A New Data Structure for the Nondominance Problem in
Multi-Objective Optimization

Oliver Schiitze

Department of Mathematics and Computer Science
http://math-www.uni-paderborn.de/~agdellnitz
University of Paderborn
Paderborn, Germany

Abstract. We propose a new data structure for the efficient computation of the nondomi-
nance problem which occurs in most multi-objective optimization algorithms. The strength
of our data structure is illustrated by a comparison both to the linear list approach and the
quad tree approach on a category of problems. The computational results indicate that our
method is particularly advantageous in the case where the proportion of the nondominated
vectors versus the total set of criterion vectors is not too large.

1 Introduction and Background

In most computational algorithms for the solution of a multi-criteria optimization problem!
minF: Q C R" - R* (1.1)

the problem arises to sort out the nondominated vectors from a given finite (but large) set of
criterion vectors P C R*. A vector v € RF is dominated by a vector w € R if w; < v; for all
i€{l,...,k} and v # w (i.e. there exists a j € {1,..,k} such that w; < v;). A vector v is called
nondominated in P if there is no vector p € P which dominates v.

The nondominance problem can be divided into two main classes. First, there is the static non-
dominance problem. Here one has to find the subset N of nondominated vectors of a given set P
at once. For details we refer e.g. to [5] and [8], where the problem is solved up to k = 4.

Second, there is the dynamic nondominance problem which occurs in most multi-objective opti-
mization techniques and which we want to address in this paper. We are given a set of nondominated
vectors P, and, in addition to this set, there is a sequence of candidates (which is generated by the
optimization procedure). For every vector v of this sequence the archive P has to be updated (see
Figure 1).

Fig. 1. Scheme of the dynamic nondominance problem: a given archive P of nondominated points has to
be uptdated by arriving data.

There are several alternative approaches for the solution of this problem. First, if all the candidates
(and hence all elements of the archive P) lie in bounded (hyper-) rectangles, it is suitable to use
kd-trees ([1,10]) or range trees ([2,10]). Priority trees ([11]) are suitable for the case where these

! In this paper we assume that all objectives have to be minimized.

rectangles are unbounded on a single side. If there are no restrictions to the range of the objectives
the intuitive linear list approach (see e.g. [14]) can be used. Another way of attacking the problem
is proposed in [9], where a clever usage of the data structure quad tree (see [7]) is utilized. These
techniques were refined in [14] and [13]. We refer to [12] for the extensions of the quad tree approach
to multi-objective evolutionary algorithms. Furthermore, there exists the composite point approach
which is presented in [4] and finally discussed in [6]. The data structure we are proposing here is
- like all the methods mentioned above except the linear list approach - tree-based. A slightly
different use of this approach due to a different kind of problem is presented in [3].

2 Attacking the Nondominance Problem

Let us assume that we have a dynamic nondominance problem, i.e. a sequence of candidates
vJ € R* for which a given archive P C IR* has to be updated.
The basis for our approach is to store the nondominated vectors from P in the following tree:

DEFINITION A k-ary tree T is called a dominance decision tree, if for every node
p=(p1,.-.,px) € T and for each existing i-th son s = (s1,...,s) from p the following holds:

s5;<p; Vi=1,.,i-1 (2.1)
Si > Di

A simple example of a dominance decision tree for three objectives is shown in Figure 2.

(i)
) ()

Fig. 2. Example of a dominance decision tree for k£ = 3.

For a given archive P and a new candidate v € R¥ the following steps have to be performed:

1.) If there exist one vector D € P which dominates v, then STOP, else go to step 2.
2.) Detect and delete all elements d € P which are dominated by v.
3.) Insert v into the archive P.

In the following we describe how to realize these steps and how to take advantage of the structure
of the dominance decision tree.

ad 1.) Assume that a vector v and an archive P — stored in a dominance decision tree with root
r — are given. First, v has to be compared to the root r. If r dominates v, we stop and v has
to be discarded. If v and r are mutually non-dominating, then the algorithm has to make the
comparisons recursively in some subtrees of r. Due to (2.2) this comparison has to be made only
in the i-th subtrees of r» where r; < v;. The algorithm DetectDomination reads as follows:

Algorithm DetectDomination
Input: root r, vector v € R¥.
Task: returns 1, if there exists a vector p € P (given by root r) which dominates v, else 0.

DetectDomination (root r,node v)
if » dominates v

return 1
fori=1,...,k
if 7; <wv; AND the i-th son of r exists (denote it by 7 — son;)
if DetectDomination(r — son;,v) == 1
return 1
return 0

ad 2.) Assume again that a vector v and a dominance decision tree P are given. First we have to
discuss which nodes have to be checked for domination, i.e. in which subtrees of P the algorithm
has to look for dominated points. With given p € P it follows by conditions (2.1) and (2.2) that
the search has to be continued in the first ¢ subtrees of k where ¢ € {1, ..., k} is the smallest index
where v; > p;. In order to see this let s be a vector from the I-th subtree where i < | <= k. Then
by construction of the dominance decision tree:

(2.1)
8; < pi <,

and hence s cannot dominate v.
We illustrate this by an example: let p,v1,v2 and vz be given by

10 12 2 3
p= 10 , U1 = 8 , Uy = 12 , U3 = 3
10) 1 3

In case of v = vy the search has only to be continued in the first subtree of v, whereas with the
choice of v = vy the algorithm has to search in the first two subtrees of vy. Eventually in case of
v = vz the data structure has no advantage because all three subtrees have to be scanned.

A deletion of a node p € P can be done as follows: if one son s of p does exist, then it can be
moved to the position of p. The other nodes of the subtree of p have to be reinserted — into the
lifted subtree with root s. The deletion of the dominated nodes can be done via one postorder run
through the tree:

Algorithm DeleteDominated
Input: root r, vector v € R¥.
Task: deletes every vector p € P which is dominated by v.

DeleteDominated (root r, vector v)
fori=1,...k
if the i-th son of r exists (denote it by r — son;)
DeleteDominated (r — son;, v)
if v; >r;
break
if v dominates r
if 7 is leave
delete r and STOP
J := arg min { the j-th son of r exists (denote it by r — son;) }
Move r — son; to the position of r
forl=45+1,...,k
if the I-th son of r exists (denote it by » — son;)
Treelnsert (r — somny)
delete r

The algorithm TreeInsert used above reads as follows:

Algorithm Treelnsert
Input: root r, root s.
Task: inserts every vector of the tree given by root s into the tree given by root r.

Treelnsert (root r, root s)
fori=1,...,k
if the i-th son of s exists (denote it by s — son;)
Treelnsert (r,s — son;)
Insert (r, s)
delete s

ad 3.) By its definition there is only one possible way for the insertion of a vector v into a given
dominance decision tree P (given by root r):

Algorithm Insert
Input: root r, vector v.
Task: inserts v into the archive P (given by root).

Insert(root r, vector v)

i := arg min {v; > r;}

if the i-th son of r exists (denote it by r — son;)
Insert(r — son;,v)

else
T — son; 1= v

Now the main algorithm for the update of an archive P (with root r) by a candidate v can
be stated. Note that the root of the dominance decision tree can be changed in the algorithm
DeleteDominated.

Algorithm Update
Input: root r, vector v.
Task: updates the archive P (given by root r) by the candidate v.

Update (root r, vector v)
if(P is empty)

P:.={v} (r:=v)
STOP

if DetectDomination (r, v) ==1
STOP

DeleteDominated (r,v)
Insert ((root of the archive P), v);

The algorithm presented above has the average case complexity of O(n?) for vector comparisons.
However, since there is no algorithm with a provable complexity better than O(n?), we will discuss
the particular advantages of the dominance decision tree approach in the following section.

3 Computational Results

Here we make a comparison of the approaches which need no restrictions to the range of the
objective values. Regrettably, due to time limitations of the proceedings, it was not able for the
author to involve the recently proposed composite point approach ([6]) to the comparison, though
this would be very interesting and has to be done in the near future. Hence here we compare the

linear list approach, the quad tree approach and the dominance decision tree approach.

For the comparison we proceed as in [14] and take test points generated by an annulus as criterion
vectors because by this category of problems the particular advantages of the three approaches can
be demonstrated.

We choose a sequence of vectors v/ € RF which have to be inserted to the archive P given by the
nondominated vectors of the set {v!,..,v971}. The components of every vector v/ = (vy,..,v)) are
of the following form:

Fi

v; 1= ||w||w“ (3.1)
where 7; € [r,1] and w € R% are chosen at random. This choice of criterion vectors allows to adjust
not only the number & of ” objectives” but also the proportion p,, of the nondominated vectors versus
the total number of criterion vectors: it is easy to see that the larger the value of r € [0,1) is the
larger the value of p,, will typically be. Exactly this proportion is important for the comparison of
the two tree based approaches: the computational results indicate that the dominance decision tree
approach is advantageous in the case where the proportion p, is "moderate”. The larger the value
of p, the better is the performance of the quad tree approach and it gets eventually faster than
the dominance decision tree approach. Of course it is barely possible to detect an exact ”balance
proportion” p? where the two approaches have the same running time, but at least it seems to be
possible to give some guidelines.
In Figure 3 and Table 1 we show that for £ = 3 the proportion where the running time of the two
approaches is basically the same is approximately p?, = 1/3 (with r, = 0.95). That means that the
dominance decision tree approach is faster when the optimization algorithm generates in average
at most every third time a nondominated vector, otherwise the quad tree approach is faster.
For k = 4 the proportion p?, seems to be 0.5 (see Figure 4 and Table 2), but because of the higher
dimension the limit radius r, ~ 0.85 is lower than for k equals 3. A similar observation was made
for k = 5 (pb ~ 0.5 but r, ~ 0.7). This means that the efficiency of the quad tree approach
increases with growing k in comparison to the dominance decision tree approach.
In the case where k equals 2 we figured out that the linear list approach is faster than the dominance
decision tree approach as well as the quad tree approach. This is possibly due to the overhead given
by the tree based approaches.

4 Summary

In this paper we have presented a new data structure for the computation of the dynamic non-
dominance problem and have shown its efficiency by a particular category of problems. Compared
to the linear list approach and the quad tree approach the new method is advantageous in the
case where the proportion of the number of nondominated points to the number of all criterion
vectors is "moderate”. In future work the data structure has to be compared to the composite
point approach ([6]).

Achnowledgements

The author thanks Robert Elsésser for helpfull discussions on the contents of this paper.

x10* x10* x10*

(a) r=0.1 (b) r=0.2 (c) r=0.3
= —& —a

x10* x10* x10*

L

(g) r=0.7 (h) r=0.8 (i) r=0.9

Fig. 3. Annulus generated test problem results for £ = 3. In the Figures the number N of criterion points
versus the running time of the three approaches is plotted for different values of the radius r. Here we have
chosen N = {1000, 2000, ...,10000}. For details see Table 1.

| N| 2000 4000 6000 8000 10000

r=03] To.z] 001 002 003 005 0.06
Ter| 0.01 003 004 006 0.07
Tppr| 001 001 002 003 0.03
pn| 0.07 004 004 003 0.03
r=05 Trz| 0.0l 003 005 007 0.10
Tor| 0.02 003 006 009 0.10
Tppr| 0.01 002 003 004 0.05
pn| 0.0 007 006 005 0.04
r=07| Trz| 002 006 010 0.16 0.21
Tor| 0.03 0.06 0.10 015 0.21
Topr| 0.02 003 005 006 0.08
pn| 015 011 009 007 0.07
r=09] Trz| 009 028 056 090 1.29
Ter| 0.08 019 031 042 0.62
Tppr| 005 011 019 026 0.33
pn| 037 028 023 020 0.18

T = 0.95 Trz| 029 085 166 266 391
Tor| 0.13 041 069 1.05 1.33
Tppr| 0.15 040 0.65 095 1.31
pn| 0.61 047 041 036 0.33

Table 1. Annulus generated test problem results for £ = 3

| N| 2000 4000 6000 8000 10000

r=0.3| Trz| 0.05 011 0.21 0.30 0.39
Ter| 0.06 0.12 0.19 0.28 0.38
Tppr| 0.03 0.07 011 0.16 0.20
pn| 0.18 0.14 0.12 0.10 0.10
r=0.5 Trrz| 0.08 021 0.38 0.55 0.77
Tor| 0.09 021 034 040 0.52
Topr| 0.05 012 019 0.25 0.32
pn| 0.26 020 0.17 0.15 0.14
r=0.7 Trr| 0.17 047 0.88 1.38 1.98
Tor| 0.14 034 0.53 0.72 1.06
Tppr| 0.10 0.22 0.38 0.52 0.68
pn| 0.42 032 0.28 0.25 0.22

r, =085 Trr| 0.20 0.71 180 3.36 5.25
Tor| 0.13 029 056 0.76 1.20
Tppr| 0.11 030 0.51 0.74 1.05
pn| 0.68 0.56 0.50 0.46 0.43
r=09 Trr| 045 168 3.82 6.98 11.16
Tor| 023 0.64 1.15 1.65 2.54
Topr| 026 0.81 149 229 3.11
pn| 085 077 0.71 0.66 0.63

Table 2. Annulus generated test problem results for k£ = 4.

-- L
— DDT
--aqr

02

015

10"
(a) r=0.1
-- L
— DDT
—
o
0.2 - ///
10
(d) r=0.4
-- L
18 — DDT
- or
"
Ny
"
.
o
056 //////
o
o

Fig. 4. Annulus generated test problem results for k = 4. For details see Figure 3 and Table 2.

(g) =0.7

--
— DDT
ol 32
o
;
015 e _—
o
x10°
(b) r=0.2
-- LL
— DDT
wf 20
o
By
y
o
10°
(e) r=0.5
-- L
. — DDT
—x
-
.
.
x10°

(h) r=0.8

-- L

— DDT
ol 8P
o
o

- -
-
o
10"
(c) r=0.3

:

-- L

— DDT

—x
|
o
o
0.4] ///]

10"
(f) r=0.6

-- L

— DDT

-
o
)
q
.

References

1.

2.

10.

11.
12.

13.

14.

J. L. Bentley. Multidimensional binary search trees used for associative searching. Communications
of the ACM, pages 509-517, 1975.

J. L. Bentley and J. H. Friedmann. Data structures for range searching. Computing Surveys, 4:398-409,
1979.

M. Dellnitz, R. Elsésser, T. Hestermeyer, O. Schiitze, and S. Sertl. Covering Pareto sets with multilevel
subdivision techniques. to appear, 2002.

R. M. Everson, J.E. Fieldsend, and S. Singh. Full elite sets for multi-objective optimization. In I. C.
Parmee, editor, Adaptive Computing in Design and Manufacture V, Springer, 2002.

F. P. Preparata and M. I. Shamos. Computational Geometry - An Introduction. Springer Verlag, 1988.
J. Fieldsend, R.M. Everson, and S. Singh. Using unconstrained elite archives for multi-objective
optimisation. to appear, 2003.

R. A. Finkel and J. L. Bentley. Quad trees, a datastructure for retrieval on composite keys. Acta
Informatica, 4:1-9, 1974.

P. Gupta, R. Janardan, M. Smid, and B. Dasgupta. The rectangle enclosure and point-dominance
problems revisited. Int. J. Comput. Geom. Appl., 5:437-455, 1997.

W. Habenicht. Quad trees, a datatructure for discrete vector optimization problems. Lecture Notes in
Economics and Mathematical Systems, 209:136-145, 1983.

M. de Berg and M. van Kreveld and M. Overmars and O. Scharzkopf. Computational Geometry:
algorithms and applications. Springer Verlag, 1997.

E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14:257-276, 1985.

S. Mostaghim, J. Teich, and A. Tyagi. Comparison of data structures for storing pareto-sets in moeas.
Int. J. Comput. Geom. Appl., 5:437-455, 2002.

M. Sun and R. E. Steuer. InterQuad: An interactive quad tree based procedure for solving the discrete
alternative multiple criteria problem. European Journal of Operational Research, 89:462-472, 1996.
M. Sun and R. E. Steuer. Quad trees and linear lists for identifying nondominated criterion vectors.
INFORMS J. Comp., 8:367-375, 1996.

