
243

APPENDIX 1
SEARCH AND SEARCH SPACE

A critical issue in solving search problems is the choice of suitable representation
language for describing the states in the search space as well as the operators used to
search in. It is well known for designers and optimisers that these choices can have a
major impact on the efficiency of the search method.

In most general sense, knowledge representation means that an intelligent system has
descriptions that correspond to the world. In computer science, these descriptions
have to be clear enough such that an intelligent machine can conclude about its
environment by formally manipulating them. In artificial intelligence’s (AI) symbol
manipulation, we can distinguish between the propositional (sentence like)
representations, and complex representation models (schemata), like frames or
scripts. The schemata allow representation of abstract information about objects,
states, or events.

The notion of the world is carefully taken by the AI community, since what they
represent in their program is knowledge about a strictly limited and artificial model
(micro-world) of the world. The good-sense knowledge is the everyday practical
knowledge used by people in mastering real life situations. While observing the
human languages, a question is often raised about the representation of human good-
sense knowledge. Is it simply a problem of scale and could therefore be solved by a
large storage capacities, a lot of hard work, and ingenious search algorithms or
whether is it a problem that lies in the nature of human capacities. It is quite hard to
represent (encode) the human knowledge symbolically in formal languages like frames,
scripts, etc. One of the big challenges is the incorporation of knowledge from the
domain into the search methods.

Expert System also called knowledge-based systems are classical methods introduced
to mimic the experts (humans) in their way of solving problems. Such systems can
produce good results in areas where the human expertise is well developed and well
represented by simple rules… Due to the success of expert systems in some fields,
they have been integrated into the branch of computer science and artificial

Search and Search Space
¯¯

244

intelligence. Some researchers have proclaimed that such systems can compete with
human intelligence. However, such systems are domain depending and most of
human knowledge are hard to integrate to computer programs. Until now, it is
extremely hard to represent the human knowledge, since it is hard to count the type
and the amount of knowledge he uses in his everyday experience…

The encoding is possibly one of the most difficult task in all solving methods. The
problem is to find a representation that can be handled easily by the solving method
at hand. Most of the methods use boolean, integer, real valued, logic expression,
graph and many other kinds of search spaces. In order to make search algorithms
more general and easier to interface, a simple representation is often seek. A problem
comes from scalability, as the encoding sometimes includes some sort of
compression of data (a kind of problem’s knowledge). Furthermore, using a decoding
process also distorts the search space in a manner that may (or may not) help the
search algorithms.

The representation space is the set of conceptual data structures that are manipulated by
an algorithm in the search space over which the search is conducted. In evolution
strategies strings of real values are typically used to represent problem solutions, the
genetic programming uses the tree of a program as its basic data type, while genetic
algorithms use binary (or integer) string representations. Note that, in the latter, the
representation space is defined not by the current data structures declared in a
computer program when implementing the algorithm, rather by the sub-components
of solutions the algorithm manipulates. One of the main challenges is how to design
intelligently the representation of the search space?

In other words, the question is how to intelligently organise the search space to
facilitate the job and reduce time to reach goals. How to organise (represent) the data
in computer and how to manage them. As human, since having a body, we are
spatially located creatures: we must always be facing some direction, have only
certain objects in view, be within reach of some others. How we manage the spatial
arrangement of items around us, is not an afterthought; it is an integral part of the
way we think, plan and behave. The spatial arrangements of data, if it is well designed,
can simplify the choice in case of uncertainty and can also simplify perception to well
evaluate the decisions taken (moves). In a general search context, the search space is
the set of entities over which the search is conducted. In the case of optimisation and
decision problems, the search space is the set of possible solutions to the problem at
hand. There is an important distinction between the search space itself and the
representation space, which consists of conceptual data structures used to represent
the points in the search space.

A global optimisation is the task of finding the absolutely best solution to a given
problem (an objective function, shape,…). In general, problems have a set of local
optimal solutions which are not globally optimal. Consequently, global optimisation
problems are typically quite difficult to solve exactly. In the context of combinatorial
problems, they are often called NP-hard. Methods for global optimisation problems

Search and Search Space
¯¯

245

can be categorised based on the properties of the problem and the types of
guaranties provided to reach the ‘optimal’ solution.

Design is an activity that most humans are routinely engage in. Different designers of
course operate with very different design objectives, design tools, and consequently,
different design outcomes. Indeed, as pointed out by Herbert Simon–one of the
founders of AI, any entity, be it natural or artificial, that devises courses of action aimed at
changing existing situations into preferred ones (whatever they might be), can be said to engage in
design activity (Simon, 1981).

The design process, from a computational perspective, essentially involves searching
a design (search) space. The search space can be described by the 3-tuple (S, O, G)
where S is the start state (which captures the existing states: inputs), O is the set of
operators that can be used to transform a state into another, and G is a specification of
the desired goal state (e.g., solution that meets the design objectives). For example, in a
theorem proving task (which involves devising a proof of a theorem), the initial state
consists of the axioms, the goal state is the theorem to be proved, and the operators
are the logically sound rules of inference. Thus, the design activity is a sequence of
operator applications that transforms the initial state into a goal state. It is also
possible to think of the design task in terms of its decomposition into hierarchy of
(hopefully simple) design sub-problems.

Like any problem that involves search in typically large spaces, design problems tend
to be computationally hard in the absence of appropriate knowledge to guide search.
Fortunately, search can be guided by knowledge that is at the disposal of the designer
(human). This knowledge may be domain independent or domain specific and may
take various forms. For example, such knowledge may be used to narrow the scope
of the search by effectively constraining the search to a certain part of the search space,
or ranking the alternatives available for exploration at a given stage of the design
process in terms of their promise, etc. A special attention must be done to variability
and uncertainty of the problem knowledge. This knowledge itself may be acquired
and refined by the designer through its experience. While knowledge is useful in
constraining the search, it should be noted that a blind reliance on the known can
prevent exploration of the unknown and hence hinder the discovery of novel and
truly creative designs. In many cases, random search can significantly help to explore
the search space, and some times can do more better than sophisticated methods…

In general if there is sufficient knowledge about a problem domain, there is no need
to search for a solution. However, if there is lack of knowledge about the search
space, then if there is an information that help to detect areas within which a solution
is expected to be found, a search method can be used to hunt for a solution within
this area. We are concerned with design problems that do not lend themselves to a
direct solution but that can be cast as search problems within a space of possible
valid solutions.

Most search methods typically tend to oscillate among two trends which are speed (the
number of candidate designs searched through before finding the correct one) and

Search and Search Space
¯¯

246

flexibility (applicability to different problems). Most methods balance exploration of the
search space with exploitation of areas of the space. Exploration points out new areas
to search in, while exploitation concentrates search in a particular area.
Uncontrollable exploration leads to wasted time in unpromising areas, while severe
exploitation may miss the correct solution by concentrating on too small an area–
there is a need for a balance among the two trends. That is, too much exploration
means too much time, and too much exploitation means that the valid solution may
not be reached in the attributed time. On the other hand, in the case of weak
exploration, the valid solution may not be generated while insufficient exploitation
may take too long. Striking a well balance between exploration and exploitation is by
the way critical for search methods.

Wasting time in unpromising areas of the search space may seem a small price to pay
for finding the correct solution. Unfortunately, in real-world design domains the size
of the search spaces is so large that a human lifetime is short compared to the time
needed by fastest super-computers to look at a significant fraction of search space.
That why random or exhaustive search are infeasible since it explores too much.

Local search methods, are algorithms that do not execute any exploration and have
knowledge available to ‘solve’ the problem quickly and directly. These algorithms rely
on the existence of sufficient exploitable information and make strong assumptions
about the search space to avoid long time search. However, since these strong
assumptions do not usually hold across all kind of search spaces, these algorithms
work only on the particular space they were designed for and do miserably on others.
If a solution method can solve instances in a benchmark set, yet it cannot solve a
significant fraction of other instances, then we have a case of method over-fitting
(Falkenauer, 1998). Almost all search methods depend on domain-knowledge and
favour speed over flexibility. Most are so brittle that they fail completely when
domain knowledge is scarce.

In between these extremes of random or exhaustive search and almost no search,
other search algorithms make assumptions about the search space. These
assumptions correspond to knowledge about the space and may be correct, incorrect,
or misleading. This knowledge is exploited to guide exploration–at least when to
stop, thus speeding up the search.

Successful design in many domains requires substantial creativity from designers.
Creativity involves not only exploration of domains, but modification, extension or
transformation of domains by manipulating constraints.

References

(Falkenauer, 1998) Falkenauer E., ‘On method overfitting’, Journal of Heuristics,
Vol. 4, pp. 281-287, 1998.

(Simon, 1981) Simon H.A., ‘The sciences of the artificial’, (3rd ed.), The MIT Press,
Cambridge, MA, 1981.

