
3 OPTIMIZATION IN PARETO SPACE 

3.1 Introduction 

Chapters 1 and 2 showed that LTM design often requires the exploration of vast decision 

spaces while balancing conflicting design objectives (e.g., reducing sampling costs while 

maintaining an acceptable picture of the groundwater contamination plume).  The size and 

complexity of these decision spaces motivated the use of multiobjective GAs, primarily in this 

thesis because their population-based approach to multiobjective search and optimization has 

been shown to be more efficient than other more traditional optimization techniques (see Deb 

2001). The purpose of this chapter is to demonstrate that multiobjective genetic algorithms are 

capable of navigating LTM decision spaces while accurately quantifying design tradeoffs.  

Moreover, this chapter demonstrates how theoretical work from the genetic and evolutionary 

field can be used to improve real-world applications of multiobjective GAs by following the 

recommendations of Goldberg (1998).   

Goldberg (1998) compels GA users to seek  “…GAs that solve hard problems quickly, 

reliably, and accurately—through a combination of effective (1) design methodology, (2) design 

theory, and (3) design.”  Goldberg (1998) also describes the control map concept for GAs where 

theoretical relationships for population sizing, selection pressure, crossover, and mutation are 

used to find values for the control parameters that identify a performance “sweet spot” where 

efficient search and optimization is enabled.  The design theory for efficient GAs and the concept 

of the control map for GA performance are largely derived from Goldberg et al. (1992a) and 

Thierens (1995), respectively.  Although these studies provided a theoretical basis for the design 

of GAs, practitioners still face the difficulty of using relationships that require the specification 

of parameters that are not readily identifiable in practice such as building block (BB) size and 
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order.  BB’s blocks are highly relevant subsets of the binary digits representing designs and are 

used by the GA to construct optimal solutions. 

This difficulty was first addressed by the simple GA design methodology presented by 

Reed et al. (2000b) for single objective applications. This chapter extends Reed et al. (2000b) to 

multiobjective applications, presenting a design methodology for the Nondominated Sorted 

Genetic Algorithm (NSGA) that enabled the algorithm to accurately quantify 2 dimensional 

tradeoffs.  This chapter has been excerpted from Reed et al. (2001a).  

3.1.1 Previous Work 

Evolution-based multiobjective optimization (EMO) methods are pragmatic tools for 

solving problems with large decision spaces and conflicting objectives. Schaffer (1984) provided 

the seminal work within the EMO field in which a vector evaluated genetic algorithm (VEGA) 

was designed to search decision spaces for the optimal tradeoffs among a vector of objectives.  

Subsequent innovations in EMO have resulted in a rapidly growing field with a variety of 

solution methods that have been used successfully in a wide range of applications (for reviews 

see Fonseca & Fleming 1995, Coello 1999, Van Veldhuizen 1999). These solution methods have 

garnered increased attention over the past decade and have been applied in a variety of contexts 

within the water resources field.   

Cieniawski (1993) is one of the earliest studies in water resources to utilize EMO 

methods.  The study is an empirical comparison of the performance of VEGA relative to niching-

based techniques from Goldberg & Richardson (1987) for identifying a monitoring network to 

detect potential contaminant leaks from a hazardous waste landfill.   Cieniawski (1993) and 

Cieniawski et al. (1995) clearly espouse the efficiency of EMO methods in quantifying tradeoffs 

between maximizing a groundwater-monitoring network’s reliability in detecting contaminants 

 15



and minimizing the area of contaminated aquifer at the time of first detection.  Ritzel et al. 

(1994) compared the performances of VEGA, a domination ranking-based genetic algorithm 

(Pareto GA), and mixed integer chance constrained programming (MICCP) in solving a 

multiobjective, groundwater pollution containment application. Halhal et al. (1997) successfully 

incorporated Pareto domination ranking into the messy genetic algorithm (Goldberg et al. 1989) 

to quantify the tradeoffs in rehabilitating water distribution networks.  Gupta et al. (1998) 

combined a downhill simplex method with an evolutionary search strategy implementing Pareto 

ranking to seek tradeoff solutions when calibrating hydrologic models.  These studies show how 

EMO methods have been adapted to solve a variety of water resource applications. This chapter 

focuses on the Nondominated Sorted Genetic Algorithm (NSGA) because Zitzler et al. (2000) 

showed that the NSGA performed as well or better than a representative sampling of EMO 

methods on a suite of test problems with properties similar to our application. 

3.1.2 Motivation and Scope 

One of the difficulties in applying EMO methods is identifying parameter settings that 

ensure efficient navigation of the decision space and adequate coverage of the Pareto frontier 

(Van Veldhuizen & Lamont 2000, Cieniawski 1993). Most practitioners use trial-and-error runs 

to identify the best parameter settings, but this approach is quite time consuming, particularly for 

applications with computationally intensive fitness functions.  A major goal of this chapter is to 

develop guidelines for using theoretical relationships from the genetic and evolutionary 

computation literature to ensure that the NSGA efficiently navigates the problem’s decision 

space. These guidelines are then applied to quantify the tradeoffs implicit in designing sampling 

strategies for a long-term groundwater-monitoring network.  Additionally, a niching-based elitist 
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enhancement of the NSGA is also presented, which substantially improves coverage of the 

Pareto frontier. 

3.2 Monitoring Application 

The test case developed in this chapter uses data drawn from a 38 million-node flow-and-

transport simulation performed by Maxwell et al. (2000).  The simulation provided realistic 

historical data for the migration of a hypothetical perchloroethylene (PCE) plume in a highly 

heterogeneous alluvial aquifer.   

 

Figure 3.1 The 50 potential sampling locations (designated by the x's above) within a 20 well 
multi-level monitoring network 
 

The hydrogeology of the test case is based on an actual site located at the Lawrence Livermore 

National Laboratory in Livermore, California, currently being managed under the United States’ 

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) program. 
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Data were provided for a total of 50 hypothetical sampling locations within the 20-well multi-

level monitoring network shown in Figure (3.1). The data represent a snapshot in time, 10 years 

after a continuous point source began contaminating the aquifer system. The monitoring wells 

can sample from 1 to 3 locations along their vertical axis and have a minimum spacing of 60-m 

between wells in the horizontal plane.  

The site is assumed to be undergoing long-term monitoring, in which groundwater 

samples are used to assess the effectiveness of current remediation strategies. During this long-

term monitoring phase of a remediation, sampling and laboratory analysis can be a controlling 

factor in the costs of remediating a site. Quarterly sampling of the entire network in Figure (3.1) 

has a potential cost of over $70,000 annually for PCE testing alone, which could translate into 

millions of dollars if the site had a typical life span of 20 to 30 years.  

The significance of these costs has motivated the development of several approaches for 

reducing the fiscal burden posed by long term monitoring by identifying redundant wells in 

groundwater monitoring networks that can be omitted from future sampling periods (Cameron & 

Hunter 2000, Aziz et al. 2000, Reed et al. 2000a, Rizzo et al. 2000).  These methods define 

sampling points to be redundant when they minimally affect interpolation-based plume 

estimates.  They employ a variety of single objective optimization techniques ranging from a 

simple genetic algorithm to trial-and-error heuristics. The objective of these methods is to 

minimize sampling costs while incorporating performance objectives associated with plume 

estimates as constraints. The management model presented in this work builds on these previous 

methods by introducing a sampling design methodology that explicitly identifies the tradeoffs 

encountered when reducing monitoring costs. 
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3.2.1 Problem Formulation 

To identify which wells are redundant, this chapter employs a local concentration 

approach with the intention of attaining the best-interpolated picture of the PCE plume for the 

least cost.  Equation (3.1) gives the multiobjective problem formulation for quantifying the 

tradeoff between sampling costs and maintenance of a high quality interpolated picture of the 

plume. 
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F( κx ) is a vector valued objective function whose components [f1( κx ), f2( κx )] represent the cost 

and squared relative estimation error (SREE), respectively, for theκ th monitoring scheme 

κx taken from the collection of all possible sampling designs Ω .  Equation (3.2) defines the 

binary decision variables representing the κ th monitoring scheme. 
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If the ith well is sampled it is assumed that all available locations along the vertical axis of 

that well will be sampled at a cost of .  ranged from $365 to $1095 for 1 to 3 

samples analyzed for PCE solely (Rast 1997).  Sampling all available levels within each well 

reduces the size of  from 2

)(iCS )(iCS

Ω 50 to 220 where 50 and 20 represent the total number of sampling 

locations and monitoring wells (nwell), respectively.  Reducing the size of Ω  enabled the entire 
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decision space of this application to be enumerated. Enumeration was employed to identify the 

true Pareto frontier so that the performance of the NSGA under different parameter settings 

could be rigorously tested. 

The SREE provides a measure of how the interpolated picture of the plume using data 

only from wells included in theκ th sampling plan compares to the result attained using data from 

all available sampling locations.  The measure is computed by summing the squared deviations 

between the PCE estimates using data from all available sampling locations, )(*
jall uc , and the 

estimates based on theκ th sampling plan )( jest ucκ  at each location ju  in the interpolation 

domain. Each ju  specifies the coordinates for the jth grid point in the interpolation domain.  The 

interpolation domain consisted of a total of 3300 grid points (nest in equation (3.1)). The PCE 

estimates used in the calculation of the SREE for each of the sampling designs were attained 

using the nonlinear spatial interpolation method described below. 

3.2.2 Nonlinear Spatial Interpolation 

The interpolation method used in this chapter is a variant of the scheme used by Barry 

and Sposito (1990) in their analysis of tracer plumes at the Borden site located in Ontario, 

Canada. The Barry and Sposito (1990) interpolation method was selected because it requires 

minimal modeling assumptions and it has been successfully applied to three-dimensional 

historical data. Barry and Sposito (1990) interpolated the Borden tracer data using 7 fitting 

parameters with nonlinear least squares. This chapter simplified the interpolation scheme to use 3 

fitting parameters in a nonlinear least squares version of inverse distance weighting. Neglecting 4 

of the 7 fitting parameters did not appreciably affect the cross-validation residuals and improved 

the algorithm’s stability.  Additionally, using fewer fitting parameters reduced the size of the 
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Jacobian matrix and the number of iterations required to evaluate each sampling design, enabling 

Ω to be enumerated.  

Equation (3.3) shows the interpolation function used in this chapter, which estimates of 

PCE concentration )( jest uκc  at each unknown location ju  by the weighted sum of the nsamp(κ ) 

total samples c( ψu ) taken in theκ th sampling scheme.  

∑
=

=
)(

1
)(),()(

κ

ψ
ψψ

κ
nsamp

tjjest wucuuwuc                                                     (3.3) 

The weights for each of the samples in theκ th sampling plan are calculated as a function of the 

distance between the ψ th sample and the jth grid point in the interpolation domain as shown in 

equation (3.4). 
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The wt factor is the sum of the nsamp(κ ) weights calculated using equation (3.4) and serves to 

scale the system such that the weights sum to one.  The parameters α1, α2, and α3 are fitting 

parameters that were used to minimize the cross-validation residuals for each of the sampling 

designs considered in this chapter. 

Equation (3.5) gives the cross-validation estimation method used in this chapter to fit the 

α-fitting parameters shown in equation (3.4) to the data provided by each sampling plan (Barry 

and Sposito 1990). 
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The cross-validation method minimizes the sum of the squared residuals S(κ) between each of 

the actual PCE concentrations )( ψuc  and their interpolated estimates based on the (nsamp(κ) – 

1) remaining data c( hu ) in theκ th sampling plan.  Equation (3.5) was solved for every sampling 

plan considered in this chapter using the Levenberg-Marquardt nonlinear least squares solution 

method (Moré 1977).  The Levenberg-Marquardt solution technique implicitly requires that the 

number of data points in the system must exceed the number of fitting parameters. This 

requirement necessitated that the monitoring designs considered in this chapter have a minimum 

of four PCE samples. 

3.3 The Basics of the NSGA 

The NSGA utilizes the Darwinian process of natural selection to effectively search for 

solutions that are optimal across a vector of objectives.  The algorithm is very similar in form to 

the simple genetic algorithm (sGA), in that it exploits the operators of selection, crossover, and 

mutation when building a set of optimal solutions.  The performance of both algorithms can be 

described using the building block (BB) theory presented by Holland (1975) and Goldberg 

(1989).  For both the NSGA and sGA, highly fit designs have a higher probability of being 

selected to mate and pass their traits (or BBs) to succeeding generations.  Stochastic remainder 

selection was used in this chapter as recommended in Srinivas & Deb (1995). The operators of 

crossover and mutation are identical for the two algorithms.  Crossover (occurring with 

probability pc) exerts an innovative force on the system by allowing favorable traits from parent 

designs to be juxtaposed in offspring that possess higher relative fitness values (Thierens & 

Goldberg 1993).  Mutation locally refines solutions by randomly changing bit values (with a 

probability of pm) from 0 to 1 or vice versa within a design’s genotype.  The difference between 

the NSGA and the sGA lies in how fitness is assigned. Unlike the sGA, the NSGA evaluates 
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sampling designs in terms of a vector of objectives.  A sampling design cannot be assessed in 

terms of its performance in any single objective because it may perform poorly with respect to 

the remaining objectives.   The NSGA employs the concepts of Pareto dominance and niching to 

assign fitness values to sampling designs in two steps described below (Srinivas & Deb 1995).  

3.3.1 Pareto Dominance 

The first step in fitness assignment employs the Pareto dominance concept defined in 

equation (3.6), using notation adapted from Van Veldhuizen & Lamont (2000). 

( ))()(:),1()()(,),()( xfxfnxfxfiffxFxF obj ′<∈∃∧′≤∀′ ββββ ββp                    (3.6) 

Equation (3.6) states that a design x dominates another design x ′  (represented by 

)()( xFxF ′p ) if and only if it performs as well as x ′  in all nobj objectives and better in at least 

one (assuming minimization of all objectives). The NSGA identifies nondominated individual 

designs within the current population and assigns an arbitrary dummy fitness value to each of 

them.  These individuals are all initially assigned the same fitness value to ensure that they have 

an equal likelihood of being selected to pass their traits unto latter generations; these designs 

compose the first nondominated front.   

3.3.2 Niching & Sharing 

The second step in fitness assignments for the individuals in the first front utilizes the 

concept of niching (for more details see Goldberg & Richardson 1987, Deb & Goldberg 1989, 

Mahfoud 1995, Horn 1997) to ensure that the NSGA finds a diverse set of solutions defining the 

entire extent of the tradeoff (or Pareto front) among the objectives.  Extending the “natural 

selection” analogy to include the phenomena of niching and speciation helps to satisfy this goal. 

Horn (1997) defines niching as a “form of cooperation” where there is “… the localization of 

competition around finite, limited resources (niches), resulting in the lack of competition 
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between such areas, and causing the formation of species for each niche.”  Niching allows the 

NSGA to form stable subpopulations of sampling designs (species) each of which are well 

adapted to search for nondominated solutions specific to subspaces (niches) in Ω.  The NSGA 

elicits niche formation by treating dummy fitness as a limited resource, which is shared by 

sampling designs using the relationship given in equation (3.7) (Goldberg & Richardson 1987, 

Srinivas & Deb 1995). 
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The value of the fitness sharing function ( )[ ]κκ ′,dSh  ranges between 0 and 1 for two sampling 

designs κ and κ ′depending on the ratio of their distance from one another ),( κκ ′d  and the 

niche size defined by the niche radius shareσ . The sharing function measures the similarity 

between designs ranging from completely dissimilar (Sh = 0) to being identical (Sh = 1). The 

distance term ),( κκ ′d can measure similarity in several ways that are discussed in the next 

section. 

The third step in assigning the fitness values to the nondominated set identified in step 1 

consists of dividing each individual’s dummy fitness by the sum of all of its sharing function 

values (termed the niche count) as shown in equation (3.8).   
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When these three steps are completed, the individuals in the first front are removed from 

consideration and the remaining population members undergo nondomination ranking and 

sharing to yield the second nondominated front. These individuals are assigned the minimum 
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shared fitness value of the first front decremented by a value fD∆ .  This process continues until 

the entire population is assigned to the fn th front and given a shared dummy fitness value.  After 

shared dummy fitness values have been assigned, the NSGA is operated the same as the sGA, 

constructing the Pareto front using the traditional operators of selection, crossover, and mutation. 

See Goldberg (1989) for more background on these operators. 

3.4 Multiobjective Search & Optimization 

3.4.1 Performance Considerations 

Construction of the Pareto frontier requires that the NSGA be effectively designed to 

navigate a problem’s decision space.  Effective design of the NSGA entails careful consideration 

of the factors controlling the algorithm’s performance.  Zitzler et al. (2000) concluded that 

population sizing and elitism are the most influential factors influencing the performance of 

EMO methods.  Elitist operators provide a means of ensuring that the best individuals are 

identified and allowed to pass their traits to latter generations.  Unlike sGA applications, EMO 

methods cannot simply pass a single individual with the current best objective function value 

into the next generation.  Multiobjective optimization requires that some fraction of the solutions 

along the current nondominated front be passed on to the next generation.  The next four sections 

of this chapter describe an NSGA design methodology that integrates several relationships from 

the genetic and evolutionary literature to identify effective population sizes and determine the 

niching parameters.   

This methodology is meant to serve as a guide for applying the NSGA to other 

applications. Additionally, an elitist strategy is presented with the aim of using niching to guide 

the selection of elite population members and maximize online performance (the term online 

performance means that only the nondominated individuals within a single generation are 
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considered when assessing the NSGA’s performance). Performance is finally discussed in the 

context of selection pressure in the fourth and final section of the NSGA design methodology. 

3.4.1.1 Population Sizing: Ensuring Genetic Diversity 

The first step in designing an efficient NSGA is to perform initial problem analysis to 

determine a range of population sizes.  The goal of this initial step is to provide a means of 

selecting the best population size for our application with respect to a single random seed.  

Computationally intensive objective functions that occur in many water resources applications 

require that effective parameters settings for the NSGA be identified using a minimum number 

of runs, because a single run can take days or even weeks.  The range of population sizes 

considered in this chapter were attained using relationships from Mahfoud (1995), who derived 

population-sizing relationships for genetic algorithms employing niching to solve multimodal 

problems.  The relationships used in this chapter were designed for applications with multiple 

optima that have identical fitness values.  Recall, the NSGA employs niching using members of 

the same nondominated set with identical dummy fitness values, which makes the population-

sizing relationships in Mahfoud (1995) relevant to NSGA applications.   

Equation (3.9) gives population size estimates assuming that crossover will not disrupt 

the traits (or BBs) required to assemble optimal solutions. 
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 The relationship was derived as the minimum population size N required to maintain q niches 

for g generations with reliability γ for the special case when the niches have identical fitness 

values.  Disruption adversely affects the NSGA’s performance when crossover between a pair of 

parent strings destroys traits that are essential to the evolution of nondominated individuals in 
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subsequent generations (for more details see Mahfoud 1995, Zitzler et al. 2000, Van Veldhuizen 

& Lamont 2000). Equation (3.10) accounts for the potential disruptive effects of crossover in 

population size estimates (Mahfoud 1995). 
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Equation (3.10) represents the minimum population size N required to maintain q niches for g 

generations with reliability γ given a probability of crossover pc and probability of disruption pd.  

The probability of disruption pd can be conservatively estimated using equation (3.11), which 

assumes the maximally disruptive operator of uniform crossover. In uniform crossover, the 

binary values at each bit position in two individual strings is swapped with probability pc. 
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  For the binary-coded NSGA, the decision variables ( κx in equation (3.1)) representing a 

potential design (termed its phenotype) are converted to binary representations and concatenated 

into a string of binary variables (termed the design’s genotype) of length l.  The traits or (BBs) 

are actually small subsets of binary digits from each design’s genotype.  Equation (3.11) 

computes the probability that the BBs will be disrupted as a function of their order O(m), which 

is the smallest number of fixed value digits in a design’s genotype that are relevant to the final 

solutions of the problem. 

 As was the case in the sGA design methodology presented by Reed et al. (2000b), the 

actual size of BBs in an engineering application, O(m) are unknown, requiring the practitioner to 

employ conservative assumptions and problem-specific information to calculate a potential range 

of population sizes from equations (3.9) and (3.10).  The pd was set by assuming that the BB 
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order O(m) may range from 1 to 5 because higher order BBs will be disrupted by the operators of 

selection, crossover, and mutation (Goldberg 1989), following a similar approach presented by 

Reed et al. (2000b) for designing sGAs.   

The remaining parameters in equations (3.9) and (3.10) were set as follows. The 

population size calculations assumed a reliability of 85 percent (γ = 0.85).  The number of 

generations until convergence g can be estimated to fall within the range [2l, llnl] where l is the 

binary string length of each design (Thierens et al. 1998, Thierens & Goldberg 1994). Mahfoud 

(1995) states that equations (3.9) and (3.10) are not sensitive to the parameter value g and 

recommends that the user set the value of this parameter to be greater than or equal to the 

number of generations they expect to run the algorithm. For these reasons, g was set equal to 2l 

(40 generations) for this chapter. A majority of EMO applications use a value for pc falling 

within the range [0.6, 0.9] (Fonseca & Fleming 1995, Coello 1999, Van Veldhuizen 1999, Horn 

1997).  In this application, pc was set equal to 0.6 to reduce the potential for disruption and the 

resulting population size estimates.  

The number of niches q was set using information specific to the tradeoff being sought 

between cost and SREE in this application.  The discussion of the spatial interpolation stated that 

the number of PCE samples c( ψu ) ranged between a minimum value of 4 and a maximum of 50, 

yielding a tradeoff with a maximum of 46 discreet cost levels.  The goal of this application is to 

find the minimum SREE for each of these discreet costs levels.  The number of niches was set 

equal to 40, which represents a goal of attaining over 85 percent of the points in the Pareto 

frontier.  

Using these parameters in equations (3.9) – (3.11) yielded six population size estimates 

ranging from a minimum value of 370 to a maximum of 870.  The lower bound population size 
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estimate of 370 assumes that crossover will not disrupt BBs. The remaining five population size 

estimates account for disruption of BBs with orders, O(m), ranging from 1 to 5. Given this range 

of population sizes, the computational complexity of using the NSGA to solve this problem was 

estimated by multiplying N by the number of generations g to attain the total number of function 

evaluations. Function evaluations took an average time of 0.04 s on a Dell XPS T800r running 

Windows NT, yielding estimated total run times between 10 and 25 minutes.  

Finally, it should be noted that both equations (3.9) and (3.10) assume that mutation is 

minimally disruptive.   This assumption was accounted for by setting pm to be equal to 1  

(DeJong 1975, Schaffer et al. 1989), which limits the number of mutations to l and reduces the 

operator’s influence as N increases.  In this application, the optimal population was determined 

by running the NSGA for each of the six estimates and choosing the run that best defined the full 

extent of the tradeoff between cost and SREE. 

N/

3.4.1.2 Sharing: Sizing of the Niche 

An important component of ensuring that the NSGA converges to the Pareto frontier is 

properly setting the size of niches represented by shareσ  in equation (3.7).  Deb & Goldberg 

(1989) provide guidance for setting this parameter in both phenotypic and genotypic space.  

Recall that a sampling design’s phenotype is the floating-point representation of each of its 

decision variables.  Additionally, the design’s genotype is its concatenated binary representation 

(or its chromosome).  Equation (3.7) requires that the distance ),( κκ ′d  between 2 individuals be 

compared to shareσ  in order to compute the sharing function values used to assign fitness. If the 

individuals are within shareσ  distance of each other, their fitness is penalized to encourage future 

generations to spread along the entire Pareto frontier. 
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Two different distance metrics are used to compare the relative magnitudes of ),( κκ ′d  

and shareσ .  In genotypic space, ),( κκ ′d  is equal to the Hamming distance between the 

chromosomes representing individuals κ and κ ′ .  The Hamming distance is simply the total 

number of positions in the binary strings that have different values.  In phenotypic space, the 

Euclidean distance metric shown in equation (3.12) is used to calculate the distance between 

individuals. 
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For this application, the total number of decision variables (npar) is equal to the number of 

monitoring wells, nwell in equation (3.1). 

 To determine the appropriate size of shareσ  for a particular problem, three approaches can 

be taken. These approaches are described below in order of increasing domain-specific 

knowledge required. Deb & Goldberg (1989) derived equation (3.13) as a guide for practitioners 

for sizing niches in genotypic space by deriving shareσ  to represent “…the maximum bits of 

difference allowed between the strings to make q-subspaces [or niches] in the solution space”. 
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Equation (3.13) assumes that the niches are uniformly spaced with each niche apportioned 1/q of 

the decision space (Deb & Goldberg 1989). The equation represents a binomial distribution with 

a probability of 0.5, which can be solved for shareσ  using the cumulative binomial distribution 

tables when string lengths l are less than or equal to 25 bits (indexed by b above).  In this 

chapter, the chromosomes have a length of l = 20 and the number of niches q = 40, which 

resulted in a genotypic shareσ  equal to 5.  For longer string lengths, the binomial distribution can 
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be approximated with the normal distribution. In this case, equation (3.14) from Deb & Goldberg 

(1989) can be used, where the “… z* corresponding to the fraction 1/q may be found from a 

cumulative normal distribution chart”.  

( )                                                   (3.14) lzlshare *
2
1

+=σ

The second approach for selecting shareσ  is for phenotypic space. Deb & Goldberg (1989) 

derive shareσ  in phenotypic space where “… each niche is enclosed in a p-dimensional 

hypersphere of radius shareσ  such that each sphere encloses 1/q of the volume of the space”.  

Equation (3.15) is the resulting expression for the phenotypic niche radius, which was found to 

have a value of 1.859 in this chapter. 
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Phenotypic sharing has been shown to outperform genotypic sharing in most previous 

applications (Fonseca & Fleming 1995, Coello 1999, Van Veldhuizen 1999, Horn 1997, 

Mahfoud 1995).   

Finally, an additional form of phenotypic sharing has been employed successfully in 

other applications (Fonseca & Fleming 1995, Horn 1997) where the distance metric between 

individuals is calculated in objective space.  Horn (1997) provides guidance to practitioners for 

sizing niches in objective space using a geometric approach similar to the Deb & Goldberg 

(1989) phenotypic niche sizing method given in equation (3.15).  The method requires that the 

maximum and minimum values of the objectives be known a priori.  This approach was not used 

in this chapter because of the discrete nature of the sampling costs. Moreover, the maximum 

value of the SREE could not be calculated a priori.   
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The niche sizing relationships given by Deb & Goldberg (1989) and described above 

have been shown to be robust for a variety of problems (Goldberg et al. 1992b, Horn 1997) and 

will be analyzed in greater detail in the results section of this chapter. 

3.4.1.3 Elitism: Seeking the King of the Niche 

Zitzler et al. (2000) showed that elitism is one of the most important factors affecting the 

performance of EMO methods.  A variety of elitist strategies have been used previously, usually 

consisting of maintenance of a population of nondominated solutions outside of the normal 

operators of the given EMO method being employed (for more details see Ishibuchi & Murata 

1996, Bäck 1996, Parks & Miller 1998, Zitzler & Thiele 1999).  Zitzler et al. (2000) state the 

primary question practitioners must answer when using elitist strategies as: “When and how are 

which members of the elite set re-inserted into the population?”.  The elitist strategy employed in 

this chapter was designed to use previously derived niching relationships to answer this question 

and maximize the online performance of the NSGA.  In an elitist sGA, the best member in the 

population at generation t, if not present in the new population resulting from selection, 

crossover, and mutation at generation (t+1), randomly replaces one member of the population.  

For the NSGA, sharing provides niches that represent stable subpopulations that search for 

nondominated solutions in subspaces of Ω.  Conceptually, the elitist strategy proposed in this 

chapter is very similar to the sGA, in that the current best individual in a given niche at 

generation t, if not present in generation (t+1), is inserted into that subpopulation, ensuring that 

its traits are available for subsequent search for the Pareto front. 

 This strategy was implemented by defining eliteσ  or the elite radius, which is a parameter 

that allows the user to easily manipulate the amount of elitism.  The elite radius defines the 

distance (either genotypic or phenotypic) beyond which members of the current nondominated 
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set are considered independent from one another.  Only independent members of the 

nondominated set are considered for insertion in the next generation.  For this application, 

shareelite σσ ≈  which means that only one representative of each niche in the current 

nondominated set is considered for elitist reproduction into the next generation.  The elitist 

solutions were selected in the four steps shown below from the nondominated set (or first front) 

at each generation t. 

Step 1:  Randomly select an objective fβ for β equal 1 to nobj 

Step 2:  Flip a coin to determine whether to start with either the member in the current  

 nondominated set with the maximum value of fβ or the member with the minimum value. 

Step 3:  Identify the next point in the nondominated set that satisfies the following conditions:  

(1) Is a distance greater than eliteσ  from the current solution 

(2) Is the closest member of the nondominated set to the current position  

If none exist, then elitist reproduction is ceased or not performed at all. 

Step 4:  Repeat Step 3 until elitist reproduction is ceased. 

This approach identifies a niched elitist set by systematically stepping through the current 

nondominated front from one end to the other. After the elitist set of solutions is selected using 

the above steps, those members who are not represented in generation (t+1) randomly replace 

individuals within that population.  Setting the elite radius equal to the niche radius worked well 

for this application, but the elite radius parameter allows the practitioner to directly manipulate 

the elitist selection pressure for other applications where this rule-of-thumb may not work as 

effectively.   
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The importance of elitism in the performance of the NSGA Zitzler et al. (2000) relates 

directly to the concepts of genetic drift and selection pressure.  Genetic drift occurs when 

promising solutions in the population do not experience sufficient selection pressure and 

converge to non-optimal values (drift stall) under the influence of crossover and mutation. 

Elitism increases selection pressure by ensuring that the traits of nondominated individuals 

remain in the population for use in later generations. 

3.4.1.4 Selection Pressure: Avoiding Drift Stall 

The importance of elitism in the performance of the NSGA motivated a further analysis 

of the role that selection pressure has on the algorithm’s performance.  Stochastic remainder 

selection selects a particular individual using the ratio of the individual’s fitness and the average 

fitness of the current population in generation t.  Recall from the introduction to the NSGA 

above that selection is based on dummy fitness values, which are decremented by a constant 

value  for each of the  successive fronts within the population.  For example, analysis of 

the initial random population of 760 individuals used in the elitist runs discussed in the results 

section, shows that the expected number of copies of members in the nondominated set in the 

next generation had an average value of 1.7.  The expected number of members from the 10

fD∆ fn

th and 

20th fronts in the next generation was 1.45 and 1.25, respectively.  Although members of 

dominated fronts are expected to receive fewer copies than the nondominated front, the relative 

difference between 1.7 and 1.25 is small, which gives rise to an increased potential for drift stall 

to occur.   

 This increased potential for drift stall motivated an analysis of the effect of scaling the 

fitness of successive fronts on the NSGA’s performance.  The dummy fitness values for 

successive fronts are scaled using a scaling coefficient Sc whose value is less than one, such that 
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the minimum fitness in each front is guaranteed to be at least (1-Sc) percent higher than the 

maximum fitness in the front that immediately succeeds it.  The scaling-based fitness 

assignments replace the constant decrement fD∆ assignments used previously in this work.  Sc 

was set to be equal to 0.9, which ensures that the minimum fitness for front (  – 1) is at least 10 

percent greater than the maximum fitness in the 

fn

fn th front.  For the random population of 760 

designs discussed above, the expected numbers of individuals in the next generation from the 1st, 

10th, and 20th fronts will then be 6.2, 2.27, and 0.78 respectively.  Note that scaling the system in 

this manner exponentially decreases the fitness of the members of the fronts succeeding the 

nondominated set. Setting Sc requires striking a balance between maintaining a diverse 

population and ensuring that selection pressure is sufficient to prevent drift stall.  Further 

discussion on this issue is given in the results section below. 

3.4.2 Defining a Measure of Relative Performance 

To compare performance of the NSGA under different parameter settings, a measure of 

the algorithm’s performance must be defined. In this work, the performance of the NSGA as a 

function of its parameters was measured relative to the Pareto frontier for cost and SREE.  The 

frontier is shown in Figure (3.2), which shows the 36 sampling designs that compose the Pareto 

optimal set identified using enumeration of the more than 1 million potential designs in Ω.  The  

performance of the NSGA was quantified using a relative scoring metric (RSM) that measures 

the deviation of the nondominated set in generation t from the true front using equation (3.16). 
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Figure 3.2 Actual tradeoff between the squared relative estimation error and cost. Each objective 
has been scaled to fall within the interval [0, 1]. The maximum and minimum SREE 
values found in Ω were 0 and 13,000,000, respectively.  The maximum and minimum 
cost values found in Ω were $18,420 and $1473, respectively. 
 
 
Although the maximum SREE value ( ) cannot be calculated a priori, its 

maximum value was recorded while performing the enumeration of the decision space.  Equation 

(3.16) requires the maximum value because the SREE values have to be scaled such that they fall 

within the interval [0,1].  Equation (3.16) defines the deviation between the η

maxSREE

th member of the 

enumerated Pareto optimal set and the φth member of the current nondominated set in generation 

t to be equal to the absolute difference of their SREE values ( ))(()( tSREExSREEtrue φη −  shown 

above) if the designs have the same cost.  If a cost level present in the Pareto optimal set is not 

represented in the nondominated set at generation t then equation (3.16) assumes a maximum 

deviation of one.  The RSM was used to monitor the performance of the NSGA in order to 

evaluate the effectiveness of the guidelines presented in this section for a realistic application. 
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3.5 Results & Discussion 

The guidelines presented in the previous section identify a range of potential population 

sizes and compute the niching parameters used by the NSGA to search a diverse set of stable 

subpopulations for the Pareto frontier. Additionally, the niching parameters are integral to 

properly setting the elitist selection pressure.  The subsequent sections analyze the effectiveness 

of these guidelines by presenting the results of over 400 trial runs elucidating the performances 

of both the NSGA and the Elitist NSGA as a function of their parameters for the long-term 

monitoring design application. 
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Figure 3.3 Selection of the proper population size for both the NSGA and the Elitist NSGA using 
the best RSM value attained from a single generation 

 

3.5.1 Performance of the NSGA & the Elitist NSGA 

Figure (3.3) shows the performances of both the NSGA and the Elitist NSGA for the 

range of population sizes attained from equations (3.9) – (3.11) when implementing either 
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genotypic or phenotypic sharing.  It is readily apparent from the figure that elitism greatly 

improves the online performance of the NSGA regardless of the population size used.  Figure 

(3.3) was used to select the optimal population size for each of the four forms of the NSGA 

being considered.  The performance trends for the NSGA and the Elitist NSGA are nearly 

identical for both sharing methods. The NSGA’s population sizes were set equal to 830 and 660 

for genotypic and phenotypic sharing, respectively. These population sizes are consistent with 

previous studies, which have found that phenotypic sharing outperforms genotypic sharing.  Deb 

& Goldberg (1989) argue that the reduced performance of genotypic sharing is caused by 

increased sensitivity of Hamming distance calculations to the assumption that each niche is 

uniformly apportioned 1/q of the decision space, as required by equation (3.13).  Mahfoud (1995) 

states that in addition to the sensitivity of genotypic sharing to the uniformity assumption, 

genetic drift and population sizing are influential in the performance differences between the two 

sharing schemes. Larger population sizes are required to ensure that important subpopulations 

(or niches) receive sufficient selection pressure and are not lost to the “noisy discrimination of 

genotypic sharing” (Mahfoud 1995). 

Figure (3.3) and Figure (3.4) confirm that for the NSGA to have comparable performance 

under both sharing schemes the algorithm requires larger population sizes for genotypic sharing.  

Figure (3.4) shows that the NSGA has relatively poor online performance for discerning the true 

tradeoffs between costs and SREE for the monitoring application presented in this chapter, 

regardless of the sharing scheme invoked.  It is important to note that genotypic sharing requires 

the least amount of problem-specific information of the sharing methods discussed in this 

chapter, but the inherent tradeoff of the NSGA using this form of sharing lies in the increased 

computational demands required due to the increased population size necessary for sharing in 
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genotypic space.  This tradeoff is not present for the Elitist NSGA where Figure (3.3) clearly 

shows that the optimal population size is clearly defined by the peak when N is equal to 760 

regardless of the sharing method used. 

NSGA Performance Using Genotypic Sharing

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0 0.2 0.4 0.6 0.8 1

Cost

SR
EE

True Pareto Frontier N = 830, generation 12 
 

[a] 

NSGA Performance Using Phenotypic Sharing
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[b] 

Figure 3.4 NSGA's performance relative to the true Pareto front using both (a) genotypic and (b) 
phenotypic sharing 
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Figure (3.5) shows that the niching-based elitist strategy presented in this chapter greatly 

improved the performance of the NSGA.  The algorithm found solutions along the full extent of 

the Pareto front and was able to identify 17 of 36 members of the Pareto optimal set exactly, 

regardless of the sharing method used.   
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Elitist NSGA Performance Using Phenotypic Sharing
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[b] 

Figure 3.5 Elitist NSGA's performance relative to the true Pareto front using both (a) genotypic 
and (b) phenotypic sharing 
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Figure (3.3) and Figure (3.5) show that elitism served to both improve the online performance of 

the algorithm and help to overcome the “noisy discrimination of genotypic sharing” relative to 

sharing in phenotypic space.   

Figure (3.6) shows the performance of the Elitist NSGA for the full range of possible 

values that both σelite and σshare can be assigned under both sharing schemes (when N equals 

760).  Several observations are apparent from analysis of these plots. First, note that decreasing 

σelite from its maximum to its minimum value shows the NSGA’s behavior between the extremes 

of having no elitism (at the maximum value) to the case when all nondominated individuals are 

selected for elitist reproduction (at the minimum value).  Both plots show that the NSGA’s 

performance improves with increasing elitist selection pressure.  Figure (3.6) also confirms the 

noisy nature of sharing in genotypic versus phenotypic space.  Under genotypic sharing, Figure 

(3.6a) shows several small peaks in performance for relatively sporadic combinations of niching 

and elitist parameter settings.  In contrast, Figure (3.6b) shows that sharing in phenotypic space 

yields a smoother surface with a well-defined peak relative to the surface in (3.6a).  Both plots 

serve to verify the guiding relationships discussed in the methods sections for population sizing, 

niching, and elitist selection.  The arrows in the figure designate the algorithm’s performance 

when both σelite and σshare are set using equations (3.12) and (3.14) taken from Deb & Goldberg 

(1989).  

Figure (3.4) and Figure (3.5) show that both the NSGA and the Elitist NSGA solutions 

have gaps in the extreme regions of the Pareto frontier.  These gaps occur because the 

subpopulations or niches representing these portions of the frontier were not able to survive for 

successive generations and are symptomatic of genetic drift stall.   
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[b] 

Figure 3.6 Analysis of the NSGA's performance for the full range of possible values that the 
parameters controlling niching and elitism can be assigned when using (a) genotypic 
sharing and (b) phenotypic sharing.  The arrows designate the algorithm’s performance 
when these parameters are set equal to the recommended niche radius attained from the 
relationships presented by Deb & Goldberg (1989). 
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Genetic drift also appears to be prevalent in Figure (3.4), which shows that the NSGA (in the 

absence of elitism) is unable to identify more than 3 members of the Pareto optimal set 

regardless of the sharing method invoked.  Figure (3.7) shows the performance of all forms of 

the NSGA as a function of time.   
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Figure 3.7 Performance of both the Elitist NSGA and the NSGA as functions of generation 
 

The figure shows that elitism allows the NSGA to steadily improve performance over the 

duration of the run.  In the absence of elitism, the sporadic peaks in performance are steadily 

degraded over the course of the runs, confirming that drift stall is occurring.  Recall that the 

NSGA decrements the dummy fitness values for successive fronts by a constant value fD∆ and 

that stochastic remainder selection selects population members based on the ratio of their dummy 

fitness relative to the population’s average dummy fitness.  Drift stall is occurring because the 

constant decrement does not properly scale the ratio of the nondominated individuals’ 

fitness values relative to the population’s average fitness, making it impossible for the NSGA to 

fD∆
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distinguish and propagate these individuals into successive generations. These observations 

motivated further analysis of the influences of selection pressure and drift stall on the algorithm’s 

performance in the subsequent section. 

3.5.2 Performance Under Increased Selection Pressure 

The results of the previous section showed that both the NSGA and the Elitist NSGA 

converged to nondominated fronts with gaps in the extreme portions of the Pareto frontier.  

Additionally, Figure (3.7) shows that the NSGA’s performance only sporadically improves and 

generally degrades over the duration of the runs regardless of the sharing method considered.  

These observations confirm that several of the niches are either being lost or converging to non-

optimal values due to the absence of sufficient selection pressure.  Furthermore, it is readily 

apparent that elitism significantly improves the algorithm’s performance confirming the results 

of Zitzler et al. (1999).   Elitism serves to increase the selection pressure on the niches and 

reduce the influence of genetic drift on the system, which in effect is analogous to rescaling the 

relative fitness values of the population.  Modifying the NSGA and Elitist NSGA such that 

successive fronts have exponentially decreasing fitness using the scaling coefficient Sc (as 

described in the methods section) enabled further analysis of the influence of increased selection 

pressure on performance.  For the monitoring application, analysis of the NSGA’s performance 

for scaling coefficient values ranging from 0.7 to 0.95 showed that Sc should be set to 

approximately 0.9. Values for Sc lower than 0.9 greatly reduced the diversity of the populations 

and caused premature convergence (due to excessive selection pressure). Scaling coefficient 

values above 0.9 resulted in significant gaps in the extreme regions of the Pareto frontier due to 

insufficient selection pressure and genetic drift.  
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Figure 3.8 Performance of both the Elitist NSGA and the NSGA as a function of generation after 
rescaling the fitness assignments 
 

Figure (3.8) shows the performances of the scaled NSGA (sNSGA) and the Elitist 

sNSGA as a function of time when Sc equals 0.9.  The population sizes used in these runs 

remained the same as those in the previous section for all forms of the sNSGA except the non-

elitist, genotypic sNSGA where a population size of 870 was found to be optimal, which 

represents only a slight increase from the previous section.  Rescaling was not able to reduce the 

sensitivity of genotypic sharing to non-uniformities in the niche spacing, although elitism 

successfully closed the performance gap between the two sharing methods for the Elitist sNSGA. 

It is immediately obvious from Figure (3.8) that rescaling the fitness assignments greatly 

improved the performance of the sNSGA, which no longer shows degradation in performance 

with time and instead steadily improves towards an upper bound in performance.  Note that the 

combination of rescaling and elitism resulted in the Elitist sNSGA exceeding the previous results 
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shown in Figure (3.7) for the Elitist NSGA.  The phenotypic, Elitist NSGA was able to reach a 

maximum RSM value of 0.66 whereas the genotypic, Elitist sNSGA attained a maximum RSM 

value of 0.8. 
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Figure 3.9 sNSGA's performance relative to the true Pareto front using both (a) genotypic and 
(b) phenotypic sharing 
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Elitist sNSGA Performance Using Phenotypic Sharing
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Figure 3.10 Elitist sNSGA's performance relative to the true Pareto front using both (a) 
genotypic and (b) phenotypic sharing 
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[b] 

Figure 3.11 Analysis of the sNSGA's performance for the full range of possible values that the 
parameters controlling niching and elitism can be assigned when using (a) genotypic and 
(b) phenotypic sharing. The arrows designate the algorithm’s performance when these 
parameters are set equal to the recommended niche radius attained from the relationships 
presented by Deb & Goldberg (1989). 
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Figure (3.9) and Figure (3.10) show the improved performances of all forms of the 

NSGA that result from rescaling the fitness assignments.  Recall that previously the non-elitist 

NSGA was able to find a maximum of 3 members of the Pareto optimal set.  Rescaling the 

shared dummy fitness values resulted in finding 21 and 17 members of the Pareto optimal set 

when implementing genotypic and phenotypic sharing, respectively.  The additional use of 

elitism enabled the sNSGA to almost replicate the Pareto frontier for both sharing methods, as 

shown in Figure (3.10).  The genotypic, Elitist sNSGA provided the most complete 

representation of the frontier by exactly finding 29 members of the Pareto optimal set while also 

finding close representations of all but 2 of the remaining 36 members.  The phenotypic, Elitist 

sNSGA found either exact or close representations of 31 of the 36 members of the Pareto optimal 

set.  The slight decrease in performance of the phenotypic, Elitist sNSGA can be explained with 

analysis of Figure (3.11). 

 Figure (3.11) shows the performance of the sNSGA using both sharing schemes for the 

full range of values σelite and σshare that can be assigned.  The plot again shows that increasing the 

elitist selection pressure by decreasing σelite generally improves performance.  The slight 

difference in performance between genotypic and phenotypic sharing was caused by the 

assumption used in this chapter that shareelite σσ ≈ .  Figure (3.11a) shows that this assumption 

results in finding the highest peak in performance for the sNSGA under genotypic sharing, 

whereas Figure (3.11b) shows that this assumption was not able to exactly find the highest 

performance peak in phenotypic space.  It should be noted from Figure (3.6) and Figure (3.11), 

however, that assuming shareelite σσ ≈  for the monitoring application generally resulted in finding 

peak or very near peak performances for the various forms of the NSGA in both sharing spaces, 

which is probably sufficient for most applications. Figure (3.11a) again shows that genotypic 
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space was generally very noisy relative to phenotypic space, which explains why the sNSGA still 

required larger population sizes to be used in genotypic space in order for the two sharing 

schemes to attain comparable results in the absence of elitism.  Additionally, the increased noise 

present in genotypic space after rescaling, as shown in Figure (3.11a) relative to the previous 

case in Figure (3.6a), explains why N had to be increased from 830 to 870 as discussed above. 

Overall, the guiding relationships and considerations discussed in the methods section of this 

chapter were able to successfully guide the design of the NSGA.  Figure (3.10) shows that the 

algorithm was able to find 95 percent of the Pareto optimal set when the influences of population 

sizing, elitism, and genetic drift were carefully considered in its design. 

3.6 Conclusions 

The two dimensional tradeoff between cost and SREE for the groundwater monitoring 

application presented in this work was accurately quantified by ensuring that the NSGA was 

properly designed to navigate the problem’s decision space.  Preliminary problem analysis 

identified a range of potential population sizes and the potential computational complexity of 

solving the problem. Additionally, relationships from Deb & Goldberg (1989) effectively sized 

the niches required to maintain stable subpopulations, each of which actively sought different 

sections of the Pareto frontier.  Using the recommended niche radius from Deb & Goldberg 

(1989) also effectively identified the niched elitist set of solutions for successive generations in 

each of the runs performed in this chapter.  Elitism greatly improved the efficacy of the NSGA 

and helped to reduce performance differences between genotypic and phenotypic sharing.  

Analysis of the algorithm’s performance as a function of time showed the adverse effects of 

genetic drift and motivated further study of the role of selection pressure in the NSGA.  

Rescaling the shared dummy fitness assignments of the NSGA such that successive fronts had 
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exponentially decreasing fitness values greatly improved the algorithm’s performance.  

Combining elitism with rescaled fitness assignments resulted in identifying all but 2 members of 

the Pareto optimal set. 

 This chapter provides practitioners with a methodology that identifies the proper 

parameter settings for the NSGA by: (1) identifying the most appropriate population size, (2) 

properly sizing niches for fitness-based sharing, (3) correctly setting the elitist selection pressure, 

and (4) careful performance analysis to avoid genetic drift stall.  Parameter settings for the 

NSGA attained using a total of 10 runs resulted in peak or near peak performance of the 

algorithm.  Six of the trial runs were necessary to select the proper population size. Elitism 

greatly improved the NSGA’s performance and narrowed any performance differences between 

sharing in genotypic versus phenotypic space, a clear advantage when problem-specific 

information required for phenotypic sharing is not available.  When such information is 

available, though, phenotypic sharing is generally preferred because of the increased noise 

associated with selection in genotypic space in most EMO applications (Fonseca & Fleming 

1995, Horn 1997), as was observed in this application. Finally, the use of the niche radius to set 

the elitist selection pressure proved to be very effective in attaining peak or near peak 

performance from the NSGA when quantifying the 36 member Pareto optimal set of designs that 

compose the Cost—SREE tradeoff.   

Rescaling the fitness assignments to further increase selection pressure and reduce the 

influence of genetic drift requires consideration of the potential tradeoff between improving the 

algorithm’s performance and reducing diversity within the population. Additional analysis was 

necessary to properly address this tradeoff and select the appropriate scaling coefficient.   The 
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final selection of a scaling coefficient required 4 additional trial runs after the six trial runs used 

to set the population and niching parameters.    

 Although the NSGA was able to successfully capture the Cost—SREE tradeoff, the user 

should note that this success required significant user interaction, a detailed analysis of 10 runs, 

and the evaluation of more than 280,000 sampling designs.  The NSGA design methodology 

presented in this chapter requires significant user expertise and a tremendous investment of 

computational resources that precludes the solution of more challenging multiobjective problems 

(e.g., problems with more than 2 objectives). Chapter 4 overcomes these limitations by 

introducing a design methodology for the NSGA-II, a second generation EMO genetic algorithm 

(see Deb et al. 2000) that improves upon the NSGA. The NSGA-II design methodology in the 

next chapter simplifies Pareto optimization by automating parameter specification and reducing 

the computational effort required to solve multiobjective applications.  The design methodology 

enables the automatic solution of a new class of high order multiobjective applications in which 

users can select, understand, and balance more than two performance criteria [see Chapters 4 and 

6].    
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