
Dominance Measures for
Multi-Objective Simulated Annealing

Kevin I. Smith
K.I.Smith@exeter.ac.uk

Richard M. Everson
R.M.Everson@exeter.ac.uk

Department of Computer Science
University of Exeter

Exeter, EX4 4QF. UK.

Jonathan E. Fieldsend
J.E.Fieldsend@exeter.ac.uk

Abstract— Simulated annealing (SA) is a provably convergent
optimiser for single-objective (SO) problems. Previously proposed
MO extensions have mostly taken the form of an SO SA
optimising a composite function of the objectives. We propose
an MO SA utilising the relative dominance of a solution as the
system energy for optimisation, eliminating problems associated
with composite objective functions. We also propose a method for
choosing perturbation scalings promoting search both towards
and across the Pareto front.

We illustrate the SA’s performance on standard test problems.
The new SA is shown to promote rapid convergence to the true
Pareto front with a good coverage of points across it.

I. INTRODUCTION

A popular algorithm for solving single-objective optimi-
sation problems (those in which the user cares only about
a single dependant variable of the system) is simulated an-
nealing (SA) [1]. Geman & Geman [2] provided a proof that
simulated annealing, if annealed sufficiently slowly, converges
to the global optimum. Although the required cooling rate
is infeasibly slow for most purposes, simulated annealing
often gives excellent results when run with a faster cooling
schedule. It is frequently the case in optimisation problems,
however, that there are several objectives of the system which
the user is interested in optimising simultaneously. Clearly,
simultaneous optimisation of several objectives is usually
impossible and the curve (for two objectives) or surface (for
three or more objectives) that describes the trade-off between
objectives is known as the Pareto-front. Although there are
several well developed genetic algorithms and evolutionary
schemes to address such multi-objective problems (see, [3],
[4] for recent reviews), simulated annealing does not, in its
usual formulation, provide a method for optimising more than
a single objective. Simulated annealing has been adapted to
multi-objective problems by combining the objectives into a
single objective function [5], [6], [7], [8], [9]; however, these
methods either damage the proof of convergence, or are limited
(potentially severely) in their ability to fully explore the trade-
off surface.

We propose a modified simulated annealing algorithm which
maps the optimisation of multiple objectives to a single-
objective optimisation using the true trade-off surface, main-
taining the convergence properties of the single-objective

annealer while encouraging exploration of the full trade-
off surface. A method of practical implementation is also
described, which overcomes the limitation that the true trade-
off surface is unavailable for most real-world problems, using
the available non-dominated data points from the current
optimisation.

In this paper we start by briefly discussing methods that
combine objectives into a single composite objective. In
section III we describe our dominance-based SA algorithm
and, in section IV, methods for improving the quality of the
optimisation energy measure when the available data points are
few are described. Choosing an efficient scale for perturbations
is an important component of scalar SA algorithms. The issue
is further complicated in multi-objective algorithms because
a perturbation may not only move the current state closer
to or further from the Pareto front, but also transversally.
In section V we describe a method for setting the scale of
perturbations and other run-time parameters. Results showing
that the algorithm converges on a range of test problems are
given in section VI and we draw conclusions in section VII.

II. BACKGROUND

A. Dominance and Pareto Optimality

In multi-objective optimisation we attempt to simultane-
ously maximise or minimise D objectives, yi, which are
functions of P variable parameters or decision variables, x =
(x1, x2, . . . , xP ):

yi = fi(x), i = 1, . . . , D (1)

Without loss of generality, we assume that the objectives are to
be minimised, so that the multi-objective optimisation problem
may be expressed as:

Minimise y = f(x) ≡ (f1(x), . . . , fD(x)) (2)

The idea of dominance is generally used to compare two
solutions a and b. If f(a) is no worse for all objectives than
f(b) and wholly better for at least one objective it is said that
a dominates b, written a ≺ b. Thus a ≺ b iff:

fi(a) ≤ fi(b) ∀i = 1, . . . , D and
fi(a) < fi(b) for at least one i.

(3)



Clearly the dominates relation is not a total order and two
solutions are mutually non-dominating if neither dominates
the other. A set F of solutions is said to be a non-dominating
set if no element of the set dominates any other:

a 6≺ b ∀ a,b ∈ F (4)

A solution is said to be globally non-dominated, or Pareto-
optimal, if no other feasible solution dominates it. The set
of all Pareto-optimal solutions is known as the Pareto-optimal
front, or the Pareto set, P ; solutions in the Pareto set represent
the possible optimal trade-offs between competing objectives.
A human operator can select a solution once this set has
been revealed. When using heuristic algorithms, the non-
dominated set produced by one, or several, runs will only be
an approximation to the true Pareto front, thus some care with
terminology is required, and in this paper the set produced by
such an algorithm is referred to as the archive of the estimated
Pareto front, which we denote by F .

B. Simulated Annealing

Simulated annealing is the computational analogue of
slowly cooling a metal so that it adopts a low-energy, crys-
talline state. At high temperatures particles are free to move
around, whereas as the temperature is lowered they are in-
creasingly confined due to the high energy cost of movement.
It is physically appealing to call the function to be minimised
the energy, E(x), of the state x, and to introduce a parameter
T, the computational temperature which is lowered throughout
the simulation according to an annealing schedule. At each T
the SA algorithm aims to draw samples from the equilibrium
distribution πT (x) ∝ exp{−E(x)/T}. As T → 0 more and
more of the probability mass of πT is concentrated in the
region of the global minimum of E, so that any sample from
πT will almost surely lie at the minimum of E.

Sampling from the equilibrium distribution is usually
achieved by Metropolis-Hastings sampling, which involves
making proposals x′ that are accepted with probability

A = min (1, exp{−δE(x′,x)/T}) (5)

where

δE(x′,x) ≡ E(x′) − E(x) (6)

Intuitively, when T is high perturbations from x to x′ which
increase the energy are likely to be accepted (in addition to
perturbations which decrease the energy, which are always
accepted) and the samples can explore the state space, but
as T is reduced only perturbations leading to small increases
in E are accepted, so that only limited exploration is possible
as the system settles on (hopefully) the global minimum. The
algorithm is summarised in Algorithm 1: during each of the
K epochs, the computational temperature is fixed at Tk and
Lk samples are drawn from πTk

before the temperature is
lowered in the next epoch. Each sample is a perturbation
(mutation) of the current state from a proposal density (line
3); the perturbed state x′ is accepted with probability given
by (5), as shown in lines 4-8. In the work reported here we

Algorithm 1 Simulated annealing

Inputs:
{Lk}

K
k=1

Sequence of epoch durations
{Tk}

K
k=1

Sequence temperatures, Tk+1 < Tk

x Initial feasible solution

1: for k := 1, . . . , K
2: for i := 1, . . . , Lk

3: x′ := perturb(x)
4: δE := E(x′) − E(x)
5: u := rand(0, 1)
6: if u < min(1, exp(−δE/Tk))
7: x := x′

8: end
9: end

10: end

perturb each element of x singly, drawing the perturbations
from a Laplacian distribution, which has tails that decay
relatively slowly, thus ensuring that there is a high probability
of exploring regions distant from the current solutions.

As already alluded to, convergence is guaranteed if and
only if the cooling schedule is sufficiently gradual [2], but
experience has shown SA to be a very effective optimisation
technique even with relatively rapid cooling schedules.

C. Multi-Objective SA with Composite Objective Functions

An attractive approach to multi-objective simulated anneal-
ing (MOSA), adopted by several investigators [10], [11], [6],
[7], [8], [9], is to combine the objectives into a weighted sum:

E(x) =

D
∑

i=1

wifi(x) (7)

The composite objective is then used as the energy to be
minimised in a scalar SA optimiser. An equivalent alternative
[5] is to sum log fi(x), and others (e.g., [11], [7] have
investigated a number of non-linear and stochastic composite
energies.

It is clear that simulated annealing with a composite energy
(7) will converge to points on the Pareto optimal front where
the objectives have ratios given by w−1

i , if such points exist.
However, it is unclear how to choose the weights in advance,
indeed, one of the principal advantages of multi-objective
optimisation is that the relative importance of the objectives
can be decided with the Pareto front on hand. Perhaps more
importantly, parts of the front are inaccessible with fixed
weights [12]. Recognising this, investigators have proposed
a variety of schemes for adapting the wi during the annealing
process to encourage exploration along the front.

It is natural to keep an archive, F, of all the non-dominated
solutions found so far, and this archive may be utilised to
further exploration by periodically restarting the annealer from
a randomly chosen element of F [9].

A proposal x′ in scalar SA is either better or worse than
the current state x depending on the sign of δE(x′,x) (we
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Fig. 1. Energy from area of the true Pareto front P dominating a solution.
Solutions are marked by circles and lines indicate the regions of P dominating
each one.
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Fig. 2. Energy from proportion of the estimated Pareto front F dominating
points dominating a solution. Elements of F are shown as small grey circles,
solutions are shown as larger open or filled circles.

ignore the rare possibility that δE = 0). In multi-objective
SA, however, x′ may dominate x or x′ may be dominated by
x or they may be mutually non-dominating. Energies such as
(7) may lead to x′ being unconditionally accepted (δE < 0)
even though x′ 6≺ x, because a large negative energy change
from one objective may outweigh small positive changes on
the other objectives. Nam & Park [7] therefore modify the
acceptance rule so that proposals are accepted with probability
given by (5) if they are dominated by x, but unconditionally
accepted if x′ ≺ x or if x′ and x are mutually non-dominating.
In a similar vein, Suppapitnarm et al. [9] promote exploration
along the front by unconditionally accept proposals that are
not dominated by any member of F, otherwise using (5).

Although it is clear that the assurance of a convergence
proof can be provided for a multi-objective simulated annealer
using a scalar objective function and fixed weights (7), such
annealers are fundamentally limited in their coverage of the
Pareto front. On the other hand, it is difficult to see how
proofs of convergence might be obtained with the heuristic
modifications designed to promote exploration transversal to
the front. With this in mind, we investigate the efficacy of an
energy function based on the defining notion of dominance.

III. A DOMINANCE BASED ENERGY FUNCTION

In single objective optimisation problems the energy E(x),
the quantity to be minimised, is an absolute measure of the
quality of any solution x; the optimum is the x with the
lowest energy. However, in the multi-objective case optimum
solutions are only defined in relation to each other: the Pareto
front is the set of solutions that dominate all other solutions.
We can compare the relative quality of x and x′ with the
dominance relation, but note that it gives essentially only
three values of quality—better, worse, equal—in contrast to
the energy difference in uni-objective problems which usually
gives a continuum.

If the true Pareto front P were available, we could define a
simple energy of x as the measure of the front that dominates
x. Let Px be the portion of P that dominates x:

Px = {y ∈ P |y ≺ x} (8)

Then we define

E(x) = µ(Px) (9)

where µ is a measure defined on P . We shall be principally
interested in finite sets approximating P and so shall take
µ(Px) to simply be the cardinality of Px. If P is a continuous
set, we can take µ to be the Lebesgue measure (informally, the
length, area or volume for 2, 3 or 4 objectives). As illustrated
in Fig. 1, this energy has the properties we desire: if x ∈ P
then E(x) = 0, and solutions more distant from the front
are in general dominated by a greater proportion of P and
so have a higher energy; in Fig. 1 the solution marked by an
open circle has a greater energy than the one marked by a
filled circle.

Clearly this formulation of an energy does not rely on
an a priori weighting of the objectives and the assurances
of convergence [2] for uni-objective SA continue to hold
in this case. Since all solutions lying on the front have
equal minimum energy, we would anticipate that a simulated
annealer using this energy would, having reached the front,
perform a random walk exploration of the front.

We note that Fleischer [13] has proposed an alternative
measure of a non-dominated set, which may be loosely char-
acterised as being based on the volume dominated by the set
rather than the area of the dominating set.

Unfortunately, the true Pareto front P is unavailable during
the course of an optimisation. We therefore propose to use an
energy defined in terms of the current estimate of the Pareto
front, F , which is the set of mutually non-dominating solutions
found thus far in the annealing. Denote by F̃ the union of the
F , the current solution x and the proposed solution x′, that is
F̃ = F ∪ x ∪ x′. Then, in a similar manner to (8), let F̃x be
the elements of F̃ that dominate x:

F̃x = {y ∈ F̃ |y ≺ x} (10)

so that we obtain an energy difference between the current



and proposed solutions of

δE(x,x′) =
1

|F̃ |

(

|F̃x| − |F̃x
′ |
)

(11)

Division by |F̃ | ensures that δE is always less than 1 and
provides some robustness against fluctuations in the number
of solutions in F . If F̃ is a non-dominating set the energy
difference between any two of its elements is zero. Note also
that δE(x,x′) = −δE(x′,x).

The inclusion of the current solution and the proposal in
F̃ ensures that δE(x,x′) < 0 if x′ ≺ x, which ensures that
proposals that move the estimated front towards the true front
are always accepted.

A benefit of this energy measure is that it encourages
exploration of sparsely populated regions of the front. Imagine
two proposals, each dominated by some solutions in F ; for
example, the solutions illustrated by the filled and unfilled
circles in Fig. 2. The solution that is dominated by fewer
elements (the unfilled circle) has the lower energy and would
therefore be more likely to be accepted as a proposal.

Defining the energy in this manner thus, unlike some
proposed multi-objective enhancements to simulated annealing
discussed in section II-C, provides a single energy function en-
couraging both convergence to and coverage of the Pareto front
without requiring other modifications to the single-objective
simulated annealing algorithm (beyond the obvious storage
of an archive of the estimated Pareto front). In particular no
additional rules are required for cases in which the current and
proposed solutions are mutually non-dominating.

Convergence to the true Pareto front is no longer an
immediate consequence of Geman & Geman’s work [2],
because the energy based on F is only an approximation
to (9). However, Greening [14] offers proof of convergence,
albeit more slowly, even when the energy contains errors.
Current work is investigating the application of this work to
MOSA and in section VI we offer empirical evidence of the
convergence.

An energy function based on (11) is straightforward to
calculate; counting the number of elements of F̃ that dominate
x and x′ can be achieved in logarithmic time [15]. Our pro-
posed multi-objective algorithm closely follows the standard
SA algorithm (Algorithm 1), the only addition that is necessary
is to maintain an archive, F of the current estimate of the
Pareto front and to calculate the energy difference using (11).

IV. INCREASING ENERGY RESOLUTION

As mentioned earlier, the true Pareto-optimal front of so-
lutions is, in general, unavailable to us. While using the
archive of the estimated Pareto front F provides an estimate
of solution energy, when F is small the resolution in the
energies can be very coarse. In fact, the difference in energy
between two solutions is an integer multiple of 1/|F̃ | between
0 and 1. Since the acceptance criterion (5) for new solutions
is determined by the difference in energy δE(x,x′) between
the current solution and the proposed solution, low resolution

of the energies leads to a low resolution in acceptance prob-
abilities. At low computational temperatures it will become
increasingly likely that, for small archives, this granularity
will make it almost impossible for even slightly detrimental
moves to be made. This is undesirable as, at its most severe,
this effect will reduce the algorithm to behaviour similar to a
greedy search optimiser.

This problem is alleviated by using a larger set for energy
calculations. There are a couple of straightforward, but ulti-
mately inadequate, methods for artificially increasing the size
of F which we now briefly discuss before describing a method
using the attainment surface.

A. Conditional Removal of Dominated Points

An obvious method for increasing the size of the archive is
to not delete solutions known to be dominated if deleting them
would reduce |F | size below some predefined minimum. The
existence of old solutions in F , may lead to desirable proposals
(not non-dominated solutions) being rejected. In addition the
old solutions may bias the search away from regions of the
front that were previously well populated.

A further disadvantage of this method is that no solutions
are introduced which have not been generated by the algo-
rithm, so dominated solutions kept in F will not necessarily
be of any benefit. In the worst case they could be sufficiently
far from the current estimation of the Pareto front that they
are dominated by all the non-dominated solutions, and will
therefore increase the energy resolution at the expense of
range.

B. Linear Interpolation

Another apparently suitable method of augmenting F is
linear interpolation between the solutions in F . In this method
when the archive is smaller than some predefined size new
points in objective space are generated on the simplices defined
by an element of F and its D − 1 nearest neighbours. This
overcomes the limitations of the previous method: Since new
solutions are generated ‘on’ the current estimated Pareto front,
the problems which could occur with using old, dominated
elements of F in the energy calculations are avoided. The
interpolated points generated can also be evenly distributed
between the current estimated Pareto-optimal solutions, which
is beneficial as it does not deter the algorithm from exploring
any region of the estimated front which is not already densely
populated. The principal disadvantage of this method is that
proposals may be dominated by an interpolated point, but not
by any of the real elements of F, meaning that the proposal
may erroneously be disregarded.

C. Attainment Surface Sampling

Consideration of the previous two methods of augmenting
the estimated Pareto front suggests that the augmenting points
should have the following properties.

1) The artificial points must be sufficiently close to the
current estimation of the Pareto front that they can affect
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Fig. 3. Attainment surface SF is the boundary of the region, U dominated
by the non-dominated set F, whose elements are marked as dots.

the energy of solutions generated near to the current
estimated Pareto front.

2) They must be evenly distributed across the currently esti-
mated Pareto front so as to not discourage the algorithm
from accepting proposals in poorly populated regions of
the front.

3) They must not dominate any proposal which is not dom-
inated by any member of F, so that potential entrants to
the archive are not discarded. A consequence of this is
that they must all be dominated by at least one member
of F .

The attainment surface, which has previously been used
for estimated Pareto front visualisation [16] and is closely
related to the attainment function [17], is an interpolating
surface between the elements of F that has the requisite
properties. The attainment surface, SF , corresponding to F is
a conservative interpolation of the elements of F so that every
point of SF is dominated by an element of F ; the attainment
surface for an F comprising three two-dimensional elements is
sketched in Fig. 3. More formally, the attainment surface is the
boundary of the region in objective space which is dominated
by elements of F . If u,v ∈ R

D, we say that u properly
dominates v (denoted uCv) iff ui < vi ∀i = 1, . . . , D. Then
if

F = {y |u ≺ y for some u ∈ F} (12)

U = {y |u C y for some u ∈ F} (13)

the attainment surface is SF = F \ U .
We use random samples, uniformly distributed on SF to

interpolate F . From the definition of SF it is apparent that
interpolated points are dominated by an element of F, thus
satisfying the third criterion. Uniform random sampling en-
sures that the second criterion is met, as is the first criterion
because SF interpolates F .

Sampling from SF may be performed using Algorithm 2,
which works by sampling a point from a uniform distribution
on the axis-parallel hyper-rectangle bounding F and then
restricting the one coordinate so that the point is dominated
by an element of F . Determining whether an element of
F dominates v on line 8 may be efficiently implemented

Algorithm 2 Sampling a point from the attainment surface

Inputs:
{Li}

D
i=1 Elements of F, sorted by increasing coordinate

Generate a random point, v

1: for i := 1, . . . , D
2: vi := rand(min(Li), max(Li))
3: end
4: d := randint(1, D)

Find smallest vd s.t. v is dominated by a y ∈ F
5: for i = 1, . . . , |F |
6: u = Ld,i

7: vd := ud

8: if F ≺ v

9: return v

10: end
11: end
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Fig. 4. 10000 samples from the attainment surface for an archive of 10
points, which are marked with heavy dots.

using a binary searches of the lists Li, in which case the
algorithm requires O(|F | log(|F |)) time for the generation of
each sample. Fig. 4 illustrates the sampled attainment surface
for a set of ten 3-dimensional points; 10000 samples are shown
for visualisation. In the experiments reported in section VI F
was augmented with 100 samples from SF before calculating
the energy of the proposal.

V. REALTIME ALGORITHM PARAMETER OPTIMISATION

The performance of this algorithm, in common with other
simulated annealing systems, depends upon parameters for the
initial temperature, the annealing schedule and the size of
perturbations made to solutions when generating new propos-
als. Here we give details of methods which permit automatic
setting of the initial temperate, and which adjust the scale
of perturbations made to maximise the quality of proposed
solutions.



A. Initial Temperatures

If this initial temperature of the system is set too high,
all proposed solutions will be accepted, irrespective of their
relative energies, and if set too low proposals with a higher
energy than the current solution will never be accepted, trans-
forming the algorithm into a greedy search. As a reasonable
starting point we set the initial temperature to achieve an
initial acceptance rate of approximately 50% on derogatory
proposals. This initial temperature, T0, can be easily calculated
by using a short ‘burn-in’ period during which time all
solutions are accepted and setting the temperature equal to
the average positive change of energy divided by ln(2).

Here we adjust the temperate according to Tk = βkT0,
where β is chosen so that the final temperature is 10−5.

B. Perturbation Scalings

For simplicity a proposal is generated from x by perturbing
only one parameter or decision variable of x. The parameter to
be perturbed is chosen at random and perturbed with a random
variable drawn from a Laplacian distribution, p(ε) ∝ e−|σε|,
where the scaling factor σ sets magnitude of the perturbation.

We maintain two sets of scaling factors, since the perturba-
tions generating moves to a non-dominated proposal within
a front (traversals) may potentially be very different from
those required to locate a front closer to P . We maintain a
scaling factor for each dimension of parameter space for each
of location perturbations and traversal perturbations, and adjust
these independently to give the greatest probability of such a
move being generated. When perturbing a solution, it is chosen
randomly with equal probability whether the location scaling
set will be used, or the traversal scaling set. These scalings
are initially set large enough to sample from the entire feasible
space. The scalings are adjusted throughout the optimisation,
whenever a suitably large statistic set is available to reliably
calculate an appropriate scaling factor.

1) Traversal Scaling: The traversal rescaling for a particu-
lar decision variable, xj is performed whenever approximately
50 traversal perturbations have been made to xj since the last
rescaling.

In order to ensure wide coverage of the front we wish to
to maximise the distance (in objective space) covered by the
traversals to ensure the entire front is evenly covered. Gen-
erating traversals travelling a small distance will concentrate
the estimated front around the point at which the current front
was discovered, an effect we aim to avoid.

We seek to generate proposals on approximately the scale
that has previously been successful in generating wide-ranging
traversals. To achieve this, the perturbations are sorted by
absolute size of perturbation in parameter space, and then
trisected in order, giving three groups, one of the smallest third
of perturbations, the largest third of perturbations, and the re-
maining perturbations. For each group the mean traversal size
caused by the perturbations is calculated. The traversal size
is measured as the Euclidean distance travelled in objective
space when the current solution and the proposed solution are
mutually non-dominating. The traversal perturbation scaling

for this decision variable is then set to the average perturbation
of the group which generated the largest average traversal.

This heuristic is open to the criticism that it depends upon
measuring distances in objective space whose relative weight-
ing is unknown; however, the objectives may be renormalised
during optimisation so the front has approximately the same
extent in objective. We emphasise that, of course, this does
not affect the dominance-based energy.

2) Location Scaling: Drawing from methods widely used in
evolutionary algorithms, we aim to adjust the scale of location
perturbations to keep the acceptance rate for x′ that have a
higher energy than x to approximately 1/3, so that exploratory
proposals are made and accepted at all temperatures.

The location perturbation scaling is recalculated for each
parameter for which 20 proposals for which δE(x,x′) > 0
have been generated, after which the count is reset. Location
perturbation rescaling is omitted in two cases: First, when the
archive of the estimated Pareto front F has fewer than 10
members. Secondly, when the combined size of F augmented
by the samples from the attainment surface when multiplied
by the temperature does not exceed 1. This is because we
adjust the scalings to attempt to keep the acceptance rate of
derogatory moves approximately a third; when this value is
too small, it becomes impossible to generate such a scaling,
and so the scalings are kept at the most recent valid value.

Counting only moves generated from perturbations to a
particular dimension of parameter space, the acceptance rate
of derogatory moves α is the fraction of proposals to a
greater energy which are accepted. If σ denotes the location
perturbation scaling for a particular dimension, the new σ is
set as:

σ :=

{

σ(1 + 2(α − 0.4)/0.6) if α > 0.4

σ/(1 + 2(0.3− α)/0.3) if α < 0.3
(14)

This update works because, in general, smaller perturbations
in parameter space are more likely to generate small changes
in objective space, resulting in smaller changes in energy.

VI. EXPERIMENTS

We illustrate the performance of this annealer on some well-
known test functions from the literature, namely the first three
DTLZ test functions of Deb et al. [18]. The benefit of using
these functions is that the true Pareto front, P , is known, so
we can discover how close our estimated archive F is to P ,
as well as comparing our results to published work.

A. Problem description

Test problems DTLZ1, DTLZ2 and DTLZ3 are minimisa-
tion problems, and are described used here in their standard
3-objective formulation. The true front of DTLZ1 lies on the
plane where the sum of all objectives equals 0.5. The fronts
of DTLZ2 and DTLZ3 in contrast lie on the spherical front
where the sum of the squared objectives equals 1.0.

In order to quantify the convergence of the annealer we
measure two distinct properties. Firstly the median distance
of the archived solutions discovered at each fold from the true
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Fig. 5. The annealer archive on test problem DTLZ1 after 30000 iterations.
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over 30 runs plotted against iteration. Dashed lines represent the mean ±1
standard deviation; maximum and minimum sizes are marked with crosses.

front is calculated to ascertain how close on average solutions
found are to the true front. Additionally we are concerned
with finding solutions spread across the true Pareto front,
in order to do this we also use a variant of the volume V
measure [15]. Here V(P , F ) measures the percentage of a
given objective volume which is dominated by the true front
P , but not the stored archive F . Implementing the measure
in this study involves Monte Carlo sampling (105 samples
here) of a cube bounded by the range [0,2] on each coordinate
and measuring the proportion of points which are dominated
by the true Pareto front, but not dominated by the annealer
archive.The better covered the true Pareto front is, the smaller
this measure becomes.

The annealer was run 30 times, for iteration lengths (func-
tion evaluations) 10000, 15000, 20000, 25000 and 30000.

B. Results

Figure 5 shows the archive attained from a single run of the
annealer on test problem DTLZ1 for 30000 iterations. This
is an equivalent number of function evaluations as the non-
dominated sorting genetic algorithm II (NSGA-II) [19], used
on this problem in [18]. Although both algorithms demonstrate
a similar level of convergence, the annealer generates a far
higher number of converged solutions in comparison with
those reported in [19]. Figure 6 shows how the final archive
size grows with run length for DTLZ1, an average of over
2000 non-dominating points found after 30000 iterations, the
majority of which have converged to the true front.

A even more striking example of the annealers performance
is provided in Figure 7, where its evaluation on DTLZ3 is
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Fig. 7. The annealer archive on test problem DTLZ3 after 30000 iterations.

shown again for 30000 iterations. The front is converged to
within 0.002 of the true front (as supported by the histogram
of solution distances from the front in Figure 8). Deb et al.
[19] in contrast found that the NSGA-II had still failed to
converge to this problem after 50000 function evaluations.

The experimental results, averaged across runs, are provided
in Table I. This table shows the median and quartile boundaries
across the folds for the two error measures for each iteration.
The annealer can be seen to converge very swiftly to DTLZ2,
in just 10000 iterations the average distance of archive set
members from the true Pareto front being less than 10−5.
The annealer does not converge (on average) quite so close
on the other two test functions, which is probably due to
some members of the estimated Pareto set being caught on
one of the many local fronts that lie close to the true front for
these problems. Nevertheless, by 30000 iterations the average
distance of solutions from the true Pareto front is of the order
10−4 and 10−3 for DTLZ1 and DTLZ3 respectively. The V
results evince that not only have the solutions found by the
annealer converged well to the true front, but also that they
have spread across it well (as also shown in Figures 5 and 7).
After 30000 iterations, on average, only 0.15% of the volume
in Z is dominated by P for DTLZ1, but not by the annealer’s
estimate of it. For DTLZ2 and DTLZ3 this value is the slightly
higher 0.32% and 1.17% (however it must be noted that the
actual volume sampled in Z for these test functions is smaller
due to the shape of P — so relatively larger V values compared
to DTLZ1 are unsurprising).

VII. CONCLUSIONS

We have presented an energy measure for use in multi-
objective SA which is based on the fundamental notion of
dominance, rather than employing a weighted combination of
the objectives. Simulated annealers employing this measure
were shown to have good convergence properties on the first
three DTLZ test functions [18]. The simulated annealer with
the dominance measure even provided an excellent estimate
of the Pareto front on the DTLZ3 problem, where the multi-
objective genetic algorithm NSGA-II was unable to locate the
true front, even with more function evaluations.

An advantage of the dominance based energy measure is
that it is not a priori biased towards any part of the front;



TABLE I

TEST PROBLEM RESULTS. MEDIAN AND QUARTILE BOUNDARIES FOR THE MEDIAN DISTANCE OF POINTS FROM THE TRUE FRONT, AND FOR V(P , F ).

DTLZ1 DTLZ2 DTLZ3 DTLZ1 DTLZ2 DTLZ3
Iterations Distance ×10−2 Distance ×10−6 Distance ×10−2 V % V % V %

10000 6.27 (1.68, 50.18) 5.63 (2.73, 13.77) 19.15 (7.04 ,52.26) 0.59 (0.32, 0.99) 0.66 (0.62, 0.71) 5.45 (2.60, 10.18)
15000 0.95 (0.52, 2.36) 1.89 (0.74, 4.75) 3.84 (1.52, 21.79) 0.26 (0.18, 0.35) 0.47 (0.45, 0.54) 2.44 (1.53, 6.78)
20000 0.53 (0.167, 15.93) 0.87 (0.54, 4.55) 0.96 (0.43, 2.98) 0.21 (0.14, 0.30) 0.42 (0.36, 0.45) 1.50 (1.03, 3.36)
25000 0.08 (0.06, 0.169) 0.51 (0.12, 1.190) 0.43 (0.21, 0.981) 0.17 (0.14, 0.239) 0.36 (0.33, 0.395) 1.84 (0.84, 6.512)
30000 0.05 (0.02, 0.13) 0.29 (0.15, 1.24) 0.23 (0.13, 0.54) 0.15 (0.10, 0.29) 0.32 (0.31, 0.35) 1.17 (0.65, 3.04)

0 0.002 0.004 0.006 0.008 0.01 0.012
0

1000

2000

3000

4000

5000

6000

7000

Distance of solutions from true front

N
um

be
r 

of
 s

ol
ut

io
ns

Fig. 8. Histogram of distances of archive solutions from the true front on
problem DTLZ3 after 30000 iterations, for all the 30 folds. The last 5% of
the right hand side of the histogram has been truncated for ease of viewing.

indeed, we have argued that it tends to promote exploration
in sparsely populated regions and in practice we have shown
that estimated fronts evenly and widely cover the true front.

Determining an efficient scale on which to make proposals
is more complicated in the multi-objective case than the uni-
objective case, because some proposals work to advance the
front, while others traverse the front. We have proposed simple
heuristics to adapt the perturbation scales and future work
involves applying machine learning techniques to learn the
local mapping between parameter and objective space in order
to more sensitively control the search direction.

Our E(x) is a measure of a portion of the dominated set,
namely µ(F̃x); which is a close relation to Fleischer’s recently
proposed measure [13]; loosely, our measure deals with the
area of the dominating surface—the attainment surface—
while Fleischer’s considers the dominated volume. It will be
interesting to investigate the convergence of an annealer based
on Fleischer’s measure. Although a proof of convergence
for simulated annealers based on our measure remains to be
completed, this is an area of current work, together with the
application of the annealer to large scale problems.
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