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Abstract

Optimization tasks issued from real industrial problems
are often characterized by being multicriteria, mixed,
nonconvex, large scale, ill-defined [2][9][26]. In this work
such a problem is obtained from the optimization of pro-
duction scheduling and energy management in industrial
complexes (in the case of a kraft pulp and paper mill).
Consider two criteria, one of real variables issued from
the energy optimization, and another of integer (logi-
cal) variables issued from production scheduling opti-
mization, submitted to a high number of equality and
inequality constraints [19][20]. To solve this problem
it is proposed a strategy based on genetic algorithms.
Computational results are presented to support discus-
sion of the several developed techniques, namely selec-
tion methods, crossover and mutation operators, and
diversification techniques. Results about the industrial
relevance of the method are also presented, showing that
genetic algorithms can solve important industrial prob-
lems although they need yet powerful computers to get
answers in an interactive way.

∗Partially financed by JNICT/PRAXIS XXI program. In-
dustrial data given by Eng. J. Amaral, Portucel, Viana do
Castelo, Portugal.

1 Introduction
Continuous production industries can be described by a
group of departments responsible for some specific op-
erations and separated by intermediate buffers. The
kraft pulp and paper is one example of these indus-
tries. Consider the notation of figure 1, suggested in
[2], where buffer j, with level xj (j = 1, . . . ,m), receives
the production from the department i, working at rate
ui (i = 1, . . . , n) units, and delivers the raw material to
department i+1, working at rate ui+1 units; bj,i+1 ·ui+1

units are consumed from buffer j for each unit of pro-
duction ui+1. This work is based on the case study of
the flowsheet of the Centro Fabril de Viana da Portucel,
represented in figure 13.

u i + 1u i x j

Figure 1: Flowsheet example with two departments and
one buffer.

Pulp mills are rather complex systems where shut-
downs and disturbances propagate and influence very
easily all the mill. This will lead to mass and energy
losses due to chemical incorrect dosing and consequently
to production losses and quality breakdowns. A pro-
duction control system must then follow the mill actual
state so that the production targets are achieved.

During the last decade the optimization area has
undergone a considerable growth in such a way that
many of engineering problems can now be solved with
the aid of non-deterministic methods. In this work a
GA approach is used based on multicriteria constraint-
handling techniques.
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2 Mathematical Formulation

The stock equation (1) represents the overall model for
the production coordination where B is the mass bal-
ance matrix, control u and state x are the departments
production rates and the intermediate buffers levels, re-
spectively. T is the discretization interval and N is the
number of discretizations in the planning horizon, with
k = 0, . . . , N − 1.

x (k + 1) = x (k) +B · T · u (k) (1)

Both control u and state x are physically constrained by
equations (2) and (3).

0 ≤ umin (k) ≤ u (k) ≤ umax (k) ≤ Umax (2)

0 ≤ xmin (k) ≤ x (k) ≤ xmax (k) ≤ Xmax (3)

The energy production and consumption in the mill
can be represented by an energy balance matrix, issued
from a careful study of the energetic balances in each de-
partment. The total consumption of electrical energy is
expressed by the equation (4), where BEE is the energy
balance matrix.

EEtotal = BEE · T · u (4)

There are some issues that should be attained in the
production scheduling, as stated in [9][26]:

1. the final productions must be accomplished in the
planning horizon, since delays in delivery times lead
to economic losses;

2. the storage capacities should be used in order to
avoid over and underflows and also to

3. avoid production rate changes, since these are
responsible for additional costs due to efficiency
breakdowns in almost all departments;

4. all the maintenance shut-downs should be carefully
planned which will benefit the entire mill;

5. the end of a schedule plan should be seen as the
beginning of the next one and therefore the final
storage levels should be pre-determined;

6. some attention should be paid to the energy con-
sumption since the pulp and paper industry is
highly energy demanding.

The mathematical formulation must take into account
the aspects mentioned above. From these, it is rather
essential to distinguish between an objective and a con-
straint.

From the above statements, it is seen that in this prob-
lem two criteria are needed, given by equations (5) and
(6), where ch (k, i), as stated in [13], is the production
rate change function (department i and instant k) de-
fined in equation (7).

Obj1 = min

N−1∑
k=0

{BEE · T · u (k)} (5)

Obj2 = min

N−1∑
k=1

n∑
i=1

ch (k, i) (6)

ch (k, i) =

{
1⇐ ui (k) 6= ui (k − 1)
0⇐ ui (k) = ui (k − 1)

(7)

The formulation will be complete with a constraint
set definition:

• the accomplishment of final production, during the
planning time horizon, must verify equation (8),
where xmpap stands for the paper machine buffer
level and Kfpap represents the desired finished pa-
per production;

xmpap (N − 1)− xmpap (0) = Kfpap (8)

• the planned maintenance shutdowns and the pro-
duction restrictions expressed by equation (2);

• the minimum and maximum safety limits of all stor-
age buffers as stated in equation (3);

• the buffers final state which should be pre-
determined, as defined in equation (9), where xfinal

represents the intended buffers final state;

x (N) = xfinal (9)

• the contracted electrical power, which is time vari-
ant, should not be exceeded, as defined in equation
(10), where Pc (k) is the contracted power limit at
instant k and EEEDP (k) can be computed by equa-
tion (11), where EEturbogenerator is the electrical en-
ergy production of the turbogenerator.

EEEDP (k) ≤ Pc (k) (10)

EEEDP = EEtotal − EEturbogenerator (11)

The mathematical formulation of the problem is not
practical to traditional optimization techniques. Other
approach must be sought for.

3 The Genetic Algorithm

The genetic algorithms are considered a probabilistic
method with their own search techniques and though
more robust than those with random character. In this
section they are presented several arrangement sets for
the scheduling problem presented in the previous sec-
tion.

3.1 Constraint Manipulation Tech-
niques

In order to manipulate the restriction set there are sev-
eral methods which can be grouped in three major cat-
egories: (i) methods which preserve the feasibility of
solutions [10], (ii) methods based in penalty functions
[16][22][6][8][12][11][17] and (iii) methods based in the
search of feasible solutions[21][15]. Among these the
method proposed in [10] is the only one with significant
results when applied to high order problems. Studies
conducted in [18] showed that the other two categories
are perfectly suitable only when applied either to low
order problems or to spaces defined by few restrictions.
If the feasible space is given by highly restrictive restric-
tions, like the equality ones, then the initial optimization
problem results in a feasible solution search problem.
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The basic idea behind Michalewicz’s method lies in
(i) the elimination of the equalities present in the con-
straint set and in the (ii) use of specific operators which
guarantee that individuals are kept in the feasible space.
These specialized operators, namely crossover and mu-
tation, transform feasible solutions into other feasible
solutions and so are considered closed in the feasible
part of the search space.

3.2 Multicriteria Selection Techniques
The GAs have been used particularly in single objec-
tive problems but, nevertheless, most of the practical
applications exhibit more than one objective. In order
to properly select the next generation it is used either
the Pareto ranking method or the Pareto domination
tournaments method. The first technique, which makes
use of the definition of Pareto optimality, was first in-
troduced by [4] and later redefined as a slightly different
scheme in [3]. As proposed by Fonseca, an individual’s
rank corresponds to the number of individuals in the
current population by which it is dominated and, there-
fore, the dominated individuals are given a worse chance
for reproduction. This process ends with the fitness as-
signment by interpolating from the best individual to
the worst according to an exponential function, but pos-
sibly of other types. Here it was used the function ex-
pressed in equation (12), where P is the rank of the best
individual and 0 < c < 1 is a constant.

fi =
c− 1

cP − 1
cP−i; i ∈ {1, . . . , P} (12)

The Pareto domination tournaments [7] are inspired
in the tournament selection scheme, introduced in
[4][14], where the best among a random set of individu-
als is chosen.

The stochastic universal sampling is used in this
work since it is considered the standard algorithm for
sampling which exhibits null distortion and minimum
spread.

3.3 Diversification Techniques
The scheme of sharing, known as fitness sharing, was
introduced in [23], and later in [3], known as fitness
sharing, and its main purpose is the population dis-
tribution in a set of niches of the search space. With
this procedure, the existence of similar individuals are
avoided which denounces the redundancy, enemy of di-
versity. Equation (13) represents the shared fitness func-
tion where nni is the niche number of individual i, Sh (d)
is the sharing function and function d (i, j) represents
the distance between individuals i e j.

f share
i =

fi
nni

, with nni =
∑
j∈P

Sh (d (i, j)) (13)

Once the sharing scheme is applied to the population,
the crossover between individuals belonging to differ-
ent niches may result in descendents in any niche. The
mating restriction scheme [1] involves the parameter for
σmate which is quite similar to for σshare [3]. The sim-
plest mechanism using this approach is the mating ra-
dius which chooses for second progenitor the individual
from the mating pool in a distance less than σmate from
the first progenitor. If none is in this situation then a
random individual is chosen.

3.4 Recombination Operators
During the GA reproduction stage the individuals are
selected from a population and recombined resulting in
descendents which will belong to the next population.
The recombination is formed by the crossover and mu-
tation techniques. The crossover techniques employed
in this work were the one-point crossover [5][4], the uni-
form crossover [24][23], the heuristic crossover [27] and
the arithmetical crossover [10].

The mutation phase is formed by a set of four strate-
gies: uniform, boundary, non-uniform [10] and exchange
mutations. The last one, the exchange mutation, two
consecutives genes exchange each other. This last type
can be seen as a particular case of the uniform mutation.

4 Application to the Problem

With some simplifications introduced in [20], scheduling
of three out of the ten departments of the mill can be
determined subsequently and, therefore, the resulting
scheduling problem is formed by seven departments. A
discretization interval of four hours is used in a planning
horizon of fourty eight hours which leads to eighty four
variables in the system.

The initial and final buffers’ state are imposed to be
50% of their maximum capacity and the final state for
the finished paper to be 90%. It is also imposed a shut-
down in the paper mill during the third discretization
interval and a reduction to 30% in the causticizing dur-
ing the second discretization interval. Due to the limi-
tations of the floating point representation a change in
a production rate (equation (7)) is considered only if
greater than 2% of the maximum.

4.1 Several Simulations
The simulation set presented in this section does not
pretend to be an exhaustive comparison among all the
operators with application to the described model. It
gives a global view of genetic algorithm application to
multicriteria optimization problems submitted to a con-
straint set.

The operators used in the GA simulations are resumed
in table 1, but other several considerations are needed:

• the population is composed by fifty individuals
coded as real multiparameters constructed from the
concatenated codes (each gene represents a dis-
cretization of a production rhythm);

• ten thousand generations are made for each of the
simulations;

• the Pareto ranking selection is used with a fitness
assignment according to equation (12) where c is
chosen in order that the best individual selection
probability equals the double of the average selec-
tion probability;

• the Pareto domination tournaments are committed
among five elements which represents 10% of the
population size;

• the stochastic universal sampling is used which ex-
hibits minimum spread and null distortion;
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Sml. Selection Crossover σshare αshare σmate

S1
ranking

c = 0.83

one-point
pc = 0.7
att = 10

M1−m1+M2−m2
49

1 10·σshare

S2
ranking
c = 0.83

uniform
pc = 0.7
att = 10

M1−m1+M2−m2
49

1 10·σshare

S3
ranking
c = 0.83

one-point
pc = 0.7
att = 10

S4
ranking

c = 0.83

uniform
pc = 0.7
att = 10

S5
ranking
c = 0.83

heuristic
pc = 0.7
att = 10

S6
ranking
c = 0.83

heuristic
pc = 0.7
att = 10

M1−m1+M2−m2
49

1 10·σshare

S7
tournament
tdom = 5

one-point
pc = 0.7

M1−m1+M2−m2
49

1 10·σshare

S8
tournament
tdom = 5

one-point
pc = 0.7
att = 10

S9
ranking
c = 0.83

arithmetical
pc = 0.7

M1−m1+M2−m2
49

1 10·σshare

S10
ranking
c = 0.83

arithmetical
pc = 0.7

Table 1: Simulation set.
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Figure 2: Objective functions and population with cumulative trade-off surface in simulation 1.
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Figure 3: Objective functions and population with cumulative trade-off surface in simulation 2.
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Figure 4: Objective functions and population with cumulative trade-off surface in simulation 3.
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Figure 5: Objective functions and population with cumulative trade-off surface in simulation 4.
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Figure 6: Objective functions and population with cumulative trade-off surface in simulation 5.
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Figure 7: Objective functions and population with cumulative trade-off surface in simulation 6.
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Figure 8: Objective functions and population with cumulative trade-off surface in simulation 7.
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Figure 9: Objective functions and population with cumulative trade-off surface in simulation 8.
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Figure 10: Objective functions and population with cumulative trade-off surface in simulation 9.
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Figure 11: Objective functions and population with cumulative trade-off surface in simulation 10.
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Figure 12: Simulation 2 along 100000 generations; objective functions and population with cumulative trade-off
surface.

• some of the crossover operators need an extra pa-
rameter (att) which represents the number of at-
tempts to generate feasible solutions;

• the mutation operator is composed simultaneously
by four strategies: uniform, boundary, non-uniform
and exchange mutations, each with a mutation
probability of one gene in 30% of the population
(this gives a mutation probability of 0.3

84
);

• the elected reinsertion mechanism was the genera-
tional reproduction [25] where all the population is
replaced in each generation.

• the scheme of sharing uses two parameters: σshare

which is estimated in each generation and propor-
tional to the range of both objective functions and
αshare which equals one;

• the mating restriction scheme involves the parame-
ter σmate which is made ten times σshare; this comes
from the fact that function Obj2 gets only integer
values and, so, all the members of small niches have
the same value for this objective function.

Figures 2 to 11 represent the evolution of the objec-
tive functions Obj1 and Obj2 in the ten simulations and
also the situation of the population in generation ten
thousand with the cumulative trade-off surface.

4.2 Analysis of Simulation Results
The analyses of results is, in a certain manner, related
with the guidelines responsible for the choice of this sim-
ulation set. There are three major points: (i) the con-
frontation of the main multicriteria selection schemes,
(ii) the comparison among the main crossover operators
and (iii) the inclusion of sharing and mating restriction
schemes in order to diversify the trade-off surface.

Objective function Obj2 presents a oscillatory char-
acter in all the simulations due to its own definition
which does not represent the variations degree but only
the presence or the absence of them. Objective function
Obj1, in the other way, reaches its optimum, in almost
all simulations, more or less in an hundred generations
which reveals a great ease with the total energy cost
minimization.

Simulations three and eight reveal a higher conver-
gence time for the Pareto ranking either with Obj2 or
Obj1. This situation was expected since the tourna-
ments are accomplished only in a local set of individuals

then the selection probability of a worse individual is
considerable and its permanence degrades the conver-
gence. Bigger tournaments, in the other way, should
lead to elitism with inevitable premature convergence.

Among crossover operators used in this work (sim-
ulations three, four, five, eight and ten) the only one
which is inherently closed is the arithmetical. A num-
ber of attempts too low results in an overall crossover
probability also too low and, consequently, in a slow
convergence time and in a high number of generations.
However the uniform crossover is the one with the best
results on both objective functions, manly in Obj2. The
diversity in the optimum Pareto set is considered poor in
heuristic crossover since about 80% of population con-
verged prematurely to solutions out of trade-off surface
in generation ten thousand. With arithmetical crossover
objective function Obj1 has a rather weak behavior; in
ten thousand generations this crossover did not achieve
the value the others did in two hundred generations.

Two of the diversification techniques used were the
sharing and the mating restriction. Globally, the in-
tended variety in the trade-off surface is achieved but
with a longer convergence time. With the one-point
crossover (simulations one and three) the results were
identical since this operator has, by itself, a diversified
feature. The other operators had distinct behaviors: in
heuristic operator (simulation six) the niche formation
was present in final generation but Obj2 produced a
worse evolution with only one solution in the Pareto
set. This can be justified by the limited ability of the
heuristic crossover to produce feasible solutions since
this, by definition, has a tendency to get out of the con-
vex space. The low diversifier character of the arithmeti-
cal crossover is improved with inclusion of these diver-
sification techniques (simulation nine) and, so, a better
investigation of feasible space not yet sampled. The uni-
form crossover showed a regular response with a lower
convergence time but with more alternative solutions.

The inclusion of the two diversification methods in
the Pareto domination tournament selection proved to
be perfectly disastrous (simulation seven). The time
convergence got worse in both objective functions and
no improvements were found in the population diversi-
fication.

A genetic algorithm capable of a convenient conver-
gence time on both objective functions and composed by
a population of non-dominated solutions in a problem of
this dimension is rather hard to find. However, from the
analyses made above, the best genetic algorithm to this
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Figure 13: Solution B from the trade-off surface in generation 100000 (figure 12).

propose is the one of the second simulation. Therefore
this simulation was extended to generation one hundred
thousand, represented in figure 12. Figure 13 represents
the solution marked in figure 12 as solution B, being one
of the possible solutions from the non-dominated set.

5 Conclusions

This work analyzed the ability of several operators and
schemes in a genetic algorithm approach for the reso-
lution of a large scale optimization problem. The ob-
stacles inherent to the problem nature were, namely, its
order, constrained space and multiple criteria. In order
to handle the constraint set this work used a method
which guarantees the generation of feasible solutions
with the aid of closed recombination operators. The
presence of multiple objectives was treated by two selec-
tion schemes involving the Pareto definition, the Pareto
ranking and the Pareto domination tournaments. Di-
versification techniques were obviously needed bearing
in mind the intended trade-off surface. The best results
were found to be with the fitness sharing and mating
restriction.

Although GA is a iterative technique, the literature
shows several functional examples with reasonable com-
putational times implemented in sequential architec-
tures. However if this purpose is not attained it is al-
ways possible to go over parallel technologies, not nec-
essarily with multiprocessors. Further work could use

existent resources, as personal computers and data net-
works, with the aid of protocols like PVM (Parallel Vir-
tual Machine) or MPI (Message Passing Interface).
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