
Discovery & Negotiation using Multiobjective Genetic 
Algorithms: A Case Study in Groundwater Monitoring 
Design 

P. M. Reed* and B. S. Minsker* 
*Department of Civil and Environmental Engineering, University of Illinois at Urbana-
Champaign, 3230d NCEL, MC. 250, 205 N. Mathews Ave., Urbana, Illinois, USA, 61801 

Abstract Tools such as multiobjective genetic algorithms that are capable of high order 
Pareto optimization (i.e., optimizing a system for more than 2 objectives) can serve as an 
interface between the physical system being designed and the human decision process. This 
paper demonstrates the use of high order Pareto optimization for long-term monitoring (LTM) 
design, combining quantile kriging and the Nondominated Sorted Genetic Algorithm-II (NSGA-
II) to successfully balance four objectives. Optimizing the LTM application with respect to 
these objectives reduced the decision space of the problem from a total of 500 million designs 
to the set of 1156 designs identified on the 4 dimensional Pareto surface. Although the 4-
dimensional Pareto surface cannot be visualized, this study demonstrates how the set of 1156 
designs can inform decision making.  First, we analyzed pairs of the objectives that were 
known to conflict.  Visualizing the 7 designs from these tradeoffs provided a better 
understanding of how these objectives affect sampling designs and aided in discovering 
additional objective conflicts. Once these conflicts were discovered, they were then used to 
identify acceptable objective bounds and negotiate a single compromise design.   
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Introduction 
Buras (2001) contends that one of the unresolved issues in water resources is the inclusion of 
multiobjective formulations in the design of engineered systems.  Multiobjective problem 
formulation implicitly requires decision makers to select, understand, and balance 
performance objectives for the physical systems being designed.   This paper demonstrates 
that tools such as multiobjective genetic algorithms (GAs) that are capable of high order 
Pareto optimization (i.e., optimizing a system for more than 2 objectives) can serve as an 
interface between the design of the physical system and the human decision process. The 
paper demonstrates that high order Pareto optimization can provide a means of selecting 
objectives, discovering objective conflicts, and helping stakeholders in the negotiation 
process.  

The optimization methodology is demonstrated using a long-term monitoring (LTM) 
application. The application addresses the two most important problems LTM practitioners 
face in the design process: (1) selecting monitoring objectives and (2) balancing these 
objectives.  Both the ASCE Task Committee on Geostatistical Techniques (1990b) and 
Loaiciga et al. (1992) concur that the selection of performance criteria is the most important 
component of any monitoring design methodology.  The problem of selecting monitoring 
performance criteria requires stakeholders to abstract their design preferences into 
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mathematical functions and understand how these functions affect sampling strategies. 
Loaiciga et al. (1992) state that “[o]ne of the key difficulties in the design of ground water 
monitoring networks via mathematical models is to choose objective functions that faithfully 
represent a [stakeholder’s] objective”.  Moreover, stakeholders must be able to assess how 
these mathematical models interact and how these interactions affect the final design of a 
monitoring system.  

 For example, there is an obvious conflict between cost and uncertainty.  As the number of 
sample locations used decreases, sampling costs also decrease but uncertainty increases.  
Now consider uncertainty and contaminant mass estimation error: both quantities increase as 
the number of sample locations decrease.  Does a conflict exist between these objectives? Do 
both objectives have a significant effect on the final design of a monitoring network?  High 
order Pareto optimization can serve to answer these questions by enabling stakeholders and 
regulators to isolate and visualize a small number of sampling strategies that are optimal with 
respect to multiple objectives.  Through visualization of these sampling strategies, 
stakeholders can discover how their objectives are affecting designs and select only those 
objectives that best fit their design preferences. 

Test Case Data 
The test case developed for this study uses data drawn from a 50 million-node flow-and-
transport simulation performed by Maxwell et al. (2000).  These data were also used by Reed 
et al. (2001) and Reed et al. (2002a); the concentration data set used in this study corresponds 
to the medium test case from Reed et al. (2002a).The simulation provided realistic historical 
data for the migration of a hypothetical perchloroethylene (PCE) plume in a highly 
heterogeneous alluvial aquifer.  The hydrogeology of the test case is based on an actual site 
located at the Lawrence Livermore National Laboratory (LLNL) in Livermore, California. 
Data were provided for a total of 58 hypothetical sampling locations within a 29-well multi-
level monitoring network. If the ith monitoring well was selected for sampling then PCE is 
sampled at all the possible sampling locations along its vertical axis. 

The data represent a snapshot in time, 8 years after an underground storage tank has 
continuously released contamination into the aquifer system. The monitoring wells can 
sample from 1 to 3 locations along their vertical axis and have a minimum spacing of 10 m 
between wells in the horizontal plane. The site is assumed to be undergoing long-term 
monitoring, in which groundwater samples are used to assess the effectiveness of current 
remediation strategies. Quarterly sampling of the entire network has a potential cost of over 
$85,000 annually for PCE testing alone, which could translate into millions of dollars if the 
site had a typical life span of 20 to 30 years.  This paper addresses only spatial redundancy 
analysis, which seeks to identify and remove sampling locations that contribute minimally to 
understanding the plume’s extent in space, time, or both.  This study assumes that the spatial 
sampling plans will be re-evaluated periodically as site conditions change.  This type of 
approach has been applied in several trial-and-error field applications (Johnson et al. 1996, 
Cameron & Hunter 2000, Aziz et al. 2000). 

Methodology 
The LTM design methodology proposed in this paper combines both the spatial 

redundancy and geostatistical approaches to monitoring design.  Quantile kriging and the 
Nondominated Sorted Genetic Algorithm-II (NSGA-II) are combined to quantify the 
tradeoffs among the following four performance criteria (objectives): (1) cost, (2) squared 
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relative estimation error (SREE), (3) the relative global mass error, and (4) local uncertainty 
as measured by kriging estimation variances.  Cost is a linear function of the number of PCE 
samples that are used in a given monitoring design.  SREE measures how the interpolated 
picture of the plume using data only from wells included in theκ th sampling plan compares 
to the result attained using data from all available sampling locations. Likewise, the global 
mass objective error in the total mass of PCE in the subsurface.  Lastly, local uncertainty is 
estimated using the sum of the estimation standard deviations (i.e., the square root of 
estimation variances) from kriging (for more details see Reed et al. 2002a and Reed et al. 
2002b). 

 Plume Interpolation using Quantile Kriging 
Quantile kriging was selected for plume interpolation in this study based on the findings of 
Reed et al. (2002a), who present a comprehensive performance analysis of 6 interpolation 
methods for scatter-point concentration data, ranging in complexity from intrinsic kriging 
based on intrinsic random function theory to a traditional implementation of inverse-distance 
weighting. Quantile kriging was shown to be the most robust and least biased of the 
interpolation methods they studied. Additionally, the method’s non-parametric uncertainty 
estimates successfully predicted zones of high estimation error for each test case.  For more 
details on quantile kriging see Journel & Deutsch (1997), Juang et al. (2001), and Reed et al. 
(2002a).  

Multiobjective Search & Optimization 
NSGA-II is used to identify high order Pareto surfaces in the LTM methodology.  NSGA-

II is a second generation evolutionary multiobjective GA developed by Deb et al. (2000). It 
significantly improves upon the original NSGA by (1) invoking a more efficient 
nondomination sorting algorithm, (2) eliminating the sharing parameter, and (3) adding an 
implicitly elitist selection method that greatly aids in capturing high order Pareto surfaces.  
Zitzler et al. (2001) and Deb et al. (2001) show that the NSGA-II performs as well or better 
than the other second generation evolutionary multiobjective algorithms on difficult, high 
order problems.   

Reed (2002) introduces a multi-population approach for automating parameter 
specification for the NSGA-II.  The methodology combines concepts from previous GA 
design methodologies (Reed et al. 2000b, Reed et al. 2001) and the “parameter-less GA” 
methodology presented by Lobo (2000).  The methodology utilizes GA design theory to 
automatically set the probabilities of crossover and mutation as well as the maximum number 
of generations.  The probabilities of crossover and mutation are set equal to 50 percent 
and N1 , respectively, where N is the population size. The maximum number of generations 
was set equal to 60. Four runs with increasing population sizes from 500 to 4000 members 
were completed to identify the nondominated set.  The runs were halted automatically when 
further increases in population size resulted in less than a 10 percent increase in the number 
of nondominated solutions identified.  See Reed (2002) for more details. 

Results 
In the LTM application a single constituent is being monitored at 29 monitoring wells, which 
results in a decision space of more than 500 million possible sampling designs (i.e., 229 
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sampling designs).  Using the NSGA-II to identify the subset of sampling designs that are 
optimal with respect to the 4 objectives reduces the set of designs that must be considered 
from 500 million to 1156 designs identified on the Pareto surface.  Although the 4-
dimensional Pareto surface cannot be visualized, the set of 1156 designs can inform decision 
making as follows.  

First, we analyzed pairs of the objectives that were known to conflict.  These 2-
dimensional tradeoffs are subsets of the overall 1156 member nondominated set. These 
tradeoffs are found by identifying only those solutions that are nondominated in terms of cost 
and one other objective, independent of the remaining objectives’ values.  A total of 7 
sampling designs were then visualized from the following tradeoffs: (1) Cost—SREE, (2) 
Cost—Mass Error, and (3) Cost—Uncertainty.   Visualizing the 7 designs from these 
tradeoffs provided a better understanding of how these objectives affect sampling designs 
and aided in discovering and understanding conflicts among the following additional pairs of 
objectives: (1) SREE—Mass Error, (2) SREE—Uncertainty, and (3) Uncertainty—Mass 
Error.  

 
 
 
 
 
 

 

Figure 1. The Cost—Mass Error tradeoff 

For example, the Cost—Mass Error tradeoff shown in Figure (1) shows that only 21 
sampling locations were required to attain an accurate mass estimate.  This result could 
motivate the decision maker to eliminate the mass objective from consideration, which 
would be a mistake because Figure (1) only considers Cost—Mass Error interactions.  A 44 
sample solution from the Cost—Uncertainty tradeoff showed the importance of the mass 
objective. The solution had the minimum uncertainty value attained by any of the 44 sample 
solutions, but surprisingly the solution’s mass error was equal to 12 percent.  A 12 percent 
mass error is extremely large considering that Figure (1) shows that only 19 samples were 
required to attain nearly the same level of accuracy. This result identifies an Uncertainty—
Mass Error conflict and demonstrates how unknown objective interactions were discovered 
in this study.     

Next, the insights gained from examining tradeoffs can be used to negotiate a final 
compromise sampling scheme. The first decision that faces stakeholders is selecting 
acceptable bounds on each objective.  For example, a conservative cost level of 44 sampling 
locations could be selected, which would reduce costs by nearly 25 percent while minimally 
increasing the remaining objectives.  By considering only those designs at the 44 sample cost 
level, the set of potential designs further reduces from 1156 to 46 potential monitoring 
designs. The next step in the negotiation process is to use the objective conflicts that occur in 
the 44 sample designs to bound stakeholder expectations and set “acceptable” upper bound 
values for the remaining objectives.  Upper bound values for SREE, mass error, and 
uncertainty were set equal to 10%, 1%, and 10% of the maximum values in the 
nondominated set, respectively. The objective bounds were set to exploit potential decreases 
in each objective’s value that would minimally increase the 3 remaining objectives’ values.    
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The final step in the negotiation process is to search the nondominated set for designs that 
satisfy the objective bounds [i.e., (Cost = 44, SREE < 10%, Mass Error < 1%, Uncertainty < 
10%)].  Setting these objective bounds reduces the number of possible sampling designs that 
must be considered from 46 to the single compromise solution illustrated in Figure (1).  
Although setting objective bounds will not always yield a single solution, it will vastly limit 
the number of designs that must be considered.  The solution shown in Figure (1) reduces 
sampling costs by nearly 25 percent in any given monitoring period while minimally 
increasing uncertainty, maintaining a high quality map of the plume, and accurately 
quantifying the mass of PCE within the subsurface. 

In the United States, current standard practice in redundancy analysis uses trial-and-error 
analysis to eliminate sampling locations (see Johnson et al. 1996, Cameron & Hunter 2000, 
Aziz et al. 2000).  In these methodologies, locations thought to be redundant are eliminated 
and visualization is used to determine the effect of these locations on the quality of the 
interpolated plume map.  The process is repeated for tens if not hundreds of designs until the 
practitioner is satisfied.  This time consuming process does not comprehensively search the 
decision space or account for multiple objectives.  The single compromise solution shown in 
Figure (1) explicitly balances the stakeholders’ objectives, required less than a day of 
computing time, and visualization of only 8 designs.  Moreover, the optimization 
methodology used to attain the compromise solution provides practitioners with a better 
understanding of how their design preferences interact with the physical monitoring system. 

Conclusions 
The optimization methodology presented in this paper demonstrates that algorithms such 

as the NSGA-II that are capable of high order Pareto optimization can serve as interfaces 
between the human decision process and engineered water resources systems.  
Demonstration of the methodology on an LTM design problem shows how multiobjective 
optimization combined with visualization can aid practitioners in selecting, understanding, 
and balancing performance objectives when seeking a single compromise solution.  The 
monitoring application results in a 4-dimensional Pareto surface that was explored using 2-
dimensional tradeoffs between selected pairs of objectives.  First, objective pairs that are 
known to conflict were explored to discover additional objective conflicts and their effects 
on the physical monitoring system. The final step in the methodology builds upon the 
improved stakeholder understanding of design objective interactions to negotiate acceptable 
bounds for all of the performance criteria used in a monitoring application.  These bounds 
were then used to search the high dimensional Pareto set of optimal sampling strategies for a 
final compromise solution.  The processes of discovery and negotiation demonstrated in this 
study through the use of high order Pareto optimization hold significant potential as tools 
that can be used in the balanced design of water resources systems. 
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