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Optimization Of Densification Modeling Parameters Of Beryllium Powder Using A

Fuzzy Logic Based Multiobjective Genetic Algorithm

Brian J. Reardon, Los Alamos National Laboratory, MST-6, Los Alamos, NM 87545

Abstract

A fuzzy logic based multiobjective genetic algorithm (GA) is introduced and the

algorithm is used to optimize micromechanical densification modeling parameters for

warm isopressed beryllium powder.  In addition to optimizing the 19 main parameters

of the model with 17 objective functions (experimental data points), the GA provides a

quantitative measure of the sensitivity of the model to each parameter, estimates the

mean particle size of the powder, and determines the smoothing factors for the

transition between stage 1 and stage 2 densification.  While the GA does not provide a

sensitivity analysis in the strictest sense, and is highly stochastic in nature, this method

is reliable and reproducible in optimizing parameters given any size data set and

determining the impact on the model of slight variations in each parameter.

1.0 Introduction

1.1 Beryllium Powder Processing
Beryllium and its two most common alloys, beryllium-copper and beryllium-

aluminum have a number of interesting properties that make them extremely useful as

well as materials of intense study over the past twenty years.  These properties include
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high elastic modulus, low density, high melting point, high heat capacity, high thermal

conductivity, non-magnetic, and superior optical qualities.  Consequently, the

aerospace industry has found a use for these materials in engines [Marder (1986)],

navigational systems [Marder (1984)], and brakes [Paine and Stonehouse (1977)].

The optical field has found a use for beryllium in mirrors [Clement et al. (1992)].

Finally, the field of nuclear fusion [Marder et al. (1990)] has found numerous uses for

these materials.  Unfortunately, the cost [$350.00/lb] and potential hazards [Eisenbud

(1997); Tinkle (1997)] of beryllium powder has limited its use to situations in which it is

absolutely required.  Near net or net shape powder processing has shown to be a

viable route around these limitations [Marder (1990)].  However, further development

is needed to make the technology competitive.  Due to the expense and danger

involved in this development, computer modeling is a reasonable approach to solving

the technological problems at hand.  

One common numerical approach to solving these problems lays in the

micromechanical modeling method first introduced by Ashby [1972] and further

discussed by Artz et al. [1983].  This model assumes a random dense packing of

monosized spheres that, when subjected to heat and pressure, densify according to

the mechanisms of plastic yielding, diffusion, and creep.  The utility of such a model is

exemplified in the generation of HIP densification maps which show the density

achieved by a powder compact under specific conditions along with the corresponding

amount of grain growth and the primary densification mechanism involved.  Numerous

authors are using the micromechanical model as a guide to more efficient HIP
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processing of complex shapes [Bingert et al., 1996; Suryanarayanan et al., 1993,

1994].  

Unfortunately, there are a number of limitations to the micromechanical

modeling procedure.  The most obvious is that the quality of the model is limited to the

quality of the input data.  Another important point is that the quality of the model is not

equally influenced by all parameters and it is important to know ahead of time which

parameters are most influential as it will be these that are the greatest source of error.

Next, the sintering parameters of a powder used in published densification work may

be considerably different than those of the powder with which a researcher is working

and thus each researcher must be able to optimize the model parameters base on

their own densification data.  These differences in powders arise from differences in

surface chemistries, attrition vs. spray forming, size distributions, and morphologies.

Finally, the standard micromechanical models assume a random dense packing of

monosized spherical particles.  However, most particle size distributions are not

monosized and attritioned particles are not spherical.  Thus, in addition to optimizing

the 16 main densification parameters, the ideal particle size used in the model must

also be optimized.

There has been a significant amount of work into sensitivity analysis of input

parameters for the Ashby model [Suryanarayanan et al., 1993].  Based on the powders

studied by these authors, the most influential densification rate model parameters for

metals, are the yield stress, power law creep reference stress, the power law creep

exponent, and the boundary diffusion coefficient.  Most of the other parameters do not

significantly influence the densification rate within the temperature and pressure
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ranges typically studied.  Finally, it should be noted that most tuning of the Ashby HIP

parameters is done based on experimental densification data alone and not on grain

growth or dominate densification mechanism data, both of which can be obtained from

proper microstructural analysis.  This is an important point to consider when optimizing

parameters since different parameters may fit the densification data equally well but

will result in different dominant densification mechanisms and grain growth maps.

An improvement in the micromechanical modeling methods would result in a

better understanding of the temperature and pressure schedules needed to achieve

full density while at the same time minimizing grain growth.  This in turn would save

time, materials costs, retooling cost, finishing costs, and environment/worker exposure.

This paper presents the results of using a fuzzy logic based multiobjective genetic

algorithm to optimize the parameters of beryllium powder[Roberts, 1983].

The fuzzy logic based multiobjective GA methodology was presented

elsewhere [Reardon, 1997a, 1997b, 1998].  A brief description follows in the next

section.

The micromechanical model being used in this optimization differs from Ashby’s

HIP 6.1 in a number of ways.  The main modification being that in this optimization the

micromechanical densification rate equations as well as the grain growth rate

equations are solved numerically as a function of time.  This results in considerably

less accumulation of error than in the numerical solutions as a function of density used

by Ashby and Artz in the calculation of densification maps.  Since the solving of the

equations occurs in two fundamentally different ways between the present study and
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Ashby’s HIP6.1 (Ashby, 1987), the optimized parameters from this work will not

necessarily appear to be most optimal when inserted into HIP 6.1.

In Ashby’s micromechanical model, densification is expressed as the

instantaneous change in density due to particle yielding, ρY , and the total densification

rate, ρ̇T , which is a linear sum of the densification rates due to diffusive mechanisms,

ρ̇D , power law creep, ρ̇PLC  and Nabarro-Herring creep, ρ̇NH .  For densities less than ρ1,

which is considered to be an adjustable parameter, the densification equations are:
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where σREF  is the power law creep reference stress, n is the power law creep

exponent, Po  is the initial internal pore pressure,
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where k is Boltzman’s constant, T is temperature, γ  is surface energy, Ω  is atomic

volume,

D D
Q

RTV OV
V= −



exp  Eq.  6.

where DOV  is the volume diffusion pre-exponential factor, QV  the volume diffusion

activation energy, R is the gas constant,
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where DOB is the boundary diffusion pre-exponential factor, QB the boundary diffusion
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where TM  is the melting temperature, QC the power law creep activation energy.

For densities greater than ρ2  which is also considered to be an adjustable

parameter the densification rate equations are:
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where ρc is the critical density at which pores become closed.

 For densities falling between ρ1 and ρ2  the above equations (2-4 and 10-12) are

scaled accordingly and summed to give the total densification rate.

1.2 Nonlinear curve fitting
Generally speaking, one can formulate any optimization problem into a single

standard of measurement - a cost function or a fitness function - that determines the

performance of a decision and then recursively improves the performance by selecting

from the most feasible of alternatives.  A typical scenario in nonlinear parameter

optimization would involve minimizing the least squares difference between all the

data points of a calculated and experimental densification curve (density vs.

temperature or density vs. pressure).  In other words, to minimize the quantity:

Φ = −( )
=
∑1 2

1N Ei Ci
i

N

ρ ρ , Eq.  15.

where N is the number of data points, ρEi is an experimental data point, and ρCi the

calculated densification point.  Traditional deterministic optimization techniques

require the use of gradient or higher order statistical analysis of Φ:
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for each variable, a, being optimized.

Such an approach can only handle the optimization of one densification curve

at a time and typically does not properly account for the uncertainty that is inevitably

present in the experimental data.  To complicate matters, complete densification

curves are not always readily available.  Instead, individual density points at various

temperatures and pressures are usually the most common form of densification data.

The fuzzy logic based multiobjective GA, as described in previous papers

[Reardon], is ideally suited to overcoming these deficiencies.  First, the GA treats each

individual data point as a separate objective to which the model parameters must be

optimized and thus there is no need for smooth experimental densification curves.

Second, there is no limit to the number of objectives or parameters that can be

operated on at one time.  Third, the use of fuzzy rule sets to determine the most optimal

of parameters allows for one to incorporate experimental error.

1.3 The Genetic Algorithm

Darwinian evolution is an intrinsically robust search and optimization

procedure.  Evolved biota have optimized solutions to complex problems at every level

of organization, from the cell up to the population.  The problems that biota have

solved and continue to improve upon, are typified by chaos, chance, temporality,

nonlinearity, and multidimensionality.  Such problems have proven to be intractable to
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deterministic optimization techniques, especially in situations where heuristic solutions

are not available.

A GA falls into the much broader category of evolutionary algorithms.  These

algorithms attempt to simulate the processes of evolved biota in optimization.  The

essence of such a simulation lies in the expression of a solution to a problem not as a

single value but as a string of fundamental building blocks (genes) that can be

manipulated in much the same way as an extant species will manipulate its gene pool

through selection and mating to produce more optimal offspring for the current

environment.  For example, consider x1, which is a member of a population of feasible

solutions to a problem but not necessarily the optimal solution.  The real value of x1 is

expressed as a string of binary digits, e.g.: 101101110, that is L digits long.  This

binary string is mapped to a real value of x1 such that the string 11111111 corresponds

to xmax and 00000000 corresponds to xmin.  xmax and xmin define the upper and lower

bounds respectively of the range of x that is being searched.  The real value of x1 is

commonly referred to as a phenotype.  If a function requires the optimization of more

than one variable, f(x,y), then the total string for a specific member is formed by placing

the binary digits defining x and y back to back in one string.  For example if  x1=001100

and y1 = 110001 then the string for member #1 would be: 001100110001.  

Manipulation of these strings occurs in much the same way as extant species

manipulate chromosomes.  First, competition among members of the population

determines who is most fit or optimal.  Second, the most optimal members are allowed

to reproduce.  Reproduction involves slicing the chromosomes of two members of the

populations and then exchanging the segments:
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X̃1 and X̃2  are the resulting progeny and will be placed in the next generation.  The

actual crossover site is selected randomly with some probability, pc.  Third, mutation

occurs, which in a positively entropic system ensures genetic diversity in the

subsequent generation.  Mutation involves flipping the value of a randomly selected bit

with some probability, pm.  The new population that evolves from the selection,

crossover, and mutation operators is defined as a generation.  This cycle is repeated

for a number of generations as specified by the user.  

Multiobjective optimization using fuzzy logic can be summarized in two steps.

First, a single fitness value that incorporates the values of all the objectives is

calculated using fuzzy rule sets.  Second, two randomly selected members are

compared to a comparison set.  If one member has a fuzzy fitness value that

dominates the set and the other does not then the dominating member is selected.

Otherwise, continuously updated phenotypic niching is incorporated.  

The key to the fuzzy logic approach lays in the definition of the fitness function

and its corresponding fuzzy rules:

F
N

f fi
i

N

= ( )
=
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1

' Eq.  17.
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which is essentially an average over the N objectives in question.  f’ is a fuzzy logic

rule set that scales the objective, fi, according to how far away it is from the

experimentally optimal solution.  A typical fuzzy set  would have the form:

if f O E f f
S

f O E
f O Ei i i i

i i i
i i i≤ −( ) → ( ) =

− −( )






− −( )( )' min

min

Eq.  18a.

if O E f O E f fi i i i i i−( ) ≤ ≤ +( ) → ( ) =' 0 Eq. 18b.

if f O E f f
S

O E f
f O Ei i i i

i i i
i i i≥ +( ) → ( ) = −

+( ) −






− +( )( )' max

max

Eq.  18c.

where Oi is the ith experimental value that the ith function, fi, is being optimized

towards, Ei is the error or accepted uncertainty in Oi, Smin(max) is a scaling parameter for

values below (above) the accepted value, fimin(imax) is the smallest (largest) value of all

the ith objectives in the population.

1.4 Defining the upper and lower bounds of the search space

The efficiency of all optimization techniques is greatly enhanced when

reasonable limits are placed on the search space.  The fuzzy logic based GA is no

exception and to that end, the Ashby’s HIP Users Manual [Ashby, 1990b] and

references therein provides limits for all of the parameters to be optimized.  
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1.5 Densification curve sensitivity to parameter values

The stochastic nature and large population size of a fuzzy logic based

multiobjective GA provides a distribution of feasible answers to a problem.  Thus,

parameters that are not very important (i.e.: do not have a significant impact on the

objective values will have a broad, almost random, distribution and parameters that do

significantly impact the objective values will have a narrow distribution.

Thus, the final optimized population provided by a GA provides insight to the

sensitivity of the parameters on the models.  Formal sensitivity analysis has been

conducted previously [Suryanarayanan et al., 1993, 1994].  This work reveals that in

many metals, such as that of copper powder, the yield stress and the parameters of the

power law creep mechanism are the most influential factors in the densification model.

Thus, if the fuzzy logic based GA operates as expected, the optimized population will

show these parameters to have a narrow distribution and the other parameters to have

a much broader or random distribution.  

2.0 Procedure

The first step in fuzzy logic based GA optimization, is to determine the

parameter range to be searched.  Table I lists the range for each parameter.  In

addition to the densification mechanism parameters themselves, the fuzzy logic GA

will also be optimizing the particle size and the smoothing parameters that control the

transition between stage 1 and stage 2 densification.  



13

The smoothing function operates in the following way:  If the current density, ρ,

is greater than or equal to the stage 2 cut off density, ρ2, then the stage 2 densification

rate equations are calculated and multiplied by a weighting factor (s1) that is

determined by: s1 = (ρ− ρ2)/ (1.− ρ2).

Likewise, if the current density is less than or equal to the stage 1 cut off density,

ρ1, then the stage 1 densification rate equations are calculated and multiplied by a

weighting factor that is determined by:  s1 = 1+ ((ρo − ρ)/ (ρ1− ρo)), where ρo is the initial

density of the powder.  All of the weighted densification rates are then added to give a

total densification rate.

The second step is defining the objectives to be optimized.  In this work, the

goal is to minimize the difference between the calculated densification values and the

densification data points of each of the several experimental studies available within a

specified experimental error.  The actual experimental error was not available in any of

the original work and thus it had to be approximated.  Table II lists the objective

conditions of the data set along with experimental error estimated by the present

author.  Note that the GA will only calculate the densification data for these points and

not the entire densification map.  Also, the exact heating and pressure schedules were

not available in Roberts’ report.  Thus, it was assumed that the temperature and

pressure were ramped over 500s to the temperatures and pressures reported by

Roberts and then held for 1 hour.

The third step is to define parameters of the GA itself.  Table III lists the

parameters of the GA used in this optimization.  
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3.0 Results and Discussion

The stochastic nature of a GA optimization requires multiple runs to ensure

reproducibility.  Thus, for this work, the GA was run four times and each time similar

results were obtained.  Figures 1a and 1b show the fitness averaged over the entire

population and the associated standard deviation for two objective functions from the

data set of Roberts.  All of the objective functions behaved in a similar fashion in that

their absolute values were minimized and the standard deviation decreased with

generation number indicating convergence.  As indicated in Figures 1a and 1b some

of the objectives were minimized to zero whereas others were minimized to a value

other than zero.  Furthermore, as indicated by the standard deviation in Figure 1b,

there were members of the population that solved the objective well in early

generations but the GA eventually evolved towards solutions that were less optimal .

The reason for this lays in the fact that all of the objectives were being optimized

simultaneously.  Thus, while a member in an early generation of Figure 1b may have

been optimal in solving one particular objective, it was not optimal in solving all of the

objectives in question.  The mandate of the fuzzy logic based multiobjective GA is to

find the best of all possible tradeoffs between all the objectives in question and thus,

for the objective in Figure 1b, a slightly less than optimal solution satisfies that

mandate.  The final convergence of the population towards an objective value that was

clearly not as optimal in Figure 1b as in other objectives results from one of two

conditions.  First, the model may be lacking in its ability to properly simulate the

densification mechanisms of this powder at this density, time, pressure and
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temperature.  Second, the experimental error, which was not reported by Roberts, may

be large enough to encompass the calcualted value within one standard deviation.

The model parameters being optimized behave in a similar manner from run to

run.  Figures 2a and 2b show the evolution of two of the 19 parameters (16 model

parameters, the particle size,  and 2 cutoff densities)  while optimizing with Robert’s

data set.  As is typical of metal powders, the yield stress and power law creep

mechanisms seem to be the most sensitive parameters and thus tend to converge

most quickly.  Other parameters, such as the surface energy, however, do not

converge quickly because they do not have a significant impact on the model.

Once the optimization is complete, a member of the population can be selected

based on its ability to minimize the objective functions to be used in the

micromechanical model for the calculation of densification maps.  A mulitobjective

optimization technique such as this finds a distribution of feasible solutions to a

problem.  Thus, with the exception of an occasional member who is clearly not optimal

due to a random mutation, all of the remaining members are optimal.  In other words,

though the members may have different parameter values, they all solve the problem

as defined and thus no one member can be considered better fit than any of the

others.  This fact is shown in Table IV where the average parameter values, standard

deviations, and sensitivities are listed.  The sensitivity parameter is determined by

normalizing the parameter search space range with the standard deviation.  The rather

large standard deviations and low sensitivity of some of the parameters indicate that

there exists a broad distribution of acceptable solutions to the problem at hand.
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A cautionary note is in order here.  The GA used only the densification data

available to optimize the parameters.  Thus, while the parameters of interest fit the data

present, the rest of the densification and grain growth maps may differ substantially

depending on the member of the population that is selected.  The diversity of

optimized parameter values are shown in Table V.  Table V shows five members of the

optimized population that all solve the objectives equally well but have different

parameter values.  

Figure 3 shows the relative density vs. sintering time for the 5 samples listed in

Table V.  This calculation involved a ramping of the temperature and pressure from

0.1MPa and 293K at t=0 to 15.168MPa and 973K within 500s.  The temperature and

pressure were then held constant for an additional 3600s and then ramped down to

ambient conditions in 500s.  Even though each member had different parameter

values they produced close to the same final density.  Note that the majority of

densification occured in the first 500s of the ramp up phase of the schedule. Since no

details of Roberts’ original schedule are available (only his hold times), it is possible

that different parameter values could have been obtained if a different ramping

schedule was used.  This ambiguity would then indicate that experimental

densification data would be better used if detailed heating and cooling schedules

were provided along with the hold times and experimental error.

The physical values of the parameters listed in Table V and the sensitivity

parameters of Table IV merit some discussion.  According to Table V, the most

influential parameters are the yield stress and the temperature dependence of the

yield.  According to the optimization, the average optimal yield stress is 970MPa with a
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temperature dependence of 2.3.  However, other sources (Ablen and Mataya, 1993;

Ablen and Osborn, 1994) have reported values of 600MPa with a temperature

dependence of 1.16.  Likewise the activation energies for diffusion found in this

optimization are slightly higher than those previously reported.  These observations

are consistent with the fact that the powder under study by Roberts was attrition milled.

Attrition milled powder is extremely work hardened which would result in a high yield

stress and a high temperature dependence of the yield due to an enhanced proclivity

towards recrystallization and dislocation movement upon heating.  Likewise, attrition

milled powder is notorious for its high BeO content on the particle surfaces.  The

refractory nature of BeO hinders the diffusion of beryllium and thus increases the

effective activation energy of diffusion of the powder.  The effects of BeO on the

parameters of the micromechanical modeling of beryllium was previously addressed

(Stoev et al., 1995).  In Stoev’s work, effective diffusion coefficients were developed to

account for the hindering effect of BeO on beryllium diffusion.  The net result, as

implied in the present work, was to decrease the value of diffusion coefficients or

increase the activation energy barrier.  Thus, without explicitly stating in mathematical

terms the effects of a BeO layer on the particles, the GA was able to adjust the

available parameters accordingly to create effective activation energies for diffusion

through an oxide layer.

4.0 Conclusions

A fuzzy logic based multiobjective genetic algorithm, as presented in earlier

papers, was used to optimize the micromechanical model parameters of beryllium
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powder based on the densification data of Roberts.  This procedure determined the

optimal values of the 19 main parameters as well as the relative impact each

parameter has on the final densification model.  In addition to showing that the fuzzy

logic GA is capable of finding multiple solutions to a multi-objective (17), multi-variable

(19) problem, this work has also shown the importance of having a large objective

data set on hand along with a realistic assessment of experimental error and process

schedules.
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7.0 Tables

Table I.  Search range for each parameter in the micromechanical model being
optimized by the Fuzzy Logic based GA. (PLC: Power Law Creep)

Parameter Units Lower Bound Upper Bound

surface energy J/m2 1.5000 2.5000

yield stress MPa 10.000 1500.0

Temperature Dependence of Yield 0.10000 2.7000

PLC Exponent 5.0000 12.000

PLC Reference Stress MPa 1900.0 2600.0

PLC Activation Energy kJ/mol 900.00 1300.0

Low T. to High T. Creep Transition K 500.00 800.00

C for Low T. Creep 0.50000 0.71000

Pre-exponent for Volume Diffusion m2/s 1.0000e-05 3.0000e-05

Activation Energy for Volume Diffusion kJ/mol 110.00 400.00

Pre-exponent for Boundary Diffusion m2/s 3.0000e-15 5.0000e-15

Activation Energy for Boundary Diffusion kJ/mol 75.000 125.00

Pre-exponent for Surface Diffusion m2/s 1.1000e-12 2.0000e-10

Activation Energy for Surface Diffusion kJ/mol 110.00 250.00

Pre-exponent for Boundary Mobility m2/s 1.0000e-15 3.0000e-15

Activation Energy for Boundary Mobility kJ/mol 100.00 200.00

Particle size Radius m 2.0000e-05 3.5000e-05

Stage 2 cut off relative density 0.70000 0.99000

Stage 1 cut off relative density 0.70000 0.99000
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Table II.  The experimental values of warm isopressed Beryllium powder consolidation
from Roberts used in the optimization.  The optimization assumes a 500s ramp up from
293K and 0.1 MPa, a 3600s hold, and a 500s ramp down to ambient temperature and
pressure.

Time (s) Temperature (K) Pressure (MPa) Relative Density Est. Error

3600.0 873 0.1 0.78 0.005
3600.0 873 55.158 0.81 0.005
3600.0 873 82.737 0.91 0.005
3600.0 923 0.1 0.78 0.005
3600.0 923 15.168 0.80 0.005
3600.0 923 38.611 0.84 0.005
3600.0 948 0.1 0.78 0.005
3600.0 948 31.026 0.80 0.005
3600.0 948 42.058 0.92 0.005
3600.0 948 48.267 0.95 0.005
3600.0 973 0.1 0.78 0.005
3600.0 973 6.895 0.80 0.005
3600.0 973 14.479 0.83 0.005
3600.0 973 15.168 0.84 0.005
3600.0 973 27.579 0.90 0.005
3600.0 973 38.611 0.91 0.005
3600.0 973 55.158 0.97 0.005

Table III.  The GA parameters used in the optimization.

Binary string length for each variable 14
Number of generations per optimization 100
Population size 300
Mutation Probability 0.1%
Crossover Probability 90%
Comparison set Size 1
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Table IV.  The average parameter value and associated standard deviations after 25
generations along with the resulting degree of sensitivity the objective has to each
parameter..

Parameter x σx
x xmax min

x

−( )
σ

surface energy 2.0050 0.19990 5.0025

yield stress 968.50 44.500 33.483

T. Dep. of Yield 2.3360 0.13770 18.882

PLC Exponent 8.8440 1.0490 6.6730

PLC Ref. Stress 2208.0 222.40 3.1475

PLC Act. Engy 1149.0 108.70 3.6799

Low T. - High T. 714.60 41.300 7.2639

C for Low T. Creep 0.59280 0.047640 4.4081

Pre-exp. V. Diff. 2.1240e-05 6.0090e-06 3.3283

Act. Engy V. Diff. 292.30 66.290 4.3747

Pre-exp. B. Diff. 3.8390e-15 6.3020e-16 3.1736

Act. Engy B. Diff. 108.80 15.730 3.1786

Pre-exp. S. Diff. 8.3180e-11 6.4710e-11 3.0737

Act. Engy S. Diff. 180.70 39.320 3.5605

Pre-exp. B. Mob. 1.9740e-15 6.5530e-16 3.0520

Act. Engy B. Mob. 135.50 37.470 2.6688

Particle radius 2.7310e-05 4.5000e-06 3.3333

stage 2 cutoff den. 0.84310 0.080430 3.6056

stage 1 cutoff den. 0.93690 0.054710 5.3007
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Table V.  Five example member’s parameter values and the associated objective
values produced after the 25th generation of the optimization.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

surface energy 1.9480 2.3380 1.8210 2.0260 2.3210

yield stress 971.90 972.20 953.70 972.20 972.20

T. Dep. of Yield 2.3470 2.3470 2.3470 2.3470 2.3470

PLC Exponent 8.4620 10.350 8.5590 8.6810 8.2130

PLC Ref. Stress 2023.0 2014.0 2001.0 2074.0 2247.0

PLC Act, Engy 976.40 1089.0 1264.0 1026.0 972.90

Low T. - High T. 682.70 762.00 799.50 676.60 700.80

C for Low T. Creep 0.57560 0.65860 0.63180 0.57560 0.59190

Pre-exp. V. Diff. 1.4990e-05 1.4990e-05 1.4990e-05 1.7270e-05 2.2470e-05

Act. Engy V. Diff. 283.40 252.30 252.30 336.90 352.90

Pre-exp. B. Diff. 3.0110e-15 4.3120e-15 4.3120e-15 3.8150e-15 3.4260e-15

Act. Engy B. Diff. 124.60 124.20 124.20 110.90 119.80

Pre-exp. S. Diff. 9.7700e-12 2.5180e-11 2.5180e-11 1.2560e-10 1.6350e-11

Act. Engy S. Diff. 177.20 152.10 145.60 244.80 214.90

Pre-exp. B. Mob. 2.2240e-15 1.0770e-15 2.7970e-15 2.5690e-15 2.1620e-15

Act. Engy B. Mob. 148.00 102.30 109.40 148.00 132.30

Particle radius 2.3290e-05 3.1780e-05 2.7700e-05 2.2320e-05 3.3040e-05

stage 2 cutoff den. 0.84980 0.87830 0.82500 0.74400 0.90170

stage 1 cutoff den. 0.91530 0.96570 0.95530 0.95390 0.98630

Objective 1 7.486e-05 7.486e-05 7.629e-05 2.106e-04 7.480e-05

Objective 2 8.383e-03 8.387e-03 9.927e-03 8.387e-03 8.370e-03

Objective 3 -7.498e-02 -7.497e-02 -7.309e-02 -7.497e-02 -7.499e-02

Objective 4 1.826e-04 1.828e-04 2.346e-04 3.982e-04 1.826e-04

Objective 5 6.513e-03 6.534e-03 1.005e-02 6.534e-03 6.503e-03

Objective 6 1.778e-03 1.823e-03 7.247e-03 1.823e-03 1.759e-03

Objective 7 4.767e-04 4.765e-04 4.858e-04 6.490e-04 4.765e-04

Objective 8 9.039e-02 9.060e-02 9.236e-02 9.060e-02 9.036e-02

Objective 9 3.734e-03 4.138e-03 6.711e-03 4.138e-03 3.683e-03

Objective 10 -9.616e-03 -9.278e-03 -7.124e-03 -9.278e-03 -9.658e-03

Objective 11 4.767e-04 4.765e-04 6.663e-04 6.949e-04 4.765e-04

Objective 12 1.118e-02 1.117e-02 1.560e-02 1.117e-02 1.117e-02

Objective 13 1.084e-02 1.082e-02 1.701e-02 1.082e-02 1.082e-02

Objective 14 3.292e-03 3.272e-03 9.578e-03 3.272e-03 3.272e-03

Objective 15 -1.820e-02 -1.823e-02 -1.023e-02 -1.823e-02 -1.823e-02

Objective 16 2.455e-03 2.403e-03 1.071e-02 2.403e-03 2.403e-03

Objective 17 -1.456e-02 -1.460e-02 -9.356e-03 -1.460e-02 -1.460e-02
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8.0 Figures

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0 20 40 60 80 100

O
bj

ec
tiv

e 
9

Generation

1a

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 20 40 60 80 100

O
bj

ec
tiv

e 
10

Generation

1b

Figures 1a-b.  The fitness averaged over the entire population and the associated
standard deviation for two of the sixteen objective functions.
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Figure 2a-b.  The evolution of the yield stress and the surface energy averaged over
the entire population with the associated standard deviations.  The yield stress
converges indicating that it is an important parameter whereas the surface energy
does not, indicating that it is not as significant.
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Figure 3.  The Relative density v. sintering time for the 5 samples listed in Table V.
This calculation involved a ramping of the temperature and pressure from 0.1MPa and
293K at t=0s to 15.168MPa and 973K at t=500s.  Holding the temperature and
pressure constant for 3600s and then ramping down to ambient conditions in 500s.
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