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Abstract In an attempt to solve multiobjective optimization problems, many traditional methods
scalarize an objective vector into a single objective by a weight vector. In these cases, the obtained
solution is highly sensitive to the weight vector used in the scalarization process and demands a
user to have knowledge about the underlying problem. Moreover, in solving multiobjective
problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. In
this paper, Pareto-based Continuous Evolutionary Algorithms for Multiobjective Optimization
problems having continuous search space are introduced. These algorithms are based on
Continuous Evolutionary Algorithms, which were developed by the authors to solve single-objective
optimization problems with a continuous function and continuous search space efficiently. For
multiobjective optimization, a progressive reproduction operator and a niche-formation method
for fitness sharing and a storing process for elitism are implemented in the algorithm. The
operator and the niche formulation allow the solution set to be distributed widely over the Pareto-
optimal tradeoff surface. Finally, the validity of this method has been demonstrated through some
numerical examples.

1. Introduction
Much work has been done in engineering optimization so far, but the problems
tackled have only been confined to ideal and unrealistic problems, rather than
real-world applications. One of the reasons for this has been that for many
years only single objective functions were considered, while this is not a
realistic assumption since most real-world problems have several (possibly
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conflicting) objectives. This situation has led designers to make decisions and
trade-offs based on their experience, instead of using some well-defined
optimality criterion.

In a typical multiobjective optimization problem, there exists a solution
space which is superior to the rest of solutions in the search space but the
solution, when every objective is considered, may be inferior to other solutions
in the space in one or more objectives. These solutions are known as Pareto-
optimal solutions (Chankong and Haimes, 1983).

Since none of these Pareto-optimal solutions can be identified as better than
others without any further consideration, the goal for multiobjective optim-
ization is to find as many and wide Pareto-optimal solutions as possible. Once
such solutions are found, it usually requires higher-level decision-making with
other considerations to choose one of them for implementation. In this paper,
we concentrate on the task of efficiently finding Pareto-optimal solutions.

In dealing with multiobjective optimization problems, classical optimization
methods, for examples, weighted sum methods, goal programming, min–max
methods etc. are not efficient, simply because most of them cannot find multiple
solutions in a single run, thereby requiring them to be applied as many times as
the number of desired Pareto-optimal solutions, and multiple applications of these
methods do not guarantee finding widely spaced Pareto-optimal solutions.

On the contrary, the studies on evolutionary algorithms, over the past few
years, have shown that these methods can be efficiently used to eliminate most
of the above difficulties of classical methods (Srinivas and Deb, 1994; Fonseca
and Fleming, 1993; Horn et al., 1994). Since they use a population of solutions in
their search, multiple Pareto-optimal solutions can, in principle, be found in one
single run. However, not only they try to find several Pareto-optimal solutions
but also they can solve simple problems.

In this study, Pareto-based Continuous Evolutionary Algorithms for Multi-
objective Optimization (MOPCEAs) are introduced. For better efficiency and
robustness, a progressive reproduction operator and a niche-formation method
for fitness sharing and a storing process for elitism are implemented in these
algorithms with continuous search space. The progressive reproduction
operator implemented has a potential to search both local area and global one
in the balance. The niche-formation method developed in this paper works
better than others in multiobjective optimization technique because of
considering both function space and parameter one. The storing process is a
very efficient approach in multiobjective optimization to sustain the solution
set found as well as to accelerate a search process. Finally, these operators
allow the solution set to be distributed widely over the Pareto-optimal tradeoff
surface, that is, the solution space to be found.

The paper is structured as follows: Section II introduces key concepts of
multiobjective optimization and discusses the previous work of multiobjective
optimization. Section III describes MOPCEAs, which is newly proposed, having
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continuous search space and section IV applies MOPCEAs to test problems and
presents analytical results. Discussions of the results as well as summaries are
given in the last section.

2. Multiobjective optimization

2.1 Statement of the problem
The multiobjective optimization problem can be defined as follows:

Find the vector X � ¼ ½x�1 ; x
�
2 ; . . .; x

�
n �

T that will satisfy m inequality
constraints:

giðXÞ $ 0; i ¼ 1; 2; . . .;m ð1Þ

p equality constraints
hiðXÞ ¼ 0; i ¼ 1; 2; . . .; p ð2Þ

and optimize the vector function

FðXÞ ¼ ½f 1ðXÞ; f 2ðXÞ; . . .; f kðXÞ�T ð3Þ

where X ¼ ½x1; x2; . . .; xn�
T is the vector of decision variables. In other words,

we wish to determine the particular set x�1 ; x
�
2 ; . . .; x

�
n which yields the optimum

values of all the objective functions among the set of all points that satisfy (1)
and (2).

While the single objective optimization tries to look for a single solution,
multiobjective optimization derives a solution set, and this corresponds to the
Pareto-optimality, which was introduced in the field of economics a century
ago. Consider a problem where we have k objective functions, f i : Rn ! R

FðXÞT ¼ ½f 1ðXÞ; f 2ðXÞ; . . .; f kðXÞ�!
x

min ð4Þ

A decision vector Xu [ Rn is said to be Pareto-optimal if and only if there
is no vector Xv [ Rn for which v ¼ FðXvÞ ¼ ½v1; . . .; vn� dominates
u ¼ FðXuÞ ¼ ½u1; . . .; un�, i.e. if no other feasible solution exists which yields
an improvement in one criterion without causing a deterioration of another
criterion.

Figure 1 illustrates an example where points 8 and 12 satisfy Pareto-
optimality. The set of all Pareto-optimal decision vectors is called the

Figure 1.
Pareto-optimal set

EC
19,1

24



Pareto-optimal, efficient, or admissible set of the problem. The corresponding
set of objective vectors is called the non-dominated set. The notion of Pareto-
optimality is only a first step towards the practical solution of a multiobjective
problem, which usually involves the choice of a single compromise solution
from the non-dominated set according to some preference information.

2.2 Classical method
A common difficulty in multiobjective optimization is the existence of an
objective conflict—none of the feasible solutions allow simultaneous optimal
solutions for all objectives. In other words, optimal solutions of one objective
are usually different from those of others. Thus the most favorable Pareto-
optimum set are mathematically the solutions which offer the least objective
conflict. Such solutions can be viewed as points in the search space which are
placed from each objective. To find such points most of classical methods
generally scalarize the objective vector into one objective.

Weighted sum method is probably the simplest of all calssical techniques.
Multiple objective functions are combined into one overall objective function F ,
as follows:

Minimize F ¼
Xk

j¼1

vjf jðXÞ where X [ V; V2 feasible region ð5Þ

where vj is the weight used for the j-th objective function f j Xð Þ. Usually, non-
zero fractional weights are used so that sum of all weights

Pk
j¼1vj is equal to

one.
All Pareto-optimal solutions must lie in the feasible region V. In this method,

the optimal solution is controlled by the weight vector. The working of this
method is illustrated in a hypothetical problem shown in Figure 2. The figure
shows the feasible search space in the function space, having two objectives.

Figure 2.
A convex and

non-convex
Pareto-optimal front
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Any point inside the feasible region represents a solution X having two
objective function values f 1 and f 2. With fixing a weight vector, optimizing (5)
means finding a hyper-plane (a line for two objective functions) with a fixed
orientation in the function space. The optimal solution is the point where the
hyper-plane has a common tangent with the feasible space boundary. This
solution is shown as the point A in the figure, where the line with intercepts at
f 1 and f 2 axes in proportions of v2 and v1, respectively, is tangent to the
feasible region. One can imagine finding other solutions such as B or C, with
choosing a different weight vector and finding the corresponding common
tangent point again. A collection of such solutions constitutes the Pareto-
optimal set. Not only such a simple strategy is intuitively a computationally
expensive method but also there is a major difficulty with such a method.

This method cannot be used to find Pareto-optimal solutions in multi-
objective optimization problems having a nonconvex Pareto-optimal front. In
Figure 2(a), the Pareto-optimal front is convex. However, one can also think of
multiobjective optimization problems having a nonconvex Pareto-optimal front
(Figure 2(b)). In Figure 2(b), finding the tangents closest to the origin with
fixing a different weight vector do not give rise to finding different Pareto-
optimal solutions. For every weight vector, only the solutions A or B will be
found, and all other Pareto-optimal solutions within A and B cannot be found.

Although there exists a few other methods such as e-perturbation method,
goal programming, min-max method, most methods demand some knowledge
about the problem being solved and some methods are sensitive to the shape of
the Pareto-optimal front. The most profound difficulty with all these methods is
that all need to be applied many times, hopefully finding one different Pareto-
optimal solution each time. This makes the methods unattractive and this is
one of the reasons why multiobjective optimization problems are mostly
avoided in practice.

2.3 Multiobjective evolutionary algorithms
The above difficulty can be handled by using Evolutionary Algorithms (EAs).
EAs seem to be especially suited to multiobjective optimization because
they are able to capture multiple Pareto-optimal solutions in a single run of
simulation and may exploit similarities of solutions by recombination. Several
evolutionary approaches were categorized regarding plain aggregating
approaches (Hajela and Lin, 1992), population-based non-Pareto approaches
(Schaffer, 1985) and Pareto-based approaches (Fonseca and Fleming, 1993;
Horn et al., 1994; Srinivas and Deb, 1994).

Aggregation methods combine the objectives into a single parameterized
objective function; however, the parameters of this function are not changed for
different optimization runs, but instead systematically varied during the same
run. Hajela and Lin (1992), for instance, use the weighting method. Population-
based non-Pareto approaches switch between the objectives during the selection
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phase instead of combining the objectives into a single scalar fitness value.
Each time an individual is chosen for reproduction, potentially a different
objective will decide which member of the population will be copied into the
mating pool. For example, Schaffer (1985) proposed filling equal portions of the
mating pool according to the distinct objectives. The Pareto-based approaches
of calculating an individual’s fitness on the basis of Pareto dominance was first
suggested by Goldberg (1989). First all nondominated individuals are assigned
rank one and temporarily removed from the population. Then, the next
nondominated individuals are assigned rank two and so forth. Finally, the rank
of an individual determines its fitness value.

The publication of the above-mentioned algorithms showed the superiority
of evolutionary multiobjective optimization techniques to classical methods.
However, there are demands on more efficient search algorithm for two tasks
that should be achieved in a multiobjective optimization problem, that is (1)
how to accomplish fitness assignment and selection, respectively, in order to
guide the search toward the Pareto-optimal set; (2) how to maintain a diverse
population in order to prevent premature convergence and achieve a well
distributed and well spread nondominated set.

Since preservation of diversity is crucial in the field of multiobjective
optimization, many multiobjective EAs incorporate niching techniques, the
most frequently implemented of which is fitness sharing. Fitness sharing is
based on the idea that individuals in a particular niche have to share the
resources available, similar to nature. Thus, the fitness value of a certain
individual is the more degraded the more individuals are located in its
neighborhood. Neighborhood is defined in terms of a distance represented by
the so-call niche radius sshare. Sharing can be performed both in genotypic
space and phenotypic space.

Several researchers have thought GAs with suitable modification in their
operators have worked well to solve many multiobjective optimization
problems with respect to above two tasks. However, we have felt a lack
of their performance because they use the binary scheme basically
(Furukawa and Dissanayake, 1993; Deb and Kumar, 1995; Furukawa and
Yagawa, 1997). In addition, their operators are improved/added to guide
the search toward the Pareto-optimal set and to maintain a diverse
population. In the following, we describe new Pareto-based evolutionary
implementation in detail.

3. Pareto-based continuous evolutionary algorithms for
multiobjective optimization (MOPCEAs)

3.1 Schematic view
Pareto-based continuous evolutionary algorithms for multiobjective optimiz-
ation (MOPCEAs) are characterized as follows.
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(1) Continuous Search: recombination and mutation are conducted on a
continuous base so that optimization problems with continuous search
space can be solved efficiently, each individual thereby being
represented by a real vector.

(2) Continuous Evaluation: niche formation with continuous search space is
adopted in order to have well-distributed Pareto-optimal space.

(3) Historical Storage: Pareto-optimal solutions obtained by the previous
generation are stored so that a concrete configuration of solution space
can be seen and convergence to Pareto-optimal set can be fast.

Figure 3 shows the fundamental structure of MOPCEAs proposed by the authors.
First, a population of individuals, each represented by a continuous vector, is

initially (generation t = 0) generated at random, i.e.

Pt
l ¼ {xt

1; . . .; x
t
l} [ ðRnÞ ð6Þ

where l and n represent the population size of parental individuals and the
space of individual respectively. Each vector thus represents a search point,
which corresponds to the phenomenological representation of individual, that
is, the phenotype.

3.2 Continuous search
The definition of the recombination and mutation becomes the probabilistic
distribution of the phenomenological measures accordingly. In the recombina-
tion, parental individuals breed offspring individuals by combining part of the
information from the parental individuals, thereby creating new points
inheriting some information from the old points. The recombination operation
is then defined as

xtþ1
a ¼ 1 � mt

a

� �
xt
a þ mt

bxt
b

xtþ1
b ¼ mt

axt
a þ 1 � mt

b

� �
xt
b

8><
>: ð7Þ

Figure 3.
Flowchart of MOPCEAs
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where xt
a and xt

b are parental individuals at generation tand parameter mt

i

may be defined by the normal distribution with mean 0 and standard
deviation s:

mt
i ¼ N ð0;s2Þ ð8Þ

In many studies (Obayashi, 1998; Qing et al., 1999), the same m is used
regardless of each parental individual, that is, the symmetric recombination.
Symmetric distribution sometimes leads to good convergence for just
unimodal, simple problem, while asymmetric one improves robustness of the
algorithm in multiobjective optimization.

Figure 4 illustrates the difference of the recombination methods,
respectively. The parental point is marked with “o” and the offspring point
that is possible is marked with “*”. The crossover operator in GAs uses
variables coded using binary strings of size 7, respectively and the crossover
point is changed from 1 to 20 bit. The symmetric and asymmetric
recombination uses the normal distribution and the offspring point is selected
randomly. From the above figure, we find the fact that asymmetric one is more
effective because the offspring point is born suitably inside and outside the
parental point, that is, both local search and global search are possible.

The mutation can also be achieved simply by implementing

xtþ1 ¼ randðxmin; xmaxÞ ð9Þ

where ðxmin; xmaxÞ is the boundary of the independent parameters. Note that the
mutation may not be necessary since it can allow individuals to alter largely
with small possibility, when the coefficient mt

i is large.

Figure 4.
Comparison of

symmetric, asymmetric
and genetic crossover

Pareto-based
evolutionary

algorithms

29



3.3 Continuous evaluation
The main operation of MOPCEAs to maintain a diverse population is
composed of the ranking selection method used to emphasize good population
in function space and the sharing method used to maintain stable sub-
populations in parameter space. Besides, an elitism method is used to converge
quickly. MOPCEAs emphasize the way the selection operator works. Figure 5
shows the process of the niche formation in MOPCEAs.

Before the selection is performed, the population is ranked as follows. As
the Pareto-optimal set is to be found as solutions, the ranking process of
individuals is composed of an elimination rule. In the rule, all the points are
first concerned and the Pareto-optimal set is ranked No. 1. The points in rank
No. 1 are then eliminated, and the points in No. 2 are ranked as the second
Pareto-optimal set, and all the other ranked are generated stepwise in the same
fashion (Goldberg, 1989). The points in rank No. k, GðkÞ, are defined as

GðkÞ ¼ PijrankðPiÞ ¼ k;;i [ {1; . . .; l}} ð10Þ

The ranked points are illustrated in Figure 6 and shadowed areas represent
search areas of the points in group No. 3.

Figure 7 illustrates the evaluation of the fitness of each individual. The
evaluation process starts with finding the best and worst objective function
value of each objective:

Figure 5.
The process of the niche
formation

Figure 6.
Ranks of individuals
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f bestj ¼ min{ f jðPiÞj;i [ {1; . . .l}} ð11Þ

and

f worstj ¼ max{ f jðPiÞj;i [ {1; . . .; l}} ð12Þ

If we temporarily define the fitness as

F0
jðPiÞ ¼

f worstj 2 f jðPiÞ

f worstj 2 f bestj
ð13Þ

we can get the normalized conditions:

0 # F0
j # 1 ð14Þ

This allows us to treat the fitness of each function with the same scale. This
means the fitness value according to the relative location in function space. The
fitness of each objective function is thus defined as:

FjðPiÞ ; F
GðkÞ
j ðPiÞ ¼ max{F0

jðPiÞjPi [ GðkÞ} ð15Þ

The fitness of each individual can be conclusively calculated as:

FðPiÞ ¼
Xm

j¼1

FjðPiÞ ð16Þ

where m is the total number of objective function and which has the range

0 # F # m ð17Þ

In the ranking process above, the same fitness value is assigned to give an
equal selective potential to all individuals ranked in the same group. In order to
maintain a diverse population, these ranked individuals are then shared by the
sharing process. Sharing methods are discussed in elsewhere (Goldberg and

Figure 7.
Evaluation of individuals
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Richardson, 1987; Deb and Goldberg, 1989). Sharing is achieved by selection
operation using degraded fitness values which are obtained by dividing the
scaled fitness value of an individual by a quantity proportional to the number
of individuals around it in parameter space. This causes multiple optimal
points to co-exist in the population. The ranked population is shared as follows.
Given a set of nk solutions in the k-th Pareto-set each having a scaled fitness
value Fk, the sharing procedure computes a normalized Euclidean distance
measure with another solution j for each solution i ¼ 1; 2; . . .; nk.

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

p¼1

xi
p 2 xj

p

xu
p 2 xl

p

 !2
vuut ð18Þ

where n is the number of variables in the problem. The parameters xu
p and xl

p
are the upper and lower of variable xp. This distance dij is compared with a pre-
specified parameter sshare and the following sharing function value is
computed (Deb and Goldberg, 1989).

ShðdijÞ ¼
1 �

dij
sshare

� �2

if dij # sshare

0 otherwise

8><
>: ð19Þ

where a pre-specified parameter sshare can be calculated as follows (Srinivas
and Deb, 1994):

sshare <
0:5ffiffiffi

nq
p ð20Þ

where q is the desired number of distinct Pareto-optimal solutions. Although
the calculation of sshare depends on this parameter q in other method, that is,
GAs that has an encoding operator, it has been shown that the use of above
equation works in MOPCEAs. ShðdijÞ is calculated until j is equal to nk and
niche count for i-th solution is calculated.

mi ¼
Xnk

j¼1

ShðdijÞ ð21Þ

The scaled fitness Fk of i-th solution in the k-th Pareto-set is degraded to
calculate the shared fitness F�

i .

F�
i ¼

Fk

mi

ð22Þ

This procedure is continued for all i ¼ 1; 2; . . .; nk and a corresponding F�
i is
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found. Also the ranking process with the sharing method is continued until the
entire population is classified into several ranks. The shared fitness obtained in
the above ranking is very effective for the selection operation to maintain
diversity in the population because it is considered both in function space and
in parameter space. Figure 8 illustrates the evaluated fitness before and after
the sharing process.

In this procedure the individuals ranked No. 1 are used so that a concrete
configuration of solution space can be formed by using historical storage and
convergence to the Pareto-optimal set can be fast. In the next section, this
implementation is explained in detail.

3.4 Historical storage
Here, one of new approaches to multiobjective optimization, historical storage
is introduced. Although single objective optimization problems may have a
unique optimal solution, multiobjective optimization problems present a
possibly uncountable set of solutions, that is, a solution space. Historical
storage uses new techniques in order to form the solution space, that is, Pareto-
optimal space.

Figure 9 shows the process of historical storage. During a niche formation, a
set of Pareto-optimal solutions is determined at the current generation. The set
is inserted into the select pool with Pareto-optimal solutions found so far, that
is, a set of externally stored solutions, in an attempt to find nondominated
solutions among them. Nondominated solutions are found by the ranking
process externally. Finally, a new set of externally stored solutions participates
in the elitism process. They cause convergence to Pareto-optimal set to be fast
and a diverse population to be maintained.

Figure 8.
Comparison of the fitness

before and after the
sharing process
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The elitism operator is the policy to always include the best individual in order
to prevent losing it due to sampling effects or operator disruption. In other
words, this strategy can be extended to copy the best solutions to the next
generation. Elitism can improve the performance of an evolutionary algorithm.

So as to grasp the configuration of the whole solution space, the resultant
Pareto-optimal solutions are stored outside the loop of the evolutionary
operations. This strategy allows the Pareto-optimal solutions created in the
past to be kept as solutions and yield a good chance to increase the number of
solutions, thus making the solution space easier to see. The storage of the
solution independent of the current population also may contribute to the good
distribution of the resultant solutions.

3.5 Comparison with other methods
Popular evolutionary algorithms (EAs) originally include, genetic algorithms
(GAs) (Holland, 1975), consisting of binary representation of points and
proportional/ranking selection and evolution strategies (ESs) (Schwefel, 1981),
consisting of continuous representation of points and ranking selection. In the
previous reports, those with the binary points and the ranking selection search
more robustly than those with continuous points and the proportional selection
at the expense of fast convergence (Hoffmeister and Back, 1992; Furukawa and
Yagawa, 1995), and vice versa. Continuous EAs (CEAs) proposed by the authors
(Furukawa and Dissanayake, 1993), incorporating continuous representation of
points and proportional selection, therefore demonstrated its convergence
approximately 10 times faster than that of GAs and ESs (Furukawa and Yagawa,
1997). MOPCEAs, taking over them from CEAs should also be faster than the
multiobjective versions of GAs and EAs in the same manner.

Figure 9.
The process of historical
storage
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Search strategy and diversity as well as fast convergence are also better
than other methods. For effective diversity, niche formation is applied.
Currently, most Multiple Objective Evolutionary Algorithm (MOEAs) (Hajela
and Lin, 1992; Fonseca and Fleming, 1993; Horn et al., 1994; Srinivas and Deb,
1994) implement niche formation for diversity. Although they always have a
genotype (the encoding), they implement phenotypic one in application of
sharing since in general phenotypic sharing is superior to genotypic sharing.
This depends on the resolution of gene in a genetic, binary space. Therefore,
what we perform sharing having a phenotype in phenotypic or continuous
space is much useful in maintaining diversity along the phenotypic Pareto
optimal front. For search strategy, asymmetric recombination is the better
probability than other process, that is, symmetric one or genetic one because
the search process has to maintain the balance of robustness and convergence
in multiobjective optimization.

4. Test problems
In order to show the working of the proposed approach, a number of test
problems have been solved. Although general multiobjective optimization
problems are applicable, test problems having two objectives are adopted. This
is because we believe that the two-objective optimization brings out the
essential features of multiobjective optimization. In all test problems,
MOPCEAs described in the previous section are used.

4.1 Test problem 1
We first consider a two-objective problem as follows:

Minimize :
f 1 ¼ x2

1 þ x2
2

f 2 ¼ ðx1 2 1Þ2 þ ðx2 2 2Þ2

(
ð23Þ

Here, both x1 and x2 vary in the interval [ 2 100,100], respectively. We used a
population size of 100 and run MOPCEAs until the convergence criterion that
the number of population was equal to that of storing set was satisfied. A
sshare ¼ 0:158 (equation (20) with n = 2, q = 10) is used. The Pareto-optimal
solutions lie in x1 [ ½0; 1�; x2 [ ½0; 2�.

Figure 10 shows the Pareto-optimal solution distribution in the f 1 2 f 2

space. The figure shows that the solution is widely distributed.
Figure 11(a) shows the Pareto-optimal solution distribution solved by

MOPCEAs without a niching formation and storing set in the f 1 2 f 2 space,
where marked with “o” is the Pareto-optimal solution and marked with “*” is
the dominated solution. Figure 11(b) shows the Pareto-optimal solution
distribution solved by GAs without a niching formation and storing set in the
f 1 2 f 2 space. In this case, we used a population size of 100 and both variables
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Figure 10.
Pareto-optimal solutions
at generation 48 for
problem 1

Figure 11.
Pareto-optimal solutions
without niching and
storing for problem 1
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were coded using binary strings of size 10, respectively. Single point crossover
with pc = 0.8 and mutation with pm = 0.001 were used. As expected, the result is
not widely distributed and the fast and stable convergence is conformed. In
case of GAs, the more the iteration goes on, the worse the distribution is.

Figure 12 shows the Pareto-optimal solution distribution solved by GAs
with a niching formation and storing set and a different sharing parameter in
the f 1 2 f 2 space. The result is widely distributed but just several Pareto-
solutions are found. Additionally, we can see the GAs are independent of the
value of the sharing parameter (Srinivas and Deb, 1994).

4.2 Test problem 2
Next, we consider a multiobjective problem having a Pareto-optimal front that
is discontinuous and nonconvex.

Figure 12.
Pareto-optimal solutions

at generation 100 with
sharing and storing in

GAs for problem 1
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Minimize :
f 1 ¼ 10 þ x2 2 10cos

p

2
x

� �
f 2 ¼ ðx 2 4Þ2

8><
>: ð24Þ

A variable is initialized in the range [ 2 100,100]. The discontinuity and non-
convexity in the Pareto-optimal region comes due to the periodicity in function.
This function tests not only the algorithm’s ability to find the widely
distributed solutions in all discontinuous and non-convex Pareto-optimal
regions but also the Pareto-solution not to be found by a classical method. The
difference between symmetric recombination and asymmetric one is investi-
gated. We used the same parameters used in problem 1 except a sshare ¼ 0:05
(equation (20) with n = 1, q = 10).

Figure 13 shows the Pareto-optimal solution distribution in the function
space and in parameter space by using asymmetric recombination. The figures
clearly show that the solution is widely distributed and the fast and stable
convergence is conformed. On the contrary, Figure 14 shows the Pareto-optimal
solution distribution in the function space by using symmetric recombination.
From the above figures, we can see that the search’s ability of asymmetric
recombination is better than that of symmetric one in all discontinuous and
non-convex Pareto-optimal regions.

4.3 Test problem 3
Next, we consider a multimodal multiobjective optimization problem with a
simple two-objective having two variables x1ð. 0Þ and x2:

Minimize :

f 1 ¼ x1

f 2 ¼
gðx2Þ

x1

8><
>: ð25Þ

where gðx2Þð. 0Þ is a function of x2 only as follows.

g x2ð Þ ¼ 2:0 � exp 2
x2 2 0:2

0:004

� �2
( )

2 0:8 £ exp 2
x2 2 0:6

0:4

� �2
( )

ð26Þ

Figure 15 shows the above function for 0 # x2 # 1 with x2 < 0:2 as the global
minimum and x2 < 0:6 as the local minimum solutions. The corresponding
values for gðx2Þ function values are gð0:6Þ = 1.2 and gð0:2Þ = 0.7057, respectively.
Here, both x1 and x2 vary in the interval [0.1,1.0] and [0,1.0], respectively. We
used a population of size 60 and sshare ¼ 0:158 was used.

Figure 16 shows a run of MOPCEAs with and without the elitism process.
This means the elitism process does not always work, especially in case of a
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multimodal multiobjective optimization problem. But MOPCEAs found a few
global Pareto-optimal solutions in this process, which inform us that this result
is not satisfied. Figure 16(b) shows a run of MOPCEAs at generation 441
without the elitism process. Without the elitism process MOPCEAs can find the
global Pareto-optimal solution. This result shows MOPCEAs has no difficulty
with a multimodal multiobjective optimization problem.

Figure 17 shows the Pareto-optimal solution solved with and without the
elitism process by GAs. In this case, we used a population size of 60 and
both variables are coded using binary strings of size 10, respectively. Single
point crossover with pc = 0.8 was chosen. Mutation with pm = 0.001 was
used. The parameters were the same as MOPCEAs. The result of GAs is
similar to that of MOPCEAs but the convergence and the search ability is
even worse.

Figure 13.
Pareto-optimal solutions

at generation 33 with
asymmetric

recombination for
problem 2
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4.4 Test problem 4 (an engineering design)
This problem has been well studied in the context of single objective
optimization (Reklaitis et al., 1983) as well as in the study of multiobjective
optimization (Deb and Kumar, 1995). In this problem, a beam needs to be
welded on another beam and must carry a certain load F (Figure 18).

In single objective optimal design, it is desired to find four design
parameters (thickness of the beam b, width of the beam t, length of weld l and
weld thickness h) for which the cost of the beam is minimum. The overhang
portion of the beam has a length of L = 14 inches and a load of F = 6,000 lb is

Figure 15.
The function gðx2Þ has a
global and a local
minium solution

Figure 14.
Pareto-optimal solutions
at generation 24 in
function space with
asymmetric
recombination for
problem 2
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applied at the end of the beam. It is intuitive that an optimal design for cost will
make all four design variables to take small values. When the beam dimensions
are small, it is likely that the deflection at the end of the beam is going to be
large. In the parlance of mechanics of materials, this means that the rigidity of
the beam is smaller for smaller dimensions of the beam. In mechanical design
activities, optimal design for maximum rigidity is common. Again, a little
thought will reveal that a design for maximum rigidity of the above beam will
make all four design dimensions to take large dimensions. Thus, the design
solutions for minimum cost and maximum rigidity (or minimum end deflection)
are conflicting to each other. This kind of conflicting objective functions leads
to Pareto-optimal solutions. In the following, we present the mathematical
formulation of the two objective optimization problem of minimizing cost and
the end deflection (Deb and Kumar, 1995).

Figure 16.
Pareto-optimal solutions

for problem 3
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Figure 18.
The welded beam design
problem. Minimizations
of cost and end deflection
are two objectives

Figure 17.
Pareto-optimal solutions
by GAs for problem 3
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Minimize :

f 1 ¼ 1:1047h2l þ 0:04811tbð14:0 þ lÞ

f 2 ¼ d ¼
2:1952

t 3b

8><
>: ð27Þ

Subject to :

g1 ¼ 13; 600 � t $ 0

g2 ¼ 30; 000 � s $ 0

g3 ¼ b 2 h $ 0

g4 ¼ Pc 2 6; 000 $ 0

8>>>>><
>>>>>:

There are four constraints. The first constraint makes sure that the shear
stress, t, developed at the support location of the beam is smaller than the
allowable shear strength of the material (13,600 psi). Secondly normal stress, s,
developed at the support location of the beam is smaller than the allowable
yield strength of the material (30,000 psi). The third constraint makes sure that
thickness of the beam is not smaller than the weld thickness from a practical
standpoint. As a final constraint the allowable buckling load of the beam is
more than the applied load F . A violation of any of the above four constraints
will make the design unacceptable. The stress and buckling terms are given as
follows (Reklaitis et al., 1983):

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt0Þ2 þ ðt00Þ2 þ ðlt0t00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:25ðl 2 þ ðh þ tÞ2Þ
p

s
ð28Þ

t0 ¼
6; 000ffiffiffi

2
p

hl
; t00 ¼

6; 000ð14 þ 0:5lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25ðl 2 þ ðh þ tÞ2Þ

p
2 0:707hl l 2

12 þ 0:25ðh þ tÞ2
� ��

}

s ¼
504; 000

t 2b
; Pc ¼ 64; 746:022ð1 � 0:0282346tÞtb3

The variables are initialized in the following range: 0:125 # h; b # 5:0 and
0:1 # l; t # 10:0. Constraints are handled using the exterior penalty function
method. Penalty parameters of 100 and 0.1 are used for the first and second
objective functions, respectively. We used a population size of 100 and sshare ¼
0:281 was used.

Figure 19(a) shows that the Pareto-optimal solution after 62 satisfies the
terminal criterion and has truly come the Pareto-optimal front. Figure 19(b)
shows the Pareto-optimal solution after 62 in parameter space. These figures
demonstrate the efficiency of MOPCEAs in converging close to the Pareto-
optimal front with a wide variety of solutions. Figure 20 shows the Pareto-
optimal front when a population size of 200 is used.
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In order to investigate its efficiency of the proposed multiobjective formulation
with MOPCEAs compared with others, the same problem was solved by GAs.
In this case, we used a population size of 100 and both variables are coded
using four case, that is, (a) binary strings of size 10, respectively (b) binary
strings of size 8, respectively (c) binary strings of size 7, respectively (d) binary
strings of size 5, respectively. Single point crossover with pc = 0.8 and mutation
with pm = 0.001 were used. The parameters were the same as MOPCEAs.

Figure 21(a) and (b) show that many individuals found the Pareto-optimal
solution but the effect of a niche formation did not appear. Figure 21(c)
shows that several individuals found the Pareto-optimal solution but the result
was not satisfied. Figure 21(d) shows that only several individuals found the
wide Pareto-optimal solution and the efficiency of the search was not

Figure 19.
Pareto-optimal solutions
at generation 62
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satisfactory. From Figure 21, we can observe that it is very hard to find the
wide Pareto-optimal solution by GAs although it has a niche formation and the
search of the Pareto-optimal solution is sensitively affected by the length of
binary string. Also, we can see that the phenotypic sharing of MOPCEAs that
are implemented considering the information of the fitness both in function
space and in parameter space is more efficient than the sharing of GAs in a
niche formation.

5. Conclusions
In this paper, Pareto-based continuous evolutionary algorithms for multi-
objective optimization problem having continuous search space are introduced.
The niche formation basically implements phenotypic sharing considering the

Figure 20.
Pareto-optimal solutions

at generation 500
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information both in function space and in parameter space and the scaled
fitness is obtained dynamically. We applied the niche formation to MOPCEAs
based on the continuous search method and a progressive reproduction
operator and a storing process for a concrete configuration of solution space
and elitism were used and the validity of this method has been tested by
numerical examples.

The results of the test problems show that the search ability of MOPCEAs is
much better than that of others having discrete search space. Both efficiency
and robustness are dramatic and MOPCEAs are effective tools for doing
multiobjective optimization in that multiple, wide Pareto-optimal solutions can
be found in one single run.

Regarding future perspectives, the issue of higher-level decision-making
might be subject to further examinations. In many applications, where the
tradeoff surface in containing a huge number of solutions, it is essential that the
EA is capable of “selecting” representative solutions. Furthermore, it might be

Figure 21.
Pareto-optimal solutions
at generation 100
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investigated to decrease the number of function evaluation. In real-world
application, it is impossible to evaluate thousands of objective function.

Other further study is the application of the technique to actual engineering
problems. The technique to the crack identification (Suh et al., 2000) is currently
being implemented. Also, The technique to multidisciplinary design optimiz-
ation of automotive engine mount system is being implemented. In case of
automotive engine mount system, the models contain about 26 parameters and
its determination is above the human ability. The result of these studies will be
reported in further papers.
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