
APPENDIX A. GEOSTATISTICAL METHODS 

A.1 Chicken or the Egg? 

The geostatistical modeling approach requires both structural analysis and specification 

of a positive definite covariance model (or a conditionally negative definite variogram model) to 

represent the theoretical spatial structure.  Structural analysis consists of analyzing available 

concentration data to determine the correlational structure.  The analysis uses historical 

contaminant data to discretely approximate the theoretical variogram )(hγ given in equation 

(A.1) where h  is a distance separation vector (or increment) for two locations ψu  and ψ ′u .  

)( ψuC  is a regionalized variable representing concentration that can be decomposed into its 

mean, )( ψum , and  zero mean random fluctuation, )( ψur , components. 

[ ] [ ] [ ]22 )()()()(var)()( ψψψψψψ ′′′ −+−=− umumuCuCuCuCE  

[ ]2)()()(2 ψψγ ′−+= umumh                                        (A.1) 

The theoretical variogram )(hγ represents the average dissimilarity between two concentrations 

separated by a distance h .  In the ordinary kriging approach, the mean component is assumed to 

be constant (or locally stationary) in which case the trend (or drift) term, [ ]2)()( ψψ ′− umum , in 

equation (A.1) is equal to zero and the theoretical variogram can be deduced directly from 

concentration samples.  For nonstationary phenomena, the ”chicken-and-egg” (Armstrong 1984) 

conundrum exists because the trend term is nonzero and a proper model for the theoretical 

variogram cannot be directly identified using concentration data solely without making an 

assumption on the functional form of the trend [i.e., specifying a mathematical function to model 

[ 2)()( ψψ ′− umum ]  in equation (A.1)]. The next sections of this appendix give a detailed 
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description of the five kriging systems important to this thesis. Note that the kriging systems are 

presented in terms of covariance K( h ), which can be derived from the theoretical variance K(0) 

and the variogram )(hγ  using equation (A.2). 

)()0()( hKKh −=γ                                                        (A.2) 

A.1.1 Ordinary Kriging (OK) in Local Neighborhoods 

The OK estimator presented in equation (A.3) is formulated to provide the Best Linear 

Unbiased Estimate (or BLUE) for contaminant concentration at an unsampled location ju .   
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The ordinary kriging weights are found using equation (A.4), which can be derived from 

equation (A.3) by minimizing the expected estimation errors using the Lagrange multiplier 

method (for a detailed derivation see Kitanidis 1997, Goovaerts 1997). The first equation of 

(A.4) represents the unbiasedness constraint for the OK system and )( jOK uµ is the Lagrange 

multiplier corresponding to this constraint. 
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Solving the linear system represented by equation (A.4) yields the kriging weights used to 

compute each OK estimate and its corresponding estimation variance using equations (A.4) and 

(A.5), respectively. 
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Note as stated previously, the estimation variance is only a function of the theoretical model used 

to represent the variogram and the geometrical configuration of the sampling data (i.e. a function 

of the kriging weights only). The OK approach invokes the intrinsic hypothesis, which assumes 

that mean or trend terms given in equation (A.1) are locally constant but unknown within 

neighborhoods surrounding the current unsampled location (i.e., [ ]2)()( ψψ ′− umum 0≈  in local 

neighborhoods).  This assumption is equivalent to modeling the local trend using a zeroth order 

polynomial. 

A.1.2 Multigaussian Kriging (MGK) in Local Neighborhoods 

The MGK approach to estimation utilizes the normal score transform of the sample data 

and models the contaminant concentrations as a multivariate Gaussian random function, )(uT  

(for details on the transform see Goovaerts 1997). The normal score transform maps the 

asymmetrical discrete sample distribution to a zero-one normal distribution.  Estimation is 

performed using equations (A.3) thru (A.5) on the transformed data while again assuming a 

zeroth order polynomial trend. 

A.1.3 Quantile Kriging (QK) in Local Neighborhoods 

The distributional dependence of OK and MGK, as well as their sensitivity to highly 

skewed sample data, led to the development of non-parametric or distribution-free kriging 

approaches using indicator (Journel 1983) or rank-order (Journel & Deutsch 1997) 

transformations of the data.  Indicator kriging uses a binary transformation of sample data where 

the data value is set to either 1 or zero depending on whether is it is greater than or equal to a 

user specified threshold value.  The indicator approach requires nq threshold indicator transforms 

each of which requires its own variogram and kriging system.  Correctly quantifying nq 

variograms is generally not possible in plume interpolation applications due to data limitations 
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(see Chilès & Delfiner 1999).  Moreover, solving equations (A.4) and (A.5) for each of the nq 

cutoffs for every point in the interpolation represents a severe computational limitation of the 

method.  

These limitations motivated the development of quantile kriging (Journel & Deutsch 

1997), which transforms concentrations into standardized ranks (or quantiles) using equation 

(A.6) and computes estimates in quantile space using OK (see Journel & Deutsch 1997 and 

Juang et al. 2001). 
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The transform consists of ranking the concentration data in ascending order and dividing these 

ranks by one plus the total number of sample data N.  Figure (5.2) graphically illustrates quantile 

or standardized ranks transform. The ith sample is assigned the probability that )(xc  is less than 

or equal to its concentration value [F(c) in Figure (5.2)]. Estimates and estimation variances are 

computed in quantile space using equations (A.4) and (A.5). The empirical cdf of the sample 

data is also used to back transform estimates from quantile space to concentration space (for 

details see Juang et al. 2001) Since quantiles are known to have a uniform distribution, this fact 

can be used in conjunction with the estimation variances to compute non-parametric local 

uncertainty estimates at unsampled locations in the interpolation domain (see Chapter 5). 

A.1.4 Kriging with a Trend (KT)) 

The KT approach (also termed “universal kriging”) models concentrations as a 

regionalized variable, )(uc , that is composed of the sum of a smoothly varying mean component 

)(um termed a trend and a second order stationary residual fluctuation )(ur .  The KT estimator 

for contaminant concentration at an unsampled location ju  is shown in equation (A.7) below. 
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The KT estimator requires the specification of a linear of combination of known functions of 

spatial coordinates, )(ups , to model the trend component of the concentration.  Typically the 

functions represent the sum of s-order monomials composing the overall Sth order polynomial 

used to model the trend. The kriging weights  are computed using the linear system shown in 

equation (A.8), which is derived by minimizing the expected estimation error for equation (A.7). 
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Note that this system has S+1 constraints to enforce the unbiasedness condition and the 

stipulation that the monomials of the second equation of (A.8) are filtered from the system.  

After the kriging weights are computed using (A.8), equation (A.9) is used to compute the 

estimation variance at each unsampled location ju . 
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 The KT approach requires the practitioner to explicitly specify a functional form for the 

trend term [ 2)()( ψψ ′− umum ] in equation (A2.1) and subsequent structural analysis of the 

residual to attain its covariance function )(hKr .  Inference of the proper variogram is difficult 
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because the concentration data are not directly reflective of the residual function )(u

1+

r  thereby 

causing the “chicken-and-egg” (Armstrong 1984) conundrum. The proper model for the 

theoretical variogram cannot be directly identified using concentration data solely without 

knowing the functional form of the trend, which itself cannot be deduced without knowing the 

proper model for the theoretical variogram. Note the OK system in equation (A.3) can be directly 

derived from the KT system by modeling the trend as a zeroth order polynomial (s = 0) set equal 

to 1 in equation (A.7).  Goovaerts (1997) shows that the only difference between the OK and KT 

systems results from the practitioner’s arbitrary decision to explicitly model the local trend as 

either a constant or a polynomial of order S.   

A.1.5 Intrinsic Kriging (ItK) 

The KT and variations of OK discussed above all require the practitioner to accept the 

dichotomy of the regionalized variable representing contaminant concentrations into a smoothly 

varying mean component and a stochastic fluctuation.  Several studies have shown that this 

assumption is often an arbitrary choice that can significantly bias both estimates and their 

respective estimation variances (Volpi & Gambolati 1978, Hughes & Lettenmaier 1981, Russo & 

Jury 1987, Journel & Rossi 1989, Crawford & Hergert 1997).  Intrinsic random function of 

order k (IRF-k) theory avoids the above dichotomy by not requiring the explicit specification of 

a model for the mean trend.  Instead, the ItK approach defines allowable linear combinations of 

the sample data, termed generalized increments, that are implicitly capable of filtering trends 

from the data, facilitating a more direct measure of the underlying spatial structure of 

contaminant concentrations.  The approaches discussed in previous sections model spatial 

structure using pairs of sample data to deduce the variogram shown in equation (A.1). 

Alternatively, IRF-k theory defines generalized increments of order k to be ( k ) point 
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increments that are capable of filtering polynomial trends of degree less than or equal to k 

(Chilès & Delfiner 1999). Generalized increments, as the name implies, generalize the inference 

of spatial structure from a 2-point to a ( 1+k ) point measure of spatial correlation termed the 

generalized covariance )(hG . 

In the ItK approach, concentration is modeled as an IRF-k, which for the proper 

generalized increment (or allowable linear combination of sample data) )(uC is a stationary 

random function with a zero mean and a covariance equal to )(hG . It has been shown that the 

ItK system is identical to the UK system presented in equations (A.7) thru (A.9) except for the 

substitution of the generalized covariance function )(hG for the 2-point residual covariance 

function )(hKr  (for details see Chilès & Delfiner 1999).  The ItK method was formulated with 

the goal of avoid the estimation biases caused by the explicit specification of a functional trend 

model.   
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