
A Hybrid Multiobjective Evolutionary Algorithm For Solving Truck 

And Trailer Vehicle Routing Problems

K. C. Tan, T. H. Lee, Y. H. Chew 
Department of Electrical and Computer Engineering 

National University of Singapore, 

4, Engineering Drive 3, Singapore 117576.  

L. H. Lee 
Department of Industrial and System Engineering 

National University of Singapore, 

10 Kent Ridge Crescent, Singapore 119260. 

Abstract- This paper considers a transportation 

problem for moving empty or laden containers for a 

logistic company. A model for this truck and trailer 

vehicle routing problem (TTVRP) is first constructed 

in the paper. The solution to the TTVRP consists of 

finding a complete routing schedule for serving the 

jobs with minimum routing distance and number of 

trucks, subject to a number of constraints such as time 

windows and availability of trailers. To solve such a 

multiobjective and multi-modal combinatorial 

optimization problem, a hybrid multiobjective 

evolutionary algorithm (HMOEA) is applied to find 

the Pareto optimal routing solutions for the TTVRP. 

Detailed analysis is performed to extract useful 

decision-making information from the multiobjective 

optimization results The computational results have 

shown that the HMOEA is effective for solving 

multiobjective combinatorial problems, such as finding 

useful trade-off solutions for the TTVRP. 

1 Introduction 

Singapore ranks among the top international maritime 

centers of the world. It is the focal point for some 400 

shipping lines with links to more than 740 ports 

worldwide, (Maritime, 2002). A general model for vehicle 

capacity planning system (VCPS) consisting of a number 

of job orders to be served by trucks and trailers daily was 

constructed for a logistic company that provides 

transportation services for container movements within the 

country (Lee et al., 2003). Due to the limited capacity of 

vehicles owned by the company, engineers in the company 

have to decide whether to assign the job orders of 

container movements to its internal fleet of vehicles or to 

outsource the jobs to other companies daily.  

1.1 The Trucks and Trailers Vehicle Routing Problem 

By analyzing different kinds of job orders received from 

the company, this paper presents a transportation solution 

for trucks and trailers vehicle routing problem (TTVRP) 

containing multiple objectives and constraints, which is 

extended from the VCPS model with detail maneuver of 

trailers in a routing plan. In TTVRP, the trailers are 

resources with certain limitations similar to real world 

scenarios and the allocation of trailers in different 

locations could affect the routing plans. The TTVRP is a 

difficult problem which involves many intricate factors 

such as time window constraints and availability of 

trailers. Instead of handling jobs by the internal fleet of 

trucks, the jobs can also be considered for outsourcing, if 

necessary. The routing plans in TTVRP also need to 

determine the number of trailer exchange points (TEPs) 

distributed in the region and to cater different types of 

trailers that are available at the trailer exchange points. In 

this paper, various test cases for the TTVRP model are 

generated with random variables simulating the long-term 

operation of business activities. The management can thus 

formulate the planning for certain variables, such as the 

number of trucks (long term capital cost) so that the day-

to-day operational cost could be kept at the minimum. 

1.2 Background on Vehicle Routing Problems 

The vehicle routing problem with time windows 

(VRPTW) diverts from the famous vehicle routing 

problem (VRP). In this problem, a set of vehicles with 

limited capacity is to be routed from a central depot to a 

set of geographically dispersed customers with known 

demands and predefined time window. Surveys about 

VRPTW can be found in Solomon (1987), Kilby et al., 

(2000), Toth and Vigo (2002), Bräysy and Gendreau 

(2001) etc. In contrast to the TTVRP, the VRPTW neither 

have any limitation on resources of trailers nor the 

outsourcing of jobs to external companies.  

The vehicle scheduling problem (VSP) (Baita et al., 

2000; Dror, 2000) assumed that the routing to different 

sites can be completed with multiple trips. The objective 

is to minimize the number of vehicles and the cost 

function based upon deadheading trips (gas, diver etc) and 

idling time for the vehicle. Its constraints include the 

traveling distance and time for normal service and 

refueling. In contrast to VRP, one customer may be visited 

more than once or not at all, which is solely depending on 

the trips data. Although trips in VSP may be analogous to 

the concept of a job in TTVRP, the VSP does not include 

the complexity of trailer type constraints. 

Chao (2002) presented the problem of TTRP (truck 

and trailer routing problem), which considers the fleet size 

of trucks and trailers in the model. In order to provide 

service to different categories of customers, there are three 

types of routes in a solution: (1) route that a truck travels 

alone (2) route that a truck and trailer are required (3) 

route that trailer is only required at certain sub-tour. 

Unlike TTRP, the TTVRP requires the trucks to visit 

trailer exchange points for picking up the correct trailer 

types depending on the jobs to be serviced. Besides, jobs 



that are not routed by self-fleets in TTVRP can be 

outsourced to external companies. 

Generally, vehicle routing problems have been 

attempted by different approaches ranging from exact 

algorithms (Applegate et al., 2002; Bard et al., 2002) to 

heuristics ( Breedam, 2002). A number of meta-heuristics 

such as Tabu search (Cordeau et al., 2001; Lee et al., 

2003), simulated annealing (Chiang and Russel, 1996) and 

genetic algorithms (Gehring and Homberger, 2001) have 

been applied in large-scale vehicle routing problems. The 

TTVRP addressed in this paper is NP-hard, which 

involves the optimization of routes for trucks to minimize 

routing distance and number of trucks concurrently. 

Existing routing approaches that strive to minimize a 

single criterion of routing cost or number of trucks are not 

suitable for solving such a multi-modal and 

mutltiobjective combinatorial problem. The TTVRP 

should be best tackled by multiobjective optimization 

methods, which offer a family of Pareto-optimal routing 

solutions containing both the minimum routing cost and 

number of trucks.  

In this paper, a hybrid multiobjective evolutionary 

algorithm (HMOEA) that incorporates the local heuristic 

search and the concept of Pareto�s optimality for finding 

the trade-off is applied to solve the TTVRP. The HMOEA 

optimizes the objectives concurrently, without the need of 

aggregating multiple criteria into a compromise function. 

Unlike conventional multiobjective evolutionary 

algorithms (MOEAs) that are designed with simple coding 

or genetic operators for parameterized optimization 

problems (Knowles and Corne, 2000), the HMOEA is 

featured with specialized genetic operators and variable-

length chromosome representation to accommodate the 

sequence-oriented optimization problem in TTVRP. 

The paper is organized as follows: Section 2 describes 

the scenario and modeling of the TTVRP. Section 3 gives 

description to the HMOEA and its various features 

including variable-length chromosome representation and 

specialized genetic operators. Pareto fitness ranking and 

sharing, and local search heuristics are also described in 

Section 3. Section 4 presents the extensive simulation 

results and discussions for the TTVRP. Conclusions are 

drawn in Section 5. 

2 The Problem Scenario and Modeling 

The TTVRP model with detail maneuver of the trailers in 

a routing plan is extended from a real world VCPS system 

proposed by Lee et al., (2003). The movement of 

containers among customers, depots and the port are 

major transportation job orders considered. A container 

load is handled like a normal truckload but these loads use 

containers with a chassis instead of trailers only. From the 

equipment assignment point of view, a correct trailer type 

is essential for the routing. For an import job, a loaded 

container is taken from a port to a customer warehouse 

and returned empty to the depot. For an export job, 

however, an empty container is picked up from the depot 

and taken to the warehouse before returning loaded to the 

port. Every job order contains the location of source and 

destination as well as the customers� information. Load 

requirement and time windows are specified as hard 

constraints in the model.  

The routing needs to consider both the locations of 

truck and trailer. Intuitively, there are times when a truck 

has a correct trailer type and thus can serve a job without 

going to a trailer exchange point. Otherwise, a truck is 

required to pick up a trailer (from the nearest TEP where 

the trailer is available) when it has mismatch trailer type 

or does not carry a trailer. The number of trailers available 

at an exchange point depends on how many trailers were 

picked up and returned to the TEP.  

2.1 Modeling the Problem Scenarios 

Based on the scenarios described, some refinements have 

been made to the model proposed by Lee et al., (2003). 

The problem is modeled here on a daily basis where the 

planning horizon spans only one day. All import and 

export jobs consist of two sub-trips and a two-day interval 

at the customer warehouses. The import and export jobs 

can be broken into two independent tasks, where each of 

them falls into a different planning horizon. In this way, 

job orders are broken into sub-job type precisely (referred 

as a task). Generally a task involves traveling from a 

source to destination as listed in Table 1. 

Table 1  The task type and its description 

Task 

type 

Task  Source Dest. Trailer 

type 

1 Port WH 20 

2 Port WH 40 

3 WH Depot 20 

4

Import job 

WH Depot 40 

5 Depot WH 20 

6 Depot WH 40 

7 WH Port 20 

8

Export job 

WH Port 40 

9 Port Depot 20 

10 Depot Port 

/Depot 

20

11 Port Depot 40 

12

Empty 

container 

movement 

Depot Port 

/Depot 

40

*WH � Warehouse 

The number of trailers at TEPs depends on the trailers 

that are left over from the previous planning horizon. All 

the pickup, return and exchange activities can also change 

the number of trailers available. Besides, a number of 

trailers could also be parked at the customer warehouses 

instead of the TEPs. All these undetermined factors 

suggest that the resource of trailers available at each TEP 

at the initial of planning horizon is random. A truck has to 

pick up a correct trailer from the nearest TEP if it serves 

task type 1, 2, 5, 6, 9, 10, 11 or 12 and does not have a 

trailer or has an incorrect trailer type. For task type 3, 4, 7 



or 8, the truck does not need to visit a TEP before 

servicing the task since the correct trailer has been brought 

to the place in advanced. In contrast, trucks that serve sub-

job type 3, 4, 7 or 8 must not have any trailers. In this 

case, if a trailer is attached to the truck, it must be returned 

to a trailer exchange point before servicing the task. For 

example, a truck that serves sub-job type 7 leaves the 

destination (port) of a previous task with a trailer. If the 

same truck is to serve another task type 3, 4, 7 or 8, it 

must travel to a TEP to drop the trailer obtained 

previously. Obviously the availability of trailers at TEPs 

should be updated frequently since the number of trailers 

changes with the pick-up and return activities.  

2.2 Test Cases Generation 

The TTVRP models various factors affecting the routing 

performance, particularly on the importance of trailer 

resources such as the trailers allocation in multiple trailer 

exchange sites and the location of trailer exchange points. 

The test cases are generated based on the scenario of one-

day activity for a logistic company. The time windows for 

the source and destination of each job are generated 

according to the type of jobs. The cost for each task type 

is based on the way tasks are accomplished, i.e., by self-

fleet service or outsourced to external companies. As 

shown in Table 2, the test cases in this category are 

divided into 4 groups with different number of tasks in the 

range of 100 to 132, and all TEPs can contribute to the 

supply of any demands for trailers.  

Table 2  Test cases and the properties 

Group Test case* 
Job 

number 

Trailers at

each TEP 

test_100_1_2 100 1 or 2 

test_100_3_4 100 2 or 3 100

test_100_2_3 100 3 or 4 

test_112_1_2 112 1 or 2 

test_112_2_3 112 2 or 3 112

test_112_3_4 112 3 or 4 

test_120_1_2 120 1 or 2 

test_120_2_3 120 2 or 3 120

test_120_3_4 120 3 or 4 

test_132_1_2 132 1 or 2 

test_132_2_3 132 2 or 3 132

test_132_3_4 132 3 or 4 

*The last digit denotes the number of trailers 

allocated for each TEP 

3 A Hybrid Multiobjective Evolutionary 

Algorithm 

Evolutionary algorithms are global search optimization 

techniques based upon the mechanics of natural selection, 

which have been found to be very effective in solving 

complex multiobjective optimization problems (Burke and 

Newall, 1999; Jaszkiewicz, 2003; Deb, 2001; Knowles 

and Corne, 2000). Without the need of linearly combining 

multiple attributes into a composite scalar objective 

function, evolutionary algorithms incorporate the concept 

of Pareto�s optimality to evolve a family of solutions at 

multiple points along the trade-off surface. Several 

surveys are available for more information of 

multiobjective evolutionary algorithms, e.g., Coello 

Coello et al., (2002), Van Veldhuizen and Lamont (2000), 

and Zitzler and Thiele (1999). Although multiobjective 

evolutionary algorithms have been applied to solve a 

number of domain-specific combinatorial problems, such 

as flowshop scheduling, and timetabling, these algorithms 

are often designed with specialized genetic representation 

or operators for specific applications, which are hard to be 

used directly for solving the TTVRP. 

This section presents a hybrid multiobjective 

evolutionary algorithm designed for solving the TTVRP 

problem. The program flowchart of the HMOEA is 

illustrated in Section 3.1. The remaining sections present 

various features of HMOEA, including the variable-length 

chromosome representation in Section 3.2, specialized 

genetic operators in Section 3.3, Pareto fitness ranking in 

Section 3.4, and fitness sharing in Section 3.5. Following 

the concept of hybridizing local optimizers with 

multiobjective evolutionary algorithms for better local 

exploitations, Section 3.6 describes the local heuristic that 

is incorporated in HMOEA. 

3.1 Program Flowchart of HMOEA 

The program flowchart of HMOEA is shown in Fig. 1. 

The simulation begins by reading the information of all 

tasks. An initial population is then built such that each 

individual must at least be a feasible candidate solution. 

The initialization process is started by inserting tasks into 

an empty route one-by-one in a random order, where any 

task violating the constraints is deleted from the current 

route. The route is then accepted as part of the solutions 

and a new empty route is added to serve the deleted and 

remaining tasks. This process continues until all tasks are 

routed and a feasible initial population is built as depicted 

in Fig. 2. 

Once an initial population is formed, all individuals in 

the population will be evaluated and ranked according to 

the Pareto ranking scheme. A simple fitness sharing 

approach (Fonseca and Fleming, 1998) is applied to 

distribute the population along the Pareto front uniformly. 

The tournament selection scheme (Tan et al., 2001) with a 

tournament size of 2 is then performed, where individuals 

in the population are randomly grouped into pairs and 

those individuals with a lower rank in partial order will be 

selected for reproduction. A simple elitism mechanism 

(Tan et al., 2001) is employed to achieve a faster 

convergence and better routing solutions. The specialized 

genetic operators in HMOEA consist of route-exchange 

crossover and multimode mutation. To improve the local 

exploitation and internal routing of individuals, simple 

heuristic is performed at each generation of the HMOEA. 

It should be noted that the feasibility of all new 

individuals reproduced after the process of specialized 



genetic operations and local heuristic are retained without 

the need of any repairing mechanism. The evolution 

process repeats until a predefined number of generations 

are reached or no significant performance improvement is 

observed over the last 5 generations. 

Fig 1 The program flowchart of HMOEA 

Fig 2. The procedure of building an initial population 

3.2 Variable-Length Chromosome Representation 

The chromosome in an evolutionary algorithm is often 

represented as a fixed-structure bit string and the bits 

position in a chromosome are usually assumed to be 

independent and context insensitive. However, such a 

representation is not suitable for the order-oriented 

combinatorial TTVRP problem, for which the sequence 

among customers is essential. In HMOEA, a variable-

length chromosome representation is adopted, where each 

chromosome encodes a complete routing plan including 

the number of routes and tasks served by the trucks, e.g., a 

route is a sequence of tasks to be served by a truck. A 

chromosome may consist of several routes and each route 

is a sequence of tasks to be served. Such a variable-length 

representation is efficient and allows the number of trucks 

to be manipulated and minimized directly for the 

multiobjective optimization in TTVRP. Any task that is 

not assigned to a route is considered for outsourcing. 

3.3 Specialized Genetic Operators 

Specialized genetic operators of route-exchange crossover 

and multimode mutation are incorporated in HMOEA as 

described in the following sub-sections: 

3.3.1 Route-exchange Crossover 

Classical one-point crossover may produce infeasible 

routing sequence for combinatorial problems because of 

the duplication and omission of vertices after 

reproduction. A simple route-exchange crossover is 

adopted in HMOEA, which allows good sequence of 

routes or genes in a chromosome to be shared with other 

chromosomes in the population. The operation starts by 

grouping chromosomes into pairs randomly and the 

crossover is performed according to a predefined 

crossover rate (PC). The operation consists of two 

independent steps: (1) Two random routes (one from each 

chromosome) are selected and swapped between the two 

chromosomes; (2) The route with the highest number of 

tasks from each chromosome is swapped. To ensure the 

feasibility of chromosomes after crossover, each task can 

only appear once in a chromosome. Deleting a task from a 

route will only incur certain waiting time before the next 

task is served, and thus will not result in any conflicts for 

the time windows. Besides, any task that violates the 

trailer resources constraint will be assigned for 

outsourcing and hence all the reproduced chromosomes 

are feasible.  

3.3.2 Multimode Mutation 

During the crossover by HMOEA, routes� sequence is 

exchanged in a whole chunk and no direct manipulation is 

made to the internal ordering of the nodes for the TTVRP. 

A multimode mutation is adopted in HMOEAto optimize 

the local route information of a chromosome. A random 

number is generated to choose between two possible 

operations. The first operation picks two routes in a 

chromosome randomly and concatenates the first route to 

the second route before deleting the first route from the 

chromosome. In the second operation, the sequence that 

contains all the outsourced tasks is evaluated as a new 

route. The approach also checks feasibility on the route in 

order to delete any task that causes violation, and those 

deleted tasks will be considered as outsourced tasks. 

3.4 Pareto Fitness Ranking 

The role of HMOEA for multiobjective optimization in 

TTVRP is to discover such a set of Pareto-optimal 



solutions concurrently. The Pareto fitness ranking scheme 

(Tan et al., 2001) for multiobjective optimization is 

adopted here to assign the relative strength of individuals 

in a population. The ranking approach assigns the same 

smallest rank for all non-dominated individuals, while the 

dominated individuals are inversely ranked according to 

how many individuals in the population dominating them 

based on the following criteria: (1) A smaller number of 

trucks but an equal cost of routing (2) A smaller routing 

cost but an equal number of trucks and (3) A smaller 

routing cost and a smaller number of trucks. Therefore the 

rank of an individual p in a population is given by (1+q),

where q is the number of individuals that dominating the 

individual p based on the above criteria. 

3.5 Fitness Sharing 

A simple fitness sharing (Fonseca and Fleming, 1998) is 

incorporated in HMOEA to prevent genetic drift, which is 

a phenomenon where a finite population tends to settle on 

a single optimum even if many other local optima exist. 

The sharing approach measures the niching distance in the 

objective domain to achieve diversity of solutions on the 

tradeoff curve. The niche radius,  is a parameter that 

defines the size of neighborhood. The distance between 

individuals is normalized to the maximum range of 

objective space. Let dist(x,y) be the normalized distance 

between individual x and individual y, the sharing 

function sh can be defined as follows, 

( )
( )

2

1 ( , ) /     if ( , ) <
( , )

0                         otherwise

dist x y dist x y
sh dist x y

σ σ−
=   (1) 

The sharing value of an individual will be increased by 

other individuals that are found located within the niche 

radius. The niche count nc is defined as, 

( )( ) ( , )
y i n d i v i d u a l s

n c x s h d i s t x y
∈

=  (2) 

During the tournament selection, individuals with a lower 

rank in partial order will be selected for reproduction, 

where the partial order ranking between two individuals 

depends on both their Pareto rank and niche counts. 

Rigorously, the partial order 
p

≥ for two individuals i and j

is defined as, 
p

i j≥ , if [ ]( ) ( )rank i rank j>  or 

[ ]( ) ( ) and ( ) ( )rank i rank j nc i nc j= > .

3.6 Local Search Exploitation 

As stated by Tan et al., (2001), the role of local search is 

vital in order to encourage better convergence and to 

discover any missing trade-off regions in evolutionary 

multiobjective optimization. In HMOEA, the local search 

starts by scanning through all routes in a chromosome, 

where any routes that contain a smaller number of tasks 

than a threshold are identified. These identified routes will 

be grouped into pairs randomly. All the tasks in each pair 

are then combined to form a new route that is sorted in 

ascending order by the earliest service time. After the 

merging, feasibility check is performed such that any 

infeasible tasks are moved to the outsourced list. 

4 Computational Results 

The HMOEA was programmed in C++ based on a 

Pentium III 933 MHz processor with 256 MB RAM under 

the Microsoft Windows 2000. Table 3 shows the 

parameter settings chosen after some preliminary 

experiments. These settings should not be regarded as an 

optimal set of parameter values, but rather a generalized 

one for which the HMOEA performs fairly well over the 

test problems. 

 Table 3 Parameter settings 

Parameter Value 

Crossover rate 0.8 

Mutation rate 0.3 

Population size 800 

Generation size 1000 or no improvement over the 

last 5 generations 

Niche radius 0.04 

This section contains the computational results and 

analysis of optimization performances for all problem 

instances. Section 4.1 studies the performance of Pareto-

optimality for multiobjective optimization using the test 

cases. In Section 4.2, the optimization performance of 

HMOEA is compared with two other multiobjective 

evolutionary algorithms based upon a few performance 

measures. 

4.1 Multiobjective Optimization Performance 

4.1.1 Pareto Front 

In solving a vehicle routing problem, the logistic manager 

is often interested in not only getting the minimum routing 

cost, but also the smallest number of trucks required to 

service the plan. In order to reduce the routing cost, more 

number of trucks is often required and vice versa, i.e., the 

two criteria are noncommensurable and often competing 

with each other. Fig. 3 shows the evolution progress of 

Pareto front for 6 random selected test cases. In the 

simulation, the largest available vehicle number is limited 

to 35, which is more than sufficient to cater the number of 

tasks in each test case. The various Pareto fronts obtained 

at the initial generation (First), two intermediate 

generations (Int 1 and Int 2) and the final generation 

(Final) are plotted with different markers as shown in Fig. 

3. As can be seen, there is only a small number of non-

dominated solutions appeared at the initial generations, 

which are also congested at a small portion of the solution 

space. However, as the evolution proceeds, the diversity 

of the population increases significantly and the non-

dominated solutions gradually evolve towards the final 

trade-off curve. A dashed line connecting all the final non-

dominated solutions is drawn for each test case in Fig. 3, 

which clearly shows the final trade-off or routing plan 

obtained by the HMOEA. It is noted that the Pareto front 

includes the plan with zero truck number that subcontracts 

all tasks to external company, although such a policy is 

apparently not practical to adopt and is against the will of 

the logistic management. 
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Fig. 3  The evolution progress of Pareto front for test cases 

4.1.2 Routing Plan 

The average best routing cost for each truck number of the 

12 test cases are plotted in Fig. 4, which shows an obvious 

trade-off between the two objectives of routing cost and 

truck number in TTVRP. This trade-off curve is useful for 

the decision-maker to derive an appropriate routing 

schedule according to the current situation. If the number 

of trucks available in a company is fixed, the logistic 

manager can estimate the required routing cost from the 

trade-off curve in Fig. 4.  
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Fig. 4  The trade-off between cost of routing and number of 

trucks 

In contrast, if the manager is given a specified budget 

or routing cost, he or she can then determine the minimum 

number of internal trucks to be allocated so that the 

spending can be kept below the budget allowed. For 

example, if the routing cost is to be kept below 5100, then 

the company must allocate at least 10 trucks for serving 

the task orders. However, if only 15 trucks are allocated 

by the company, then the incurred routing cost would be 

around 4900 to 5000, including the cost payment for 

outsourced companies. 

4.2 Comparison Results 

In this section, the performance of HMOEA is compared 

with two variants of evolutionary algorithms, i.e., MOEA 

with standard genetic operators as well as MOEA without 

hybridization of local search. The comparison allows the 

effectiveness of the various features in HMOEA, such as 

the specialized genetic operators and local search 

heuristic, to be examined. The multiobjective evolutionary 

algorithm with standard generic operators (STD_MOEA) 

includes the commonly known cycle crossover and RAR 

mutation. The cycle crossover is a general crossover 

operator that preserves the order of sequence in the parent 

partially and was applied to solve the traveling salesman 

problems by Oliver et al. (1987). The remove and reinsert 

(RAR) mutation operator removes a task from the 

sequence and reinsert it to a random position (Gendreau et 

al., 1999). The multiobjective evolutionary algorithm 

without hybridization of local search (NH_MOEA) 

employs the specialized genetic operators in HMOEA but 

excludes the local search heuristic. The experiment setups 

and parameters for STD_MOEA and NH_MOEA are 

similar to the settings for HMOEA as shown in Table 3. 

4.2.1 Average Routing Cost 

To compare the quality of solutions produced by the 

algorithms, the average routing cost (ARC) of the non-

dominated solutions in the final population is calculated 

for various test cases with different number of tasks as 

shown in Fig. 5. In the figure, the average value of ARC is 

plotted for each group of the test cases with equal number 

of tasks. As can be seen, the STD_MOEA incurs the 

highest ARC since its operators are not tailored made for 

the TTVRP problem. According to the no free lunch 



theorem (Wolpert and Macready, 1996), any optimization 

methods should be tailored to the problem domain for best 

performance. The results in Fig. 5 also illustrate that the 

HMOEA outperforms NH_MOEA and STD_MOEA 

consistently, which produces the lowest routing cost for all 

test cases. Since the search space of the multiobjective 

TTVRP optimization is complex, it is expected that the 

problem-specific HMOEA should povide an efficient and 

high-performance routing solution.  
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Fig. 5  The average routing cost for various algorithms 

4.2.2 Ratio of Non-dominated Individuals 

In multiobjective optimization, it is often desired to find  

many useful candidate solutions that are non-dominated in 

a population, which could be measured by the ratio of 

non-dominated individuals (RNI) as proposed by Tan et 

al., (2001). Given a population X, the RNI  is defined as, 

_
( )% 100%

nondom indiv
RNI X

N
= ×    (4) 

where nondom_indiv is the number of non-dominated 

individuals in population X, while N is the size of the 

population X. Without loss of generality, Fig. 6 shows the 

RNI for the three algorithms based on a randomly selected 

test case 132_3_4. As can be seen, the RNI value of 

STD_MOEA is the lowest among the three algorithms and 

in the process of computation, the evolution in 

STD_MOEA stopped at around 90 generations as no 

improvement was observed for 5 generations 

continuously. The results also show that the search 

performance of HMOEA for non-dominated solutions is 

slightly better than NH_MOEA. Besides, the HMOEA 

also has the best average RNI of 1.89 as compared to the 

value of 1.71 and 0.44 for NH_MOEA and STD_MOEA, 

respectively. 

4.2.3 Simulation Time 

The computational time for different algorithms is studied 

in this sub-section. The three algorithms adopt the same 

stopping criteria in the simulation, i.e., the evolution stops 

after 1000 generations or when no improvement is found 

for the last 5 generations. Fig. 7 shows the normalized 

simulation time for the three algorithms based on four 

randomly selected test cases, e.g., test_100_3_4, 

test_112_3_4, test_120_3_4 and test_132_3_4. As can be 

seen, the STD_MOEA requires the shortest time to 

converge or halt the evolution. The optimization results 

obtained by the STD_MOEA are much inferior probably 

because the population in STD_MOEA has converged 

prematurely to local Pareto front. The results also show 

that the computation time required by HMOEA is better 

than NH_MOEA for the all the instances. 
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5 Conclusions

A transportation problem for moving empty or laden 

containers for a logistic company has been considered and 

a model for the truck and trailer vehicle routing problem 

(TTVRP) has been constructed in the paper. The objective 

of the routing problem is to minimize the routing distance 

and the number of trucks required, subject to a number of 

constraints such as time windows and availability of 

trailers. To solve such a multiobjective and multi-modal 

combinatorial optimization problem, a hybrid 

multiobjective evolutionary algorithm (HMOEA) featured 

with specialized genetic operators, variable-length 

representation and local search heuristic has been applied 



to find the Pareto optimal routing solutions for the 

TTVRP. Detailed analysis has been performed to extract 

important decision-making information from the 

multiobjective optimization results. The computational 

results have shown that the proposed HMOEA and 

features incorporated are effective for solving  

multiobjective combinatorial optimization problems such 

as finding useful trade-off solutions for the TTVRP. 
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