Efficient Fuzzy Modeling under Multiple Criteria by Using Genetic Algorithm

Toshihiro Suzuki* Takeshi Furuhashi* Seiichi Matsushita** Hiroaki Tsutsui***
* Graduate School of Engineering, Nagoya University,

Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
suzuki@bioele.nuee.nagoya-u.ac.jp
furuhashi@nuee.nagoya-u.ac.jp

** Nagoya Municipal Industrial Research Institute,
3-4-41, Rokuban, Atsuta-ku, Nagoya, 456-0058, Japan
matsushita@nmiri.city.nagoya.jp

*** Yamatake Corporation, Fujisawa Factory,
1-12-1, Kawana, Fujisawa-shi, 251-8522, Japan

tsutsui@atc.yamatake.co.jp

Abstract

Fuzzy modeling is a method to describe input-output
relationships of nonlinear systems. Genetic algorithm
(GA) has been applied to fuzzy modeling for identifi-
cation of the structure of a fuzzy model and selection
of input variables. Trade-offs among multiple criteria
make the search problem more complicated. For easy
determination of weights on the criteria, a framework
of model generation and testing was proposed by the
authors. This framework divides the process of fuzzy
modeling into two blocks, i.e. a model generation block
and model testing block. The model generation block
has criteria with a higher degree of importance, and
the model testing block has those with a lower degree
of importance. In this paper, the idea of pareto opti-
mality is introduced to this framework and the effec-
tiveness of the framework is examined by simulations.

1 INTRODUCTION

Fuzzy modeling [1] is a promising method to model
systems in the real world which have non-linear input-
output relationships. Models acquired by the fuzzy
modeling are readable for humans because they are
linguistically described. More specifically, the struc-
tures of fuzzy models are described using IF-THEN -
type rules. Genetic algorithm (GA) has been applied
to the fuzzy modeling for structure identification and
input variables selection.

People who use fuzzy models want to have them
meet multiple criteria such as precision, simplicity, noise
immunity and continuity of rules, etc.. Trade-offs among
these criteria make the fuzzy modeling more compli-
cated. A weighted sum of all the required criteria can
be used for the fuzzy modeling using GA. It is difficult,
however, to determine their weights.

The authors have proposed a new approach to solve
the above difficulty for the identification of fuzzy mod-
els under multiple criteria [2, 3]. This framework con-
sists of two blocks. One is a model generation block
and the other is a model testing block. In the model
generation block, various fuzzy models are generated as
candidates using GA under criteria that have a higher
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degrees of importance. In the model testing block,
models generated in the generation block are evaluated
and selected under criteria that have a lower degree of
importance. If necessary, the selected models are fed
back to the model generation block for directing the
search.

The essence of this framework is differentiating the
degrees of importance among the criteria used during
the process of fuzzy modeling. The criteria are divided
into two groups according to their degree of impor-
tance, and the ones with a higher degree of importance
are used in the model generation block for searching
the candidates, and the others in the model testing
block for selecting desired models from the candidates
generated in the model generation block.

Although this division of criteria has succeeded in
reducing the number of criteria in a block, each block
still has multiple criteria. We still have to adjust the
weights on these criteria. In this paper, we introduce
the idea of pareto optimality [4] to each block in this
framework. We show through simulations the effec-
tiveness of the framework with the idea of pareto op-
timality.

2 FRAMEWORK OF MODEL
GENERATION AND TESTING

As mentioned in the INTRODUCTION, fuzzy mod-
eling within the framework of model generation and
testing is a method to generate models where the de-
grees of importance of criteria are different. Fig. 1
shows the framework of model generation and testing.

Given a input-output data set, fuzzy models are
generated as candidates using GA with the evaluation
criteria that have a higher degree of importance in the
model generation block. Then the candidates are eval-
uated and selected in the model testing block by choos-
ing better models from the candidates with the evalu-
ation criteria that have a lower degree of importance.

2.1 Evaluation Criteria

Fuzzy models are obtained using a input-output data
set from a target system. Such data set is divided into
two groups A and B. The data in group A is used for
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Figure 1: Framework of model generation and testing

identification of fuzzy models and the data in group
B for evaluation of the generality of the models. This
division of a data set into two groups ensures identified
models to have generality for unknown data.

Below are the evaluation criteria used during the
process of fuzzy modeling within the framework:

o Precision(average of squared error)

npg

> (WP - u®)?
i=1
ep = ——M8M————— 1
B o (1)

np ! the number of the input-output data in B,
y;B4 . the inffered value of a model generated with
A, using one of the data i in B,
%P : the output value of the data i in B.

o Simplicity(the number of subspaces) nsyupspes

e Noise immunity

C‘l — NR — Ndist (2)

nRr
ng : the number of subspaces where the data exist,
ngist : the number of subspaces where the devia-
tion of output values (from the data in A) in each

subspace is within a range from the threshold value
Dyp.

o Continuity of rules

Cy = AT Teont (3)
na
n4: the number of the data in A,
Neont: the number of the data from A whose in-
ferred value without using the rule in the corre-
sponding subspace stays within the threshold value
from the inffered value using that rule.

The precision ep is to evaluate the generality of
the model. The simplicity means that models with

V —315

a smaller number of fuzzy rules is considered to be
simpler. The noise immunity criterion becomes better
(smaller) in the case where each rule is made from a
large number of data to absorb the noise contained
in the data. The continuity criterion is to check the
smooth interpolation among rules. This last criterion
works effectively when a sufficient number of data that
cover the whole input space is not available. In this
case, the identified rules are required to be at least
’continuous’, since many subspaces are vacant without
any rules.

Among these criteria, ep and ngypspes are used in
the model generation block, while 'y and C3 in the
model testing block, in this paper.

2.2 Pareto Optimality

In this section, we briefly describe the idea of pareto
optimality.

Definition 1(Inequality)
Inequality between p-dimensional constant vectors
a and b is defined as:

a<b & a;<b(i=1,..,p)

and
Fi,a; < bi (4)
where a; and b;'is the i-th element of @ and b, respec-
tively.
Now we define

f(it) = (fl(z):""fp(z))’ (5)

then superiority between solutions in multi-objective
optimization problems are defined as follows:

Definition 2 (Superiority between solutions)

If f(z') < f(2?),then &' is sperior to . (6) .
If ! is superior to ®2, 2! is a better solution than «2.
Therefore it is a reasonable way to choose solutions
that are superior to any others.

Pareto optimal solutions are defined as follows:

Definition 3 (Pareto optimal solutions)

If « sperior to x° does not exist,
then z° is a pareto optimal solution.  (7)

And rank is defined as follows:

Definition 4 (Rank) When p; individuals are su-
perior to an individual Xj, the rank of X; (r(Xj)) is
defined as follows:

r{X;) =1+ p;. (8)

With this definition, individuals with rank 1 are
pareto optimal solutions. An example of how rank is
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Figure 2: Example of rank

assigned to each solution (when the number of objec-
tive functions is 2 (i.e. p = 2)) is shown in Fig. 2. The
solution indicated by the arrow is ranked 2. This is be-
cause there is a solution that has better values under
f1 and fa than it does.

2.3 Conventional Evaluation

The flow of fuzzy modeling using the framework in the
papers [2, 3] is shown in Fig. 3. The evaluation function
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Figure 3: Flow of the framework of model generation
and testing with the conventional evaluation function

in the model generation block was:
E = anpglogep + ,anubspcs (9)
and that in the model testing block were simply formed

as:

F=C+Cs (10)

The weights o and § were varied each from 0 to 1 by
0.1 step and 21 pairs of weights (o, 3) were used in
the model generation block. GA search was performed
using eq. (9) with each pair of weights in the model
generation block. GA search was repeated 21 times
in the model generation block. In the model testing
block, C; and C3 were simply summed, though the
evaluation values C] and C5 have difference in quality.

2.4 Two-Objective Optimization

In this paper, we introduce the idea of pareto opti-
mality to the framework of model generation and test-
ing. Fig. 4 shows the flow of fuzzy modeling using
the pareto optimality as the evaluation functions. The
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Figure 4: Flow of the framework of model generation
and testing, with pareto optimal solutions

ranks calculated with the precision ep and the simplic-
ity Nsubspes are used for the evaluation function in the
model generation block, and that calculated with the
noise immunity C; and the continuity of rules C; in
the model testing block.

3 NUMERICAL EXPERIMENTS

Numerical experiments were done to show the effective-
ness of the framework of model generation and testing
with the idea of pareto optimality. First we explain
experimental conditions and next show the results of
the numerical experiments.

3.1 Experimental Conditions
In this section, the fuzzy inference method and genetic
operations used in this paper are described.

3.1.1 Simple Fuzzy Inference: This paper uses
the simple fuzzy inference [5, 6] that quickly identi-
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fies a fuzzy model with a data set and the number of
divisions of each variable.

The input space is divided into crisp subspaces, and
a data set A is used for identification of fuzzy models.
In the case of two inputs and one output, the data is
given as (z1;Z2,y). When one or more of the data
from A exist in a subspace, a rule is defined in this
subspace. The consequence of a rule is defined as a
singleton given by

s

Ny . ,’,k
fij Zzyj\% {i, jlz1i, 25} (11)
k=1

The inferred value y* of this'model is expressed as:
N

" fi

y =) —

In eq. (11), 21; and &9, are the i-th and j-th crisply
divided subspace of #; and xs, respectively, yij" is the
k-th output from A in this subspace, and N; is the
number of the data from A in this subspace.

In eq. (12), the inferred value is defined for new in-
put data C (zc1, Ze2). Np is the number of neighboring
rules of C' whose contribution to an inferred value is
in proportion to the inverse of ¢-th power of the dis-
tance between the input data C' and the centers of the
neighboring rules. r;; is the distance from the input C
to the center of the rule in the subspace of (x1;, 2;),
R;; is the number of subspaces between input data and
rules used for the inference, L is the number to define
neighbors, and ¢ is a constant. L = 1 and ¢ = 2 in this

paper.

Noo )
;W {i,jlRi; <L}  (12)

3.1.2 Genetic Operation: Genetic operations are
applied in the process of GA in the model generation
block. Genetic operators are selection, crossover and
mutation, and they are applied to each chromosome in
this order.

Fig. 5 shows a form of a chromosome that defines
a fuzzy model. Each gene corresponds to an input

m

LT3

Figure 5: A chromosome

variable, and the integer number in each means the
number of divisions for an input variable. For example,
“6” in the gene 1 means that the universe of discourse
of an input variable z; is divided into 6 subspaces. If
this number is zero or one, the corresponding input
variable is not used.

The population of the chromosomes is ng. Chro-
mosomes with rank 1 is selected, and if the number of
those (nrank1) is lower than ng/2, ng/2 — nyanky chro-
mosomes with lower ranks are also selected. Crossover
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and mutation are applied to chromosomes with lower
ranks.

The single point crossover is applied with the prob-
ability p.. Each gene is changed (mutated) with the
probability pm /2 to another random integer number,
or increased/decreased by 1 with the same probability.
The number of generations ngy, is defined by the user.

3.2 Results

We examined, through simulations, the effectiveness
of the framework of model generation and testing with
the idea of pareto optimality.

3.2.1 2-Input Function: First, we examined this
framework using a 2-input function given by

y = sin(2z1 + 3z2)
zy: [=1,1], 20 : [-1,1]. (13)

This function had only two input variables so that you
could easily obtain all the possible models and calcu-
late their evaluation values. Therefore it was easy to
examine whether the obtained models by this frame-
work were appropriate or not. In this experiment, we
limited the maximum number of divisions of each vari-
able to be 15. The number of all the models was 255,
and all the evaluation values of those models were cal-
culated before the simulation.

Fig. 6 and Fig. 7 show the results from this simula-
tion. Fig. 6 shows the real pareto optimal solutions ob-
tained beforehand. Each circle represents a solution, or
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Figure 6: Results using a 2-input function(optimal)

a fuzzy model. The horizontal and vertical axes mean
the number of subspaces (n,ubspcs) and the average of
squared error (eg), respectively. From Fig. 6, the real
pareto optimal solutions (white circles) spreads widely,
ranging from the ones with smaller ep to the ones with
larger nsubspes-

Fig. 7 shows the results using the framework. Each
graph in Fig. 7 shows the results with different set-
tings in the model testing block. Fig. 7 (a) shows the
result without the selection in the model testing block.
The obtained models spreaded well on the real pareto
front. Fig. 7 (b) shows the result only with the noise
immunity (C7) being used in the model testing block.
In this case, models with smaller n,ypspcs Were selected
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Figure 7: Results using a 2-input function

because the subspaces should be wide to include a large
number of data in each of them. Fig. 7 (c) shows the
result only with the continuity of rules(C2). You can
notice that models with larger n,upspcs Were selected
for continuity of rules. Fig. 7 (d) shows the result us-
ing the ranks with C; and C; in the model testing
block. Balanced solutions of C; and Cy were obtained.

3.2.2 7-Input Function: The framework worked
well for modeling the simple 2-input function. We also
did experiments with the following more complicated
7-input function:

y = 2z +sin(loglzs + 2|) + cos(e®%?)

+log|zs+ x5+ 2|+ €. (14)

Figures 8 - 11 show the results of this experiment.

In this case, the real pareto front was not known.
These figures show the fuzzy models with rank 1 at the
10th, 20th and 30th generations in the model genera-
tion block. “4” means fuzzy models at the 10th gener-
ation, “x” at the 20th generation and “*” at the 30th
generation. The settings of the model testing block
were changed in the same way as in the previous simu-
lation in subsection 3.2.1. These figures show the same
distributions of fuzzy models as in the case with the
2-input function.

4 CONCLUSIONS

In this paper, we examined a method to generate fuzzy
models using GA under multiple criteria. We intro-
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Figure 8: Results with a 7-input function ([Model test-
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duced the idea of pareto optimality into the framework
of model generation and testing and showed the feasi-
bility of the framework. This framework is effective
for model search under multiple criteria where their
degrees of importance are different.
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