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Abstract- A technique is proposed for integrating a
probabilistic graph construction algorithm with an evo-
lutionary multiobjective optimizer. A hybrid planner
(EvoVBPR) for a nonholonomic robotic vehicle is then
presented. It integrates a probabilistic roadmap con-
struction method (VBPR) with the SPEA2 evolution-
ary multiobjective algorithm and an additional deter-
ministic graph pruning step. The result is a Pareto set
of roadmaps that represent different tradeoffs between
length of path and obstacle clearance.

1 Introduction

Motion planning problems can be quite difficult to solve ef-
fectively using deterministic algorithms [Lat91]. Nonholo-
nomic motion planning is particularly trouble prone. Non
evolutionary stochastic methods have been used quite ex-
tensively for these problems [SO98] and in some cases evo-
lutionary computation based methods have been proposed
[HS01][XMZT97][SM00]. Notwithstanding the evolution-
ary and multimodal method of [HS01] that is based on spe-
ciation, it was not possible to find major previous work
where an evolutionary multiobjective algorithm in the sense
of those in [Deb01], was applied to nonholonomic motion
planning or to motion planning in general. In [CVL02],
Coello et. al. discuss generic multiobjective evolutionary al-
gorithms as well as planning applications.

In this work the Visibility Based Probabilistic Roadmap
[NSL99] stochastic method is integrated with the SPEA2
[ZLT01] evolutionary multiobjective algorithm and applied
to the kinematic motion planning problem for a nonholo-
nomic vehicle. This is not a straightforward operation
since the nonholonomic constraints of the vehicle motion
and constraints on the structure of the graph representa-
tion impose special requirements. Thus the algorithms were
augmented with a deterministic graph pruning operator, a
stochastic repair operator and custom mutation and recom-
bination operators.

The resulting algorithm is applied to multiobjective mo-
tion planning for nonholonomic vehicles. The Pareto front
defines the tradeoff between (a) the shortest path length sub-
ject to obstacle imposed constraints and (b) the obstacle

clearance, which is defined as the minimum distance be-
tween any point on the vehicle and any obstacle, at any time
during the path traversal.

A set of concepts and guidelines are presented in section
2 that generalize this effort into a technique that is applica-
ble to a class of optimization problems that have a natural
phenotypic representation encoded in the form of a graph.

The application details concerning nonholonomic mo-
tion planning and probabilistic roadmaps are presented in
section 3 while the details of the actual integrated algorithm
in section 4. The results are presented and discussed in sec-
tion 5. The conclusions and suggestions for further work
are stated in section 6.

2 Integrating Graph Construction and Evolu-
tionary Search

A number of optimization problems can not be readily rep-
resented using a fixed length encoding. A particular case
is planning, where the size of the plan is not known in
advance. An evolutionary optimization method where the
representation is inherently of variable size such as Genetic
Programming may be used in some cases. Generally though
the representation is dictated by application requirements.
In planning, a parameterized graph representation is a natu-
ral choice.

Assuming that the phenotypic representation is a graph,
a number of choices exist for encoding the graph in a geno-
typic representation. This is unfortunately not possible if
constraints on the phenotype are to be taken into account
when applying the search (solution modification) operators.
In this case the genotype and the phenotype are identical. If
a graph representation is used, a set of graph based search
operators (mutations and recombinations) have to be de-
fined.

A graph construction algorithm operates by adding
nodes and edges to a graph that is initially empty until some
criteria are satisfied. Such an algorithm may take various
“local” constraints into account when modifying the graph.
In this instance the term “local” refers to constraints that a
partially constructed graph must satisfy and that limit the
values of the local parameters of the new graph element



(node and/or edge) being inserted.
A probabilistic graph construction algorithm incorpo-

rates random elements when inserting nodes and edges and
when setting the node and edge parameters. Given an evo-
lutionary optimizer that operates directly on the phenotype,
the construction operator(s) is equivalent to a (generalized)
mutation operator and may be used as such.

Since the construction operator may by itself deliver a
solution if applied an appropriate number of times, it may
be used for generating the initial population for the evolu-
tionary algorithm. This population satisfies the constraints
on the graph, since the elementary graph modification oper-
ators do so. The initial graph construction phase may con-
tinue until the graph reaches a specified size or until some
“global” appropriateness criterion is satisfied. This crite-
rion usually incorporates solution feasibility as its main con-
stituent.

The design of recombination (crossover) operators is
more involved. These operators can be designed so that the
resulting graph satisfies the “local” constraints mentioned.
This may be done by individually inserting the graph ele-
ments of the parent graph fragments, using the graph con-
struction algorithm. In this instance no new probabilistic
elements are introduced; those in the parents are used.

The resulting graph is generally a partially constructed
graph that may not (and usually does not) satisfy the global
appropriateness criterion. This deficiency may be corrected
in a stochastic repair phase that repeatedly applies the con-
struction (mutation) operator until the graph satisfies the
global appropriateness criterion. This is the same as the ini-
tial population element construction method starting from a
non empty graph.

Given the availability of mutation and recombination op-
erators, the random search phase of an evolutionary opti-
mization step (generation) is readily implemented. Evalu-
ating the solution may require a graph traversal using a de-
terministic graph search algorithm such as that of Dijkstra
which generates an optimal path within the graph (critical
path). The resulting optimal path is evaluated and the pop-
ulation element is assigned a set of values for its objective
functions. The part of the graph that is not part of the opti-
mal path, is equivalent to the concept of introns in genotyp-
ically coded evolutionary computation.

It was experimentally found that the use of this optimal
path as the basis for evaluating the population element, leads
into insufficient evolutionary pressure, i.e. propensity for in-
troducing new solutions. This is due to the fact that the
element modifying mutation or recombination does not af-
fect the optimal path but some other part of the graph. A
suggested solution is stripping the graph of the nodes and
edges that do not belong to the optimal path. This greatly
increases evolutionary pressure since generally every search
operator application produces offspring with different ob-

jective function values. The resulting lack of redundancy in
the coding (intron removal) makes the use of an elitist evo-
lutionary computation method critical for preserving good
solutions, particularly if a generational evolutionary opti-
mizer is used. An alternative that was not explored is the
use of a steady state (or partially steady state) method. It
must be noted that an elitist algorithm presents significant
additional benefits for multiobjective optimization.

With population element objective functions computed,
the selection method of any elitist evolutionary multiobjec-
tive optimization algorithm can be used for generating the
elite population that encodes the Pareto set of solutions and
the new main population.

3 Probabilistic Roadmaps for Nonholonomic
Motion Planning

Probabilistic roadmaps have become a method of choice for
motion planning. This is particularly the case when the
motion space includes a large number of possibly irregu-
lar obstacles, is of a high dimension and/or the motion is
subject to nonholonomic constraints. These issues are well
discussed in [KSLO96] and references therein.

A constraint on a state variable of a dynamic system (e.g.
the position of an object) is nonholonomic when it incorpo-
rates derivatives of the variable that can not be integrated
out of the differential equation set describing the system
dynamics. A system that incorporates nonholonomic con-
straints may be called a nonholonomic system and if it en-
compasses moving objects, the movement is also identified
as nonholonomic.

A vehicle may be inherently nonholonomic when its dy-
namics are subject to nonholonomic constraints. This is the
case of mobile robots that have the Ackermann steering sys-
tem of a common car or of tricycles with an actively steering
wheel. The nonholonomic constraint that can not be inte-
grated out is that the derivative of the lateral displacement
(i.e. the lateral velocity) of a non skidding car is zero.

A nonholonomic constraint may be externally imposed
upon a moving object by obstacles. This happens when the
completion of a desired maneuver requires that the object
move tangentially to and near the boundary of an obstacle
(compliance). This requires that component of the velocity
of the object that is normal to the tangent of the obstacle
and intersects the obstacle be equal zero. Furthermore, the
derivative of one or more of the Euler angles of the orienta-
tion of the object must also be zero.

A nonholonomic system of moving objects is by defi-
nition under actuated, at least for portion of the movement
during which the nonholonomic constraints are active. An
inherently nonholonomic vehicle is always under actuated.

When planning motion in the presence of obstacles, it
is not possible to directly derive a path from the initial to



the target configuration. The path is broken down into local
paths that are determined by a local planner that operates
in the absence of obstacles. The intermediate configura-
tions (positions and orientations of the vehicle) where the
local paths are connected are called waypoints. When us-
ing a roadmap representation of the motion plan, these local
paths and waypoints are encoded explicitly. The waypoints
are mapped to the nodes of a graph and the local paths are
mapped to the graph edges. Particular values of variables
that are applicable to each local path (e.g. steering settings)
are mapped as parameters of the graph edges.

A constructive global planner may select waypoints and
then use the local planner to attempt to connect them to
the graph as constructed to that point. The graph is ini-
tially empty. When querying the plan for a solution to a
movement problem, the planning algorithm attempts to con-
nect the start and target configurations of the vehicle to any
nodes in the graph. If this succeeds, a deterministic query
(e.g. a Dijkstra search) is used to connect the waypoints
found. This is referred to as the precomputed roadmap ap-
proach to roadmap based planning. Alternatively the initial
and target configurations may be preinserted as nodes in the
roadmap and the waypoints determined afterwards. New
waypoints are generated and connected to the graph until
the start and target configurations are connected. The deter-
ministic graph search is still necessary. This is referred to
as the online approach to roadmap construction.

A probabilistic roadmap (PRM) [SO98] selects way-
points randomly within the vehicle working area. If the
selected waypoint is not inside some obstacle, an attempt
is made to connect it to the graph. The PRM forms the ba-
sis of search algorithms that are complete in a probabilistic
sense. That is, if enough nodes are added to the graph, given
two vehicle configurations that are located in the same con-
nected subset of the free space, the probability of connecting
these configurations via the graph may approach one. Vari-
ous strategies are proposed in the literature (e.g. [SO98] to
select waypoints in such a way that the free (not inside the
obstacles) space is well explored and that known difficult
cases (e.g. corners, long corridors) are handled efficiently.
Other methods are proposed to limit the size of the graph
which tends to expand quickly.

The Visibility Based Probabilistic Roadmap (VBPR)
was proposed in [NSL99] and is the one used in this work.
It defines a coloring on the graph, labeling the nodes as of
guard and connection type. Guard nodes define a visible re-
gion around them that is the subset of the free configurations
(i.e. those belonging to the free space) that are connectable
to the guard node using the local planner. A guard node
may not be inserted within the guard (i.e. visible) region
of an already inserted guard node. By definition any two
guard nodes are not directly connectable using the given lo-
cal planner. Connection nodes are inserted to connect two

or more guard nodes that do not already belong to a con-
nected subset of the graph. Connection nodes are by defi-
nition within the intersection of two or more guard regions
and the insertion of a connection node connects two previ-
ously unconnected subgraphs.

The VBPR greatly reduces the number of nodes (way-
points) that must be inserted in the graph (roadmap) to ren-
der most of the free space reachable from the graph. This
means that a randomly selected configuration that belongs
to a connected component of the free space can be con-
nected with a high probability with the subgraph of the
roadmap that is located in this free space component. If
there is only one connected free space component in the ve-
hicle working area then there is a high probability that two
randomly chosen configurations anywhere within the free
space are reachable from the graph and therefore may be
connected via the roadmap.

In the variation of the algorithm used in this work we use
the online approach to roadmap construction and the VBPR
method to limit the number of nodes.

Additionally, when a feasible path has been found (via
Dijkstra search) from the start to the target configuration, a
deterministic graph pruning step is applied. This removes
the nodes and edges that are not part of the optimal path
while preserving the visibility constraints that are applicable
to the nodes that remain in the graph.

This step was found to be necessary for effective dif-
ferentiation among the evolving population elements. Oth-
erwise the graph elements that are not part of the critical
path act as an abundance of introns that have no effect on
the element fitness. Therefore the mutation and recombina-
tion operators mainly modify the introns without changing
the element fitness. Since most elements are phenotypically
identical, the selection algorithm becomes mainly random
sampling. As a result the population overconverges to a
phenotypically degenerate state, even though the genotype
is still differentiated.

The pruning step modifies the function of the VBPR
construction algorithm from that of a construction method
of a roadmap used for later batch querying, to a step in a
construction method that produces a path (with extraneous
branches) that is the result of a specific query.

The local planner used was the Arc-Line-Arc (ALA) lo-
cal planner for vehicles with Ackermann steering, as pre-
sented in [Sve96] for Reeds-Shepps [RS90] cars. It is as-
sumed that the vehicle can move bidirectionally (i.e. both
forwards and in reverse). The PQP version 1.2 library was
used for collision detection and for determining the clear-
ance of a given configuration form the nearest obstacle.



4 The EvoVBPR Multiobjective Motion Plan-
ner

The VBPR algorithm and its associated local planner and
graph query produce a path considering only a single crite-
rion, namely the path length. This is a sum along the path
and has the characteristics of a low order norm.

When applying the VBPR, the intent is not to produce
a complete roadmap as e.g. in [KSLO96], even though this
may well happen if sufficient effort is expended at the initial
step of the algorithm. The roadmap is used as a probabilis-
tically complete set of paths out of which a specific path
is selected for single query motion planning as in [Hsu00].
This specific path constitutes a single point (or tradeoff) on
the Pareto front and its length is the first of the objectives
being minimized.

The obstacle clearance criterion is handled exclusively
by the evolutionary optimizer and is the minimum of the
clearances of the local paths and has the characteristics of
an infinite norm. This is the functionality supplied by the
evolutionary component of the EvoVBPR beyond that of
the VBPR.

Since the baseline VBPR considers only path length, the
search component (initial population setup, mutation, re-
combination and repair) of the evolutionary optimization
system is biased towards producing shorter paths. It is there-
fore a challenge for the evolutionary multiobjective opti-
mization algorithm (EMOO) to produce a distribution along
the clearance dimension. The clearance of a path is used as
a proxy for the risk of colliding into an obstacle because of
errors inherent in the execution of any plan. As the clear-
ance increases, the collision risk decreases. Even a small
difference in clearance is significant since the risk increases
nonlinearly (exponentially if a normal noise distribution is
assumed) as the clearance approaches the magnitude of the
mean positioning sensor noise and of the mean actuator er-
ror.

The EMOO algorithm chosen was initially SPEA
[ZT98][Zit99] and was later upgraded to SPEA2 [ZLT01].
This choice was initially driven by the excellent at the time
performance of SPEA and the advantages of having an ex-
plicit separate archive containing the Pareto front. SPEA2
was a natural choice for improving the algorithm perfor-
mance which was experimentally determined to be satis-
factory. Alternatively any modern elitist EMOO algorithm
could have been selected (e.g. NSGA-II [DAPM00] or a
derivative of PAES [KC00]), although its performance in
this specific application would still have to be experimen-
tally determined.

The main algorithm parameters were as follows:
� Number of generations : 50
� Main population size : 20

� Elite population size : 6 to 10
� Maximum attempts to insert nodes (application of re-

pair operator) in an initial population element : 100
� Nodes attempted to insert for each insertion attempt

(initial or repair) : 50
� Maximum number of failed attempts when applying

mutation or recombination : 10
� Mutation probability : 0.25 for each of 2 operators
� Recombination probability : 0.50

The parameters above were determined experimentally and
chosen so that the solution to the most time consuming of
the worlds (obstacle sets) considered (as shown in figure 6),
was derived in under an hour of computational time (worst
case) on a 1 GHz Pentium 3 personal computer.

The guidelines proposed in section 2 were all applied in
the design of the EvoVBPR planner. In particular:

� The roadmap representation is naturally that of a
graph. The nodes must be located in the free space
and the structure of the graph is subject to the visibil-
ity constraints. The edges must not collide with the
obstacles.

� Custom graph based search operators (mutation and
recombination) were implemented so that the above
constraints on the graph are not violated.

� The elementary VBPR step (i.e. the insertion of a
waypoint) functions as a constructive method and is
used as a mutation operator. It is also used to generate
the initial population and as the elementary step of
the repair operator. In these operations a waypoint is
repeatedly inserted until a path is found between the
start and target configurations.

� The crossover operator operates upon the optimal
path as computed by a Dijkstra search on the graph.
It also uses the elementary VBPR node insertion step
to construct the new graph without violating the con-
straints.

� A deterministic graph pruning operation as already
mentioned in section 3 is used to increase evolution-
ary pressure and accelerate the solution.

The graph based search (mutation and recombination), ini-
tial construction and repair operators were defined as fol-
lows:

� Mutation: A guard or a connection node is removed
from the pruned roadmap (2 types of mutation). A
pruned roadmap is one where only the nodes and
edges that belong to the optimal path have been re-
tained. This operator produces a non feasible path and
forces the application of the stochastic repair operator
described below. Its intent is to keep the optimization
going even if premature population convergence has



occurred.
� Recombination: Starting from a pair of pruned

roadmaps, a single point crossover is applied to dif-
ferent points on each roadmap. It must be noted that
after pruning, the roadmaps have been converted to
chains. The guard and connection nodes of the con-
tribution from the first parent are inserted. Then an
attempt is made to insert the guard nodes of the con-
tribution from the second parent and finally the con-
nection nodes from the second parent. By recom-
bining partial paths previously generated (a form of
schemas), this operator accelerates the algorithm as
experimentally determined by comparing with exper-
iments where the mutation operator was used alone.

� Initial Construction: Starting with an empty graph,
the elementary VBPR step is repeatedly applied un-
til a feasible path connecting start and target config-
urations has been found. This is done by repeatedly
applying the repair operator below.

� Stochastic Repair: The elementary VBPR step is re-
peatedly applied until a feasible path connecting start
and target configurations has been found. This op-
erator is applied starting from a partial roadmap, i.e.
one that does not yet connect start to target. This op-
erator ensures that a feasible path is generated after
the application of the stochastic variation operators
(mutation and recombination) and at the initial con-
struction step. This allows the evaluation function to
compute the values of the multiple objectives used in
selection, which in the case of a non feasible path are
undefined.

The EvoVBPR algorithm steps may be summarized as the
following sequence:

1. Initialize population by repeatedly applying the repair
operator on an empty roadmap (Initial Construction
operator)

2. Prune graph and convert it to a chain of nodes

3. Apply stochastic search operators (Mutation and Re-
combination) as described above

4. Apply Stochastic Repair operator. If a feasible path
from start to target is not found, revert the graph to its
state before the search step and go back to step 3

5. Compute the multiple objectives that are to be opti-
mized

6. Apply the selection method of the SPEA2 EMOO

7. If the maximum number of generations is not ex-
ceeded go to step 2

5 Results

Representative results are presented for three different en-
vironments. The first is an easy environment that is repre-
sentative of a typical indoors arrangement (Indoors, figures
1 and 2).

The second environment is very difficult for determinis-
tic planners but of medium difficulty for stochastic planners
(Triangles, figures 3 and 4). This is due to the large number
of obstacles.

The third environment is very difficult for stochastic
planners (such as PRMs and the VBPR) when the vehicle
is nonholonomic (Corridor, figures 5 and 6). The difficulty
is due to the fact that this environment is a long (difficult
to connect), twisting (many changes of motion direction are
necessary) corridor and narrow when compared to the vehi-
cle turning circle (the local planner fails very often). Fur-
thermore, a large portion of the working area is covered by
obstacles (lower probability of selecting a random configu-
ration in the free space).

In figures 1, 3, and 5 the points on each Pareto front
(shown as markers) are connected by straight line segments.
In the 3D drawing the vertical axis represents the generation
of the evolution in increasing order and the Pareto front is
drawn along the other two axes. The objectives are to be
minimized and are positive values, i.e. the algorithm at-
tempts to drive them to zero (at the rear left of the drawing
space). The top view of this drawing rotated 90 degrees
counterclockwise is presented for clarity in the 2D drawing.
In both drawings, each alternate Pareto front is drawn in the
same color (blue or red). The marker that is used to denote
the points on the Pareto front that correspond to the spe-
cific tradeoffs found is rotated through four shapes (circle,
square, diamond and triangle) every four generations.

It is evident from the results that Pareto fronts (or indif-
ference fronts) do arise in path planning. The performance
of the proposed solution is quite good in common environ-
ments and in environments where the baseline PRM meth-
ods perform well. The environments that are difficult for
PRMs are naturally difficult for the EvoVBPR method as
well, since the elementary search step in the algorithm is
the insertion of a random configuration (graph node).

The above experiments were repeated 20 times for each
environment. The aggregate results of these experiments are
presented for the more difficult environments Triangles and
Corridor in tables 1 and 2 respectively. The entries Mean
of Best, Mean of Worst and Mean of Median refer to the
average of the values of the objective functions Length and
Inverse of Clearance over the 20 experiments. The values
Best of Best and Worst of Worst refer to the extreme val-
ues that the objective functions assumed again over all the
experiments. On the Pareto front the best values of Length
correspond to the worst values of the Inverse of Clearance
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Figure 1: Progression of the Pareto front by generation in
the Indoors environment

and vice versa.
To see the detail in the figures, this paper may be read in

its electronic form (Adobe PDF), where a zoom feature is
available.

6 Conclusions

A probabilistic graph construction algorithm was integrated
with an evolutionary multiobjective optimizer and suc-
cessfully applied in a multiobjective nonholonomic motion
planning setting (sections 3 to 5). The resulting algorithm
is quite different from related work in the literature.

A set of guidelines was defined to assist future applica-

Length Inverse of
Clearance

Mean of Best 2.4036 44.7865
Mean of Worst 3.6841 308.0225
Mean of Median 2.7025 91.7446
Best of Best 2.3626 29.4097
Worst of Worst 6.3976 919.4420

Table 1: Aggregate results of multiple experiments in the
Triangles environment.
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Figure 2: The final elite population in the Indoors environ-
ment
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Figure 3: Progression of the Pareto front by generation in
the Triangles environment
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Figure 4: The final elite population in the Triangles envi-
ronment
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Figure 5: Progression of the Pareto front by generation in
the Corridor environment
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Figure 6: A subset of the final elite population in the Corri-
dor environment

Length Inverse of
Clearance

Mean of Best 8.9775 103.8056
Mean of Worst 9.9358 467.6432
Mean of Median 9.4345 168.6460
Best of Best 8.2409 61.8132
Worst of Worst 11.6129 811.1340

Table 2: Aggregate results of multiple experiments in the
Corridor environment.



tion of the same integration concept to other settings (sec-
tion 2). This technique is also novel.

These results may be generalized to any setting where a
graph based phenotypic representation subject to constraints
would be an appropriate representation and the search op-
erates on the phenotype. Planning is a natural domain for
applying this technique and further work is concerned with
applying a similar methodology to kinodynamic nonholo-
nomic motion planners.
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