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SUMMARY

For sampling various solutions from the entire Pareto

front of the multiobjective resource division problem, a new

Genetic Algorithm (GA) based on an evolutionary theory

advocated by Kinji Imanishi is proposed. First, two types

of distance between two individuals, namely, structural and

functional distances, are introduced and used to define four

types of relation between them, namely, homogeneous,

heterogeneous, homologous, and analogous species. Then,

for keeping a variety of species within a population as far

as possible, a new generation alternation model with vari-

able population size is presented. In order to find Pareto-

optimal solutions effectively, a new genetic operation that

combines conventional harmonic crossover with a local

optimization algorithm is also proposed. Finally, the advan-

tage of the Imanishism-based GA is demonstrated through

computational experiments conducted on two- and three-

objective problem instances. © 2002 Scripta Technica,

Electr Eng Jpn, 139(2):  23�35, 2002; DOI

10.1002/eej.10010 
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1. Introduction

The Genetic Algorithm (GA) has been successfully

applied to multiobjective optimization problems, which

usually have several optimal solutions incomparable with

one another, because GA can survey different parts of the

search space simultaneously based on a population, a set of

solutions called individuals. Incidentally, in order to choose

a preferred solution suiting a personal taste from several

optimal solutions found by the GA, the decision maker

could use some traditional techniques, such as the satis-

ficing trade-off method [1] and the Analytic Hierarchy

Process (AHP) [2].

It has been said that humans are good at taking a

broad view of situations from instinct, and are able to make

a global decision based on experience. On the other hand,

humans cannot recognize any difference less than the dif-

ference threshold nor manage immense data at one time [3].

Thus, the desirable function for the GA applied to multiob-

jective optimization problems is not to find as many optimal

solutions as possible, but to sample typical solutions from

the set of all nondominated solutions called Pareto-optimal

solutions. In order to design such a practical GA, we have

to consider a way to keep the diversity of the population

steady without harming the dynamical process for seeking

Pareto-optimal solutions.

Conventional GAs based on Darwinism mimic the

process of natural selection and select some individuals

from the current population based on their fitness, namely,

superiority or inferiority. In order to maintain population

diversity, several techniques have been proposed for con-

ventional GAs. The sharing technique, which obtained its

idea from the ecological niche, evaluates the fitness while

taking the structural distance between individuals into ac-

count [4]. However, since the sharing technique reduces

only the fitness for similar individuals gathering in a niche

to decrease their survival chances, it cannot manage the

fitness of individuals outside the niche. Another technique

divides the objective function space into several regions and

defines the fitness for individuals in each of the regions [5].

The technique aims to maintain population diversity in the

objective function space. But population diversity should

not be discussed only in the objective function space, be-

cause the performance of the GA depends on the distribu-

tion of individuals over the problem space. Besides these

techniques, some creative methods have been reported [6,

7]; however, conventional GAs based on Darwinism have
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to control population diversity indirectly through adjust-

ment of individual fitness.

Kinji Imanishi (1902�1992), emeritus professor of

Kyoto University, denied Darwinism and proposed an al-

ternative evolutionary theory. First, instead of competition

among individuals in the struggle for existence, namely,

natural selection, he advanced a law of coexistence, the

habitat segregation principle derived from the morphoge-

netic principle of life form [8]. In his evolutionary theory,

Imanishi contended that all individuals belonging to the

same species have an equal possibility of leaving their

offspring, and even different species are able to live together

in the same world. He paid more attention to the spatial

structure of species society than the temporal change of

individuals. Furthermore, Imanishi denied the random

change of individuals caused by mutation, because he ne-

glected the differences between individuals belonging to

the same species. He supported the Lamarckian theory and

asserted the adaptive change of form on the level of species:

all individuals belonging to the same kind alter their forms

uniformly at the same time [9]. However, since Imanishi

could not prove his theory by the scientific method, many

biologists have not accepted his evolutionary theory. In any

case, we think that Imanishi�s evolutionary theory offers a

simple but efficient analogy of evolution that is usable to

design a practical GA and that contrasts with the Darwinism

forming the metaphysical basis of conventional GAs.

In this paper, we propose an Imanishism-based GA

and apply it to the multiobjective resource division problem

[12]. Imanishi�s evolutionary theory describes the mecha-

nism of evolution for the species, not for the individual.

Therefore, each individual in the population is regarded as

a representative of its species in our proposed GA, while a

bunch of similar individuals is usually used to define a

species in conventional GAs [13]. In order to sample vari-

ous species from a set of Pareto-optimal solutions effi-

ciently, we have to clarify the difference between

individuals not only in the objective function space but also

in the problem space. Thus, we introduce two types of

distance between individuals, namely, functional and struc-

tural distance, into the objective function space and the

problem space, respectively. Then, measuring both dis-

tances between individuals, we classify their relations into

four types: heterogeneous, homogeneous, analogous, and

homologous species. According to the definition of four

species, we propose a new generation alternation model for

our GA that tries to hold many kinds of heterogeneous

species in the population as far as possible. We also use the

two types of distance between individuals in order to evalu-

ate the performance of the generation alternation model

theoretically and experimentally.

Besides the above generation alternation model that

realizes the situation of habitat segregation among various

species in a population, we employ a genetic local search

method that mimics the process of adaptive evolution of

respective species. Supposing that a new species is born

from crossbreeding, or crossover between two different

species, we combine the harmonic crossover operation

proposed in our former work [14] with a local optimization

algorithm. The improved harmonic crossover optimizes the

children in several objective functions selected randomly,

and spreads them over the entire Pareto front of the mul-

tiobjective optimization problem, that is, the range of

Pareto-optimal solutions in the objective function space [7].

Furthermore, we prove that children generated by the im-

proved harmonic crossover inherit structural characters

from their parents.

2. Imanishi�s Evolutionary Theory

First, we briefly explain the habitat segregation prin-

ciple that is the starting point of Imanishi�s evolutionary

theory. The form of living things is decided through inter-

action with the environment. Thus, the forms of living

things differ from each other if they live in different ways.

Imanishi called such an essential feature concerned with the

forms of living things the �morphogenetic principle of life

forms� [8]. If some living things take diverse forms, they

may inhabit different places and avoid struggling for exist-

ence. Since the concept of species is ambiguous, there are

several definitions of species: biological, genealogical, and

so on [10]. In the habitat segregation principle, Imanishi

adopted the morphological definition of species, namely,

one species is distinguished from another according to their

forms. Therefore, in the proposed Imanishisim-based GA,

we also recognize different species by the distance between

them. Incidentally, we can take the habitat segregation

principle as a contraposition of the competitive exclusion

principle, which asserts that similar species never coexist

in the same place.

Imanishi�s evolutionary theory insists that all indi-

viduals belonging to the same species should change their

forms in a common direction rapidly and at the same time

when they need to change. However, since Imanishi could

not provide physical evidence, many biologists criticize

that theory as unscientific or speculative. On the other hand,

some scientists believe that an absolute principle for evolu-

tion, such as the natural selection of Darwinism, has never

existed, because the mechanism of evolution is itself varied.

Imanishi showed a tendency to shift his theory from adap-

tive evolution to orthogenesis in his last years [9, 11]. In

any case, Imanishi�s evolutionary theory does not admit

random change of individuals. Therefore, we can employ a

heuristic search procedure peculiar to each problem in the

Imanishism-based GA without any contradiction in a

grounded analogy of evolution, whereas conventional hy-

brid GAs combined with local optimization algorithms

usually deviate from Darwinism.
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3. Multiobjective Resource Division Problem

In the multiobjective resource division problem [12],

we consider an optimal way to divide n resources into

several groups, where m kinds of relations exist among

these resources. We are required to divide these resources

into different groups as much as possible, and also to gather

all resources related to each other in the same group. A

problem instance of the multiobjective resource division

problem can be represented by a graph G = (V, E), in which

each vertex vi ∈V(i = 1 ~ n) corresponds to a resource and

an edge e ∈Ej ⊆ E(j = 1 ~ m) connecting two vertexes de-

notes m kinds of relations among n resources. Then, as a

solution for the problem instance, we consider a way to

divide the set of vertexes V into k subsets as s =

{Vp|1 ≤ p ≤ k} including the number of subsets k(k ≤ n).
Thus, the multiobjective resource division problem is for-

mulated as an (m + 1)-objective optimization problem.

where

the set of vertexes is also composed of m subsets:

E = E1 ∪ ⋅ ⋅ ⋅ ∪ Em; Ep
j  ⊆ Ej(j = 1 ~ m) denotes a subset of

edges e ∈ Ej both endpoints of which are included in the

same subset Vp(p = 1 ~ k). 
For solving the multiobjective resource division

problem, we may choose the number of subsets k arbitrarily.

Therefore, we can reduce the value of the objective function

fm+1(s) by increasing the number of subsets k. On the other

hand, the other objective functions become worse with a

large number of subsets, because many edges� endpoints are

assigned to different subsets. Furthermore, if all vertexes

are connected to each other by m kinds of edges, we cannot

minimize all of the objective functions in Eq. (1) simulta-

neously. Consequently, a huge Pareto front exists in the

objective function space of the multiobjective resource

division problem.

4. Imanishism-Based Genetic Algorithm

In this section, we describe an Imanishism-based GA

for sampling various solutions from the entire Pareto front

of the multiobjective resource division problem in Eq. (1).

4.1 Phenotype and genotype of solution

We define a phenotypic representation of a solution

of the multiobjective resource division problem as a way to

divide the set of vertexes V into k groups. The phenotypic

representation, or the phenotype, is also a synonym of the

individual. Thus, we encode such a phenotype s =

{Vp|1 ≤ p ≤ k} into a string of n = |V| integers

A = (a1, . . . , an) called a genotype. Each element ai ∈ A

denotes the subscript p(ai = p) of the subset Vp in which the

corresponding vertex vi ∈ V is included. Although such an

encoding of phenotype into genotype seems natural

enough, it does not give a unique representation: instead, k!

different genotypes exist for a phenotype. For example, a

phenotype in Fig. 1, where seven vertexes are divided into

k = 3 groups, can be represented by six different genotypes

Ax(x = 1 ~ k!) as shown in Eq. (2), because we do not

distinguish the subsets Vp(p = 1  ~ 3):

All of the genotypes Ax(x = 1 ~ k!) that represent the

same phenotype can be regarded an equivalence class.

Since a set of isomorphic genotypes [A] = {Ax|x = 1 ~ k!}

is equivalent to a phenotype s, we can replace the phenotype

s by the corresponding [A] in case of need.

4.2 Structural and functional distances

We introduce two types of distance between two

individuals. Structural distance is defined on the problem

space, the whole set of phenotypes. On the other hand,

functional distance is defined on the objective function

space, the range of objective functions.

(1)

Fig. 1. Phenotype (n = 7; m = 2; k = 3).

(2)
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First, the traditional Hamming distance is adopted as

the genotypic distance between two genotypes

A = (a1, . . . , an) and B = (b1, . . . , bn) as follows:

where h(ai, bi) = 0(iff ai = bi), and h(ai, bi) = 1(iff ai ≠ bi).
Then, we define the structural distance between phe-

notypes [A] and [B] by the least genotypic distance between

corresponding sets of isomorphic genotypes A ∈ [A] and B

∈ [B]:

From Eqs. (3) and (4), we find that the genotypic

distance and the structural distance satisfy the inequality in

Eq. (5) below. From Eq. (5), we can say that if the two

genotypes are close to each other, the corresponding phe-

notypes should be similar, too. However, the reverse is not

always true:

The following Theorems 1 and 2 justify the structural

distance defined in Eq. (4).

[Theorem 1] The structural distance satisfies the met-

ric axiom.

Condition 0: [A] = [B] ⇔ δp([A], [B]) = 0

Condition 1: δp([A], [B]) ≥ 0

Condition 2: δp([A], [B]) = δp([B], [A])

Condition 3: δp([A], [B]) + δp([B], [C]) ≥ δp([A], [C])

[Proof] See the Appendix of Ref. 14.            "

[Theorem 2] The structural distance can be evaluated

in polynomial time complexity O(n + k3), where k is the

larger number of groups with [A] and [B].

[Proof] Computation of the structural distance is

transformable to a k × k-size optimal assignment problem

in polynomial time complexity O(n), because these prob-

lems are equivalent [14]. The optimal assignment problem

is also solvable in O(k3). As a result, the total time for

computing the structural distance has polynomial time

complexity O(n + k3).                           "

Finally, in the objective function space of the mul-

tiobjective resource division, we define the functional dis-

tance between two points f([A]) and f([B]) by using the

Manhattan distance:

where

f([A]) = (f1([A]),⋅⋅⋅, fm+1([A])), 

 f([B]) = (f1([B]),⋅⋅⋅, fm+1([B])).

4.3 Definition of species and analogy

homology principle

The subject of the Imanishi evolutionary theory is not

individuals but species, which are distinguished from one

another on the basis of their form, or structure, and function.

Therefore, according to their structural and functional dis-

tances, we classify the relations between two individuals

into four types, namely, heterogeneous, homogeneous,

analogous, and homologous species. Biologically, two ho-

mologous species are similar in form but not necessarily in

function. For example, since both the dolphin and bat are

mammals, they are recognized as homologous. On the

contrary, analogous species are similar in function but not

in embryological form. For example, the killer whale and

shark are analogous, because the killer whale is a mammal,

while the shark is a fish.

In this paper, we define four types of species by

evaluating two kinds of distance. We introduce the struc-

tural distance threshold Lp and functional distance thresh-

old Lf. Then, if two individuals [A] and [B] satisfy both

conditions (7) and (8), they are regarded as homogeneous.

If they satisfy neither condition, they are heterogeneous.

Furthermore, if they satisfy condition (7) alone, they are

regarded as homologous. If they satisfy only condition (8),

they are analogous. The four types of relations between two

individuals are illustrated in Fig. 2.

and

(3)

(4)

(5)

(6)

Fig. 2. Definition of species by distances.

(7)
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The functional distance threshold Lf is a desirable

interval between individuals spread over the Pareto front in

the objective function space. We decide an appropriate

value for Lf by considering variable quantities: the esti-

mated size of the Pareto front, the population size for the

GA, the desirable variety of Pareto-optimal solutions, and

so on. However, in order to obtain much better results, we

have to adjust the value of Lf by trial and error in the same

way as we usually decide the sharing radius.

On the other hand, since the structural distance

threshold Lp dominates the performance of the GA, we

coordinate it with the functional distance threshold Lf.

Namely, we choose a suitable value for Lp(Lp ≥ 0) so that it

satisfies the following relation for a given Lf (Lf ≥ 0):

[Theorem 3] The structural distance between any two

individuals [A] and [B] always satisfies the following con-

dition with an appropriate positive integer α(α ≥ 1):

[Proof] See Appendix 1.           "

From Theorem 3, relation (9) can be derived by

taking the value of Lp as Lp = Lf /α, where the minimum

value of α is unknown. In order to maintain population

diversity, we wish to choose the value of Lp as large as

possible. Therefore, assuming α = 1, we set the initial value

of the structural distance threshold as Lp = Lf in our genera-

tion alternation model described later. Then we decrease the

value of Lp little by little whenever we find a pair of

individuals that does not satisfy relation (9). Taking the

value of Lp as Lp = 0, relation (9) is always satisfied by any

pair of individuals [A] and [B], because the equality [A] =

[B] holds from Theorem 1.

Incidentally, every individual ought to attribute its

function to its structure. Furthermore, since we are able to

choose any values for the structural distance threshold Lp,

we can transform homologous species into heterogeneous

ones by decreasing the value of Lp. On the other hand, we

cannot determine the structure of an individual uniquely

from its function, because deciding an exact structure from

a desirable function constitutes a kind of inverse problem

[16]. In other words, since the analogous relation is essen-

tial, we cannot change the relation by adjusting the value of

Lf. From now on, we call the above characteristics of species

the �analogy homology principle.�

4.4 Improved harmonic crossover

In order to find Pareto-optimal solutions effectively

for the multiobjective resource division problem, we pro-

pose a new genetic operation called improved harmonic

crossover, which is a combination of the conventional har-

monic crossover proposed by the authors [14] and a local

optimization procedure that minimizes the values of several

objective functions simultaneously.

First, we remark that an individual [D] is superior to

another individual [C], namely, [D] dominates [C], if and

only if they satisfy the condition

where J = {1, . . . , m + 1} is a subscript set of the objective

functions.

In improved harmonic crossover, we generate a sin-

gle child C from two parents A and B with conventional

harmonic crossover. Then, applying a local optimization

method to child C, we transform it into a new individual D

improved in some objective functions fj([D])( j ∈ I ⊆ J).
However, the new individual [D] may be degraded in other

objective functions fj([D])( j ∈ J − I). Although we cannot

guarantee that [D] is always better than [C] as shown in

relation (11), [D] is never dominated by [C]. Furthermore,

we can expect the improved harmonic crossover to spread

all the individuals in the population over the entire Pareto

front in the objective function space. The procedure of

improved harmonic crossover can be described as follows.

[Improved harmonic crossover]

Step 1: Transform one of the parents B ∈ [B] to an

isomorphic genotype BZ ∈ [B] so that the genotypic dis-

tance δg(A, BZ) becomes minimal,  and

δg(A, BZ) = δp([A], [B]).
Step 2: Apply an ordinary uniform crossover to the

parents A and BZ, generating a new child C.

Step 3: Select some object ive functions

fj(j ∈ I ⊆ J, I ≠ φ) randomly.

Step 4: As long as corresponding elements between

parents ai ∈ A and bi ∈ B have different values (ai ≠ bi),
change the value of ci ∈ C inherited from one of the parents

randomly. Then, find a genotype D that differs from C in

an element ci ∈ C and satisfies the condition

Step 5: If such a genotype D can be found in the

neighborhood of C, replace C by D (C = D) and return to

Step 4. Otherwise, output the current C as an improved child

and end this procedure.                           "

(8)

(9)

(10)

(11)

27



[Theorem 4] When a child D is generated from par-

ents A and B by improved harmonic crossover, phenotypes

corresponding to these genotypes satisfy the relation

[Proof] It can be proved in a similar way as shown in

the appendix of Ref. 14.                      "

The behavior of individuals concerned with im-

proved harmonic crossover is shown schematically in Fig.

3. Harmonic crossover generates a child C from parents A

and B, then the local optimization procedure transforms C

into D in the search space, the whole set of available

genotypes. At that time, from Theorem 4, phenotype [D]

corresponding to the improved child D always exists in the

dark-shaded area between parents [A] and [B] in the prob-

lem space. Therefore, it is evident that improved harmonic

crossover, as well as conventional harmonic crossover,

transfers the structural character of parents, which is com-

mon to them, to their child successfully.

4.5 Generation alternation model of habitat

segregation

In order to maintain population diversity, we propose

a new generation alternation model that realizes the situ-

ation of habitat segregation among various species in a

population. The proposed generation alternation model

generates a single child from two parents every generation

in the same way as the traditional steady-state model, but,

the number of individuals (i.e., the population size) in-

creases and decreases. We have to set three parameters for

the GA: the functional distance threshold Lf, the upper limit

of population size Pmax, and the terminal generation T. The

structural distance threshold Lp is controlled automatically

according to a rule based on the analogy and homology

principle as mentioned above. By checking both conditions

(7) and (4) with thresholds Lf and Lp, a species type is

determined for every child [D], namely, heterogeneous,

homogeneous, analogous, or homologous. In order to

evaluate the goodness of fit for each individual in the

population, we adopt Goldberg�s ranking [17] and call

individuals assigned to rank 1 Pareto individuals. Our pro-

posed generation alternation model can be described as

follows.

[Generation alternation model]

Step 1: Randomly generate Pmax individuals in the

genotypic representation as an initial population P(0). Set

generation t = 0 and an initial value of distance threshold

Lp as Lp = Lf.

Step 2: Select parents A and B (A ≠ B) from the

current population P(t) randomly. If they are homogeneous,

eliminate the dominated one and go to Step 10; otherwise,

go to Step 3.

Step 3: Applying improved harmonic crossover to

parents A and B, generate a new child D.

Step 4: Find the individual E ∈ P(t) that is the closest

one to the child [D] in the objective function space. If

δf (f([D]), f([E])) > Lf, go to Step 7.

Step 5: If [D] and [E] are homogeneous, eliminate the

dominated one, and go to Step 10.

Step 6: If [D] and [E] are analogous and the popula-

tion size is less than Pmax(|P(t)| < Pmax), add the child D to

P(t); otherwise, eliminate the dominated one, and go to Step

10.

Step 7: Find the individual F ∈ P(t) that is the closest

one to the child [D] in the problem space, where they have

already satisfied δf(f([D]), f([F])) > Lf in the objective func-

tion space.

Step 8: If [D]  and [F] are heterogeneous: if

|P(t)| < Pmax, add child D to P(t); otherwise, replace the

worst individual with the largest rank in P(t) by D, and go

to Step 10.

Step 9: If [D] and [F] are homologous: decrease the

value of Lp as Lp = max{Lp − 1, 0}. If |P(t)| < Pmax, add

child D to P(t); otherwise, replace the worst one by D.

Step 10: If t = T or |P(t)| = 1, output all of the Pareto

individuals in P(t) and terminate the algorithm. Otherwise,

increase the current generation as t = t + 1 and return to Step

2.                                       "

We now summarize the characteristics of the pro-

posed generation alternation model and the behavior of

individuals in a population accompanying evolution. If

parents A and B are homogeneous, Theorem 4 asserts that

their child generated by improved harmonic crossover al-

ways belongs to the same species as they. Therefore, for

maintaining population diversity, we have prohibited a pair

of homogeneous species from making a new child in Step

2. In order to determine the species type for a child [D],

(12)

Fig. 3. Improved harmonic crossover.
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namely, heterogeneous, homogeneous, analogous, or ho-

mologous species, we have to find the closest individual to

child [D] in both the problem and the objective function

spaces. Thus, by arranging the order of evaluation of the

structural and functional distances, we have successfully

reduced the total  number of computations to

|P(t)|(|P(t)| ≤ Pmax) or less.

When we find a pair of individuals classified as

homologous in population, we cut down the value of Lp in

Step 9. The existence of such a pair of individuals suggests

that the value of Lp is too large for them to satisfy condition

(9) with a given Lf. However, if we decrease the value of

Lp suddenly in the early stage of evolution, it may cause a

reduction of population diversity. Therefore, for gradual

transformation of homologous species into heterogeneous

species, we reduce the value of Lp one by one in Step 9. As

a result, we expect that the landscape of the objective

function space will be reflected in the distribution of indi-

viduals in the problem space. Incidentally, we need more

consideration of the method used to control the value of

Lp. For example, we can adopt a schema based on popula-

tion diversity and introduce learning mechanisms.

4.6 Discussion of population diversity

In the proposed generation alternation model, since

heterogeneous species gradually take the place of homoge-

neous ones in a population, we can expect that all individu-

als in a population scatter in both the problem and the

objective function spaces. In the following, by using the

average of the functional distances among individuals in the

objective function spaces, we try to gain further insight into

the population diversity, which fluctuates from the replace-

ment of species and the variation of population size. Simi-

larly, we can also analyze the population diversity in the

problem space based on the average of the structural dis-

tance among individuals.

Obviously, if all individuals in a population are het-

erogeneous with one another, the average of the functional

distances among them δ
_
f becomes larger than a given Lf.

Furthermore, we can derive the following theorems con-

cerned with population diversity, where population P(t) is

regarded as a set of phenotypes s ∈ P(t) for convenience.

[Theorem 5] Although an individual is replaced by a

homogeneous species in the population, the variation ∇δ
_
f

of the average distance δ
_
f is limited as follows:

[Proof] See Appendix 2.                 "

[Theorem 6] When an individual sr (r = |P(t)|) is

eliminated from a population P(t) = {s1, . . . , sr}, the

variation ∇δ
_
f of the average distance δ

_
f becomes

[Proof] See Appendix 3.                 "

[Theorem 7] When an individual sr+1(r = |P(t)|) is

added to a population P(t) = {s1, . . . , sr}, the variation

∇δ
_
f of the average distance δ

_
f becomes

[Proof] It can be proved in the same way as Theorem

6.                                      "

From Theorem 5, the average distance δ
_
f does not

change drastically even if an individual is replaced by a

homogeneous species in Step 5. Elimination of an individ-

ual in Step 2 also increases the average distance δ
_
f if a bunch

of homogeneous species is crowding around the individual,

because the variation ∇δ
_
f of the average distance becomes

positive from Theorem 6. Furthermore, adding a new indi-

vidual to the population in Step 8 increases the average

distance D as long as the individual is heterogeneous and

far away from the others in the population, because the

variation ∇δ
_
f of the average distance becomes positive from

Theorem 7. Consequently, we can expect the proposed

generation alternation model to maintain population diver-

sity successfully even though it does not use the results of

Theorems 6 and 7 explicitly.

5. Experimental Results

5.1 Two-objective problem instance

A two-objective problem instance of the multiobjec-

tive resource division problem is given by a complete graph

G = (V, E) including n = 24 vertexes connected to each other

by the same kind of edges (m = 1). The problem instance

has 24 Pareto-optimal solutions si
∗(i = 1 ~ 24) which can be

enumerated easily. Therefore, we can evaluate the perform-

ance of the proposed GA absolutely in the two-objective

problem instance by comparing the obtained Pareto indi-

viduals with these Pareto-optimal solutions. Furthermore,

we show that the distance between individuals should be

considered not only in the objective function space but also

in the problem space for sampling various Pareto-optimal

solutions from the entire Pareto front in the objective func-

tion space.

In order to demonstrate the high performance of the

proposed generation alternation model, we compared the

(13)

(14)

(15)
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Imanishism-based GA with two types of Darwinism-based

GA that maintain a constant population size: D-GA always

replaces the worst individual in a population by a new child;

ER-GA [18] eliminates the worst individual in a family,

namely, a child and two parents. D-GA and ER-GA, as well

as the proposed GA, employ improved harmonic crossover

for generating a new child. For comparison, besides the

proposed Imanishism-based GA (I-GA1), we also evaluate

a modified version (I-GA2), in which we use only the

functional distance to distinguish two types of species.

Namely, if two individuals [A] and [B] satisfy only condi-

tion (8), they are regarded as homogeneous species; other-

wise they are regarded as heterogeneous species. Therefore,

the generation alternation model stated above has to be

changed for I-GA2: Steps 6, 7, and 9 are ignored, and Steps

4 and 8 are altered as follows.

Step 4: Find the individual E ∈ P(t) that is the closest

one to child [D] in the objective function space. If

δf(f[D], f([E])) > Lf, go to Step 8.

Step 8: If [D] and [E] are heterogeneous: if P(t)| <

Pmax holds, add child D to P(t); otherwise, replace the worst

individual with the largest rank in P(t) by D, and go to Step

10.

We compared the above four types of GA, namely,

D-GA, ER-GA, I-GA1, and I-GA2, with the following

parameter specifications: population size Pmax = 30, termi-

nal generation T = 104; we chose several values for the

functional distance threshold, Lf = 5, 10, 15, 20, in both

I-GA1 and I-GA2. Table 1 shows some performance criteria

for the GA: |S*| is the number of Pareto-optimal solutions

si
∗ ∈ S∗ obtained by GA; δ

_
f (S∗)is the average functional

distance among them; |P(T)| is the population size at termi-

nal generation T; and δ
_
p
T  is the average structural distance

among s ∈ P(T), where these results are averaged over 10

runs. We can estimate the search ability of GA from |S*| and

δ
_
f (S∗). It should be noted that the proposed I-GA1 finds

more various Pareto-optimal solutions than the others. Fur-

thermore, from |P(T)| and δ
_
p
T,  we can confirm that I-GA1

maintains population diversity not only in the objective

function space but also in the problem space without de-

creasing the number of individuals.

Figure 4 plots the values of the objective function for

all of the individuals si ∈ P(T) in the final population, which

are obtained by I-GA1 and I-GA2 with Lf = 5 and Lf = 10,

respectively. As can be seen in Fig. 4, I-GA1 samples

various Pareto-optimal solutions uniformly, while I-GA2

cannot find some solutions that take small values for the

second objective function f2. Now, we assign subscripts to

the Pareto-optimal solutions si
∗(i = 1 ~ 24) in increasing

order of the value of f2. Table 2 shows the structural distance

from each Pareto-optimal solution si
∗  to the nearest one

sj
∗(i ≠ j). From Table 2, we find that I-GA2 is unable to find

solutions s1
∗  to s7

∗  that are distant from the others in the

problem space, because I-GA2 neglects the structural dis-

tance between individuals.

5.2 Three-objective problem instance

A three-objective problem instance of the multiob-

jective resource division problem is given by a graph G =

(V, E), E = E1 ∪ E2 including n = 64 vertexes arranged as

an 8 × 8 torus network. These vertexes are connected to each

Table 1. Experimental performance of GAs

Fig. 4. Pareto front and f(si) (si ∈ P(T)).
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other by two kinds of edges (m = 2). To be exact, row lines

are linked by one kind of edge e ∈ E1 (|E1| = 64), and column

lines are linked by the other kind of edge e ∈ E2 (|E2| = 64).

Consequently, the problem instance has a vast expanse of

the Pareto front, which includes four points (f1, f2, f3) = (0,

0, 64), (0, 64, 8), (64, 0, 8), and (64, 64, 1) in the three-di-

mensional objective function space, and also has various

Pareto-optimal solutions in the problem space.

Instead of I-GA2, we evaluate another modified ver-

sion of the Imanishism-based GA (I-GA3), in which we

change the improved harmonic crossover at Step 3 to select

all objective functions fj( j ∈ J) every time. Then, we com-

pare four types of GA, namely, D-GA, ER-GA, I-GA1, and

I-GA3, with the following parameter specifications: popu-

lation size Pmax = 50, and terminal generation T = 104,

choosing the functional distance threshold as Lf = 10 for

I-GA1 and I-GA3. Figure 5 plots the values of objective

function f(s) (s ∈ P(T)) at the terminal generation for each

of the above four types of GA. From Fig. 5, we can confirm

that I-GA1 spreads the points of f(s) (s ∈ P(T)) in the

objective function space more widely than the others. On

the other hand, the variety of individuals obtained by I-GA3

is very small, and all of the points of f(s) (s ∈ P(T)) gather

around the center of the Pareto front. As a result, we can say

that the proposed improved harmonic crossover is fully

justified in selecting some objective functions

fj ( j ∈ I ⊆ J) to be optimized randomly.

We next evaluate the diversity and quality of the

Pareto individuals obtained by the above four types of GA.

Table 3 shows some performance criteria for the GA: |S| is

the total number of Pareto individuals s ∈ S, and δ
_
f (S) is

the average functional distance among them; |Ŝ| is the total

number of individuals s ∈ S^ ⊆ S that have not been domi-

nated by any other Pareto individuals obtained by the

others; |P(T)| denotes the population size at terminal gen-

eration T, δ
_
p
T is the average structural distance among s ∈

P(T), where these results are averaged over 10 runs. We can

estimate the relative search abilities of the GAs from |Ŝ|.

D-GA finds many Pareto individuals s ∈ S^ ⊆ S of good

quality, although their diversity is low from δ
_
f (S). On the

contrary, since the proposed I-GA1 takes a large value for

δ
_
f(S), we can say that I-GA1 finds a variety of individuals

f(s) (s ∈ S) spread over the entire Pareto front.

If we choose an appropriate value for the functional

distance threshold Lf in the proposed generation alternation

model, we can control the climax of habitat segregation,

namely, the distribution of Pareto individuals in the objec-

tive function space f(s) (s ∈ S ⊆ P(T)) at the terminal

generation. By changing the value of Lf, we evaluated the

performance of I-GA1 in the same manner as in Table 3.

Table 4 shows the results of the experiments. From |S| and

|Ŝ| in Table 4, it appears that I-GA1 samples a variety of

Pareto individuals from the entire Pareto front with a small

value of Lf. Furthermore, since |P(T)| and δ
_
p
T take large

values in any case, we can say that I-GA1 always maintains

population diversity in the problem space. However, if the

value of Lf is large relative to the population size, many

Table 2. Nearest structural distance

Fig. 5. f(si) (si ∈ P(T)) in objective space.

Table 3. Experimental performance of GAs

Table 4. Effect of threshold Lf on I-GA1
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individuals are regarded as analogous species and they

cannot be transformed into heterogeneous ones. Therefore,

the value of δ
_
f (S) does not always increase proportionally

to the value of Lf. Comparing the values of δ
_
f (S) in Table 4,

we find that Lf = 10 is the best value in order to obtain a

variety of Pareto individuals.

For all cases of I-GA1 shown in Table 4, Fig. 6

indicates the average functional distance δ
_
f among indi-

viduals in each population P(t) at generation t (t = 0 ~ T),

where the results are averaged over 10 runs. Similarly, Fig.

7 shows the change of the average structural distance δ
_
p by

generation. The results in Figs. 6 and 7 confirm that Lf = 10

is suitable for I-GA1 to expand the population diversity in

both the problem and objective function spaces with the

renewal of generations, and retains a variety of individuals

until the terminal generation.

In the proposed generation alternation model, we

initialize the value of the structural distance threshold Lp as

Lp = Lf  based on Theorem 3. In order to verify the suitabil-

ity of such an initial value of Lp, we examine the perform-

ance of the Imanishism-based GA with several initial values

of Lp, while the functional distance threshold takes a con-

stant value Lf = 10. Table 5 shows the results of the experi-

ments for the same criteria as in Table 3. As can be seen in

Table 5, by choosing an initial value of Lp as Lp = Lf = 10,

we can obtain the best results on all criteria. Incidentally,

we could not extend the population diversity any further,

even if we set the larger initial value to Lp(Lp > 10). We

estimate that since many individuals are regarded as ho-

mologous with a large initial value of Lp, the value of Lp
declines rapidly in the beginning of evolution.

6. Conclusions

In this paper, we have proposed a new Genetic Algo-

rithm (GA) based on an evolutionary theory advocated by

Kinji Imanishi and have applied it to the multiobjective

resource division problem. Since the starting point of Iman-

ishi�s evolutionary theory is habitat segregation among

various species, Imanishi paid much more attention to the

spatial structure of species society than the temporal change

of each individual. Therefore, by introducing two kinds of

distance, namely, structural and functional distance, we

have expanded both the problem and the objective function

spaces into metric spaces. Furthermore, by evaluating these

distances between two individuals, we have subdivided

their relations into four types: heterogeneous, homogene-

ous, analogous, and homologous species. We have pre-

sented a new genetic operation that combines harmonic

crossover with a local optimization algorithm, and a gen-

eration alternation model based on the habitat segregation

principle. We have also analyzed the performance of the

proposed techniques mathematically by using the structural

and functional distances. Finally, we have conducted some

computational experiments on several problem instances

and have demonstrated that the proposed GA has the ad-

vantage of sampling various Pareto-optimal solutions effec-

tively.

Actually, the proposed Imanishism-based GA is ap-

plicable not only to the multiobjective resource division

problem, but also to any other multiobjective optimization

problem by introducing appropriate structural and func-

Fig. 6. Average of functional distance δ
_
f.

Fig. 7. Average of structural distance δ
_
p.

Table 5. Effect of threshold Lp on I-GA1
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tional distances between individuals. In future work, we

hope to form a theory to describe the high performance of

the proposed GA, including the correspondence between

the problem and objective function spaces. Furthermore,

we need to investigate a more sophisticated way to adjust

the structural distance threshold Lp for our GA.
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APPENDIX

1. Proof of Theorem 3

For δp([A], [B]) = 0, since [A] = [B] and f([A]) =

f([B]), we have that δf(f([A]), f([B]) = 0. Conversely, if

δp([A], [B]) = β(β ≥ 1), β denotes the number of vertexes

vi ∈ V
__

 ⊆ V distributed to different subsets between [A] and

[B]. Since β = |V
__

|, we must have

Let µj(vi) denote the degree of a vertex vi ∈ V
__

,

namely, the number of edges e ∈ Ej connected to the vertex,

and ψj = max{µj(vi)|vi ∈ V
__

}. Then we must have

From Eqs. (A.1), (A.2), and β = δp([A], [B]), we find

that

(A.1)

(A.2)

(A.3)
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where α = Σj=1
m  ψj + 1.

2. Proof of Theorem 5

Supposing that an individual s1 ∈ P(t) is replaced by

the same kind  , we have

Furthermore, from the metric axiom, any individual

si ∈ P(t) satisfies

Let δ
_
f
t(δ

_
f
t = δ

_
f) and δ

_
f
t+1  be the average distances

among populations P(t) = {s1, . . . , sr} and P(t + 1) = {s1, .

. . , sr} respectively. Then we take the difference between

them such that

From Eqs. (A.4), (A.5), and (A.6), we find that

3. Proof of Theorem 6

Let δ
_
f
t(δ

_
f
t = δ

_
f) and δ

_
f
t+1  be the average distances

among populations P(t) = {s1, . . . , sr} and P(t + 1) = {s1, . . . ,

sr−1}, respectively. Then they are represented as

where r = |P(t)| and

From Eqs. (A.8) and (A.9), we obtain the variation ∇δ
_
f of

the average distance δ
_
f as
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