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Abstract  Multi-objective  optimal evolutionary

algorithms (MOEA) are effective algorithms to solve
multi-objective optimal problem (MOP). Because
ranking which used by most MOEAs has some
disadvantages, in this paper, we propose a new
method that uses better function to compare candidate
solutions and tree structure to express the relationship
of solutions. Experiments show that the new algorithm
can converge to the Pareto front, and maintains the
diversity of population. When the algorithm is
extended to a MOP with constraints, it can also get a
good result. Most important of all, the algorithm is
simple but highly efficient.

1 Introduction

Multi-objective optimization problems are those
problems that involve simultaneous optimization of more
than two objectives (often competing) and usually with
no single optimal solution !'!. Traditional multi-objective
optimal approaches convert multi-objective optimization
problems into single objective optimization problems, and
then use well-studied algorithms for single objective
optimization to solve the problem. These approaches are
attractive and popular, but have many disadvantages.

Recently, a new method - Multi-objective Optimal
Evolutionary Algorithm (MOEA) - has been used to solve
multi-objective optimization problems. There are some
efficient MOEAs, for example vector evaluated genetic
algorithm (VEGA) [2], Hajela and Lin’s genetic algorithm
(HLGA) B3I niched Pareto genetic algorithm (NPGA) )
Fonseca and Fleming's multi-objective EA(FF GA)[S],
nondominated sorting genetic algorithm (NSGA) 6] and
the strength Pareto evolutionary algorithm (SPEA).
Recently some of the proposed methods have made
further progress, for instance, NSGAII[S], SPEA2P! . A
good MOEA must satisfy the two aspects: 1) the distance
between the resulting nondominated set and the Pareto-
optimal front should be minimized; 2) a good distribution
of the gotten solutions is desirable. Thus, some methods
such as Pareto ranking, mating restriction, Pareto niching,
and fitness sharing!'! are used in MOEAs.

In this paper, we firstly analyze the disadvantages of
MOEAs, and then introduce a better function to compare
the candidate solutions and a tree structure to express the
relationship of solutions. At last we extend the algorithm
to solve the MOP with constraint.

2 Disadvantages of Former MOEAs

Compared with single objective optimization
problems, one of the difficulties of multi-objective opti
mization problems is to represent the relationship of the
candidate solutions. For a MOP, the relationship is
multi-dimensional and difficult to compare. At present,
the most common method is to use ranking technique nn
which gives a rank value for each candidate solutlon
according to a given rule, and uses the rank value to
compare these solutions.
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Usually a chart is used to represent the relationship
between every two candidate solutions. however,
although the chart can represent the relationship very well,
it may become redundant because Pareto dominance are
transferable and because only the Pareto optimal set of
every generation should be considered. Fig.1 shows the
relationship between five nodes (In the figure, a node
represents an individual. The same representation will be
used throughout the paper). In order to get rid of the
redundancy, the new algorithm uses tree structure to
represent the relationship, see Fig.2.

+—> (i)

\

i) )

®

—®Dareto dominance +—®Incomparable
Fig.2 Solutions represent by tree



A better function is introduced to compare two
candidate solutions and tree structure to represent the
relationship between every two solutions as follows:
Definition 1: Pareto dominance ')

If vector U = (u,,u,,---u,) Pareto dominates
V =w,,v,,-*v,), denotes asU<V, thatis U<V
ifandonly if LiJ{l,2,---k} u, <v, [
Ui O4{L,2,---k} u, <v,

Definition 2: better function
Considering a MOP with k objectives:

F(x) =(f,(%), f,(%),, (%))
A better function is defined as follows:
B F(x))xF(x,)
F(x,)=<F(x,)

Eb others

Definition 3: tree structure

better (x,,x,) =

struct node
{ int id; /Ithe ID of the node
int depth; //the number of nodes not better

than a given node (including itself)
struct node *child; //a pointer that points to
node worse than the given node
struct node *Isibling, *rsibling; // a pointer that
points to the node incomparable with the given node

3
In order to compare two Pareto optimal sets,
introduce the following definition (1.

Definition 4 Let X,¥ [ Q be two sets of decision

vectors. The function C maps the ordered pair (X, ¥) to
the interval [0, 1]:

bY;UallX:a=<b

|Y |

The value C(X,Y) =1 means that all solutions
in ¥ are dominated by or equal to solutions in X. The
opposite, C(X,¥) =0 represents the situation when
none of the solutions in ¥ are covered by the setX. Noted
that both C(X,Y) and C(¥,X) have to be
considered, since C(¥,X) is not
o 1-C(X,Y).

necessarily equal

3 The Description and Analysis of the New
Algorithm

3.1 The Description of the New Algorithm
The algorithm can be described as follows:
Step1 £ =0.

Step 2 Initialize randomly P (f) = { X, X,, "Xy }
(N is the population size), where X, 0uv.

Step 3 Sort the individuals using tree structure
according to the better function.
Step 4 For any givenX, if for every Y (not equal

toX ) in P (¢), better ( X,y ) == 0 then stop.

Step 5 Generate the offspring

Choose M individuals randomly from the population;
M individuals make up the subspace V . Randomly
choose one individual X from}V (L. (The crossover
operator of multi-parents)

For the new individual X sort it in the tree

according to the better function.

Step 6 Find the worst individual (the leaf node of the
node with the biggest depth) and get rid of it.

Step 7 t: =t+1, then turnto Step 4.

Two functions in the algorithm are used to sort by
tree structure.

a) AddinTree (node *proot, node *pnewnode ) ;
pnewnode is added to the left subtree of the tree whose
tree root is proot.

b) AddinSibling (node *pparent, node *pchild, node
*pnewnode) ; pnewnode is added to the sibling subtree of
pchild; pparent is the parent node of pchild.

The two functions are described as follows:

AddinTree (node *proot, node *pnewnode )

Begin

proot ->depth=proot->depth+pnewnode->depth;
if ( proot->child == null)
then let pnewnode be the child of proot;
else AddinSibling(proot,proot ->child,
pnewnode);
End
AddinSibling ( node *pparent, node *pchild, node
*pnewnode)
Begin
Switch(better(pnewnode, pchild))
Begin
case 0:
if (pchild->rsibling == null)
then let pnewnode be the right sibling of
pchild;
else AddinSibling(pparent, pchild->rsibling,
pnewnode);
break;
case 1:
pnewnode takes the place of pchild;
AddinTree(pnewnode,pchild);
while there is a pnode (right sibling of
pnewnode) which is worse than the pnewnode,
do AddinTree(pnewnode, pnode);
while the depth of pnewnode is bigger than
that of its left sibling, do pnewnode moves in
the left direction along the chain.
break ;
case2:
AddinTree(pchild, pnewnode);
while the depth of pchild is bigger than that of
its left sibling, do pchild moves in the left
direction along the chain.
break;
End
End
Because the process of building a sort-tree is



complicated, an example demonstrates the algorithm.
There are five nodes in Fig.1. Their relationship is shown
in Table 1, where “--” means a node does not compare
with itself. The input order of these nodes is N1, N2, N3,
N4, N5. The process of building the sort-tree is shown in
Fig.3, where the new node N6 represents the offspring.

NI | N2 | N3 | N4 | N5| N6
N1 | -- 1 0 0 0 0
N2 | 2 - 2 2 0 0
N3 | O 1 -- 2 0 0
N4 | 0 1 1 -- 1 0
N5| O 0 0 2 -- 2
N6 | 0 0 0 0 1 --

Table1 The relationship of nodes

Step 1: build a tree rooted with node N1, see Fig.3.a.

Step 2: node N2 is worse than node N1, so N2 is
the child of node N1, see Fig.3.b.

Step 3: node N3 is incomparable with node N1, so is
the right sibling of node N1, see Fig.3.c.

Step 4: node N4 is incomparable with node N1, then
become the right sibling of node N1, and node N4 is
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better than node N3, node N3 becomes the child of node
N4, see Fig.3.d.

Step 5: the node N5 is incomparable with node N1,
then be the right sibling of node N1; node N4 is better
than node N5, node N5 becomes the child of node N4;
and the node N5 is incomparable with node N3, then be
the right sibling node of node N3, see Fig.3.e.

Till now, the five nodes have been input. Because the
number of nodes worse than node N4 is more than that of
node N1 (the depth of node N4 is 3, and the depth of node
N1 is 2), then move up the sub-tree rooted with node N4,
see Fig.3.f. The act to move the sub-tree is to ensure that
the tree is normalized and easier to find the worst node.

Step 6 for the new-built node N6, it is incomparable
with node N4, then be the right sibling of node N4, and it
is incomparable with node N1, then be the right sibling of
node N1, see Fig.3.g. Then the worst individual is node
N5 (a leaf node of the node with biggest depth) and get
rid of it, see Fig.3.h

3.2 Analysis of the new algorithm

The criterion to evaluate a MOP is the degree of
closeness to the Pareto front and decentralization of the
solutions [*!. The following paragraphs will analyze the
new algorithm from the convergence, the diversity of
solutions and the efficiency aspects.
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Fig. 3 The process of building a sort tree

3.2.1 Convergence

In order not to converge to local Pareto front, the
new algorithm uses the crossover operator of multi-
parents; see line 5 in the description of the new algorithm.
The crossover operator of multiparents is proposed in
Ref. [14]. The way to make up the subspace is

v={ x|[xOQ x:zzlaixi }

(yrma,=1,a,0[—-0.51.5]" . The operator has been
proved to be able to avoid local optimal effectively (4],
3.2.2 Diversity

In order to maintain the diversity, many MOEAs use

Pareto niching and fitness sharing. These methods mainly
restrict the number of solutions in the neighborhood of

the good solution "', The cost in time is high. The new
algorithm deletes the leaf node of the node with the
biggest depth, which maintains the diversity naturally.
Because a node with big depth means that there are many
nodes in its neighborhood, deleting the leaf node of the
node with the biggest depth forces the nodes in its
neighborhood to leave its neighborhood. It makes
solutions evenly distribute in the decision space. This is
also proved in experiments.

3.2.3 Efficiency

Since comparing two candidate solutions is the main
operation in the process to evaluate an individual, it is
used as a criterion of time complexity of algorithms. Here
denote n as the population size. By using ranking
technique in the new algorithms, the space complexity is



usually O(#n?), and the time complexity is O(n*)!"!!. In
the algorithm, with the use of tree structure, the space
complexity is O(n), and the time complexity is O(1) in
best condition, or O(n)in the worst condition. Because
the sorting process is complex, it is hard to calculate the
time complexity in theory. So experiments are done to
estimate the time complexity. In the experiments, add up
the number of comparison for all nodes, and then divide
the sum by the total number of nodes. The mean value is
calculated and showed in Table 2. It shows the
relationship between the average number of comparison
and population size. From the result, it is believed that the
new algorithm is better than former MOEAs both in space
and time efficiency.

Population size 100 | 200 [ 300 | 500 | 1000

Average number 9.3 12 145 | 20 34.5
Table 2 The relationship between the average number of
comparison and population size

4 The Numerical Experiments

4.1Test Function

In order to compare with other MOEAs, the test
functions are derived from Ref. [10]. Because of the
different encoding, the algorithm cannot calculate the
fifth test function in Ref. [10].

Each of the test function defined below is structured
in the same manner and consists itself of three
functions f, , g, :

Minimize T(x)=(f; (%), f>2(x))

Subject to:
fz(x) = g(xza"'sxm)h(.fl (x1)ag(x25"'5xm))
X =(x1’x2""5xm)
1) The test function T1 has a convex Pareto-optimal
front:

where

Si(x) =x,
g(xy, 0, x,) = 1+9Zl2xi (m—1)
h(fi,8)=1-4fi/g

Where m=30, and x, [1[0,1]. The Pareto-optimal

front is formed with g(X) =1.

2) The test function T2 is the nonconvex counterpart to
T1:

fi(x) =x
g(xza"'axm) :1+9z:12xi A(m =1)
h(f,8) =1-(f,/g)’

Where m=30, and x, [J[0,1]. The Pareto-optimal

front is formed with g(X) =1.

3) The test function T3 represents the discreteness
feature; its Pareto-optimal front conssts of several
noncontiguous convex parts:

Si(x) =x

g(x,,.,x, ) =1+ 9Z:izx,. A(m—1)

h(f1,8) =1-+/1/g = (fi/g)sn(1077f,)
Where m=30,and x, [1[0,1] .The Pareto-optimal

front is formed with g(X) =1.

4) The test function T4 contains 21° local Pareto-
optimal fronts and, therefore, tests for the EA’s ability to
deal with multimodality:

Si(x) =x
g(x27"'7xm) =1+ lO(m _1) +

S, (%" —10cos(47E,))

h(f1,8)=1-4filg
Where m=10, x, [1[0,1] ,and x,,---x,, O[-5,5].
The global Pareto-optimal front is formed with
g(x) =1, the best local Pareto-optimal front with
g(x) = 1.25 .Note that not all local Pareto-optimal sets are
distinguishable in the objective space.

5) The test function TS includes two difficulties caused
by the nonuniformity of the search space: first, the
Pareto-optimal solutions are nonuniformly distributed
along the global Pareto front (the front is biased for

solutions for which f,(X) is near one); second, the

density of the solutions is lowest near the Pareto-optimal
front and highest away from the front :

fi (x1) =1 —exp(—4x1)sin6(67tl)
g(xzs""xm) = 1+9((z:i2x1)/(m _1))0.25
h(f,8)=1-(f/g)’

Where m=10,and x, UJ[0,1] .The Pareto-optimal
front is formed with g(x) =1.

4.2 Test Result

The test condition is PII 5S00MHZ, 128M memory.

The parameters of the new algorithm are adjusted as
follows: population size N=100, subpopulation size
M=10, the number of generations is 25000(The algorithm
evaluates an individual in one generation. It is equal to
250 generations of other algorithms). Each function is
calculated 30 times, and then save the Pareto-optimal set
in the current population after each calculation. These
Pareto-optimal sets are combined to form a new set, and
then calculate the Pareto-optimal set in the new set as
result. It is the same as other algorithms’ result. The aim
is to reduce the random influence.

The average running time of each test function is
shown in Table 3.

Test function T1 T2 T3 T4 T5

Average running
time(s)
Table3 Average running time for each test function
The results are shown in Fig.4 (Because the result of
T4 is very poor, it is not visualized here).
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According to definition 4, the algorithm is compared
with other algorithms. The results are shown in Table 4
and Table 5(RAND represents a random search algorithm;
SOEA represents a single-objective evolutionary algori-

thm using weighted-sum aggregation).

RAND | FFGA | NPGA | HLGA | VEGA | NSGA | SOEA | SPEA
Tl 1 1 1 1 1 1 1 0.912
™ 1 1 1 1 1 1 1 0.804
yi] 1 1 1 1 1 1 0526 [ 0
T4 | 0.294 0 0 0 0 0 0 0
TS 1 1 1 0333 | 0333 | 0889 | 0714 [ 0
Table 4 The C values of resulting solutions between our

algorithm and other algorithms [10]

RAND | FFGA | NPGA | HLGA | VEGA | NSGA | SOEA | SPEA
T1 0 0 0 0 0 0 0 0.066
T2 0 0 0 0 0 0 0 0.075
T3 0 0 0 0 0 0 0.082 1
T4 | 0.667 1 0.333 1 1 1 1 1
TS5 0 0 0 0 0 0 0 0.001

Table 5The C values of resulting solutions between other
algorithms and our algorithm

After analyzing the two tables, the following
conclusions can be drawn:

(1) The result of the algorithm is better than any
other algorithms (except SPEA) except for T4.

(2) The result of our algorithm is better than that of
SPEA for T1, T2. But for T3, T4, T5, it is worse than that
of SPEA.

(3) For T4, the result of the algorithm is very poor. It
shows that the algorithm has little ability to deal with
multimodality.
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Fig.4 The result of test function

S The Extension of the Algorithm

5.1 Preparation for the New Algorithm
Definition 5: In general, a MOP with constraints can be
defined as follows:

Minimize F(X) = (fi(X),fz (X) . 'fk (X))
Subject to g, (x)<0
xOU

(l :1’2m’ X :(xlsz...xn))

For a MOP with constraints, the feasible search
space is the space generated by constraints. A legal
solution can be compared by Pareto dominance, only if it
satisfies the constraints. The constraints can be handled as
follows:

Definition 6:

K g.(x)<0
h(x) = i
W h®  am>0
Hx)= " h(x)
betterl(x) = O H(x) =0
Ofalse H(x)>0

If the solutions cannot satisfy the constraints, they
can be compared as follows:
Definition 7:
OQrue H(x))<H(x,)
OH(x,)>00H(x,) >0
false H(x,) > H(x,)
H OH(x,)>00H(x,) >0
If the solutions satisfy the constraints, they can be

compared as follows:
Definition 8:

better2(x,,x,) =

F(x)=F (x;)0
H(x,)=00H(x,)=0
F(x))=F(x) U
H(x,)=00H(x,)=0
=Y others

Because the relationship of solutions that cannot
satisfy the constraints is linear, a queue can be used to
express it. Define its data structure as follows:
Definition 9:

struct Qnode

{ int id; //the ID of the node

struct Qnode *pnext //a pointer that points
to the next node

better3(x,,X,) =

DoogmoQ

}

5.2 The description of new algorithm
For a MOP with constraints, the algorithm can be
described as follows:
Stepl ¢:=0.

Step2 Initializerandomly P (f) = { X, X,,"** Xy }



(N is the population size), where X, [J Q.
Step3 For each individual X, , sorts it as follows:

ifbetterl (X, ) == true

then sort it using tree structure according to better3;
else sort it using queue structure according to
better2;
Step4 For any given X , if for every Yy (not equal
to X) in P(f), betterl(x) = true, betterl(y) = true and
better3(x, y) = 0, then stop;
StepS Generate the offspring
Choose M individuals randomly from the population;
M individuals make up the subspace . Randomly

choose one individual X_fromV N &

For the new individual X , sort it according to

Step 3.

Step6 Delete the worst individual.

if There are nodes in the queue.
then Find the worst node in the queue, and get rid of
it.
else Find the leaf node of the node with biggest

depth in the tree, and get rid of it.

Step7 ¢: = t+1, then turn to Step 4.

5.3 Test Function

Test function { BNH ¥ [

Min(f,, 1)
S, =4%x +axy?
fz :(x1 _5)2 +(x2 _5)2

s.t:
(x,—5)*+x,°-25<0
(x,-8)* +(x, +3)*-7.7<0
x,,x, U[0,5]

Test function { TNK}

Min( f,, 1,)
Ji=x
fy=x

s.t:

x12 +x22 —1-10.1*cos(16 arctan( i)) <0
X5
(x, =0.5)* +(x, -0.5)*-0.5<0,x,,x, 0[0,5]

The parameters of the algorithm are set as follows:
population  size =~ N=100, subpopulation size
M=10.Calculate each function for 5 times, and then save
the Pareto-optimal set in the current population after each
calculation. These Pareto-optimal sets are combined to
form a new set, and then calculate the Pareto-optimal set
in new set as result. For BNH, the average generations are
2150; the average running time is less than 1s. For TNK,
the even generation is 3450; the even running time is
about 1s. The results are shown in Fig.5.
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Fig.5 the result of test function with constraint

6. Conclusions

In this paper, we propose a better function to
compare candidate solutions and a suitable data
structure —tree structure —to express the relationship of
candidate solutions. Experiments show that the solutions
converge to the Pareto front and nmintain the diversity.
The new algorithm is better than former MOEAs both in
space and time efficiency. It is simple but highly efficient.
When extending the algorithm to solve a MOP with
constraints, it also gets good result.

But there is still a lot to be done in future: to
compute the time efficiency of sorting in the algorithm
according to tree structure; new good operators should be
introduced to solve multimodality and so on.
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