Noninferior solutions for the extended 0/1 multiobjective knapsack problem presented in Zitzler & Thiele (1999): [Zitzler, E., and Thiele, L., (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach, IEEE Transactions on Evolutionary Computation, 3(4), pp. 257-271] This file contains solutions obtained using: 1) CPLEX solution to the mixed integer programming (MIP) model 2) CMEA-Constrained Method-based Evolutionary Algorithm 3) NSTEA-Noninferior Surface tracing Evolutionary Algorithm [if you have questions, contact Ranji Ranjithan at ranji@eos.ncsu.edu] ====CPLEX/MIP Solution==== Noninferior set obtained by solving the mixed interger programming formulation using the CPLEX solver Z1 Z2 [Z1 & Z2 are defined in Chetan (2000) and Ranjithan et al. (2001)] 20093 16369 20094 16315 20094 16315 20089 16515 20039 17000 19880 17500 19643 18001 19440 18500 18975 19001 18612 19500 17852 20001 17647 20100 17391 20201 17075 20300 16672 20403 16390 20450 16181 20475 15801 20490 ====CMEA Solution==== Noninferior set obtained using CMEA-Constrained Method-based Evolutionary Algorithm [Ranjithan, S. S. K. Chetan, H. K. Dakshina (2001), "Constrained Method-based Evolutionary Algorithm (CMEA) for Multiobjective Optimization," In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello, David W. Corne (Eds.), Evolutionary Multi-Criteria Optimization EMO'01, Zurich, Switzerland, March 2001, Lecture Notes in Computer Science (LNCS) Vol. 1993, pp. 299-313, Springer-Verlag, Berlin, 2001] Z1 Z2 19229 17953 19128 18079 19108 18139 19091 18194 19009 18295 18842 18485 18685 18555 18639 18621 18509 18846 18480 18892 18359 18896 18280 18944 18250 18992 18134 19187 18115 19235 17997 19253 17861 19278 17817 19281 17758 19309 17696 19403 17438 19500 17360 19588 17321 19638 17271 19654 17190 19655 17063 19728 16810 19750 16797 19766 16735 19769 16703 19813 15896 19884 ====NSTEA Solution==== Noninferior set obtained using NSTEA-Noninferior Surface Tracing Evolutionary Algorithm for Multiobjective Optimization [Chetan, S. K. (2000), MS Thesis, North Carolina State University, Raleigh, NC] [Chetan, S. K. and S. Ranjithan, Evolutionary Computation (under review)] Z1 Z2 15882 20251 15882 20251 15882 20251 15882 20251 15882 20251 15882 20251 15882 20251 15882 20251 15845 20259 15866 20257 15866 20257 16006 20251 16006 20251 16006 20251 16006 20251 16006 20251 16006 20251 16006 20251 16006 20251 16006 20251 16006 20251 16006 20251 16006 20251 16006 20251 16006 20251 16006 20251 16001 20248 16001 20248 16001 20248 16001 20248 16001 20248 16001 20248 16001 20248 16001 20248 16001 20248 16001 20248 16001 20248 16001 20248 16001 20248 16001 20248 16001 20248 16369 20199 16636 20116 17017 19958 17054 19933 17020 19966 17116 19945 17232 19922 17232 19922 17232 19922 17638 19575 17638 19575 17638 19575 17638 19575 17651 19572 17651 19572 17666 19592 17666 19592 17906 19360 17914 19349 18118 19310 18253 19234 18342 19100 18342 19100 18342 19100 18515 18936 18515 18936 18558 18860 18742 18660 18742 18660 18805 18559 18805 18559 18805 18559 18805 18559 18805 18559 18805 18559 18805 18559 18920 18395 18954 18342 19219 17957 19198 18041 19198 18041 19286 17956 19286 17956 19286 17956 19286 17956 19343 17783 19343 17783 19363 17724 19386 17579 19418 17620 19436 17456 19436 17456 19436 17456 19436 17456 19436 17456 19436 17456 19540 17258 19575 16788 19585 16623