
6 BALANCING PERFORMANCE CRITERIA 

6.1 Introduction 

This chapter builds upon the previous chapters by combining an effectively designed 

multiobjective GA [see Chapter 4] with quantile kriging [see Chapter 5] into a highly adaptable 

LTM design methodology that has significant potential for aiding stakeholders in selecting, 

understanding, and balancing monitoring objectives for contaminated sites. 

6.1.1 Motivation & Scope 

Buras (2001) contends that one of the unresolved issues in water resources is the 

inclusion of multiobjective formulations in the design of engineered systems.  Multiobjective 

problem formulation implicitly requires decision makers to select, understand, and balance 

performance objectives for the physical systems being designed.   The goal of this chapter is to 

demonstrate that tools such as multiobjective genetic algorithms (GAs) that are capable of high 

order Pareto optimization (i.e., optimizing a system for more than 2 objectives) can serve as an 

interface between the design of the physical system and the human decision process.  Buras 

(2001) recommends that multi-attribute utility analysis (MAUA) be used in this role. MAUA 

implicitly requires a preferential weighting of design objectives as well as a conversion of the 

objective values into the single metric of “utility”. The major difficulties encountered when 

applying MAUA are (1) ensuring that only incommensurate, conflicting objectives are used and 

(2) assigning a unique utility function for group decision making (i.e., the Arrow paradox) [see 

de Neufville 1990 for more details].  Because of these difficulties, de Neufville (1990) states that 

multiobjective optimization is the preferred solution technique in cases where there are vast 

numbers of design alternatives.  However, multiobjective optimization and MAUA can be 

combined sequentially; Horn (1997) recommends that Pareto optimization be used to quantify a 
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small set of optimal solutions from which a final solution can be selected using MAUA.  This 

chapter will demonstrate that high order Pareto optimization can provide a means of selecting 

objectives, discovering objective conflicts, and helping stakeholders in the negotiation process, 

whether or not combined with MAUA. The highly adaptable optimization methodology 

proposed in this chapter has significant potential for aiding the design of water resources systems 

by enabling decision makers to discover, understand, and balance tradeoffs among their design 

objectives.   

The optimization methodology is demonstrated in this chapter using a long-term 

monitoring (LTM) application. The application addresses the two most important problems LTM 

practitioners face in the design process: (1) selecting monitoring objectives and (2) balancing 

these objectives.  Both the ASCE Task Committee on Geostatistical Techniques (1990b) and 

Loaiciga et al. (1992) concur that the selection of performance criteria is the most important 

component of any monitoring design methodology.  The problem of selecting monitoring 

performance criteria requires stakeholders to abstract their design preferences into mathematical 

functions and understand how these functions affect sampling strategies. Loaiciga et al. (1992) 

state that “[o]ne of the key difficulties in the design of ground water monitoring networks via 

mathematical models is to choose objective functions that faithfully represent a [stakeholder’s] 

objective”.  Moreover, stakeholders must be able to assess how these mathematical models 

interact and how these interactions affect the final design of a monitoring system.  

 For example, there is an obvious conflict between cost and uncertainty.  As the number 

of sample locations used decreases, sampling costs also decrease but uncertainty increases.  Now 

consider uncertainty and contaminant mass estimation error: both quantities increase as the 

number of sample locations decrease.  Does a conflict exist between these objectives? Do both 
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objectives have a significant effect on the final design of a monitoring network?  High order 

Pareto optimization can serve to answer these questions by enabling stakeholders and regulators 

to isolate and visualize a small number of sampling strategies that are optimal with respect to 

multiple objectives.  Through visualization of these sampling strategies, stakeholders can 

discover how their objectives are affecting designs and select only those objectives that best fit 

their design preferences. 

6.1.2 Background on LTM Design 

Monitoring network design has been studied extensively in the past, but previous studies 

have primarily focused on two problems: (1) the use of geostatistics to augment or design 

monitoring networks for site characterization (for a review, see ASCE Task Committee on 

Geostatistical Techniques 1990a,b) and (2) the use of optimization and numerical simulation to 

site new monitoring points for contaminant plume detection at landfills and hazardous waste 

sites (for a review, see Loaiciga et al. 1992). Recently, a third problem has emerged that seeks to 

reduce spatial and temporal redundancies in pre-existing well networks for sites undergoing long 

term monitoring (LTM). The LTM design methodology proposed in this chapter combines 

concepts from the geostatistical design and the redundancy analysis studies described below. 

The geostatistical approach to monitoring network design utilizes geostatistical 

estimation procedures (kriging) to evaluate alternative sampling schemes.  Geostatistics provides 

minimum error estimates of contaminant concentrations at unsampled locations using linear 

combinations of sample values (for an introduction see Kitanidis 1997, Goovaerts 1997, Chilès 

& Delfiner 1999).  In addition to providing the expected values of contaminant concentrations, 

the estimation variance is computed that represents the uncertainty of estimates at unsampled 

locations. Estimation variances are independent of the sampled data and vary only as a function 
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of the monitoring well network’s geometry, enabling monitoring network designs to be evaluated 

for their ability to characterize a site before any sampled data are available.   

Hughes & Lettenmaier (1981) recognized the potential of the estimation variance attained 

from the geostatistical estimation for guiding sampling design.  Early studies focused on 

methodologies that used estimation variance to either augment or design monitoring networks for 

site characterization (for reviews see ASCE Task Committee on Geostatistical Techniques 1990b, 

Loaiciga et al. 1992).  Additional sampling points are added based on an analysis of which 

locations will maximally decrease the estimation variance attained in geostatistical interpolation 

(Rouhani 1985, Rouhani and Hall 1988).  

Spatial redundancy analysis has garnered more attention as the number of contaminated 

sites requiring LTM has increased over the previous decade. Sampling-and-analysis costs have 

been recognized as significant contributors to the overall cost of remediating sites with 

groundwater contamination. LTM at many sites can require decades of expensive sampling at 

tens or even hundreds of existing monitoring wells, resulting in hundreds of thousands or 

millions of dollars for sampling and data management per year.  The tremendous costs associated 

with the collection and management of LTM data has motivated the development of design 

methodologies that seek to identify and remove sampling locations that contribute minimally to 

understanding the plume’s extent in space, time, or both.  Evidence of the emerging importance 

of redundancy analysis can be seen in the Federal Remediation Technologies Roundtable’s focus 

on tools that directly account for redundancies in monitoring data to reduce sampling costs (see 

http://www.frtr.gov/optimization/monitoring/).    

Previous spatial redundancy approaches can be classified as being either global or local 

in nature.  Reed et al. (2000a) present a global redundancy analysis that combined a simple GA, 
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fate-and-transport simulation, and plume interpolation.  The study presents a single objective 

methodology for monitoring design, in which minimum cost sampling plans are identified that 

quantify the total (global) contaminant mass as accurately as when all available monitoring 

locations are utilized.  Reed et al. (2001) presents a local redundancy analysis that combined 

deterministic plume interpolation and a multiobjective genetic algorithm (GA) to seek the 

optimal tradeoff between sampling costs and the relative accuracy of local concentration 

estimates. Other local approaches have combined trial-and-error analysis with plume 

interpolation to eliminate spatial redundancies (see Johnson et al. 1996, Cameron & Hunter 

2000, Aziz et al. 2000).  None of these studies directly quantify how eliminating monitoring 

points increases uncertainty.    

The LTM design methodology proposed in this chapter combines both the spatial 

redundancy and geostatistical approaches to monitoring design.  Quantile kriging and the 

Nondominated Sorted Genetic Algorithm-II (NSGA-II) are combined to quantify the tradeoffs 

among the following four performance criteria: (1) cost, (2) the relative accuracy of local 

concentration estimates, (3) the relative accuracy of global mass estimates, and (4) local 

uncertainty as measured by kriging estimation variances.  These four criteria not only combine 

spatial redundancy analysis with geostatistical approaches, but they also combine both the local 

and global spatial redundancy measures used separately in Reed et al. (2001) and in Reed et al. 

(2000a), respectively. The test case described in Section 6.2 corresponds to the medium test case 

described in Chapter 5. Readers familiar with the previous chapter can go directly to Section 6.3.  

6.2 Test Case Data 

The test case developed for this chapter uses data drawn from a 50 million-node flow-

and-transport simulation performed by Maxwell et al. (2000).  The simulation provided realistic  
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Figure 6.1 (a) 3-dimensional view of the monitoring test case (b) XY-plane view of monitoring 
wells 

 

 121



historical data for the migration of a hypothetical perchloroethylene (PCE) plume in a highly 

heterogeneous alluvial aquifer.  The hydrogeology of the test case is based on an actual site 

located at the Lawrence Livermore National Laboratory (LLNL) in Livermore, California. Data 

were provided for a total of 58 hypothetical sampling locations within a 29-well multi-level 

monitoring network shown in Figures (6.1a) and (6.1b). Note that Figure (6.1b) and all 

subsequent XY-views of the plume are divided into zones A, B, and C to show how the sampling 

designs change in the source area, the midsection, and the leading edge of the plume, 

respectively. The data represent a snapshot in time, 8 years after an underground storage tank has 

continuously released contamination into the aquifer system. The monitoring wells can sample 

from 1 to 3 locations along their vertical axis and have a minimum spacing of 10 m between 

wells in the horizontal plane. 

The site is assumed to be undergoing long-term monitoring, in which groundwater 

samples are used to assess the effectiveness of current remediation strategies. Quarterly sampling 

of the entire network has a potential cost of over $85,000 annually for PCE testing alone, which 

could translate into millions of dollars if the site had a typical life span of 20 to 30 years (Rast 

1997).  This chapter addresses only spatial redundancy, assuming that the spatial sampling plan 

will be re-evaluated periodically as site conditions change.  As noted previously, this type of 

approach has been applied in several trial-and-error field applications (Johnson et al. 1996, 

Cameron & Hunter 2000, Aziz et al. 2000). 

6.3 Methodology 

The methodology has 3 primary components: (1) a high order, constrained multiobjective 

problem formulation, (2) plume interpolation using quantile kriging, and (3) search and 
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optimization using the NSGA-II.  Each of these components is described in more detail in the 

following sections of this chapter. 

6.3.1 Generalized Multiobjective Formulation 

Equation (6.1) presents the generalized multiobjective problem formulation used in this 

chapter to search for optimal sampling strategies. 

( ) Ω∈∀= κκβκκκ ,)(,),(),()( 21 xfxfxfxFMinimize K  

   Subject to     

0)( =κxU                                                                            (6.1) 

In the above equation, )( κxF is a vector-valued performance function in which the β  

components,  )(,),(),( 21 κβκκ xfxfxf K are all minimized. Each of the component objectives are 

functions of the vector κx  which represents the κ th sampling plan within the overall decision 

space .  Equation (6.2) defines the iΩ th component of the decision variable vector κx  

representing the κ th monitoring scheme. 
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The vector-valued performance function )( κxF is minimized subject to the constraint 

shown in equation (6.1), which stipulates that the total number of unestimated points in the 

interpolation domain )( κxU , described in Table 1 for this case chapter, is equal to zero. Kriging 

contaminant data requires the specification of maximum radii of search for known concentrations 

in the vicinity of an unestimated point. If no known concentrations are found within these radii 

of search, then the current grid point remains unestimated.  The presence of unestimated points 

within the interpolation domain prevents reliable calculations of the relative accuracy of local 

concentration estimates, the relative accuracy of global mass estimates, and uncertainty.   
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Minimum X-Coordinate 40 meters 
Minimum Y-Coordinate 474 meters 
Minimum Z-Coordinate 70.8 meters 
Size of Grid Blocks in X-Direction 20 meters 
Size of Grid Blocks in Y-Direction 24 meters 
Size of Grid Blocks in Z-Direction 2.4 meters 
Number of Grid Blocks in X-Direction 34 
Number of Grid Blocks in Y-Direction 7 
Number of Grid Blocks in Z-Direction 7 

 
Table 6.1 Interpolation grid definition 
 

6.3.2 Design Objectives Suite 

In this chapter, )( κxF  in equation (6.1) contains four component objectives: (1) cost, (2) relative 

error of local concentration estimates, (3) relative error of global mass estimates, and (4) local 

uncertainty.  Details on each of these four objectives are given below. 

6.3.2.1 Cost 

The cost of each sampling design is evaluated using equation (6.3) below, which shows 

that the cost is a discrete function of the number of wells sampled.    

∑
=

=
nwell

i

samp
iSCOST xiCxf

1
,)()( κκ                                                        (6.3) 

Dollar-valued monitoring costs are computed by multiplying a constant coefficient defined in 

terms of dollars per sample by the total number of samples.  In this chapter, costs have been 

normalized (i.e., the constant cost coefficient has been eliminated) and are presented in terms of 

the total number of samples required in a given sampling plan. In equation (6.3), if the ith well is 

sampled then all available locations along the vertical axis of that well will be sampled. The 

normalized cost, C  of sampling the i)(iS
th well ranges between 1 and 3 depending on the number 

sampling locations along its vertical axis.  The total cost of the κth sampling plan is determined 
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by summing the product of  from equation (6.2) and C over the total of nwell 

monitoring wells.  In this chapter, there are a total of 29 monitoring wells that sample 58 

locations in space. 

samp
ix ,κ )(iS

2

)jf

estcκ

6.3.2.2 Relative Error of Local Concentration Estimates 

The accuracy of local concentration estimates is quantified in terms of squared relative 

estimation error (SREE) using equation (6.4).  SREE is the local redundancy measure that was 

used in Chapters 3 and 4. 

(
1

* ()()( ∑
=

−=
estn

j
estjallSREE ucucx κ

κ                                         (4) )

SREE provides a measure of how the interpolated picture of the plume using data only from 

wells included in theκ th sampling plan compares to the result attained using data from all 

available sampling locations.  The measure is computed by summing the squared deviations 

between the local concentration estimates attained using data from all available sampling 

locations, )(*
jall uc , and the estimates based on theκ th sampling plan )( ju  at each location ju  

in the interpolation domain. Each ju  specifies coordinates for the jth grid point in the 

interpolation domain.  

6.3.2.3 Relative Error of Global Mass Estimates 

Reed et al. (2000a) analyzed spatial redundancies using global mass interpolation within 

a single objective LTM monitoring methodology.  The study sought minimal cost sampling plans 

that would quantify the mass of dissolved groundwater contaminant as accurately as if all 

available sampling locations had been used.  Quantifying the total mass of contaminant within 

the interpolated domain is equivalent to computing the zeroth moment of the contaminant plume 
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at time ts when samples are taken.  Equation (6.5) gives relative mass estimation error measure 

( )( κxf MASS ) used both in this chapter and by Reed et al. (2000a).  

100*)(
All

All
MASS Mass

MassMass
xf κ
κ

−
=                                                    (6.5) 

AllMass  is the best mass estimate based on sampling all available monitoring points in the model 

domain and has a value of 37 Kg for this application.  Equation (6.5) is the absolute relative 

difference between  and the mass estimate, , computed using the data attained 

from the κ

AllMass κMass

th monitoring plan κx .  

6.3.2.4 Local Uncertainty 

Local uncertainty is quantified using estimation standard deviations (i.e., the square root of 

estimation variances) from kriging using equation (6.6). 

∑
=

=
nest

j
jUNCERT uAxf

1
)()( σκ                                                (6.6) 

The local uncertainty measure )( κxfUNCERT is a weighted sum of the nest estimation standard 

error )( juσ for location ju  in the interpolation domain.  For kriging-based estimation, Journel & 

Rossi (1989) showed that the estimation variance is a variogram model dependent ranking of 

sampling configurations. Chapter 5 shows that kriging estimation variances can successfully 

predict which areas of the plume have the highest estimation errors.  The underlying goal of 

equation (6.6) is to identify solutions that sample subsets of the 58 total sampling locations while 

minimally increasing local uncertainty. Readers familiar with both quantile kriging and the 

NSGA-II should proceed directly to Section 6.3.4.3, which discusses how constraint violations 

were penalized.    
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6.3.3 Plume Interpolation using Quantile Kriging 

Quantile kriging was selected for plume interpolation in this chapter based on the 

findings of Chapter 5, which presents a comprehensive performance analysis of 6 interpolation 

methods for scatter-point concentration data, ranging in complexity from intrinsic kriging based 

on intrinsic random function theory to a traditional implementation of inverse-distance 

weighting. Quantile kriging was shown to be the most robust and least biased of the interpolation 

methods they studied. Additionally, the method’s non-parametric uncertainty estimates 

successfully predicted zones of high estimation error for each test case.   

Quantile kriging is a transformation-based variant of the kriging estimator in which the ith 

concentration sample is assigned the probability that its value is less than or equal to all of the 

remaining concentration samples. These probabilities create an empirical cumulative distribution 

function for concentration for a given site and are known to be uniformly distributed (Hogg and 

Tanis 1997). For this reason, the constant A shown in equation (6.6) was assigned a value equal 

to 32  for computing local uncertainty estimates for a uniformly distributed quantity (for details 

see Juang et al. 2001).  The term )(32 juσ  in equation (6.6) then computes the distance 

between the upper and lower bound estimates from the 95th confidence interval for concentration 

at location ju  within the interpolation domain. For more details on quantile kriging see Journel 

& Deutsch (1997), Juang et al. (2001), and Chapter 5.  For more details on the spatial modeling 

used in the test case presented in this chapter, see Chapter 5 and Appendix B.  

6.3.4 Multiobjective Search & Optimization 

NSGA-II is used to identify high order Pareto surfaces in the LTM methodology.  

NSGA-II is a second generation evolutionary multiobjective GA developed by Deb et al. (2000). 

It significantly improves upon the original NSGA by (1) invoking a more efficient 
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nondomination sorting algorithm, (2) eliminating the sharing parameter, and (3) adding an 

implicitly elitist selection method that greatly aids in capturing high order Pareto surfaces.  

Zitzler et al. (2001) and Deb et al. (2001) show that the NSGA-II performs as well or better than 

the other second generation evolutionary multiobjective algorithms on difficult, high order 

problems.  The following section details basic principals and operators of the NSGA-II. 

6.3.4.1 NSGA(II) Basics 

Genetic algorithms search a decision space using a process that is analogous to Darwin’s 

“natural selection”.  The decision variables are first encoded as 0-1 binary strings, or 

chromosomes. The fitness of each member of a randomly generated initial population of these 

strings is determined by how well the design satisfies specified objectives and constraints. After 

each individual is assigned a fitness value, GAs find optimal solutions using three basic 

operators: (1) selection, (2) crossover (mating), and (3) mutation.  

The NSGA-II uses a two-step selection process, which combines both binary tournament 

selection and ( )λµ +  selection.   First, tournament selection allows only the fittest individual 

from a group of strings randomly drawn from the current population to be placed into the mating 

population. Next, the crossover operator couples members of the mating population to mate with 

a specified crossover probability (Pc). Mating consists of randomly selecting one or more 

crossover points at which the strings exchange bit values with each other. Tournament selection 

and crossover are repeated until a population of N children has been produced. Mutation then 

randomly flips binary bits from 1 to 0 or vice versa within the new child population with a given 

probability of mutation (Pm).  Lastly, the NSGA-II uses ( )λµ +  selection to choose which of the 

parent and child designs will survive.  In this selection scheme, the populations of N parent 

designs and N child solutions in the current generation t are combined to yield a selection pool of 
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2N individuals, from which the N best individuals are allowed to pass to generation t+1.  This 

selection method aids the algorithm in efficiently identifying high order Pareto surfaces because 

it is implicitly elitist (i.e., the best designs are guaranteed to survive into the next generation).  

These three operators act to create a new population (or generation) of individual 

sampling plans with improved average fitness. The Schema Theorem is the general theory 

describing how these three operators combine to evolve high quality near-optimal solutions [see 

Goldberg, 1989 or Holland, 1975 for more information]. It states that highly fit strings are 

composed of small chunks of information (or building blocks) that are relevant to the solution of 

the problem. The GA exerts a selection pressure where only highly fit members are allowed to 

pass their traits or building blocks to the next generation.  Highly fit parent strings are allowed to 

mate, yielding offspring that inherit building blocks from both parents. It is in this manner that 

the GA assembles optimal or near-optimal solutions to a problem. 

The primary difference between the NSGA-II and single objective GAs is in how fitness 

is assigned. The NSGA-II evaluates sampling designs in terms of a vector of objectives.  A 

sampling design cannot be assessed in terms of its performance in any single objective because it 

may perform poorly with respect to the remaining objectives.   Instead, the concepts of Pareto 

dominance and crowding are used to assign fitness values to sampling designs in the two steps 

described below (Deb et al. 2000).   

The first step in fitness assignment employs the concept of Pareto dominance in which a 

design x dominates another design x ′  if and only if it performs as well as x ′  in all nobj 

objectives and better in at least one. In the NSGA-II’s improved nondomination sorting, the 

algorithm first ranks each design by the number of designs that dominate it. The second step in 

fitness assignments utilizes the concept of crowding (for more details see Deb et al. 2001) in 
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which the average distance between an individual design and those designs within the population 

that have been assigned the same rank is computed.  The crowding operator eliminates the 

sharing parameter calculations (for more details see Chapter 3) that were required for the original 

form of the algorithm.   

After these two steps, the fitness value of an individual design can be assigned either its 

rank or its crowding distance as follows. In cases were two designs have different ranks, the 

individual with the lower rank is preferred (i.e., individuals that are dominated by fewer 

solutions).  Alternatively, if both solutions possess the same rank then the individual with larger 

crowding distance is preferred (i.e., the individual that adds the most diversity to the population).  

A diverse population ensures that the NSGA-II will find solutions along the full extent of the 

Pareto surface. 

6.3.4.2 Design & Parameterization 

Chapter 4 introduces a multi-population approach for automating parameter specification 

for the NSGA-II.  The methodology combines concepts from previous GA design methodologies 

(Reed et al. 2000b, Reed et al. 2001) and the “parameter-less GA” methodology presented by 

Lobo (2000).  The methodology utilizes GA design theory to automatically set the probabilities 

of crossover and mutation as well as the maximum number of generations.  The probabilities of 

crossover and mutation are set equal to 50 percent and N1 , respectively, where N is the 

population size. The maximum number of generations was set equal to 60. Four runs with 

increasing population sizes from 500 to 4000 members were completed to identify the 

nondominated set.  The runs were halted automatically when further increases in population size 

resulted in less than a 10 percent increase in the number of nondominated solutions identified.  

See Chapter 4 for more details. 
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6.3.4.3 Penalizing Constraint Violations 

The constrained problem formulation given in equation (6.1) requires that the number of 

unestimated points )( κxU  be equal to zero.    For any design with unestimated points, the 

penalty function shown in equation (6.7) was used in place of the fitness function in equation 

(6.1) to ensure that the solution would be dominated by feasible solutions (i.e., any solution with 

no unestimated points).  
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 Equation (6.7) shows that the 4 component functions of  are the sum of the 

maximum possible values for the objectives and their actual values from equations (6.3) – (6.6), 

using only those points where estimates exist.  The maximum values of every objective are used 

because every feasible design is guaranteed to have lower objective values and dominate these 

solutions. The actual objective values are important to allow the infeasible solutions to compete 

with one another, even though the estimates lack validity, because feasible solutions can be very 

near infeasible solutions in decision space and could be lost if the infeasible solutions are 

immediately removed from consideration.  

PENALTYF

The maximum value of the normalized cost in this chapter is equal to 58, which is the 

total number of sampling locations that are available.  The use of quantile kriging made 

computing the maximum value of SREE, , very easy because concentrations are 

transformed to have values in the interval [0, 1], so the maximum squared deviation at each grid 

point is 1. This results in a maximum SREE value equal to the number of nodes in the 

interpolation domain (or nest = 1666).   was attained by assuming all kriging estimation 

MAX
SREEf

MAX
UNCERTf
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variances within the interpolation domain were equal to 1, their maximum possible value. This 

simplifies equation (6.6) to be the product of nest = 1666 and the constant A = 3

All

2 , resulting in 

a maximum value of uncertainty, , equal to 5770. The maximum relative mass estimation 

error, , was assumed to be 3300. This value was computed using  and the mass 

estimate that would be attained if every location in the interpolation domain had a concentration 

value equal to 6500 mg per m

MAX
UNCERTf

MAX
MASSf Mass

3, which is the maximum concentration in the monitoring dataset 

used in this chapter.  

6.4 Results & Discussion 

Recall that if the ith monitoring well is selected for sampling then PCE is sampled at all 

the possible sampling locations along its vertical axis.  This is equivalent to monitoring a single 

constituent at 29 monitoring wells, which results in a decision space of more than 500 million 

possible sampling designs (i.e., 229 sampling designs).  Using the NSGA-II to identify the subset 

of sampling designs that are optimal with respect to cost, SREE, mass estimation error, and 

uncertainty reduces the set of designs that must be considered from 500 million to 1156 designs 

identified on the Pareto surface.  Although the 4-dimensional Pareto surface cannot be 

visualized, the set of 1156 designs can inform decision making as follows. Initially, interactions 

and conflicts among the design objectives are identified using a variety of visualizations derived 

from the full set of nondominated solutions. Once these interactions and conflicts are discovered, 

they are then used to identify acceptable objective bounds and negotiate a compromise design.  

This decision process is illustrated for the LTM design application in the following sections. 

6.4.1 Understanding the Interactions of Design Objectives 

This section of the chapter illustrates the process of learning how cost, SREE, mass 

estimation error, and uncertainty interact and affect sampling designs.  This process begins by 
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analyzing pairs of the objectives that are known to conflict.  These 2-dimensional tradeoffs are 

subsets of the overall 1156 member nondominated set. These tradeoffs are found by identifying 

only those solutions that are nondominated in terms of cost and one other objective, independent 

of the remaining objectives’ values. Three designs from each of these tradeoffs have been 

visualized to demonstrate their effect on sampling schemes as well as to promote the discovery 

of any additional objective conflicts.  The next two sections demonstrate this process of 

discovery for the LTM application.   

6.4.1.1 Visualizing Known Objective Conflicts 

Figures (6.2a) – (6.2c) present tradeoff curves for the following pairs of known 

conflicting objectives: (1) Cost—SREE, (2) Cost—Mass, and (3) Cost—Uncertainty.  The 

solutions on these figures represent the lowest possible SREE, mass error, and uncertainty values 

attainable for each level of sampling cost. Both the Cost—SREE and Cost—Uncertainty 

tradeoffs in Figures (6.2a) and (6.2c) sample between 19 and 58 locations. Figure (6.2b) shows 

that there are significantly fewer nondominated solutions in the Cost—Mass tradeoff, which is 

presented using a log scale because mass estimation errors ranged over 5 orders of magnitude. 

The gaps present in Figure (6.2b) are not due to a shortcoming of the NSGA-II; they result 

because nondominated sorting considered only cost and mass estimation error.  For example, the 

gap that exists between 31 and 46 sample solutions occurs because the 31 sample solution 

dominates all of the solutions that sample less than 46 locations (i.e., it is lower in both cost and 

mass estimation error). Only 21 sampling locations were required to attain a mass estimate that 

fell within 0.1 percent of , showing that this objective is far less constraining than either 

SREE or uncertainty.  

AllMass
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Figure 6.2 (a) Cost—SREE tradeoff (b) Cost—Mass tradeoff (c) Cost—Uncertainty tradeoff 
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Figure 6.3 Sampling locations corresponding to solutions from the Cost—SREE tradeoff (a) 19 

sample solution (b) 31 sample solution (c) 44 sample solution 
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The solutions highlighted in the tradeoffs of Figure (6.2) sample between 19 and 44 

locations and are visualized in Figures (6.3) – (6.5) to investigate how the known objective 

conflicts are affecting sampling geometries. Comparison of the 19 sample solutions in Figures 

(6.3a) and (6.5a) show that the least cost solution for the Cost—Uncertainty tradeoff is very 

similar to the least cost solution for the Cost—SREE curve. The 19 sample solution for the 

Cost—Mass curve is identical to the 19 sample solution for the Cost—SREE curve and is not 

shown. The only differences between the solutions in Figures (6.3a) and (6.5a) lie in Zone B, 

where well 17 is sampled in place of well 15, and in Zone C where well 23 is sampled in place of 

well 22, resulting in a 6 percent reduction in the uncertainty measure.  Chapter 5 shows for the 

same test case presented in this chapter that the zone of highest uncertainty is located near X = 

400m and Y = 550m, very near wells 17 and 23, which  explains why these sampling locations 

helped to reduce uncertainty. 

 

Figure 6.4 Sampling locations corresponding to the 31 sample solution from the Cost—Mass 
tradeoff 

 

Figures (6.3b), (6.4), and (6.5b) present the 31 sample, nondominated solutions from the 

Cost—SREE, Cost—Mass, and Cost—Uncertainty tradeoffs, respectively.  The 31 sample  
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Figure 6.5 Sampling locations corresponding to solutions from the Cost—Uncertainty tradeoff 

(a) 19 sample solution (b) 31 sample solution (c) 44 sample solution 
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solutions all affirm that sampling wells along the plume’s outer boundaries and near its leading 

edge are important for reducing SREE, mass error, and uncertainty. The 44 sample solutions 

presented in Figures (6.3c) and (6.5c) from the Cost—SREE and Cost—Uncertainty tradeoffs, 

respectively, show that both SREE and uncertainty are further reduced by sampling areas of high 

concentrations within Zone A and wells within the interior of Zone B.   

As expected, the 44 sample solution shown in Figure (6.5c) uses more locations to 

decrease uncertainty, but note the surprising increase in mass estimation error relative to the 31 

sample solution in Figure (6.5b).  A very interesting multi-well interaction between well 

numbers 1, 27, and 28 [see Figure (6.1b)] causes this unexpected increase in mass estimation 

error.  These wells sample the minimum and maximum concentrations within Zone A.  

Specifically, well 1 provides concentration values that exceed 4500 mg per m3 while wells 27 

and 28 sample locations where there is no PCE.  All of the nondominated designs that sample 44 

locations and include wells 27 and 28 but not well 1 resulted in mass estimation errors that 

exceed 9 percent.  The increased mass estimation error results because wells 27 and 28 in the 

absence of well 1 cause the mass in Zone A to be severely underestimated.  This result identifies 

an Uncertainty—Mass Error conflict. The next section demonstrates how visualization can be 

used to identify additional objective interactions.  

6.4.1.2 Discovering and Understanding Additional Objective Interactions 

For the sake of illustration, the 31 sample cost level is used in this chapter to identify 

potential conflicts among SREE, mass error, and uncertainty.   Figures (6.3b), (6.4), and (6.5b) 

presented the 31 sample, nondominated solutions from the Cost—SREE, Cost—Mass, and 

Cost—Uncertainty tradeoffs, respectively. To improve the clarity of the subsequent comparative 

discussion of these designs, they are referred to as SREE(31), Mass(31), and Uncertainty(31). 
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(a) SREE = 20 percent of maximum value 

 
 
 
 

(b) SREE = 67 percent of maximum value 

 
 
 

(c) SREE = 53 percent of maximum value 

 
 

 
Figure 6.6 Three dimensional cross sectional views of how SREE changes for (a) the SREE(31) 

solution (b) the Mass(31) solution (c) the Uncertainty(31) solution 
 

SREE increases from its minimum value of 0.2 in the SREE(31) solution to 0.67 and 0.53 

for the Mass(31) and Uncertainty(31) solutions, respectively.  Although the SREE performance 

measure provides a ranking of the sampling designs according to the relative accuracy of their 

local estimates, it does not provide a clear understanding of what these relative rankings 

 139



represent. Figures (6.6a) – (6.6c) provide a direct assessment of how the sampling geometries 

presented in Figures (6.3b), (6.4), and (6.5b) are affecting SREE.  Figure (6.6) visualizes how the 

relative local errors in SREE [i.e., ( ))()(*
jestjall ucuc κ−−  in equation (6.4)] vary throughout the 

interpolation domain in terms of milligrams per m3.  Positive values represent the case where the 

PCE concentration estimate )( jest uκc  is overestimated relative to the estimate attained using all 

58 available sampling locations.  Conversely, negative values represent underestimates.  For 

SREE, more than 50 percent of the )(* ucall values were less than 12 mg per m3 and 70 percent 

where less than 20 mg per m3, hence any local errors exceeding ± 5 mg per m3 represent 

significant increases.  The 31 sample solutions visualized in Figure (6.6) clearly illustrate 

significant local errors, which motivated the selection of higher cost 44 sample designs in the 

negotiation stage of this methodology (described below) to reduce local errors within acceptable 

limits.  

Figure (6.6a) shows that the majority of local errors for the SREE(31) solution are found 

in Zones A and B of the interpolation domain, while the local errors are nearly zero in the 

leading edge of the plume.  The SREE(31)’s sampling plan in Figure (6.3b) shows 4 of the 5 the 

wells nearest to the leading edge of the plume are sampled while several wells within Zones A 

and B are unsampled, resulting in increased local estimation errors in these areas of the domain.  

Although this design has the lowest SREE value of the three 31 sample solutions being 

considered, it has the highest mass estimation error at 3.2 percent, showing a potential SREE—

Mass tradeoff.  This result is surprising because minimizing local estimation error throughout the 

interpolation domain would seem to implicitly result in accurate mass estimates.  This 

contradiction can be understood by looking at the Mass(31) solution, which has negligible mass 

estimation error while having the highest SREE value of the three 31 sample solutions.  Figure 
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(6.6b) visualizes the Mass(31) solution’s local estimation errors and provides insight into how 

the SREE and mass error objectives conflict.  The figure shows that local concentrations are 

significantly overestimated in the source area of the plume (Zone A) and severely 

underestimated in large portions of Zones B and C.  In effect, the sampling plan shown in Figure 

(6.4) balances both overestimation and underestimation throughout the plume to yield a mass 

estimate with a coincidentally high relative accuracy while severely sacrificing the quality of the 

interpolated map of PCE (i.e., SREE).  Severe overestimation and underestimation of 

contaminant concentrations can have very negative consequences in correctly assessing risk 

associated with a site.  These results show that global measures such as mass should be counter-

balanced with localized measures such as SREE and uncertainty. 

Figures (6.7a) – (6.7c) show how the local uncertainty estimates change in each of the 

three 31 sample solutions.  These figures show the absolute percentage change of )( juσ  for the 

jth location within the interpolation domain [see equation (6.6)].   It should be noted that a small 

percentage change in the kriging standard error [i.e., )( juσ ] for the jth location yields potentially 

huge changes in uncertainty calculations.  For example, consider a location ju with a mean 

concentration estimate equal to 7 mg per m3 and kriging standard error )( juσ  = 0.2 (typical for 

this case study).  A 4 percent increase in )( juσ causes the 95th percentile estimate for location 

ju  to increase from 182 mg per m3 to 482 mg per m3, representing a 260 percent increase.   

Although the Uncertainty(31) solution has the minimum uncertainty value of the three 31 

sample solutions, it has increased  SREE and mass estimation errors relative to the SREE(31) 

and Mass(31) solutions.  The SREE—Uncertainty and Mass—Uncertainty conflicts occur 

because both SREE and mass error are heavily affected by extreme concentrations, especially  
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(a) Uncertainty = 40 percent of maximum value 
 

   
 
 

(b) Uncertainty = 45 percent of maximum value 
 

 
 
 

(c) Uncertainty = 17 percent of maximum value 
 

 
 

Figure 6.7 Three-dimensional cross sectional views of how Uncertainty changes for (a) the 
SREE(31) solution (b) the Mass(31) solution (c) the Uncertainty(31) solution 

 

within the plume’s source area, while uncertainty is independent of the concentration values and 

is solely a function of how well the sampling locations are distributed throughout the 

interpolation domain.  Figure (6.7b) shows that the Mass(31) solution greatly increased 

uncertainty throughout the interpolation domain relative to the Uncertainty(31) solution in Figure 

(6.7c). Figures (6.6c) and (6.7a) confirm the SREE—Uncertainty conflict. The Uncertainty(31) 
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solution in Figure (6.6c) severely underestimates PCE concentrations within the source area of 

the plume, resulting in its increased SREE value of 0.53, while Figure (6.7a) shows that the 

SREE(31) solution significantly increased uncertainty within Zones A and B of the plume.  The 

increased local uncertainties for the 31 sample solutions from the Cost—SREE and Cost—Mass 

tradeoffs resulted because they lack samples along the plume’s outer boundary or near the zone 

of highest uncertainty centered at X = 400m and Y = 550m [see Figures (6.3)-(6.5)].  

6.4.2 Negotiating a Final Design 

Recall that the LTM application presented in this chapter has more than 500 million 

possible sampling designs.  High order Pareto optimization using the NSGA-II reduced the set of 

designs to be considered to the 1,156-member nondominated set that are optimal in terms of cost, 

SREE, mass error, and uncertainty. The previous sections visualized a total of 7 sampling 

schemes to provide stakeholders and regulators with an improved understanding of their design 

objectives. The next two sections provide an illustrative example of how stakeholders and 

regulators can then negotiate a final compromise sampling scheme.   

6.4.2.1 Bounding Stakeholder Expectations 

The first decision that faces stakeholders is selecting acceptable bounds on each 

objective.  For this example, a conservative cost level of 44 sampling locations was selected to 

reduce costs by nearly 25 percent while minimally increasing the remaining objectives.  Note 

that this example merely illustrates the negotiation process and that higher or lower cost levels 

could be selected. By considering only those designs at the 44 sample cost level, the set of 

potential designs further reduces from 1156 to 46 potential monitoring designs.  

The next step in the negotiation process is to use the objective conflicts that occur in the 

44 sample designs to bound stakeholder expectations and set “acceptable” upper bound values  
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(b) 

 

(c) 

 
Figure 6.8 Objective conflicts between (a) SREE and Uncertainty (b) Mass Error and 

Uncertainty (c) SREE and Mass Error for the 44 sample solutions 
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for the remaining objectives.  The SREE—Uncertainty tradeoff shown in Figure (6.8a) shows 

that increasing SREE beyond 10 percent of its maximum value in the nondominated set has a 

negligible effect on reducing uncertainty. The Mass—Uncertainty tradeoff presented in Figure 

(6.8b) shows that uncertainty can be significantly reduced with less than a 1 percent increase in 

mass estimation error.  Lastly, the SREE—Mass tradeoff in Figure (6.8c) shows that a very 

significant decrease in mass estimation error can be attained for a relatively small increase in 

SREE.  Given these findings, upper bound values for SREE, mass error, and uncertainty were set 

equal to 10%, 1%, and 10%, respectively, as shown in Figure (6.8). 

6.4.2.2 Striking the Balance 

The final step in the negotiation process is to search the nondominated set for designs that 

satisfy the objective bounds [i.e., (Cost = 44, SREE < 10%, Mass Error < 1%, Uncertainty < 

10%)].  Setting these objective bounds reduces the number of possible sampling designs that 

must be considered from 46 to the single compromise solution illustrated in Figure (6.9).  

Although setting objective bounds will not always yield a single solution, it will vastly limit the 

number of designs that must be considered.  The solution shown in Figure (6.9a) reduces 

sampling costs by nearly 25 percent in any given monitoring period while minimally increasing 

uncertainty, maintaining a high quality map of the plume, and accurately quantifying the mass of 

PCE within the subsurface.  Figure (6.9b) shows that the majority of the local PCE estimation 

errors throughout the plume were less than 5 mg per m3.  Figure (6.9c) shows that local 

uncertainty estimates remained unchanged for a large portion of the plume.  Although these 

observations are important, the most important contribution of Figure (6.9) is how the figure 

provides regulators and stakeholders with a direct understanding of the effects of their negotiated 

objective bounds. 
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(a) 

 
 

(b) SREE = 7 percent of maximum value 
 

 
 
(c) Uncertainty = 9 percent of maximum value 
 

 
 

Figure 6.9 Compromise solution’s (a) XY-plane view of sampling locations (b) three 
dimensional cross section of how SREE changes (c) three dimensional cross section of 
how Uncertainty changes 

 

Current standard practice in redundancy analysis uses trial-and-error analysis to eliminate 

sampling locations (see Johnson et al. 1996, Cameron & Hunter 2000, Aziz et al. 2000).  In these 
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methodologies, locations thought to be redundant are eliminated and visualization is used to 

determine the effect of these locations on the quality of the interpolated plume map.  The process 

is repeated for tens if not hundreds of designs until the practitioner is satisfied.  This time 

consuming process does not comprehensively search the decision space or account for multiple 

objectives.  The single compromise solution shown in Figure (6.9) explicitly balances the 

stakeholders’ objectives, required less than a day of computing time, and visualization of only 8 

designs.  Moreover, the optimization methodology used to attain the compromise solution 

provides practitioners with a better understanding of how their design preferences interact with 

the physical monitoring system. 

6.5 Conclusions 

The optimization methodology presented in this chapter demonstrates that algorithms such 

as the NSGA-II that are capable of high order Pareto optimization can serve as interfaces 

between the human decision process and engineered water resources systems.  The LTM 

application used to demonstrate the methodology shows how multiobjective optimization 

combined with visualization can aid practitioners in selecting, understanding, and balancing 

these performance objectives when seeking a single compromise solution.  The monitoring 

application successfully balances the following four objectives: (1) minimizing sampling costs, 

(2) maximizing the quality of interpolated plume maps (i.e., SREE), (3) maximizing the relative 

accuracy of contaminant mass estimates, and (4) minimizing estimation uncertainty. 

 These objectives result in a 4-dimensional Pareto surface that was explored using 2-

dimensional tradeoffs between selected pairs of objectives.  First, objective pairs that are known 

to conflict were explored through visualizing 7 sampling designs taken from the Cost—SREE, 

Cost—Mass, and Cost—Uncertainty tradeoffs. Visualization of these designs enabled 

 147



stakeholders to discover additional objective conflicts and their effects on the physical 

monitoring system. The final step in the methodology builds upon the improved stakeholder 

understanding of design objective interactions to negotiate acceptable bounds for all of the 

performance criteria used in a monitoring application.  These bounds were then used to search 

the high dimensional Pareto set of optimal sampling strategies for a final compromise solution.  

The processes of discovery and negotiation demonstrated in this chapter through the use of high 

order Pareto optimization hold significant potential as tools that can be used in the balanced 

design of water resources systems. 
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