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Abstract— In this paper, an interactive fuzzy satisficing
method for multiobjective multidimensional 0-1 knapsack
problems is proposed by incorporating the desirable fea-
tures of both the interactive fuzzy programming methods
and genetic algorithms. By considering the vague nature
of human judgements, fuzzy goals of the decision maker
(DM) for objective functions are quantified by eliciting lin-
ear membership functions. If the DM specifies a reference
membership level for each of the membership functions, the
corresponding (local) Pareto aptimal solution can be ob-
tained by solving the formulated minimax problem through
a genetic algorithm with double strings. For obtaining an
optimal solution not dominated by the solutions before in-
teraction, the algorithm is revised by introducing some new
mechanism for forming an initial population. Illustrative
numerical examples demonstrate both feasibility and effec-
tiveness of the proposed method.

KeyW ords— Multiobjective multidimensional 0-1 knapsack
problems, interactive fuzzy satisficing methods, genetic al-
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I. INTRODUCTION

Genetic algorithms [1], a new learning paradigm that
models a natural evolution mechanism, have recently re-
ceived a great deal of attention regarding their potential as
optimization techniques to solve combinatorial optimiza-
tion problems [2; 3]. For multiobjective 0-1 programming
problems, to generates only feasible solutions without us-
ing penalty functions, the authors have proposed a genetic
algorithm with double strings [5]. Moreover, incorporating
fuzzy goals of the decision maker (DM) for objective func-
tions together with fuzzy decision, a compromise solution
for the DM can be derived efficiently through the proposed
genetic algorithm. There remains, however, such a prob-
lem that no interaction with the DM is considered once the
membership functions have been determined.

In this paper, an interactive fuzzy satisficing method for
multiobjective multidimensional 0-1 knapsack problem is
proposed by incorporating the advantages of both genetic
algorithms with double strings [5] and interactive fuzzy
programming [4]. The basic idea behind interactive fuzzy
programming is to derive a satisficing solution for the DM
from a set of Pareto optimal solutions efficiently by updat-
ing reference membership levels. Unfortunately, however,
it is significant to realize that a simple hybrid between the
interactive method and the genetic algorithm suffers from a
lot of possibility to generate optimal solutions dominated
by those obtained before interaction. With this observa-
tion in mind, we propose an interactive fuzzy satisficing
methods by modifying the generation method of an initial
population in the genetic algorithms with double strings.
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II. INTERACTIVE FUZZy PROGRAMMING THROUGH
GENETIC ALGORITHM

In general, a multiobjective multidimensional 0-1 knap-
sack problem with [ distinct objective functions z;(x) =

cr (i=1,...,0)1s formulated as follows:
minimize (21(z), 22(), ..., ()T
subject to Az £b (1)
z e {0,1}"

where ¢; = (¢i1,..-,¢m) G=1,...,0), 2 = (21,...,2,)7,
b= (br,e.sbm)T, A= (a) G=1,...,mk=1,...,n)
is an m X n matrix. Furthermore, it is assumed that each
element of ¢; is a real number and each element of A and
b is a positive integer.

For such a multiobjective 0-1 programming problem,
considering the vague nature of the DM’s judgements, it
is quite natural to assume that the DM may have a fuzzy
goal such as “z;(x) should be substantially less than or
equal to a fixed value”. Such a fuzzy goal of the DM can
be quantified by eliciting a membership function.

In this paper, for simplicity, the linear membership func-
tion

0 0 zi(z) > 20

zi(x) Z? 1 0
UL(Zi(w)) = 2T 0 ;o2 < Zl(“’) £z (2)

1 n@ g

is adopted, where z? and 2! denotes values of the objec-
tive function z;(z) whose degree of membership function
are 0 and 1, respectively. These values are subjectively
determined through interaction with the DM.

Having elicited the linear membership functions
wi(zi(x)) (i =1,..., k) from the DM for each of the objec-
tive function z;(x) (1 = 1,...,k), if we introduce a general
conjunctive function

1 (28 (), ®3)

the problem (1) can be written as the following fuzzy mul-
tiobjective decision making problem:

pp(x) = pp(p(z21(®)), ...

aximize ; 4
maximize pp(«) (4)

where X is the constrained set of the problem (1) and the
value of the conjunctive function pp(zx) is interpreted as
degree of satisfaction of the DM for the whole of k fuzzy
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goals. As the conjunctive function, if we adopt the well-
known fuzzy decision of Bellman and Zadeh or minimum
operator, the multiobjective 0-1 programming problem (1)
can be interpreted as:

maximize , Irllin z {pizi(x))}
i=1,...,

subject to =~ Az £ b (5)
z € {0,1}"

In this formulation, however, there still remains a series
problem that no interaction with the DM is considered once
membership functions have been determined.

To cope with this problem, in this paper, an interac-
tive method for multiobjective programming problems with
continuous variables [4] is introduced. In this method, af-
ter determining a membership function for each of the ob-
jective functions, the DM is asked to specify a reference
point &t = (fi1,..., /)7 which reflects an aspiration level
of the DM for each of the membership functions. The cor-
responding Pareto optimal solution, which is closest to the
reference point or better than that if the reference point is
attainable in the minimax sense, can be obtained by solv-
ing the minimax problem [4]

minimize max {R; — ps(zi(z))}
subject to Az § b (6)
x e {0,1}"

where fi;’s are called reference membership levels. Incor-
porating genetic algorithms with double strings into this
interactive fuzzy programming method, it becomes pos-
sible to introduce the following interactive algorithm for
deriving a satisficing solution of the DM.

Step 1 Set initial reference membership levels (if it is dif-
ficult to determine these values, set them to 1).

Step 2 Generate N individuals of length n represented by
double strings at random.

Step 3 Evaluate each individual on the basis of pheno-
type (n dimensional vector) decoded from genotype
(string).

Step 4 Apply reproduction operator.

Step 5 Apply crossover operator to individuals according
to crossover rate p..

Step 6 Apply mutation operator to individuals according
to mutation rate p,,.

Step 7 Repeat these procedures from step 3 to step 6 un-
til termination conditions are satisfied. Then, regard
an individual with the maximal fitness as an optimal
individual and proceed to step 8.

Step 8 If the DM is satisfied with the current values of
membership functions and objective functions given
by the current optimal individual, stop. Otherwise,
ask the DM to update reference membership levels by
taking account of the current values of membership
functions and objective functions and return to step
2.

III. GENETIC ALGORITHMS WITH DOUBLE STRINGS

A. Coding and decoding

Usually, an individual in genetic algorithms is repre-
sented by a 0-1 alphabetic string. This representation,
however, may weaken ability of genetic algorithms since
an individual whose phenotype is feasible is scarcely gen-
erated under this representation. In this paper, as one
possible way to generate only feasible solutions, a double
string as is shown in Fig. 1 is adopted [5].

index of variable:
0-1 value :

s(1) s(2) -+ s(n) >
Gs(1) Gs(2) " * Gs(n)

Fig. 1. Double string

Decoding this string (genotype) by means of the follow-
ing algorithm, the resulting solution (phenotype) becomes
always feasible. In the algorithm, n, 4, s(4), Topy and ag(;)
denote respectively length of a string, a position in a string,
an index of a variable, 0-1 value of a variable with index
s(1) decoded from a string and a column vector in the con-
straint coefficient matrix A.

Step 1 Seti=1, 3 =0.

Step 2 If g,y =1, set 7 =i+ 1 and go to step 3. Oth-
erwise, i.e., if gy;) = 0, set 4 = ¢ 4+ 1 and go to step
4.

Step 3 If ¥+ ay; < b, set Ty = 1, X=X+ a,,) and
go to step 4. Otherwise, set z,; = 0 and go to step
4.

Step 4 If i > n, stop and regard z = (z1,...,2,)7 as
phenotype of the individual represented by the double
string. Otherwise, return to step 2.

B. Fitness and scaling

It seems quite natural to define the fitness function of
each individual S by

f(8)=1- igf}_ﬁ{l{m ~ pi(zi(x))} (7)

where S and x denote an individual represented by double
string and phenotype of S respectively.

In reproduction operator based on the ratio of fitness of
each individual to the total fitness such as expected value
model, it is a problem that probability of selection depends
on the relative ratio of fitness of each individual. Thus,
linear scaling is adopted.

Linear scaling Fitness f; of an individual is transformed
into f; as follows:

f;:afl-f-b

where the coefficients a and b are determined so that
the mean fitness of the population fmean becomes a
fixed point and the maximal fitness of the population
fmax becomes twice as large as the mean fitness.
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C. Reproduction

Up to now, various reproduction methods have been pro-
posed and considered [2; 3]. The authors have already
investigated the performance of each of six reproduction
operators, i.e., ranking selection, elitist ranking selection,
expected value selection, elitist expected value selection,
roulette wheel selection and elitist roulette wheel selection,
and as a result confirmed that elitist expected value selec-
tion is relatively efficient [5]. For this reason, as a repro-
duction operator, elitist expected value selection is adopted
here. Elitist expected value selection is a combination of
elitism and expected value selection.

Elitism If the fitness of a string in the past populations is
larger than that of every string in the current popula-
tion, preserve this string into the current generation.

Expected value selection For a population consisting
of N strings, the expected value of the number of the
7 th string s; in the next population

Ni=(f(s0/ 3 Fls) x N

is calculated. Then, the integral part of N; denotes
the deterministic number of the string s; preserved in
the next population. While, the decimal part of N;
is regarded as probability for one of the string s; to
survive, i.e., N — Y N; strings are determined on the
basis of this probability.

D. Crossover

If a single-point crossover or multi-point crossover is ap-
plied to individuals of double string type, an index s(k)
in an offspring may take the same number that an index
s(k") (k # k') takes. The same violation occurs in solving
traveling salesman problem or scheduling problem through
genetic algorithm as well. For the purpose of avoiding
this violation, a crossover method called partially matched
crossover (PMX) [2] is adopted.

E. Mutation

It is considered that mutation plays a role of local ran-
dom search in genetic algorithms. In this paper, for the
lower string of a double string, mutation of bit-reverse type
is adopted.

F. Convergence conditions

Applying genetic algorithms to an interactive multiob-
jective 0-1 programming problem, an approximate solution
of desirable precision must be obtained in proper time. For
this reason, two parameters Inin which denotes how many
generations will have to be searched at least and Iinax which
does at most are introduced. Moreover the following con-
dition of convergence is imposed.

Step 1 Set the iteration (generation) index ¢ = 0 and the
parameter of the condition of convergence to £ > 0.

Step 2 Carry out a series of procedures for search through
GA (crossover, mutation, reproduction).

Step 3 Calculate the mean fitness fiean and the maximal
fitness fmax Of the population.

Step 4 If t > Iin and (fmax - fmei\n)/fma,x < g, stop.
Step 5 If t > Imax, stop. Otherwise, set t = t + 1 and
return to step 2.

G. Numerical experiments

As a numerical example, consider a two-objective one-
dimensional knapsack problem with 20 variables incorpo-
rating fuzzy goals of the DM,. The coeflicients of the prob-
lem are determined at random. Concerning the fuzzy goals
of the DM, the values of 22 and 2} are set to be their indi-
vidual maximum and minimum respectively. The parame-
ters of GA are set as, population size = 50, the crossover
ratio p. = 0.9, the mutation ratio p,, = 0.02, ¢ = 0.05,
Tmax = 1000 and I, = 100. Moreover, suppose the DM
updates the reference membership levels as (1.0,1.0) —
(0.9,1.0) — (0.85,1.0) through interactions.

The results show the difference between the mean fitness
of approximate optimal solutions through GA and the fit-
ness of the true optimal solution is smaller than 1% after
all interactions. Consequently, it is concluded that an ap-
proximate optimal solution of high precision is obtained
through GA. However, unfortunately, some solutions cal-
culated through GA for the updated reference membership
levels are dominated, i.e., all objective function values of
the solution are inferior to those of solutions before inter-
action.

IV. MODIFICATION OF GENETIC ALGORITHMS

In the results of the above simulations, it is observed that
the calculated solutions for updated reference membership
levels are dominated by those calculated before updating.
In order to overcome such an undesirable phenomenon that
the calculated solutions for updated reference membership
levels are not always Pareto optimal, the method of gener-
ating an initial population is modified as described in the
following section.

A. Methods of generating initial population in interaction

In the experiments in the previous section, all strings
included in the initial population were generated at random
every interaction. Here, the following method of generating
initial population is proposed.

Revised Method One of the strings in the initial popu-
lation is equal to the (approximate) optimal solution
obtained by the preceding interaction and the remain-
der consist of N — 1 strings generated at random.

As a result, expected value selection and elitism selection
are simultaneously adopted, and hence it is expected that
the optimal solution after interaction will not be domi-
nated.

B. Numerical experiments

As anumerical example, consider the fuzzy two objective
knapsack problem with 20 variables discussed above. The
parameters of GA are set as, population size = 50, the
crossover ratio p. = 0.9, the mutation ratio p,, = 0.02,
e = 0.05, I = 1000 and I, = 50.
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Table 1. Results when the reference membership level (1.0,1.0) was updated to (0.9,1.0).

The first interaction The second interaction
z1(z)  22(x) 111 11 z1(z)  z2(x) 11 Iho Number of | Average generation
solutions | number to converge
4628 2104 | 0.7280 0.7481 | 4336 1772 | 0.6821 0.7879 100 85.30
4667 2498 | 0.7341 0.7010 | 4336 1772 | 0.6821 0.7879 98
4208 2102 | 0.6761 0.7484 1 74.09
4176 2033 | 0.6569 0.7566 1
4604 2029 | 0.7242 0.7571 | 4336 1772 | 0.6821 0.7879 99
4604 2029 | 0.7242 0.7571 1 et
4599 2181 | 0.7234 0.7389 | 4336 1772 | 0.6821 0.7879 100 75.49
4500 2471 | 0.7078 0.7042 | 4336 1772 | 0.6821 0.7879 98
4303 1830 | 0.6769 0.7809 1 87.90
4298 2102 | 0.6761 0.7484 1

Table 2. Results when the reference membership level (0.9,1.0) was updated to (0.85,1.0).

The second iteration The third iteration
zi(z)y  z(x) I o z1(z)  z(z) I 1h3 Number of | Average generation
solutions | number to converge
4336 1772 | 0.6821 0.7879 | 4336 1772 | 0.6821 0.7879 100 55.77
4327 1905 | 0.6806 0.7720 | 4336 1772 | 0.6821 0.7879 100 61.64
4604 2029 | 0.7242 0.7571 | 4336 1772 | 0.6821 0.7879 100 58.54
4298 2102 | 0.6761 0.7484 | 4336 1772 | 0.6821 0.7879 100 59.40
4176 2033 | 0.6569 0.7566 | 4336 1772 | 0.6821 (.7879 100
4035 1573 | 0.6347 0.8117 1 60.84
4103 1890 | 0.6454 0.7738 | 4336 1772 [ 0.6821 0.7879 100 57.47

The results of the first interaction, in which all reference
membership levels were set to 1 and the initial population
was generated at random, are shown at the column for the
first interaction in Table 1. While, the results of the second
interaction, in which the reference membership levels were
updated from (1.0, 1.0) to (0.9,1.0) and the initial popula-
tion was generated based on the revised method are shown
at the column for the second interaction in Table 1. More-
over, the results of the second interaction and that of the
third interaction, in which the reference membership levels
were updated from (0.9,1.0) to (0.85,1.0) and the initial
population was generated based on the revised method are
shown at the corresponding columns in Table 2. Note that
the first objective function z;(z) must be maximized and
the second objective function zo(x) must be minimized.

As can be seen in the results of Tables 1 and 2, no so-
lution after an interaction was dominated by that before
an interaction and then all solutions obtained were Pareto
optimal solutions. From the result, it is gathered that the
proposed method which leaves an approximate optimal so-
lution is efficient.

V. CONCLUSION

In this paper, an interactive fuzzy satisficing method,
a hybrid between the interactive method and genetic algo-
rithm, was proposed for multiobjective multidimensional 0-
1 knapsack problems. With regard to genetic algorithms, a,

genetic algorithm with double strings which generates only
feasible solutions was used. In case of combining the ge-
netic algorithm to an interactive method simply, values of
mean relative difference between approximate optimal so-
lutions obtained through GA and strictly optimal solution
were smaller than 1%, while some of approximate optimal
solutions after an interaction were dominated by those be-
fore the interaction. Hence, a method of generating initial
population was proposed. The results that the solutions af-
ter an interaction were not dominated by those before the
interaction implies effectiveness of the proposed method.
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