
247

APPENDIX 2
DETERMINISTIC OR RANDOM
SEARCH METHODS

The search space is the set of entities over which the search is conducted. In the case
of optimisation, the search space is a set of possible solutions to the problem at
hand. There is an important distinction between the search space itself and the
representation space, which consists of data structures used to represent the points in
search space. In the case of evolutionary methods, the search space is often known as
the space of phenotypes, this term is borrowed from biology, where the phenotype is
the organism itself, as distinct from its genotype, which is its genetic description (or
representation).

Solution Space

Feasible
Solutions

Figure A2.1. Feasibility space.

Many search (optimisation) methods are formulated by presenting their search space,
together with an objective function (or a set of objectives) and a set of constraints. A
constraint usually takes the form of a clause (an equation or an inequality) that must
be satisfied by a solution in order to be considered feasible. For instance, in
engineering design, the optimisation problem may be to minimise the cost of some
products (i.e. an engine) subject to various constraints that ensure its stability, its

Deterministic or Random Search Methods
¯¯

248

adequacy to its environment, sufficient capacity, and so forth. In certain cases, the
object of the search may be simply to locate a solution that satisfies all these
constraints, i.e. the objective function itself may be absent. Constraint satisfaction
problems can, of course, be formally restated as optimisation problems by
constructing an objective function that computes the number of constraints violated
by a solution and by seeking to minimise them.

In constrained optimisation, the search space becomes decomposed into two regions,
the feasible region, consisting of those solutions that satisfy all the constraints, and
the infeasible region, in which some are violated (Figure A2.1). Depending on the
form and complexity of the constraints, a number of approaches are available in the
literature. The most generally applicable, but usually the least satisfactory, is to use an
additive penalty function to degrade the measured quality of solutions that violate
constraints.

Perhaps the most general mechanism for handling constraints in optimisation (meta-
heuristics methods) is to employ a penalty function. It is a term that is added to the value
of the given objective function when a solution violates one or more constraints,
degrading its rated performance. The size (value) of the added penalty reflects in some
way the degree of constraint violation. It is common practice to increase the size of
penalties during the course of a run, so that while a degree of violation is tolerated in
early stages (generations), this tolerance is reduced over time. Constraint satisfaction
problems can, of course, be tackled as optimisation problems by using a penalty
function in the absence of an objective function. The principal attraction of penalty
functions is their more-or-less universal applicability. Nevertheless, they exhibit a
number of drawbacks. First, they do not provide any problem specific information to
the method. Secondly, the choice of weighting for the constraints is a somewhat
subtle matter. This problem with penalty functions is rather like the problem that
arises when a multi-objective problem is tackled by forming a weighted sum of the
various objectives.

In certain cases, the procedure for mapping an infeasible solution to a feasible one is
known. Such a procedure is known as a repair mechanism. There are various ways of
incorporating repair mechanisms into evolutionary algorithms. While these
approaches are generally more satisfactory than employing penalty functions, some
care must be taken to ensure that the set of possible moves in the search space do
not become drastically limited (Sedgewick, 1984).

When searching for the global optimum solution of complex problems, one is
generally faced to a fundamental conflict between precision, reliability and computing
time. Each optimisation method represents a particular compromise. Traditional hill-
climbing ‘exact’ methods (gradient descent, simplex method, branch & bound) mainly
concentrate on local exploitation of the search space. They solely focus on the
precision and computation time at the expense of reliability. They almost suffer from
the rush to the first discovered local extrema. Genetic Algorithms (GAs) is a
promising search method originally influenced by the Darwinian theory (Holland,
1975), present many advantages and original principles such as: population-based

Deterministic or Random Search Methods
¯¯

249

search, recombination and stochastic mechanisms. These methods rough out a
problem by finding the most promising regions of the entire search space. However,
they often yield unsatisfactory results: indeed, they suffer from a certain inefficiency,
characterised by a slow convergence and a lack of accuracy when a high quality
solution is required.

The GAs focus on the global part of the search task and give less attention to the
local part. This characteristic often prevents them from being a practical method for
many real-world applications. So, what is missing the GAs to be an efficient global search
method? The global exploitation capacities are often non-existent for hill-climbing
methods, consequently, their utility can be greatly reduced if they are used as such for
the search in multi-modal search space (numerous local optima). These considerations,
highlighting the complementary properties of the meta-heuristics and particularly
GAs and the hill-climbing, suggest that hybridisation between both approaches may
lead to improve performances of search methods.

Almost, all solution methods can solve some problems, yet they cannot solve a
significant fraction of other interesting instances–this what we call in computer
science jargon the method overfitting. Indeed, search methods and problem knowledge
must be taken together with a certain care, the more we use knowledge the more
search space is limited. Thus, the space exploration’s method can be more or less
very restricted to small regions. In some cases, the random choice of moves significantly
accelerates the search methods. For high constrained problems, if the problem have
only one valid solution, random search can do better job than a well defined search
method!

It is highly desirable to be able to find ways of incorporating knowledge about the
domain into search methods. This knowledge must be used as much as possible by
the method during its execution. All problems are more or less simple to solve, the
main task is to well understand their structure. An instructive inspiration from the
nature by observing some phenomena can help (to design a method) to solve design
problems. Since computers have to do just the tedious part of designer job, semi-
automatic computer-aided design methods must be preferred to the automatic ones.
It is the human (decision maker) who has to decide about the proposed designs.
Each designer or domain expert typically brings specialised knowledge or skills to the
design process.

References

(Sedgewick, 1996) Sedgewick R. and Flajolet P., ‘An introduction to the analysis of
algorithms’, Addison-Wesley, England, 1996.

(Holland, 1975) Holland J.H., ‘Adaptation in natural and artificial systems’,
University of Michigan Press, Ann Arbor, 1975.

