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Abstract. This paper presents a methodology to generate representa-
tions for isolated handwritten symbols, modeled as a multi-objective op-
timization problem. We detail the methodology, coding domain knowl-
edge into a genetic based representation. With the help of a model on
the domain of handwritten digits, we verify the problematic issues and
propose a hybrid optimization algorithm, adapted to needs of this prob-
lem. A set of tests validates the optimization algorithm and parameter
settings in the model’s context. The results are encouraging, as the op-
timized solutions outperform the human expert approach on a known
problem.

1 Introduction

Image-based pattern recognition (PR) systems require that pixel information
be first transformed into an abstract representation suitable for recognition, a
process called feature extraction [1]. A methodology that extracts features for
PR must select the most appropriate transformations and determine the spatial
location of their application on the image. Related to the feature extraction
process is the feature subset selection (FSS) operation [2]. FSS further refines the
extraction process by selecting the most relevant features, within the extracted
feature set, in order to reduce classifier’s computation effort in the classification
stage and improve recognition rate. A comparison of FSS methods in [3] indicates
that genetic algorithm (GA) based approach performs better than traditional
methods when the problem size is large (more than 50 features). In the context
of isolated handwritten digits, Oliveira et al. applied a GA based FSS [4] to
optimize classifier accuracy and feature set cardinality using a weighted vector.
They postulated that a multi-objective genetic algorithm (MOGA) could further
enhance the obtained results. Their postulate was later confirmed in [5], where
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MOGA outperformed GA on the same problem. The superiority of MOGA in
FSS is also confirmed by Emmanouilidis et al. using sonar and ionosphere data
[6].

It is now understood that the advantage of MOGA lies in the inherent di-
versity of the optimized solution set, avoiding the population convergence to a
single local optimum. However, the application of MOGA in FSS also faces a
number of difficulties. In essence, classifier training is based on a finite set of
labeled observations — the training set. The classifier may perform differently
when presented to unknown observations, i.e., data not in the training set. This
behavior is verified in [5] where the feature set optimized by a MOGA produces
a recognition rate that is different for the optimization set compared to a set of
unknown observations. This behavior can be explained by the fact that the input
domain used in the MOGA optimization process does not match the one used
in the classification stage of the recognition process. Thus, the corresponding
objective spaces are also non matching because the same classifier is used in the
optimization and the classification stages. Another difficulty arises when two or
more feature sets sharing similar elements exist in the MOGA population. In
the context of FSS, similar feature sets should yield comparable performances
for a given classifier. If these feature sets also possess the same cardinality then
the genetic selection operator is likely to emphasize the one with the highest
recognition rate. Since the FSS problem has non matching objective spaces, the
selected feature set may not perform adequately in the classification of unknown
observations. Furthermore, the genetic selection operation is complicated by the
dominance principle used in most Pareto-based MOGAs. The primary aim of
the FSS operation is to reduce feature set cardinality while maintaining the
highest possible recognition rate. This implies a mixed-integer objective space
and standard dominance relationship can not be implemented directly. Due to
the existence of the L; norm, special steps must be taken in order to ensure
diversity on the Pareto-front. Finally, due to the non matching input domains
and objective spaces, a non dominated feature set in the optimization stage is
not necessarily non dominated in the classification stage.

Considering these aspects, we propose in Sect. 2 a methodology for feature
extraction of isolated handwritten symbols formulated as an evolutionary multi-
objective optimization problem (MOOP), supported by earlier experiments in
[7]. Section 3 analyze the MOOP and verify the issues discussed in the context of
isolated handwritten digits. Sections 4 to 6 describe an optimization algorithm
adapted to the FSS problem and present a series of tests to verify its efficiency.
Section 7 presents the conclusions.

2 The Intelligent Feature Extractor Methodology

Traditionally, human experts are responsible for the choice of the feature set. It
is most often determined by using domain knowledge on a trial and error basis.
We propose to use the domain knowledge in a methodology formulated as an
MOOP to genetically evolve a set of candidate solutions — the Intelligent Feature



Extractor (IFE) methodology. The goal of this work is to help the human expert
in defining representations (feature sets) in the context of isolated handwritten
symbols.

2.1 IFE Concepts

The IFE methodology models handwritten symbols as features extracted from
specific foci of attention on images using zoning. It is a strategy known to provide
better results in recognition than features extracted from the whole image [8]. In
the proposed IFE three operators are needed to generate representations: a zon-
ing operator to define foci of attention over images, a feature extraction operator
to apply transformations in zones, and a feature subset selection operator that
removes irrelevant features. The domain knowledge introduced by the human
expert lies in the choice of transformations for the feature extraction operator.

The operators are combined to generate a representation, as illustrated by
Fig. 1. The zoning operator defines the zoning strategy Z = {z!,...,2"}, where
24,1 < i < n is a zone in the image I and n the number of zones. The pixels
inside the zones in Z are transformed by the feature extraction operator in the
representation F' = {f1,..., f"}, where f! is the feature vector extracted from
Z'. F has the irrelevant features eliminated by the feature subset selection oper-
ator, producing the representation G = {g',...,g"}, ¢° being the feature subset
of f*.

I !
2t ! ! ‘
I Zoning operator w
Festure
; Feature subset
extraction —= F' = {f*, f*} = selection operator [ = G = {g',9°}
operator

Fig. 1. IFE hierarchical structure

Candidate solutions are represented using a hierarchical genetic coding, with
three different parts. Each part of the genetic coding is related to an IFE oper-
ator, as shown in Fig. 2. The parts are hierarchical in the sense that the coding
in one part will determine the data manipulated by another. After optimization
the result is a set of representations. The human expert can either select the
representation with the highest accuracy, or use the result set to optimize an
ensemble of classifiers (EoC) [9] for improved accuracy.
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Fig. 2. IFE candidate solution coding

2.2 Dividers Zoning Operator

To compare the IFE against the traditional human expert approach we consider
a baseline representation known to achieve high accuracy with isolated hand-
written digits [10]. The zoning on this representation can be defined as a set
of three dividers, where the intersection of image borders and dividers defines
zones as 4-sided polygons. Here we expand this concept into a set of 5 horizontal
and 5 vertical dividers that can be either active or inactive. Figure 3 details the
operator template, represented by a 10 bits binary string, each bit associated to
a divider. This operator produces zoning strategies with 1 to 36 zones, and the
baseline zoning in [10] can be obtained by setting d2, d¢ and dg active.
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Fig. 3. Dividers zoning operator

2.3 Feature Extraction Operator

In [10], Oliveira et al. used a mixture of concavities, contour and surface trans-
formations, extracting 22 features per zone — 13 for concavities, 8 for contour
and 1 for surface. We consider that the performance achieved on handwritten
digits supports the use of these transformations to optimize representations.
With three different transformations the operator is encoded as a three bits bi-
nary string, where each bit indicates the state of the associated transformation.
When all transformations are inactive, the zone becomes a missing part [11], a
zone with no features extracted.

2.4 Feature Subset Selection Operator

The feature subset selection operator selects the most relevant features in the fea-
ture vector F' = {f!,..., f*}, creating a final representation G = {g',...,¢"}.



This task is performed with a binary string associated to each feature set f?,
where each bit indicates if the associated feature in f? is active or not. Thus a 22
bits binary string is required to encode the feature extraction operator described
in the previous section.

3 IFE Model

To verify the issues discussed in Sect. 1 we created a model, based on the dividers
zoning operator with all 22 features extracted from each zone. In this model, only
the dividers zoning operator is active, while the feature extraction and feature
subset selection operators have fixed values — to extract all features from all
zones. We calculated the entire objective space, evaluating the representations
discriminative power on a wrapper approach [2] using actual classifier perfor-
mance. We used the projection distance (PD) classifier [12], with the databases
of digits in Table 1 to calculate representations error rate. The disjoint databases
are extracted from the NIST SD19 database, a widely used database of isolated
handwritten symbols, using the digits data sets hsf-0123 and hsf-7. In this ob-
jective space, we minimize both the feature set cardinality and the error rate.

To train the PD classifier we use the learn database as the learning examples,
and the walidation database to configure classifier parameters during learning.
The error rate during the IFE optimization is calculated with the trained clas-
sifier on the optimization database. In order to verify the generalization power
of solutions optimized by the IFE, we use the selection and test databases to
compare the error rates on unknown observations.

Table 1. Handwritten digits databases

Database | Size | Origin | Sample range
learn 50000|hsf_0123 1 to 50000
validation (15000|/hsf_0123|150001 to 165000
optimization|15000|hsf_ 0123165001 to 180000
selection |15000|hsf_0123{180001 to 195000
test 60089 hsf.7 1 to 60089

Figure 4 partially details the error rates of solutions using the model’s pre-
calculated objective space. Solutions A and C are dominated by solution B on
the optimization database objective space — Fig. 4.a. In this context, solution
B belong to the Pareto-optimal set. Solutions A and B have the same cardinal-
ity, but the later has lower error rate, and solution B outperforms solution C'
in both feature set cardinality and performance. Changing the context to the
selection database to evaluate the error rate in Fig. 4.b, we have that solution B
is dominated by solution A, and that solution C' becomes non-dominated. Both
solutions A and C belong to the Pareto-optimal set in the selection database
context.
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Fig. 4. Objective space — PD classifier

Because of the non matching objective function spaces, it is clear that the
IFE needs a post-processing stage to analyze and select the optimized solutions
regarding the generalization power on unknown observations. Therefore we de-
fine the IFE optimization in two stages. The first stage optimizes solutions on
the optimization database objective space. The second stage analyzes solutions
archived by the optimization algorithm in the selection database objective space,
where the IFE user selects one or more solutions, based on the error rate. This
yields two requirements that must be satisfied by an MOGA algorithm for proper
optimization of the IFE methodology:

1. Optimize the best solution for each cardinality value, which we call the
decision frontier of the objective space.
2. Archive different levels of performance regarding solutions cardinality.

4 Multi-Objective Memetic Algorithm

The Multi-Objective Memetic Algorithm (MOMA) combines a traditional MOGA
with a local search (LS) algorithm, featuring modified selection and archiving
strategies suitable for the IFE methodology. The combination of MOGA with
LS is discussed in [13], and [14] demonstrates that hybrid methods outperform
methods solely based on genetic optimization in some problems.



4.1 Concepts

To store the decision frontier defined in Sect. 3, we divide the objective functions
in two categories, objective function one (01) in the integer domain, that defines
the slots of our archive, and objective function two (02), which is optimized for
each o; value. To archive different levels of performance, the slot S! is a set of
maxg solutions, associated to a possible value of 0;. For our IFE problem, o;
is the feature set cardinality and o- is the error rate.

The archive is defined as S = {S*,..., 57}, where j is the maximum number
of slots. For solution X?, 0; (X*) and 05(X?) are the solution’s values of 0; and 0s.
B(SY) = {X? € S'|0y(X?) = min(oz(x)),Vz € S'} indicates the solution X ¢ in S
with the best 0y value, while W (S!) = {X? € S|05(X) = maz(0z(x)),Vz € S'}
indicates the opposite.

The decision frontier set Ps optimized by the MOMA algorithm is defined

as Ps = lL_JJl{B(Sl)}. We indicate that solution X is admissible into slot S’ as

Xipa St = 01(X?) = o1(x € SY), then A(S!,C) = {c|c € C A c = S'} denotes
the subset of solutions in C that are admissible in S*.

To optimize the decision frontier, solutions are ranked for genetic selection
by a frontier ranking approach. In the population P, the solution set belonging

to the first rank is defined by R = lL_JJl{B (A(S!, P))}. The solution set belonging

to the second rank R? is obtained as the first rank of P\R!, and so on.

The decision frontier concept and the archive S are key elements for proper
optimization of the IFE methodology. Combined they provide means to select
solutions after optimization based on their generalization power on unknown
observations. Selecting solutions by the decision frontier allows the optimization
of solutions usually discarded by traditional Pareto based approaches. This need
is justified to avoid optimization bias as indicated in Fig. 4, where solution C'
is dominated in the IFE model optimization objective space using the optimiza-
tion database, but has better generalization power on unknown observations.
The same principle justifies the need to store different levels of performance in
the slot, solution A in Fig. 4 has better generalization power on unknown obser-
vations, but would be discarded from the archive on traditional approaches.

4.2 Algorithm Discussion

The MOMA algorithm is depicted in Fig. 5. It evolves a population P of size m,
and archives good solutions found in the slots S, which are updated at the end
of each generation. The population P is initialized in two steps. The first creates
candidate solutions with a Bernoulli distribution, while the second generates
individuals to initialize the slots. For each slot, we choose one random solution
that is admissible in the slot and insert it in the population.

During genetic optimization, individuals in the current generation P; are
subjected to frontier ranking. Next a mating pool M is created by tournament
selection, followed by crossover and mutation to create the offspring population
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P;11. In case of a draw in the tournament selection, one of the solutions is chosen
randomly. To avoid genetic overtake, redundant individuals are mutated until
the population has no redundant individuals as in [9].

After genetic optimization solutions are further improved by a LS algorithm.
We choose the Record-to-Record Travel (RRT) algorithm [15], an annealing based
heuristic. The RRT algorithm improves solutions by searching in its neighbor-
hood for n potential solutions during NT iterations, allowing a decrease in the
current performance of a% to avoid local optimal solutions.

Neighbors to solution X? must have the same feature set cardinality and
similar structure, which is achieved in the IFE model by modifying the zon-
ing operator encoding. The model defined in Sect. 3 has all features extracted
from all zones, and the feature extraction and feature subset selection oper-
ators are fixed. With the zoning operator dividers distributed in two groups,
91 = {do,d1,d2,ds3,ds} and go = {d5,ds,d7,ds,dg}, to generate a neighbor we
select a group to activate one divider and deactivate another. The solution in
Fig. 6.a has solutions in Figs. 6.b and 6.c as two possible neighbors.

After the LS, the archive S is updated, storing good solutions from P;;
in the slots as in Algorithm 1. Recall that mazg is the maximum number of
solutions a slot can hold. At this point, we verify the stopping criterion, deciding
if the algorithm should continue to the next iteration or stop the optimization
process.

5 Experimental Protocol

To test the MOMA algorithm, we conducted three tests on the IFE model’s
objective space, optimizing only the IFE zoning operator, while keeping the
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Fig. 6. Solution (a) and two neighbors (b and c¢)

forall z‘ € P do
Determines the slot S solution z* relates to;
if E(z®) < E(W(S")) and z* ¢ S' then
st=5'u {z'};
if |S'| > maz g then
St = S"\{W(SH};
end
end

end
Algorithm 1: Update slot algorithm

remaining operators fixed to extract all 22 features from each zone. All tests used
the learn and validation databases to train the PD classifier, and the optimization
database to evaluate the error rate during the optimization process. The first
test verifies that the genetic optimization has convergence properties in this
type of problem. We achieve this by disabling the RRT algorithm with NI = 0.
The second test evaluates the MOMA algorithm with a neighborhood subset
best improvement strategy, while the third test uses a greedy first improvement
strategy, where n = 1 and a = 0%. We call these tests as Test A, Test B and
Test C, respectively.

The usual genetic operators for the IFE are the hierarchical single point
crossover, where the single point crossover is performed independently over each
IFE operator in the chromosome with probability p., and the hierarchical bitwise
mutation, which also performs the bitwise mutation independently over each
IFE operator in the chromosome with probability p,, = 1/L, where L is the
length in bits of the encoded operator being mutated. For the IFE model, genetic
operations are restricted to the zoning operator, in order to extract all features
from each zone.

We defined a set of values for each algorithmic parameter, using a fractional
design approach [16] to obtain the 18 configuration sets in Table 2. During Test
A and Test C, we replace columns in this table with specific values to achieve
the desired effects.

Each configuration set is subjected to 30 runs of 500 generations in each test,
and comparisons are made at the generation of convergence. One run is said to



Table 2. Parameter values

#m| pe |pm | a [n|NI #Im| pc |pm | a [n|NI
1(32|70%|1/L|5%|2| 7 10|64|70%|1/L|5%|2| 7
2(32|70%|1/L|5%|3| 5 11|64|70%|1/L|5%|3| 5
3132|70%|1/L|5%|4| 3 12|64|70%|1/L|5%|4| 3
1]32[80%|1/L[a%|2| 7 13(64[80%|1/L[4% 2| 7
5(32|80%|1/L|4%|3| 5 14|64|80%|1/L|4%|3| 5
6(32|80%|1/L|4%|4| 3 15(64|80%|1/L|4%|4| 3
7132[90%|1/L[2%|2| 7 16[64[00%|1/L[2% 2| 7
8132|90%|1/L|2%|3| 5 17|64|90%|1/L|2%|3| 5
9(32|90%|1/L|2%|4| 3 18(64|90%|1/L|2%|4| 3

have converged when the optimized decision frontier set Ps can no longer be
improved. Preliminary experiments indicated that 500 generations far exceed
the number of generations required to converge Test A, our worst case scenario.
Thus the following metrics are used to compare runs:

1. Unique individual evaluations — how many unique individuals have been eval-
uated until the algorithm convergence, which relates to the computational
effort.

2. Coverage by the global optimal set — percentage of individuals in Pg that are
covered by solutions in the global optimal set [17], adapted to the decision
frontier context. When Pg converges to the optimal set, the coverage is equal
to zero.

Both metrics are fair as they hold the same meaning for all three tests. A final
test evaluates representations optimized by the MOMA algorithm in the IFE
model. We select a result set S, evaluate the error rate of these solutions with
the selection database and calculate the decision frontier Ps. From this decision
frontier we select a set of solutions for testing to compare with the baseline
representation.

6 Results

The results for the MOMA tests are presented in Figs. 7 to 9. The horizontal axis
on the plots relate to configuration sets in Table 2. Experiments 1 to 9 represent
a smaller population — 32 individuals, while experiments 10 to 18 represent a
larger population — 64 individuals. The box plots summarize the values attained
in the 30 runs of each configuration set.

The results for Test A in Fig. 7.a indicate the convergence property of genetic
operations alone, which is capable to optimize an approximation to the global
optimal. The best coverage values where achieved by the larger population, which
also explored better the objective space. The exploratory aspect is measured as
the number of unique individual evaluations in Fig. 7.b.
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To improve convergence and the objective space exploration, we use in Test
B the complete MOMA algorithm. The RRT algorithm improved convergence
and all runs but a few outliers in the smaller population converged to the op-
timal set. Objective space exploration in Test B is improved, as the number of
unique individual evaluations in Fig. 8 is higher than in Test A — Fig. 7.b. This
improvement reflects in the convergence toward the global optimal set, which is
better than in Test A. The LS helps to improve convergence when searching for
better solutions, which may also helps the genetic algorithm to better explore
the objective space.
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Fig. 8. Unique individual evaluations — Test B

In the IFE we are concerned with the error rate evaluation cost. Thus, it is
desirable to restrain the number of unique individual evaluations by reducing
the strength of the LS. Test C' modifies the RRT algorithm behavior, using a
greedy first improvement strategy. The convergence is similar to Test B — all runs
but a few outliers converged to the optimal set. However, the number of unique
individual evaluations in Fig. 9 is lower than in Fig. 8, which suggests that this
improvement strategy is more suitable for the IFE problem optimization.

These results demonstrate the effectiveness of the MOMA algorithm with the
IFE methodology, reaching solutions that traditional MOGA approaches could
not. For better convergence with lower number of unique individual evaluations,
the LS with the greedy first improvement strategy is most appropriate. As for



900r
.
- | .
goof 1 T T | T
b ! L R [ [ :
: N B by ’ _ -
700t R g T
» \ ! | by !
S | TH L |
T 6001 g .
2 !
© b ‘ I
Li L | | | |
5001 | b N oo
L : [ - ) | Lo L
LT : Lo Ll : ! : 1
4001 ! 1 L I
‘ 1
|
300, . o,
123456 7 8 9101112131415161718

Experiment

Fig. 9. Unique individual evaluations — Test C

the configuration parameters, configuration set 15 in Table 2 modified for the
greedy improvement strategy (n = 1 and a = 0%) is a good trade-off between
convergence and number of unique individual evaluations.

Our final test evaluates a set of solutions optimized by the MOMA algorithm
in the IFE model. We selected a random run from Test C and evaluated the error
rate of solutions in S with the selection database. Then we arbitrarily selected
solutions a to g from the decision frontier Pg calculated with the error rates
on the selection database, as discussed in Sect. 3. Finally we tested the selected
solutions with the test database to compare with the baseline representation.
The results are presented in Table 3, where the baseline representation was also
trained and evaluated with the PD classifier using the same database set. The
table details the feature set cardinality, the binary string associated to the zoning
operator and the error rate in three databases, optimization, selection and test
— €opt €sel and egest, respectively.

The results in Table 3 demonstrate that the IFE methodology is able to opti-
mize and select solutions that outperform the traditional human expert approach
in the domain of unknown observations — the test database. Representation g’s
error rate is 26.33% lower than the baseline on the test database, which justifies
the IFE methodology for actual applications. As the model is a subset of the
complete methodology, future experiments with the complete IFE methodology
are expected to achieve at least this performance level.



Table 3. Representations comparison

Representation|features|zoning operator| eop: €sel Ctest
Baseline 132 00100 01010 [3.527%|3.010%2.959%
110 00000 01111 [3.587%|3.053%3.272%
132 00000 11111 [3.260%|2.987%2.930%
176 00010 01101 [3.153%|2.980%2.981%
198 01010 01101 [3.273%|2.993%2.521%
220 00100 01111 [2.733%|2.460%2.438%
264 01100 01110 |2.647%|2.460%2.568%
330 00110 01111 [2.740%(2.307%2.180%

ESH A NECHESH RN RS BS)

7 Conclusions

This paper presented and assessed the IFE methodology in the context of a
model, generating representations for isolated handwritten digits that outper-
form the human expert approach. These representations where optimized with
the proposed MOMA algorithm, an hybrid MOGA approach adapted to the
objective space of the IFE problem.

The IFE model demonstrated that the objective space during optimization
and the objective space with a set of unknown observations are non matching,
which is also verified in the literature on MOGA based FSS. We attribute this to
the supervised learning stage, based on a finite set of examples, hence the same
behavior is expected in similar optimization problems.
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