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Abstract

The use ofevolutionary algorithmgEASs) to solve problems with multiple objectives (known Msilti-
objective Optimization Problen{iMOPs)) has attracted much attention recently. Population based approaches,
such as EAs, offer a means to find a group of pareto-optimal solutions in a single run. However, most studies
are undertaken on unconstrained MOPs. Recently, we developdehtam—frontier Differential Evolution
(PDE) algorithm for unconstrained MOPs. The objective of this paper is to introduce a modification to PDE for
handling constraints. The solutions, provided by the proposed algorithm for three test problems, are promising
when compared with an existing well-known algorithm.

1 Introduction

In Multi-objective optimization problems (MOPs), the aim is to simultaneously optimize a group of
conflicting objectives. MOPs are a very important research topic, not only because of the multi-objective nature
of most real-world decision problems, but also because there are still many open questions in this area. In fact,
there is no universally accepted definition@ftimum in MOPs as opposed to single-objective optimization
problems, which makes it difficult to even compare results of one method to another. Normally, the decision
about what théest answer is, corresponds to the so-called human decision maker (Coello 1999).

Traditionally, there are several methods available in@perational ResearckOR) literature for solving
MOPs as mathematical programming models,goal programmingCharnes and Cooper 196%eighted sum
method(Turban and Meredith 1994poals as requirementCoello 1999), andyoal attainmentWilson and
Macleod 1993). Among these methods, goal programming is the most widely used in practice although it relies
on domain knowledge to setup the goals’ aspiration levels. None of the previous methods treat all the objectives
simultaneously which is a basic requirement in most MOPs.

In MOPs, there is no single optimal solution, but rather a set of alternative solutions. These solutions are
optimal in the wider sense that no other solutions in the search space are supatamioat¢ them when all
objectives are simultaneously considered. They are known as pareto-optimal solutions. Pareto-optimality is
expected to provide flexibility for the human decision maker.

Recentlyevolutionary algorithmgEAS) were found useful for solving MOPs (Zitzler and Thiele 1999). EAs
have some advantages over traditional OR techniques. For example, considerations for convexity, concavity,
and/or continuity of functions are not necessary in EAs, whereas, they form a real concern in traditional OR



techniques. MOPs are considered as difficult problems in the OR literature. The constrained MOPs are even
more difficult.

There exists many evolutionary computation based algorithms for solving unconstrained multiobjective
(mainly with two objectives) optimization problems (Coello 1999). However, a few research have been carried
out for constrained multiobjective optimization problems (CMOPSs) with varying success (Binh and Korn 1997).

In this paper, we extend our PDE algorithm for CMOPs. We compare its solutions for three benchmark
problems with the algorithm of (Binh and Korn 1997), by using a statistical comparison technique recently
proposed by Knowles and Corne (Knowles and Corne 1999; Knowles and Corne 2000). From the comparison,
our algorithm performs better on these three test problems.

The paper is organized as follows: background materials are scrutinized in Section 2 followed by the
proposed algorithm in Section 3. Experiments are then presented in Section 4 and conclusions are drawn in
Section 5.

2 Background Materials

2.1 Multiobjective Optimization Problems

Consider a MOP model as presented below:-

Optimize F(Z)
subjectto:2 = {Z € R"|G(¥) < 0 H(¥) = 0}

Where # is a vector of decision variables(...,z,) and F(Z) is a vector of objective functions
(f1(@),..., fx(Z)). Herefi(Z),..., fx(Z), are functions orkR™ and(2 is a nonempty set iR™. The vectors
G (%) and H () represent problem’s constraints.

In MOPs, the aim is to find the optimal solutiaff € Q which optimize F'(Z). Each objective function,
fi(Z), is either maximization or minimization. In this paper, we assume that all objectives are to be minimized
for clarity purposes. We may note that any maximization objective can be transformed to a minimization one by
multiplying it by -1.

Unless the sub—objectives are highly positively correlated, a solution that is good for one is bad for another.
Therefore, we need to define a partial order on the solutions, where a solfjtisrsaid to be a non—dominated
solution, if there is no other solutio, such thatj is better thar’ on all objectives.

2.2 MOPs and EAs

EAs for MOPs (Coello 1999) can be categorized as plain aggregating, population-based non-Pareto and
Pareto-based approaches. The plain aggregating approaches takes a linear combination of the objectives to form
a single objective function (such as in the weighted sum method, goal programming, and goal attainment).
This approach produces a single solution at a time that may not satisfy the decision maker, and it requires
the quantification of the importance of each objectieg.( by setting numerical weights), which is very
difficult for most practical situations. However optimizing all the objectives simultaneously and generating
a set of alternative solutions, offer more flexibility to decision makers. The simultaneous optimization can
fit nicely with population based approaches, such as EAs, because they generate multiple solutions in a single run.



The population-based approaches are more successful when solving MOPs, and are popular among
researchers and practitioners. There are many algorithms for solving unconstrained two-objective opti-
mization problems. These aRareto Differential Evolution(PDE) algorithm (Abbass, Sarker, and Newton
2001), Multiobjective Evolutionary Algorithm{(MEA) (Sarker, Liang, and Newton 2000%trength Pareto
Evolutionary Algorithm(SPEA) (Zitzler and Thiele 1999), Fonseca and Fleming’s genetic algorithm (FFGA)
(Fonseca and Fleming 1993), Hajela’s and Lin's genetic algorithm (HLGA)(Hajela and Lin 1992), Niched
Pareto Genetic Algorithm (NPGA) (Horn, Nafpliotis, and Goldberg 1994), Non-dominated Sorting Genetic
Algorithms (NSGA)(Srinivas and Dev 1994), Random Sampling Algorithm (RAND)(Zitzler and Thiele
1999), Single Objective Evolutionary Algorithm (SOEA) (Zitzler and Thiele 1999), Vector Evaluated Genetic
Algorithm (VEGA) (Schaffer 1985) and Pareto Archived Evolution Strategy (PAES) (Knowles and Corne 1999;
Knowles and Corne 2000). There are several versions of PAES like PAES, PAES20, PAES98 and PAES98mut3p.

As mentioned earlier, there are a few evolutionary algorithms developed for constrained multiobjective
optimization problems (Binh and Korn 1997; Binh 1999; Deb and Goel 2001). In constrained problems, the
constraint handling is the additional task with the unconstrained problem. However, it is clear from the above
discussions that unconstrained multiobjective algorithms are much more matured. The constraint handling in
single objective is to some extent mature as will be discussed in a later sub-section. So, apparently, it seems
that the proper marriage of constraint handling algorithms with unconstrained algorithms will provide a solution
approach for constrained problems though it is not that simple.

Binh and Korn (Binh and Korn 1997) proposed an algorithm for constrained multiobjective problems, which
considers a degree of violation of constraints for infeasible solutions, in addition to the objective function vector,
in selecting the potential parents. The infeasible individuals are ranked based on their degree of constraints
violation. In (Deb and Goel 2001), a solutians said to constrained-dominate a solutignif any of the
following conditions are true:

1. Solutioni is feasible and is not.
2. Bothi andj are infeasible, but has less constraint violation.
3. Bothi andj are feasible anddominates.

Here, feasible solutionsonstrained-dominate any infeasible solution and two infeasible solutions are
compared based on their constraint violation only. However, when two feasible solutions are compared, they are
checked based on their usual domination level. In this paper, we use a penalty approach, where a penalty value
for constraint violation is added to each objective function.

2.3 Statistical Analysis

MOPs require multiple, but uniformly distributed, solutions to form a Pareto trade-off frontier. When
comparing two algorithms, these two factors (the number of alternative solution points and their distributions)
must be considered. There are a number of methods available in the literature to compare the performance
of different algorithms. Thesrror ratio and thegenerational distancare used as the performance measure
indicators when the Pareto optimal solutions are known (Veldhuizen and Mamont 199%prehdmeasuring
technique expresses the distribution of individuals over the non-dominated region (Srinivas and Dev 1994). The
method is based on a chi-square-like deviation distribution measure, and it requires several parameters to be
estimated before calculating the spread indicator.

The method oftoverage metric¢Zitzler and Thiele 1999) compares the performances of different multi-
objective evolutionary algorithms. It measures whether the outcomes of one algorithm dominate those of another
without indicating how much better it is.



Most recently, Knowles and Corne (Knowles and Corne 2000) proposed a method to compare the perfor-
mances of two or more algorithms by analyzing the distribution of an approximation to the Pareto—frontier. For
two objective problems, thattainment surfacés defined as the lines joining the points on the Pareto—frontier
generated by an algorithm. Therefore, for two algoritrsnd B, there are two attainment surfaces. A number
of sampling lines can be drawn from the origin, which intersects with the attainment surfaces, across the full
range of the Pareto—frontier. For a given sampling line, the intersection of an algorithm closer to the origin
(for both minimization) is the winner. Given a collection/ofittainment surfaces, some from algoritbtvand
some from algorithmB, a single sampling line yields k points of intersection, one for each surface. These
intersections form a univariate distribution, and we can therefore perform a statistical test to determine whether
or not the intersections for one of the algorithms occurs closer to the origin with some statistical significance.
Such a test is performed for each of several lines covering the Pareto tradeoff area. Insofar as the lines provide
a uniform sampling of the Pareto surface, the result of this analysis yields two numbers - a percentage of the
surface in which algorithra significantly outperforms algorithm®, and the percentage of the surface in which
algorithm B significantly outperforms algorithrd.

2.4 Constraint Handling

Constrained optimization is a challenging research area in evolutionary computation (EC). Like conventional
optimization techniques, the EC approaches have used penalty and barrier function concepts to handle con-
straints. Several penalty-function based genetic algorithms appear in the literature for single objective problems,
namely static, dynamic, annealing, adaptive, death penalties and superiority of feasible points. The method of
static penalties (Homaifar, Lai, and Qi 1994) uses a family of intervals for every constraint that determines the
appropriate penalty coefficient. Joines and Houck (Joines and Houck 1994) propose dynamic penalties that
vary with the generations. The method of annealing penalties, called GENOCOP Il (for Genetic algorithms
for Numerical Optimization of Constrained Problems), is also based on dynamic penalties and is described
by Michalewicz and Attia (Michalewicz and Attia 1994) and (Michalewicz 1996). Adaptive transformation
attempts to use the information from the search to adjust the control parameters. This is usually done by
examining the fitness of feasible and infeasible members in the current population (Michalewicz and Schoenauer
1996). The death penalty method rejects infeasible individuals. The method of superiority of feasible points,
developed by Powell and Skolnick (Powell and Skolnick 1993), is based on a classical penalty approach, with
one notable exception. Each individual is evaluated by not only the objective and penalty function, but also by
an additional iteration-dependent function that influences the evaluation of infeasible solutions. The point being
that the method distinguishes between feasible and infeasible individuals by adopting an additional heuristic rule.

In the penalty function method, infeasible solutions are penalized in each generation, and the overall penalty
is added to the original objective function to form the fitness function for the evolutionary algorithms. The
penalty is defined as follows:

O(F) = 3 95()65(@) ®

whered; (¥) = 1, if g;(Z) > 0 and zero otherwise. Onegz) = 0 for all parents in the populatione( the
entire population is feasible), the objective functifi¥) is used alone during selection. The fitness function for
objective f; corresponding to an individualis

P(T) = fi(T) + Ao (T) )

A is a penalty parameter. For two objective problems with similar magnitude, there will be two fitness
functions with the same penalty componag{ z).



2.5 Differential Evolution

Differential evolution(DE) is a branch of evolutionary algorithms developed by Rainer Storn and Kenneth
Price (Storn and Price 1995) for optimization problems over continuous domains. In DE, each variable is
represented in the chromosome by a real number. The approach works as follows:-

1. Create an initial population of potential solutions at random, where it is guaranteed, by some repair rules,
that variables’ values are within their boundaries.

2. Until termination conditions are satisfied

(a) Select at random a trial individual for replacement, an individual as the main parent, and two indi-
viduals as supporting parents.

(b) With some probability, called therossover probabilityeach variable in the main parent is perturbed
by adding to it a ratioF', of the difference between the two values of this variable in the other two
supporting parents. At least one variable must be changed. This process represents the crossover
operator in DE.

(c) If the resultant vector is better than the trial solution, it replaces it; otherwise the trial solution is
retained in the population.

(d) goto 2 above.
From the previous discussion, DE differs frganetic algorithmg$GA) in a number of points:

1. DE uses real number representation while conventional GA uses binary, although GA sometimes uses
integer or real number representation as well.

2. In GA, two parents are selected for crossover and the child is a recombination of the parents. In DE, three
parents are selected for crossover and the child is a perturbation of one of them.

3. The new child in DE replaces a randomly selected vector from the population only if it is better than it. In
simple GA, children replace the parents with some probability regardless of their fitness.

3 PDE: A Pareto—frontier Differential Evolution algorithm for MOPs

Abbass et al. (Abbass, Sarker, and Newton 2001) presented the Pareto-frontier Differential Evolution (PDE)
algorithm for vector optimization problems. The algorithm is an adaptation of the DE algorithm described in the
previous section with the following modifications:-

1. Assuming that all variables are bounded between (0,1), the initial population is initialized according to a
Gaussian distributiofv (0.5, 0.15).

2. The step-length parametéris generated from a Gaussian distributidifo, 1).
3. Reproduction is undertaken only among non-dominated solutions in each generation.

4. The boundary constraints are preserved either by reversing the sign if the variable is less than 0 or keeping
subtracting 1 if it is greater than 1 until the variable is within its boundaries.

5. Offspring are placed into the population if they dominate the main parent.



The algorithm works as follows. Assuming that all variables are bounded between (0,1), an initial population
is generated at random from a Gaussian distribution with mean 0.5 and standard deviation 0.15. All dominated
solutions are removed from the population. The remaining non-dominated solutions are retained for reproduc-
tion. Three parents are selected at random (one as a main and also trial solution and the other two as supporting
parents). A child is generated from the three parents and is placed into the population if it dominates the main
parent; otherwise a new selection process takes place. This process continues until the population is completed.

A maximum number of non-dominated solutions in each generation was set to 50. If this maximum is
exceeded, the following nearest neighbor distance function is adopted:

(min||z — @[] + min||z — ;[)
2 )

D(z) =
wherex # x; # x;. Thatis, the nearest neighbor distance is the average Euclidean distance between the closest

two points. The non-dominated solution with the smallest neighbor distance is removed from the population
until the total number of non-dominated solutions is retained to 50.

4 Experiments

4.1 Test Problems

The algorithm is tested on the following three benchmark problems. The first two problems and the third
problem were collected from (Binh and Korn 1997) and (Binh 1999) respectively:

Test Problem 1:

fi(z) = (z1 — 2)% + (x5 — 11)% + 2 (3)
fg(x) = 9!,61 — ([L‘Q — 1)2 (4)

Subject to
2?4+ x3 —255<0 ®)
1 —3w24+10<0 (6)
—20 < x; <20,Vi=1,2 (7)

Test Problem 2:

fi(z) = 4a7 + 423 8)
fo(z) = (z1 — 5)* + (22 — 5)? 9

Subject to
(r1 —5)2 +25 -25<0 (10)
—(21—8)? — (22 +3)24+7.7<0 (11)

—15 < x; <30,Vi=1,2 (12)



Test Problem 3:

fi(z) = =2t + 2 (13)
fg(l’) =052 +z2+1 (14)
Subject to
%+x2—6.5§0 (15)
0.521 + 22 — 7.5 <0 (16)
521 4+ 22 — 30 < 0 (17)
r1,22 >0 (18)

The computational results of these test problems are provided in the next section.

4.2 Experimental Setup

The initial population size is set to 100 and the maximum number of generations to 200. Eleven different
crossover rates changing from 0 to 1.00 with an increment of 0.1 are tested without mutation. The initial
population is initialized according to a Gaussian distributf0.5, 0.15). Therefore, with high probability, the
Gaussian distribution will generate values betwegnt- 3 x 0.15 which fits with the variables’ boundaries. If
a variable’s value is not within its range, a repair rule is used to repair the boundary constraints. The repair rule
is simply to truncate the constant part of the value; therefore if, for example, the value is 3.3, the repaired value
will be 0.3 assuming that the variable is between 0 and 1. The step-length pardfristgenerated for each
variable from a Gaussian distributidvi(0, 1). The algorithm is written in standar@** and ran on a Sun Sparc
4.

4.3 Experimental Results and Discussions

We obtained the solutions for all three test problems, produced by Binh and Korn’s algorithm, from Binh
directly. To perform the statistical analysis using Knowles and Corne method (Knowles and Corne 2000), we
used the solutions of the twenty runs for each crossover rate. The results of the comparison is presented in the
form of a pair [z,b], wherea gives the percentage of the space (i.e. the percentage of lines) on which algorithm
A is found statistically superior t®, andb gives the similar percentage for algorithth For probleml, the
best result [93.55,83.33] is achieved with crossover rate 0.70. This means, our algorithm outperforms Binh and
Korn’s algorithm on about 93.55 percent of the Pareto surface whereas their algorithm is better than ours for
83.33 percent. For problem2, the best result [80.85,80.00] is obtained with crossover 0.90. The best result for
problem3 is [100,0.0] at crossover rate 0.0.

To show a sample analysis, the percentage outperformed by our algorithm and Binh and Korn’s algorithm
are plotted against the crossover rate in Figure 1 for test problem 1. As we can see, our algorithm outperforms
Binh and Korn'’s algorithm for most crossover rates except 0.5 and 0.8.

For illustration purposes, the followings are two points on the pareto frontier,

Parameter Solution1 Solution 2

7 2 -4.816
o 11 15.225
f1 2 66.312

f -82 -245.7
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Figure 1: The performance of the PDE algorithm compared with Binh’s algorithm on the test problem 1.
Crossover rates are in %.

5 Conclusions and Future Research

In this paper, a differential evolution based approach is presented for constrained optimization problems.
The approach generates a step by crossover, where the step is randomly generated from a Gaussian distribution.
We tested the approach on three benchmark problems and it was found that our approach is promising when
compared to a standard approach from the literature. We also experimented with different crossover rates on
these test problems to examine the performance. The crossover rates are found to be very sensitive to the
solutions.

For future work, we intend to test the algorithm on more problems. Also, the parameters chosen in this
paper were generated experimentally. It would be interesting to see the effect of these parameters on the problem.
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