
4 SIMPLIFYING OPTIMIZATION IN PARETO SPACE 

4.1 Introduction 

Chapter 3 showed that with proper design and parameterization, the NSGA is able to 

accurately quantify 2 dimensional tradeoffs. This chapter builds on Chapter 3 by introducing a 

design methodology for the NSGA-II, a second generation EMO genetic algorithm (see Deb et 

al. 2000) that improves upon the NSGA by (1) invoking a more efficient nondomination sorting 

algorithm, (2) eliminating the sharing parameter (i.e., the niche radius), and (3) adding an 

implicitly elitist selection method that greatly aids in solving high order problems (i.e., problems 

with more than 2 objectives). The NSGA-II is the focus of this work because the algorithm has 

been shown to perform as well or better than the other second generation EMO algorithms on 

difficult, high order problems (see Zitzler et al. 2001 and Deb et al. 2001). The NSGA-II design 

methodology presented in this chapter builds on previous GA design methodologies (Reed et al. 

2000b, Lobo 2000, and Reed et al. 2001) to introduce a multi-population approach that 

automates parameter specification while significantly reducing the computational effort required 

to solve multiobjective applications.  The design methodology fully exploits the efficiency of the 

NSGA-II to enable the automatic solution of a new class of high order multiobjective 

applications in which users can select, understand, and balance more than two performance 

criteria (see Chapter 6).   Readers familiar with Chapter 3 can skip forward to Section 4.3 

because Section 4.2 describes the same test case and problem formulation.  

4.2 Monitoring Application 

4.2.1 Test Case Data 

The NSGA-II design methodology presented in this chapter is demonstrated on the same 

long-term monitoring (LTM) application from Chapter 3.  The test was developed using data 
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drawn from a 38 million-node flow-and-transport simulation performed by Maxwell et al. 

(2000).  The simulation provided realistic historical data for the migration of a hypothetical 

perchloroethylene (PCE) plume in a highly heterogeneous alluvial aquifer.  The hydrogeology of 

the test case is based on an actual site located at the Lawrence Livermore National Laboratory in 

Livermore, California, currently being managed under the United States’ Comprehensive 

Environmental Response, Compensation and Liability Act (CERCLA) program. Data were 

provided for a total of 50 hypothetical sampling locations within the 20-well multi-level 

monitoring network. The data represent a snapshot in time, 10 years after a continuous point 

source began contaminating the aquifer system. The monitoring wells can sample from 1 to 3 

locations along their vertical axis and have a minimum spacing of 60-m between wells in the 

horizontal plane.  

The site is assumed to be undergoing long-term monitoring, in which groundwater 

samples are used to assess the effectiveness of current remediation strategies. During this long-

term monitoring phase of a remediation, sampling and laboratory analysis can be a controlling 

factor in the costs of remediating a site. Quarterly sampling of the entire network has a potential 

cost of over $70,000 annually for PCE testing alone, which could translate into millions of 

dollars if the site had a typical life span of 20 to 30 years. To reduce these costs, the application 

seeks to identify redundant sampling locations (i.e., points that minimally affect interpolation-

based plume estimates when not sampled).  Specifically, the application seeks to quantify the 

tradeoff between LTM sampling costs and the accuracy of the plume interpolation estimates.  

These objectives are discussed in more detail in Section 4.2.2, below.   
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4.2.2 Problem Formulation 

Equation (4.1) gives the multiobjective problem formulation for quantifying the tradeoff 

between sampling costs and maintenance of a high quality interpolated picture of the plume. 
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F( κx ) is a vector valued objective function whose components [f1( κx ), f2( κx )] represent the cost 

and squared relative estimation error (SREE), respectively, for theκ th monitoring scheme 

κx taken from the collection of all possible sampling designs Ω .  Equation (4.2) defines the 

binary decision variables representing the κ th monitoring scheme. 
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If the ith well is sampled it is assumed that all available locations along the vertical axis of 

that well will be sampled at a cost of .  ranged from $365 to $1095 for 1 to 3 

samples analyzed for PCE solely (Rast 1997).  Sampling all available levels within each well 

reduces the size of  from 2

)(iCS )(iCS

Ω 50 to 220, where 50 and 20 represent the total number of sampling 

locations and monitoring wells (nwell), respectively.  Reducing the size of Ω  enabled the entire 

decision space of this application to be enumerated. Enumeration was employed to identify the 

true tradeoff (or Pareto frontier) between cost and SREE, shown in Figure (4.1), to aid in 

assessing the performance of the NSGA-II design methodology presented in this chapter.  
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Figure 4.1 The enumerated tradeoff between Cost and SREE 

 
The SREE provides a measure of how the interpolated picture of the plume using data 

only from wells included in theκ th sampling plan compares to the result attained using data from 

all available sampling locations.  The measure is computed by summing the squared deviations 

between the PCE estimates using data from all available sampling locations, )(*
jall uc , and the 

estimates based on theκ th sampling plan )( jest ucκ  at each location ju  in the interpolation 

domain. Each ju  specifies the coordinates for the jth grid point in the interpolation domain.  The 

interpolation domain consisted of a total of 3300 grid points (nest in equation (4.1)). Nonlinear 

least squares inverse distance weighting was used to interpolate plume concentrations in this 

chapter (for more details see Chapter 3 or Chapter 5). 

4.3 The NSGA-II Basics 

Basic principals and operators used by the NSGA-II in quantifying design tradeoffs are 

discussed in this section. Genetic algorithms search a decision space using a process that is 

analogous to Darwin’s “natural selection”.  The decision variables associated with the 
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optimization model to be solved are encoded as 0-1 binary strings of length l (termed 

chromosomes). The fitness of each member of a randomly generated initial population of these 

strings is determined by how well the design satisfies the objectives of an application. After each 

individual is assigned a fitness value, GAs find optimal solutions using three basic operators: (1) 

selection, (2) crossover (mating), and (3) mutation.  

The NSGA-II uses a two-step selection process, which combines both binary tournament 

selection and ( )λµ +  selection.   First, binary tournament selection allows only the fittest 

individual from two strings randomly drawn from the current population to be placed into the 

mating population. Next, the crossover operator couples members of the mating population to 

mate. Mating was done using uniform crossover in which the strings exchange each of their 

component bit values with a specified probability of crossover (Pc). Tournament selection and 

crossover are repeated until a population of N children has been produced. Mutation then 

randomly flips binary bits from 1 to 0 or vice versa within the new child population with a given 

probability of mutation (Pm).  Lastly, the NSGA-II uses ( )λµ +  selection to choose which of the 

parent and child designs will survive.  In this selection scheme, the populations of N parent 

designs and N child solutions in the current generation t are combined to yield a selection pool of 

2N individuals, from which the N best individuals are allowed to pass to generation t+1.  This 

selection method aids the algorithm in quantifying high order Pareto surfaces because it is 

implicitly elitist (i.e., the best designs are guaranteed to survive into the next generation).  

These three operators act to create a new population (or generation) of individual 

sampling plans with improved average fitness. The Schema Theorem is the general theory 

describing how these three operators combine to evolve high quality near-optimal solutions [see 

Goldberg, 1989 or Holland, 1975 for more information]. It states that highly fit strings are 
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composed of small chunks of information (or building blocks) that are relevant to the solution of 

the problem. The GA exerts a selection pressure where only highly fit members are allowed to 

pass their traits or building blocks to the next generation. The phrase “selection pressure” refers 

to the probability of survival for individuals in a given population.  For example, if population 

members are picked at random without being compared with one another in terms of their fitness 

values than each population member has an equal probability of surviving and the system has 

low selection pressure.  Alternatively in a system with high selection pressure, a population 

member must compete with several other population members and only the fittest design has a 

high probability of survival.  Highly fit parent strings are allowed to mate, yielding offspring that 

inherit building blocks from both parents. It is in this manner that the GA assembles optimal or 

near-optimal solutions to a problem. 

The primary difference between the NSGA-II and single objective GAs is in how fitness 

is assigned. The NSGA-II evaluates sampling designs in terms of a vector of objectives.  A 

sampling design cannot be assessed in terms of its performance in any single objective because it 

may perform poorly with respect to the remaining objectives.   The NSGA-II employs the 

concepts of Pareto dominance and crowding to assign fitness values to sampling designs in the 

two steps described below (Deb et al. 2000).   

The first step in fitness assignment employs the concept of Pareto dominance in which a 

design x dominates another design x ′  if and only if it performs as well as x ′  in all nobj 

objectives and better in at least one. In the NSGA-II’s improved nondomination sorting, the 

algorithm first ranks each design by the number of designs that dominate it. The second step in 

fitness assignments utilizes the concept of crowding (for more details see Deb et al. 2000) in 

which the average distance between an individual design and those designs nearest to it within 
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the population (in terms of their objectives’ values). The crowding distance represents “…the 

largest cuboid enclosing the [κth design] without including any other point in the population” 

(Deb et al. 2000).   The crowding operator eliminates the sharing parameter calculations that 

where required for the original form of the algorithm.   

After these two steps, the fitness value of an individual design is assigned either its rank 

or its crowding distance.  In cases were two designs have different ranks, the individual with the 

lower rank is preferred (i.e., individuals that are dominated by fewer solutions).  Alternatively, if 

both solutions possess the same rank then the individual with larger crowding distance is 

preferred (i.e., the individual that adds the most diversity to the population).  A diverse 

population ensures that the NSGA-II will find solutions along the full extent of the Pareto 

surface. 

4.4 Simplifying Multiobjective Search & Optimization 

The NSGA-II design methodology presented in this chapter combines concepts from 

previous GA design methodologies (Reed et al. 2000b, Reed et al. 2001) and the “parameter-less 

GA” methodology presented by Lobo (2000).  The NSGA-II requires the specification of the 

four following parameters: (1) population size, (2) probability of crossover, (3) probability of 

mutation, and (4) run length.  This set of 4 parameters represents an immediate simplification 

relative to the NSGA design methodology presented in Chapter 3, which also required the user to 

set a niche radius, an elite radius, and the appropriate selection pressure.  In Chapter 3, the 

NSGA design methodology required a total of 10 runs and substantial user interaction to ensure 

the algorithm was able to capture a 2-dimensional tradeoff between costs and SREE.  The 

NSGA-II design methodology presented in this chapter reduces the complexity of solving 
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multiobjective problems by introducing 3-step approach that can be used to completely automate 

parameter selection, minimize user interaction, and substantially reduce computational costs.   

Step 1 consists of a preliminary analysis where the user sets bounds for the population size 

and the total time of computation.  Step 2 utilizes control map theory for genetic algorithms (see 

Thierens 1995) to automatically set the probabilities of crossover and mutation.  Finally, in Step 

3 the algorithm automatically increases population sizes in successive runs until either offline 

analysis shows the NSGA-II sufficiently quantified the nondominated set (i.e., the tradeoff 

surface) or the user-specified maximum time of computation has been reached. Offline analysis 

keeps track of the best collection of nondominated individuals from all of the designs evaluated 

in successive runs. Each of these steps is described in more detail in Sections 4.4.2-4.4.4 below. 

4.4.1 Initial Considerations 

The design methodology assumes that computationally intensive fitness functions for 

water resources applications preclude identifying parameter settings for a distribution of initial 

random number seeds and instead focuses on finding optimal parameter settings for a single 

random number seed.  Additionally, the method assumes that the user has successfully 

formulated their problem such that the NSGA-II will converge to a feasible nondominated set. 

4.4.2  Step1: Preliminary Problem Analysis 

The first step in this design methodology requires users to answer the four following 

questions:  

• What is your initial goal for the number of nondominated solutions,  that is 

acceptable? 

NDR

• What is the minimum percentage change in the number of nondominated 

solutions, , for two successive runs to be considered identical? ND∆
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• What is the average time required to evaluate a design, T ? eval

• What is the maximum acceptable run time, T ? tot

In the first question,  defines the user’s preliminary goal for the number of 

nondominated solutions she or he would want to obtain on the tradeoff surface.   is then used 

to calculate a lower bound population size  for the NSGA-II using the empirical rule-of-

thumb presented in equation (4.3).   

NDR

NDR

0N

NDRN 20 ≈                                                        (4.3) 

Users should not concern themselves with exactly specifying  because it is generally 

impossible to know a priori the exact number of Pareto optimal solutions that exist for a given 

application.   

NDR

Since it is impossible to know a priori the exact number of Pareto optimal solutions that 

exist, the user must consider problem specific information to set this value. For the LTM 

application presented in this chapter, the NSGA-II is seeking to find the minimum SREE value 

for each level of cost.  Theoretically, the nondominated set can be composed of no more than 58 

solutions because the cost objective is a discrete, linear function of the number of sampling 

locations (which ranges between 1 and 58).   was set equal to 30, which is approximately 50 

percent of the theoretical maximum number of nondominated solutions that could exist.   

was set to a relatively small number of nondominated solutions because only in rare cases will 

the nondominated set be composed of the theoretical maximum number of individuals.  Figure 

(4.1) demonstrates this fact, showing that only 36 nondominated solutions exist for the LTM 

application because some of the designs at lower cost levels dominate higher cost designs (i.e., 

they have both a lower cost and a lower SREE value).  Setting  to a reasonably small value 

NDR

NDR

NDR
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has the additional advantage of ensuring that the NSGA-II can be tested for small population 

sizes, which can significantly reduce the total number of designs that must be evaluated if the 

algorithm successfully quantifies the tradeoff surface using these reduced population sizes.  

Moreover, the successive increases in population size described in Step 3 of this methodology 

will correct for an undersized population automatically. 

The second question directly addresses the issue of solution exactness, by requiring the 

user to specify the minimum percentage change in the number of nondominated individuals ND∆  

for two successive runs to be considered identical. This parameter is best explained using an 

illustrative example. Consider two successive runs of the NSGA-II in which the first run uses a 

population of N designs to evolve a nondominated set composed of A individuals while the 

second run uses a population of 2N designs to evolve a nondominated set of K individuals.  The 

results of these runs are used in Equation (4.4) to define which of the two following courses of 

action will be taken: (1) population size is again doubled, resulting in 4N individuals to be used 

in an additional run of the NSGA-II or (2) the algorithm stops because the nondominated set has 

been quantified to sufficient accuracy. 

searchstopelse

searchcontinueandNdoublethen
A

AK
if ND 100







 −
<∆                     (4.4) 

In equation (4.4), if the run using a population size of 2N does not increase the size of the 

nondominated set by more than ∆ -percent then the search has reached a point of diminishing 

return where further population size increases are no longer justified. Equation (4.4) is relevant 

to both discrete and continuous problems because in both cases the NSGA-II is building a 

discrete approximation to the true Pareto surface.

ND

ND∆  was set to 10 percent for the LTM 

application presented in this chapter, implying that a close approximation of the true Pareto front 
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shown in Figure (4.1) is being sought. Setting ND∆  directly addresses the tradeoff between 

solution exactness and the computational complexity of an application.  By setting  to any 

value above zero, the user is accepting a less exact representation of the nondominated set to 

achieve a decrease in computing time.   

ND∆

totE

eval

tot

T
T

0

Et ≤0

The third and fourth questions require the user to specify how long he or she is willing to 

wait for a solution (i.e., T ), which allows the upper bound population size to be computed 

given how long each function evaluation takes on average, T . Note that any timing variables 

presented in this chapter with a capital T are in terms of clock time and those presented in lower 

case t are in terms of the number of generations the NSGA-II is run. For the LTM application, 

 was set equal to 4 hours to allow the NSGA-II ample opportunity to quantify the 

nondominated solution set given that each design took an average of 0.044 seconds to evaluate 

on a Dell XPS T800r running Windows 2000. The maximum number of designs, , that can 

be evaluated given both T  and T  can be computed using equation (4.5) and had a value of 

327,000 for the LTM application.   

tot

eval

eval

totT

tot

totE =                                                            (4.5) 

The results of equation (4.5) are used in equation (4.6) to compute the maximum number of 

times, MAXβ , the population size can be doubled beyond its lower bound value  computed 

using equation (4.3).  

N

totN
MAX

∑
=

β

β

β

0
2                                                        (4.6) 
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In equation (4.6), t represents the total number of the generations used in each run of the 

NSGA-II to search for the nondominated set.  The run length t is estimated to be approximately 

equal to 2l, where l is the length of the binary strings that represent designs, as was 

recommended by Reed et al. (2000b).  The LTM designs had a string length l = 20 yielding a run 

time of 40 generations. Conservatively, this estimate assumes that the combination of  ( )λµ +  

and binary tournament selection in the NSGA-II converges as fast as a system undergoing pure 

binary tournament selection (for details see Thierens et al. 1998).  The quantity  represents 

the total number of designs that are evaluated when the lower bound population size is used for t  

generations and had a value of 2400 for the LTM application.  Given the maximum number of 

designs that can be evaluated (  = 327,000), equation (4.6) shows that can be doubled a 

total of six times (i.e., 

tN0

totE 0N

MAXβ  = 6), yielding an upper bound population size of 3840. 

4.4.3 Step 2: Balancing Innovation and Disruption 

Step 1 of the methodology requires users to supply information for performing population 

sizing and specifying run length, which are two of the four parameters required for the NSGA-II.  

This step explains how the two remaining parameters, the probability of crossover Pc and the 

probability of mutation Pm, are set in this methodology.   There are two forces that must be 

balanced when setting these parameters’ values: (1) disruption and (2) innovation.  Disruption 

occurs when excessive crossover or mutation “disrupts” pertinent building blocks within 

solutions, which makes it impossible for GAs to assemble optimal solutions.  Equation (4.7) 

presents the disruption boundary relationship developed in Thierens (1995) and used in the 

simple GA design methodology of Reed et al. (2000b). 

s
sPc

1−
≤                                                          (4.7) 
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The parameter s represents the total number of individuals that compete in tournament selection. 

Equation (4.7) is intended to protect pertinent building blocks from being destroyed due to 

excessive crossover.  Since the child populations in the NSGA-II are selected using binary 

tournaments (i.e., s = 2), the probability of crossover must be set less than or equal to 0.5 or 50 

percent. As the number of members that compete to survive [i.e., tournament size s in equation 

(4.7)] increases, selection pressure also increases because it becomes increasingly more difficult 

for unfit population members to survive.  Equation (4.7) shows that the disruption boundary is 

less restrictive (i.e., higher Pc values can be used) when selection pressure is increased. The 

disruption boundary value of Pc  50 percent attained from equation (4.7) is conservative for the 

NSGA-II because the algorithm is guaranteed to always have higher selection pressure relative to 

a system undergoing pure binary tournament selection. 

≤

 The potential disruptive effect of crossover must be balanced with the positive effect of 

this operator.  Thierens and Goldberg (1993) show that selection and crossover combine to exert 

an innovative force on a system that guides GAs towards promising solutions.  This force of 

innovation should be maximized by using the largest Pc possible below the upper bound defined 

by equation (4.7), which predicts solution instability for Pc near and above 50 percent. Because 

the methodology presented in this chapter is self-adaptive, if Pc = 0.5 is initially too low for the 

NSGA-II to successfully mix or discover promising building blocks, then doubling the 

population size in a successive run would overcome this problem because both the population’s 

diversity and the expected number of crossovers that the algorithm can use to successfully 

assemble optimal solutions would double.  Doubling the population size from N to 2N also 

increases the size of the selection pool from 2N to 4N, greatly increasing selection pressure 
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(designs must compete with far more individuals to survive) and decreasing the probability of 

disruption due to crossover and mutation.   

 The probability of mutation Pm is set using equation (4.8) based on the recommendations 

of the empirical studies of De Jong (1975) and Schaffer et al. (1989). 

N
Pm

1
≈                                                             (4.8) 

Selection and mutation combine to locally refine promising solutions. Equation (4.8) ensures that 

mutation is minimally disruptive.  

4.4.4 Step 3: Multi-Population Trial Runs  

Steps 1 and 2 of this design methodology provide all of the parameters required by the 

NSGA-II to perform trial runs.  In a manner analogous to Lobo (2000) and Reed et al. (2000b), 

the NSGA-II automatically initiates trial runs for successively doubled population sizes.  These 

trials runs use offline performance analysis to sufficiently quantify tradeoffs.  From Step 1, 

tradeoffs are defined to be sufficiently quantified when the minimum percentage change in the 

number of individuals in the nondominated set for successive runs is less than 10 percent, 

defining the point of diminishing returns when successive increases in population size are no 

longer justified.  

The design methodology presented in this chapter requires a minimum of two runs using 

two successively doubled population sizes to determine if the nondominated set has been 

sufficiently captured (i.e.,   10 percent for this case).  Figure (4.2a) shows the NSGA-II’s 

performance for Run 1 using the lower bound population size of 60 members running for 40 

generations. The figure shows that the NSGA-II is able to closely approximate 19 members of 

the nondominated set, most of which are “compromise solutions” in the center of the Cost—

ND∆ ≤
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SREE tradeoff. Figure (4.2a) illustrates the importance of allowing the NSGA-II to search for the 

nondominated set with small population sizes. Often practitioners are primarily focused on 

“compromise solutions” in the central region of tradeoffs for water resources applications 

because extreme solutions have a low likelihood of being implemented (although extreme 

solutions can provide insight into how individual objectives are affecting designs).  
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Figure 4.2 (a) Offline results for Run 1  (b) Combined offline results for Runs 1 & 2 
 
 

Figure (4.2b) shows the combined offline results of Runs 1 and 2, in which all of the 

nondominated solutions found using N = 60 are combined with those found using N = 120 to 
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form an improved approximation of the Cost—SREE tradeoff.  Combined offline analysis for 

multiple runs takes full advantage of every function evaluation required to solve an application 

and guarantees that the NSGA-II’s performance will only improve for successive runs.  In Figure 

(4.2b), the nondominated set grew by 5 members relative to Run 1 shown in Figure (4.2a), a 26 

percent increase.   
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Figure 4.3 (a) Combined offline results for Runs 1, 2, & 3 (b) Combined offline results for Runs 
1, 2, 3, & 4 
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Figure (4.2b) shows that the NSGA-II is more closely approximating solutions along the 

full extent of the Cost—SREE tradeoff; a third run is then initiated with a population size N = 

240 because  is less than 26 percent [see equation (4.4)].  Figure (4.3a) shows the combined 

offline results of Runs 1, 2, and 3 in which the NSGA-II identified 29 nondominated solutions.  

The figure shows that the NSGA-II has nearly captured the Pareto optimal set of solutions, but 

the tradeoff still has not been proven to be sufficiently quantified because the nondominated set 

increased by 20 percent [i.e., ∆  < 20 percent in equation (4.4)].  An additional run using a 

population size of N = 480 increased the nondominated set by only 1 solution, representing a 3 

percent change.  It is clear from both plots in Figure (4.3) that the point of diminishing return has 

been reached when subsequent increases in population size are no longer justified.    The only 

task that remains for the user is to inspect the quality of the nondominated set quantified by the 

NSGA-II to ensure her or his expectations have been met successfully.  If the NSGA-II does not 

satisfy the user’s expectations then a more exact approximation of the nondominated set can be 

sought by decreasing  and continuing to increase population size within the user-specified 

computational limits. 

ND∆

ND

ND∆

A significant advantage of this design methodology is that it requires only minimal initial 

user interaction, with successive runs completed automatically. Additionally, the design 

methodology of this chapter exploits the efficiency of the NSGA-II to substantially reduce 

computational costs.  Consider that the NSGA design methodology of Chapter 3 required more 

than 160,000 function evaluations to meet the performance of the NSGA-II shown in Figure 

(4.3) for the same LTM application.  The 4 trial runs discussed in this chapter required a total of 

38,000 function evaluations, representing an 80 percent reduction in the computational costs 

relative to the previous NSGA design methodology.   
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4.5 Conclusions 

The NSGA-II design methodology presented in this chapter builds on previous GA 

design methodologies (Reed et al. 2000, Lobo 2000, and Reed et al. 2001) to introduce a multi-

population approach that automates parameter specification for the algorithm. The design 

methodology simplifies Pareto optimization using the NSGA-II into a simple 3 step process.  

The first step only requires users to answer 4 questions on their performance expectations and 

run time.  Step 2 utilizes GA control map theory to automatically set the probabilities of 

crossover and mutation.  The final step of the design methodology successively doubles 

population sizes until the NSGA-II has sufficiently identified the nondominated set or acceptable 

run time is exceeded. The methodology successfully solved the LTM design application using 80 

percent fewer function evaluations than the NSGA design methodology presented in Chapter 3. 

The combined efficiency of the NSGA-II and the design methodology presented in this chapter 

allows more challenging higher order Pareto optimization problems (i.e., problems with more 

than 2 objectives) to be solved [see Chapter 6].   
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