for algorithm 2.

6.3 The Effect of Independence

The potential of a divide-and-conquer strategy can be examined by comparing a global so-

lution to the concatenated ZDT-1 problem to a priori correct decompositions in terms of

decision-space, objective-space, or both. Consider an island model scheme in which a sub-

population of 100 individuals is evolved in isolation for each independent collection (no mi-

gration occurs). Each EA uses only the relevant objectives and decision variables. This is

compared to a global approach, with a single population of size 100ψ, using all objectives

and decision variables in Figure 6.3. Substantially improved performance is shown for the

divide-and-conquer scheme.

To clarify which parts of the decomposition are important, sub-population schemes that

decompose decision-space whilst treating objective-space globally and vice versa are now

considered. In the decision-space scheme, each 100 individual sub-population operates on

the correct subset of decision variables. However, ss and fitness values for sv are decided

globally. During ss, elite solutions are reinserted into the most appropriate sub-population

depending on their ranking on local objective sets. Assignment is random in the case of a tie.

Performance is compared to the ideal decomposition in Figure 6.4. It is evident that decision-

space decomposition alone is not responsible for the results in Figure 6.3, and that the quality

of the trade-off surfaces deteriorates with ψ. The attainment surfaces for cases (c) and (d)
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Figure 6.3: Global model versus decomposition of both objective-space and decision-space

suggest that the global treatment of objectives may be affecting the shape of the identified

surface.

In the objective-space scheme, each sub-population operates on the correct subset of

objectives (the ss and sv processes are both completely contained within the sub-population),

but the EA operates on the global set of decision variables. A comparison with the decision-

space method is shown in Figure 6.5. No statistically significant performance difference is

evident in any of the cases. Thus, objective-space decomposition alone is also not responsible

for the achievement in Figure 6.3. Note that if single-point rather than uniform crossover

had been used then results would have been much worse for the global treatment of decision-

space since, for the former operator, the probability of affecting any single element of the

chromosome (and thus the relevant section) decreases with chromosome length.

The above results indicate that a sub-population-based decomposition of either objective-

space or decision-space can significantly benefit performance. The best results are obtained

when both domains are decomposed simultaneously. Given that, in general, the correct

decomposition for either domain is not known in advance, the choice of domain will depend
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Figure 6.4: Decomposition of both objective-space and decision-space versus decision-space
decomposition alone



CHAPTER 6. INDEPENDENCE WITHIN MANY OBJECTIVES 159

(a) z = [z
1
 z

2
] (b) z = [z

1
 .. z

4
]

−4 −2 0 2 4 6

x 10−3

0

50

100

150

0 0.5 1
0

0.5

1

1.5

z
1
 v z

2

−4 −2 0 2 4 6

x 10−3

0

50

100

150

200

0 0.5 1
0

0.5

1

1.5

(d) z = [z
1
 .. z

8
]

z
3
 v z

4

−4 −3 −2 −1 0 1 2 3 4

x 10−3

0

50

100

150

200

0 0.5 1
0

0.5

1

1.5

−5 0 5

x 10−3

0

50

100

150

200

0 0.5 1
0

0.5

1

1.5

z
7
 v z

8

(c) z = [z
1
 .. z

6
]

−5 0 5

x 10−3

0

50

100

150

0 0.5 1
0

0.5

1

1.5

z
1
 v z

2

−5 0 5

x 10−3

0

50

100

150

200

0 0.5 1
0

0.5

1

1.5

−6 −4 −2 0 2 4

x 10−3

0

50

100

150

0 0.5 1
0

0.5

1

1.5

z
3
 v z

4

−5 0 5

x 10−3

0

50

100

150

200

0 0.5 1
0

0.5

1

1.5

−6 −4 −2 0 2 4

x 10−3

0

50

100

150

0 0.5 1
0

0.5

1

1.5

z
5
 v z

6

−6 −4 −2 0 2 4 6

x 10−3

0

50

100

150

200

0 0.5 1
0

0.5

1

1.5

Figure 6.5: Decision-space decomposition versus objective-space decomposition
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on which is less demanding to analyse. Note that if objective-space is decomposed then

decision-space decomposition is also required at some point in order to synthesise a global

solution. However, the converse is not the case. Decomposition may be a priori, progressive,

or a posteriori with respect to the optimisation. A correct early decomposition in both spaces

would be ideal but this may not be achievable due to insufficient knowledge of the interactions

between objectives at this stage.

6.4 Exploiting Independence via Objective-Space Decompo-

sition

6.4.1 Overview of the Methodology

A progressive decomposition of objectives, together with a retrospective decomposition of

decision variables, is proposed in this section. This is appropriate for problem domains

where the number of objectives is significantly fewer than the number of decision variables.

An island-based sub-population approach is taken, in which the selection probability of an

individual in a sub-population is determined on the subset of objectives assigned to that

sub-population. The topology of this parallel model is permitted to vary over the course of

the optimisation.

An overall schematic of the technique is given in Figure 6.6. The process begins with

a global population model. The multi-objective performance of each candidate solution is

then obtained. From the perspective of a single objective, the population provides a set of

observations for that objective. Pair-wise statistical tests for independence are then performed

for all possible pairs of objectives to determine between which objectives dependencies exist.

Linkages are created for each dependent relationship. A sub-problem is then identified as

a linked collection of objectives. This concept is illustrated for an ideal decomposition of

C-ZDT-1(2) in Figure 6.7. Of all pair-wise dependency tests, significant dependencies have

been identified between z1 and z2, and between z3 and z4.

The new topology of the population model follows from the decomposition. Split and

join operations are implemented to allow objectives (and associated candidate solutions) to

migrate between sub-problems as appropriate.

When each new sub-population has been formed, selection probabilities and the identi-
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fication (and management) of elites are determined using the current subset of objectives.

Performance across all other objectives is ignored. Selection and variation operators are

then applied within the boundaries of the sub-population. The size of the resulting new

sub-population is pre-determined by the population management process.

All new solutions are evaluated across the complete set of objectives. This new data is

then used to determine an updated decomposition. In this study, the update is performed at

every generation, although in general it could be performed according to any other schedule.

The process then continues in the fashion described above.

6.4.2 Population Management

The population topology is dependent on the identified decomposition. This can change

during the course of the optimisation, thus requiring some sub-problem resources to be re-

allocated elsewhere. Operations are required to split some portion of the candidate solutions

from a sub-population and subsequently join this portion on to another sub-population.

The size of the split is decided using an allocation strategy. Since the number of candidate

solutions required to represent a trade-off surface grows exponentially with the number of

associated conflicting objectives, Q, it would seem a reasonable heuristic to use an exponential

allocation strategy such as 2Q. As an example, consider a four-objective problem with an

initial decomposition of {[z1 z2], [z3 z4]}. The suggested new decomposition is {[z1], [z2 z3 z4]}.
The situation is depicted in Figure 6.8.

Prior to reallocation, each sub-population should have proportion 22/(22 + 22) = 1/2
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of the available resources. z2 is now to be linked with z3 and z4, and must thus be split

from its grouping with z1. Both z1 and z2 will receive 21/(21 + 21) = 1/2 of the resources

in this sub-population. The actual candidate solutions to be assigned to each part of the

split are determined randomly. The resources allocated to z2 are then added to the [z3 z4]

sub-population. Now z1 has 1/4 of the resources, whilst [z2 z3 z4] has 3/4 of the resources.

The selection and variation operations are then used to return to the required proportions of

21/(21 + 23) = 1/5 for z1 and 23/(21 + 23) = 4/5 for [z2 z3 z4].

6.4.3 Tests for Independence

A sub-problem group is generated by collecting all objectives that are linked by observed pair-

wise dependencies. In this sub-section, the tests used to determine if a connection should be

made are introduced. Several tests for variable independence based on sample data exist in

the statistics literature (Hollander and Wolfe 1999). Two nonparametric procedures, the first

based on the Kendall K statistic and the second on the Blum-Kiefer-Rosenblatt D statistic,

are used in this work.

Both methods require special care for the handling of tied data. This is of concern in

an evolutionary algorithm implementation since a particular solution may have more than

a single copy in the current population. Large-sample approximations to each method have

been implemented. This is possible because reasonably large population sizes have been used

(100 individuals per independent bi-objective collection). All significance tests are two-tailed

at the 1%-level, the null hypothesis being that the objectives are independent.

Kendall K

A distribution-free bivariate test for independence can be made using the Kendall sample

correlation statistic, K. This statistic measures the level of concordance (as one variable

increases/decreases, the other increases/decreases) against the level of discordance (as one

variable increases/decreases, the other decreases/increases). This is somewhat analogous to

the concepts of harmony and conflict in multi-objective optimisation (see Chapter 4). The

standardised statistic can then be tested for significance using the normal distributionN(0, 1).

Ties are handled using a modified paired sign statistic. A modified null variance is also used

in the standardisation procedure. For further details, refer to Hollander and Wolfe (1999).
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The main concern with this method is that if K = 0 this does not necessarily imply

that the two objectives are independent (although the converse is true). This restricts the

applicability of the method beyond bi-objective dependencies, where relationships may not

be monotonic.

Blum-Kiefer-Rosenblatt D

As an alternative to the above test based on the sample correlation coefficient, Blum, Kiefer,

and Rosenblatt’s large-sample approximation to the Hoeffding D statistic has also been con-

sidered in this study. This test is able to detect a much broader class of alternatives to

independence. For full details, refer to Hollander and Wolfe (1999).

6.4.4 Decision-Space Decomposition: An Aside

Discussion

In the above methodology, and throughout the forthcoming empirical analysis of this method

in Section 6.5, different sub-populations evolve solutions to different collections of objectives.

Decision-space decomposition is not attempted. Thus, at the end of the optimisation process,

complete candidate solutions exist for each objective collection. It is now unclear which

decision variables relate to which objective collection. In order to finalise the global solution,

solutions from each trade-off surface must be synthesised via partitioning of the decision

variables.

An a posteriori decomposition, as described below, is simple to implement but has two

clear disadvantages: (i) some reduction in EA efficiency will be incurred because the operators

search over inactive areas of the chromosome (operators that are independent of chromosome

length should be used), and (ii) further analysis is required to obtain the global solution.

Method

A candidate solution should be selected at random from the overall final population. Each

variable is then perturbed in turn and the effect on the objectives should be observed. The

variable should be associated with whichever objectives are affected. Then, when the decision-

maker selects a solution from the trade-off featuring a particular group of objectives, the
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corresponding decision variables are selected from the sub-population corresponding to this

grouping.

This method requires as many extra candidate solution evaluations as there are decision

variables in the problem. For the 4-collection concatenated ZDT-1 test function, this is 120

evaluations or 30% of a single generation of the baseline algorithm.

Two special cases must be addressed:

• If the perturbation of a decision variable affects objectives in more than one objective

subset, this indicates an invalid decomposition of objective-space. Information of this

kind could be used progressively to increase the robustness of the decomposition.

• It is possible that no disturbance of objectives is seen when the decision variable is

perturbed. Here, the alternatives are to consider another candidate solution or to

consider more complicated variable interactions. This may also be an indication that

the variable is globally redundant.

6.5 Preliminary Results

Proof-of-principle results for the adaptive divide-and-conquer strategy devised in Section 6.4

are presented herein for the concatenated ZDT-1 test function (Definition 6.1) with ψ =

[1, . . . , 4]. A summary of the chosen strategy is given in Table 6.2. Both the Kendall K

method and the Blum-Kiefer-Rosenblatt D method have been considered.

Table 6.2: Divide-and-Conquer settings

EMO component Strategy

Independence test (either) Blum-Kiefer-Rosenblatt D
(or) Kendall K

Resource allocation 2Q

Schedule Revise the decomposition every generation

6.5.1 Blum-Kiefer-Rosenblatt D Results

The performance of this strategy when compared to the baseline case of no decomposition

is shown in Figure 6.9. Both the hypervolume metric results and the attainment surfaces

indicate that the divide-and-conquer strategy produces trade-off surfaces of higher quality
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Figure 6.9: No decomposition versus Blum-Kiefer-Rosenblatt D divide-and-conquer

in cases where independence exists. However, the attainment surfaces also show that the

absolute performance of the method degrades as more independent collections are included.

The degradation can be partially explained by considering the percentage of correct de-

compositions made by the algorithm at each generation (measured over the 35 runs) shown in

Figure 6.10. As the number of independent collections increases, the proportion of correctly

identified decompositions decreases rapidly. Note that this does not necessarily mean that

the algorithm is making invalid decompositions or no decomposition: other valid decomposi-

tions exist, for example {[z1 z2], [z3 z4 z5 z6]} for ψ = 3, but these are not globally optimal

(also the number of possible decompositions increases exponentially with ψ.). Indeed, on no

occasion did the test produce an invalid decomposition (identified independence when depen-

dency exists). This is evident from plots of the decomposition history over the course of the

optimisation. A typical history is depicted in Figure 6.11. Each objective is labelled on the

vertical axis, whilst the horizontal axis depicts the current generation of the evolution. At a

particular generation, objectives that have been identified as an independent collection are
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Figure 6.10: Blum-Kiefer-Rosenblatt D : Correct decompositions as a percentage of total runs
over the course of the optimisation.

−−−− [z1 z2], − · − · [z1, . . . , z4], · · · · [z1, . . . , z6], —— [z1, . . . , z8]

associated with a unique colour. Thus, as shown in Figure 6.11, at the initial generation z1

and z2 have been identified as a cluster (white), as have [z3 z4] (black), [z5 z6] (light grey),

and [z7 z8] (dark grey). At generation 200 all the objectives have been grouped together,

as indicated by the complete whiteness at this point in the graph. Note that there is no

association between the colours across the generations.

6.5.2 Kendall K Results

The performance of the divide-and-conquer algorithm with the Kendall K test for indepen-

dence is compared to Blum-Kiefer-Rosenblatt D in Figure 6.12. The former test appears to

offer superior performance as the number of independent collections increases. No significant

performance difference can be found for ψ = 2, but such a difference can be seen for two of

the surfaces for ψ = 3, and every surface for ψ = 4.
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Figure 6.11: Blum-Kiefer-Rosenblatt D : Typical decomposition history for a single replica-
tion. Each identified objective cluster is represented by a colour (white, light grey, dark grey,
black)

This difference in performance can be explained by the plot of correct decompositions

shown in Figure 6.13. Whilst the proportion of correct decompositions degrades as ψ in-

creases, this degradation is not as severe as for Blum-Kiefer-Rosenblatt D (previously shown

in Figure 6.10). Also, from the typical decomposition history depicted in Figure 6.14, the

valid decompositions tend to be of higher resolution than those developed by the alternative

method (shown in Figure 6.11).

6.5.3 Discussion

The obtained results show that the adaptive divide-and-conquer strategy offers substantially

better performance than the global approach in terms of the quality of trade-off surfaces

generated.

Of the two independence tests considered, Kendall K would appear more capable of

finding good decompositions on the benchmark problem considered, especially as the number

of independent collections increases. However, KendallK may experience difficulties when the

dimension of the trade-off surface increases, since it may incorrectly identify independence due

to the variation in the nature of bi-objective relationships over the surface (the relationship
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Figure 6.12: Blum-Kiefer-Rosenblatt D divide-and-conquer versus Kendall K divide-and-
conquer
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Figure 6.13: Kendall K : Correct decompositions as a percentage of total runs over the course
of the optimisation.
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Figure 6.14: Kendall K : Typical decomposition history for a single replication. Each identified
objective cluster is represented by a colour (white, light grey, dark grey, black)

is not always conflicting, as it is for a bi-objective problem). By contrast, Blum-Kiefer-

Rosenblatt D offers a more robust search in these conditions, but is more conservative.

There is a clear need for the procedure to be robust (invalid decompositions should be

avoided, although the progressive nature of the process may somewhat mitigate the damage

from these), but conservatism should be minimised in order to increase the effectiveness of

the methodology. Under these circumstances, it may be prudent to adopt a voting strategy,

in which a decision is made based on the results from several tests for independence.

The adaptive divide-and-conquer strategy carries some overhead in terms of the test for

independence and the sub-population management activity, which may be controlled using a

scheduling strategy. This must be balanced against the improvements in the quality of the

trade-off surfaces identified and the reduction in the complexity of the MOEA ranking and

density estimation procedures.

6.6 Summary

This study has shown that, if feasible, a divide-and-conquer strategy can substantially im-

prove MOEA performance. The decomposition may be made in either objective-space or
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decision-space, with a joint decomposition proving the most effective. Objective-space de-

composition is particularly appealing because it reduces the complexity of the trade-off sur-

faces to be presented to the decision-maker. Furthermore, no loss of trade-off surface shape

was observed for the ideal objective-space decomposition as it was for the sole decomposition

of decision variables.

An adaptive objective-space decomposition methodology has been presented and proof-of-

principle results on the concatenated ZDT-1 problem have been shown to be very encouraging.

It should be noted that the approach is not confined to objective-space: independence tests

and identified linkages could equally well have been applied to decision variable data. In

this case, the sub-populations would evolve different decision variables, whilst the evaluation

would be global. In such a decision-space decomposition, careful consideration would be

required of the methodology by which a global evaluation could be based on a subset of

decision variables. The simultaneous decomposition of both objective-space and decision-

space could also be attempted using the techniques in this chapter.

The main limitation of the methodology is the number of pair-wise comparisons that have

to be conducted for high-dimensional spaces. In the concatenated ZDT-1 problem, analysis

of the decision variables would be very compute-intensive. Thus, further techniques for the

progressive decomposition of high-dimensional spaces are required to enhance the framework.



Chapter 7

Conclusions

7.1 Evolutionary Multi-Objective Optimisation

In the general case, a candidate solution to a problem will be assessed against multiple

performance criteria. If conflict arises between these different objectives then no single so-

lution can be considered optimal in the classical sense of exhibiting best performance across

all the objectives. Instead, optimality encompasses a family of alternative solutions whose

corresponding objective vectors define the trade-off surface for the problem. Thus a multi-

objective optimiser, in the absence of decision-maker preferences between the objectives, is

required to find a good representation of the trade-off surface to present to the DM.

The appeal of evolutionary algorithms as multi-objective optimisers rests primarily on

their population-based nature. The required family of alternative solutions can be evolved

in parallel, with exchange of information between the multiple search points providing the

potential for superior efficiency over a single-solution strategy requiring multiple restarts.

The use of a population also permits solutions to be evaluated via peer group comparisons

based on Pareto dominance. Thus, the forced cohesion of non-commensurable objectives can

be avoided. Evolutionary computing also has general benefits as an optimisation methodol-

ogy. Primarily, it permits considerable flexibility with regard to solution representation and

performance assessment. The multi-point and stochastic properties of the EA also provide an

element of robustness in difficult problem environments (with features such as local minima

and noise).

Since the emergence of EMO in the mid-1980s, many different EAs have been proposed

173
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for multi-objective optimisation. Of the mechanisms within such algorithms, the selection

processes are those most commonly found to relate directly to the multi-objective nature of

the search. Much EMO research effort is devoted to the generation of new algorithms and

subsequent comparisons with existing algorithms across a variety of benchmark problems.

The results frequently show that the new algorithm has outperformed the existing algorithms

(under the restricted conditions imposed) but only very infrequently provide information on

the underlying causes of this outcome. The identification of such causes is interesting to the

EMO theoretician and also very important to the analyst solving a real-world problem.

In order to exploit the flexibility of the EA methodology as a problem-solving tool, an

EA should be tailored to each individual problem based on both innovation and experience

gained from other problems (Michalewicz and Fogel 2000). If this argument is accepted,

then the resulting movement away from the technique of so-called black-box problem solving

requires that algorithms be considered on a component basis as well as on a composite scale.

In order to choose suitable components and parameter settings to form an optimiser that will

provide good solutions to the problem — such that the algorithm is competent according to

the terminology of Goldberg (2002) — knowledge is required of how these components work

in various contexts. This knowledge is not currently available because the type of research

framework required to provide it has yet to be adopted by the EMO community on a sufficient

scale.

7.2 Performance Assessment

This thesis has sought to develop an experimental performance assessment methodology that

will provide useful information to an analyst developing an EMO algorithm at a component

level. MOEA performance assessment is a challenging task. In addition to the standard

EA difficulty that many design factors must be considered simultaneously (such as choice

of selection method and associated selective pressure, variation operators and associated

parameters, and so forth), the result for a single run of an MOEA produces a set of vectors

rather than the single scalar value that would result from a single-objective EA. Comparisons

between the results of MOEAs are thus rather more involved than for a standard EA. Also,

visualisation of results becomes problematic for tasks with more than two objectives.

The approach developed in this thesis has stressed the need for baselining. A fundamental
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engineering heuristic is to develop a solution that is as simple as possible (whilst meeting the

required specifications). Thus, the baseline MOEA considered used Pareto-based selection-

for-variation in isolation. No additional selective biases were applied. The effects of further

selective mechanisms were then considered with respect to this baseline. Thus, it is possible

to identify at a fundamental level whether the extra complexity in the optimiser produces

benefits in terms of search performance. Through this process of isolation of components and

higher-order component structures it is then possible to begin to identify which mechanisms

are crucial for good performance and in what contexts.

In addition to baselining, the methodology emphasises three other important factors: the

use of appropriate test problems, the choice of appropriate indicators to evaluate algorithm

performance, and a rigorous statistical analysis of the results.

• Test problems. MOEA performance is evaluated using benchmark problems. These

may be functions developed specifically for testing purposes or may be real-world prob-

lems. Any performance conclusions inferred from the results for a particular algorithm

can only be directly applied to the local class of problems to which the exemplar prob-

lem belongs. Wolpert and Macready’s (1997) no free lunch (NFL) theorem requires

that care is taken when attempting to extend or generalise the performance conclusions

since, on average across the set of all problems, all optimisation algorithms exhibit

equal performance. However, the insights gained into the reasons for the observed per-

formance behaviour can, and should, receive consideration when tailoring an algorithm

to a problem from any given class.

• Performance indicators. The thesis has generally advocated the use of unary indi-

cators to measure various properties of an obtained approximation set. Thus, in each

study, a specific indicator has been chosen to measure proximity and another indicator

has been used to assess the quality of the distribution. In this approach, as proved by

Zitzler et al. (2003), it is not possible to conclude that one algorithm is actually supe-

rior to another from the fundamental perspective of Pareto dominance using a finite

combination of such indicators. Thus, care is taken in the thesis to focus on individual

aspects of performance. Care must also be taken to ensure that the unary indicators

correctly measure the desired approximation set attributes. In particular, confusion

over the definition of a good distribution may lead to incorrect inferences over results.
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Two possible areas of concern in Chapter 3 are that the ∆ metric attempts to combine

both extent and uniformity into a single value and that the globally optimal distribu-

tions for the trade-off surfaces of ZDT-3 and ZDT-5 are not uniform in a Euclidean

sense (as implicitly assumed by the metric). In Chapter 5, these concerns were elimi-

nated by concentrating on a specific aspect of distribution and using a problem with a

continuous trade-off surface.

• Statistical analysis. EMO algorithms are stochastic systems. Thus, multiple replica-

tions and statistical confidence tests are required in order to determine the significance

of any observed performance differences between algorithms. The use of median indica-

tor values and randomisation testing advocated in the thesis provides strong grounds for

inference of algorithm performance (providing that the indicators are chosen appropri-

ately as mentioned above). Visualisation is used in the thesis to reinforce the statistical

results and to assist understanding. It is at no point used to make firm judgements on

performance, but is used in an exploratory capacity in Chapter 5.

The above framework was used in the thesis to identify that (i) diversity promotion

schemes can indeed improve the distribution of the obtained approximation set, but that (ii)

the genetic drift experienced for an algorithm that did not include such a scheme was not

too severe in an absolute sense, and that (iii) an elitist selection-for-survival method based

on SPEA2 could offer significant benefits in terms of both proximity and diversity. These

conclusions are for the most part limited to the class of real-parameter function optimisation

problems, but do cover various landscape characteristics such as convexity, non-convexity,

discontinuity, multimodality, and non-uniformity.

7.3 Evolutionary Many-Objective Optimisation

A mismatch has been identified between the number of objectives considered in theoretical

EMO research and the number of objectives engaged by real-world applications. In general,

the theoretical community restricts itself to bi-objective problems whilst it is not unusual

for application developers to attempt to simultaneously optimise as many as 20 objectives.

Further understanding of MOEAs in order to support the work of such developers has been

identified as a key issue in the thesis. The terminology many-objective (M) has been adopted
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to describe problems in which there are more than two objectives to be optimised, after

Farina and Amato (2002).

A platform for research into many-objective optimisation has been established through

consideration of the relationships between objectives. Two objectives may exhibit a depen-

dency relationship, and this may be either conflicting or harmonious. In the former case, as

performance is one objective is improved, performance in the other deteriorates. In the latter

case, improvement in one objective is rewarded with simultaneous improvement in the other.

Alternatively, performance in the two objectives may be entirely independent. In this case, a

modification that is responsible for change in one objective produces no change in the other.

Relative to the general high level of research activity in the EMO field, the amount of en-

ergy directed toward problems with more than two or three objectives is very small. However,

some related work has been identified in the thesis, in both the EMO and MCDM communi-

ties. When attempting to optimise many conflicting objectives, EMO researchers have noted

that the proportion of non-dominated solutions in a population can become very high (even

when large population sizes are used). This can cause problems with selection methods that

discriminate on the basis of Pareto dominance and requires the DM to consider a very large

number of alternative solution options. Thus, researchers have resorted to the use of further

preference data to discriminate between otherwise equivalent solutions. Dimensionality re-

duction techniques have also been used, especially to provide enhanced visualisation of the

relationships between objectives. Harmonious objectives have received some consideration in

the MCDM community, wherein much of the discussion has concerned whether or not such

objectives should be removed prior to optimisation. This decision is probably best left to

the analyst and decision-maker for the particular problem. Prior to the work documented

in Chapter 6 of this thesis, no research had been published concerning independence in the

context of EMO.

Two studies of many-objective optimisation have been documented in the thesis. In

Chapter 5, an exploratory analysis was conducted of the effect of many conflicting objectives

on the behaviour of a popular class of MOEAs. In Chapter 6, the benefits of identifying and

exploiting independence between objectives were considered. The main conclusions that were

drawn from these studies are discussed below.

• Conflict. This inquiry considered the additional effect of diversity enhancement mech-
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anisms over pure Pareto-based discrimination in selection processes. An exploratory

framework was deployed and the number of conflicting objectives was varied between 3

and 12. The study indicated that the conclusions that can be drawn from simulations

on a small number of objectives cannot be generalised to problems with a higher num-

ber of objectives. In particular, active diversity promotion was found to help prevent

genetic drift but, if a high level of dominance resistance is encountered by the varia-

tion operators, then the final approximation set can prove to be of very low quality.

The performance of mutation-based schemes was found to be less variable than the

recombination-based equivalents as the number of objectives changed. Even for high

numbers of objectives, some algorithm configurations could still provide good quality

results. However, under a fixed population size, the resolution of the approximation set

becomes increasingly low (this aspect of quality is DM-dependent). Therefore, a fixed

approximation set size may not be appropriate: rather, the DM may wish to specify a

desired resolution for each objective. Alternatively, the resolution can be improved by

restricting the extent of the trade-off surface that must be represented via the use of

DM goals and priorities.

• Independence. This inquiry considered an example benchmark problem that could be

decomposed into sub-problems (each comprising two conflicting objectives), for which

there were no dependencies between different sub-problems. The study found that

exploitation of this separability led to improved results (measured using the hypervol-

ume indicator). A priori divide-and-conquer approaches of either objective-space or

decision-space enhanced the quality of the approximation sets generated. The best re-

sults were achieved by enforcing a simultaneous decomposition of spaces. A scheme for

dynamically identifying, and subsequently exploiting, a suitable decomposition during

the optimisation process was proposed and was shown to work well for the concatenated

bi-objective problem considered. The scheme, in its current basic implementation, car-

ries significant overhead in terms of the required tests for independence. This overhead

must be balanced against the reduced complexity obtained through the partitioning of

objective-space.
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7.4 Future Perspectives

7.4.1 Many-Objective Optimisation

The exploratory analysis of conflict in many-objective optimisation produced some notewor-

thy findings of potential interest to the EMO research community. However, only a single

real-parameter function optimisation problem was used during simulations. Thus, despite

the realisation that the factors that are believed to underpin the observed behaviour could

occur outside of this problem, the results cannot be generalised further at this stage. Sim-

ilar studies are therefore required for other classes of many-objective problem, such as the

multi-objective quadratic assignment problem class developed by Knowles and Corne (2003a)

which encompasses both the travelling salesman problem and the graph partitioning prob-

lem. Analysis is also required of conflict scalability in real-world scenarios. Other classes

of algorithm also require a detailed many-objective analysis. For example, the ε-dominance

selection-for-survival mechanism developed by Laumanns, Thiele, Deb and Zitzler (2002) is

predicted to become an increasingly popular component of EMO algorithms and is thus a

good candidate process for a study of this kind. The effect of alternative diversity promotion

mechanisms in the context of fixed population sizes should also be considered.

The problem of dominance resistance has been identified as a key concern when optimis-

ing many conflicting objectives. Parallels exist here with the problem of lethals identified

in single-objective multimodal function optimisation by Deb and Goldberg (1989). These

researchers discovered that the recombination of spatially dissimilar solutions tended to pro-

duce children that performed relatively badly in the problem domain. The authors were able

to improve the efficiency of the search by only allowing recombination to occur between par-

ents located within the same local neighbourhood. The neighbourhood size was calculated

using the same methods as those used for fitness sharing. In many-objective optimisation,

lethals can perhaps be regarded as locally non-dominated remote solutions with a highly

substandard component in one or more objectives. Thus, the incorporation of some form

of mating restriction may prove fruitful in a many-objective context. Indeed, Fonseca and

Fleming (1993) suggested such a methodology in the original MOGA.

The study of independence in many-objective optimisation only considered dependency

relationships between two objectives in each independent set. The complexity of the depen-
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dency relationships could be extended further by, for example, using concatenated problems

from the scalable DTLZ test suite. The decomposition of real-world problems should also

be considered. Furthermore, the requirement for complete separability could be relaxed to

permit weak dependencies between objectives. This may require revision of the adaptive

divide-and-conquer strategy employed, possibly importing concepts from coevolution and

other EA-based decomposition methodologies. Even if these advancements were not made,

the computational complexity of the current method may need to be reconsidered in order

to manage any high dimensionality in the objective- and decision-space under consideration.

7.4.2 General EMO Issues

Many avenues of EMO research remain under-explored. Salient issues in five key research ar-

eas — theoretical convergence, hypervolume applications, diversity promotion, incorporation

of DM preferences, and real-world considerations — are discussed below.

Convergence Analysis

The convergence properties of MOEAs have only recently received consideration in the EMO

community. These properties are important because they provide the analyst and decision-

maker with improved confidence in the ability of an MOEA to solve the task at hand.

The limit behaviour of MOEAs has been the most heavily studied form of convergence.

In this case, an MOEA should provably converge to the ‘optimal solution’ given an unlimited

number of candidate solution evaluations. If the optimal solution in EMO is defined as the set

of all Pareto optimal solutions then this property can be achieved by (i) preserving all locally

non-dominated solutions during selection-for-survival and (ii) including a variation operator

that can generate any solution in the search space with non-zero probability regardless of the

input genetic material. This latter requirement can be fulfilled through, for example, the use

of a standard mutation operator or the injection of new random solutions at each iteration

of the optimiser.

If a finite upper bound to the population size is specified, then it is not in general possible

to represent every Pareto optimal solution within the population. The upper bound may

be an arbitrary, directly defined, specific integer limit that exists independently from the

selection-for-survival processes. Alternatively, it may be an indirectly defined value that is
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intrinsic to the selection-for-survival mechanism (rather than a quantity that must simply be

respected by the process, as in the former approach). In either case, the notion of optimality

must be revised to account for an optimal distribution of solutions. Note that an acceptable

definition of such optimality has yet to be fully agreed by the EMO community.

Rudolph and Agapie (2000) developed a scheme in which new locally non-dominated

solutions could not be retained during selection-for-survival if this would cause the specific

integer limit on population size to be breached. This method ensures convergence in the

limit to Pareto optimal solutions but does not preserve a good distribution. Of all the

schemes devised for an arbitrary finite limit that do actively attempt to maintain a good

distribution, none guarantee convergence in the limit (except under special conditions) despite

much research effort in this area (Knowles and Corne 2003b).

Unfortunately, this shortcoming is more than a mere theoretical irritation. A significant

body of empirical evidence has been accumulated to show that MOEAs can suffer the problem

of partial deterioration (where current locally non-dominated solutions in the population are

dominated by solutions that have previously been discarded) as a specific result of the lack

of a convergence property (Everson et al. 2002, Laumanns, Thiele, Deb and Zitzler 2002).

However, if the upper bound on population size is specified implicitly (as a fundamental

component of selection-for-survival interacting with objective-space) then convergence in the

limit can be achieved for both proximity and (one particular definition of) distribution. This

extremely important result was achieved by Laumanns, Thiele, Deb and Zitzler (2002) using

a hyperbox selection-for-survival method based on ε-dominance.

The upper bound on the number of solution evaluations required for convergence is an

important property of optimisation algorithms. For stochastic methods, such as EAs, knowl-

edge of the expected order of magnitude of the evaluations required is desirable. Very little

information of this nature is available for MOEAs and this is one of the main sources of

criticism of the methods. Whilst noting that this criticism may be somewhat unfair since

— unlike with more classical approaches — MOEAs are generally used in problem environ-

ments that are difficult to analyse mathematically, information in this area is still valuable.

The first known analysis of expected time to convergence has recently been carried out by

Laumanns, Thiele, Zitzler, Welzl and Deb (2002) for a simple class of bi-objective problems.

Much more research is required in this field, although it should be noted that MOEAs are
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generally regarded as approximation methods: thus, they are usually expected to produce

acceptable solutions rather than globally optimal solutions (to a cost function that is itself

generally an approximation to reality).

Potential of the Hypervolume Measure

The concept of hypervolume was introduced by Zitzler (1999) in the context of performance

assessment. The hypervolume, or Lebesgue integral, of an approximation set is the volume of

objective-space that is dominated by the set. Its main application is as a unary performance

indicator and it was used in such a form in Chapter 6.

Recent work by Zitzler et al. (2003) has shown that the hypervolume metric is the most

informative (from a comparative Pareto dominance perspective) of the unary operators cur-

rently available. The minor limitations of the metric are that it is sensitive to the choice of

a reference parameter and requires objectives to be multiplied together (perhaps requiring

transformations of some types of objectives) (Knowles and Corne 2002).

Until recently, the major drawback of using the hypervolume metric was that the prevalent

algorithm employed to calculate the measure had a time complexity that was exponential

in the number of objectives (Knowles 2002). This has constrained the application of the

hypervolume metric to problems with a small number of objectives. However, Fleischer (2003)

has now developed an efficient polynomial-time algorithm that should enable widespread

uptake of the measure.

Fleischer (2003) also formally proved that the necessary and sufficient condition for all

solutions in the corresponding approximation set to be Pareto optimal is the maximisation of

hypervolume. Thus, the hypervolume measure can be used for selection purposes to advance

the search. This type of approach has already been suggested by Knowles and Corne (2003b)

for application at the selection-for-survival stage. In this method, new solutions are selected

depending on the contribution they make to the hypervolume. With the advances made in

methods to compute the measure, the appeal of approaches of this nature is strengthened.

Thus, more innovations based on the hypervolume metric are predicted.
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Diversity Promotion

The mechanisms used to promote diversity in an approximation set have arguably proved the

most problematic for EMO researchers. In addition to the difficulties such methods intro-

duce when attempting to obtain an algorithm with good theoretical convergence properties,

their effectiveness is often very sensitive to parameter settings. The majority of density es-

timators used in EMO, such as fitness sharing and nearest-neighbour variants, operate in

Euclidean space and require the aggregation of the objectives. This is undesirable, since one

of the main advantages cited for favouring EMO over classical approaches is that the use

of dominance-based comparisons prevents the requirement for any such cohesion. Diversity

enhancement mechanisms that do not require such an aggregation include the ε-dominance

approach of Laumanns, Thiele, Deb and Zitzler (2002) and methods that make use of dis-

tributed topologies such as that described by Rowe et al. (1996). Further research in this

area is required.

Incorporation of DM Preferences

Decision-maker preference data can be incorporated into EMO algorithms to provide a search

that is more efficient and produces results that are of greater relevance to the DM than those

achieved through pure Pareto optimality. Despite these advantages, little research effort has

been devoted to the incorporation of such methods within MOEAs. This is likely to be be-

cause most EMO research has only considered bi-objective problems in which the benefits

of preference articulation are less apparent. However several excellent preference schemes do

exist for EMO, of which Fonseca and Fleming’s (1998b) goal and priority method and Todd

and Sen’s (1999) neural network scheme are particularly notable. The former provides a rig-

orously defined unification of many OR schemes in the literature using a modified dominance

relation, whilst the latter attempts to automate DM preferences via machine learning.

Despite these, and similar, methods the sophistication of DM preference exploitation in

EMO remains low. Essential research is required, perhaps borrowing techniques from the

wider MCDM field, into (i) the facilitation of multiple DM entities organised in a hierarchy

and (ii) methods for handling uncertain preference data.
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Real-World Considerations

The immediate concerns of the analyst developing a solution to a real-world problem can

be summarised as the speed (in real-time) within which the optimiser can produce results

and the confidence that the analyst has in those results. A brief discussion of these issues

completes the future perspectives offered in the thesis.

• Speed. Whilst the computational complexity of some MOEA operations may be larger

than desired, the main resource-related factor that is likely to trouble the analyst is

the amount of (real) time required to perform a candidate solution evaluation. Whilst

it is tempting to speculate that these concerns will be remedied by the ever increasing

power-to-cost ratio of computer hardware, more innovative and immediate solutions

can be sought elsewhere. Note also that techniques such as parallel processing have

for many years been cited, correctly, as being of benefit to EAs (for example, the

farmer-worker approach to conducting evaluations) but their use continues to remain

the exception rather than the rule. Advances in metamodelling are predicted, both

in the type of approximate models used and the way in which they are integrated

within the holistic optimisation process. The enhanced efficiency benefits of memetic

algorithms (metaheuristics combined with local search methods) are also likely to be

evident. Techniques and heuristics extracted from competent EA theory will also have

a more prominent role in improving MOEA efficiency.

• Confidence. The key to building confidence in the ability of an MOEA to produce

good solutions to a particular problem is to obtain knowledge of how MOEA compo-

nents perform in similar problem environments. This knowledge may be theoretical

upper bounds on the number of evaluations required for convergence or, and perhaps

more likely, it may be previous experience gained from empirical studies on similar prob-

lems. The incorporation of elements from Goldberg’s (2002) competent EA methodol-

ogy should also help to improve the confidence of both the analyst and decision-maker

in the performance of a prospective EMO application.



Appendix A

ZDT Benchmark Suite

Introduction

The bi-objective problems in the suite proposed by Zitzler et al. (2000) are of the following

form:

min. z1(x),

min. z2(x) = g(x)h (z1(x), g(x)) ,

w.r.t. x = [x1, . . . , xn] .



















(A.1)

The functions z1(x), g(x), and h (z1(x), g(x)), together with ancillary functions and the

decision vector x, are defined for each particular problem below:

ZDT-1

The equations for ZDT-1 are shown in Equation A.2, where n = 30 is the number of decision

variables, x ∈ [0 1]n.

z1(x) = x1

g(x) = 1 + 9
n−1

∑n
i=2 xi

h(z1, g) = 1 −
√

z1
g



















(A.2)
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ZDT-2

The equations for ZDT-2 are shown in Equation A.3, where n = 30 is the number of decision

variables, x ∈ [0 1]n.

z1(x) = x1

g(x) = 1 + 9
n−1

∑n
i=2 xi

h(z1, g) = 1 −
(

z1
g

)



















(A.3)

ZDT-3

The equations for ZDT-3 are shown in Equation A.4, where n = 30 is the number of decision

variables, x ∈ [0 1]n.

z1(x) = x1

g(x) = 1 + 9
n−1

∑n
i=2 xi

h(z1, g) = 1 −
√

z1
g −

(

z1
g

)

sin(10πz1)



















(A.4)

ZDT-4

The equations for ZDT-4 are shown in Equation A.5, where n = 10 is the number of decision

variables. x1 ∈ [0 1] and x2,...,n ∈ [−5 5].

z1(x) = x1

g(x) = 1 + 10(n − 1) +
∑n

i=2

(

x2
i − 10 cos(4πxi)

)

h(z1, g) = 1 −
√

z1
g



















(A.5)
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ZDT-5

The equations for ZDT-5 are shown in Equation A.6, where n = 11 is the number of decision

variables. x1 ∈ {0, 1}30 and x2,...,n ∈ {0, 1}5.

z1(x) = 1 + u(x1)

u(x1) =
∑5

k=1 (xi(k) ∧ 1)

g(x) =
∑n

i=2 v (u(xi))

v (u(xi)) =







2 + u(xi) if u(xi) < 5

1 if u(xi) = 5

h(z1, g) = 1
z1























































(A.6)

ZDT-6

The equations for ZDT-6 are shown in Equation A.7, where n = 10 is the number of decision

variables, x ∈ [0 1]n.

z1(x) = 1 − e−4x1 sin6(6πx1)

g(x) = 1 + 9 ((
∑n

i=2 xi) /9)
1

4

h(z1, g) = 1 −
(

z1
g

)



















(A.7)
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