
Engineering Optimization

Vol. 00, No. 00, September 2007, 1–28

Hybridizing Evolutionary Strategies with Continuation

Methods for Solving Multi-Objective Problems

Oliver Schütze1, Carlos A. Coello Coello2, Sanaz Mostaghim3

El-ghazali Talbi1 and Michael Dellnitz4

1(corresponding author)

INRIA Futurs, LIFL, CNRS Bât M3, Cité Scientifique

59655 Villeneuve d’Ascq, FRANCE

email: {schuetze,talbi}@lifl.fr
2CINVESTAV-IPN (Evolutionary Computation Group)

Departamento de Computación

Av. Instituto Politécnico Nacional No. 2508

Col. San Pedro Zacatenco

México D.F. 07300, MEXICO

email: ccoello@cs.cinvestav.mx
3 AIFB Institute

University of Karlsruhe, GERMANY

email: mostaghim@aifb.uni-karlsruhe.de
4 University of Paderborn

Faculty for Computer Science, Electrical Engineering and Mathematics

Institute for Mathematics

D-33098 Paderborn, Warburger Strasse 100, GERMANY

email: dellnitz@upb.de
(November 2006)

In this paper, two techniques for the numerical treatment of multi-objective optimization problems—
a continuation method and a particle swarm optimizer—are combined in order to join their particular
advantages. Continuation methods can be applied very efficiently to perform the search along the
Pareto set, even for high-dimensional models, but are of local nature. In contrast, many multi-
objective particle swarm optimizers tend to have slow convergence, but instead, accomplish the
“global task” exceedingly. In this paper, an algorithm which combines these two techniques is pro-
posed, some convergence results for continuous models are provided, possible realizations are dis-
cussed, and finally some numerical results are presented indicating the strength of the novel approach.

2

1 Introduction

Multi-objective optimization is a research field that has attracted a significant
amount of interest in the last few years (Ehrgott 2005, Miettinen 1999). One of
the emergent sub-areas within multi-objective optimization has been the use of
metaheuristics, which is a discipline that has experienced a significant growth
in the last ten years (Coello et al. 2002, Deb 2001, Ehrgott and Gandibleux
2004, Tan et al. 2005).
However, despite the considerable interest raised by solving multi-objective
optimization problems using metaheuristics, certain research topics have re-
mained only scarcely studied. One of them is the hybridization between math-
ematical programming techniques (or concepts) and metaheuristics. This sort
of hybridization is precisely the focus of this paper, in which a continuation
method is combined with a particle swarm optimizer (Coello Coello et al.
2004).
The remainder of this paper is organized as follows. Section 2 presents the
previous related work. Section 3 contains the basic concepts requried to un-
derstand the rest of the paper. A novel approach is described in Section 4,
including a proof of convergence, and a discussion of some of its possible real-
izations and its computational cost. Section 5 contains some numerical results
of the proposed hybrid. The assessment of the results is presented in Section 6.
Finally, Section 7 contains some conclusions as well as possible paths for future
research.

2 Related Work

There are relatively few attempts to combine mathematical programming tech-
niques and concepts with multi-objective evolutionary algorithms. For exam-
ple, some researchers have attempted to use gradient information to define
search directions of stochastic search methods (e.g., (Lahanas et al. 2003,
Brown and Smith 2003, Bosman and de Jong 2005, 2006)) by adapting ideas
from the mathematical programming literature (Fliege and Fux Svaiter 2000,
Schäffler et al. 2002)).
The same idea of using local information (but without using gradients) for
generating promising search directions has been exploited in the so-called
memetic algorithms, whose application in multi-objective optimization has
become more extended within the last few years (Knowles and Corne 2000,
Gandibleux et al. 2001, Knowles and Corne 2005).
Other researchers have combined multilevel subdivision techniques (Dellnitz
et al. 2005) with multi-objective evolutionary algorithms (Coello et al. 2002),
in order to increase performance (Schütze et al. 2003). The idea is to subdivide

3

the search space in order to perform local search in each subspace.
Continuation methods (Hillermeier 2001, Schütze 2004) have been used in
the mathematical programming literature as a mechanism for recovering the
portions of the Pareto front that are normally produced when generating it
with traditional multi-objective optimization techniques (e.g., gradient-based).
The underlying assumption of these methods is the fact that, under mild
conditions, the Pareto front of a continuous problem, is a piecewise continuous
(k−1)-dimensional manifold (k is the number of objectives). Other researchers
have recently exploited this same concept to devise algorithms that exploit
this regularity and are, therefore, more efficient (see for example (Zhou et al.
2006)).
One approach to combine multi-objective path following methods with evolu-
tionary strategies can be found in Harada et al. (2007). Although the prelimi-
nary results presented are very promising, the algorithm can get computation-
ally expensive in particular for higher dimensional models due to its uniform
sampling approach. Additionally, this method is restricted to the bi-objective
case.
Finally, regarding convergence of multi-objective evolutionary algorithms to-
wards the Pareto set, little theoretical work still exists, and this is mostly
focused on discrete models (Rudolph 1998, Rudolph and Agapie 2000, Lau-
manns et al. 2002).

3 Background

In this section the required background for the algorithm described in Section 4
is summarized in brief: the concept of Pareto optimality and some theoretical
background, the Recovering algorithm as well as Particle Swarm Optimization
techniques.

3.1 Multi-Objective Optimization

In a multi–objective optimization problem (MOP) the task is to simultaneously
optimize k objective functions f1, . . . , fk : Rn → R. More precisely, a general
unconstrained MOP can be stated as follows:

min
x∈Rn

{F (x)}, (MOP)

where the function F is defined as the vector of the objective functions

F : Rn → Rk, F (x) = (f1(x), . . . , fk(x)).

4

Obviously, it has to be defined what is meant by finding the minimum of a
vector valued function in (MOP). For this, the following definition is stated

Definition 3.1 (a) Let v,w ∈ Rk. Then the vector v is less than w (v <p w),
if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined in an analogous
way.

(b) A vector v ∈ Rk is dominated by a vector w ∈ Rk if w ≤p v and v 6= w
(i.e. there exists a j ∈ {1, . . . , k} such that wj < vj).

Since ≤p just defines a partial order on Rn, one cannot proceed as in the
classical scalar case. In fact, one cannot expect to find isolated stationary
points. Rather one has to find the set of “optimal compromises” and – following
Pareto (V. Pareto (1964 (first edition in 1896))) – these are defined in the
following way.

Definition 3.2 (a) Consider the multi–objective optimization problem
(MOP). Then a point x̄ ∈ R is called (globally) Pareto optimal or a
(global) Pareto point if there is no y ∈ R such that

F (y) 6= F (x̄) and F (y) ≤p F (x̄). (3.1)

(b) A point x̄ ∈ R is a local Pareto point, if there is a neighborhood U(x̄) ⊂ R
of x̄ such that there is no y ∈ U(x̄) satisfying (3.1).

(c) A point x ∈ Rn is weakly Pareto optimal if there does not exist another
point y ∈ Rn such that F (y) <p F (x).

Fundamental for most of the methods for the numerical treatment of MOPs
is the following theorem of Kuhn and Tucker (1951) which states a necessary
condition for Pareto optimality for MOPs.

Theorem 3.1 Let x∗ be a Pareto point of (MOP). Then there exists a vector

α ∈ Rk with αi ≥ 0, i = 1, . . . , k, and
∑k

i=1 αi = 1 such that

k∑

i=1

αi∇fi(x
∗) = 0. (3.2)

Obviously, (3.2) is not a sufficient condition for (local) Pareto optimality. On
the other hand points satisfying (3.2) are certainly ‘Pareto candidates’ and
thus, following Miettinen (1999), their relevance is now emphasized by the
following

5

Definition 3.3 A point x ∈ Rn is called a substationary point or Karush–
Kuhn–Tucker point1 (KKT–point) if there exist scalars α1, . . . , αk ≥ 0 with
∑k

i=1 αi = 1 such that (3.2) is satisfied.

Having stated Theorem 3.1, one is in the position to give a qualitative descrip-
tion of the set of Pareto optimal solutions.
Denote by F̃ : Rn+k → Rn+1 the following auxiliary function:

F̃ (x, α) =

k∑

i=1
αi∇fi(x)

k∑

i=1
αi − 1

. (3.3)

By Theorem 3.1 it follows that for every substationary point x∗ ∈ Rn there
exists a vector α∗ ∈ Rk such that

F̃ (x∗, α∗) = 0. (3.4)

Hence one expects that the set of KKT-points defines a (k − 1)-dimensional
manifold due to the Implicit Function Theorem. This is indeed the case un-
der certain smoothness assumptions. See (Hillermeier 2001) for a thorough
discussion of this topic.

3.2 Recovering Techniques

Here a continuation method is described for the computation of KKT-points
which utilizes observation (3.4): starting with a given point x̂ ∈ F̃−1(0) of
an MOP, these techniques can be applied to detect further solutions in the
neigborhood of x̂. In the next step, again further points are computed starting
with these new-found solutions, and so on.
One crucial point when using these methods – in particular for MOPs with
more than two objectives – is to obtain a ‘global picture’ of the part of
F̃−1(0) that is covered (in some suitable sense) by the set of solutions which
are already computed. As a tool to obtain this as well as to maintain a good
spread of the solutions, boxes are used, which will be decribed in the following.

Let us assume that every parameter is restricted to a certain range, i.e.

ai ≤ xi ≤ bi, i = 1, . . . ,M, (3.5)

1Named after the works of Karush (1939) and Kuhn & Tucker (1951) for scalar–valued optimization
problems.

6

where M = n + k. The search space thus is given by

Q = [a1, b1] × . . . × [aM , bM] ⊂ RM . (3.6)

Every box B ⊂ RM can be represented by a center c ∈ RM and a radius
r ∈ RM

+ such that

B = B(c, r) = {x ∈ RM : |xi − ci| ≤ ri ∀i = 1, . . . ,M}.

The box B can be subdivided with respect to the the j-th coordinate. This
division leads to two boxes B−(c−, r̂) and B+(c+, r̂), where

r̂i =

{
ri for i 6= j

ri/2 for i = j
, c±i =

{
ci for i 6= j

ci ± ri/2 for i = j
.

Let P (Q, 0) := Q, that is, P (Q, 0) = B(c0, r0), where

c0
i =

ai + bi

2
, r0

i =
bi − ai

2
, i = 1, . . . ,M.

Denote by P(Q, d), d ∈ N, the set of boxes obtained after d subdivision
steps starting with B(c0, r0), where in each step i = 1, . . . , d the boxes are
subdivided with respect to the ji-th coordinate, where ji is varied cyclically.
That is, ji = ((i − 1) mod n) + 1. Note that for every point y ∈ Q\∂Q and
every subdivision step d there exists exactly one box B = B(y, d) ∈ P(Q, d)
with center c and radius r such that ci − ri ≤ yi < ci + ri, ∀i = 1, . . . ,M.
Thus, every set of solutions SB leads to a (unique) set of box collections
Bd(SB) := {B(y, d) ∈ P(Q, d) | y ∈ SB}. These collections can easily be stored
in a binary tree with depth d (see (Dellnitz and Hohmann 1997)). Note that
each set Bd is completely determined by the tree structure and the initial box
B(c0, r0). Using this scheme, the memory requirements grow only linearly in
the dimension M of the problem.

Having stated these preliminaries, the continuation algorithm for the compu-
tation of solution sets F̃−1(0) of given MOPs can be presented. Starting with
a box collection B ⊂ P(Q, d), where every box B ∈ B contains a computed
solution, the aim is to successively extend B by further boxes which also
contain a part of F̃−1(0). Hence, one can associate with every box B ∈ B an
approximated solution (xB , αB) ∈ RM , i.e. F̃ (xB , αB) ≈ 0.

Given an archive A (where all the non-dominated solutions found so far are

7

stored1) and an initial box collection B with an insertion depth d and a subset
Bm ⊂ B of boxes, which are marked for further extension, the algorithm reads
as follows:

Algorithm Recover.

(1) for all marked boxes B ∈ B:
(a) unmark box
(b) compute a set {(x1, α1), . . . , (xl, αl)} of distinct and well distributed

points near to (xB , αB) and F̃−1(0).
(c) for i = 1, . . . , l:

starting with (xi, αi), compute (x∗
i , α

∗
i) with F̃ (x∗

i , α
∗
i) ≈ 0.

update the Archive A by x∗
i .

if x∗
i ∈ A and B((x∗

i , α
∗
i), d) 6∈ B

B := B ∪ B((x∗
i , α

∗
i), d)

mark B((x∗
i , α

∗
i), d)

Repeat (2) while new boxes are added to B or until a prescribed maximal
number of steps is reached.

Remarks 3.4 (a) Due to steps (1b) and (1c) the algorithm stated above is
contained in the class of predictor-corrector methods (PC methods). The
classical realization of these two steps is to linearize the manifold F̃−1(0)
around a given point (xB , αB) in order to obtain suitable predictors in
step (1b) – done via a QR decomposition of (F̃ ′)T – and to use a Gauss-
Newton method for (1c). By doing this the most efficient realization is
guaranteed (Deuflhard 2004), but, in turn, the second derivatives of all
objectives are needed. Alternatively, there exists a version for continuous
models (Schütze et al. 2003), where multi-objective evolutionary algorithms
are used to search along the efficient set.

(b) The local nature of the PC methods has to be mentioned: given a set of
initial solutions S0, the PC methods can in general only detect further so-
lutions within the ‘known’ connected components, i.e. the connected com-
ponents which contain a point s ∈ S0 (but are very effective on them).
Since the Pareto set can consist of a lot of connected components, the PC
methods are in general not able to solve the global problem. Thus, e.g. a
combination with a global strategy seems to be advantageous.

Example 3.5 Consider the MOP consisting of the following three objective

1Alternative ways to organize the archive can be found e.g. in Schütze et al. (2006) or Schütze et al.
(2007).

8

functions f1, f2, f3 : R3 → R,

f1(x1, x2, x3) = (x1 − 1)4 + (x2 − 1)2 + (x3 − 1)2,

f2(x1, x2, x3) = (x1 + 1)2 + (x2 + 1)4 + (x3 + 1)2,

f3(x1, x2, x3) = (x1 − 1)2 + (x2 + 1)2 + (x3 − 1)4.

Since all the objectives are strictly convex, the Pareto set consists of one con-
nected component. Figure 1 shows the result of an application of the recover
algorithm starting with two initial solutions.

3.3 Particle Swarm Optimization Methods

A particle swarm optimization (PSO) method is a population based optimiza-
tion technique which can be formulated as follows: a set of N particles may be
considered as a population Pt in the generation t. Each particle i has a position
and a velocity defined by ~xi = {xi

1, x
i
2, · · · , xi

n} and ~vi = {vi
1, v

i
2, · · · , vi

n} in
the variable space S. In generation t + 1, these are updated as below:

vi
j,t+1 = wvi

j,t + c1R1(p
i
j,t − xi

j,t) + c2R2(p
i,g
j,t − xi

j,t)

xi
j,t+1 = xi

j,t + vi
j,t+1 (3.7)

where j = 1, · · · , n, w is the inertia weight of the particle, c1 and c2 are two
positive constants, and R1 and R2 are random values in the range [0, 1].

In Equation 3.7, ~p i,g
t is the position of the best global particle in the popula-

tion which guides the particles to move towards the optimum. ~pi
t is the best

position that particle i could find so far. Indeed, it is like a memory for the
particle i and is updated in each generation. In a PSO, the performance of
each particle is measured according to a pre-defined fitness function, which
is related to the problem to be solved. The inertia weight w is employed to
control the impact of the previous history of velocities on the current velocity,
thus to influence the trade-off between global and local exploration abilities
of the particles (Shi and Eberhart 1998). In order to solve multi-objective op-
timization problems, Multi-objective Particle Swarm Optimization (MOPSO)
is proposed, which works basically the same as PSO methods. The important
part in MOPSO is to determine the best global particle ~p i,g

t for each particle
i of the population. In single-objective PSO, the best global particle is deter-
mined easily by selecting the particle which has the best position. Since in
multi-objective optimization problems there is a set of Pareto-optimal solu-
tions (all of which are equally good), each particle of the population should
select one of the Pareto-optimals as its best global particle, which is called

9

the best local guide. Algorithm 1 shows a typical structure of a MOPSO with
elitism, where t denotes the generation index, Pt the population, and At the
archive at generation t. In this method, elitism refers to the fact of saving
the obtained non-dominated solutions during generations in the archive. In
Algorithm 1, the function Evaluate, evaluates the particles in the population
Pt and the function Update(Pt, At) compares whether members of the current
population Pt are non-dominated with respect to the members of the actual
archive At and how and which of such candidates should be considered for in-
sertion into the archive and which should be removed. Thereby, an archive is
called domination-free if no two points in the archive do dominate each other.
Obviously, during execution of the function Update, dominated points must be
deleted in order to keep the archive domination-free. Selecting the global best
particle for each particle i is done in the FindBestLocal(At+1, ~x

i
t) function.

In this function each particle has to change its position ~xi
t towards the position

of a local guide which must be selected from the updated set of approximated
Pareto-optimal solutions stored in the archive At+1. How to select the local
guide from the archive has a great impact on convergence and diversity of
the solutions and is a problem that has been studied by several researchers
(Coello Coello et al. 2004, Toscano Pulido and Coello Coello 2004, Fieldsend
and Singh 2002, Mostaghim and Teich 2003, Fieldsend 2004, Mostaghim 2004,
Branke and Mostaghim 2006, Reyes-Sierra and Coello Coello 2006). In Step
4, ~pi of the particle i is updated, after finding the current position of particle
i. ~pi is like a memory for the particle i and keeps the non-dominated (best)
position of the particle by comparing the new position ~x i

t+1 in the objective

space with ~pi
t (~pi

t is the last non-dominated (best) position of the particle i).
In order to avoid the local optima, a turbulence factor is added to the positions
of the particles. This is done by adding a random value to the current position
of each particle: The particles change their positions during generations until a
termination criterion is met. The termination criteria can be e.g., a maximum
number of generations.

4 The Evolutionary Recover Algorithm

In this section the Evolutionary Recover Algorithm (ERA) is stated, then some
convergence results are presented as well as some details for possible realiza-
tions of the algorithm.

4.1 The Algorithm

Here an algorithm is stated which combines the recovering technique (denoted
by Recover()) and an evolutionary search strategy (denoted by Generate())

10

Algorithm 1 MOPSO Algorithm

Input: N
Output: A

1. Initialization: Initialize population Pt, t = 0:
for i = 1 to N do

Initialize ~x i
t , ~v i

t = ~0 and ~p i
t = ~x i

t

end for

Initialize the archive At := {}
2. Evaluate: Evaluate(Pt)
3. Update: At+1 := Update(Pt, At)
4. Move: Pt+1 := Move(Pt, At)
for i = 1 to N do

~p i,g
t := FindBestLocal(At+1, ~x

i
t)

for j = 1 to n do

vi
j,t+1 = wvi

j,t + R1(p
i
j,t − xi

j,t) + R2(p
i,g
j,t − xi

j,t)

xi
j,t+1 = xi

j,t + vi
j,t+1

end for

if ~x i
t+1 ≺ ~p i

t then

~p i
t+1 = ~x i

t+1

else

~p i
t+1 = ~p i

t

end if

end for

5. Apply Turbulence Factor.
6. Termination: Unless a termination criterion is met t = t + 1 and goto
Step 2

in order to join their particular strengths.
Given a sequence Sj, j ∈ N0, of state spaces (see discussion below) and a
sequence dj , j ∈ N0, of insertion depths, the Evolutionary Recover Algorithm
reads as described in Algorithm 1 (see also Figure 2).

Note that Generate() can in principle be any evolutionary multi-objective
optimization (EMO) algorithm. The convergence toward the Pareto set as
well as the required assumptions on the EMO algorithm will be discussed in
the following.

4.2 Convergence Results

For convenience of the reader two required definitions are stated in the follow-
ing before the results are stated.

11

Algorithm 1 Evolutionary Recover Algorithm

Initialization:
P0 ⊂ S0 drawn at random
A−1 := ∅
A0 := non-dominated points of P0

for j = 0, 1, 2, . . . do

(a) Pj+1 := Generate (Pj)

(b) Ãj :=ArchiveUpdate (Aj , Pj+1)

(c) Bj :=
{

B(a, dj) ∈ P(Q, dj)|a ∈ Ãj

}

if dj 6= dj−1 then

mark all boxes B ∈ Bj

else

mark all boxes B(a, dj) ∈ Bj with a ∈ Aj\Aj−1 and B(a, dj) 6∈ Bj−1

end if

(d) Aj+1 := Recover (Bj , Aj)
end for

Definition 4.1 Let u ∈ Rn and A,B ⊂ Rn. The semi-distance dist(·, ·) and
the Hausdorff distance d(·, ·) are defined as follows:

(a) dist(u,A) := inf
v∈A

‖u − v‖
(b) dist(B,A) := sup

u∈B

dist(u,A)

(c) d(A,B) := max {dist(A,B), dist(B,A)}

Definition 4.2 Let X,X1,X2, . . . be random variables on a probability space
(Ω,Σ, µ). If

lim
n→∞

Xn(ω) = X(ω)

for µ-almost all ω ∈ Ω, it is said that

lim
n→∞

Xn = X with probability one.

Now the following result can be stated.

Theorem 4.3 Let an MOP F : Q ⊂ Rn → Rk be given, where
Q = [a1, b1] × . . . × [an, bn] ⊂ Rn, ai, bi ∈ R, ai ≤ bi, and F is continuous.

12

Further let

∀j ∈ N and ∀B ∈ P(Q, j) : P (∃lB ∈ N : PlB ∩ B ∩ Q 6= ∅) = 1. (4.1)

Then an application of the Algorithm 1, where all obtained non-dominated
points are kept in the archive, i.e. ArchiveUpdate(A,P) := {x ∈ A ∪ P : y 6≺
x ∀y ∈ A ∪ P}, leads to a sequence of archives {Ai}i∈N, such that

lim
i→∞

dist(F (PQ), F (Ai)) = 0 with probability one,

where PQ denotes the Pareto set of F
∣
∣
Q
.

Proof Let x ∈ PQ. Since (4.1) holds, for every i ∈ N there exists a point
xi ∈ B(x, i)∩Q such that there is with probability one a ji ∈ N with xi ∈ Pji

.
Hence there exists a point di ∈ Aji

with F (di) ≤p F (xi). By construction of
the archives, for all N > ji there is a point dN

i ∈ AN with

F (dN
i) ≤p F (di). (4.2)

Since limi→∞ xi = x and F is continuous it follows that limi→∞ F (xi) = F (x).
Further, since x ∈ PQ one can deduce that

lim
i→∞

F (di) = F (x). (4.3)

Combining (4.2) and (4.3) it follows that

lim
i→∞

dist(F (x), F (Ai)) = 0 with probability one,

and the proof is done.
�

The next example shows that weak Pareto points which are not properly
Pareto optimal can cause problems for the convergence of the Aj’s toward the
Pareto set if the domain of the MOP is continuous:
Consider the bicriteria optimization problem which is illustrated in Figure 3.
Once the weak Pareto point x1 is added to the archive, this point will only
be discarded when x2 is taken into account, since x2 is the only point which
dominates x1.
Thus, one can only obtain convergence toward the Pareto set in the proba-
bilistic sense if the MOP contains no weak Pareto point outside the Pareto
set.

13

Theorem 4.4 In addition to the assumptions of Theorem 4.3 assume that
there is no weak Pareto point in Q\PQ.
Then the algorithm described above generates a sequence of archives {Ai}i∈N,
such that

lim
i→∞

d(F (PQ), F (Ai)) = 0 with probability one,

where d(·, ·) denotes the Hausdorff distance.

Proof Using Theorem 4.3 it remains to show that

lim
i→∞

dist(F (Ai), F (PQ)) = 0 with probability one. (4.4)

To see this let x ∈ Q\PQ. Since x is no weak Pareto point there exists a point
p ∈ PQ such that F (p) <p F (x). Since F is continuous and PQ is a closed set
there exists a neighborhood U(p) of p with

F (y) <p F (x) ∀y ∈ U(p).

Further there exists a jp ∈ N with B(p, jp) ⊂ U(p). Since (4.1) holds, there
exists with probability one a point d ∈ B(p, jp) and an index j ∈ N with
d ∈ Pj . By this it follows that

x 6∈ AN ∀N ≥ j with probability one,

and the proof is complete. �

4.3 Realization and Discussion

In the following some comments on possible realizations of the ERA are made,
in particular on the interaction of the algorithms, followed by some discussion
on the computational cost.

Granularity. In order to obtain convergence one certainly needs a (monoton-
ically increasing) sequence dj , j ∈ N0, with dj → ∞ for j → ∞ of insertion
depths as well as a suitable sequence of state spaces Sj , j ∈ N0, in order to
fulfill (4.1). In case an EMO algorithm is used for the process Generate(), this
property should easily be provided if a suitable mutation strategy is applied
and if the family of (finite) state spaces is e.g. characterized by

(i) Sj ⊂ Q,
(ii) Sj ⊃ Sj−1, if j ≥ 1, and

14

(iii) ∀B ∈ P(Q, j) : ∃x ∈ Sj ∩ B.

However, in practice it turned out that satisfactory results could also be ob-
tained by using a fixed granuarity, i.e. with a constant insertion depth d and
a constant domain S. In case a MOPSO algorithm or any real-coded EMO
algorithm is used one can simply assume that S = Q.

Switching from Generate() to Recover(). One problem when combining the
two different methods is that their underlying domains are not equal. To be
more precise, having computed a promising point x0 ∈ Rn by Generate()
the question that arises is how to continue the search via Recover() starting
from a ‘matching’ point (x̂, α̂) ∈ Rn+k. One way to obtain such a point is to
perform the following two steps: (a) to find a suitable point α0 ∈ Rk and (b)
to compute a desired point (x̂, α̂) ∈ F̃−1(0) starting with (x0, α0).
It was observed by the authors of the current work that it is not advisable
for the realization of (a) to take an arbitrary vector α and to project (x, α)
to F̃−1(0) (e.g., via a Newton’s method) since it can happen that (x, α) is
projected to the ‘wrong’ connected component of the solution set (due to the
wrong choice of α). Alternatively, much better results have been obtained
when α0 was chosen as a solution of the following (low dimensional) scalar
optimization problem, which is motivated by Theorem 3.1:

min
α∈Rk

‖F (x, α)‖ (4.5)

subject to

k∑

i=1

αi − 1 = 0

α ∈ [0, 1].

(4.6)

When to stop Generate(). This is a classical problem when running an EMO
algorithm (and others), in particular when this algorithm has to be executed
several times within another procedure. Of course, one can stop the algorithm
when an assigned running time has elapsed. Alternatively, one can use the
following stopping criteria: Generate() stops when a prescribed number of
‘promising’ points have been found, i.e. points p ∈ Rn with

(i) p is not dominated by any point in the current archive Aj , and
(ii) B(p, dj) 6∈ Bj−1,

or – following the above discussion – when a maximal number of function calls
is reached.

15

Distribution of Solutions. It is known that one problem of the application of
many EMO algorithms (i.e., when elitism is adopted) is to achieve a satisfying
distribution of the entries of the archive (see (Rudolph and Agapie 2000) or
(Laumanns et al. 2001)). The authors of this paper have observed that this
problem was significantly reduced in many test cases by using the boxes as
the data structure for the representation of the parts of the solution set which
are already ‘detected’. By this, the solutions can, for instance, not fall into
clusters. See also Example 5.1 in the next section.

Computational Effort. In the following, two rules of thumb for the compu-
tational effort of the recovering algorithm are presented. The effort of this
algorithm is of course determined by the total number of function evaluations,
which in turn mostly depends on the total number of boxes which are gener-
ated in the course of the computation.
First, the question will be addressed of how many boxes are added to the
collection in the first steps when starting with one solution (x0, α0) ∈ F̃−1(0).
If k objectives are under consideration one expects that F̃−1(0) is – at least
locally and under some mild smoothness assumptions – a (k − 1)-dimensional
manifold in n-dimensional space. Since in that case F̃−1(0) is locally diffeo-
morph to a (k−1)-dimensional cube one can assume that the initial collection
B0 := {B((x0, α0), d)} has 3k−1 − 1 neighbor boxes which contain a part of
F̃−1(0) (if d is sufficiently large and thus the boxes are sufficiently small). By
the same argument one has to expect to extend B0 by 5k−1 boxes around B0

after two recovering steps, whereby 53 − 33 boxes were added in the last step
and will be marked for step three. Thus, starting with one single box which
contains a part of F̃−1(0), one can assume to obtain the following number of
boxes in the first (few) iteration steps:

|B0| = 1

|Bl| = (2l + 1)k−1

= (2l − 1)k−1 + (2l + 1)k−1 − (2l − 1)k−1

︸ ︷︷ ︸

marked boxes

, l = 1, 2, . . .
(4.7)

Next, the question arises of how many boxes – and thus also how many points
in the archive – have to be stored in order to cover the entire Pareto set with a
fixed box size. Assume a Box B is given which contains a part of F̃−1(0). If B is
sufficiently small one can expect that after n subdivisions1 of B approximately

1Realized via bisection according to one coordinate.

16

2k−1 of the 2n subboxes of B intersect F̃−1(0). Denote by b(Q, d) the number
of boxes which contain a part of F̃−1(0) within Q in subdivision depth d. Using
the above estimate one obtains

b(B,n) ≈ 2k−1b(B, 0)

Hence for one subdivision step (i.e., d → d + 1) one can assume an expansion
factor χ defined as

χ ≈ n
√

2k−1

Using these assumptions and replacing B by Q one gets the following estimate
on the number of boxes which are required to cover F̃−1(0):

b(Q, 0) = 1

b(Q, d) ≈ n
√

2k−1b(Q, d − 1) = (
n
√

2k−1)d, d = 1, 2, . . .
(4.8)

This estimate, though very rough, has matched quite well in most computa-
tions with the actual number of boxes which were needed to cover the Pareto
set. The approximation of b(Q, d) can, for instance, be used for an a priori
adjustment of the insertion depth d.

5 Numerical Results

In this section the efficiency of ERA is illustrated on three different test func-
tions. For the ‘EMO part’ (i.e., Generate()) the MOPSO presented in (Coello
Coello et al. 2004) has been chosen.

Example 5.1 First, the following MOP is being considered for demonstra-
tional purposes:

f1(x1, x2) = (x1 − 1)2 + (x2 − 1)4,

f2(x1, x2) = (x1 + 1)2 + (x2 + 1)2.
(5.1)

Figure 4 shows both the box collections as well as the entries of the archives
(in image space) for some iteration steps for this (trivial) example. Here, the
number of entries in the archive which are contained in a box B were restricted,
and thus the solutions in the archive Ai do not separate into clusters. It can

17

be observed that in this case both convergence and diversity of the solutions
is obtained.

Example 5.2 Next, the MOP known as ZDT3 (Zitzler et al. 2000) is consid-
ered:

f1, f2 : Rn → R
f1(x) = x1

f2(x) = g(x2, . . . , xn) · h(f1(x), g(x)) + 1,

(5.2)

where

g(x2, . . . , xn) = 1 + 9(
n∑

i=2

xi)/(n − 1), and

h(f1, g) = 1 −
√

f1/g − (f1/g) sin(10πf1).

(5.3)

For the domain n = 30 and Q = [1, 2]30 have been chosen. This test function
contains a disconnected Pareto-optimal front with a high number of local op-
tima, and has been frequently adopted to validate multi-objective evolutionary
algorithms.
Figure 5 shows a numerical result of the recovering algorithm, where a final
population of a MOPSO run was taken as the initial solution set.

Example 5.3 Finally, the following MOP is under consideration:

f1, f2, f3 : Rn → R
f1(x) =

n∑

j=2

(xj − ai
j)

2 + 10 sin(0.05‖x − ai‖)
n∑

j=1

(ai
j)

2,

fi(x) =

n∑

j=1

j 6=i

(xj − ai
j)

2 + (xi − ai
i)

4, i = 2, 3.

(5.4)

where

a1 = (1, 1, 1, 1, . . .) ∈ Rn

a2 = (−1,−1,−1,−1, . . .) ∈ Rn

a3 = (1,−1, 1,−1, . . .) ∈ Rn

18

This is a three objective test function. The Pareto-optimal front contains a
very large surface. Finding a large number of Pareto-optimal solutions will be
a complicated task for a MOPSO algorithm as it requires a high computational
time to store and update the non-dominated set.
Figure 6 shows a computational result for n = 10 and Q = [−3, 5]10.

6 Performance Assessment

Figures 4, 5 and 6 show the results of the MOPSO and ERA methods. It can
be observed that the ERA method is able to cover the non-dominated front ob-
tained by MOPSO easily. The MOPSO method, on the other hand, can obtain
a relatively small set of non-dominated solutions with a good distribution.
It has to be expected from ERA to cover the non-dominated front and at the
same time to improve the convergence of the solutions locally. In order to test
this, the results of different methods have been evaluated by two measure-
ments.
The first measure is the C metric (Zitzler and Thiele 1999), which compares
the convergence rate of two non-dominated sets A and B:

C(A,B) =
|{~b ∈ B|∃~a ∈ A : ~a � ~b}|

|B| (6.5)

where ~a � ~b denotes ~a weakly dominates ~b. The value of C(A,B) = 1 means
that all the members of B are weakly dominated by the members of A. One
can also conclude that C(A,B) = 0 means that none of the members of B is
weakly dominated by the members of A. C(A,B) is not equal to 1−C(B,A),
and both C(A,B) and C(B,A) must be considered for comparisons.
The S metric (Zitzler and Thiele 1999) measures the hyper-volume of a region
made by a non-dominated set A and a reference point in the objective space.
If the non-dominated set A has a better diversity and convergence than a non-
dominated set B, then the hyper-volume computed for the set A is bigger than
the hyper-volume of the set B. Here, the hyper-volume is not computed in the
way is done in the original S metric (Zitzler and Thiele 1999). Instead, it is
suggested to approximate the hyper-volume by building a grid in the objective
space as follows: (a) Define a reference point and then build a grid between
the origin and the reference point in the objective space. (b) Count the grid
points which are dominated by at least one of the non-dominated solutions.
A non-dominated set with a good diversity and convergence dominates more
solutions than another set with worse diversity and convergence. Actually, this
method is very similar to the hyper-volume method with the difference that
here the volume is approximated and therefore the computational time is less

19

than the original method. This method is also very easy to implement.
The grid resolution and the reference point will have a great impact on this
measurement. In the experiments, a 200×200 grid for the two-objective and a
100× 100× 100 grid for the three-objective test functions have been selected.
For simplicity, the non-dominated solutions and the grid are normalized to
unity.
Table 1 shows the C metric and S metric values. The values of N indicate
that ERA is able to find a large set of solutions. Comparing the C metric
values computed for Example 5.3, the solutions of ERA dominate 79 percent
of the MOPSO solutions whereas MOPSO solutions do not dominate any of
the ERA solutions. This means that the ERA method not only finds a large set
of solutions, but also locally improves them. Considering the C metric values
for Example 5.2, due to differences in terms of the diversities, the solutions
have comparable convergence. It can be observed from the S metric values
that MOPSO finds solutions with a very good diversity comparable to ERA.
Considering both the S and C metric values, MOPSO finds a good diversity,
but most of these solutions are getting dominated by ERA solutions. This
can be observed in the solutions of the test problem with a larger number of
objectives (i.e., Example 5.3).

7 Conclusion and Future Work

In this paper, a novel hybrid algorithm for the computation of the Pareto set
of a given multi-objective optimization problem has been proposed. This algo-
rithm combines a continuation method with a multi-objective particle swarm
optimizer in order to join their particular advantages. Then, some convergence
results have been presented as well as some numerical results to demonstrate
the strength of the proposed algorithm.
As part of possible future work, there are several possible ways to extend
the techniques presented in this paper. A particularly interesting extension
would be to consider hybrid discrete/continuous models since in that case the
interplay between local and global search strategies is of particular interest.
Another interesting task would be to augment the algorithm described above
for the treatment of constrained models.

Acknowledgements. The second author acknowledges support from CONA-
CyT through project no. 45683-Y.
The authors would like to thank Alexander Krüger and Maik Ringkamp for
help and fruitful discussions on the contents of this paper.

20 REFERENCES

REFERENCES

Bosman, P. A. and de Jong, E. D. (2005), Exploiting gradient information in
numerical multi-objective evolutionary optimization, in 2005 Genetic and
Evolutionary Computation Conference (GECCO’2005), H.-G. Beyer et al.,
(Ed.), Vol. 1, ACM Press, New York, USA, pp. 755–762.

Bosman, P. A. and de Jong, E. D. (2006), Combining gradient techniques for
numerical multi-objective evolutionary optimization, in 2006 Genetic and
Evolutionary Computation Conference (GECCO’2006), M. Keijzer et al.,
(Ed.), Vol. 1, ACM Press. ISBN 1-59593-186-4, Seattle, Washington, USA,
pp. 627–634.

Branke, J. and Mostaghim, S. (2006), About selecting the personal best in
multi-objective particle swarm optimization, in Parallel Problem Solving
from Nature - PPSN IX, 9th International Conference, T. P. Runarsson,
H.-G. Beyer, E. Burke, J. J. Merelo-Guervós, L. D. Whitley and X. Yao,
(Eds.), Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik,
Iceland, pp. 523–532.

Brown, M. and Smith, R. E. (2003), Effective use of directional information
in multi-objective evolutionary computation, in Genetic and Evolutionary
Computation—GECCO 2003. Proceedings, Part I, E. Cantú-Paz. et al.,
(Ed.), Springer. Lecture Notes in Computer Science Vol. 2723, pp. 778–789.

Coello, C. A. C., Veldhuizen, D. A. V. and Lamont, G. B. (2002), Evolu-
tionary Algorithms for Solving Multi-Objective Problems, Kluwer Academic
Publishers.

Coello Coello, C. A., Toscano Pulido, G. and Salazar Lechuga, M. (2004), Han-
dling multiple objectives with particle swarm optimization, IEEE Transac-
tions on Evolutionary Computation 8(3), 256–279.

Deb, K. (2001), Multi-Objective Optimization Using Evolutionary Algorithms,
Wiley.

Dellnitz, M. and Hohmann, A. (1997), A subdivision algorithm for the compu-
tation of unstable manifolds and global attractors, Numerische Mathematik
75, 293–317.

Dellnitz, M., Schütze, O. and Hestermeyer, T. (2005), Covering Pareto sets
by multilevel subdivision techniques, Journal of Optimization Theory and
Applications 124, 113–155.

Deuflhard, P. (2004), Newton Methods for Nonlinear Problems. Affine Invari-
ance and Adaptive Algorithms, Springer.

Ehrgott, M. (2005), Multicriteria Optimization, second edn, Springer, Berlin.
ISBN 3-540-21398-8.

Ehrgott, M. and Gandibleux, X. (2004), Approximative solution methods for
multiobjective combinatorial optimization, Top 12(1), 1–89.

Fieldsend, J. (2004), Multi-objective particle swarm optimisation methods,

REFERENCES 21

Technical Report 419, Department of Computer Science, University of Ex-
eter, Exeter, UK.

Fieldsend, J. E. and Singh, S. (2002), A multi-objective algorithm based upon
particle swarm optimization, an efficient data structure and turbulence, in
Proceedings of the 2002 U.K. Workshop on Computational Intelligence .

Fliege, J. and Fux Svaiter, B. (2000), Steepest descent methods for multicrite-
ria optimization, Mathematical Methods of Operations Research 51(3), 479–
494.

Gandibleux, X., Morita, H. and Katoh, N. (2001), The supported solutions
used as a genetic information in a population heuristic, in First Interna-
tional Conference on Evolutionary Multi-Criterion Optimization, E. Zitzler,
K. Deb, L. Thiele, C. A. C. Coello and D. Corne, (Eds.), Springer-Verlag.
Lecture Notes in Computer Science No. 1993, pp. 429–442.

Harada, K., Sakuma, J., Kobayashi, S. and Ono, I. (2007), uniform sampling
of local Pareto-optimal solution curves by Pareto path following and its ap-
plications in multi-objective GA, in Genetic and Evolutionary Computation
Conference (GECCO-2007), pp. 813–820, ACM Press, 2007.

Hillermeier, C. (2001), Nonlinear Multiobjective Optimization - A Generalized
Homotopy Approach, Birkhäuser.

Karush, W. E. (1939), Minima of functions of several variables with inequali-
ties as side conditions, PhD thesis, University of Chicago.

Knowles, J. and Corne, D. (2000), M-PAES: A memetic Algorithm for mul-
tiobjective optimization, in 2000 Congress on Evolutionary Computation,
Vol. 1, IEEE Service Center, Piscataway, New Jersey, pp. 325–332.

Knowles, J. and Corne, D. (2005), Memetic algorithms for multiobjective op-
timization: issues, methods and prospects, in Recent Advances in Memetic
Algorithms, W. E. Hart, N. Krasnogor and J. E. Smith, (Eds.), Springer.
Studies in Fuzziness and Soft Computing, Vol. 166, pp. 313–352.

Kuhn, H. and Tucker, A. (1951), Nonlinear programming, in Proceeding of
the 2nd Berkeley Symposium on Mathematical Statistics and Probability,
J. Neumann, (Ed.), pp. 481–492.

Lahanas, M., Baltas, D. and Giannouli, S. (2003), Global convergence analysis
of fast multiobjective gradient based dose optimization algorithms for high-
dose-rate brachytherapy, Physics in Medicine and Biology 48(5), 599–617.

Laumanns, M., Thiele, L., Deb, K. and Zitzler, E. (2001), On the conver-
gence and diversity-preservation properties of multi-objective evolutionary
algorithms. TIK-Report No. 108, ETH Zürich.

Laumanns, M., Thiele, L., Deb, K. and Zitzler, E. (2002), Combining conver-
gence and diversity in evolutionary multi-objective optimization, Evolution-
ary Computation 10(3), 263–282.

Miettinen, K. (1999), Nonlinear Multiobjective Optimization, Kluwer Aca-
demic Publishers.

22 REFERENCES

Mostaghim, S. (2004), Multi-Objective Evolutionary Algorithms, Data Struc-
tures, Convergence and Diversity, PhD thesis, University of Paderborn.

Mostaghim, S. and Teich, J. (2003), Strategies for finding good local guides in
multi-objective particle swarm optimization, in IEEE 2003 Swarm Intelli-
gence Symposium, IEEE Press.

Reyes-Sierra, M. and Coello Coello, C. A. (2006), Multi-objective particle
swarm optimizers: a survey of the state-of-the-art, International Journal of
Computational Intelligence Research 2(3), 287–308.

Rudolph, G. (1998), Finite markov chain results in evolutionary computation:
A tour d’horizon, Fundamenta Informaticae 35, 67–89.

Rudolph, G. and Agapie, A. (2000), On a multi-objective evolutionary algo-
rithm and its convergence to the Pareto set, in 2000 Congress on Evolution-
ary Computation (CEC’2000), pp. 1010–1016.

Schäffler, S., Schultz, R. and Weinzierl, K. (2002), A stochastic method for
the solution of unconstrained vector optimization problems, Journal of Op-
timization Theory and Applications 114(1), 209–222.

Schütze, O. (2004), Set Oriented Methods for Global Optimiza-
tion, PhD thesis, University of Paderborn. <http://ubdata.uni-
paderborn.de/ediss/17/2004/schuetze/>.

Schütze, O., Laumanns, M., Coello, C. A. C., Dellnitz, M. and Talbi, E.-G.
(2006), Convergence of stochastic search algorithms to finite size Pareto set
approximations, Research Report 6063, INRIA. <https://hal.inria.fr/inria-
00119255>.

Schütze, O., Laumanns, M., Tantar, E., Coello, C. A. C. and Talbi, E.-G.
(2007), Convergence of stochastic search algorithms to gap-free Pareto front
approximations, in Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO-2007), Springer, pp. 892–899.

Schütze, O., Mostaghim, S., Dellnitz, M. and Teich, J. (2003), Covering
Pareto sets by multilevel evolutionary subdivision techniques, in Evolution-
ary Multi-Criterion Optimization, C. M. Fonseca, P. J. Fleming, E. Zitzler,
K. Deb and L. Thiele, (Eds.), Lecture Notes in Computer Science.

Shi, Y. and Eberhart, R. C. (1998), Parameter selection in particle swarm
optimization, in Evolutionary Programming VII (EP’98), Springer-Verlag,
New York, pp. 591–600.

Tan, K., Khor, E. and Lee, T. (2005), Multiobjective evolutionary algorithms
and applications, Springer-Verlag, London. ISBN 1-85233-836-9.

Toscano Pulido, G. and Coello Coello, C. A. (2004), Using clustering tech-
niques to improve the performance of a particle swarm optimizer, in Ge-
netic and Evolutionary Computation–GECCO 2004. Proceedings of the Ge-
netic and Evolutionary Computation Conference. Part I, K. Deb. et al.,
(Ed.), Springer-Verlag, Lecture Notes in Computer Science Vol. 3102, Seat-
tle, Washington, USA, pp. 225–237.

REFERENCES 23

V. Pareto (1964 (first edition in 1896)), cours d’economie Politique, Libraire
Droz, Genève.

Zhou, A., Zhang, Q., Jin, Y., Sendhoff, B. and Tseng, E. (2006), Modelling
the population distribution in multi-objective optimization by generative
topographic mapping, in Parallel Problem Solving from Nature - PPSN IX,
9th International Conference, T. P. Runarsson, H.-G. Beyer, E. Burke, J. J.
Merelo-Guervós, L. D. Whitley and X. Yao, (Eds.), Springer. Lecture Notes
in Computer Science Vol. 4193, Reykjavik, Iceland, pp. 443–452.

Zitzler, E., Deb, K. and Thiele, L. (2000), Comparison of multiobjective evolu-
tionary algorithms: empirical Results, Evolutionary Computation 8(2), 173–
195.

Zitzler, E. and Thiele, L. (1999), Multiobjective evolutionary algorithms: A
comparative case study and and the strength Pareto approach, IEEE Trans-
actions on Evolutionary Computation 3(4), 257–271.

24 REFERENCES

Table 1. Evaluation results of Examples 5.2 and 5.3. N , C, S and T indicate the values for the num-

ber of obtained non-dominated solutions, C metric, S metric and and computational time (in seconds),

respectively.
Test NMOP SO NERA C(MOP SO,ERA) C(ERA,MOP SO) SMOP SO SERA TMOP SO TERA

5.2 50 529 0.39 0.42 5862 6150 12 18
5.3 100 739 0 0.79 968962 958883 25 4

REFERENCES 25

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x
1x

2

x 3

(a) initial box collection

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x
1

x
2

x 3

(b) 6 recover steps

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x
1

x
2

x 3

(c) 12 recover steps

Figure 1. Computation of the MOP described in Example 3.5. The figures show the initial box
collection and two extensions. The algorithm stops after 12 iteration steps with a perfect covering

of the Pareto set.

26 REFERENCES

Ri

Ai

Ai

f1

f2

x1

x2

DynamicRecover Archive

Figure 2. Basic scheme of the Evolutionary Recover Algorithm.

REFERENCES 27

| |

x
1
=0 x

2
=π

f
1

f
2

Figure 3. The weak Pareto point x1 is only dominated by x2.

28 REFERENCES

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Figure 4. Application of ERA: the figures show box coverings Bi (left, x1 is plotted versus x2) and
archives Ai (right, f1 vs. f2) of the MOP of the Example 5.1 for i = 6, 8, 10, 12, 18.

REFERENCES 29

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
3.5

4

4.5

5

5.5

6

6.5

7

f
1

f 2
MOPSO
ERA

Figure 5. Numerical result for the MOP of Example 5.2.

30 REFERENCES

−200

0

200
0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

80

90

f
1f

2

f 3

MOPSO
ERA

Figure 6. Numerical result for the MOP of Example 5.3 in the image space (above) and the
resulting box collection of the ERA (below).

−3
−2

−1
0

1
2

3
4

5

−3

−2

−1

0

1

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

x 3

