Interactive Batch Process Schedule Optimization and Decision-Making

using Multiobjective Genetic Algorithms
K. J. Shaw, A. L. Nortcliffe, M. Thompson, J. Love, and P. J. Fleming
Department of Automatic Control and Systems Engineering,
University of Sheffield, Mappin Street, S1 3JD, UK.
Emails: {jane.shaw | a.l.nortcliffe | m.thompson | j.love | p.fleming} @shef.ac.uk

ABSTRACT

A multiobjective genetic algorithm (MOGA) is applied to a test
batch scheduling problem to attempt to optimize five objectives
simultaneously. The design of the MOGA allows an emphasis
on human interaction with the optimization process, including
the ability to change priorities of preferences and plant data
interactively, and to allow the MOGA to make decisions
regarding batch size and the rules task allocation. Experimental
results demonstrate the development of this technique, allowing
the combination of human expertise and MOGA optimization
power to provide scheduling solutions to a highly complex
problem.

1. INTRODUCTION

Chemical batch processing scheduling problems commonly
require the optimization of several conflicting objectives. The
demanding nature and complexity of these problems means that
a balance must be found in the optimization process, between
the interaction of expert human knowledge and decision
making, and the automated schedule optimization power and
computing ability, within an accurate scheduling system.

Genetic algorithms (GAs) are evolutionary-based optimization
tools [1], suited to scheduling, [2]. Multiobjective GAs
(MOGAs), {31, (4], (5], [6], [7] are becoming increasingly
popular for demanding applications including real-life
scheduling systems. MOGAs also offer much potential for
providing a general interactive decision-making tool throughout
the optimization process. These decision-making interactions
can be implemented by several techniques. Manufacturing rules
may be generated or chosen and executed during the
evolutionary scheduling process itself, to benefit the overall
optimization goals, [8], (9], [10]. Additionally, the provision of a
set of several equally optimal scheduling solutions to a problem,
as an outcome of the multiobjective optimization process, allows
- user interaction with the choice of the final solution. Human
expertise can be combined with computational intensive search
techniques to direct the search and focus on solutions that can
meet the users’ immediate requirements, interests and particular
needs. The evolutionary process also offers dynamic adaptation
to chfa.nges in the plant variables during the optimization process
itself. .

A batch process problem is explored, and the need for the
inclusion of a series of decision-making opportunities for the
combined evolutionary computing / human-interactive system is
discussed. A MOGA is implemented in a flexible, object
oriented environment that facilitates user interaction, whilst
adhering to the exact structures defined by a framework of the
ISA standard for batch scheduling, S88 [11], [12].

The work is arranged as follows. Section 2 introduces the batch
process plant problem being used for the testing of the
optimization system. Section 3 provides details of the
optimization system implementation itself, including the GUI,
and MOGA, and discusses the interaction between the’ parts of
the system, including the human user. Section 4 illustrates
experimental development of the MOGA’s decision-making
capabilities, in the form of an evolving rule generation system.
Section 5 discusses additional measures taken within the
MOGA and by the human operator to allow reaction, interaction
and flexible treatment of the batch process schedule
optimization procedure. Finally, section 6 provides discussions,
conclusions and suggestions for further work.

0-7803-5731-099$10.00 ©1999 IEEE

2. PROBLEM DESCRIPTION

In recent years, the chemical process industry has shifted its
production methods from high volume continuous production of
low cost products to producing low volume, specialist chemicals
of high value, produced by batch operations. The latter involves
complex chemistry, process operations and results in small
yields. To ensure that such a manufacturing process is more
cost effective and efficient, multi-purpose batch plants are used.
The generic design of these plants allows the processing a broad
range of products and variety of operations. Many process and
simultaneous operations may be accommodated, but the
additional complexity of the plant creates a need for careful
scheduling to ensure that all the resources are used effectively
and efficiently. The standards S88.01 [11] and IEC 61512-1 [13]
provide guidelines which cover the design, control strategies
and schedules for such plants. A standardised framework of
terminology, models and structures is used to describe and
articulate the scheduling requirements of a multi-purpose batch
plant [12]. The definitions prevent. ambiguity within the
scheduling process and allow portability of the completed
method.

In this work, a MOGA-based scheduling system is developed to
be framed by the S88 standard, whilst attempting to expand and
explore the degrees to which flexibility and interaction can be
included within a batch process scheduling system. The system
should allow both improved performance of schedule
optimization, and also offer insights and feedback for the
manufacturer into the plant behaviour and scheduling process
itself. A generic multi-purpose batch plant and set of recipes for
possible products have been expressed in S88 constructs to
provide a test scheduling environment. The overall plant is a
process cell consisting of units and equipment modules, shown
in Figure 1.

OIS Y

Figure 1- Process cell of the generic multi-purpose batch plant

Five products are made within the plant. The total amount of
each product ordered must be divided into batches if the total is
greater than the maximum reactor size, the maximum capacity
of the reactors defines the maximum batch size. The batches
are made according to recipes, which are broken down into S88
standardised phases. The set of phases required to complete a
product must be scheduled to proceed through the various units
of the above plant, in order to meet a set of four production
objectives. The development of the S88 standardised recipe
into a set of tasks suitable for scheduling by the MOGA is
discussed in section 2.1, and plant objectives are provided in
section 3.2.

VI—486

2.1 The implementation of S88-based scheduling system
Love and Bunch, [12], outline the batch process scheduling
problem as follows: “whatever the structure of a batch plant...
the objective is to make batches of product. There are many
variations on this theme. [...] Whatever the scenario,
consideration of any single batch reveals that it is always
processed by a series of (one or more) operations in a (dedicated
vessel or) train of vessels according to some recipe. [...] For
each product, the route that the batch follows through the plant
has to be established, and.the operations carried out on that
batch considered, i.e., which operations, where and in what
order.”

Under the definition of S88, phases are individually and
separately defined tasks. A phase is defined to be the “smallest
practicable group of control functions that can be sufficiently
decoupled from the rest of the operation to exist in isolation.”
To make a product, various phases grouped under the larger
procedures of ‘weighing’, ‘charging’, ‘transferring’, ‘reacting’,
and “filtering’ are required in the predefined order. The
generalised ‘weighing” procedure consists of several more
specific phases according to the recipe of each particular
product, such as “weigh solution 1, solvent 2, and solid 3.”
Phases may have idle time scheduled before or after them; they
are defined to allow their production to be paused safely at the
start or finish. They may run in series or in parallel. Normal
practice is to schedule the phases themselves by assigning each
to a separate unit (that is, piece of process equipment, such as
weighing vessel, charge vessel, reactor or filter) for a particular
time. However, in many cases, successive phases take place in
the same unit by practical necessity. In the case of the reactors,
several phases make up a reaction task (e.g., ‘initialise, heat,
hold, sample, cool’). It would be meaningless to assign the first
step of this reaction to one reactor whilst the second is assigned
to another. Thus in this example, the allocation decision need
only be made for the first task, allowing some sets of phases
may be effectively grouped into an equivalent single tasks.

The definition of such tasks — some consisting of single phases
and some of compatible groups of phases - lends itself well to
the scheduling process. To complete a product, the schedule
must assign each task to a suitable unit whilst meeting the
sequencing constraints, in order to optimize the required costs.
The complete batch recipes for the given problem consist of 80-
100 phases in total, each of which must be scheduled for every
batch to make up the complete orders. Even with as few as five
products, this creates a large number of tasks to be scheduled.
As an initial implementation, the work focused on smaller task
of scheduling only of the reactor operations, each consisting of a
number of reaction phases.

2.2 Motivation for development of a MOGA-based,
interactive scheduling system

Multiobjective GAs (MOGAs) are becoming increasingly
popular for demanding applications, including scheduling
systems (e.g., [14], [15], [16], [17], [18], optimizing multiple
conflicting and complex objectives. MOGAs also offer much
potential for providing a general interactive decision-making
tool throughout the optimization process.

There is additional motivation for providing an extensive batch
process scheduling optimization system powered by a MOGA.
The MOGA has demonstrated promising abilities on real-life
scheduling problems related to the food industry [10], an
application which holds many similarities to the problems also
faced in the chemical industry. The MOGA’s key advantage is
its ability to treat the multiple, frequently conflicting objectives
found within a real-life optimization problem separately. Coello
[19], lists the rapidly increasingly range of problems for which
such techniques can be highly beneficial for solving
optimization problems. The search nature of the MOGA system
allows vague, ill-defined or uncertain data to be included within
the optimization system, which is advantageous for any problem
in which the related human decision-making or reaction process
cannot be modelled exactly. Indeed, doing so may even benefit
the overall optimization performance (10]. Additional
development work [20] has suggested a method to measure

confidence in the results provided by MOGA scheduling
systems, allowing the practical user to ascertain the expected
optimization performance from a particular system. This also
allows the developer to choose the best-performing MOGA for
the problem, out of the many possible implementations. As is
the case with any evolutionary computing optimization system, a
MOGA may be specifically designed to suit the particular
problem. Thus the MOGA in this work has been developed to
include the ability to determine batch-sizing decisions [21], as
well as batch sequencing and scheduling. In addition, section
4.1 develops the MOGA further to evolve batch allocation
decisions within the optimization process. The particular details
of the method and the inclusion of these properties are
discussed further in 4.1.

3. SYSTEM IMPLEMENTATION

3.1 GUI implementation

The first part of the schedule system visible to the user is in the
form of a Java-based GUI. As the system aims to provide a high
degree of user interaction with the scheduling optimization
process, the interface is an important feature. Through the
interface, the MOGA takes the data required to define the plant,
recipe and tasks, and acts as intermediary between the plant
model, the MOGA and the human. Data can flow in either
direction; inputs from the human to the GUI can alter the plant
specification and MOGA implementation, whereas output from
the MOGA scheduling system may advise the human to adjust
their scheduling decisions as the optimization process continues;
either as a reaction to the direction that the search is taking, or
more generally, in response to a general trend suggested by
results that may prove influential in human scheduling
decisions.

The GUI relating to the plant specification is shown in Figure 2,
containing information including: characteristics, functions,
capacity, charge and discharge times of the units, their materials
of construction, the type of resource, output connections, and
additional equipment features, such as heating modules.

SRS

Figure 2 - Java GUI for plant specification

The user may change any data relating to these aspects via the
GUIL This may be a priori, before the MOGA begins its
optimization run, or interactively during the optimization.
Further interaction may take place after the optimization is
completed. The effects of this later interaction are demonstrated
in section 5.

Information describing the recipes’ breakdown into individual
scheduling tasks is entered into the GUI shown in Figure 3.
This includes such diverse elements as the tasks that need to be
completed in order to manufacture the product. Each task
window displays the type and duration of the task, additional
ingredients added (if any) to the product at that stage, specific
units required, and the cleaning requirements after completion.

VI—487

Figure 3 — GUI for recipe data

Again, the ability to alter any of this data either before or during
a run is available to the user, providing extensive interaction
with the data being relayed to the MOGA scheduling process at
several levels, regarding all aspects of the plant model and
recipe requirements.
3.2 MOGA implementation
The genetic algorithm (GA) is an optimization technique
simulating various processes of natural evolution [1], namely
repeated selection, recombination and mutation. Its search
points are individuals within a randomly generated population,
each representing a potential solution to a problem. The
objective values of the individual’s solution to the problem are
evaluated, reflecting its fitmess within the population. Fit
solutions are proportionally selected to recombine creating a
new generation of “offspring” solutions. A mutation process
adds an element of novel material, randomly at a low
probability. This repeated process creates a simulated 'survival
of the fittest' effect, as good characteristics in solutions become
predominant in succeeding generations, until some criteria for
convergence are reached. Many variations of the basic
- implementation are possible, and 1t is common practice for a
GA to be designed to meet specific requirements of a problem.

For an initial problem based on the plant illustrated in Figure 1,

the optimization problem- focuses on three main decision

variables:

1. batch-sizing decision

2. the sequencing of the tasks relating to the batches required

3. the rule used to assign the batch to a unit, given a choice of
more than one possibility for such an assignment

The optimal schedule of the required tasks must be found. This

is performed by the division of the total orders into suitable

batches, sized to contribute towards the optimum schedule, then

assigning the batches to suitable reactors, according to the set of

rules evolved for the assignment. Batches must be of a size to

meet the plant constraints, and must be made by a set time

deadline, whilst minimising the following objectives;

1. Minimize cleaning time between batches

2. Minimize storage cost of batches which are completed
early

3. Minimize percentage wasted reactor capacity

4. Minimize late orders, i.e., failure to meet customer
deadlines

5. Minimize variation of the total amount made by the batches
suggested from those required (“batch variation™).

The fifth objective defines the notion of schedule feasibility.

Whilst the MOGA may generate schedules which may under- or

over-produce the amounts required by the customers, these are

termed ‘infeasible’ solutions. Whilst not encouraged, they are

still permitted within the population, to preserve variation

within the individuals. The three batch sizes possible are 0.5, 1

or 2 tonnes; these values being defined by the maximum holding

and minimum running capacities of the three reactors. All other

processes are assumed to meet the scheduling requirements; for

example, raw materials being available and ready when

VI—488

required. For each set of orders (‘campaign’), the required
tonnage, speed of each reaction, cost of storage for the
completed product, and the due date are supplied. Plant data
provides a list of possible reactors for each task, depending on
the reactor material and other constraints. In addition, the
possibility of plant data changing is simulated by the triggering
of three separate events at randomly generated intervals during
the run. This is discussed in more detail in 5.2.

3.3 Representation

The individuals within the population are formed by a

concatenation of three substrings, each representing one of the

decisions required.
10010110011219678354101ABBCAEDBCD
0010110111)73510826419|ECDADABBEC

represents: {Batch sizes | sequence of batches | allocation rule}
Figure 4 - Examples of two-part individuals

Each bit in the binary part of the individual indicates whether a
batch of a particular size and product should be made to
complete the overall order, from the set of all possible batches
that may be combined to complete the total campaign. This is
discussed in more detail in [21]. The permutation part of the
individual represents the sequence in which the batches will be
made. The third section represents the allocation rules. These
are further discussed in section 4.1

3.4 Schedule Building

Translating the individual into a working schedule requires an
encoding, or "schedule builder” stage. From the list of
sequenced batches, the relevant allocation rule is used to assign
each batch to the appropriate unit for the relevant procedure to
be performed. This process builds a completed schedule from
which the objective costs may be evaluated.

The handling of the objective function by the MOGA has been
determined by previous work [21]. It was demonstrated that by
implementing a five-objective MOGA and treating each of the
five objectives separately, rather than using a combination of the
plant costs to decrease and simplify the number of objectives to
Just two, the scheduling performance was improved. Thus each
objective is evaluated from the completed schedule separately.
The MOGA itself uses Pareto ranking-based fitness assignment
[5]. The idea of Pareto optimality is critical in providing the
most useful effect of multiobjective optimization. Any
individual that is found to have a set of objective costs that are
non-dominated by those of the others in the population, may be
a candidate optimal solution to the problem. [t is rare that a
single point is found which dominates all others, providing a
single optimal solution. On the contrary, the user is presented
with a set of possible solutions, which cover the range of
possible trade-offs between objectives. Without additional user
specification as to the priorities of each objective required in the
final solution, all contenders are equally valid. In terms of
scheduling, this allows the user to maintain a population of
(near-)optimal solutions to meet a range of objective preferences
that might match various real-life situations. In this example,
there might be a requirement to meet deadlines (cost 4) with the
highest priority, as a trade-off for raising the % reactor wastage
within the schedule (cost 3), or minimizing the cleaning times
(cost 1), yet raising the amounts in storage by doing so (cost 2).
Such priorities may be set by the user, as discussed in more
detail in Changing the objective preferences.

Thus by applying Pareto-based selection to the population, non-
dominated individuals are more likely to be selected in order to
recombine, and possibly mutate, according to the effects of all
five objectives. Standard binary and permutation crossover and
mutation operators can be used on relevant parts of the
population. The resulting individuals replace the previous
generation of solutions, and the process is continued until a
stopping criteria, in terms of a set number of generations, is
achieved. Mean and minimum fitnesses are tracked for each
cost, and the set of resulting non-dominated solutions is stored,
at each generation. It should be noted that at any point during
the MOGA run, the current set of solutions may be provided as

output schedules to be implemented instantly, whether the
optimization process has been completed or not; they will still
provide valid schedules. This may be important in an
environment in which time is highly constrained, and in which
fast reactions are critical. The GA code is implemented in GA
MATLAB Toolbox [23) running on a SPARC station (Sun Ultra
5,333 MHz, 128 Mb RAM).

3.5 Decision making within the MOGA system

There are many decisions being made within the scheduling
system, by a combination of the human and MOGA, and defined
in some cases by the physical plant conditions. Specifically, the
batch sizing, sequencing, and allocation choices are defined by a
combination of the plant, MOGA and human. The human and
MOGA each specify properties and decisions relating to the
reaction to change within the plant and the allocation rules. The
human alone dictates to the MOGA values for the relative
priorities of the objectives, including the importance placed on
feasibility of solutions within the population.

It should be stressed that many of the human’s decisions may be
made interactively during the scheduling process, either in
reaction to the plant’s behaviour, or as a result of the output
scheduling results from the MOGA process at that generation.
Simultaneously, the MOGA is itself evolving and updating its
own decision-making process. Section 4 illustrates the
development of the experimental design of the schedule builder
that allows the MOGA to evolve its deciston making rules
regarding the specific assignment of products to units.

4. EXPERIMENTAL DEVELOPMENT OF EVOLVING
ALLOCATION RULES
4.1 Allocation Rules

In previous work, [21], static allocation rules — effectively
fixing the third part of the population to one element throughout
- were used to make the choice of the assignment of job to unit.
Yet, as Fang, Ross and Corne, [9], explamn, ‘there is no good
reason to rely on a fixed heuristic for each choice of operation
when building a schedule. Indeed, it is quite easy to see that
varying the choice of heuristic according to the particular job
being processed and according to the particular stage in the
schedule building process, may make more sense”. Their
‘Evolving Heuristic Choice’ technigue provides superior
solutions to any previously found for the open-shop scheduling
benchmarks used.

In addition, marked effects of static rules within the
schedule builder were seen in the resulting schedules, in that
the solutions seemed to concentrate on specific areas of the
solution space. Following the lead of previous work [9], [10],
the static rule allocation is removed, and an evolving schedule
builder (denoted “SBE”) is developed. The population includes
representation of a set of possible rules, each one dictating the
method in which the related task should be assigned to a unit.
The five rules available for this system offer the option to
choose the unit

A) with the shortest processing time,

®) with the longest processing time,

©) at random;

(D) that will be ready earliest;

E) that will be ready last.

The rule that allows a random choice of unit is motivated by
previous results [10] which illustrate that a schedule building
rule which allows a certain amount of random choice in the
allocations is actually beneficial to the optimization goals. In
addition, the inclusion of a random element mirrors real-life: “a
simple (rule) often used in practice, is the “service in random
order” (SIRO) rule. Under this rule, no attempt is made to
optimize anything.” (22].

Previous implementations of the allocation process of tasks to
units had used a single, static rule throughout the process; either
‘use the fastest unit’ (in a schedule builder hereafter termed
‘SB1°), or “use the earliest available unit” (‘SB2’). These were
implemented within full MOGA scheduling systems, and the
optimization performance of the two systems compared, with

neither outperforming the other [21]. However, it was
suggested that SB1 might reflect more realistic practice within
the factory. A new schedule builder, which allowed a single
rule to be chosen for each allocation (‘SBE’), was implemented
within a MOGA designed to be comparable to those used in the
previous experiments. The MOGA was run eleven times, with a
population of 100 individuals, over 100 generations. Standard
binary and common permutation operators were used [2], [23],
[24] for the relevant parts of the population. The mean and
minimum values of each cost were tracked at each generation,
as were the sets of non-dominated points found.

4.2 Summary of Results

Table 1 summarieses the minimum and mean costs found in all
the final solutions from all eleven experimental runs of the
MOGA incorporating the dynamic SBE system, compared to
previous static rule, SB1 (“choose the fastest unit™).

Cost 1 Cost 2 Cost3 |Costd Cost S

SB1 |Min [0.2000 |0.0000 0.0000 }0.0000 0.0000
|mean [10.5990 |2544.7600 [3.0906 |127.0600 [2.7235
SBE |min 0.2000 |0.0000 0.0000]0.0000 0.0000
mean 9.6916 |1774.1966 [2.7168 |112.1765 [2.9741

Table 1 — Summary of minimum and mean costs for each objective by
schedule builder; minimum values are highlighted.

Both schedule builders attain the same values for the lowest
minimum costs. However it seems apparent that SBE excels in
finding the overall smallest values for the various costs when
comparing the means. It is only for cost 5 that the advantage
does not hold. The comparison of the methods can be made in
more detail by use of the ACFM technique [20]. This allows
comparisons of MOGA performance to be made, identifying
areas at which methods may differ from each other with some
statistical significance. In a comparison of SBE with SB1, areas
of the final solution space can be identified at which the
methods® relative performances differ significantly. Figure 5
illustrates these areas, using the method of parallel co-ordinates
to allow the solutions to be plotted in five-objectives. Each line
represents a single schedule solution to the problem that is
significantly better than might be expected if the methods’
performance were the same, at a 95% level of confidence. In
the plots, the x-axis represents the five objectives, whilst the y-
axis represents the normalized values that each solution attains
for the objectives. Thus in Figure 5, comparing the performance
of a MOGA containing SB1 with a MOGA containing SBE, the
former method actually finds no solutions that are significantly
better than the latter method.

Figure 5 — Solution regions at which MOGA including SBE performs
better MOGA including SB1

It is recommended, therefore, to use SBE, allowing the
decisions as to how to allocate the tasks to the units to be made
in conjunction to the decision as to where to allocate the tasks to
the units. By adopting the GA search technique to allow it to
evolve the allocation rules in conjunction with the other
scheduling decisions, an improved performance in terms of
objective value attainment and choice of possible solutions is
achieved. In practical terms, the SBE can offer a wider range of
better schedule solutions. The development of rules within the
genetic algorithm naturally lends itself to a more extensive
development of genetic programming within the schedule
building process [8]. Additionally, analysis of the rules

VI—489

developed within the best solutions found by the improved
schedule builder may offer insights into the scheduling process
itself, and provide suggestions of useful practice for the human
scheduler. It is interesting to note that, perhaps contrary to
immediate intuition, the provision of the ‘choose slowest’ and
‘choose latest” options do not decrease the scheduling
performance in any way. The solutions found do make use of
these rules. The MOGA using SBE finds superior values for
economically vital cost 4 (meeting the deadlines) by allowing
the inclusion of these rules, compared to the previous static
implementations, which did not. This may be explained by the
fact that the occasional inclusion of idle times (in choosing the
latest available unit), or delaying of task release times from one
unit to the next (in choosing the slowest running unit), may be
beneficial in terms of preventing bottlenecks and conflicts over
equipment that may otherwise have taken place. Further
examination and quantification of the actual patterns of rules
may identify these bottlenecks or needs for idle times.

5. ADDITIONAL REACTION CAPABILITY

In addition to the MOGA'’s ability to adapt the set of rules used
in the scheduling process to reach an optimal result, the system
allows further flexibility by its handling of decisions regarding
batch sizing rules, objective preferences and in its ability to
begin to include a reaction to changing data within its evolving
scliedule solutions. These are summarised below.

5.1 Batch-sizing rules

The selection of the batch sizes into which the orders are
divided is incorporated in the MOGA as discussed in 3.3.
Previous results suggested that the MOGA exploits this
provision of the a range of possible batch sizes in combination
with the various types of schedule building systems in order to
create a range of different types of solution. This deliberate
usage of the variation in batch size rules moves the scheduling
decisions beyond the most immediate objective, that of
attempting to run the reactors at capacity by filling them only
with maximum sized batches, as is the case in many real-life
scheduling decisions.

5.2 Reaction to change within the plant

Real-life scheduling environments include frequently changing
plant data; thus practical scheduling optimization techniques
should reflect this. Genetic algorithms, with their use of a
population of parallel solutions in solving a problem, seem
ideally suited for coping with this problem. Individuals which
may be are less fit under the previous conditions may hold
advantageous evolutionary material as the definition of fitness
changes with the new incoming data, and so it may be that good
solutions to the new problem are still contained within the
population. Cartwright, [25], comments, ‘many schemata in the
solution to the static problem are likely to be useful in deriving
the solution to the dynamic problem, provided we have not
allowed the constraints to change too dramatically before
engaging in a recalculation’. For this reason, Husbands [26]
cautions: ‘in the dynamic situation, it is undesirable to allow
the population to converge too strongly on a single solution;
potentially useful partial solutions may be lost for good.”

At present, the system is designed to allow the user access to
the data to be able to change or update the environment at any
stage during the GA run, via the GUI shown in Figure 2, so that
the MOGA can work with the most accurate and recent model.
However, a change to the data will mean that the population,
evolving to optimize the original model, will need a recovery
period to include the reaction to the changed data. Experiments
were undertaken to see how the optimization process would be
damaged by the changes, whether the system could continue to
find acceptable solutions by absorbing the new data, or whether
it would be beneficial to simply reinitialise the MOGA with a
new randomly-generated population. Bierwirth et al. {27] deal
with ‘temporal decomposition’ of schedules. This means
ascertaining which parts have already been made and
rescheduling the remainder, showing adaptive scheduling on a
rolling time basis. However, this current problem consists only
of a finite set of orders, and to do this would mean the GA
simply rescheduled a subset of the original orders after a set

time. This addition suggests an immediate direction for future
work.

5.3 Initial Experimental Work

A simulation demonstrates initial investigations as follows.
Three events were chosen to reflect how the data in the model
might be given cause to change. The first event included an
event that had the effect of slowing the reaction times for one
reactor. The second event caused changes in the times of the
cleaning routines, some slowing down and others speeding up.
The third event simulated a change in the ordered amounts for a
particular product. The data representing each changed scenario
could be supplied to the MOGA as it was running via the GUI,
as the time the event took place. These events were triggered
randomly throughout a set of MOGA runs. The results were
compared to those of a set of equivalent MOGA runs with static
data, to represent the final model after all the changes had taken
place, providing control results of the MOGA’s optimization
performance of a run with unchanging data, after the events had
taken place. Both sets of MOGA were run 11 times, using
otherwise identical parameters. A particular interest of this
simulation was to consider how the changes effected the
individual optimization of each objective within the MOGA.
Initial results are presented briefly below. Figure 6 shows a
typical run, in terms of the evaluated population mean and
minimum costs per objective, in which the changes were
implemented.

Boor
8% :
grof e
3 2 -
o v S
B £ 4 100
Groof. : :
§ sop - X R
- [e
(] 70 s %0 . 100
glor eneration go M
g 5 x +
=1 X +
E o T
%&; i 50 70 80 90 _ 100
[eneration
2
3
&50 % 0 70 80 %0 . 100
§ 5'_ Feﬂamﬁnn % :
g | e +
£
? E_L,——\..,-—\I__,
% 10 20 a3 4 5 60 70 8 9 100
Generation
Figure 6 — Example of the effects of the events upon the MOGA
performance. Key: : - mean perfor — mini) perfor: *-

reactor change; + -cleaning routine; x- orders changing.

The effects of the events and resulting changed model data can
be seen as the mean and minimum values for each cost are
perturbed by the alteration, yet the population is able to
continue to work and evaluate the fitnesses of the individuals
according to the new objective function without losing the
direction of its search. In the above and other runs, Cost 5 (the
feasibility cost) appeared the most the most influenced in terms
of ability to continue the search. Examining the effects of the
changes in relation to the individual costs may suggest
improvements that can be made to the MOGA in order that it
might react to change with as little disruption to the
optimization performance as possible. The benefits of treating
each cost separately by MOGA may be seen again, regarding the
method’s ability to react. =~ Had the five objectives been
combined into a single-objective function, the fifth objective’s
inability to adapt would influence the total optimization process
for all five objectives, rather than the single fifth objective
relating to this cost alone as in the MOGA. Thus it is suggested
that the changes in data cause less damage to the performance
via use of the MOGA.

Additional measures may be needed in order to boost the
performance regarding the fifth cost, in particular, such as
hypermutation or the introduction of random immigrants [28],
after a change has taken place, in order to improve the ability of
the MOGA to react. Further investigation into methods for

VI—490

handling change will be the subject of additional work. In
addition, the MOGA’s implementation offers the ability to
change the priority placed on each objective, a property that may
allow the search to be focussed upon the objective which has
most difficulty recovering; in this case, objective 5.

5.4 Changing the objective preferences

The ability of the MOGA to allow interactive alterations to the
users’ specified preferences regarding the relative importance of
the objectives is well documented {5, 10]. This ability may be
used for a variety of reasons. The user may focus on an area of
interest developing from the interaction and trade-off between
the objectives, whether as a reaction to the immediate factory
situation, or from a design point of view, to receive insights into
the interaction of the objectives involved. For example, the user
may decide to raise the priority of meeting the due-time of a
particular customer’s orders (cost 4), at the cost of paying extra
for the other customers’ orders to be stored (cost 2), lowering
the % usage objective (cost 3), or requiring a change in the
emphasis on shortening cleaning times (cost 1). As also
suggested above (Initial Experimental Work), the MOGA may
be directed to concentrate on the optimization of a particular
objective above the others. The user can find the solution from
the selection presented by the MOGA that reflects this new
situation. This ability and its effects on the scheduling
environment are discussed in more detail in [10].

6. DISCUSSION AND CONCLUSIONS

The MOGA offers a powerful system for optimization of the
various conflicting and disparate objectives found in the
complex batch process scheduling problem presented in this
work. This power is particularly due to the flexible and
interactive properties offered by the implementation. This
becomes increasingly significant as the plant model becomes
more complex. The inherent flexibility involved in increasing
the degree of decision variables will continue to pose extremely
difficult schedule problems.

The natural selection properties of the MOGA lend themselves
to problem-specific variants, which may improve optimization
performance and realism of the model further. In this example,
the evolving schedule builder, SBE, allows the set of rules used
to be evolved during the run, rather than set a priori, improving
the optimization performance. By combining this ability for
variation with the clearly defined standards set in S88, the
MOGA may continue to develop whilst remaining relevant to
the batch schedule process industry, in a portable and non-
ambiguous manner.

The MOGA seems suited to coping with the changing data
commonly found in scheduling environments by its parallel
population nature; the fact that the MOGA treats objectives
separately allows individual treatment of the effects of the
changes on each objective. Immediate future work includes the
extension of the model to include data relating to the complete
plant, the fuller implementation of reactive rescheduling, and
development of techniques for handling change specifically
within the MOGA. The user may interact with the optimization
process in several ways, and for several reasons, via the GUI,
which provides communication between the MOGA, plant
mode] and expert human decision-maker. The overall effects
and advantages of this method will be seen in future work.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of EPSRC grant
GR/L73517 for this work.

REFERENCES

[1] Holland, J., 1975. Adaptation in Natural and Artificial Systems,
University of Michigan Press

[2] Davis, L., 1985. Job Shop Scheduling with Genetic Algorithms, Proc.
First Int. Conf. GAs, ed. J. J. Grefenstette, Lawrence Erblaum.

[3]1 Schaffer, J. D., 1985. Multiple Objective Optimization with Vector
Evaluated Genetic Algorithm, Proc. an Int. Conf. GAs, 93 - 100.

[4] Goldberg, D. A., 1989. Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley

[5] Fonseca, C. M., Fleming, P. J., 1993. Genetic Algorithms for
Multiobjective ~ Optimization: ~ Formulation, Discussion and

VI—491

Generalization, Proc. Fifth Int. Conf. GAs, ed. S. Forrest. Morgan
Kaufmann Publishers.

[6] Hom, J, Nafpliotis, N, & Goldberg, D. E., 1994. A Niched Pareto
GA for Multi-Objective Optimization. Proc. First IEEE Conf.
Evolutionary Computation, 1994.

[7] Srinivas, N. & Deb, K., 1994. Multiobjective Optimization Using
Nondominated Sorting in Genetic Algorithms. Evolutionary
Computation, Vol. 2, No. 3, 221 - 248.

[8] Langdon, W., 1996. Scheduling Maintenance of Electrical Power
Transmission Networks Using Genetic Programming, Proc. GP-96
Conf., John Koza ed., Stanford Bookstore.

[9] Fang, H. L., Ross, P. & Come, D., 1993. A Promising Genetic
Algorithm Approach to Job-shop Scheduling, Rescheduling and
Open-Shop Scheduling Problems. Proc. Fifth Int. Conf. GAs, ed.
Stephanie Forrest. Morgan Kaufiann Publishers

[10] Shaw, K. J.,, & Fleming, P. J,, 1997. Including Real-Life Problem
Preferences in Genetic Algorithms to Improve Optimization of
Production Schedules, Proc. GALESIA ‘97, Glasgow, 2-4 Sept.

[11] ISA, 1995. ANSI/ISA-588.01.1995 Standard Batch Control; Part
1: Models and Terminology. ISBN 1-55617-562-0, Instrument
Society of America, 1995.

[12] Love, J & Bunch, M, 1998. Decomposition of Requirement
Specifications for Batch Process Control, Trans. IChemE, 76, 8, 973
-979.

[13] IEC, 1997. Batch Control Part 1- Models and Terminology, IEC
61512-1, IEC.

[14] Viennet, R., Fonteix, C, & Marc, I, 1995. New multicriteria
optimization method based on the use of a diploid genetic algorithm:
example of an industrial problem, Proc. Artificial Evolution, Brest,
France, 120 - 127, 1995.

[15] Tamaki, H., Kita, H., & Kobayashi, S., 1996. Multi-Objective
Optimization by Genetic Algorithms; A Review. Int. Conf.
Evolutionary Computation ‘96. 517 - 522.

[16] Shaw, K. J., & Fleming, P. J., 1996. An Initial Study of Practical
Multi-Objective Production Scheduling, Using Genetic Algorithms.
Proc. Int. Conf. Control ‘96, University of Exeter, Sept. 2 - 5, 1996.

[17] Niemeyer, G., & Shiroma, P., 1996. Production Scheduling with GA
& Simulation, Parallel Problem Solving from Nature 4, 930 - 936.

[18] Ishibuchi, H, & Murata, T, 1998. A Multi-Objective Genetic Local
Search Algorithm And Its Application To Flowshop Scheduling,
IEEE Trans. on Systems, Man & Cybernetics, Part C (Applications &
Reviews), 28,3.

[19] Coello, C. A., 1999. A Comprehensive Survey of Evolutionary-Based
Multiobjective Optimization Techniques, Knowledge and Information
Systems. (Accepted for publication).

[20] Shaw, K. J., Fonseca, C. M. & Fleming, P. J, 1999. Developing
Performance Comparison Techniques for Multiobjective Genetic
Algorithms, Research Report 724, ACSE Department, University of
Sheffield; submitted to Eveolutionary Computation I., March 1999.

[21] Shaw, K. T, Nortcliffe, A. L., Thompson, M., Fonseca, C. M., Love,
J. & Fleming, P. J, 1999. Assessing the Performance of
Multiobjective Genetic Algorithms for Optimisation of a Batch
Process Scheduling Problem, Congress of Evolutionary Computation,
CEC99, Washington DC, July 1999.

{22] Pinedo, M, 1995. Scheduling: Theory, Algorithms and Systems.
Prentice-Hall.

[23] Chipperfield, A. J. Fleming, P. J., & Pohlheim, H., 1994. A genetic
algorithm toolbox for MATLAB, Proc. Int. Conf. Systems
Engineering, Coventry, UK, 200 - 207, 1994.

[24] Oliver, I. M., Smith, D. J.,, & Holland, J. R. C,, 1987. A Study of
Permutation Crossover Operators on the Travelling Salesman
Problem, Proc. Second Int. Conf. GAs and their Applications, ed. J.
J. Grefenstette. Lawrence Erblaum Publishers

[25] Cartwright, H. M., 1994. Getting the Timing Right — The Use of
Genetic Algorithms in Scheduling, Applications of Modem
Heuristics, ed. V. J. Raymond-Smith, 1994.

[26] Husbands, P., 1993. An ecosystems model for integrated production
planning, Int. J. CIM,, 1993, 6, 1-2, 74-86.

[27] Bierwirth, C., Kopfer, H., Mattfeld, D. C., & Rixen, I, 1995.
Genetic Algorithm based Scheduling in a dynamic manufacturing
environment, Proc. [EEE Conf. Evolutionary Computation, 439 - 443

[28] Cobb, H. G., & Grefenstette, J. J., 1993. Genetic Algorithms for
tracking changing Environments, Proc. Fifth Int. Conf. GAs, 523 -
529.

