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Applying Genetic Algorithms (GA) to solve multiple
objectives optimization problems has to deal with the
twin issues of searching large and complex solution
spaces and dealing with multiple, potentially
conflicting objectives. Selection of a solution from a
set of possible ones on the basis of several criteria is
considered a difficult problem. Due to this difficulty,
most of researchers reduce the problem to a mono-
criterion one. Mathematical programming techniques
and the popular weighted-sum approach have been
developed. On the meta-heuristic side, Schaffer [4]
was one of the first to recognize the possibility of
exploiting Evolutionary Algorithm’s to treat
multiple-objectives problems.
Classical GA’s use fitness-based selection, and thus
require scalar fitness information. So the objectives
are often artificially combined into a scalar function.
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Other GA’s use ranking methods to grade the
population in terms of pareto dominance, without
using the Decision Maker’s (DM) preferences. Since
the best solution may not necessarily belong to the
pareto optimal set, the classical methods are a kind of
local optimality search rather than a global one.
To come out of this kind of problems, we use the
multi-criteria decision-aid (MCDA) method called
Promethee II [2]. It computes a ‘net flow’ (φ)
associated with each solution. This flow gives us a
ranking, called the Promethee II complete ranking,
between the different solutions in the population.
The weights (associated with each criterion) are
involved in the computation of the φ number and
represent the relative influence of each criterion.
Thus the solutions are not compared according to a
cost function yielding an absolute fitness of the
individuals as in a classical GA, but are compared to

each other thanks to flows, depending on the current
population. In order to  avoid a drift towards locally
optimal solutions, elitism is used, i.e., the best-ever
solution takes part in the evaluation of the φ flows.
The choice of one solution over the others requires
problem knowledge. It is the DM’s task to adjust the
weights to help the algorithm to find good solutions.
Optimizing a combination of the objectives has the
advantage of producing a single solution, requiring
no further interaction with the DM. If this ‘optimal’
solution cannot be accepted, due to inappropriate
settings of the weights, new runs may be required to
adjust them until a suitable solution is found.
The basic steps of the classical GA are shown below.
Generate an initial population;
Evaluate fitness of individuals in the population;
repeat
    Select parents from the population;
    Recombine parents to produce children;
    Mutate children;
    Evaluate fitness of the children;
    Replace some or all of the population by children;
until a satisfactory solution has been found;
The new MOGA steps are the following:
Generate an initial population;
Order individuals in the population using Promethee II;
repeat
    Select parents
    Recombine best parents from the population;
    Mutate children;
    Use Promethee II to order the new population;
    Replace some or all of the population by children;
until a satisfactory solution has been found;

The method is integrated in the grouping genetic
Algorithm (GGA) [1], and uses a group-oriented
encoding. We apply it to the design of hybrid
assembly lines, dealing with many objectives (cost,
balance, reliability, congestion,..) [3].
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