Covering Pareto Sets by Multilevel Evolutionary
Subdivision Techniques

Oliver Schiitze!, Sanaz Mostaghim?, Michael Dellnitz!, and Jiirgen Teich?

! Department of Computer Science, Electrical Engineering and Mathematics
http://math-www.uni-paderborn.de/~agdellnitz
2 Department of Computer Science, Electrical Engineering and Mathematics
http://www-date.uni-paderborn.de
University of Paderborn
Paderborn, Germany

Abstract. We present new hierarchical set oriented methods for the nu-
merical solution of multi-objective optimization problems. These meth-
ods are based on a generation of collections of subdomains (boxes) in pa-
rameter space which cover the entire set of Pareto points. In the course of
the subdivision procedure these coverings get tighter until a desired gran-
ularity of the covering is reached. For the evaluation of these boxes we
make use of evolutionary algorithms. We propose two particular strate-
gies and discuss combinations of those which lead to a better algorithmic
performance. Finally we illustrate the efficiency of our methods by sev-
eral examples.

1 Introduction

In the optimization of technical devices or economical processes one frequently
has the goal to minimize simultaneously several conflicting objectives. Such ob-
jectives can be, for instance, cost and energy. Thus, in applications one is typi-
cally confronted with multi-objective optimization problems (MOPs) and one has
to find the set of optimal trade-offs, the so-called Pareto set.

In this paper we propose several new methods for the numerical computation of
Pareto sets of MOPs. Similar to [?,?] we use multilevel subdivision techniques
for the solution of these problems. However, in contrast to this previous work
we now combine the hierarchical search with multi-objective evolutionary algo-
rithms (MOEAs) which are used for the evaluation of subdomains of parameter
space. In this way the robustness of our algorithms is significantly increased, and
this is of particular interest for higher dimensional problems. Simultaneously the
number of function calls can be reduced.

In a second step we discuss combinations of these algorithms in order to improve
the total performance. We also describe in which way these methods can be cou-
pled with ”standard” MOEAs for the solution of MOPs. In the final section we
illustrate the efficiency of these algorithms by a couple of examples.

An outline of the paper is as follows: in Section 2 we summarize the necessary
background for the algorithms which are described in Section 3. The computa-
tional results are presented in Section 4. We conclude the paper with a summary
in Section 5.

2 Background

In this section we briefly summarize the background for the algorithms which
are described in Section 3.

2.1 Multi-objective Optimization

In an MOP several objective functions are to be minimized or maximized at the
same time. In the following, we state the MOP in its general form:

minimize (f1(x), fo(x),- -, fm(x))
subject to x € Q.

Here f; : R® - R, i = 1,2,...,m, are conflicting objective functions that
we want to minimize simultaneously. The decision vectors = (z1,xa, -+ ,2,)7
belong to the feasible region Q C R™. We assume) to be compact and that its
boundary can be defined by constraint functions.

We denote the image of the feasible region by Z C R™ and call it the feasible
objective region. That is,

Z={F(2) = (fi(@),..., fu(@)) : @ € Q}.

The elements of Z are called objective vectors.
A decision vector 1 € @ is said to dominate a decision vector x> € @ if the
following two conditions are satisfied:

(i) fi(x1) < fi(xz) foralli=1,--- ,;m, and
(i) fj(z1) < fj(z2) for at least one j = 1,--- ,m.

A decision vector x; € @ is called Pareto-optimal (relative to Q) if there is no
xo € () dominating x;. Finally, an objective vector is also called Pareto-optimal
if a corresponding decision vector is Pareto-optimal.

2.2 The Subdivision Algorithm

We now briefly introduce set oriented hierarchical subdivision techniques. For
the details we refer to [?],[?] and [?]. The common aim of these algorithms is the
computation of invariant sets of dynamical systems of the form

zji=g(z;), Jj=0,1,.. (2.1)

where g : R — R™ is continuous. (Recall that a set A C R" is invariant if
g(A) = A.) The computation starts with a (big) compact set (box®) in parame-
ter space. By a repeated bisection and selection of boxes the box coverings By, of
the invariant sets get tighter until the desired granularity of this outer approx-
imation is reached. In computer implementations the selection process is based
on an application of the underlying dynamical system (??) on a finite set of test

Fig. 1. Schematic illustration of the subdivision algorithm for the approximation of
invariant sets.

points within each box.
The general structure of the subdivision algorithm is as follows:

Algorithm DS-Subdivision)
1.) Subdivision Construct from B_; a new system B, of subsets such that

UB= U B

BeB, BEBy_1

and .
diam *(B;) = 6y, diam(Bg_1),

where 0 < 0,50 < 0 < 0 < 1.
2.) Selection
Define the new collection By by

B = {B € By, : there exists B € By, such that g Y(B)n B # (Z)} .

In [?] this algorithm was modified and adapted to the context of global zero
finding, and in [?] these methods were applied to the context of multi-objective
optimization. The common idea in these papers is to interpret iteration schemes
as dynamical systems. For instance, using the descent direction for MOPs with
differentiable objectives as proposed in [?] one may formulate a dynamical system
which has as an invariant set all the points where the Kuhn-Tucker condition
holds (see [?]). In other words, the set of points which are locally nondominated
— including points on the boundary of () — becomes an invariant set of this
specific dynamical system. Thus, it remains to compare images of boxes in Z in
order to find the (global) Pareto set. The so-called sampling algorithm reads
as follows:

3 A n-dimensional box can be represented by a center ¢ € R" and a radius r € R".
Thus B=Bc,={z€R" :¢ci—ri <z <ci+r Vi=1,.,n}.
4 diam(B,,;) = 2||7||2 and diam(B) = maxgep diam(B).

Sampling Algorithm
1.) Subdivision
as in algorithm DS-Subdivision.
2.) Selection
for all B € By,
choose a set of test points Pp
N := nondominated points of |J Pg
BeBy,
By = {BGB}CZHPEPBQN}

By using this algorithm — in some realizations in combination with DS-Subdivision
— it is possible to detect the entire set of (global) Pareto points, including points
on the boundary of the feasible region). Observe that these subdivision tech-
niques possess naturally a ”smoothing” property which is the basis for the com-
bination with MOEAs: a box is kept if it contains at least one ”good” point.
This smoothing property is illustrated in Example A below.

DS-Subdivision works particularly well in the case when both the number of
objective functions and the number of parameters is not too big. Otherwise the
number of boxes created in the subdivision procedure is getting too large. In this
article we propose the combination of DS-Subdivision with MOEAs in order
to overcome this problem (see Section 3).

EXAMPLE A We consider an MOP F = (f1, f2) : R® — R? taken from [?].

A@) =Y 2 fl@)=1-T]—0-Dp;)
where
{0.01 -exp(— %)2'5) for j=1,2

0.01- exp(— T for j=

In Figure 7?7 we present box collections computed by the sampling algorithm.
The smoothing property of the box approach becomes apparent because the
coverings preserve the symmetry of the function in the first two parameters
(F(.’L'l,.'L'z,IL'g) = F(:E2,.’L'1,.’L’3) VY € IR3)

2.3 MOEAs

Evolutionary algorithms (EAs) are iterative stochastic search methods that are
based on the two concepts of generate and evaluate [?]. Up to now, there are
many multi-objective optimization methods that are based on this idea of EAs.
MOEASs have demonstrated the advantage of using population-based search algo-
rithms for solving multi-objective optimization problems. In all of these methods
converging to the Pareto-optimal front and maintaining a spread of solutions
(diversity) are the most important factors. MOEAs can be divided into two
groups. The first group contains the MOEAs that always keep the best solutions
(non-dominated solutions) of each generation in an archive, and they are called

(a) 10 steps (Ci0) (b) 20 steps (C2o)

total failure rate (%)
o
2
2
&

0 20 40 60 80 100 120
sum of additional cost

(c) 30 steps (Cso) (d) image set F'(Cs0)

Fig. 2. Computation of the Pareto set of a model F : R®* — R? using subdivision
techniques.

MOEAs with elitism. It is proved by Rudolph [?] that in some cases elitism will
provide convergence to the Pareto set. In the second group, there is no archive for
keeping best solutions and MOEA may loose them during generations. MOEAs
with elitism are studied in several methods like Rudolph and Agapie’ Elitist GA,
Elitist NSGA-II, SPEA, PAES (see e.g. [?] for all) and SPEA2 [?].

Figure 77 shows the typical structure of a MOEA with elitism, where ¢ denotes
the number of the generation, P; the population, and A; the archive at gen-
eration ¢. The aim of function Generate is to generate new solutions in each
iteration ¢ which is done through selection, recombination and mutation. The
function FEwaluate calculates the fitness value of each individual in the actual
population P;. Fitness assignment in MOEA is done in different ways such as by
Pareto-ranking [?], non-dominated sorting [?], or by calculating Pareto-strengths
[?]. Since only the superior solutions must be kept in the archive, it must be up-
dated after each generation. The function Update compares whether members of
the current population P; are non-dominated with respect to the members of the
actual archive A; and how and which of such candidates should be considered

BEGIN

Step 1: t = 0;

Step 2: Generate the initial population Py and initial archive Ao

Step 3: Evaluate P;

Step 4: Ay1 := Update(P;, At)

Step 5: Piy1 := Generate(P;, At)

Step 6: t =t +1

Step 7: Unless a termination criterion is met, goto Step 3
END

Fig. 3. Typical structure of an archive-based MOEA.

for insertion into the archive and which should be removed. Thereby, an archive
is called domination-free if no two points in the archive do dominate each other.
Obviously, during execution of the function Update, dominated points must be
deleted in order to keep the archive domination-free. These three phases of an
elitist MOEA are iteratively repeated until a termination criterion is met such
as a maximum number of generations or when there has been no change in
non-dominated solutions found for a given number of generations. The output
of an elitist MOEA is the set of non-dominated solutions stored in the final
archive. This set is an approximation of the Pareto-set and often called gquality
set. The above algorithm structure is common to most elitist MOEAs. In some
of these methods (e.g., Rudolph and Agapie’ Elitist GA, NSGA2), in the case of
inadequate available space in the archive to store all of the non-dominated solu-
tions, only those non-dominated solutions that are maximally apart from their
neighbors are chosen. Therefore a crowding method is executed to select the
solutions in less crowded areas. However, the true convergence property cannot
be achieved, since an existent Pareto-optimal solution may get replaced by one
which is not Pareto-optimal during the crowding selection operation. In some
other methods (e.g., SPEA) clustering is done among the archive members, when
the size of the archive exceeds. The use of clustering among the archive members
guarantees spread among them. However, these algorithms lack a convergence
proof, simply because of the same reason as in crowding methods: during the
clustering procedure an existent Pareto-optimal archive member may get re-
placed by a non-Pareto-optimal.

3 Combination of Subdivision Techniques with MOEASs

3.1 Basic Idea

The basic idea behind the following algorithms is to view MOEAs as special (set
oriented) dynamical systems which have to be combined properly with the sub-
division techniques in order to increase the total performance. In particular the

following property of MOEAs will be utilized for the combination of these meth-
ods: MOEAs (typically) generate very quickly some very good approzimations of
Pareto points.

We illustrate this by the following example:

fl; fg : Q C]R2 - R
fl (:B) = (:El — 1)2 + (1'2 — 1)4 (31)
fo(@) = (z1+1)? + (z2 + 1)°

In Figure ?? (a) we show a starting population consisting of 10 randomly cho-
sen points in the domain @ = [—3, 3] x [—3,3]. The following two figures show
the resulting populations after 5 and 10 generations using SPEA (see [?]). Here
we observe that already after 5 generations there are some individuals close to
the Pareto set. This property makes it possible to improve the sampling algo-

(a) initial population (b) generation 5 (c) generation 10

Fig. 4. One advantage of EAs is to find some good solutions quickly. The solid line
indicates the actual Pareto set (in parameter space).

rithm described above: instead of using many test points to evaluate a (high-
dimensional) box, it is better to take just a few test points as the initial popula-
tion of a ”short” MOEA®. The EA only has to run for a short time because a box
B is kept if it contains at least one point in N, namely the set of nondominated
points of the total set of test points.

3.2 The Algorithms

Here we propose different algorithms with the desire to combine the advantages
both of the subdivision techniques and the MOEAs. Practical combinations of
these algorithms for the efficient solution of MOPs will be given in the last
paragraph.

5 A short MOEA is characterized by a short running time; that means small initial
population and few generations.

EA-Subdivision The discussion made above leads directly to the first algo-
rithm: use the sampling algorithm combined with a ”short” MOEA for the eval-
uwation of every box. That is, we propose a particular choice of test points as
follows:

Pg := final population of "short” MOEA

The only task of the MOEA is to find as fast as possible one good approximation
of a Pareto point relative to the given domain. Therefore, diversity or even
clustering are not needed. But special attention should be paid so that the
MOEA does not get stuck on local minima. In particular ”hill climbers” failed
in some situations.

ExAMPLE B In Figure ?? we show the coverings of the set of Pareto points after
4, 8 and 12 subdivision steps. The black "line” indicating the Pareto set is
in fact the resulting box collection after 20 subdivision steps. In this example
the population size and the number of generations were chosen to be 5.

(a) 4 steps (b) 8 steps (c) 12 steps

Fig. 5. Application of EA-Subdivision.

Recovering It may be the case that in the course of the subdivision procedure
boxes get lost although they contain part of the Pareto set. We now describe
two algorithms containing a kind of ”healing” process which allows to recover
the Pareto set.

Before we can state the algorithms we give some details about the box collections:
For theoretical purposes denote P a complete partition of the set Q = B
into boxes of subdivision size - or depth® - k, which are generated by successive
bisection of (). Then there exists for every point p € @) and every depth k exactly
one box B(p, k) € Py, with center ¢ and radius r such that
G—ri<pi<c+r;, Vi=1 .,n.

Let us first consider the case where the covering is not complete but every box
contains a part of the Pareto set (like box Bj in Figure ??). The aim of the

5 P and hence every box collection considered here can be identified with a set of
leaves of a binary tree of depth k.

N

//’

T

Fig. 6. Different problems for recovering: the algorithms have to cope with the fact
that some boxes contain a part of the Pareto set (B1) but others do not (Bs).

algorithm is to extend the given box collection step by step along the covered
parts of the Pareto set until no more boxes are added. In order to find the
corresponding neighboring boxes of a given box B with center ¢ and radius r
we run a MOEA in the extended box B given by center ¢ and radius A - r with
A > 1, say A = 3. Afterwards the box collection is extended by the boxes B € Py,
which contain points from the resulting population (see Figure ?7?). In the first
step this is done for all boxes from the box collection, for the following steps
this local search has to be done only in the neighborhood of the boxes which
were added in the preceding step. With a given box collection By the complete
algorithm StaticRecover reads as follows:

Algorithm StaticRecover

1.) for all B € By,
B.active :=TRUE
2.) fori=1,.., MazStep
Bk = Bk
for all {B € By : B.active ==TRUE}
run MOEA in an extended universe B := (B.c, A - B.r)
P := final population
B.active = FALSE
for all p € P:
if B(p, k) ¢ By
By, := By, U B(p, k)
X B(p, k).active := TRUE
if B, == By, STOP

Hence StaticRecover only allows the addition of boxes into the given collec-
tion. The desired covering of the set of Pareto points cannot get worse, but will
improve if the parameters of the algorithm are adjusted properly. On the other
hand, StaticRecover does not treat adequately the case where a box does not
contain some part of the Pareto set but is possibly far away (e.g. box Bs in
Figure ?7). In this case the algorithm would extend the box covering by many
undesired regions on their way towards the Pareto set (in particular in higher

10

° ¢ aﬁ[[[l
-05 EI -05 0.5

(a) given ”covering” (b) recover step 1 (c) recover step 2

Fig. 7. Application of DynamicRecover on a simple example.

dimensions). Thus, when there are ”good” and "bad” boxes like in Figure 77 we
propose the following algorithm.

Algorithm DynamicRecover

1.) for all B € B,
B.active :=TRUE
2.) fori=1,.., MazStep
By, =B, Bp:=10
for all B € By : B.active ==TRUE
run MOEA in an extended universe B := (B.c,\ - B.r)
Pg := final population
P := nondominated points of |J Pg
BeB
for all p € P:
By, := By, U B(p, k)
if B(p,k) € By B(p,k).active .= FALSE
else B(p, k).active :== TRUE
if By ==B, STOP

In contrast to StaticRecover this algorithm has again the disadvantage that
good boxes can be deleted while they have been computed once’. But other-
wise there would be no chance to sort out the boxes which contain no optimal
solution. The speed of the algorithm depends - besides of the MOEA - on the
choice of the extension factor A. A larger value of A yields faster convergence but
lower robustness. In general, the number of generations and the size of the ini-
tial population should increase with A. For this local covering of the part of the
Pareto set the MOEA has to preserve diversity. Furthermore the convergence of
the MOEA should be good enough in order not to insert too many superfluous
boxes.

" The usage of an archive seems to be suitable and has to be tested in future work.

11

(a) covering (b) local search (c) recovering

Fig. 8. Working principle of StaticRecover

EXAMPLE C We again consider the MOP (??). Algorithm DynamicRecover was
applied to a chosen initial box collection (see Figure 7?). The algorithm stops
after 2 iterations with o total covering of the Pareto set.

Combination of the Algorithms Here we propose two possible combinations
of the algorithms described above which turned out to be practical for the nu-
merical solution of MOPs.

First, if the MOP is "moderate” dimensional we suggest the use of the algo-
rithm EA-Subdivision in combination with StaticRecover. For most MOPs it
is sufficient to use StaticRecover only once or twice during the computation,
but for more complicated problems it can turn out that both algorithms have to
be used in alternation: after some number of iteration steps of EA-Subdivision,
the number of new boxes added to this box collection by StaticRecover gives
a feedback on the quality of the computed ”covering” and hence the adjustment
of the MOEA can be adapted to the next subdivision steps. Eventually the al-
gorithm stops if the desired granularity is reached and no more boxes are added
by the recovery step. Here, the global optimization is done by the subdivision
techniques while the MOEAs are used for local optimization.

For higher dimensional MOPs we recommend another strategy since the eval-
uation of the boxes by MOEAs is expensive even if one is only interested in
just a few good solutions. Here we suggest to improve the result of a MOEA -
where the granularity K can be low - by using DynamicRecover. Therefore, the
recovery process should extend the box collection which is generated by the final
population of the MOEA. Finally, this extended (hopefully complete) covering
can be further refined using subdivision techniques. Important for this method
is the proper choice of size of the boxes. We suggest to adjust the edge lengths
of the boxes to be approximately KK, where « is a safety factor, say x = 2.
Also, in this method the stopping condition is given by the size of the boxes and
the number of boxes which are added in a recovery step. But in contrast to the
first combination in this method the global optimization is done by the MOEA
while the subdivision techniques can only give local improvements.

12

4 Computational Results

4.1 Example 1
The following three objectives have to be minimized at once:
fi, fo, f3:Q =[-5,5° = R,
fi(zy, 2, 23) = (1 — 1) + (z2 — 1)® + (23 — 1),
fo(@r, @2, 23) = (21 +1)° + (22 + 1)* + (23 + 1)?,
fa(w1, 20, 23) = (1 — 1) + (22 + 1) + (z3 — 1)*.

Figure ?? shows the result of a combination of EA-Subdivisionand StaticRecover.
To achieve the uncomplete covering of Figure ?? (a) no EA techniques were nec-
essary but only the center point was used to evaluate each box. Figure ?? (c)
shows a tight and complete covering of the Pareto set. The picture was produced

by the software package GRAPES.

(a) EA-subdivision (b) StaticRecover on (c)
(~ B(l)) B (~ 3(2)) EA-subdivision
on B

Fig. 9. Combination of EA-subdivision and StaticRecover

4.2 Example 2
Now we consider the following MOP

fi, f2:[-5.12,5.12]"° - R,
9

filz) = Y (~10e~02VaFF T
0

fa(z) = Z(|$i|0'8 + 5sin(z;)?).

i=1

Figure 7?7 shows a final population using SPEA (size of initial population: 200;
number of generations: 300) and the local improvement by an application of
DynamicRecover on this result.

& http://www.iam.uni-bonn.de/sfb256 /grape/

13

T T T T T T
* SPEA result
* - Recovery
OF™s * B
NoD e
A
5 LN m* i
*
Moy
*
-10p AN ¥ 1
**
*x
L
_15L i
¢
—20} i
s i
_30L i
_35 i
_40 I I | | | |
-90 -85 -80 =75 -70 -65 -60 -55

Fig. 10. Local improvement of a MOEA result by using DynamicRecover
4.3 Example 3

Finally we consider an MOP which arises in antenna design ([?]):

n 2

Z (—i)”j,,((f)(x,, + iyu)

v=—n

fl (mua yu) = —471'2

7

n 2

S) O + i)™

v=—n

fo(zy,yy) = max 472
n=0,..,5

subject to the constraints

Zu,yp €ER (v €Z, |v| <n),

n
2 Y (@l +yl) <1

v=—n

with the specific discretization points s, = %W—{—nl”—o. Here 7, denotes the Bessel
function of v-th order. We have tested the algorithms for n = 5 and ¢ = 10.
Since J,(x) = (—=1)"J-,(z) and C = R? this leads to a model with 12 free
parameters. First, we have applied the recovery techniques on the result of a
SPEA with the following parameter settings: 1000 initial individuals coded to 13
bits, 500 generations and archive size 1000 (see Figure ??). As in Example 2 also
here local improvements can be observed. The total running time was 7.5 hours
for the SPEA result and 20 minutes for the application of StaticRecover on
it. Furthermore, we have taken another SPEA result with 300 initial individuals
coded to 7 bits, 300 generations and archive size 300 in order to decrease the
computational time. Afterwards we have used the recovering techniques - with
larger box sizes due to the lower granularity of the MOEA - and got similar

14

results (see Figure ??7). The total running time was 20 minutes for the SPEA
result and another 15 minutes for the recovering. Therefore, at least here it is
possible to use the recovering techniques to speed up the running time while the
total performance of the combination of a MOEA and the subdivision techniques

is kept.

210|
200
190|
180|
170|
160|
150|
140|
130|
120|

- Recovery
\ »_SPEA result

N

(a) SPEA result

(b) StaticRecover

-280 -270 -260 -250 -240 -230 -220

(c) comparison in a

selected area

Fig. 11. Application of StaticRecover on a SPEA result and a comparison in selected
area.

3 -_Recover
0 gy .
200 200 160 R
RN
150| S
R 140) N
150 B 150 e
A
- 130 o,
120] N
o 100 R o 100 \z*
.. 110
\\ 100|
50 ~ 50| 90
\\\ 80

-300 -250 -200 -150 -100 -50 0 -300 -250 200 -150 -100 -50) -260 -240 20 -200 -180
i f 1

(a) SPEA result (b) StaticRecover (c) comparison in a

selected area

Fig. 12. Application of StaticRecover on a SPEA result and a comparison in selected
area.

5 Conclusion and Future Work

We have presented robust set oriented algorithms for the numerical solution of
MOPs. More precisely, we have presented two different methods. The first one
is an improvement of the sampling algorithm described in Section 2. Due to
the evaluation of the subdomains by MOEAs the speed of the computation of
MOPs can be increased while its robustness is kept. This allows to apply the
subdivision techniques to higher dimensional MOPs.

The second method is a technique for the local improvement of the diversity of
MOEA results, but can also be used to speed up the computational time for the

15

solution of an MOP.

The general advantages of our algorithms are certainly their robustness, the
preservation (or improvement) of the diversity, and the "natural” stopping con-
ditions. On the other hand so far the subdivision techniques are restricted to
"moderate” dimensions. Thus, for higher dimensional MOPs recovering tech-
niques should be applied.

In future work we would like to adjust the structure of the MOEAs for the
special requirements of the different algorithms. Also other optimization meta-
heuristics like e.g. particle swarm optimization have to be tested with respect to
a combination with subdivision strategies.

References

1. D. Corne, M. Dorigo, and F. Glover. New Ideas in Optimization. Mc Graw Hill,
1999.

2. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons, 2001.

3. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii. In Parallel
Problem Solving from Nature VI (PPSN-VI), pages 849-858, 2000.

4. M. Dellnitz, R. Elsdsser, T. Hestermeyer, O. Schiitze, and S. Sertl. Covering Pareto
sets with multilevel subdivision techniques. to appear, 2002.

5. M. Dellnitz and A. Hohmann. The computation of unstable manifolds using sub-
division and continuation. In H.-W. Broer, S.A. van Gils, I. Hoveijn, and F. Tak-
ens, editors, Nonlinear Dynamical Systems and Chaos, pages 449-459. Birkh&user,
PNLDE 19, 1996.

6. M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation of
unstable manifolds and global attractors. Numerische Mathematik, 75:293-317,
1997.

7. M. Dellnitz, O. Schiitze, and St. Sertl. Finding zeros by multilevel subdivision
techniques. 2002.

8. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Publishing Company, Inc., 1989.

9. A. Jischke and J. Jahn. A bicriterial optimization problem of antenna design.
Comp. Opt. Appl., 7:261-276, 1997.

10. H. Kuhn and A. Tucker. Nonlinear programming. Proc. Berkeley Symp. Math.
Statist. Probability, 2nd, (J. Neumann, ed.), pages 481-492, 1951.

11. G. Rudolph. On a Multi-Objective Evolutionary Algorithm and Its Convergence
to the Pareto Set. In 5th IEEE Conference on Evolutionary Computation, pages
511-516, 1998.

12. S. Schiffler, R. Schultz, and K. Weinzierl. A stochastic method for the solution
of unconstrained vector optimization problems. To appear in J. Opt. Th. Appl.,
2002.

13. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto
evolutionary algorithm. In FEwolutionary Methods for Design, Optimisation and
Control with Applications to Industrial Problems, 2002.

14. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative
case study and and the strength Pareto approach. IEEE Trans. on Evolutionary
Computation, 3(4):257-271, 1999.

