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Abstract 

 

In contemporary credit portfolio management, the portfolio risk-return analysis of financial 

instruments using certain downside credit risk measures requires the computation of a set of 

Pareto-efficient portfolio structures in a non-linear, non-convex setting. For real-world 

problems, additional constraints, e. g. supervisory capital limits, have to be respected. 

Particularly for formerly non-traded instruments, e. g. corporate loans, a discrete set of 

decision alternatives has to be considered for each financial instrument. The main result of 

this paper is a new, fast and flexible framework for solving the above issues using a hybrid 

heuristic method that combines multi-objective evolutionary and problem-specific local 

search methods in a unique way. We explicitly incorporate computational complexity in some 

of our considerations and consider proper genetic modelling of portfolio credit risk related 

problems. Also, we analyse empirical results from a study based on our implementation of the 

proposed hybrid method in a specific portfolio credit risk model context. These results show 

that this method is superior in convergence speed to a non-hybrid evolutionary approach and 

that our implementation finds risk-return efficient sets within reasonable time. 
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Introduction 
 

The intensive development of quantitative portfolio credit risk models since the late 1990s 

and the increasing trade in financial instruments for transferring credit risk like credit default 

swaps, asset backed transactions etc. are major reasons for a growing importance of credit 

portfolio risk-return analysis and optimisation. Beyond that, there will possibly be more 

demand for credit portfolio optimisation as soon as the supervisory capital requirements for 

banks will be changed due to proposals of the Basle Committee, e. g. by setting new capital 

weights on some credit risk exposure types, providing supervisory capital relief for risk 

mitigation and establishing additional regulatory capital requirements for operational risk (cf. 

Basel Committee for Banking Supervision (2001) and subsequent publications from the Bank 

of International Settlements). 

In this paper, we will focus on an algorithmic framework for the calculation of discrete risk-

return efficient sets for credit portfolios with respect to constraints, e. g. imposed by changes 

of supervisory capital regulations or internal reallocation of risk capital. This kind of  

portfolio management is of great importance especially for, but not limited to, many German 

and European banks since the typical largest exposures to credit risk for small and medium 

size universal banks are loans given to companies not having direct access to the capital 

market. 

In contrast to the methods for the computation of the efficient frontier for a given set of 

alternative stock market investments based on the portfolio’s variance and related measures, 

usually a non-linear, non-convex downside risk measure like the Credit-Value-at-Risk is 

preferred for portfolio credit risk-return analysis, therefore requiring a different method of 

computation. Moreover, this computational problem often cannot be modelled using real-

valued variables, since typically neither the decision alternatives allow an arbitrary amount of 

each credit risk exposure to be traded nor it is possible to obtain a short position providing a 

hedge for each arbitrarily chosen exposure from a given portfolio. In addition to that, e. g. the 

capital requirements for credit risk exposures imposed by the banking supervision authorities 

are an important constraint to be considered in the computation of efficient credit portfolio 

structures, and these capital requirements are going to be non-linear in the future according to 

recent proposals of the Basel Committee. 

For our considerations, the concept of Pareto-optimality is essential, i. e. efficient structures 

are Pareto-optimal concerning the two distinct (and in many cases contrary) objective 

functions specifying the aggregated risk and the aggregated return of each potential credit 

portfolio structure for a given set of alternatives. Therefore, we are interested in multiple, 

feasible non-dominated solutions to the constrained portfolio credit risk-return optimisation 

problem that are comparable to the efficient frontier in stock portfolio investment analysis, 

but in a discrete search space having many local optima and particularly using multiple target 

functions not required to be linear, quadratic or convex. In this context, a feasible non-

dominated solution is a portfolio structure that does not violate the constraints, and for which 

we cannot find any other feasible solution being better in all two target function values. 

 

We introduce a novel approach to such problems that combines recent constrained multi-

objective evolutionary computation methodology and problem specific knowledge to create a 

hybrid algorithm providing rapid discovery of a set of efficient credit portfolio structures with 

respect to constraints for a given instance of the above problem. We derive a general result 

concerning the appropriate modelling of portfolio credit risk problems for certain genetic 

variation operators that is not restricted to our problem. Using this concept, we create a proper 

genetic representation of our decision variables that reflects the problem structure. 

Furthermore, we derive a local search variation operator that modifies selected solutions in 

addition to the common genetic operators during the evolution process to improve the 
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convergence speed of the algorithm. Beyond that, this local search variation operator 

particularly uses portfolio credit risk model features to achieve a high computing speed. 

 

For an empirical evaluation of our concepts, we present the results of a study based on our 

implementation of the hybrid algorithm. In this study, we calculate sets of efficient portfolio 

structures for different test problems on a standard Personal Computer. Using a suitably small 

test portfolio, we show by a complete enumeration of the search space that the hybrid 

algorithm finds a well-distributed set of different efficient solutions within few minutes 

whereas the enumeration requires more than an hour of computing time. Beyond that, our 

large test cases show that the algorithm can still be run on a standard PC using significantly 

larger portfolio sizes, and since the hybrid algorithm is well-suited for massively parallel 

implementation there are good prospects even for very large real-world portfolios to be 

processed. Finally, by comparing the results of a pure evolutionary approach to the 

performance of our hybrid algorithm on the same test cases, we observe that the latter 

approach shows a higher convergence speed. 

The paper is organised as follows: In the first section, we describe our portfolio credit risk 

optimisation problem and analyse its structure from a computational perspective. After a short 

look to traditional methods for multi-objective optimisation, we give a short introduction to 

multi-objective evolutionary algorithms. Then we derive a proper genetic modelling for 

portfolio credit risk problems before giving an overview and discussing some elements of our 

hybrid evolutionary algorithm framework for the computation of constrained risk-return 

efficient credit portfolio structures. The next section introduces some specific credit portfolio 

model features which are exploited by our implementation of the proposed framework. We 

provide details of our implementation before describing the parameters and the results of an 

empirical study where we compare our hybrid implementation with a non-hybrid approach on 

several test problems. 
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1  Structure and complexity of the discrete portfolio credit risk 

optimisation problem 
 

1.1 Some basic definitions and results 

 

In this section, we will analyse the structure and the complexity of the constrained discrete 

credit portfolio optimisation problem which is to be solved by our hybrid method. The 

following definitions and results are necessary to understand the structure and the 

computational complexity of the problem. 

 

Definition 1. Given are m > 1 investment alternatives and a time horizon T.  

Each investment alternative (obligor) i ∈  {1,...,m} incorporates the risk of default and it is 

characterised by the following data which is considered to be constant within the time period 

(0, T):  

• net exposure ei (loss given default of investment i), 

• expected rate of return ri based on ei (net of cost),  

• expected cumulative default probability pi within the time horizon (0, T),  

• and a capital requirement percentage wi based on ei.  

There is a dependence structure between joint defaults of investment alternatives  

i,j ∈ {1,…,m} that can be modelled by an undirected graph G = (V, E) and a function h: E→ℜ , 

where V = {1,…,m} is the vertex set of investment alternatives, E = V x V is the complete 

edge set of potential default dependencies between investment alternatives (i, j) and h: E→ℜ  

is the function expressing the strength of the dependency between each pair of two investment 

alternatives (i, j).  The function h can be a correlation based function or more general, a 

copula based function, see e. g. Frey & McNeil (2001) for details about mathematical 

modelling of default dependencies.  

 

In the following text, we will abbreviate the respective set of scalar variables ei , ri , pi, wi of 

all obligors by vectors e:=(e1,...,em)
T
, r:=(r1,...,rm)

T
, p:=(p1,...,pm)

T
, w:=(w1,...,wm)

T
. 

 

The investor that has to decide about holding a subset of the investment alternatives in her 

portfolio can e. g. be a bank that wants to optimise its loan portfolio containing m different 

obligors. According to the next definition, there is a fixed risk capital budget for the 

investments that can e. g. be given by the bank’s maximum supervisory capital which is 

required to be provided by the bank due to the supervisory regulations (cf. e. g. Basel 

Committee for Banking Supervision (2001)). 

 

Definition 2. A capital budget of the investor is given by K > 0. 

 

We need the following definition to describe possible portfolio structures that can be 

constructed for the given investment alternatives. 

 

Definition 3. A portfolio structure is given by a vector x = (x1, x2, …, xm)
T
, where xi ∈  {0, ei}. 

 

Since every xi can only take the values 0 or ei, the investor has to decide whether to hold the 

whole net exposure ei in her portfolio. In many real world portfolio optimisation problems the 

decision is e. g. either keeping the obligor i in the credit portfolio or selling the entire net 

exposure of obligor i to a risk buyer. This is particularly true for formerly non-traded 

instruments like corporate loans in a bank’s credit portfolio. Even if there are more than two 
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decision alternatives for each potential investment i, the decision variables will still consist of 

a finite, discrete number of choices. 

Facing these decision alternatives, an investor has to consider two conflicting objective 

functions: the aggregated return and the aggregated risk from her portfolio. Usually, there is a 

trade-off between both objectives since any rational investor will ask for a premium 

(additional return) to take risk.
1
 

 

Definition 4. The aggregated expected return from a portfolio structure x is calculated by  

 ( )
1 1 1

( , , ) .
m m m

i i i i i i i

i i i

ret x p r r x p x r p x
= = =

= − = −� � �   (1.1) 

 

This is a common net risk adjusted return calculation since the aggregated expected losses are 

subtracted from the portfolio’s aggregated net return. 

 

Definition 5. The aggregated downside risk risk(x, p; h) from the portfolio structure x for the 

investor is calculated using an appropriate algorithm A such that risk(x, p; h) satisfies the 

following condition:  

 {1,..., }: 0 , : ( , ; ) 0ii m p x h risk x p h∀ ∈ ≡ � ∀ ≡   (1.2) 

 

The condition specified in Definition 5 expresses the natural property of the risk measure that 

there is no credit risk for the investor if the default probabilities of all investment alternatives 

are equal to zero. Of course, the algorithm A and the downside risk measure risk(...) are 

required to satisfy additional properties to be a downside risk measure. Artzner et al. (1999) 

provide definitions and a discussion of different risk measures and their properties. For our 

empirical study described later, we will use the Credit-Value-at-Risk downside risk measure 

that satisfies condition (1.2). It is a very common measure of credit risk in contemporary 

credit risk management. 

 

Definition 6. For a given portfolio structure x the Credit-Value-at-Risk (CVaR) at the 

arbitrary, but fixed confidence level α ∈  (0,1) is obtained by calculating  

 ( , ; ) : ( , ; ) ( , )pf pfrisk x p h q x p h x p
α µ= −   (1.3) 

where q
α

pf (x,p;h) is the α-percentile of the cumulative distribution function of aggregated 

losses calculated from the portfolio for the given parameters x,p and the dependency structure 

specified by h. Moreover, µpf (x, p) is the expected loss calculated by 
1

( , )
m

pf i i

i

x p x pµ
=

= � . 

 

For our theoretical considerations in this section, we do not need a specification of the 

calculation procedure for the cumulative distribution function of aggregated losses or q
α

 pf . 

We will return to these details in the third section describing the portfolio credit risk model 

used by our implementation of the proposed hybrid algorithm.  

Definition 7. The required capital of a given portfolio structure x is 
1

( , )
m

i i

i

cap x w x w
=

= � . 

Definition 8. A portfolio structure x is feasible if and only if cap(x, w) ≤ K. 

 

                                                 
1
 Since there is currently no perfect and transparent capital market for trading illiquid financial instruments like 

loans we do not distinguish explicitly between systematic and idiosyncratic (obligor specific) risk here. In a 

capital market equilibrium, there is only a premium for taking systematic risk according to the CAPM (see e. g. 

Sharpe (1964)). 
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The following definition is essential for the concept of Pareto-optimality. 

 

Definition 9. Given are two distinct feasible portfolio structures x and y.  

x dominates y if and only if one of the following cases is true: 

(1) ret(x, p, r) > ret(y, p ,r) and risk(x, p; h) ≤ risk(y, p; h)  

(2) ret(x, p, r) ≥ ret(y, p, r) and risk(x, p; h) < risk(y, p; h). 

 

If x dominates y, we will denote this relationship by x >d y. 

 

This means that a feasible portfolio structure x is better than a feasible portfolio structure y if 

and only if x is better in at least one of the two criteria and not worse in the other criterion 

than y. It is obvious that a rational investor will prefer x over y if x >d y.  

 

Definition 10. Given is the set S of all possible portfolio structures for the specified data from 

Definition 1 and the subset S’ ⊆  S of all feasible structures in S. A solution x ∈  S’ is a feasible 

global non-dominated portfolio structure if and only if it satisfies the following condition: 

 ( )' : dy S y x∀ ∈ ¬ > .  (1.4) 

This means that there is no y ∈  S’: y >d x. 

 

To choose between the best investment alternatives using her preferences or utility function, a 

rational investor is interested in finding the set of non-dominated portfolio structures that has 

maximum cardinality. This set is the Pareto-optimal set which is comparable to the efficient 

frontier of Markowitz (1952), but in a discrete decision space. 

 

Problem 1. The problem of finding the set of feasible Pareto-efficient portfolio structures 

having maximum cardinality for the set of investment alternatives S can be formulated as: 

Calculate the set 

 { }*

'
: arg max

PE S
PE PE

⊆
=   (1.5) 

where 

 ( ){ }d: ' : ' :  >  PE x S y S y x= ∈ ∀ ∈ ¬ .  (1.6) 

 

Now we want to focus on the computational complexity of Problem 1. Therefore, we consider 

the usual computing model of Turing machines (see e. g. Papadimitriou (1994) for details), so 

we temporarily assume all variables to be rational numbers. For definitions and an overview 

of the P-NP theory see Garey & Johnson (1979). Other computational complexity results 

concerning credit risk related problems can be found in Seese & Schlottmann (2002b). 

 

Lemma 1. Assuming all scalar variables to be rational numbers, the corresponding decision 

problem for Problem 1 is NP-hard. 

 

Proof. See appendix.  

 

Corollary 1. Unless P = NP, there is no exact algorithm that calculates PE* within polynomial 

computing time (measured by the size of the input m). 

 

Therefore, we need an approximation algorithm for PE*. The next section will describe 

approaches for the approximation of PE* for portfolio data given according to Definition 1. 
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2  A framework for hybrid multi-objective evolutionary computation 

of Pareto-efficient credit portfolio structures 
 

2.1 Traditional methods for solving multi-objective optimisation problems 

 

A well-known traditional method of solving multi-objective optimisation problems like 

Problem 1 is weighted sum scalarisation. In the case of our optimisation problem this e. g. 

implies that the two objective functions for the credit portfolio’s aggregated return and 

aggregated risk would have to be transformed into a single objective function g by adding the 

two original objective functions using appropriate weights c1, c2 ∈  ℜ  (see e. g. Ehrgott (2000), 

pp. 55-76 for details): 

 1 2( , , ; ) ( , , ) ( , ; )g x p r h c ret x p r c risk x p h= +   (2.1) 

 

These and other traditional methods (see e. g. Ehrgott (2000), pp. 77ff. for an overview) of 

solving multi-objective problems and handling constraints work well on linear or convex 

problems in a continuous setting, i. e. problems consisting of linear or at least convex, 

continuous objective functions, and constraints also satisfying these properties. However, the 

portfolio optimisation problems based on downside risk measures usually inhibit non-linear, 

non-convex objective functions, e. g. if the concept of Value-at-Risk or Credit-Value-at-Risk 

is used – see e. g. Pflug (2000) for the mathematical properties of such downside risk 

measures. It is an obvious fact that the above mentioned methods relying on convexity in the 

objective function space produce sub-optimal results at least for some instances of such 

problems (cf. Ehrgott (2000), p. 77). Moreover, we have to deal with a discrete optimisation 

problem consisting of a fixed number of distinct choices. So we apply an alternative approach 

to our discrete optimisation problem. In the following subsection we will give a short 

introduction to evolutionary approaches to such problems. 

 

 

2.2 Evolutionary approaches to multi-objective optimisation 

 

Since the first reported implementation and test of a multi-objective evolutionary approach, 

the Vector Evaluated Genetic Algorithm (VEGA) by Schaffer (1984), this special branch of 

Evolutionary Algorithms (EAs) has attracted many researchers dealing with non-linear and 

non-convex multi-objective optimisation problems. After the introduction of VEGA, many 

different EAs have been proposed for multi-objective optimisation problems, e. g. the Multi-

Objective Genetic Algorithm (MOGA) by Fonseca & Fleming (1993), the Niched Pareto 

Genetic Algorithm (NPGA) by Horn et al. (1994), the Non-dominated Sorting Genetic 

Algorithm (NSGA) by Srinivas & Deb (1994) which was refined in Deb et al. (2000), the 

Distance-based Pareto Genetic Algorithm (DPGA) by Osyczka & Kundu (1995), the Strength 

Pareto Evolutionary Algorithm by Zitzler & Thiele (1998) which was updated in Zitzler et al. 

(2001), and the Pareto Archived Evolution Strategy (PAES) by Knowles & Corne (1999). 

Many of the existing MOEAs were primarily designed for problems having continuous 

variables, i. e. the decision variables can take values from a subset of ℜ . A comparison 

between different approaches is e. g. given in Zitzler et al. (2000) and Deb (2001). Theoretical 

considerations about the convergence of EAs can be found e. g. in Vose (1999), Van 

Veldhuizen (1999), Rudolph (1998, 2001), Rudolph & Agapie (2000) and Laumanns et al. 

(2001). 

In general, a Multi-Objective Evolutionary Algorithm (MOEA) is a randomised heuristic 

search algorithm reflecting the Darwinian ‘survival of the fittest principle’ that can be 

observed in many natural evolution processes, cf. e. g. Holland (1975). At each discrete time 
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step t, a MOEA works on a set of solutions P(t) called population or generation. A single 

solution x ∈  P(t) is an individual.  To apply a MOEA to a certain problem the decision 

variables have to be transformed into genes, i. e. the representation of possible solutions by 

contents of the decision variables has to be transformed into a string of characters from an 

alphabet Σ. The original representation of a solution is called phenotype, the genetic 

counterpart is called genotype.  

For evaluation of each genotype in a population the MOEA requires a quality measure (fitness 

function) for evaluation of every possible solution (not necessarily feasible if the problem is 

constrained) that is usually based on the quality of the corresponding phenotype. The 

individuals from the population P(t) are selected for survival into the next generation after 

application of variation operators (see below) according to their fitness values. The fitness 

function and the selection scheme of most MOEAs differ substantially from the fitness 

functions and selection procedures of single-objective EAs by incorporating special 

mechanisms for preserving diversity of solutions in the search space (since one is interested in 

finding a representative Pareto-efficient set containing different solutions) and for selection of 

solutions that cannot be directly compared using a total order in a multi-dimensional fitness 

space. 

The selected individuals from the current population P(t) are modified using genetic variation 

operators (see e. g. Fogel & Michalewicz (2000) for an overview). A standard variation 

operator for discrete decision variables is the one point crossover, i. e. the gene strings of two 

selected individuals are cut at a randomly chosen position and the resulting tail parts are 

exchanged with each other to produce two new offspring. This operation is performed with 

crossover probability pcross on individuals selected for reproduction. The main goal of 

crossover is to move the population through the space of possible solutions. 

In analogy to natural mutation, the second standard variation operator in most MOEAs 

changes the genes of selected individuals randomly with probability pmut (mutation rate) per 

gene to allow the invention of new, previously undiscovered solutions in the population. Its 

second task is the prevention of the MOEA stalling in local optima as there is always a 

positive probability to leave a local optimum if the mutation rate is greater than zero.  

After this short introduction of MOEAs we will now describe the structure and the details of 

our Hybrid Multi-Objective Evolutionary Algorithm (HMOEA) which incorporates the above 

general features of MOEAs. Moreover, since our focus is on the development of a flexible 

framework for discrete credit portfolio optimisation problems, which should not be restricted 

to a certain downside risk measure and which should support non-linear, non-convex 

constraints as well we propose a hybrid method that particularly uses ideas that can be found 

in different MOEA schemes as well as an additional problem-specific local search operator 

and a problem-specific preprocessing stage.  

 

 

2.3 Genetic modelling of portfolio credit risk related problems 

 

The first question when applying an EA to a problem is to choose a proper genetic 

representation of the decision variables. For portfolio credit risk optimisation problems like 

Problem 1, we assume that the decision variables xi will be connected to obtain gene strings 

representing potential solutions. The resulting genotypes consist of real-valued genes which 

are connected to strings and take either value 0 or ei depending on the absence or presence of 

investment alternative i in the current solution. So we obtain strings of length m that represent 

some of the 2m  combinations of possible (but neither necessarily feasible nor necessarily 

optimal) portfolio structures. 



9 

Since the one point crossover is the first standard variation operator in many EAs (and we 

also use it in our approach), we should keep some important issues of portfolio credit risk 

modelling in mind to choose a well adapted genetic representation for the phenotypes.  

The one point crossover cuts two gene strings at a random position and crosses the tails of the 

strings to produce two offspring with crossover probability pcross. The probability of two genes 

i, j (these variables represent the index of the genes associated to investment alternative i and 

j, respectively) from one individual being cut by the crossover increases proportional to the 

distance i j−  between the two genes in the gene string as the cut position is determined by a 

draw from a uniform distribution over m-1 cut possibilities: 

1
(crossover cuts gene  and )= -

-1
p i j i j

m
  (2.2) 

For better results of the crossover operator we must ensure that there is a high probability of 

good partial solutions being recombined with other solutions and not being destroyed by the 

crossover’s cut operation. More formally, we search for a permutation π(i) of the portfolio 

data represented by our genes ensuring a high probability of success for crossover. Therefore, 

we have to remember that the degree of dependence between two different investment 

alternatives i, j plays the central role in aggregated portfolio credit risk calculations according 

to Definition 5.  

In our Problem 1, the dependence structure has no influence on the other objective function 

given in Definition 4, the aggregated return, so it is sufficient to concentrate solely on the risk 

objective function when considering the possible influence between different gene positions. 

According to Definition 1, the dependence structure between investment alternatives is 

determined by the function h(i, j). Without any specific assumptions on the structure of the 

dependencies, we cannot provide a general algorithm for finding an optimal permutation. 

However, we can determine the maximum strength of the dependency of an investment 

alternative from all others and build a permutation based on this measure. This greedy 

algorithm ensures that the genes of the more dependent investment alternatives are located  

closely to each other, and it has a very low computational complexity compared to 

combinatorial problems arising from the question of finding the best of m! possible 

permutations.  

 

Definition 11. The maximum strength of the dependency of investment alternative i from all 

other investment alternatives j ≠ i is given by { }( ) : max ( , )
j i

s i h i j
≠

= . 

We can build our requested permutation π(i) by calculating and sorting these strength values. 

 

Lemma 2. For the given graph G = (V, E) and the function h from Definition 1, we can 

calculate a permutation π(i) of the portfolio data based on the strength from Definition 11 in 

O(m
2 

H) computations where H is the number of necessary steps to compute h(i, j). 

 

Proof. We construct a greedy algorithm Perm that takes each vertex i ∈  V once and computes 

the (m-1) values of h(i, j) for each j ∈  V, j ≠ i to find the maximum s(i) for the given i. Since 

G has m vertices, the computational complexity of this operation is O(m
2
 H). 

Afterwards, algorithm Perm sorts the m number pairs (s(i),i) in ascending order using the s(i) 

values as primary sorting criterion. This operation requires O(m log m) computational steps. 

The sorted array of number pairs (s(i), i) represents the permutation. If k is the index of  

(s(i), i) after sorting, the permutation of i is π(i) := k. The overall complexity of the algorithm 

Perm is O(m
2
 H). �  
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If our algorithm is provided with all values of h(i, j) at its start, e. g. this is the case if pairwise 

correlations between investment alternatives are specified, then the calculation of the 

permutation requires only m
2
 computational steps.  

Of course, the above considerations are also applicable to portfolio credit risk problems 

having continuous decision variables, and they can be adapted to other choices of crossover 

operators. After discussing the genetic modelling of portfolio credit risk problems, we will 

now give an overview of our hybrid approach for solving Problem 1 that also incorporates the 

algorithm from the proof of Lemma 2 as a preprocessing stage. 

 

 

2.4 Overview of our Hybrid Multi-Objective Algorithm (HMOEA) 

 

Since many of the general MOEA concepts in the literature were designed and tested for 

optimisation problems having continuous decision variables and do not respect structural 

properties of our Problem 1, we have designed a problem-specific algorithm that provides a 

framework for finding constrained Pareto-efficient credit portfolio structures using non-linear, 

non-convex downside risk measures and discrete decision variables. Figure 1 shows an 

overview of our Hybrid Multi-Objective Evolutionary Algorithm (HMOEA). 

 

HMOEA 

Input: , , , , ,e p r h w K  

1: Define gene position of each investment alternative i according to permutation π(i) based 

on dependency structure 

2: t := 0 

3: Generate initial population P(t) 

4: Initialise elite population Q(t) := ∅  

5: Evaluate P(t) 

6: Repeat 

7:  Select individuals from P(t) 

8:  Recombine selected individuals (variation operator 1) 

9:  Mutate recombined individuals (variation operator 2) 

10:  Apply local search to mutated individuals (variation operator 3) 

11:  Create offspring population P’(t) (individuals modified by variation operators) 

12:  Evaluate joint population J(t):= P(t) ∪  P’(t) 

13:  Update elite population Q(t) from J(t) 

14:  Generate P(t+1) from J(t) 

15:  t := t + 1 

16: Until { }( ) (max 0, )diff maxQ t Q t t t t= − ∨ >  

Output: Q(t) 

Figure 1. HMOEA scheme 

 

The first operation in our HMOEA scheme is the permutation of the given investment 

alternatives according to our considerations from section 2.3 to obtain an adequate genetic 

representation of our decision variables. After that, the initial population P(0) will be 

generated by random initialisation of every individual be obtain a diverse population in the 

search space of potential solutions. 

We propose the use of an elite population Q(t) in our algorithm that contains the feasible, non-

dominated solutions found so far at each population step t. It is described in more detail in a 

dedicated section below. At the start of the algorithm, it is empty. 
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The evaluation of P(t) in line 5 and J(t) in line 12 is based on the non-domination concept 

proposed in Goldberg (1989), p. 201 and explicitly formulated for constrained problems e. g. 

in Deb (2001). In our context, it leads to the following type of domination check (cf. Deb 

(2001), p. 288) which extends Definition 9 by the cases (3) and (4) below. 

 

Definition 12. Given are two distinct portfolio structures x and y. x constraint-dominates y if 

and only if one of the following cases is true: 

(1) cap(x,w) ≤ K and cap(y,w) ≤ K and ret(x,p,r) > ret(y,p,r) and risk(x,p;h) ≤ risk(y,p;h)  

(2) cap(x,w) ≤ K and cap(y,w) ≤ K and ret(x,p,r) ≥ ret(y,p,r) and risk(x,p;h) < risk(y,p;h) 

(3) cap(x,w) ≤ K and cap(y,w) > K 

(4) cap(x,w) > K and cap(y,w) > K and cap(x,w) < cap(y,w). 

 

If x constraint-dominates y, we will denote this relationship by x >c y. 

 

The first two cases in Definition 12 refer to the cases from Definition 9 where only feasible 

solutions were considered. Case (3) expresses a preference for feasible over infeasible 

solutions and case (4) prefers the solution that has lower constraint violation. 

The non-dominated sorting procedure in our HMOEA uses the dominance criterion from 

Definition 12 to classify the solutions in a given population, e. g. P(t), into different levels of 

constraint-domination. The best solutions which are not constraint-dominated by any other 

solution in the population, obtain fitness value 1 (best rank). After that, only the remaining 

solutions are checked for constraint-domination, and the non-constraint-dominated solutions 

among these obtain fitness value 2 (second best rank). This process is repeated until each 

solution has obtained an associated fitness rank. 

In line 7 from figure 1, the selection operator is performed using a binary tournament based 

on Definition 12. Two individuals x and y are randomly drawn from the current population 

P(t), using uniform probability of psel:=
1

( )P t
 for each individual. These individuals are 

checked for constraint-domination according to Definition 12 and if, without loss of 

generality, x >c y then x wins the tournament and is considered for reproduction. If none of the 

two solutions dominates the other, they cannot be compared using the constraint-domination 

criterion, and the winning solution is finally determined using a draw from an uniform 

distribution over both possibilities. 

The first two variation operators are the standard one point crossover and the standard 

mutation operator as described in section 2.2. Our third variation operator in line 10 of figure 

1 represents a problem-specific local search procedure that is applied with probability plocal to 

each selected solution x after crossover and mutation. This local search procedure can exploit 

the structure of a given solution x to perform an additional local optimisation of x towards the 

global, feasible Pareto-efficient set, e. g. by using a so-called hill climbing algorithm that 

changes x according to local information about our objective functions in the region around x. 

We consider this to be a significant improvement compared a standard, non-hybrid MOEA 

since the randomised search process of the MOEA can be guided a bit more towards the 

global, feasible Pareto-efficient set and therefore, such a local search operator can improve the 

convergence speed of the overall algorithm towards the desired solutions. This is particularly 

important for real-world applications, where speed matters when large portfolios are to be 

considered. In addition to these arguments, some portfolio credit risk models provide 

additional local structure information for a current solution x beyond the objective function 

values that can be exploited very efficiently from the perspective of computational 

complexity. An example underlining this fact will be provided in the third section of this 

article. 
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By applying the variation operators to the selected individuals we obtain an offspring 

population P’(t). The members of the joint population J(t) containing all parent solutions from 

P(t) and all offspring solutions from P’(t) are evaluated using the non-dominated sorting 

procedure described above.  

In the next step, the elite population Q(t) is updated according to our algorithm described in 

section 2.5 below. 

Before finishing the population step t and setting t → t+1 the members of the new parent 

population P(t+1) have to be selected from J(t) since |J(t)| > |P(t+1)| by definition of  

J(t) := P(t) ∪  P’(t). Since elitist EAs, which preserve the best solutions from both parents and 

offspring, usually show better convergence properties, we also use this mechanism in our 

algorithm. Besides elitism, we also need a diversity preserving concept to achieve a good 

distribution of the solutions in the whole objective space. We incorporate the concept of 

crowding-sort proposed in Deb (2001), p. 236. This diversity-preserving mechanism is 

favourable over other proposals, e. g. niche counting based on Euclidean ε-regions in the 

decision variable space or the objective function space since the crowding-sort does not 

require an additional parameter e which is difficult to estimate particularly for our discrete, 

non-linear and non-convex Problem 1, and in our case the crowding sort has a smaller 

computational complexity of O(|J(t)| log |J(t)|) compared to the quadratic complexity which is 

required by other mechanisms (cf. Deb (2001), p. 237). 

The algorithm is terminated if Q(t) has not been improved for a certain number tdiff  of 

population steps or if a maximum number of tmax population steps has been performed. 

 

 

2.5 Some considerations concerning the elite population 

 

The elite population Q(t) is updated each time after performing the genetic variation operators 

and evaluation of the joint population J(t). It is external since the solutions stored in Q(t) do 

not influence the solutions in the other populations which are modified by the EA. In other 

proposed MOEA schemes, the members of the elite population are also considered for 

reproduction into P(t+1). Since our Problem 1 has many local optima we have to ensure that 

the selection pressure of our combined elitism and diversity-preserving mechanism which is 

applied when selecting individuals from J(t) for survival into P(t+1) is not too strong. In that 

case, the algorithm could get stuck in local optima and might not find a diverse global Pareto-

efficient set. Therefore, we avoid such an influence from the members of Q(t) by not 

considering them for reproduction into P’(t). 

In our algorithm, the maintenance of such an elite population has many advantages, e. g. with 

respect to the structure of Problem 1 and some real-world optimisation requirements: 

• Rudolph & Agapie (2000) have shown that the existence of such an elite population 

ensures convergence of an EA to the global Pareto-efficient set (in their work the elite 

population it is called ‘archive population’). 

• The number of individuals in the population P(t) that has to be chosen a priori before 

running the algorithm, is limiting the number of best solutions to be kept by the 

algorithm during time. If we maintain an elite population, the choice of the size of P(t) 

is not crucial concerning the number of solutions to be kept during the evolution 

process. 

• The algorithm can be terminated at any time by the user without losing the best 

feasible solutions found so far. This enables real-time optimisation tasks. Remember 

that we consider constrained optimisation problems so current members of the 

population P(t) might not be feasible at an arbitrary interruption time.  
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• Since we have to deal with a discrete non-linear, non-convex problem, which can have 

many local optima that are not uniformly distributed in the two-dimensional objective 

function space, it is difficult to satisfy both the requirement of finding a well-

distributed set of diverse solutions, and the requirement of approximating the largest 

possible set of feasible, global Pareto-efficient portfolio structures if we use only one 

population. We will present an example distribution of the maximum Pareto-efficient 

set in our empirical study described later to visualize these facts. 

• An external elite population provides a good basis for deciding about termination of 

the algorithm since we can terminate the algorithm if no change of the elite population 

has occurred for a certain number of population steps.  

• In case of the absence of an elite population, the population size of P(t) has to be large 

enough to ensure that the best solutions found so far survive into the next population. 

The computational cost of updating the elite population are lower compared to 

maintaining larger population size for the populations P(t) or P’(t) (and therefore, also 

for J(t)), see below. 

 

We will now regard the computational cost of maintaining the elite population.  

 

Lemma 3. If 1 : ( )k Q t=  is the size of the elite population and *

2 : ( )k J t=  is the size of the 

subset of feasible, non-dominated individuals from the joint population J
*
(t) ⊆  J(t) at time 

step t, the elite population can be updated in O(k1 k2) operations.  

 

Proof. Consider the update procedure shown in figure 2.  

 

Update procedure for Q(t) 
Input: Q(t), J

*
(t) 

1: For each x∈ J
*
(t) 

2: Dominated := False 

3: For each y∈ Q(t) 

4: If x >c y Then 

5: Q(t) := Q(t) \ {y} 

6: End If 

7: If y >c x Then 

8: Dominated := True

9:  End If 
10: 

11: 
End For 
If Dominated = False Then 

12: Q(t) := Q(t) ∪  {x} 

13: End If 

14: End For 

Output: Q(t) 

Figure 2. Update procedure for Q(t) 

 

Each x ∈  J
*
(t) is processed once (k2 loop iterations) and the second loop is run for each  

y ∈  Q(t) (k1 loop iterations). Therefore, we require O(k1 k2) computational steps to update 

Q(t). �  

 

At this point, we want to point out that non-dominated sorting of 3 : ( )k J t=  elements of the 

joint population J(t) requires 2

3( )O k  operations in the worst case (cf. the computational 
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complexity for non-dominated sorting derived in Deb (2001), p. 206). In the absence of an 

elite population, k3 has to be chosen large enough to keep the non-dominated, feasible 

individuals in all population steps: k3 ≥ k1.  

Of course, we also need the non-dominated sorting procedure if we have an elite population, 

but we can choose k3 << k1  without losing the best solutions and the desired convergence to 

the global feasible Pareto-efficient set so the overall computational complexity of each 

population step t → t+1 in our algorithm is lower.  

We will now provide some references to related research in the area of portfolio optimisation 

problems, particularly using downside risk measures. 

 

 

2.6. Previous approaches to similar problems 

 

In the existing literature, the main focus of portfolio selection and optimisation has been in the 

area of stock portfolio investments where Markowitz (1952) created the standard framework 

for calculating efficient frontiers of investment alternatives. Based on his mean-variance 

approach, many different calculation procedures have been suggested, see e. g. Elton & 

Gruber (1995) for an overview. 

For downside risk measures like the Value-at-Risk which is similar to the Credit-Value-at-

Risk from Definition 6, different approaches have been proposed even in a single objective 

function setting where the expected return from a portfolio is to be maximised with respect to 

a fixed level of downside risk. This is due to the mathematical properties of such percentile-

based downside risk measures, cf. our remarks and references in section 2.1. For example, 

Gilli & Kellezi (2000) used the Threshold Accepting heuristic to approximate the efficient set 

of a stock portfolio in a Value-at-Risk based setting. A comparison of different heuristic 

approaches to constrained stock portfolio optimisation problems was e. g. performed by 

Chang et al. (2000). 

Concerning credit portfolios, Andersson & Uryasev (1999) proposed the use of simplex 

algorithms under a tail conditional expectation risk measure (Conditional Value-at-Risk) in a 

simulation model framework. Lehrbass (1999) proposed the use of Kuhn-Tucker optimality 

constraints for a credit portfolio optimisation problem having real-valued variables.  

In the next section we will describe more details of our implementation of the hybrid 

evolutionary framework and present results of an empirical study where the performance of 

the implementation is investigated. 

The first work proposing the use of Evolutionary Algorithms for solving credit portfolio 

optimisation problems related to Problem 1 was Schlottmann & Seese (2001a). In that work, a 

hybrid EA was introduced to solve a constrained optimisation problem that was build upon a 

single objective function combining the aggregated return and the aggregated risk of a credit 

portfolio. 
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3  An implementation and empirical test of the HMOEA framework 

using CreditRisk+ 
 

3.1 Portfolio credit risk models and overview of CreditRisk+ 

 

When implementing an algorithm for risk-return optimisation of credit portfolios, the first 

question is how to model the dependencies between joint changes of the credit quality of 

different investment alternatives, so we have to choose a model that provides us a function h 

according to Definition 1 and beyond that, a calculation or approximation procedure for the 

cumulative distribution of aggregated losses from given portfolio data.  

In the literature, there are different alternatives for modelling the dependencies between 

obligors and for calculating portfolio credit risk measures. Among these alternatives, 

CreditMetrics (see Gupton et al. (1997)), CreditRisk+ (see CreditSuisse Financial Products 

(1997)) Wilson’s model (see Wilson (1997a, 1997b) and the KMV option based approach 

(see Kealhofer (1998)) are intensively discussed in many academic and application-oriented 

publications. Since we will set our focus on the default risk of loan portfolios in our empirical 

study described later, we will concentrate on CreditRisk+. However, our hybrid framework is 

compatible with any other portfolio credit risk model providing a loss (in case of a default 

mode model) or a profit-loss distribution (in case of a mark-to-market model). 

In the following paragraphs, we will give a brief description of the CreditRisk+ General 

Sector Analysis model for a one year horizon here that concentrates on the main issues 

concerning our algorithm (see CreditSuisse Financial Products (1997), pp. 32-57 for a more 

detailed derivation of the model). It is an actuarial approach that uses an intensity based 

modelling of defaults, i. e. the default of each obligor in the portfolio is considered to be a 

stopping time of a hazard rate process expressed by a Poisson-like process. In case of a 

default event, the amount of credit exposure (net exposure) lent to the defaulting obligor will 

be entirely lost. 

Given is the data from Definition 1 of m different obligors in the portfolio. Particularly, each 

obligor has a net exposure ei, an associated annual mean default rate pi (typically, pi is small: 

0 < pi < 0.1) and an annual default rate volatility 0iσ ≥ . Furthermore, there is a total of n 

independent sectors as common risk factors, where the first sector (k = 1) is obligor specific, i. 

e. in this sector there is no implicit default correlation between obligors ( 1,..,k n=  below 

unless otherwise noted). The obligors are allocated to the sectors according to sector weights 

[ ]
1

0,1 , : 1
n

ik ik

k

i
=

Θ ∈ ∀ Θ =� . 

The probability generating function (abbreviated PGF) for the losses from the entire portfolio 

is defined by  

( ) ( )
0

: aggregated losses i

i

G z prob i L z
∞

=
= = ⋅ ⋅�  (3.1) 

where L is a constant defining net exposure bands of constant width and prob(...) represents 

the probability of losing i times the value of L from the whole portfolio. 

Since the sectors are independent this can be decomposed to 

( ) ( )
1

n

k

k

G z G z
=

=∏  (3.2) 

where ( )kG z  is the PGF for the losses from the portfolio in sector k. 

To obtain the approximated cumulative loss distribution function for the portfolio a 

recurrence relation, the recursion by Panjer (1981), can be applied to evaluate the coefficients 



16 

of the PGF (for a more detailed background see Panjer & Willmot (1992)). After that, risk 

figures, e. g. the 99
th

 percentile, can be calculated.  

An interesting feature of the model concerning the portfolio optimisation task are the marginal 

risk contributions of obligor i to the standard deviation of portfolio credit risk: 
2

1

:
 

n
pf i i k

i i i i i ik

ki pf k

e p
RC e e e p

e

σ σ σ
σ µ=

� �∂ � �
� �= = + Θ� �� �∂ � �� �

�  (3.3) 

where pfσ  is the portfolio standard deviation derived from the PGF of the portfolio losses, 

,k kµ σ  are sector specific parameters calculated directly from the input parameters 

, , ,i i i ike p σ Θ  using formula (3.4) below (note that 1 0σ =  by definition of sector 1). 

1

1 1

: : , : 0, 1: :
m m

k ik i k ik i

i i

k p kµ σ σ σ
= =

∀ = Θ = ∀ > = Θ� �  (3.4) 

Alternatively, by setting :k k kσ ω µ=  for k > 1 using parameters (variation coefficients) 

, 2,...,k k nω =  only kµ  has to be calculated according to (3.4) and in this case, no obligor-

specific default rate volatilities iσ  are required to calculate the sector specific parameters. 

To calculate an approximation for the risk contribution e. g. to the 99
th

 percentile, a scaling 

factor is defined in the following manner: 
0.99

:
pf pf

pf

pf

q µ
ξ

σ
−

=  (3.5) 

where 0.99, ,pf pf pfqµ σ  are the expectation, standard deviation and 99
th

 percentile of the portfolio 

loss distribution, respectively. 

The figures calculated by applying formula (3.3) can be used as a basis for the approximate 

risk contribution to the 99
th

 percentile by scaling the risk contribution obtained from (3.3) 

according to pfξ  and adding it to the obligor specific expected loss: 

0.99 :i i i pf iRC e p RC
σξ= +  (3.6) 

We use these figures to ensure a computationally efficient calculation within our local search 

variation operator in the HMOEA implementation described in the next subsection. The 

calculation of (3.6) for all investment alternatives i ∈  {1,...,m} requires only O(m n) 

additional operations after the calculation of the coefficients of the PGF from formula (3.2) 

which is mandatory to evaluate the risk() target function for each individual. Note that the 

number of sectors n is constant in a given problem instance and usually small (n < 10), so the 

computation of (3.6) requires only linear computing time measured by the number of 

investment alternatives m. 

 

 

3.2 Further implementation details referring to the HMOEA scheme 

 

In the CreditRisk+ model, the volatilities of the obligors’ default probabilities in conjunction 

with the common risk factors of all obligors replace a direct modelling of the default 

correlation ρ(i, j) for two investment alternatives i, j. Therefore, for the calculations according 

to this portfolio credit risk model, no explicit default correlations are required. However, in 

CreditSuisse Financial Products (1997), p. 56ff. the following implicit default correlation 

formula is provided: 

 

2

1

( , )
n

k
i j ik jk

k k

i j p p
σρ
µ=

� �
≈ Θ Θ � �

� �
�  (3.7) 
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By setting h(i, j) := ρ(i, j) according to (3.7), we obtain the complete dependence structure 

required for our Definition 1 and the subsequent results from our theoretical considerations in 

the first section of this article. Moreover, this explicit definition of the dependence structure 

can be exploited for the calculation of the permutation π(i) according to Lemma 2 that 

provides us an adequate genetic modelling of the decision variables for the given portfolio 

data. Since one calculation of ρ(i, j) for given, fixed values of i and j requires O(n) 

computational steps and n is bounded, the computational cost of calculating π(i) is O(m
2
 n) 

according to Lemma 2. 

To create a local search operator required by an implementation of the HMOEA scheme, we 

use the following local search target function that uses the quotient between aggregated net 

return and aggregated risk to evaluate a given portfolio structure x: 

 ( ) ( , , )
, , ; :

( , ; )

ret x p r
f x p r h

risk x p h
=  (3.8) 

Considering Definitions 4 and 6 as well as the CreditRisk+ calculation method for the 99
th

 

percentile ( )0.99 , , ,pfq x p σ Θ  of the cumulative distribution of aggregated losses from the 

portfolio structure x under the given data p, σ, Θ, r the function f can be written as: 

 

( )
1

0.99

1

( )

( , , , , ) :

, , ,

m

i i i

i

m

pf i i

i

x r p

f x p r

q x p x p

σ
σ

=

=

−
Θ =

Θ −

�

�
 (3.9) 

If we maximise this function f we will implicitly maximise ret(x, p, r) and minimise  

risk(x, p; h), and this will drive the portfolio structure x towards the set of global Pareto-

efficient portfolio structures (cf. the domination criteria specified in Definition 9). In addition 

to that, we have to consider our constraints to ensure the local search variation operator keeps 

the portfolio structure x feasible or moves an infeasible portfolio structure x back into the 

feasible region. An overview of our local search operator scheme based on these 

considerations is shown in figure 3. 

The partial derivative dj for obligor j required in line 12 of figure 3 can be calculated using the 

following formula (a proof is provided in the appendix): 

 

( )( ) ( ) ( )
( )

1

2
:

m

j i i pf pf i i i pf j

i

j

j pf pf

x r p r p x RC

d
x

σξ σ ξ

ξ σ
=

� �− − −� �
� �=
�

 (3.10) 

 

If the current solution x from P(t) to be optimised with probability plocal is infeasible because 

the capital restriction is violated (cf. line 2 in figure 3), the algorithm will remove the 

investment alternative having the minimum gradient component value from the portfolio 

(lines 14 and 15). This condition drives the hybrid search algorithm towards feasible 

solutions. In case of a feasible solution that is to be optimised, the direction of search for a 

better solution is determined by a draw of a uniformly distributed (0,1)-random variable (cf. 

lines 5 and 6). This stochastic behaviour helps preventing the local search variation operator 

from stalling into the same local optima. The local search algorithm terminates if the current 

solution cannot be modified further, if it is already included in the populations P(t) or Q(t) or 

if no improvement considering the violation of constraints or the target function can be made. 

Remembering the fact that the risk contributions, and therefore, the partial derivatives dj can 

be calculated in linear time for an individual which has already a valid fitness evaluation this 

yields a very fast variation operator. 
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Local search operator 

Input: , , , , , , , ( )e p r w K P tσ Θ  

1: For each ( )x P t∈  apply the following instruction block with probability plocal 

2: If cap(x, w) > K Then 

3: D := -1 

4: End If 

5: If cap(x, w) ≤ K Then 

6: Choose between D := 1 or D := -1 with uniform probability 0.5 

7:  End If 

8: Initialisation �: :i ii x x∀ =  

9: Do 

10: Copy �: :i ii x x∀ =  

11: 
Calculate ( )0.99

1 1

: ( ) and : , , ,
m m

old i i i old pf i i

i i

ret x r p risk q x p x pσ
= =

= − = Θ −� �  

12: 
For each jx  calculate the partial derivatives ( ): , , , ,j

j

d f x p r
x

σ∂= Θ
∂

 

13: If D = -1 Then 

14: Choose the minimal gradient component { }: arg min 0j j
j

i d x= >�  of 

exposures currently remaining in the portfolio 

15: Remove this exposure from portfolio: � : 0
i

x =�  

16: Else 

17: Choose the maximal gradient component { }: arg max 0j j
j

i d x= =�  of 

exposures currently removed from the portfolio 

18: �Add this exposure to portfolio: :
i i

x e=� �  

19: End If 

20: 
Calculate ( )0.99

1 1

ˆ ˆ ˆ: ( ) and : , , ,
m m

new i i i new pf i i

i i

ret x r p risk q x p x pσ
= =

= − = Θ −� �  

21: ( ) ( )
( ) ( )( )( )

ˆ ˆ ˆ ˆ : 0 : 0 ( ) ( )

ˆ ˆ1 ( , ) 1 ( , )

i j

new old new old

i x j x x P t x Q t

D cap x w K D cap x w K ret ret risk risk

∃ > ∧ ∃ = ∧ ∉ ∧ ∉ ∧

= − ∧ > ∨ = ∧ ≤ ∧ > ∨ <

While

22: Replace x in P(t) by its optimised version 

23: End For 

Output: P(t) 

Figure 3. Local search operator scheme 

 

The next subsection contains the parameters and test cases for an empirical test of the 

implemented hybrid framework for credit portfolio risk-return analysis and optimisation. 

 

 

3.3 Specification of test cases, parameters and performance criteria 

 

Besides our Hybrid Multi-Objective Evolutionary Algorithm (HMOEA), we have also 

implemented a simple enumeration algorithm that investigates all possible portfolio structures 

to determine the feasible global Pareto-efficient set PE* having maximum cardinality for 

small instances of our Problem 1, i. e. the latter algorithm serves as a proof for the globally 



19 

optimal portfolio structures that should be discovered by the other search algorithms. For all 

instances considered in this article, we compared the results of the HMOEA to the respective 

results of a non-hybrid MOEA that incorporates all features of the HMOEA except for the 

local search operator which is disabled in the non-hybrid algorithm. Particularly, the MOEA 

also benefits from all problem specific algorithmic features that we have proposed for the 

HMOEA in the previous sections, e. g. the presence of the elite population and the 

preprocessing algorithm. All tests of the above implementations were carried out on a 

standard desktop PC (800 MHz single CPU). For all evolutionary algorithms, we performed 

20 independent runs of the same algorithm on the respective test problem using different 

pseudorandom number generator seeds. 

Although more tests cases were examined during development of the system (e. g. for 

estimating the parameters like |P(t)|, pcross etc.) we focus on the following sample loan 

portfolios in this paper. The structure of these portfolios is analogous to real world data.
2
 

Our first test data set is named portfolio m20n2. It consists of m = 20 investment alternatives 

which are allocated to n = 2 sectors. The capital budget restriction is assumed to be 50% of 

the maximum capital requirement that will be required if all investment alternatives are held 

in the portfolio. The detailed structure of portfolio m20n2 is provided in the appendix.  

The medium size portfolio m45n2 contains m = 45 investment alternatives allocated to n = 2 

sectors. The capital restriction is K := 80000 which is about 71% of the sum of all investment 

alternatives’ capital requirements. 

The largest problem instance named portfolio m100n3 contains m = 100 investment 

alternatives allocated to n = 3 sectors. A capital restriction is set to about 56% of the sum of 

all investment alternatives’ capital requirements. 

In all test cases, we chose a quite common parameter setting of pcross := 0.95 and 
1

:mutp
m

= , 

which is reported to work well in many other EA studies, and this was also supported by test 

results during our development of the HMOEA and the non-hybrid MOEA. 

The choice of plocal  can be made by the respective user of the HMOEA depending on his or 

her preferences: If one is interested in finding better solutions in earlier populations, the 

probability shall be set higher, and in this case more computational effort is spent by the 

algorithm on the local improvement of the solutions. However, the local search optimisation 

pressure should not be too high since one is usually also interested in finding a diverse set of 

solutions. Therefore, a choice of 0 < plocal ≤ 0.1 appears to be adequate, and this is supported 

by our tests.  

For the portfolio m20n2 data set, we chose |P(t)| := 30 individuals per population, and plocal := 

0.005. The evolutionary process was stopped after tmax := 1000 population steps. For the non-

hybrid MOEA all these parameters were set equally except for plocal := 0 which means that 

there is no third variation operator in the non-hybrid MOEA.  

In the portfolio m45n2 test, we set |P(t)| := 40 individuals per population and the probability 

for the third variation operator in the HMOEA was set higher to plocal := 0.05 due to the larger 

search space. The other parameters were set analogously to the portfolio m20n2 test case. In 

addition to the investigation of the detailed results for plocal = 0.05, we will compare the 

average results of our chosen performance metrics for different settings of plocal to show the 

influence of the third variation operator on the results in the HMOEA. 

In the portfolio m100n3 test, we set |P(t)| := 50 individuals per population and the probability 

for the third variation operator in the HMOEA was set to plocal := 0.1 to reveal the significant 

differences between the hybrid and the non-hybrid approach. Again, the other parameters 

were set according to the portfolio m20n2 test case. 

                                                 
2
 All test portfolios can be retrieved via http://www.aifb.uni-karlsruhe.de/CoM/HMOEA/tests.html. 
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Particularly, to achieve a better comparison between the evolutionary algorithms we used the 

same initial population for both the HMOEA and the non-hybrid MOEA given a specific 

pseudorandom generator seed. This means we used the same 20 (randomly determined) initial 

populations for both algorithms on a test data set to obtain a fair basis for the comparison of 

the results. 

For all test cases, we have calculated performance measures of the algorithms based on the set 

coverage metric from Zitzler (1999). In our context, the set coverage metric is defined as 

follows: 

 

Definition 13. Given are two sets of portfolio structures PE1, PE2 which are approximations 

for PE* defined in Problem 1. The pair of set coverage metric values C1,2 := (C1, C2) is 

calculated by 

 
{ }1 2

1 2 1

1

| :  >  
: ( , )

cx PE y PE y x
C C PE PE

PE

∈ ∃ ∈
= =   (3.11) 

 
{ }2 1

2 1 2

2

| :  >  
: ( , )

cy PE x PE x y
C C PE PE

PE

∈ ∃ ∈
= =  (3.12) 

 

This metric provides us a criterion for comparing two different sets of solutions produced by 

different algorithms. We have chosen this metric since it allows the comparison of 

approximation sets having different cardinalities, and particularly in our larger test cases, we 

do not need PE* for the evaluation of the results. An algorithm 2 calculating PE2 is 

considered to be better in convergence to PE* than an algorithm 1 that computes PE1 if  

C1 > C2, i. e. if the fraction of solutions in PE2 which are dominated by solutions from PE1 is 

smaller than the fraction of solutions in PE1 that are dominated by solutions from PE2. To be 

more transparent, we investigate both the nominator and the denominator of (3.11) and (3.12) 

separately. Therefore, two important goals of multi-objective approximation algorithms are 

evaluated: Finding an approximation set whose elements are very close to corresponding 

members of PE* and which also has a high cardinality. So we can compare both the quantity 

and the quality of two alternative approximations for PE*.  

In addition to the evaluation of these goals, we compare the maximum spread (cf. Zitzler 

(1999)) for each calculated approximation set for PE* according to the next definition.  

 

Definition 14. Given is an approximation set of portfolio structures PE1 for PE* defined in 

Problem 1. The maximum spread value δ(PE1) is obtained by evaluation of 

 

( ) ( )( ) ( ) ( )( )
1 11 1

2 2

1( ) : max ( , , ) min ( , , ) max ( , ; ) min ( , ; )
x PE x PEx PE x PE

PE ret x p r ret x p r risk x p h risk x p hδ
∈ ∈∈ ∈

= − + −

 (3.13) 

 

The maximum spread allows a comparison between different approximation sets based on the 

largest Euclidean distance between two solutions in the two-dimensional objective function 

space. We have chosen this additional metric because the set coverage metric does not cover 

the largest spread between the found solutions which is also a goal in multi-objective 

optimisation. A larger spread is preferable, i. e. an approximation set PE1 is better than 

another set PE2 concerning this criterion if δ(PE1) > δ(PE2). 

Of course, we calculate the set coverage metric and the maximum spread from the members 

of the elite population Q(t) for a fixed value t after running the respective algorithms. We will 

present the results in the next subsection. 
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3.4 Empirical results 

 

In all test cases, the approximation set calculated by the non-hybrid MOEA is denoted by PE1, 

the approximation set from running the HMOEA is denoted by PE2. 

First of all, for the portfolio m20n2 test data set, we compare the result PE2 of one HMOEA 

run to PE* which was obtained by a complete enumeration of the search space that required 

approximately 72 minutes. In contrast to this, each run of the HMOEA (as well as a run of the 

non-hybrid MOEA) required about 3 minutes for the computation of an approximation set 

PE2. Figure 4 shows both results. 

 

Figure 4. Comparison of PE* and PE2 for portfolio m20n2 

 

It is easy to check by visual inspection that PE2 is a good approximation set for PE* since all 

points of PE* (indicated by circles) are approximated by mostly identical or at least very close 

points of PE2 which are marked by a respective ‘x’ in figure 4.  

The table 1 on the following page shows the detailed results of the HMOEA and the non-

hybrid MOEA for this small portfolio. The results indicate that both algorithms find quite 

similar solutions as we expect it when considering the very small local search variation 

operator probability plocal = 0.005 for the HMOEA in this case. However, the quality of the 

solutions found by the HMOEA concerning the set coverage metric is on average a bit better 

than the quality of the solutions by the non-hybrid algorithm which is indicated by the smaller 

number of dominated solutions in PE2 (column 3) compared to PE1 (column 2). Furthermore, 

the number of runs where less solutions from PE2 are dominated by solutions from PE1 (10 

runs) is higher than vice versa (6 runs). In addition to this slightly better performance, the 

HMOEA found more solutions on average and in more runs (8 runs) than the other algorithm 

(7 runs), therefore the average value of the set coverage metric is about two times better for 

the HMOEA. Concerning the maximum spread values, both algorithms yielded quite the same 
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results, but the non-hybrid approach is slightly better in this criterion due to the higher 

number of runs (6 versus 4) where it had higher spreads than the HMOEA.  

 

no. of 

run 

nom. 

of C1 

nom. 

of 

C2 

denom. 

of C1 

denom. 

of C2 

C1 C2 δδδδ(PE1) δδδδ(PE2) 

1 0 2 81 80 0.0000 0.0250 51337.58 51337.58

2 2 1 75 79 0.0267 0.0127 51337.58 51337.58

3 1 1 77 81 0.0130 0.0123 51337.58 51337.58

4 1 3 79 78 0.0127 0.0385 51191.22 51337.58

5 0 1 76 76 0.0000 0.0132 51337.58 51337.58

6 3 3 77 79 0.0390 0.0380 51191.22 51337.58

7 6 1 81 77 0.0741 0.0130 51337.58 51191.22

8 3 0 80 81 0.0375 0.0000 51337.58 51337.58

9 5 1 80 76 0.0625 0.0132 51337.58 51191.22

10 1 3 76 78 0.0132 0.0385 51191.22 51337.58

11 1 2 81 77 0.0123 0.0260 51337.58 51337.58

12 6 0 75 79 0.0800 0.0000 51337.58 51191.22

13 1 0 77 77 0.0130 0.0000 51191.22 51191.22

14 1 1 80 80 0.0125 0.0125 51337.58 51337.58

15 2 0 72 80 0.0278 0.0000 51285.10 51337.58

16 4 1 80 76 0.0500 0.0132 51337.58 51191.22

17 4 0 79 76 0.0506 0.0000 51337.58 51191.22

18 0 1 77 77 0.0000 0.0130 51337.58 51337.58

19 2 2 79 83 0.0253 0.0241 51337.58 51337.58

20 1 0 77 78 0.0130 0.0000 51191.22 51191.22

average 2.20 1.15 77.95 78.40 0.0282 0.0146 51298.37 51286.35

 

Table 1. Comparison of PE1 and PE2 for portfolio m20n2 (better values are in bold face) 

 

Summarising the results in the small constrained test case, both algorithms found a good 

approximation set for PE* within a few minutes. The HMOEA shows a higher convergence 

speed but this is at the cost of a slightly reduced maximum spread of the approximation set 

compared to the non-hybrid algorithm in our test runs. This is mainly due to the fact that the 

intended higher convergence pressure towards feasible, global non-dominated solutions 

caused by the local search operator leads to early discovery of isolated Pareto-optimal 

solutions which might strongly dominate the population in the relatively small search space. 

However, this is not a general disadvantage of the hybrid algorithm, since we have to remind 

at this point that there is a trade-off between the two goals of finding globally optimal 

solutions very fast and discovering a diverse set of solutions, and this conflict is to be faced 

by any algorithm that solves instances of Problem 1. We have put more weight on the first 

criterion in conjunction with the discovery of feasible solutions during development of the 

hybrid algorithm, and the maximum spread of the HMOEA is very close to the globally 

optimal maximum spread of PE*, so the slightly lower maximum spread of PE2 is not critical.  

 

Beyond that, we will show now that in the other test cases, which have larger search spaces 

that grow exponentially in the number of investment alternatives m, the hybrid approach can 

exploit its advantages more significantly and usually yields both a better set coverage metric 

value and a higher maximum spread. To underline this claim, table 2 shows the results in the 

portfolio m45n2 test case. A run of the non-hybrid MOEA required about 7 min. 30 sec. to 
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compute the approximation set PE1 in this setting, and the HMOEA required approximately 8 

minutes to calculate PE2. 

 

no. of 

run 

nom. 

of C1 

nom. 

of C2 

denom. 

of C1 

denom. 

of C2 

C1 C2 δδδδ(PE1) δδδδ(PE2) 

1 118 67 428 446 0.2757 0.1502 65566.46 70334.59

2 157 73 450 449 0.3489 0.1626 73449.55 73330.93

3 80 88 450 445 0.1778 0.1978 66534.15 70936.96

4 160 67 450 450 0.3556 0.1489 67954.26 73449.55

5 115 62 417 448 0.2758 0.1384 65866.56 73330.93

6 129 48 441 450 0.2925 0.1067 68265.32 70334.59

7 120 72 450 450 0.2667 0.1600 66537.58 70936.96

8 151 76 450 450 0.3356 0.1689 68940.85 70936.96

9 137 61 450 447 0.3044 0.1365 67126.12 73330.93

10 136 57 449 450 0.3029 0.1267 65764.79 72536.10

11 130 72 450 442 0.2889 0.1629 66349.65 70936.96

12 119 79 437 450 0.2723 0.1756 66236.72 70334.59

13 130 84 450 430 0.2889 0.1953 68427.92 70334.59

14 170 58 450 447 0.3778 0.1298 68010.23 73475.61

15 121 65 450 446 0.2689 0.1457 69228.15 72732.18

16 139 71 436 449 0.3188 0.1581 69674.10 70936.96

17 140 96 448 450 0.3125 0.2133 69223.61 70334.59

18 171 62 450 450 0.3800 0.1378 68316.28 73112.27

19 163 62 442 441 0.3688 0.1406 72742.12 73465.07

20 110 85 442 450 0.2489 0.1889 66938.45 70334.59

average 134.8 70.25 444.5 447 0.3031 0.1572 68057.64 71772.80

 

Table 2. Comparison of PE1 and PE2 for portfolio m45n2 (better values are in bold face) 

 

The hybrid approach is better in all averages of the performance metrics for our medium size 

test case. Except for one of the 20 independent runs, the HMOEA always found remarkably 

better solutions than the other algorithm (cf. the second and the third column). Moreover, the 

hybrid algorithm found quite the same number of solutions in all runs like the non-hybrid 

MOEA, therefore the set coverage metric value is significantly better for the HMOEA due to 

the better quality of the found solutions. In contrast to the results presented above for the 

smaller portfolio, the maximum spread values of PE2 are also much better than the respective 

values of PE1 except for one run so the hybrid approach is favourable concerning both 

performance criteria defined in subsection 3.3. 

The influence of the local search variation operator on the results in our medium size test case 

is indicated in figures 5 and 6 where we have plotted the average performance metric values 

depending on different settings of plocal. We have plotted ordinary least squares (OLS) 

regression lines in each figure to estimate the linear trend of the performance metric values 

depending on the choice of of plocal. 

 

 

 

 

 

 

 



24 

 

Figure 5. Average set coverage metric values depending on plocal for portfolio m45n2 

 

 

Figure 6. Average maximum spread values depending on plocal for portfolio m45n2 
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Since both algorithms rely on probabilistic variation operators, we cannot expect perfect 

monotony of the performance metrics depending on the variation of plocal. However, the linear 

regression lines in both figures clearly indicate the influence of the local search variation 

operator. For the set coverage metric, a higher value of plocal typically leads to a higher quality 

of the solutions discovered by the HMOEA compared to the solutions discovered by the non-

hybrid MOEA. Remembering the fact that smaller set coverage metric values are preferable, 

this is indicated by both the negative slope of the regression line for the set coverage metric 

values of the HMOEA and the positive slope of the other regression line for the non-hybrid 

algorithm in figure 6. Of course, different settings of plocal do not influence the maximum 

spread of the non-hybrid MOEA whereas the hybrid algorithm benefits from higher plocal 

values since the slope of the regression line is positive.  

Beyond this analysis of the influence of plocal on the results, we can see in the portfolio m45n2 

test case that the hybrid approach is preferable if the convergence speed, the quality of the 

found solutions and the maximum spread in the objective function space matters. In addition 

to our above discussion of the detailed results for plocal = 0.05, this is underlined by the fact 

that for each tested value of plocal all average values of the performance metrics shown in 

figure 6 were better in the hybrid case. 

For the largest portfolio of our test data sets the results of the HMOEA and the non-hybrid 

MOEA after tmax = 1000 population steps are displayed in table 3. A single run of the 

HMOEA required about 16 minutes for the calculation of PE2 due to the high value of  

plocal = 0.1 which was chosen to reveal the differences between both algorithms, whereas the 

non-hybrid algorithm terminated within 11 minutes. 

 

no. of 

run 

nom. 

of C1 

nom. 

of 

C2 

denom. 

of C1 

denom. 

of C2 

C1 C2 δδδδ(PE1) δδδδ(PE2) 

1 287 82 477 550 0.6017 0.1491 62852.17 72033.78

2 267 100 497 536 0.5372 0.1866 69200.63 71744.75

3 273 104 471 563 0.5796 0.1847 62622.74 70284.81

4 235 111 432 543 0.5440 0.2044 65324.67 72033.78

5 249 108 487 554 0.5113 0.1949 61872.88 70284.81

6 268 87 468 526 0.5726 0.1654 61469.33 70284.81

7 192 101 430 576 0.4465 0.1753 55946.92 73594.82

8 235 118 447 570 0.5257 0.2070 61485.23 70284.81

9 260 94 466 572 0.5579 0.1643 64166.60 72033.78

10 245 88 458 532 0.5349 0.1654 57477.45 70284.81

11 236 115 468 549 0.5043 0.2095 67783.41 73594.82

12 275 97 447 549 0.6152 0.1767 63082.70 73594.82

13 215 123 478 542 0.4498 0.2269 60424.41 70284.81

14 339 56 456 579 0.7434 0.0967 66232.23 65885.00

15 294 109 462 547 0.6364 0.1993 65921.33 66057.19

16 275 92 464 576 0.5927 0.1597 62888.72 70284.81

17 308 94 496 566 0.6210 0.1661 61514.92 73594.82

18 273 77 470 551 0.5809 0.1397 66370.62 72033.78

19 285 85 434 579 0.6567 0.1468 63651.26 70284.81

20 269 113 512 516 0.5254 0.2190 69896.12 72033.78

average 264 97.7 466 553.8 0.5669 0.1769 63509.22 71025.68

 

Table 3. Comparison of PE1 and PE2 for portfolio m100n3 (better values are in bold face) 
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In the portfolio m100n3 test case, the HMOEA clearly outperforms the non-hybrid approach 

in every average of the performance criteria. Beyond that, even in each single run the hybrid 

approach found more solutions than the non-hybrid algorithm (compare the fifth to the fourth 

column), and the quality of the found solutions is also better concerning the number of 

dominated solutions (see third versus second column). Therefore, C1 > C2 in each test run. 

Obviously, this leads to a significant difference between the average set coverage metric 

values where the HMOEA is more than three times better than the non-hybrid approach. 

Concerning the maximum spread, the HMOEA is better in the average over all test cases, and 

there is only one case where the hybrid approach is slightly worse than the non-hybrid 

approach whereas in all other cases, the hybrid approach produces an approximation set PE2 

that has a larger maximum spread value than the other approximation set PE1.  

As a consequence, the results of all tests, and particularly the medium and large test cases, 

support our claim that the hybridisation of the MOEA improves the convergence properties of 

the algorithm. Especially when dealing with very large search spaces, the exploitation of local 

information around a solution is valuable in the evolutionary process since it drives the 

evolutionary process faster towards the most promising solutions. On the other hand, the other 

variation operators are also very important when using such local information since a strong 

local search process can stall into a small number of local optima which are only a few points 

compared to a large feasible, Pareto-optimal set. So a hybrid approach is preferable. 

In addition to the results presented above, we also tested the performance of the HMOEA and 

the non-hybrid MOEA without a capital budget restriction for the respective portfolios. This 

means, we considered the unconstrained cases, too. We do not discuss them in detail here 

since the comparison of the HMOEA and the non-hybrid algorithm revealed similar results 

for all portfolio sizes: The average set coverage metric values of the hybrid approach were 

always better and even the average maximum spread values of the HMOEA were always 

equal or higher than these performance metric values of the non-hybrid approach. In all 

unconstrained cases, the HMOEA benefits strongly from its local search variation operator 

that enforces a higher quality of the discovered solutions and beyond that, leads to the 

discovery of the extreme solutions at the margins of the objective function spaces, which are 

not restricted in the unconstrained cases. Thus, the hybrid approach is also favourable in this 

problem setting. 
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Conclusion and Outlook 
 

In this article we have formally defined a constrained multi-objective portfolio selection 

problem based on investment alternatives which incorporate credit risk. This problem consists 

of two conflicting objective functions, the aggregated net return from a portfolio and the 

aggregated downside risk, and an additional capital budget restriction. We have analysed the 

structure of the problem from a computational perspective and proved the NP-hardness of its 

associated decision problem.  

For the approximation of a large set of feasible, global non-dominated solutions from the 

feasible, global Pareto-efficient set of solutions to our portfolio problem, we have proposed a 

hybrid multi-objective evolutionary algorithm framework that combines concepts from 

different multi-objective evolutionary algorithm schemes with a problem specific local search 

operator. The framework is not restricted to linear or convex objective functions and also 

flexible concerning the constraints. A proper genetic modelling of portfolio credit risk 

problems has been derived in general, and a fast greedy algorithm as a preprocessing stage to 

support evolutionary algorithms for portfolio credit risk problems has been developed. Further 

aspects of the algorithm have been considered, particularly with respect to computational 

complexity. 

We have described the CreditRisk+ portfolio credit risk model and derived a local search 

operator that exploits specific model features. This basis has been used for an implementation 

of our hybrid algorithm framework, and we have presented empirical results of a test using 

different portfolios. The results have indicated that our genetic modelling proposed for 

portfolio credit risk problems is successful since even a non-hybrid MOEA that used our 

preprocessing algorithm yielded good results for different problem instances. Moreover, the 

empirical results of different test portfolios showed that the quality of the MOEA could be 

improved significantly concerning the convergence speed towards the feasible, global Pareto-

efficient set by applying the additional local search variation operator that has been developed 

in this article. Particularly for the medium and larger cases that we have considered, the 

hybridisation of the MOEA and the local search algorithm has yielded a better quality of the 

solutions found at a defined population step as well as a higher spread of the solutions in the 

objective function space both on average and in the majority of the single, independent 

algorithm runs. The additional computational cost of the local search variation operator are 

low compared to the advantages, and the user can decide about the amount of additional 

computational cost to be invested in favour of a higher convergence speed by setting a single 

parameter, the probability plocal for the application of the local search variation operator to 

each individual. To support this decision, we have carried out a sample analysis of the 

influence of this parameter on the performance of the algorithm for one of our test data sets. 

 

Although our implementations of the non-hybrid MOEA and the HMOEA have been running 

on a single standard desktop PC, the algorithms have found approximations of many feasible, 

Pareto-optimal solutions in different problem instances within a few minutes. Remembering 

the fact that EAs are well suited for parallel implementation (see e. g. Schmeck et al. (2001)) 

there are good perspectives for improving the speed of future implementations of our 

framework by using more than one CPU at least for some parts of the algorithms in each 

population step. 

Further research from the viewpoint of risk modelling can e. g. extend the framework 

presented here by exploiting the latest developments in the CreditRisk+ context published in 

Buergisser et al. (2001) to include severity variations concerning the net exposures or use an 

alternative way of calculating the loss percentiles as proposed by Gordy (2001). Of course, 

the system can be extended to other credit risk exposure types, e. g. by embedding it into a 

mark-to-market model context. Due to the flexibility of our framework, many further 
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constraints of practical interest can be easily integrated into our framework, e. g. the 

simultaneous use of different capital budgets or Credit-Value-at-Risk based limits per rating 

category and/or industry in the optimisation process. Even more sophisticated restrictions can 

be handled, e. g. a minimum overall quality of the parts of a portfolio to be sold in an Assed 

Backed Security transaction which is itself calculated using a non-linear pricing model. 

 

Finally, the system presented in this paper can be integrated into a larger decision support 

system for risk-return optimisation in a financial institution that supports human portfolio 

risk-return managers and traders using software agent technology as proposed in Schlottmann 

& Seese (2001b). 
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Appendix 
 

Proof of Lemma 1. 

 

The decision problem that corresponds to Problem 1 has the following form: 

 

Problem 2. Are there numbers xi ∈  {0, ei}, x = (xi)i=1,...,m for given nonnegative rational 

numbers ei, ri, pi, wi, K, R, Z and a rational function h such that the following three 

inequalities are satisfied: 

 ( , , )ret x p r R≥    (4.1) 

 ( , ; )risk x p h Z≤  (4.2) 

 ( , )cap x w K≤     (4.3) 

 

Now consider an instance of the following decision problem which is known to be NP-

complete: 

 

Problem [0/1 KNAPSACK]. Given are a finite set U, a rational size s(u) > 0, a rational value 

v(u) > 0 for each element u∈ U and positive rational numbers V,W. Is there an assignment of 

an integer value c(u) ∈  {0,1} to each u∈ U such that the following two conditions are 

satisfied: 

 ( ) ( )
u U

c u v u V
∈

≥�   (4.4) 

 ( ) ( )
u U

c u s u W
∈

≤�   (4.5) 

 

We can construct an equivalent instance of Problem 2 for a given [0/1 KNAPSACK] problem 

instance by using a polynomial time calculable 1-1 function f: U → N that assigns a 

subsequent natural number to each element u∈ U starting from f(u) := 1 for the first element in 

U and by setting m := |U|, R := V, K := W and ∀ i∈ {1,...,m}: ei :=1, ri := v(f
-1

 (i)), wi := s(f
-1

 (i)). 

 

Furthermore, we can set ∀ i∈ {1,...,m}: pi ≡ 0 for the given instance of [0/1 KNAPSACK] in 

our instance of Problem 2 so that the inequality (4.2) is not binding for any given positive 

rational number Z since risk(x, p; h) = 0 according to Definition 5 in this case. Thus, we have 

to consider only inequalities (4.1) and (4.3) in our construction of the equivalent Problem 2 

instance. 

For pi ≡ 0 the inequality (4.1) simplifies to 

 
0

1 1

( , , ) ( )
im mp

i i i i i

i i

ret x p r x r p x r R
≡

= =
= − = ≥� � . (4.6) 

So a solution to our constructed instance of Problem 2 has to satisfy the following conditions: 

 
1

m

i i

i

x r R
=

≥�   (4.7) 

 
1

m

i i

i

x w K
=

≤�  (4.8) 

By construction of the variables ei, ri, wi, R and K a solution x = (xi)i=1,...,m is a solution to this 

instance of Problem 2 if and only if ∀ i ∈  {1,..., m}:c(f
-1

(i)) := xi is a solution to the given 

instance of [0/1 KNAPSACK]. 

So we have found a polynomial time reduction from [0/1 KNAPSACK] to our Problem 2. 

Since [0/1 KNAPSACK] is known to be NP-complete, our Problem 2 is NP-hard. �  
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Proof of formula (3.10). 

 

Given is a portfolio specified by the vectors , , , ,x p rσ Θ . 

The function f is defined as follows: 

( )
( )

( )
1

0.99

1

, , , , :

, , ,

m

i i i

i

m

pf i i

i

x r p

f x p r

q x p x p

σ
σ

=

=

−
Θ =

Θ −

�

�
 (4.9) 

 

If we calculate a constant multiplier for the given portfolio data 

 

( ) ( )
( )

0.99 , , , ,
:

, , ,

pf pf

pf

pf

q x p x p

x p

σ µ
ξ

σ σ
Θ −

=
Θ

 (4.10) 

 

which can be abbreviated by 
0.99

:
pf pf

pf

pf

q µ
ξ

σ
−

=  (4.11) 

 

in analogy to CreditSuisse Financial Products (1997), p. 63, the 99
th

 percentile function can be 

reformulated by 
0.99

pf pf pf pfq µ ξ σ= +  (4.12) 

 

By substituting the 99
th

 percentile function in formula (4.9) according to (4.12) we obtain: 

 

( )
1

1

m

i i i

i

m

pf pf pf i i

i

x r p

x pµ ξ σ

=

=

−

+ −

�

�
 (4.13) 

Taking into account that 

1

:
m

pf i i

i

x pµ
=

= �  (4.14) 

 

formula (4.13) can be simplified to 

( )
1

m

i i i

i

pf pf

x r p

ξ σ
=

−�
 (4.15) 

 

The partial derivative of f is calculated by deriving (4.15) using quotient rule: 

 

( ): , , , ,j

j

d f x p r
x

σ∂= Θ
∂

 

( )( ) ( ) ( )

( )
1

2

m

j j pf pf i i i pf pf

i j

pf pf

r p x r p
x

ξ σ ξ σ

ξ σ
=

� �∂� �− − − � �� � � �∂� � � �=
�

 (4.16) 
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For 0jx ≠  formula (4.16) is equivalent to 

( )( ) ( ) ( )

( )
1

2

m

j j j pf pf j i i i pf pf

i j

j pf pf

x r p x x r p
x

x

ξ σ ξ σ

ξ σ
=

� �∂� �− − − � �� � � �∂� � � �
�

 

( )( ) ( ) ( )

( )
1

2

m

j j j pf pf i i i j pf pf

i j

j pf pf

x r p x r p x
x

x

ξ σ ξ σ

ξ σ
=

� �∂� �− − − � �� � � �∂� � � �=
�

 (4.17) 

 

Recalling the assumption that pfξ  is considered a constant calculated from the portfolio mean 

and standard deviation, the previous formula can be transformed into  
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Finally, remembering that 
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the substitution of the partial derivative yields 
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Specification of portfolio m20n2. 

 

i  
ie  1iΘ 2iΘ ip  ir  iw  

1 12700 89% 11% 2.0% 4.72% 12.60%

2 15000 73% 27% 2.0% 3.33% 10.00%

3 3500 71% 29% 4.0% 2.86% 8.57%

4 19800 54% 46% 3.0% 5.05% 12.63%

5 30100 29% 71% 2.0% 8.31% 12.96%

6 30600 75% 25% 6.0% 7.52% 12.09%

7 43000 37% 63% 3.0% 4.19% 9.30%

8 22800 68% 32% 6.0% 7.02% 14.04%

9 23500 53% 47% 5.0% 5.11% 8.51%

10 9200 39% 61% 4.0% 14.13% 15.22%

11 40800 32% 68% 4.0% 6.13% 9.07%

12 26200 58% 42% 7.0% 4.20% 10.69%

13 42100 24% 76% 4.0% 5.46% 8.79%

14 27200 39% 61% 5.0% 7.72% 11.40%

15 1900 44% 56% 6.0% 5.26% 10.53%

16 34700 27% 73% 5.0% 4.03% 8.65%

17 40900 22% 78% 5.0% 8.80% 9.29%

18 28000 14% 86% 5.0% 6.43% 8.93%

19 32200 8% 92% 5.0% 2.80% 8.70%

20 4800 7% 93% 5.0% 4.17% 8.33%

 

Note that the variables pi, ri and wi are calculated on a basis of ei. The variation coefficient for 

the second sector was set to 2 : 0.75ω =  in analogy to real-world variation coefficients of 

default rates. 
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