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Abstract- The main objectives of multiobjective 

evolutionary algorithms are to minimize the distance 

between the solution set and true Pareto front, to 

distribute the solutions evenly and to maximize the 

spread of solution set. This paper addresses these 

issues by presenting two features that enhance the 

ability of multiobjective evolutionary algorithms. The 

first feature is a variant of the mutation operator that 

adapts the mutation rate along the evolution process to 

maintain a balance between the introduction of 

diversity and local fine-tuning. In addition, this 

adaptive mutation operator adopts a new approach to 

strike a compromise between the preservation and 

disruption of genetic information. The second feature 

is a novel enhanced exploration strategy that 

encourages the exploration towards less populated 

areas and hence achieves better discovery of gaps in 

the generated front. This strategy also preserves non-

dominated solutions in the evolving population and 

hence gives good convergence. Comparative studies 

show that the proposed features are effective. 

1 Introduction 

Evolutionary algorithms have been recognized to be well 

suited for multi-objective optimization problems due to 

their inherent parallelism and their capability to evolve a 

family of solutions at multiple points along the Pareto 

optimal frontier simultaneously and efficiently. Many 

techniques, taking advantage of evolutionary algorithm’s 

capacity to obtain the approximate Pareto Front, had been 

proposed with varying success (Corne et al, 2000; Deb et 

al, 2002; Knowles and Corne, 2000; Tan et al, 2001, 2003; 

Zitzler et al, 2001). The main differences among existing 

multi-objective evolutionary algorithms are in fitness 

assignment and diversity maintenance.  

The performance of MOEAs is greatly affected by their 

parameters. Evolutionary algorithms are intrinsically 

dynamic and adaptive. The adaptation of parameters 

during the runtime is more consistent to the general 

evolutionary idea and has shown better performances over 

constant parameters (Bäck, 1993, 1996; Fogarty, 1989; 

Ochoa, 1999; Thierens, 2002). Eiben et al. (1999) 

calssified the types of adaption into dynamic parameter 

control, adaptive parameter control, and self-adaptive 

parameter control.  

To maintain the diversity of solutions, many 

researchers put much effort on this issue and several 

approaches were proposed. The technique of niche sharing 

is often implemented in MOEAs (Goldberg, 1989; 

Fonseca and Fleming, 1993, 1995). Knowles and Corne 

(2000) used a hyper grid scheme in the Pareto archived 

evolution strategy (PAES).  Deb et al. (2002) proposed the 

crowding distance in the non-dominated sorting genetic 

algorithm II (NSGAII). Zitzler et al. (2001) used the 

density estimation in the strength Pareto evolutionary 

algorithm 2 (SPEA2).  

This paper presents two features to address the 

objectives of MOPs, (1) minimizing the distance between 

the solution set and true Pareto front, (2) distributing the 

solutions evenly, and (3) maximizing the spread of 

solution set. The first feature is an adaptive mutation 

operator (AMO). The second is an enhanced exploration 

strategy (EES) which maintains diversity and preserves 

good solutions in the evolving population while extending 

more attention to the growth of solutions in less populated 

areas.

Section 2 explains the AMO and EES. The 

comparative studies are performed with some well-known 

mutation operators, diversity operators, and MOEAs in 

section 3. Conclusions are drawn in section 4. 

2 Enhanced Distribution and Exploration 

2.1 Adaptive Mutation Operator 

In this section, an adaptive mutation operator (AMO) is 

introduced. The AMO is a variant of the simple bit-flip 

mutation operator and is unique in two aspects. Firstly, the 

manner in which the mutation operation is carried out on 

the chromosome is different. This will be elaborated later 

in the section. Secondly, the mutation rate of AMO is 

adapted with time along the entire evolution process. In 

brief, the AMO is implemented for three objectives: 

providing the possibility of exploration to produce new 

structures not previously tested, providing the probability 

of re-introducing chromosome substructures lost in the 

selection process, and performing local fine-tuning in the 

later stage of evolution to achieve better convergence. 

For the first objective, consider a minimization 

problem where m decision variables must be optimized. 

By using a thirty bit binary representation for each 

variable, there is a total of 302 m possible binary structures 



or chromosomes! Hence, it is difficult if not impossible, 

for any MOEA with fixed population size to maintain all 

possible binary bit combinations at any one time. By 

changing the bit values according to some mutation 

probability, the mutation operator acts as a potential 

source of producing the missing structures so that the 

evolution process is not trapped in any local minimal. 

With small mutation rates, the individuals produced by 

mutation will not vary much from the parent in terms of 

the chromosome structure. Intuitively, it will be very 

difficult to escape local traps. However, simply increasing 

the mutation rate cannot solve this problem. With 

increased mutation rates, the probability of disrupting 

substructures within the chromosome that are responsible 

for good candidate solutions, is increased. 

A simple and effective way to perform exploration 

while minimizing the disruption of good substructures 

within the chromosome is to adapt a selective approach to 

mutate a specific part of the chromosome rather than the 

entire binary structure. More specifically, each of the 

decision variable encoded in the chromosome is allocated 

equal probability of undergoing the mutation operation. 

During this mutation operation, the bits of selected 

decision variable will be subjected to bit-flip with 

probability, _ ( )am rate n . AMO operation for a single 

chromosome is shown below in figure 1 where prob is 

probability of the decision variable being selected and 

_ ( )am rate n is the probability of the bit-flip operation. If 

prob is set as 1/ var_ num where var_ num  is the number 

of decision variables encoded in a single chromosome, on 

average, the AMO will perform the bit-flip operation on 

one decision variable for every chromosome. Thus, the 

AMO allows mutated individual retaining most of the 

substructures contributing to the chromosomes fitness. 

Before AMO Chromosome

Decision variable 1 Decision variable nDecision variable k

After AMO Variant

for every decision variable

     if rand() < prob

             perform mutation with am_ rate

     else

             do not mutate

     end if

end for

Decision variable k is selected

Figure 1. AMO operation 

Most recent well-known MOEAs such as SPEAII, 

PESA, PAES, NSGAII, employ static mutation operators. 

The AMO adapts the mutation rate to maintain a balance 

between the introduction of diversity and local fine-

tuning. The mutation rate will start off with a high value to 

produce a diverse set of solutions for an effective genetic 

search. This value will then decrease as a function of time 

or generation to fulfill the requirements of local fine-

tuning. The mutation rate for this operation is given by 
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where n is the current generation of the evolution process, 

genNum is the maximal generation number. Figure 2 

shows the adaption of mutation rate along the evolution 

when a is 0.8, and b is 1/(10*30). Two distinct regions can 

be observed, the exploration region between 0.8~0.753 

and the exploitation region between 0.048~0.003. 

Different from many other adaptive mutation operators 

where mutation rate decreases gradually along the 

evolution, AMO pays its attention to searching new strings 

in the initial stage and then quickly to improving them in 

the later stage. No time is spent in exploring the 

immediate region between the exploration and exploitation 

region while AMO adapts the mutation rate according to a 

smooth curve inside each region. 
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Figure 2. Adaptive mutation rate 

2.2 Enhanced Exploration Strategy 

In this section, the enhanced exploration strategy (EES) is 

presented. The EES is an online population distribution 

scheme that maintains diversity and preserves non-

dominated solutions together in the mating population. In 

addition, it improves solution distribution by encouraging 

the growth of individuals in less populated areas.  

Niche sharing is achieved using a sharing function. Let 

d be the distance measure between x and y. The 

neighbourhood size is defined in term of d and specified 

by the so-called niche radius share . The sharing function 

is defined as follows:  



1 /   if d<
( )

0                        otherwise
share shared

sh d
(2)

And the niche count function is defined with the help 

of sharing function: 

( ) ( ( , ))
y

nc x sh dist x y (3)

The niche radius share  is a key parameter that affects 

MOEA's effectiveness. Improper setting of the value will 

result in bad distribution of the population. In practice, the 

niche radius is difficult to estimate because there is no a-

priori knowledge about the shape of the Pareto front for 

many problems. In this paper, the objective space is 

normalized and the sharing distance is set as 

share 1/ _archive size . The niche count will be used in 

the selection and archive updating.  

The flow chart of EES is shown in figure 3. The 

purpose of the entire process is to promote the growth of 

solutions in less populated areas. At every generation, a 

certain number of individuals will be tournament selected 

from the archive to form the population called exp_ pop

and the selection criterion is based purely on the niche 

count. Simple bit-flip mutation is performed on 

exp_ pop with mutation probability expP . Depending on 

the test problem, expP is either 1/ _chromosome length  or 

1/ _ _ _ varbit number per iable . The number of 

individuals selected for exp_ pop  is dynamic and it is 

given by,  
2_ (1 )Num Explore c epr d (4)

where ( )epr n  is the evolution progress rate. Evolution 

progress rate is developed from progress ratio (Tan et al,

2001). It is defined as the ratio of the number of new non-

dominated solutions discovered in generation n,

_ ( )new nondomSol n , to the total number of non-

dominated solutions in generation n,

_ ( )total nondomSol n .

_ ( )
( )

_ ( )

new nondomSol n
epr n

total nondomSol n

(5)

The set of new non-dominated individuals discovered 

at each generation is basically composed of individuals 

that dominate the non-dominated individuals of the 

previous generation and individuals that contribute to the 

diversity of the solution set.  

The rationale behind selecting an adaptive number of 

individuals for the exploration is intuitive. When ( )epr n

is low, it means that either the generated Pareto front is 

approaching the true front or the evolution process is not 

discovering new solutions and more resources are required 

to perform exploration in the less populated areas. When 

( )epr n is high, it means that the new solutions are being 

discovered and resources to perform exploration can be 

reduced.

At the same time, individuals are being selected to a 

mating pool named _mat pop through the tournament 

selection of the combination of archive and the evolving 

population ( )population n . The selection criterion in this 

case is based on Pareto based rank and the niche count 

will be used in the event of a tie. The population size of 

_mat pop is dynamic and it is given by _Pop size  - 

_Num Explore  where _Pop size  is the population size of 

the evolving population. The _mat pop will then be 

subjected to genetic operations such as crossover and 

mutation. After the genetic operations, exp_ pop and

_mat pop are combined to form ( 1)population n . The 

settings of c and d  in this paper are 10 and 20 

respectively.

Calculate the Num_Explore

Archive update

Mutation

Tournament select

Pop_size - Num_Explore

individuals from the

archive and population(n)

Tournament select

Num_Explore individuals

from the archive

Genetic operations

Combine individuals to form

population(n+1)

Stop

Figure 3. Flowchart for EES operation 

3 Case study 

In this section, we first describe the test problems used in 

the comparisons. Next, three performance metrics for 

multi-objective optimization are described and defined. 

Then, extensive simulations are performed. 

3.1 The Test Problems 

Three test problems are resorted to validate the 

performance of AMO and EES. Table 1 summarizes 

features of these test problems and these problems are 

defined in table 2. They include important characteristics 

and are suitable to validate the effectiveness of MOEAs. 

Knowles and Corne (2000), Corne et al (2000), Deb (2002) 

Tan et al (2002), and Zitzler et al (1999, 2000, 2001), have 

used these problems in the validations of their algorithms. 



Therefore these problems should be a good test suite for a 

fair comparison.  

Table 1.  Features of the test problems 

Problem Features 

ZDT4 Pareto front is highly multi-modal and there 

are 921  local Pareto fronts. 

ZDT6 The Pareto-optimal solutions are non-

uniformly distributed along the global Pareto 

front. The density of the solutions is lowest 

near the Pareto-optimal front and highest 

away from the front. 

FON Pareto front is convex. It has a wide spread. 

Table 2. Definitions of the test problems 

ZDT4  
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FON
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3.2 Metrics of Performance 

Three different quantitative performance measures for 

multi-objective optimization are used in this study. They 

are referred from (Deb, 2002) and modified slightly by us.  

The metric of generational distance is a value 

representing how “far” the knownPF  is from truePF  and is 

defined as: 

2 1/ 2

1

1
( )

n

i

i

GD d
n

(9)

where n is the number of members in knownPF , id  is the 

Euclidean distance (in objective space) between member 

i  in knownPF  and its nearest member in truePF . The 

smaller the generational distance is, the closer 

the knownPF is to truePF .

The metric of spacing measures how “evenly” 

members in knownPF  distribute. It is defined as: 

2 1/ 2
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1
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n

i

i

S d d d
n
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where

1

1
n

i

i

d d
n

, n is the number of members in 

knownPF , id  is the Euclidean distance in objective space 

between the member i  in knownPF  and its nearest member 

in knownPF . The smaller the spacing is, the more evenly 

members in knownPF  distribute. 

The metric of maximum spread measures how well the 

true Pareto front is covered by the discovered Pareto front 

through the hyper-boxes formed by the extreme function 

values observed in the true Pareto front and generated 

Pareto front. In order to normalize the metric, this metric 

is modified as 

max min 2
1 1

1

1
[(max min ) /( )]

M
n i n i
i m i m m m

m

MS f f F F
M

(11)

where n is the number of members in the discovered 

Pareto front, i
mf is the m th  objective of member i,

max
mF , min

mF are the maximum and minimum of the 

m th objective in the true Pareto front. The greater the 

maximum spread is, the more area of truePF  is covered by 

the knownPF .

3.3 Effects of AMO 

In the comparisons, we employ a basic MOEA paradigm. 

It has a population of fixed size, and implements elitism in 

the form of a fixed sized archive. Fonseca and Fleming’s 

ranking scheme is applied. The niche sharing is used in the 

tournament selection as well as diversity maintenance in 

the archive. All runs considered are implemented with the 

same binary coding, binary tournament selection, uniform 

crossover, and bit-flip mutation. Table 3 lists other 

configurations.  

Table 3. Parameter setting for different operators 

Chromosome Binary coding. 30 bits per 

decision variable.  

Population Population size 100; Archive (or 

secondary population) size 100. 

Selection Binary tournament 

Crossover operator Uniform crossover  

Crossover rate 0.8 

Ranking  Scheme of Fonseca and Fleming  

Diversity technique Niche sharing with radius 0.01 

in the normalized objective 

space

Generation number 1000 



The performance of AMO is compared against three 

different settings of bit-flip mutation operators and FBLP 

(Tan et al., 2001) listed in tabel 4.  

Table 4. Different cases for AMO evaluation 

 Case Description 

1 N1 Bit-flip with mutation rate PM/2 

2 N2 Bit-flip with mutation rate PM

3 N3 Bit-flip with mutation rate PM*2

4 FBLP / 2, ,

_ _ _ var / 2

ab PM b PM

bit num per iable

5 AMO a=0.8, b = PM

PM is defined as 1/ _chromosome length for ZDT4 and

ZDT6 and 1/ _ _ _ varbit number per iable  for FON.

In the experiment, 30 runs are performed for each cases 

on each test problem so as to study the statistical 

performance. The median of 30 runs on the three 

performance metrics is listed in table 5. AMO displays the 

best generational distance for this problem. AMO is the 

only operator that enabled the algorithm to converge upon 

the Pareto front of ZDT6. In addition, AMO is competitive 

in the spread. However, it seemed that the good 

performances of AMO in the spread and generation 

distance are achieved at the expense of spacing. This is 

probably due to AMO’s emphasis on exploitation in the 

later stage of evolution. As a result, the AMO is unable to 

bridge the gaps between the extreme end solutions 

discovered during the initial exploratory phase. 

Table 5. Median values of generation distance, space and 

spread for AMO comparison. (The problem ZDT4, ZDT5,

and FON are encoded as 1, 2, 3 respectively in table 5,6,8 

and 9.) 
  Mutation operator 

  AMO FBLP N1 N2 N3 

 GD 0.7681 0.8778 0.7868 0.8142 1.4601 

1 S 0.6481    0.3541 0.2595 0.7463 0.7831 

 MS 0.7444 0.7533 0.7572 0.7408 0.4207 

 GD 4.87e-7 0.8657 0.5471 1.5886 2.8208 

2 S 2.3443    1.3399 1.7457 1.1108 1.1910 

 MS 0.9992 0.7042 0.7545 0.7060 0.7047 

 GD 0.0030    0.0031    0.0031    0.0146    0.0492 

3 S 2.4625 1.3672 0.9318 0.8072 0.7589 

 MS 0.5858 0.4845 0.4791 0.5620 0.6773 

The effects of various prob settings are examined in 

table 6. The purpose is to prove that the underlying idea of 

AMO to maintain a balance between preservation and 

disruption of chromosomes by selective mutation of 

decision variables can improve the performance of the 

algorithm. Similarly, 30 runs are performed for each 

setting on each test problem. 

Table 6. Median values of generation distance, space and 

spread for different prob settings 

 Parameter Settings: prob

1/ var_ num 0.25 0.5 0.75 

GD 0.7681 0.7996 0.8080 0.7927 
1 S 0.6481 0.6627 0.7194 0.7129 

MS 0.7444 0.7158 0.7180 0.7384 

GD 4.87e-7 4.91e-7 5.02e-7 1.0609 
2 S 2.3443 2.5039 3.1710 0.9033 

MS 0.9992 0.9992 0.9992 0.7047 

GD 0.0030 0.0034 0.0208 0.0415 
3 S 2.4625 2.3488 0.8112 0.7131 

MS 0.5858 0.6064 0.6638 0.6999 

Note that as prob is increased, the behaviour of AMO 

will approach that of bit-flip mutation operator albeit the 

changing mutation rate. It can be observed from table 6 

that the metric of generation distance increases with 

increasing prob. This is most probably due to the fact that 

increasing prob would correspond to the disruption of 

more genes. 

3.4 Effects of EES 

The performance of EES is compared against niche 

sharing (Goldberg, 1989; Fonseca and Fleming, 1993, 

1995), hyper grid scheme (Knowles and Corne, 2000), 

crowding distance (Deb et al., 2002), and density 

estimation (Zitzler et al., 2001). The niche sharing sums 

the sharing effects of individuals in a neighbourhood. The 

hyper grid divides the normalized objective space into 

hyper boxes and every individual is given an attribute that 

indicates the number of solutions sharing the same box. 

The crowding distance is an estimate of the size of the 

largest cuboid enclosing a solution without any other point. 

The density estimation is adapted from k th  nearest 

neighbour method and it is given by the inverse of the 

k th  distance. In this comparison, all the diversity 

techniques are conducted in the normalized objective 

space. Other settings are listed in table 7. 

Table 7. Parameter setting for the comparison 

Chromosome Binary coding. 30 bits per 

decision variable.  

Population Population size 100; Archive (or 

secondary population) size 100. 

Selection Binary tournament 

Crossover operator Uniform crossover  

Crossover rate 0.8 

Mutation operator Bit-flip  

Mutation rate PM

Ranking  Scheme of Fonseca and Fleming 

Generation number 1000 

The median of 30 runs on the three metrics is listed in 

table 8. With respect to the metric of generation distance, 

the algorithm incorporated with EES is clearly the best in 

the test problems. This is particularly evident in the test 

problem of ZDT6 and FON. ZDT4 proved to be the most 

difficult problem for all algorithms. However, EES still 

produces good performance in all three metrics with 

respect to the other diversity operators on this problem.  



Table 8. Median values of generation distance, space and 

spread for EES comparison 

Diversity operator

EES Niche Grid Crowd Density 

 GD 0.7652 0.8142    1.0008    0.7832    0.7993 

1 S 0.3173 0.7463 0.6567 0.2506 1.3513 

 MS 0.7610 0.7408    0.7235    0.7366    0.7403 

 GD 5.05e-7 1.5886    1.5984    1.6012    1.6222 

2 S 0.1734 1.1108 1.1051 1.1444 1.1119 

 MS 0.9992 0.7060    0.7051    0.7061    0.7043 

 GD 0.0022 0.0146 0.0141 0.0146 0.0142 

3 S 0.2252 0.8072 0.9006 0.8077 0.8541 

 MS 0.7732 0.7060    0.7051    0.7061    0.7043 

It is also obvious that the incorporation of EES 

improves greatly the distribution and spread of solution 

along the Pareto front for all test problems. EES is 

particularly outstanding in the metric of spacing in test 

problem of ZDT6 and FON. In addition, EES has the best 

performance in the area of maximum spread for all test 

problems. 

Table 9 shows that the performance of EES with 

different d settings does not vary a lot over the test 

problems. This observation implies that the EES will be 

able to perform well against the various diversity 

operators despite the different settings. More importantly, 

it also shows that the EES is insensitive to parameter 

changes.

Table 9. Median values of generation distance, space and 

spread for different d settings 

EES Parameter Settings: d

20 25 30 40 
 GD 0.7652 0.7712 0.7688 0.7804 
1 S 0.3173 0.3185 0.3224 0.3167 
 MS 0.7610 0.7590 0.7590 0.7557 
 GD 5.05e-7 5.10e-7 5.13e-7 4.94e-7 
2 S 0.1734 1.4231 0.1660 0.1770 
 MS 0.9992 0.9992 0.9992 0.9992 
 GD 0.0022 0.0020 0.0021 0.0021 
3 S 0.2252 0.2273 0.2379 0.2211 
 MS 0.7732 0.8053 0.7857 0.7947 

3.5 Effects of AMO+EES 

The AMO and EES are incorporated into a general 

MOEA paradigm that uses binary coding, binary 

tournament selection, uniform crossover, and Fonseca and 

Fleming’s ranking scheme. This algorithm is called ALG 

in this paper and will be compared with five recent well-

known algorithms to validate the effectiveness of AMO 

and EES. The indices of the algorithms are listed in table 

10. All algorithms are implemented with the same binary 

coding scheme, binary tournament selection, uniform 

crossover, Fonseca and Fleming’s ranking scheme. Other 

configutations are listed in table 11. 

Table 10. Indices of the different algorithms 

Index Algorithm 

1 ALG (AMO+EES) 

2 PAES 

3 PESA 

4 NSGA II 

5 SPEA 2 

6 IMOEA 

Table 11. Configuration of ALG, PAES, PESA, NSGAII, 

SPEA2, IMOEA. 

Chromosome  Binary coding, 30 bits for each 

variable.  

Population Population size 1 in PAES; population 

size 100 in PESA, NSGAII, SPEA2; 

initial population size 20, maximum 

population size 100 in IMOEA. 

Secondary population (or archive) size 

is 100 for all the algorithms.  

Crossover 

operator

Uniform crossover 

Crossover rate 0.8 

Mutation 

operator

AMO in ALG; FBLP in IMOEA;  

bit-flip in others 

Mutation rate 1/ _chromosome length for ZDT4 and

ZDT6; 1/ _ _ _ varbit number per iable

for FON

Ranking  Scheme of Fonseca and Fleming  

Generation 

number 

100,000 in PAES;  

1000 in others 

The simulation results of the algorithms with respect to 

the various metrics are summarized in figure 4. The 

distribution of the simulation data of 30 independent runs 

is visualized in the box plot format, which has been 

applied by (Tan et al, 2001, 2002). Each box plot 

represents the distribution of a sample set where a 

horizontal line within the box encodes the median, while 

the upper and lower ends of the box are the upper and 

lower quartiles. The appendages illustrate the spread and 

shape of distribution, and dots represent the outside 

values. 

Although the previous investigation of AMO and EES 

in section 3.3 and section 3.4 show that the individual 

effects of either feature are not enough to allow the 

algorithm overcome the local traps of ZDT4 and the large 

spread of FONs’ tradeoff, each have showed their own 

distinct advantage over their counterpart operators. While 

AMO have the ability drive the evolution towards the 

Pareto front and to find points in unexplored regions, it 

lacks some form of mechanism to guide its operation. This 

results in the subsequent gaps observed in the discovered 

Pareto front. The mechanism to guide the exploration of 

AMO comes in the form of EES. Likewise EES may have 

shown the ability to locate these gaps, it is unable to 

escape the local optimum trap of ZDT4 or maintain a 

diverse solution set in FON. Thus it is not surprising that 

the ALG produces better performance when these two 

features are incorporated together. 
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Figure 4. Simulation results for ZDT4, ZDT6 and FON

ZDT4 proves to be the most difficult problem faced by 

the algorithms since no algorithm, except ALG, is able to 

deal with multi-modality effectively. This is reflected in 

the performance metric of generation distance. In addition, 

the ALG also chalked up outstanding results in the metric 

of spread and distribution. The biased search space of 

ZDT6 is designed to make it difficult for the algorithms to 

evolve a well-distributed front. In this respect, ALG is still 

able to give outstanding results in terms of the distribution 

of results. This is probably because of EES. Otherwise, 

ALG performance in the aspects of generation distance 

and spread is well matched by SPEA2 and NSGAII. The 

challenge of test function, FON, is to find and maintain 

the entire Pareto front uniformly. With the exception of 

the ALG, the algorithms found it difficult to find a good 

spread and distribution. 

For all test problems, ALG responds well to the 

challenges of the different difficulties. The ALG performs 

consistently well in the distribution of solutions along the 

Pareto front. This is even so for the test problems of ZDT6

and FON that are designed to challenge the algorithm’s 

ability to maintain the Pareto front. The performance of 

ALG with respect to generational distance is also 

outstanding in all problems. This demonstrates the ALG’s 

ability to converge upon the Pareto front regardless of 

problems such as discontinuities, convexities and non-

uniformities. It also shows no problems in coping with 

local traps and this is reflected by its performance in the 

test problem ZDT4. The ALG ability to discover a diverse 

solution set on the Pareto frontier is demonstrated and this 

is most evident in the test problem of FON.



4. Conclusion 

This paper presents a novel enhanced exploration strategy 

that maintains diversity and non-dominated solutions in 

the evolving population while encouraging the exploration 

towards the direction of less populated areas. This 

achieves better discovery of gaps in the discovered 

frontier as well as better convergence. An adaptive 

mutation operator that plays the role of producing new 

genetic structures is also presented. This AMO adapts the 

mutation rate to maintain a balance between the 

introduction of diversity and local fine-tuning.  

A comparative study between the proposed features 

with various well-known multi-objective evolutionary 

algorithms, diversity operators and mutation operators are 

carried out on six benchmark problems. Simulations are 

carried out to examine the effects of AMO and EES with 

respect to selected mutation and diversity operators 

respectively. AMO and EES have showed to be 

competitive if not better than their counterparts and have 

their own specific contribution. Simulations results also 

show that the algorithm incorporated with AMO and EES 

is capable of discovering and distributing non-dominated 

solutions along the Pareto front. The combined effects of 

AMO and EES enabled the algorithm to perform well in 

breaking out of local traps and maintaining diversity in the 

solution set. The combined effects of these two features 

allow the algorithm to find a good, well-distributed and 

diverse solution set along the Pareto front. 
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