
Solving Multiobjective Optimization Problems using
Evolutionary Algorithm

Ruhul Sarker, Hussein A. Abbass, and Charles Newton
School of Computer Science,

University of New South Wales,
ADFA Campus,Northcott Drive, Canberra 2600, Australia,

{r.sarker,h.abbass,c.newton}@adfa.edu.au

Abstract
Being capable of finding a set of pareto–optimal solutions in a single run, which is a necessary feature for

multi–criteria decision making, Evolutionary Algorithms (EAs) has attracted many researchers and prac-
titioners to address the solution of Multiobjective Optimization Problems (MOPs). In a previous work, we
developed a Pareto Differential Evolution (PDE) algorithm to handle multiobjective optimization problems.
Despite the overwhelming number of Multiobjective Evolutionary Algorithms (MEAs) in the literature, little
work has been done to identify the best MEA using an appropriate assessment methodology. In this paper,
we compare our algorithm with twelve other well-known MEAs, using a popular assessment methodology,
by solving two bench-mark problems. The comparison shows the superiority of our algorithm over others.

1 Introduction

Multiobjective Optimization Problems (MOPs) optimize a set of conflicting objectives simultane-
ously. MOPs are a very important research topic, not only because of the multi-objective nature of
most real-world decision problems, but also because there are still many open questions in this area.
In fact, there is no one universally accepted definition of optimum in MOP as opposed to single-
objective optimization problems, which makes it difficult to even compare results of one method to
another. Normally, the decision about what the best answer is, corresponds to the so-called human
decision maker (Coello 1999).

Traditionally, there are several methods available in the Operational Research (OR) literature for
solving MOPs as mathematical programming models (Coello 1999). None of the OR methods treat
all the objectives simultaneously which is a basic requirement in most MOPs. In addition, these
methods handle MOPs with a set of impractical assumptions such as linearity and convexity.

In MOPs, there is no single optimal solution, but rather a set of alternative solutions. These
solutions are optimal in the wider sense since there are no other solutions in the search space that
are superior to (dominate) them when all objectives are simultaneously considered. They are known
as pareto-optimal solutions. Pareto-optimality is expected in MOPs to provide flexibility for the
human decision maker.

Recently, evolutionary algorithms (EAs) were found to be useful for solving MOPs (Zitzler and
Thiele 1999). EAs have some advantages over traditional OR techniques. For example, consider-
ations for convexity, concavity, and/or continuity of functions are not necessary in EAs, whereas,
they form a real concern in traditional OR techniques. Although EAs are successful, to some extent,
in solving MOPs, the methods appearing in the literature vary a lot in terms of their solutions and
the way of comparing their best results with other existing algorithms. In other words, there is no
well-accepted method for MOPs that will produce a good set of solutions for all problems. This
motivates the further development of good approaches to MOPs.

Recently, we developed a novel Differential Evolution (DE) algorithm for MOPs (Abbass, Sarker,
and Newton 2001). The approach showed promising results when compared with the Strength
Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999), for two benchmark problems.
However there are several other known methods such as Fonseca and Fleming’s genetic algorithm
(FFGA) (Fonseca and Fleming 1993), Hajela’s and Lin’s genetic algorithm (HLGA)(Hajela and
Lin 1992), Niched Pareto Genetic Algorithm (NPGA) (Horn, Nafpliotis, and Goldberg 1994), Non-
dominated Sorting Genetic Algorithms (NSGA)(Srinivas and Dev 1994), Random Sampling Algo-
rithm (RAND)(Zitzler and Thiele 1999), Single Objective Evolutionary Algorithm (SOEA) (Zitzler
and Thiele 1999), Vector Evaluated Genetic Algorithm (VEGA) (Schaffer 1985) and Pareto Archived
Evolution Strategy (PAES) (Knowles and Corne 1999; Knowles and Corne 2000). There are several
versions of PAES like PAES, PAES20, PAES98 and PAES98mut3p. In this paper, we compare the
solutions of two benchmark problems, produced by our DE algorithm with all these methods, using
a statistical comparison technique recently proposed by Knowles and Corne (Knowles and Corne
1999; Knowles and Corne 2000). From the comparison, it is clear that our algorithm outperforms
most algorithms when applied to these two test problems.

The paper is organized as follows. After introducing the research context, previous research is
scrutinized in Section 2 followed by the proposed algorithm in Section 3. Experiments are then
presented in Section 4 and conclusions are drawn in Section 5.

2 Previous Research

2.1 Existing MEAs

MEAs for solving MOPs can be categorized as plain aggregating, population-based non-Pareto and
Pareto-based approaches (Coello 1999). In this section, we would briefly discuss several population-
based approaches as they are more successful when solving MOPs, and are popular among re-
searchers and practitioners.

The Random Sampling Evolutionary Algorithm (RAND)(Zitzler and Thiele 1999) generates ran-
domly a certain number of individuals per generation, according to the rate of crossover and muta-
tion (though neither crossover, mutation nor selection are performed). Hence the number of fitness
evaluations was the same as for the EAs. Another algorithm called Single Objective Evolutionary
Algorithm (SOEA)(Zitzler and Thiele 1999) uses the weighted-sum aggregation. In contrast to
other algorithms, 100 independent runs were performed per test problem, each run being optimized
towards another randomly chosen linear combination of the objectives. The nondominated solutions
among all solutions generated in the 100 runs form the trade-off frontier achieved on a particular
test problem.

The Vector Evaluated Genetic Algorithm (VEGA) (Schaffer 1985) is a population-based non-
Pareto approach. In this approach, the total population is divided into a number of populations
equal to the number of objective functions to be optimized. Each population is used to optimize
each objective function independently. The populations are then shuffled together followed by
conventional crossover and mutation operators. Schaffer (Schaffer 1985) realized that the solutions
generated by his system were non-dominated in a local sense, because their non-dominance was lim-
ited to the current population, and while a locally dominated individual is also globally dominated,
the converse is not necessarily true.

Hajela’s and Lin’s genetic algorithm (HLGA)(Hajela and Lin 1992) is also a non-Pareto approach
that uses the weighted-sum method for fitness assignment. Thereby, each objective is assigned a

weight between zero and one, with the sum of all weights being exactly equal to one. To search
for multiple solutions in parallel, the weights are encoded in the genotype. The diversity of the
weight combinations is promoted by phenotypic fitness sharing. As a consequence, the EA evolves
solutions and weight combinations simultaneously.

In the Pareto-based approaches, the dominated and non-dominated solutions in the current pop-
ulation are separated. Goldberg (Goldberg 1989) suggested a non-dominated ranking procedure to
decide the fitness of the individuals. Later, Srinivas and Dev (Srinivas and Dev 1994) introduced
Non-dominated Sorting Genetic Algorithms (NSGA) based on the idea of Goldberg’s procedure. In
this method, the fitness assignment is carried out through several steps. In each step, the nondom-
inated solutions constituting a nondominated frontier are assigned the same dummy fitness value.
These solutions have the same fitness values and are ignored in the further classification process.
Finally, the dummy fitness is set to a value less than the smallest shared fitness value in the current
nondominated frontier. Then the next frontier is extracted. This procedure is repeated until all
individuals in the population are classified.

Fonseca and Fleming (Fonseca and Fleming 1993) proposed a slightly different scheme which is
known as Fonseca and Fleming’s genetic algorithm (FFGA). In this approach, an individual’s rank is
determined by the number of individuals dominating it. Without using any non-dominated ranking
methods, Horn et al (Horn, Nafpliotis, and Goldberg 1994) proposed the Niched Pareto Genetic
Algorithm (NPGA) that combines tournament selection and the concept of Pareto dominance.
Two competing individuals and a comparison set of other individuals are picked at random from
the population; the size of the comparison set is given by a user defined parameter. If one of the
competing individuals is dominated by any member of the set and the other is not, then the later
is chosen as the winner of the tournament. If both individuals are dominated (or not dominated),
the result of the tournament is decided by sharing: the individual that has the least individuals
in its niche (defined by the niche radius) is selected for reproduction. Horn and Nafpliotis (Horn,
Nafpliotis, and Goldberg 1994) used phenotypic sharing on the objective vectors.

The common features of the Pareto-based approaches mentioned above are that (i) the Pareto-
optimal solutions in each generation are assigned either the same fitness or rank, and (ii) some
sharing and niche techniques are applied in the selection procedure. Recently, Zitler and Thiele
(Zitzler and Thiele 1999) proposed a Pareto-based method, the Strength Pareto Evolutionary Al-
gorithm (SPEA). The main features of this approach are: it (i) sorts the non-dominated solutions
externally and continuously updates the population, (ii) evaluates an individual’s fitness depending
on the number of external non-dominated points that dominate it, (iii) preserves population diver-
sity using the Pareto dominance relationship, and (iv) incorporates a clustering procedure in order
to reduce the non-dominated set without destroying its characteristics.

Most recently, Knowles and Corne (Knowles and Corne 1999; Knowles and Corne 2000) proposed
a simple Evolution Strategy (ES), (1+1)-ES, known as the Pareto Archived Evolution Strategy
(PAES) that keeps a record of limited non-dominated individuals. The non-dominated individuals
are accepted for recording based on the degree of crowdiness in their grid (defined regions on
the Pareto–frontier) location to ensure diversity of individuals in the final solution. They also
proposed an extension to this basic approach, which results in some variants of a (µ+λ) -ES. These
are recognized as PAES (on-line performance using an archive of 100 solutions), PAES20 (off-line
performance using an archive of 20 solutions), PAES98 (off-line performance using an archive of 98
solutions) and PAES98mut3p (PAES98 but with a mutation rate of 3 percent).

Our algorithm is a Pareto-based approach using Differential Evolution (DE) for multi-objective
optimization (Abbass, Sarker, and Newton 2001). This algorithm is briefly introduced in a later

section.

2.2 Comparison Techniques

MOPs require multiple, but uniformly distributed, solutions to form a Pareto trade-off frontier.
When comparing two algorithms, these two factors (number of alternative solution points and their
distributions) must be considered in addition to the quality of solutions. There are a number
of assessment methodologies available in the literature to compare the performance of different
algorithms. The error ratio and the generational distance are used as the performance measure in-
dicators when the Pareto optimal solutions are known (Veldhuizen and Mamont 1999). The spread
measuring technique expresses the distribution of individuals over the non-dominated region (Srini-
vas and Dev 1994). The method is based on a chi-square-like deviation distribution measure, and it
requires several parameters to be estimated before calculating the spread indicator. The method of
coverage metrics (Zitzler and Thiele 1999) compares the performances of different multi-objective
evolutionary algorithms by indicating whether the outcomes of one algorithm dominate those of
another without measuring how much better it is.

A statistical comparison method called “attainment surfaces” was introduced by Fonseca & Flem-
ing (1996). For two objective problems, the attainment surface is defined as the lines joining the
points (candidate solutions) on the Pareto–frontier generated by an algorithm. Therefore, for two
algorithms A and B, there are two attainment surfaces. An attainment surface divides the objective
space into two regions: one containing vectors which are dominated by the results produced by the
algorithm, and another that contains vectors that dominate the results produced by the algorithm.
A number of sampling lines can be drawn from the origin, which intersects with the attainment
surfaces, across the full range of the Pareto–frontier. For a given sampling line, the intersection of
an algorithm closer to the origin (for both minimization) is the winner. Fonseca and Fleming’s idea
was to consider a collection of sampling lines which intersect the attainment surfaces across the full
range of the Pareto frontier.

If MEAs are run r times, each algorithm will return r attainment surfaces, one from each run.
Having these r attainment surfaces, some from algorithm A and some from algorithm B, a single
sampling line yields r points of intersection, one for each surface. These intersections form a uni-
variate distribution, and therefore, we can perform standard non-parametric statistical procedures
to determine whether or not the intersections for one of the algorithms occurs closer to the origin
with some statistical significance. Such statistical tests have been performed by (Knowles and
Corne 2000) for each of the lines covering the Pareto trade–off area. Insofar as the lines provide a
uniform sampling of the Pareto surface, the result of this analysis yields two numbers: a percentage
of the surface in which algorithm A outperforms algorithm B with statistical significance, and that
when algorithm B outperforms algorithm A.

Knowles and Corne (2000) presented their results of a comparison in the form of a pair [a,b],
where a gives the percentage of the space (i.e. the percentage of lines) on which algorithm A was
found statistically superior to B, and b gives the similar percentage for algorithm B. Typically, if
both A and B are ‘good’, then a + b < 100. The quantity [100 - (a + b)], of course, gives the
percentage of the space on which the results were statistically inconclusive. They use statistical
significance at the 95 percent confidence level. Knowles and Corne (2000) also extended their
comparison methodology to comparing more than two algorithms.

If the algorithms are competitive, the results of the statistical test may vary with the number of
sampling lines drawn since the procedure considers only the intersection points of sampling lines

and attainment surfaces. Knowles and Corne (2000) proposed that 100 lines should be adequate,
although, obviously, more lines the better. They have shown experimentally that the percentage
of the space (a + b) increases, to give statistically significant results, with the increased number of
lines.

2.3 Differential Evolution

DE is a branch of evolutionary algorithms developed by Storn and Price (Storn and Price 1995) for
optimization problems over continuous domains. In DE, each variable’s value in the chromosome
is represented by a real number. The approach works by creating a random initial population of
potential solutions, where it is guaranteed, by some repair rules, that the value of each variable is
within its boundaries. An individual is then selected at random for replacement and three different
individuals are selected as parents. One of these three individuals is selected as the main parent.
With some probability, each variable in the main parent is changed but at least one variable should
be changed. The change is undertaken by adding to the variable’s value a ratio of the difference
between the two values of this variable in the other two parents. In essence, the main parent’s vector
is perturbed by the other two parents’ vectors. This process represents the crossover operator in
DE. If the resultant vector is better than the one chosen for replacement, it replaces it; otherwise
the chosen vector for replacement is retained in the population. Therefore, DE differs from GA in
a number of points:

1. DE uses real number representation while conventional GA uses binary, although GA some-
times uses integer or real number representation as well.

2. In GA, two parents are selected for crossover and the child is a recombination of the parents.
In DE, three parents are selected for crossover and the child is a perturbation of one of them.

3. The new child in DE replaces a randomly selected vector from the population only if it is better
than it. In conventional GA, children replace the parents with some probability regardless of
their fitness.

In DE, a solution, l, in generation k is a multi-dimensional vector ~xl
G=k = (xl

1, . . . , x
l
N)T . A

population, PG=k, at generation G = k is a vector of M solutions (M > 4). The initial population,
PG=0 = {~x1

G=0, . . . , ~x
M
G=0}, is initialized as

xl
i,G=0 = lower(xi) + randi[0, 1]× (upper(xi)− lower(xi)), l = 1, . . . ,M, i = 1, 2, . . . , N

where M is the population size, N is the solution’s dimension, and each variable xi in a solution vec-
tor l in the initial generation G = 0, xl

i,G=0, is initialized within its boundaries (lower(xi), upper(xi)).
Selection is carried out to select four different solutions indices r1, r2, r3, and j ∈ [1,M]. The values
of each variable in the child are changed with some crossover probability, CR, to

∀i ≤ N, x′i,G=k =

{
xr3

i,G=k−1 + F × (xr1
i,G=k−1 − xr2

i,G=k−1) if (random[0, 1) < CR ∨ i = irand)

xj
i,G=k−1 otherwise

where F ∈ (0, 1) is a problem parameter representing the amount of perturbation added to the main
parent. The new solution replaces the old one if it is better than it and at least one of the variables
should be changed. The latter is represented in the algorithm by randomly selecting a variable,

irand ∈ (1, N). After crossover, if one or more of the variables in the new solution are outside their
boundaries, the following repair rule is applied until the boundary constraints are satisfied

x′i,G=k =





xj
i,G+lower(xi)

2 if xj
i,G+1 < lower(xi)

lower(xi) +
xj

i,G−upper(xi)

2 if xj
i,G+1 > upper(xi)

xj
i,G+1 otherwise

3 A Differential Evolution algorithm for MOPs

A generic version of the adopted algorithm is presented in Figure 3 with the following modifications:-

1. The initial population is initialized according to a Gaussian distribution N(0.5, 0.15).

2. The step-length parameter F is generated from a Gaussian distribution N(0, 1).

3. Reproduction is undertaken only among non-dominated solutions in each generation.

4. Offspring are placed into the population if they dominate the main parent.

5. The boundary constraints are preserved either by reversing the sign if the variable is less than
0 or keep subtracting 1 if it is greater than 1 until the variable is within its boundaries.

The algorithm works as follows. An initial population is generated at random from a Gaussian
distribution with mean 0.5 and standard deviation 0.15. All dominated solutions are removed
from the population. The remaining non-dominated solutions are retained for reproduction. If the
number of non-dominated solutions exceeds some threshold, a distance metric relation (Abbass,
Sarker, and Newton 2001) is used to remove those parents who are very close to each other. Three
parents are selected at random. A child is generated from the three parents and is placed into the
population if it dominates the first selected parent; otherwise a new selection process takes place.
This process continues until the population is completed.

A maximum number of non-dominated solutions in each generation was set to 50. If this maxi-
mum is exceeded, the following nearest neighborhood distance function is adopted:

D(x) =
(min||x− xi||+ min||x− xj||)

2
,

where x 6= xi 6= xj. That is, the nearest neighborhood distance is the average Euclidean distance
between the closest two points. The non-dominated solution with the smallest neighborhood dis-
tance is removed from the population until the total number of non-dominated solutions is retained
at 50.

4 Experiments

4.1 Test Problems

The algorithm is tested using the following two benchmark problems from Zitler and Thiele (1999):
Test Problem 1: Convex functions

f1(x) = x1

f2(x) = g × (1−
√

(
f1

g
))

g = 1 + 9× (
∑n

i=2 xi)

(n− 1)

xi ∈ [0, 1], i = 1, . . . , 30

Test Problem 2: Discontinuous functions

f1(x) = x1

f2(x) = g ∗ (1−
√

f1

g
− (

f1

g
) sin(10πf1))

g = 1 + 9× (
∑n

i=2 xi)

(n− 1)

xi ∈ [0, 1], i = 1, . . . , 30

Both test problems contain two objective functions and thirty variables. The computational
results of these test problems are provided in the next section.

4.2 Experimental Setup

For our algorithm, the initial population size is set to 100 and the maximum number of generations
to 200. Twenty different crossover rates changing from 0 to 1.00 with an increment of 0.05 are
tested without mutation. The initial population is initialized according to a Gaussian distribution
N(0.5, 0.15). Therefore, with high probability, the Gaussian distribution will generate values be-
tween 0.5 ± 3 × 0.15 which fits with the variables boundaries. If a variable’s value is not within
its boundary, a repair rule is used to repair the boundary constraints. The repair rule is applied
simply to truncate the constant part of the value; therefore if, for example, the value is 3.3, the
repaired value will be 0.3 assuming that the variable is between 0 and 1. The step-length parameter
F is generated for each variable from a Gaussian distribution N(0, 1). The algorithm is written in
standard C++ and ran on a Sun Sparc 4.

4.3 Experimental Results and Discussions

In this section, the solutions of two test problems, provided by our PDE algorithm, are com-
pared with the solutions of twelve other MEAs (FFGA, HLGA, NPGA, NSGA, RAND, SOEA,
SPEA, VEGA, PAES, PAES20, PAES98 and PAES98mut3p) using a statistical comparison
technique. The results of other algorithms, except PAESs, were obtained from the web site
“http//www.tik.ee.ethz.ch/∼zitzler/testdata.html”. The results for all PAESs were obtained from
“http://www.rdg.ac.uk/∼ssr97jdk/multi/PAES.html”.

To perform the statistical analysis using the Knowles and Corne method (Knowles and Corne
2000), we used the solutions of twenty runs of the DE algorithm for each crossover rate. The results
of the comparison is presented in the form of a pair [a,b] for each crossover rate, where a gives the
percentage of the space (i.e. the percentage of lines) on which PDE algorithm is found statistically
superior to the other, and b gives the similar percentage for the other algorithm. For example,
for test problem 1, the best result using PDE [84.3,15.1] is achieved with crossover rate 0.15 when

compared to SPEA. This means, our algorithm outperforms SPEA on about 84.3 percent of the
Pareto surface whereas SPEA is statistically superior than our algorithm for 15.1 percent. For
problem 2, the best result is obtained with crossover 0.05 when compared to SPEA.

In Figures 1 and 2, the x-axis represents the crossover rate used in our PDE algorithm and the
y-axis is the percentage of superiority. Each figure contains a plot of “a” for our PDE algorithm
and “b” for one of the other existing algorithm for a given problem. Twelve plots in Figure 1 show
the comparison of PDE with each of the others MEAs for test problem 1, and Figure 2 shows the
same for test problem 2.

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

Crossover rate

P
er

ce
nt

ag
e

PDE

FFGA

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

Crossover rate

P
er

ce
nt

ag
e

PDE

HLGA

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

Crossover rate

P
er

ce
nt

ag
e

PDE

NPGA

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Crossover rate

P
er

ce
nt

ag
e

PDE

NSGA

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Crossover rate

P
er

ce
nt

ag
e

PDE

RAND

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Crossover rate

P
er

ce
nt

ag
e

PDE

SOEA

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Crossover rate

P
er

ce
nt

ag
e

PDE

SPEA

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

Crossover rate

P
er

ce
nt

ag
e

PDE

VEGA

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Crossover rate

P
er

ce
nt

ag
e PDE

PAES

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Crossover rate

P
er

ce
nt

ag
e

PDE

PAES20

0 10 20 30 40 50 60 70 80 90 100
10

15

20

25

30

35

40

45

50

55

60

Crossover rate

P
er

ce
nt

ag
e

PDE

PAES98

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Crossover rate

P
er

ce
nt

ag
e

PDE

PAES98mut3p

Figure 1: Test Problem 1

For both test problems, PDE is significantly better than FFGA, HLGA, NPGA, Rand and VEGA
irrespective of the crossover rate. PDE is much better than NSGA for any crossover rate less than
0.85 for problem 1 and 0.8 for problem 2. PDE is superior than SOEA within the crossover rate
0.05 to 0.65 and SPEA within 0.05 to 0.5 for test problem 1. These figures for test problem 2 are 0
to 0.45 and 0.05 to 0.1 respectively. PDE is clearly better than PAES, PAES98 and PAES98mut3p
for both test problems within certain range of crossover rate. Although PDE shows superiority
over PAES20 for test problem 1, it shows very little success for test problem 2. For test problem

1, a range of crossover rate for PDE can successfully challenge all other MEAs. For example, the
solutions of PDE at a crossover rate of 0.35 outperforms all other algorithms. From these results,
it can be stated that no algorithm (out of 12) produces optimal solutions. However, PDE solutions
could be close to the pareto frontier though there is no guarantee. For problem 2, there is no single
crossover rate for which PDE is superior than all the other MEAs. However such a rate can be
found when we exclude one or two MEAs. That means, no one is close to optimal although PDE
outperforms most algorithms.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Crossover rate

P
er

ce
nt

ag
e

PDE

FFGA

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

Crossover rate

P
er

ce
nt

ag
e

PDE

HLGA

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Crossover rate

P
er

ce
nt

ag
e

PDE

NPGA

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Crossover rate

P
er

ce
nt

ag
e

PDE

NSGA

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Crossover rate

P
er

ce
nt

ag
e

PDE

RAND

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Crossover rate
P

er
ce

nt
ag

e

PDE

SOEA

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Crossover rate

P
er

ce
nt

ag
e

PDE

SPEA

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Crossover rate

P
er

ce
nt

ag
e

PDE

VEGA

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Crossover rate

P
er

ce
nt

ag
e

PDE

PAES

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Crossover rate

P
er

ce
nt

ag
e

PDE

PAES20

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Crossover rate

P
er

ce
nt

ag
e

PDE

PAES98

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

Crossover rate

P
er

ce
nt

ag
e

PDE

PAES98mut3p

Figure 2: Test Problem 2

5 Conclusions and Future Research

In this paper, a novel differential evolution approach is discussed for multiobjective optimization
problems. The approach generates a step by mutation, where the step is randomly generated from
a Gaussian distribution. We tested the approach on two benchmark problems and it was found
that our approach outperformed almost all existing MEAs. We also experimented with different
crossover and mutation rates, on these two test problems, to find their best solutions. The crossover

rates are found to be sensitive when compared with certain MEAs. However, a trend was found
which suggests that a large number of non-dominated solutions were found with low-crossover rates.
In future work, we intend to test the algorithm on more problems.

Bibliography

Abbass, H., R. Sarker, and C. Newton (2001). A pareto differential evolution approach to vector
optimisation problems. Congress on Evolutionary Computation 2, 971–978.

Coello, C. (1999). A comprehensive survey of evolutionary-based multiobjective optimization
techniques. Knowledge and Information Systems 1 (3), 269–308.

Fonseca, C. and P. Fleming (1993). Genetic algorithms for multiobjective optimization: Formu-
lation, discussion and generalization. Proceedings of the Fifth International Conference on
Genetic Algorithms, San Mateo, California, 416–423.

Goldberg, D. (1989). Genetic algorithms: in search, optimisation and machine learning. Addison
Wesely.

Hajela, P. and C. Lin (1992). Genetic search strategies in multicriterion optimal design. Structural
Optimization 4, 99–107.

Horn, J., N. Nafpliotis, and D. Goldberg (1994). A niched pareto genetic algorithm for multiobjec-
tive optimization. Proceedings of the First IEEE Conference on Evolutionary Computation 1,
82–87.

Knowles, J. and D. Corne (1999). The pareto archived evolution strategy: a new baseline al-
gorithm for multiobjective optimization. In 1999 Congress on Evolutionary Computation,
Washington D.C., IEEE Service Centre, 98–105.

Knowles, J. and D. Corne (2000). Approximating the nondominated front using the pareto
archived evolution strategy. Evolutionary Computation 8 (2), 149–172.

Schaffer, J. (1985). Multiple objective optimization with vector evaluated genetic algorithms.
Genetic Algorithms and their Applications: Proceedings of the First International Conference
on Genetic Algorithms , 93–100.

Srinivas, N. and K. Dev (1994). Multiobjective optimization using nondominated sorting in ge-
netic algorithms. Evolutionary Computation 2 (3), 221–248.

Storn, R. and K. Price (1995). Differential evolution: a simple and efficient adaptive scheme
for global optimization over continuous spaces. Technical Report TR-95-012, International
Computer Science Institute, Berkeley.

Veldhuizen, D. V. and G. Mamont (1999). Multiobjective evolutionary algorithm test suites.
Procedings of the 1999 ACM Sysposium on Applied Computing, San Antonio, Texas, ACM ,
351–357.

Zitzler, E. and L. Thiele (1999). Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Computa-
tion 3 (4), 257–271.

Appendix: The Pareto Differential Evolution Algorithm

let G denotes a generation, P a population of size M , and ~xj
G=k the jth individual of

dimension N in population P in generation k, and CR denotes the crossover probability
input N,M ≥ 4, α, CR ∈ [0, 1], and initial bounds: lower(xi), upper(xi), i = 1, . . . N

initialize PG=0 = {~x1
G=0, . . . , ~x

M
G=0} as

for each individual j ∈ PG=0

xj
i,G=0 = Gaussian(0.5, 0.15), i = 1, . . . , N

Repair ~xj
G=k if any variable is outside its boundaries

end for each
evaluate PG=0

k = 1
while the stopping criterion is not satisfied do

remove all dominated solutions from PG=k−1

if the number of non-dominated solutions in PG=k−1 > α, then apply the neighborhood rule
for j = 0 to number of non-dominated solutions in PG=k−1 ~xj

G=k ← ~xj
G=k−1

while j ≤ M

randomly select r1, r2, r3 ∈ (1, . . . , α), from the non-dominated solutions of PG=k−1, where r1 6= r2 6= r3

randomly select irand ∈ (1, . . . , N)
forall i ≤ N, x′i,G=k ={

xr3
i,G=k−1 + Gaussian(0, 1)× (xr1

i,G=k−1 − xr2
i,G=k−1) if (random[0, 1) < CR ∧ i = irand)

xj
i,G=k−1 otherwise

end forall
Repair ~xj

G=k if any variable is outside its boundaries
if ~x′ dominates ~xr3

G=k−1 then
~xj

G=k ← ~x′

j = j + 1
end if

end while
k = k + 1

end while
return the set of non-dominated solutions.

Figure 3: The Pareto–frontier Differential Evolution Algorithm (PDE)

