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Optimization of a venturi scrubber was carried out using a nondominated sorting genetic
algorithm (NSGA). Two objective functions, namely, (a) maximization of the overall collection
efficiency ηo and (b) minimization of the pressure drop ∆p, were used in this study. Three decision
variables, the liquid-gas flow ratio L/G, the gas velocity in the throat Vgth, and the aspect ratio
Z were used. Optimal design curves (nondominated Pareto sets) were obtained for a pilot-scale
scrubber. Values of the decision variables corresponding to optimum conditions on the Pareto
set were obtained. It was found that the L/G ratio is a key decision variable that determines the
uniformity of liquid distribution and the best values of L/G and Z are about 1.0 × 10-3 and 2.5,
respectively. In addition, Vgth was found to vary from about 40 to 100 m/s as the optimal ηo on
the Pareto increased (as did ∆p) from about 0.6 to 0.98. The effect of adding a fourth decision
variable, the throat length Lo, was also studied. It was found that this leads to slightly lower
pressure drops for the same collection efficiency than obtained with three decision variables.
An optimum length correlation for the throat of the venturi scrubber was obtained as a function
of operating conditions. This study illustrates the applicability of NSGAs in solving multiobjective
optimization problems involving gas-solid separations.

Introduction

Venturi scrubbers (Figure 1) have been used exten-
sively throughout the second half of this century as a
major gas-cleaning device for the control of fine par-
ticulates from industrial exhausts. Their advantages
include lower initial costs for comparable collection, low
space requirements, the absence of internal moving
parts, and the ability to handle wet and corrosive gases.
Large power requirements for their operation are the
main drawback. Although venturi scrubbers have been
designed to operate under optimal conditions, a sys-
tematic approach for optimal design is lacking. How-
ever, with the use of excellent mathematical models
describing the operation of the scrubber in conjunction
with modern tools of optimization, one could produce
the best possible designs. In this work, the methodology
for obtaining the “best” designs for venturi scrubbers,
which optimize (maximize or minimize) several perfor-
mance criteria (objective functions) simultaneously,
using a simple but robust AI-based technique (genetic
algorithm, GA) is described.

Models for Efficiency and Pressure Drop
Predictions

The success of any optimization process depends on
the accuracy of the models used. Several attempts have
been made in the past to calculate scrubber efficiency
theoretically but with moderate success. The efficiency
models of Calvert,1 Calvert et al.,2 Boll,3 Placek and
Peters,4,5 and Cooper and Leith6 assume complete
utilization and uniform distribution of the scrubbing
liquid with a varying or average drop size distribution.
These one-dimensional models, in general, overpredict

the collection efficiency of the particles. This is due to
the nonuniform distribution of the liquid and its incom-
plete utilization because the liquid film on the walls does
not participate in the collection process. Azzopardi and
Govan7 accounted for entrainment and the deposition
of drops at the wall with reasonable accuracy. Recent
models on the collection efficiency of scrubbers have
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Figure 1. Schematic diagram of a venturi scrubber. Dimensions
(cm) as in Ananthanarayanan and Viswanathan.9
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attempted to address the nonuniformity in drop distri-
bution in the throat. Viswanathan8 proposed a two-
dimensional model that is generally adequate for de-
scribing the nonuniform flux distribution within the
scrubber. Further refinements were made by Anantha-
narayanan and Viswanathan9,10 for the above model
with empirical correlations to calculate film flow.

The other important performance characteristic of a
venturi scrubber is the pressure drop because it has a
direct bearing on the operating cost. Numerous models
are available in the open literature for calculating the
pressure drop from fundamental mass- and momentum-
balance considerations, including the models developed
by Calvert,1 Calvert et al.,2 Boll,3 Azzopardi and Govan,7
Leith et al.,11 and Allen and van Santen.12 These models
differ in that they use different combinations of gas
acceleration, drop acceleration, and frictional effects,
with justifications provided. However, all of these
models assume a uniform distribution of liquid and do
not account for film flow. In addition, other effects such
as boundary-layer growth and flow separation in the
diffuser are not considered. Hence, these models, though
simple, fail to predict the pressure drop accurately over
a wide array of operating conditions. Models proposed
recently include the annular flow model of Viswanathan
et al.13 and the boundary-layer model of Azzopardi et
al.,14 which endeavor to model film flow effects and
diffuser losses, in addition to frictional and acceleration
effects. By far, these are the most comprehensive models
available for the prediction of pressure drop in venturi
scrubbers.

The main performance criteria of venturi scrubbers
include the collection efficiency and the associated
pressure drop in the scrubber. Although significant
progress has been made in developing models for the
efficiency and pressure drop, little work has been
reported on the optimization of venturi scrubbers. The
first study on their optimization was performed by Goel
and Hollands,15 who used the model of Calvert1 for the
determination of the pressure drop and efficiency. They
employed a straight-duct approach that does not con-
sider scrubber geometry to estimate the optimum drop
diameter. If the liquid is injected upstream of the throat,
then the approach requires a multiduct analysis, such
as the model of Boll,3 to determine the optimum throat
gas velocity iteratively. They assert that the throat
length is insensitive to the overall pressure drop and
hence does not affect the optimization results signifi-
cantly. This is valid if the drops have been accelerated
appreciably at the throat entrance, which can happen
only if the drops are injected upstream of the throat.
However, throat length becomes an important param-
eter in the optimization of Pease-Anthony-type ap-
plications where the liquid is injected in the throat. In
addition, charts obtained from numerical search tech-
niques that are specific to drop size prediction methods
are required to complete the optimization algorithm.
Leith and Cooper16 proposed an optimization algorithm
utilizing the model of Calvert1 with a straight-duct
approach. The Nukiyama-Tanasawa17 equation was
used for estimation of the drop size, and the method
employed involved empirical constants that are scrub-
ber-specific. Cooper and Leith6 presented an improved
approach wherein the scrubber geometry was consid-
ered and the drag applicable to drops was estimated
from the “standard curve” rather than from the Ingebo18

correlation. This one-dimensional method assumes a

uniform coverage of the throat by the drops and so does
not consider film flow in the scrubber.

The importance of the nonuniform distribution of
droplets was recognized by Haller et al.,19 when they
proposed a two-zone model including droplet-laden and
droplet-free zones. They demonstrated experimentally
that the occurrence of annular flow within the scrubber
system determines the efficiency and the pressure drop.
However, their proposed model is too simplistic to
determine the flux distribution over a wide range of
operating conditions.

The above approaches aim to optimize scrubber
performance for two important operating variables, viz.,
the liquid-to-gas ratio L/G and the gas velocity in the
throat Vgth. Certain important design parameters, such
as the throat dimensions, nozzle diameter, and liquid
injection arrangement, that can affect the liquid distri-
bution are not considered. Moreover, these approaches
use simplified models that assume a uniform liquid
distribution and do not account for film flow. Hence, the
above approaches are limited in accuracy and are
scrubber-specific. An improved optimization study must
take into account both design and operating variables
to characterize the nonuniformity of the liquid distribu-
tion and the film flow. This requires the use of realistic
models for the prediction of pressure drop and collection
efficiency. In this work, multiobjective optimization of
Pease-Anthony-type scrubbers is carried out using the
models developed by Viswanathan8 for the collection
efficiency and Viswanathan et al.13 for the pressure
drop. In this work, an optimization technique is used
for the first time in the design of a venturi scrubber.

All of the previous approaches have used conventional
simulation techniques to search for the optima. In
contrast, a genetic algorithm (GA), a nontraditional
search and optimization method introduced by Hol-
land,20 was used in this work. GA has several advan-
tages over conventional optimization techniques. The
advantages of GA over other techniques are as follows:
(1) Objective functions can be multimodal or discontinu-
ous. (2) Only information on the objective function is
required; gradient evaluation is not required. (3) A
starting solution is not needed. (4) The search is carried
out using a population of several points simultaneously,
rather than a single point, i.e., GA is a population-based
approach. (5) GA is better suited to handle problems
involving several design or operating variables (called
decision variables).

GA mimic the principles of genetics and natural
selection, according to the concept of “survival of the
fittest”, to develop search and optimization procedures.
Simple genetic algorithms (SGAs) are suitable for
optimization problems involving single-objective func-
tions.21,22 In such problems, SGAs usually give global
optima. In contrast, one might have problems that
involve multiple-objective functions, where unique op-
timal solutions might not exist. For example, one might
wish to maximize the collection efficiency and, simul-
taneously, to minimize the pressure drop for a venturi
scrubber. In such cases, a set of several equally desirable
optimal points might exist. These solutions are referred
to as Pareto sets or sets of nondominated solutions. No
point is superior to any other point in the nondominated
set, and indeed, in the absence of additional information,
any one of these points could be selected for design or
operation. The choice of a preferred solution from among
the Pareto set of points requires additional knowledge
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about the problem, information that can be intuitive and
nonquantifiable. Statistical techniques using the opin-
ions of several decision makers are often used to arrive
at the preferred solution.23 However, the Pareto set
assists in narrowing down the choices to be considered
for a decision maker and, so, is of immense importance.
Because GA is a population-based approach, it is ideally
suited for finding multiple Pareto-optimal solutions
simultaneously. A number of such algorithms are
described in a recent text.24

A conventional method for solving multiobjective
optimization problems is to use a single (scalar) objective
function, which is a weighted average of the several
objectives. Unfortunately, the solution obtained in this
case depends largely on the values of the weighting
factors used, which are not precisely known a priori.
Another drawback of the “scalarization” of several
objective functions is that some solutions might be
missed during the search.25 In contrast, the nondomi-
nated sorting genetic algorithm24,26 (NSGA) can be used
to solve problems involving vectors of several objective
functions. This technique was first developed by Srini-
vas and Deb26 to obtain optimal values of several
decision variables associated with the different points
of the Pareto set. Subsequently, Mitra et al.27 extended
this technique to solve multiobjective optimization
problems wherein the decision variables were continu-
ous functions. This enabled the solution of trajectory-
optimization problems. The study of Mitra et al.27 was
the first application of NSGAs in chemical engineering.
In the past several years, NSGAs have been used to
solve a wide variety of complex multiobjective optimiza-
tion problems of industrial interest in chemical engi-
neering.27-31 These have been reviewed recently by
Bhaskar et al.32 NSGAs have also been applied24 to
problems outside chemical engineering and, in fact, even
beyond science and engineering, e.g., in finance and
management.

In this study, an NSGA is used with two objective
functions, namely, maximization of the overall collection
efficiency and minimization of the pressure drop.

Model for the Collection Efficiency

The performance of a venturi scrubber (see Figure 1)
depends largely on the manner of liquid injection, the
drop size, the liquid flux distribution, and the initial
liquid momenta. The majority of the collection process
occurs in the throat because of the presence of a high
degree of turbulence in the region caused by the large
relative velocities between the drops and particles.
Therefore, it is important for the theoretical model to
be able to predict the flux distribution within the throat
as closely as possible. Ananthanarayanan and Viswana-
than9,10 used a simplified version of the model proposed
earlier by Viswanathan.8 It takes into account the jet
penetration length, the nonuniform distribution of liquid
drops, the initial momenta of the liquid, and the
nonuniformity in the drop size distribution at the inlet.
These researchers considered that the movement of the
drops is driven by convection in the axial direction
(x in Figure 1, the direction of the gas flow) and is due
to diffusion in the lateral direction (y in Figure 1, the
direction perpendicular to the gas flow). Particulate
collection by the droplets is due to inertial impaction of
the dust particles onto the droplets. The assumptions
of the model include a uniform drop size, a constant film
flow, no drop-drop interactions, a uniform inlet distri-

bution of particles, and no interactions between par-
ticles. An empirical correlation is used to estimate the
fraction of liquid flowing on the walls. The separation
distance between the liquid injection orifices is very
small. Hence, the variation in the drop concentration
can be assumed negligible in the z direction (Figure 1),
making the model two-dimensional.8,13 For reasons of
symmetry, only one-half of the scrubber, 0 e y e Ro, is
considered for simulation. This simplification reduces
the complexity as well as the computational time
required for simulation. The equations used for the
determination of the collection efficiency for the scrub-
ber shown in Figure 1 are presented in Table 1.9

The system chosen is axisymmetric, and hence, the
total volume chosen for simulation accounts for one
nozzle (in the z direction), the entire length of the
scrubber (x direction), and one-half of the width of the
scrubber (y direction), as shown in Figure 1. The
physical space is divided into cells of a fixed Eulerian
grid. The Lagrangian mass particles carry the fluid from
cell to cell by the sum of bulk and turbulent velocities.
To evaluate the movements of each mass particle, the
bulk velocity, eddy diffusivity, gas stream drag, and
initial liquid momenta are calculated. The jet penetra-
tion length is determined, and subsequently, the flux
distribution at any axial position is obtained by applying
a central difference formula to the two-dimensional
steady-state continuity equation for the liquid drops.
Particulate matter is introduced as uniformly distrib-
uted dust particles moving with the same velocity as
the gas stream. The particle distribution at any axial
position is then determined in a way similar to the flux
distribution. The overall collection efficiency, ηo, at the
end of the scrubber is then determined.

Model for the Pressure Drop

The pressure drop, ∆p, in this Pease-Anthony unit
is determined using the annular flow model developed
by Viswanathan et al.13 Pressure losses that occur
during the acceleration of the gas and of the liquid drops
and as a result of frictional losses are predicted. The
total pressure drop is calculated after the pressure
recovery that occurs in the diffuser is taken into account.
The overall collection efficiency and the pressure drop
are determined using the equations given in Table 1.

Formulation. The value of the eddy diffusivity, Ep,
is critical in the lateral distribution of particles because
of diffusion. Values of Ep between 10-2 and 10-3 m2/s
have been suggested for industrial dusts.33 A trial-and-
error matching of the experimental efficiency was
achieved using different values of Ep. This gave rise to
the Ep value of 10-2 m2/s that was used in this work.

Several meaningful multiobjective optimization prob-
lems can be formulated using the model equations. The
methodology used is illustrated with only two objective
functions, I1 and I2, in this work. The results for such
two-objective function problems can be described visu-
ally in a very convenient manner using two-dimensional
plots of I2 vs I1. The two objective functions are (a)
maximization of I1, the overall collection efficiency ηo,
and (b) minimization of I2, the pressure drop ∆p.

The decision variables can be identified, and their
bounds can be fixed depending on practical consider-
ations. Three decision variables were selected, namely,
the liquid-to-gas flow ratio L/G, the gas velocity at the
throat Vgth, and the aspect ratio Z [≡ Wo/(2Ro)]. The first
multiobjective function optimization problem studied
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here (referred to as problem 1) is, thus, described
mathematically by

subject to (s.t.)

In this problem, dust having a log-normal distribution

Table 1. Model Equations

Collection Efficiency (Ananthanarayanan and Viswanathan9)
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of sizes [mass median diameter (MMD) ) 5.0 µm, σg )
1.5] is used in the venturi scrubber. An optimal value
for L/G obtained earlier9 for this problem using one
decision variable at a time is 1.2 × 10-3. Accordingly,
the values 0.5 × 10-3 and 2.0 × 10-3 m3 of liquid/m3 of
air were chosen as the bounds for L/G. Bounds for the
gas velocity Vgth and the aspect ratio Z were determined
based on industrial practice. In this work, the throat
gas velocities ranged between 20 and 110 m/s. The value
of the aspect ratio, Z, used by Ananthanarayanan and
Viswanathan9 in their comparison with a pilot venturi
unit was 2.0. A range of 0.5-2.5 was chosen for the
aspect ratio in this study. The bounds used for the three
decision variables in this problem are, thus, summarized
as

All other dimensions of the venturi scrubber are the
same as assumed by Ananthanarayanan and Viswan-
athan and are given in Figure 1.

In the present study, only three decision variables are
used for optimization. Some of the other decision
variables that could be used include the length of the
diffuser following the throat and its angle. However,
models for the determination of the overall collection
efficiency in the presence of a diffuser have not yet been
developed. Hence, these decision variables are not
considered in this study.

The decision variables that lead to an increase in the
overall collection efficiency in a venturi scrubber might
produce a simultaneous undesirable increase in the
pressure drop. Similarly, decision variables that lead
to a minimization of the pressure drop might lead to
lower collection efficiencies in the scrubber. Thus, the
two objective functions in eq 1 are conflicting in nature
and would, most likely, lead to a Pareto set of optimal
solutions. Paretos are, indeed, obtained, as borne out
by our results presented later.

Although an NSGA can be used directly to handle the
maximization-minimization problem described in eq 1,
we have converted the maximization of the first objec-
tive into a minimization using the common procedure.22

Max I1 w Min F1, where F1 is referred to as a fitness
function. We, thus, have the following equivalent two-
objective optimization problem to solve

s.t.

Additional constraints can also be incorporated in the
multiobjective optimization problem. For example, a
constraint can be imposed such that the collection
efficiency is never below 75%. Similarly, a constraint
can be imposed such that the pressure drop never
exceeds 5000 Pa. One technique of imposing constraints
on the objective functions is to use a (large) penalty
function Pe (the value used here, somewhat arbitrarily,

is 1 × 105). If one wishes to limit the pressure drop to
lie below 5000 Pa, the arbitrarily large number Pe can
be added to both the fitness functions F1 and F2 in eq 3
for all of the chromosomes violating this requirement.
This ensures that such chromosomes become unfit and
die out almost instantaneously (referred to as instant
killing). It should be mentioned that other techniques
do exist that could be used to ensure that the constraints
on the objective functions are met. One that is particu-
larly useful,24 at least for NSGAs, is by modifying the
definition of dominance in the NSGA. However, we have
used the penalty function approach in this work because
it is conceptually simple and has been demonstrated29,32

to work quite well.

Results and Discussion

The multiobjective optimization problem described in
eqs 1 and 3 (and referred to hereafter as problem 1) was
solved on a Cray J916 computer. The CPU time required
to obtain one set of Paretos was about 1.2 s. A nondomi-
nated sorting genetic algorithm26 was used to obtain the
solutions. The values of several of the computational
parameters used, as well as the other variables and
parameters describing the venturi scrubber, are given
in Table 2. The physical dimensions of the venturi
scrubber studied here9 are given in Figure 1. The
computer code has been tested on a few simple two-
objective function problems described by Deb,22 as well
as on several more complex multiobjective optimization
problems.27-31

The results of problem 1 are shown in Figure 2 (filled
circles and squares). A plot of ηï vs ∆p is shown in
Figure 2a. This plot has the characteristics of a Pareto
set, wherein an improvement (increase) in ηï is ac-
companied by a worsening (increase) of ∆p. Plots of the
three decision variables corresponding to the different
points on the Pareto set are shown in Figure 2b-d. It
is observed that the gas velocity at the throat, Vgth,
varies along the points on the Pareto. The values of L/G

Table 2. Parameters Used

computational parameter value

maximum number of generations, maxgen 80
population size, Np 50
probability of crossover, pc 0.65
probability of mutation, pm 0.001
random seed 0.87619
spreading parameter, σ 0.015
sharing function, R 2
grid size (h), m 0.001

model parametera value

length of inlet, m 0.254
width of inlet, m 0.482
length of converging section, m 0.775
throat length, m 0.267
diffuser length, m 0.0
diffuser angle, ° 0.0
density of liquid, kg/m3 993.0
density of gas, kg/m3 1.1843
density of particles, kg/m3 2500
viscosity of liquid, Pa s 1.0 × 10-3

viscosity of gas, Pa s 1.8 × 10-5

peclet number 100
number of nozzles 34
MMD, µm 5
standard deviation of inlet dust, σg 1.5
Ep, m2/s 1.0 × 10-2

a Used for simulation in Ananthanarayanan and Viswanathan.9

0.5 × 10-3 e L/G e 2.0 × 10-3 m3 of liquid/m3 of air

20 e Vgth e 110 m/s

0.5 e Z e 2.5 (2)

Min F1 ≡ 1
1 + I1

(a)

Min F2 ≡ I2 (b)

all earlier constraints(eq 1c and d) (c) (3)
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that provide optimal operating conditions are found to
be almost constant, varying in a narrow range of about
(0.8-1.1) × 10-3 (Figure 2b). Similarly, the aspect ratio,
Z (Figure 2d), needs to be maintained at around 2.5.
Ananthanarayanan and Viswanathan9 defined a new
dimensionless number, called the venturi number VN
[≡ LRoZ/(Gdonj)], that characterizes the nonuniformity
in the flux distribution and the overall collection ef-
ficiency. They found that this number lies in the range
of (1.0-1.5) × 10-3 at the optimal point for an optimiza-
tion problem involving only one objective function
(maximization of the collection efficiency). The computed
values of the venturi number for the present problem
are shown in Figure 2e. The values of VN under optimal
conditions obtained using NSGA are observed to lie in
the same range of (1.0-1.3) × 10-3 earlier found by
Ananthanarayanan and Viswanathan.9

Three decision variables were used in the multiob-
jective optimization of venturi scrubbers described in
problem 1. These variables interact in a complex man-
ner, creating difficulties in interpreting the optimal
solutions. Moreover, the use of several decision variables
confers a large degree of freedom to the optimization
problem32 and could lead to numerical problems such
as premature convergence21 and scatter. Considerably
more insight is gained by solving (several) simpler
multiobjective optimization problems associated with
smaller amounts of freedom, such as problems with
fewer decision variables. Table 3 summarizes the details
of a few such simpler problems. Problem 1, in its most
general form (for which Figure 2 applies), involves three
decision variables, namely, L/G, Vgth, and Z. This is
referred to as the reference case (problem 1, case 1). The
three simpler versions of this problem are described in

Figure 2. Optimal solutions (filled circles and squares) for the reference case (problem 1, case 1; see Table 3) using three decision
variables. Unfilled circles represent the optimal solutions using the NSGA with only a single objective function (maximization of ηo), with
Ep constant, and with three decision variables. ∆p for the single objective function are computed values. Optimal values of L/G, Vgth, Z
and VN for single objective function shown in Figs. 2(b)-(e) are also computed. Filled circles indicate three points, A, B, and C, in the
Pareto for case 1 used for detailed study later.

Table 3. Simplified (and Other) Cases Studied for Problems 1 and 2

problem case L/G (× 0-3) (m3 of liq/m3 of gas) Vgth (m/s) Z objective functions figure

1 1a 0.5-2.0 20.0-110.0 0.5-2.5 ηï, ∆p 2
1 2 0.5-2.0 76.2 2.0 ηï, ∆p 3
1 3 1.2 20.0-110.0 2.0 ηï, ∆p 4
1 4 1.2 76.2 0.5-2.5 ηï, ∆p 5
2 1 0.5-2.0 20.0-110.0 0.5-2.5 ηo, ∆p 7
2 2 0.5-2.0 76.2 2.0 ηo, ∆p 8
2 3 1.2 20.0-110.0 2.0 ηo, ∆p 9
2 4 1.2 76.2 0.5-2.5 ηo, ∆p 10
1 5 0.5-2.0 20.0-110.0 0.5-2.5 ηï, ∆p

∆p e 4000 Pa
13

1 6 0.5-2.0 20.0-110.0 0.5-2.5 ηï, ∆p
0.25 e Lo e 0.65 m

14

a Reference case.
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Table 3 as problem 1, cases 2-4. Each of the latter
involves only a single decision variable. The results for
these simpler problems are shown in Figures 3-5 (filled
circles). It is interesting to observe that the Pareto set
obtained with only Z as the decision variable spans a
much smaller range of values of ηo and ∆p (Figure 5a)
than do the Paretos generated using the other decision
variables. The sharp increase in ∆p with only small
changes in ηo in Figure 5a suggests that it is best to
use values of Z of about 2.0. A comparison of Figures
3-5 indicates that when only one decision variable is
used for optimization, that particular decision variable
obviously varies along the Pareto set. In contrast, Figure
2 shows that, when all three decision variables are used
simultaneously, only one of them, viz., Vgth, varies along
the Pareto set, while the other two are somewhat
scattered about some mean values, indicating that they
are relatively insensitive in determining optimal condi-
tions. On increasing the bounds on Z to 0 e Z e 2.5,
additional points on the Pareto are obtained, as shown
in Figure 5c and d. Clearly, beyond an ηo value of about
0.6, increases in ηo are observed with almost negligible
changes in ∆p. Of course, very low values of ηo have
little use for industrial applications. Figure 5e shows
that the Pareto obtained with three decision variables
produces lower values of ∆p for a given value of ηo than
those obtained with any one decision variable, including
the one with Vgth as the sole decision variable. This
phenomenon was found to be true until the efficiency
reaches a value of 0.97. The results for case 2 (in Figure
5e) are observed to differ qualitatively from those for
the other cases, and significant gains in ηo are achieved
with only minimal increases in ∆p, until L/G becomes

about 1.2 × 10-3. This demonstrates clearly the impor-
tance of L/G in achieving optimal solutions for ηo and
∆p. When the L/G ratio is taken at this optimal value
of 1.2 × 10-3, even a relatively minor increase in Vgth
results in significant gains in ηo with small increases
in ∆p (Figure 4). An increase in Vgth at a constant L/G
ratio leads to higher values of ηo at the expense of
slightly higher pressure drops, because of the formation
of a larger number of smaller droplets.

It is well-known that the flux distribution of the liquid
droplets in the throat influences the overall collection
efficiency of the particulate solids. The normalized flux
(≡ M/Mav) distribution of the liquid, introduced as jets
through the nozzles (see Figure 1) at the beginning of
the throat, is shown as contour plots in Figure 6, for
three arbitrarily selected points, A, B, and C (indicated
by filled squares) on the Pareto set of Figure 2a. These
three points were selected so as to encompass the entire
range of the Pareto set, and correspond to values of ηo
of 60, 84, and 97% (∆p values of 1372, 2937, and 7394
Pa, respectively). At high values of Vgth, the liquid jets
emerging normal to the gas flow from the nozzles are
atomized close to the walls (low l*, eq 11, Table 1), and
the droplets penetrate all the way to the center because
of the intense turbulence. The flux distribution of the
liquid droplets in the throat then becomes quite uniform,
as shown in Figure 6c. Although the values of the flux
are relatively nonuniform at the injection point, a near-
uniform coverage of the liquid droplets is obtained at
about 75% of the throat length. The increased avail-
ability and spread of the water droplets through most
of the throat lead to increased collection of dust particles
by the droplets and, thus, to higher collection efficien-
cies. It is important to note that a value of L/G of around
1.2 × 10-3 produces a near-uniform distribution of

Figure 3. Results for problem 1, case 2, using L/G as the single
decision variable. Filled circles use two objective functions, and
unfilled circles represent results from the NSGA using a single
objective function (maximization of ηo) with Ep constant.

Figure 4. Results for problem 1, case 3, using Vgth as the single
decision variable. Other details are as in Figure 3.
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Figure 6. Normalized liquid flux (M/Mav) contours in the throat. Plots A, B, and C show the liquid distributions for points A-C in
Figure 2a.

Figure 5. (a, b) Results for problem 1, case 4, using Z as the single decision variable. Other details are as in Figure 3. (c, d) Results for
the two-objective function problem with a different bound on Z. (e) Results for all four cases of problem 1.
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droplets. An increase in Vgth at this value of L/G would
produce a greater number of finer droplets, and hence,
a higher ηo would be obtained. However, increasing Vgth
beyond a certain value would not be economical because
the pressure drop tends to get very high without much
return in ηo.

A slightly different multiobjective optimization prob-
lem is selected as problem 2. In this problem, all of the
solid particles are assumed to have the same size (5 µm).
This problem is being studied primarily to compare our
optimal solutions using optimization techniques with
those obtained by Ananthanarayanan and Viswanathan9

who used a simulation procedure and considered only
the maximization of ηï. The same bounds as in problem
1 (eq 2) for the three decision variables L/G, Vgth, and Z

are used in this study. The Pareto optimal solutions and
the corresponding values of the three decision variables
are shown in Figure 7 (filled circles) for problem 2, case
1 (see Table 3). Vgth, once again, is found to follow the
Pareto as the other two decision variables take on
almost constant values (with some scatter), as observed
in problem 1. The corresponding simpler problems
(problem 2, cases 2-4) involving two objective functions
and only a single decision variable are described in
Table 3, and the results are shown in Figures 8-10
(filled circles). Figure 10a shows that the optimal Pareto
set (for 0.5 e Z e 2.5, as in eq 2) extends over a very
narrow range of values of ηo and ∆p, somewhat akin to
what was observed in Figure 5a. On increasing the
bounds of Z to 0 and 2.5, however, several additional

Figure 7. Results for problem 2, case 1, using three decision variables. Filled circles represent results for the two-objective function
problem, and unfilled circles represent those from NSGA for a single objective function (maximization of ηo) with Ep constant.

Figure 8. Results for problem 2, case 2, using only the single decision variable L/G. Filled circles represent results for the two-objective-
function problem, and unfilled circles represent those from NSGA for a single objective function (maximization of ηo) with Ep constant.
Simulation results (computed value of ηo for any L/G) of Ananthanarayanan and Viswanathan9 are shown by solid curves. Unfilled squares
represent optimal solutions from NSGA for a single-objective-function (maximization of ηo) problem, with a correlation used for Ep.
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points on the Pareto set are obtained, as shown in
Figure 10c and d. Figure 10c shows that, beyond ηo
values of about 0.6, the Pareto shows almost no varia-
tion in ∆p with respect to changes in ηo. Hence, lower
values of ηo (and, so, of Z) are of little practical interest.

The simulation results (calculated values of ηï for
selected values of any one variable from among L/G,
Vgth, or Z) of Ananthanarayanan and Viswanathan9 are
also shown in Figures 8b-10b as curves. These re-
searchers observed a maximum value of the overall
collection efficiency ηo in all three cases (indicated by
arrows). For example, Figure 8b shows how ηï varies
with L/G (obtained by simulation), and a maximum in
ηï is observed at an L/G value of about 1.2 × 10-3.
Similar maxima in ηï are observed for the other two
variables, Vgth and Z. Because the earlier study9 con-
sidered the effect of one variable at a time to obtain the

optimal solution, the solutions obtained through the
simulation technique is of limited use. In contrast, the
present multiobjective optimization with a single deci-
sion variable leads to a Pareto set of several optimal
solutions.

The maximization of ηo alone was carried out using
the NSGA code. This is similar to the study of Anan-
thanarayanan and Viswanathan,9 who used simulations
to obtain the optimal point. It should be mentioned that
this is the only study on optimization in the open
literature with which we can compare at least some of
our results. The optimal solutions obtained are shown
in Figures 7b-e and 8b-10b as unfilled circles. (Almost)
Unique optimal points were obtained, except for some
numerical scatter associated with the use of the NSGA.
These single-objective-function solutions differ slightly
from those obtained by Ananthanarayanan and Viswana-

Figure 9. Results for problem 1, case 3, using only the single decision variable Vgth. (Notation similar to that in Figure 8.)

Figure 10. Results for problem 1, case 4, using only the single decision variable Z. (Notation similar to that in Figure 8.) Parts c and d
show results using extended bounds for Z.
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than,9 because of the assumption of a constant value of
Ep in this study. The earlier study9 used the correlation
Ep/EG ) ω2/b2 + ω2. The results obtained using the
NSGA code with this correlation provided identical
solutions, as shown by the unfilled squares in Figures
8b-10b. It is important to note that, for all single-
objective optimization results (Figures 7a-9a, 10c), the
unfilled circles or squares represent computed values
of ∆p (corresponding to the optimal values of ηï) and
that ∆p is not an objective function for these points. It
should be mentioned here that the single-objective-
function results obtained herein were computed using
the NSGA code with both the objective functions identi-
cal. The same results were also obtained using the SGA
code.22,24 The use of the NSGA code to study single-
objective-function problems, though found appropriate
for this problem, need not always be justified because
there are some additional computational steps in it that
might create numerical problems for single-objective
problems at times.

The optimal solutions obtained for problem 1, cases
1-4 (see Table 3), using a single objective function only

are shown in Figures 2-5 (unfilled circles, Ep constant).
Again, other than some numerical scatter, unique
optimal solutions are obtained. It is interesting to
observe in Figure 2a that the computed value of the
pressure drop for the single-objective-function problem
is higher than the values on the Pareto set correspond-
ing to two objective functions, and we could possibly
select better points (similar ηï but lower ∆p) using the
Pareto solutions with two objective functions. Also, the
venturi number under optimal conditions is about 1.25
× 10-3, even for the problem involving the maximization
of ηï with Ep constant.

Effects of Computational Parameters. The effects
of computational parameters on the Pareto solutions are
described here. Figure 11 shows the distribution of the
feasible solutions for different values of the generation
number, Ng. An essentially random distribution of
feasible solutions is observed in Figure 11a at the first
generation (Ng ) 1). The presence of some feasible
solutions having extremely high values of ∆p, above
about 10 kPa, is to be noted. However, by the end of
the 10th generation (Ng ) 10), these solutions have died

Figure 11. Development of the Pareto set over generations for the reference case (problem 1, case 1).
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out, and solutions having lower values of ∆p have
survived. In addition, a Pareto optimal set seems to have

emerged at this stage. Considerable scatter is present,
which dies out quite slowly (Figures 11b-f), and by

Figure 12. Effects of pc, pm, and σ on the Pareto set for the reference case (problem 1, case 1).

Figure 13. Results for problem 1, case 5.
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about the 80th generation, the Pareto seems to have
been established. Further generations do not affect the
optimal solutions much.

Figure 12 shows the effect of varying the crossover
(pc) and mutation (pm) probabilities, and the spreading
parameter σ on the final Pareto. It is observed that pc
does not have much effect (Figure 12a) on the Pareto
optimal curve. However, the same cannot be said for
the effect of the mutation probability, pm. It is observed
from Figure 12b that higher values of pm result in large
gaps in the Pareto set as well as some amount of scatter.
On the other hand, solutions obtained with lower values
of pm show scatter, particularly at high values of ηo. The
best value of this computational parameter is problem-
specific and has to be established by trial. The spreading
parameter σ determines the range covered by the Pareto
set (Figure 12c), and the best value of this parameter
also has to be obtained by trial. Unfortunately, the

choice of these parameters is problem-specific, and
hence, prior knowledge of the appropriate values is
unlikely.

Some Additional Optimization Problems. A few
more multiobjective optimization problems were also
explored. In the first example, an upper bound of 4000
Pa was incorporated on ∆p, and the corresponding
solutions are shown in Figure 13. It was found that
imposition of such a constraint simply truncates the
Pareto set of Figure 2, and all points with ∆p g 4000
Pa are eliminated. The points obtained differ slightly
because of differences in the scatter, and the Paretos
and plots of the optimal decision variables in Figures 2
and 13 superimpose quite well.

The multiobjective optimization problem in eq 1 was
also solved with four decision variables, with the length
of the throat, Lo, being the added variable. This is
referred to as problem 1, case 6 (see Table 3). The

Figure 14. (a-f, i) Optimal solutions for problem 1, case 6. Results for problem 1, case 1, are also shown in parts a-f for comparison.
(g, h) Simulation results for chromosome A (filled square in Figure 14a) for different values of the throat length. All other parameters are
the same as for chromosome A. (i) Vd/Vgth vs ηo for problem 1, case 6.
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bounds of Lo are taken as 0.25 m e Lo e 0.65 m. The
optimal solutions for this case are shown in Figure 14.
The solutions for problem 1, case 1, are also shown for
comparison. Figure 14a shows that the use of Lo as an
additional decision variable leads to higher overall
collection efficiencies at a given value of ∆p (or a lower
∆p for a given ηo) when compared to cases 1-5. Figure
14f shows that the optimal values of Lo are around
0.625-0.65 m, higher than the value of 0.267 m used
for all of the previous cases (Figure 1). An optimal value
of Lo is, indeed, expected intuitively because, at some
operating conditions, the drop velocity, Vd, becomes
almost equal to the gas velocity, Vgth. Increasing the
value of Lo beyond this point would lead to higher values
of ∆p without any further improvement in the overall
collection efficiency. To determine an optimal value of
Lo should, indeed, exist, we selected a single chromo-
some, A, in Figure 14a, and keeping all parameters the
same except Lo, we evaluated ηo and ∆p for different
values of Lo by simulation. The results are shown in
Figure 14g and h. Clearly, increasing Lo beyond about
0.6 leads to significant increases in ∆p with no improve-
ment in ηo, thus confirming the existence of an optimal
value of Lo. Figure 14i shows that the ratio Vd/Vgth is
close to unity for the Pareto-optimal solutions for case
6 (except for those having very low efficiencies). From
the data shown in Figure 14f, an optimum length of the
throat can be correlated to operating variables such as
L/G and Vgth as Lopt ) 369.56(LG)0.81/Vgth

0.217. This
length assumes the maximum efficiency obtainable at
a minimum pressure drop for various operating condi-
tions of a venturi scrubber.

Conclusions

Multiobjective optimization of a venturi scrubber was
carried out using an NSGA. A few illustrative problems
(maximization of the scrubber efficiency, minimization
of the pressure drop) were solved, and Pareto optimal
sets were obtained. Three decision variables were used
in the present study. These include two operating
parameters (viz., L/G, Vgth) and a geometrical design
variable, the aspect ratio Z. It was found that L/G
determines the uniformity of the liquid distribution
inside the scrubber, and its optimal value lies around
1.0 × 10-3 for the entire set of Pareto points. Vgth was
found to vary along the Pareto set from about 40 to 100
m/s as the optimum value of ηo on the Pareto increases
(as does ∆p) from about 0.6 to 0.98. The optimum value
of Z is about 2.5 for all of the Pareto points. In addition,
it was observed that Pareto solutions having high values
of ηo are associated with more uniform distributions of
the liquid. Several other interesting multiobjective
optimization problems were also studied to enable us
to interpret the optimal solutions physically. The Pareto
solutions obtained in this work are essentially design
curves that assist in narrowing down the choices of a
decision maker. Multiobjective optimization problems
more complex than those studied here can be solved and
interpreted in a similar manner, e.g., studies using more
complex, three-dimensional models of the venturi scrub-
ber or more complete models incorporating the effects
of diffuser design on the collection efficiency.

Nomenclature

ab ) instantaneous drop acceleration, m/s2

A ) cross-sectional flow area of the scrubber, m2

b ) 18µG/FD2

C ) concentration, number/m3

CD ) standard drag coefficient
CDN ) modified drag coefficient, CDN ) CDNRe
Cf ) core entrainment factor
do ) orifice diameter, mm
D ) diameter, m
E ) eddy diffusivity, m2/s
f ) friction factor
F ) fraction of total injected liquid flowing as film on the

scrubber walls
Fi ) mass fraction of particulate matter belonging to the

ith class
F1, F2 ) fitness functions
gb ) acceleration due to gravity, m/s2

gc ) gravitational conversion constant, kg m/(N s2)
Lo ) length of the venturi throat, mm
I1, I2 ) objective functions
l* ) jet penetration length at which the droplets form, mm
L/G ) liquid-to-gas flow ratio (L, G in m3/s)
m ) ratio of mass flow rate of liquid to mass flow rate of

gas
m* ) number of selected mean diameters describing the

particulate matter size range
M ) flux distribution of the liquid
MMD ) mass median diameter of log-normal distribution,

µm
n* ) number of selected mean diameters describing the

liquid drop size range
nj ) number of nozzles
Ng ) generation number
NRe ) Reynolds number
Qd ) liquid drop source strength, number/(m3 s)
Qf ) amount of liquid flowing as film on the wall, number/

(m3 s)
QvG ) volumetric flow rate of gas, m3/s
Qv ) volumetric flow rate of drops, m3/s
pc ) probability of crossover
pm ) probability of mutation
Pe ) penalty function
Ro ) half-width of venturi throat parallel to water injection,

mm
t ) time, s
u ) decision variable
V ) velocity, m/s
Vgth ) gas velocity at the throat, m/s
VN ) venturi number
W ) mass flow rate, kg/s
Wo ) width of venturi throat perpendicular to water

injection, mm
x, y, z ) rectangular coordinates, m
X ) core quality
Z ) aspect ratio [≡ Wo/(2Ro)]

Greek Symbols

R ) exponent controlling the sharing function
Rc ) fractional area occupied by homogeneous core
RG ) volume fraction of core occupied by gas
ø ) Martinelli parameter
∆p ) pressure drop, Pa
η ) fractional collection efficiency
ηij ) collection efficiency of particulate matter belonging

to the ith class by droplets belonging to jth class
ηï ) overall collection efficiency
µ ) fluid viscosity, kg/(m s)
F ) density, kg/m3

σ ) spreading parameter
σg ) standard deviation of log-normal distribution
æ2 ) two-phase friction multiplier
ψ ) impaction parameter, |VG - VdN|PFDF

2/9µGDd
ω ) frequency of air fluctuations, rad/s
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Subscripts

av ) average
c ) core
d ) drop
eq ) equivalent
f ) film
g, G ) gas
i ) index of decision variable
j, L ) jet or liquid
max ) maximum
ov ) overall
p ) particle/dust
th ) throat
T ) total
TP ) two-phase
x, y, z ) rectangular coordinates

Superscripts

l ) lower limit
u ) upper limit
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