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Abstract: This paper develops a multi-objective
evolutionary based methodology for control system design
automation of robust tracking thumbprint performances in
QFT. Unlike conventional two-stage design approach, the
technique is capable of evolving both nominal controller
and pre-filter concurrently without the need of QFT bound
computation and manual loop-shaping procedure. It is
shown that the method can easily accommodate practical
soft/hard constraints and allows engineers to examine the
different design trade-offs. Validation upon a benchmark
QFT design problem illustrates the usefulness of the
proposed methodology.

1. INTRODUCTION

Quantitative Feedback Theory (QFT) is well-known as an
efficient frequency based robust controller design
methodology that maintains system response within pre-
specified tolerances despite uncertainties and disturbances
[1-3]. It has been successfully applied to various
engineering applications such as flight control, missile
control, compact disk mechanisms and etc [4, 5]. The basic
idea of QFT is to convert design specification on closed-
loop response and plant uncertainty into robust stability and
performance bounds on open-loop transmission of the
nominal system. A fixed structure controller and pre-filter is
then synthesized using gain-phase loop-shaping technique
so that the two-degree-freedom output feedback system as
shown in Fig. 1 is controlled within specification for any
member of the plant templates.
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Fig. 1 A typical output feedback control system

In brief, QFT controller design consists of the following
steps:

1. For each particular frequency, templates are developed
by determining the frequency responses of various
plants.

2. A set of QFT bounds in Nichols chart are then computed
based upon the chosen nominal plant and the design
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specifications such as robust margin, robust tracking and
disturbance rejection. Taking the worst-case bound at
the same frequency point of the intersection of all
bounds gives a single QFT bound in the Nichols chart.

3. Loop-shaping design technique is applied to obtain the
controller G(s) so that the QFT bounds in Nichols chart
at all frequencies are satisfied and the closed-loop
nominal system is stable.

4. Lastly, the pre-filter F(s) is designed to position the
system within the frequency domain specifications.

To design the controller in Fig. 1, QFT bounds in Nichols
chart for each specification of all frequency points must be
acquired, which is often an exhaustive trial-and-error
procedure [3]. The reason is that, for every frequency point
with sufficiently small frequency interval, the template
needs to be moved up or down on the Nichols chart until
the gain variation of the template is equal to the gain
variation allowed for any particular robust specification at
that frequency. Besides, only the controller can be
synthesized via the QFT bound computation using loop-
shaping method. Another independent design task has to be
accomplished in order to obtain the pre-filter within a two-
stage design framework.

In this paper, a multi-objective evolutionary based
methodology for design automation of QFT control system
is proposed. Unlike existing methods, the evolutionary
technique is capable of obtaining the controller and pre-
filter concurrently to meet all performance requirements in
QFT without going through the QFT bound computation
and manual loop-shaping procedure. In addition, it is
capable of evolving a set of non-commensurable solutions
that allows the engineers to examine various trade-offs
among the different design specifications. Overview of the
tracking thumbprint that is useful for formulating the robust
tracking specification in QFT is given in Section 2. The
QFT design specification of robust tracking thumbprint and
other performance requirements are formulated in Section
3. Section 4 briefly describes a multi-objective evolutionary
algorithm (MOEA) that is capable of handling both soft and
hard design constraints for effective multi-objective
optimization. Implementation of the MOEA to a benchmark
QFT design problem is illustrated in Section 5. Conclusions
are drawn in Section 6.



2. OVERVIEW OF TRACKING THUMBPRINT

Tracking thumbprint specification is often used to
determine the robust tracking performance in QFT, which is
based upon the satisfaction of an upper and lower bound in
time-domain response as shown in Fig. 2. Here, y(f)y is the
upper bound which is usually an under-damped (m,, t,, &, ,,
K.)u step response, while y(7), is the lower bound that is
often represented by an over-damped step response (¢, Z.
Ku)L. my is denoted as the system overshoot, ¢, the peak
time, # the settling time, ¢ the rise time and K, the gain
margin.
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Fig. 2 The tracking thumbprint specification

Based on the time-domain specification of my, ¢, ¢, ¢, and
the required gain margin K, the desired control ratio can be
modeled in the frequency domain as shown in Fig. 3. Here,
Ty is the transformed upper bound and 7}, the transformed
lower bound, which maybe in the form of a second-order
transfer function as given by [2]

o, (1)

T(s)=
(s) s+ 20w, s+ o}

where , is the natural frequency and ¢ denotes the
damping ratio. Intuitively, @, and ¢ can be easily

determined from the time-domain specifications as given in
Fig. 2. The specification of tracking thumbprint in QFT is
thus to design the controller and pre-filter in Fig. 1 such that
the system frequency responses of all plant templates are
inside the region of the desired specified tracking bounds in
the Bode plot as shown in Fig. 3. ;
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Fig. 3 Bode plot of upper and lower bound tracking model
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3. MULTI-OBJECTIVE DESIGN FORMULATION

Apart from the tracking thumbprint specification in QFT,
other design objectives such as robust margin performance,
high frequency gain and minimal controller order are also
important and needed to be satisfied in the design. In
contrast to the conventional two-stage loop-shaping
approach, these performance requirements can be
formulated as a multi-objective design optimization
problem. The aim is thus to concurrently design the
nominal controller G(s) and pre-filter F(s) in order to satisfy
all the specifications such as closed-loop stability, robust
tracking performance, robust margin, high frequency gain
and minimal controller order as described below:

(1) Stability (RHSP)

The cost of stability, RHSP, is included to ensure stability
of the closed-loop system, which could be evaluated by
solving the roots of the characteristic polynomial. The cost
of stability is then defined as the total number of unstable
closed-loop poles or the positive poles in the right-hand-
side of S-plane. Clearly, a stable closed-loop system
requires a zero value of RHSP.

(ii) Robust Upper Tracking Performance (ERRUT)

The cost of upper tracking performance, given by ERRUT,
is included for the upper tracking bound specification in
Fig. 3. It is computed as the sum of absolute error at each
frequency point,

ERRUT = ile,, (@) @

i=l

where 7 is the total number of interested frequency points;
e, is the difference between the upper bound of the closed-
loop system CL; and the pre-specified upper tracking
bound Ty, if the upper bound of the closed-loop system is
greater than the pre-specified upper tracking bound or less
than the pre-specified lower tracking bound 7;; otherwise,
e, is equal to zero. In Fig. 4, the length of vertical dotted
lines at each frequency w; represents the magnitude of

en( Cl),') .
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Fig. 4 Computation of upper tracking performance



(iii) Robust Lower Tracking Performance (ERRLT)

The cost of lower tracking performance, given by ERRLT,
is incorporated for the lower tracking bound specification in
Fig. 3. It is defined as the sum of absolute error at each
frequency point,

ERRLT =) |e/(@,)] ®3)
i=l

where n is the number of frequency points; ¢ is the
difference between the lower bound of the closed-loop
system CL; and the pre-specified lower tracking bound T,
if the lower bound of the closed-loop system is greater than
the pre-specified upper tracking bound T or less than the
pre-specified lower tracking bound Tj; Otherwise, ¢ is
equal to zero as illustrated in Fig. 5.
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Fig. 5 Computation of lower tracking performance

(iv) Robust Margin (RM)

It is of fundamental importance that control system is
designed so that closed-loop stability is preserved in the
face of uncertainties. The cost of robust margin, RM, is to
increase the stability margin of the closed-loop system and
is defined as [6]

_Fi(o)G(j®)

RM = ma{ -
1+ P (jo)G(jw)
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where P is the set of plant templates. Note that a smaller
RM corresponds to a better robust stability margin of the
system.

(v) High Frequency Gain (HFG)

The high frequency gain performance, HFG, is included to
reduce the gain of loop transmission L(s) = G(s)P(s) at the
high frequency in order to avoid the high-frequency sensor
noise and the unmodeled high-frequency dynamics or
harmonics, which may resuilt in actuator saturation and
instability. The high frequency gain of loop transmission
L(s) is given as

lim 5" L(s) )

$—0

500

where r is the relative order of the L(s). Since only the
controller in the loop transmission is to be optimized, this
performance requirement is equivalent to the minimization
of high frequency gain of the controller or the magnitude of
b,/a, for a controller structure given as [7}

b,s" +b, 5" +---B,

G(s)=
a,s" +a, s"" +--a

O)

where n and m is the order of the numerator and
denominator in the controller G(s), respectively.

(vi) Controller Order (CO)

It is often desired that the controller to be designed is as
simple as possible, since simple controller requires less
computation and implementation effort than a higher-order
controller does. Here, the order of controller is included as
one of the QFT design specification in order to find the
smallest-order controller after all other design specifications
have been satisfied.

As addressed in the Introduction, the QFT control system
design is basically a multi-objective optimization problem
that determines multiple controller and pre-filter
coefficients to satisfy a set of non-commensurable and often
competing design specifications. Conventional techniques
for multi-objective optimization problem include the
method of inequalities, goal attainment or weighted sum.
To obtain a good solution, however, these approaches
require a continuous cost function and a set of precise
settings of weights or goals that are usually not well
manageable or understood [8, 9]. A powerful multi-
objective evolutionary algorithm that is capable of
achieving an effective and automated QFT control system
design is thus presented in next section.

4. EVOLUTIONARY DESIGN AUTOMATION

Multi-objective optimization seeks to optimize a vector of
non-commensurable and often competing objectives or cost
functions. Solution to the multi-objective problem is a
family of points known as Pareto optimal set, where each
objective component of any point along the Pareto front can
only be improved by degrading at least one of its other
objective components [10]. Ranking scheme based upon the
Pareto optimality is regarded as an appropriate approach in
coping with multi-objective optimization in evolutionary
algorithms. For details of evolutionary algorithms with
Pareto ranking and goal/priority information for multi-
objective optimization, refer to [8] and [9)].

Practical multi-objective optimization problems often
involve optimizing a set of objective components, subject to
certain constraints to be satisfied. These constraints could
be incorporated in the multi-objective cost function as one
of the objective components to be optimized. It maybe in



the form of a hard constraint where the optimization is
directed towards attaining a threshold or goal, and further
optimization is meaningless and not desired whenever the
goal has been satisfied. In contrast, a soft constraint requires
ongoing optimization or to optimize the value of that
objective component as much as possible. An easy
approach to deal with both soft and hard constraints
concurrently in the multi-objective  evolutionary
optimization is proposed. At each generation, an updated
objective function F," concerning the hard and soft
constraints for an individual x with its objective function F;
is computed in a-priori to the Pareto cost assignment as
given by,

G() if [G()ishard]& [F. (i) < G(i)]

Vi={l,..m}, F}(i)=
F= e, B () {Fx(i) otherwise

M

In eqn. 7, any objective component i corresponding to a
hard constraint is assigned to the value of the goal G(i)
whenever the hard constraint has been satisfied. The
underlying reason is that there is no ranking preference for
any particular objective component that has the same
objective value in an evolutionary process, and thus the
evolution will only be directed towards optimizing soft
constraints and any unattained hard constraints, as desired.

Convergence trace is an important dynamic behavior in the
evolutionary optimization, which -provides a useful
performance observation of the entire evolution process.
For single objective optimization, the convergence behavior
is often represented by the performance index versus the
iteration or generation. Obviously, this representation is not
appropriate for multi-objective optimization that has more
than one objective to be optimized at all time. A novel
convergence assessment for multi-objective optimization
via the concept of population domination and progress ratio
is proposed here. In the sense of progress towards the
direction that is normal to the trade-off surface formed by
the current non-dominated individuals, the progress ratio at
any particular generation can be defined as the domination
of one population to another. Generally, the progress ratio
Pr" at generation n can be defined as the ratio between the
number of non-dominated individuals at generation »
(nondom_indiv™)  dominating  the  non-dominated
individuals at generation (n-1) (nondom_indiv("")) over the
total number of non-dominated individuals at generation »
(nondom_indiv™),

nondom_ind iv") dominating nondom_ind iv""
(n)

Prim =

®

nondom_ind iv

For a normal convergence, the progress ratio should start
from a value close to 1 indicating a high possibility for
further improvement of the evolution at the initial stage. As
the generation proceeds, Pr is expected to be decreased
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asymptotically towards a small value approaching zero,
showing the population is touching the trade-off surface or
there is less possibility to produce any new non-dominated
individuals dominating the current non-dominated
individuals. Intuitively, the evolution is said to be nearly
converged at generation n if Pr* ~ 0, which maybe used as
a stopping criterion for the multi-objective optimization.
Like conventional convergence trace, the progress ratio Pr
cannot reflect how close the population is approaching the
usually unknown trade-off surface. However, it provides the
important information of the relative progress of the
population evolves in the direction that is normal to the
trade-off surface formed by the current non-dominated
individuals at each generation.

5. ABENCHMARK QFT DESIGN PROBLEM

The benchmark QFT design problem given in [6, 7] is
studied here to illustrate the usefulness of the proposed
methodology. The QFT control system is shown in Fig. 1,
with the uncertain plant set given as

ka
s(s +a)

P(s)= 1k ell,10), a e}, 10} )

The various closed-loop performance requirements for QFT
control system design described in Section 3 are formulated
as follows:

(i) Robust Stability Margin:

P(jw)G(jw) <12,YPe P20
1+ P(jo)G(jw)|~ T

(i) Robust Tracking Performance:

P(j0)G(jw)
1+ P(jo)G(jo)

T (w) < iF(jo) < T, (@)

(iii) Upper Tracking Model:
| o0.6854(jw)+30 |
|(j@)? +4(jw) +19.752|

Ty (@)

(iv) Lower Tracking Model:

N 120 |
O Gy T 17Gw) + 82y +120)

A wide frequency spectrum covering the ranges of 107
rad/sec to 10* rad/sec is used to evaluate the robust stability
and tracking performances of the system. One major
advantage of the proposed evolutionary technique is the
ability to directly evolve both the controller G(s) and the
pre-filter F(s) simultaneously. For wider choices of solution
set, the controller order to be optimized is not fixed and
arbitrarily ranges from second-order to fourth-order. For



this, an additional variable is added to turn on/off the
relevant controller coefficients as appropriate. The filter is
fixed to second-order, as it is relevant to the tracking bound
in the frequency response which is a second-order transfer
function as given in eqn. 1.

The structure of the controller is chosen in the form of a
general transfer function as given by

4

2

i=0
P
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i

G(s) = (10
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Since the resultant pre-filter must satisfy ljng[F (H]=1 for

a step forcing function [6], the structure of F(s) is chosen as

F(s)=—5—

J
1+chs
J=1
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To guide the MOEA optimization process, goal and
priorities [9] are introduced and their settings are given in
Table 1. Here, the stability and robust tracking performance
are treated as hard constraints, while robust margin, high
frequency gain and controller order are regarded as soft
constraints. In Table 1, the cost of stability is given as the
first priority because system stability is often the most
important requirement in any control system design. The
system must also satisfy the tracking thumbprint, robust
margin and high frequency gain requirements.
controller order is set as the last priority in order to evolve a
set of controllers with the lowest controller order that fulfill
all other design specifications. Although determination of
the objectives and the priorities may be a subjective matter
and depends on the performance requirement, ranking the
priorities may be unnecessary and can be ignored for a
‘minimum-commitment’ design [11]. If, however, an
engineer is committed to prioritizing the objectives, it is a
much easier task than weighting the objectives. In principle,
any number or combination of specifications or constraints
can be added to the design if necessary.

Table 1. Goal/priority setting for the benchmark problem

Objective Cost Goal Constraint Priority
1 RHSP 0 hard i
2 . ERRUT 0 hard 2
3 ERRLT 0 hard 2
4 RM 1.2 soft 2
5 HFG 6x10° soft 2
6 CcO 4 soft 3

The -
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The algorithm was run for 200 generations with a
population of 200 to evolve the controller G(s) and pre-
filter F(s). At the end of the evolution, all the 200
individuals have met the 6 goals listed in Table 1. Among
these, 197 individuals are of 3".order controller and 3
individuals are of 4%-order controller. Also, there are 148
non-dominated individuals at the final generation
occupying 74% of the population. The progress ratio versus
the generation number is plotted in Fig. 7. It can be seen
that the progress ratio is relatively large in the beginning
and decreases asymptotically as the evolution proceeds or
as the population gets closer to the trade-off surface.

For the individuals satisfying the goal, their costs of
stability (RHSP), robust upper tracking performance
(ERRUT) and robust lower tracking performance (ERRLT)
are all equal to zero as according to the hard-setting in
Table 1. The resultant cost of robust margin (RM) and high
frequency gain (HFG) are shown in Fig. 8, in which the two
costs are plotted together with respect to the index of
individuals. As can be seen, the cost of high frequency gain
increases with the decreases of robust margin, which
indicates a trade-off between the two objectives. This has
allowed the engineer to visualize the objectives before final
determination of an appropriate controller and pre-filter for
the application on-hand.

Fig. 9 shows the robust tracking performance in the
frequency domain. Obviously, all the actual closed-loop
bounds given by CL; and CL; are located successfully
within the pre-specified tracking bounds of 7, and 7;. Fig.
10 shows the tracking thumbprint performance in the time-
domain for an arbitrary chosen set of 3™-order controller.
Clearly, the evolutionary design has successfully satisfied
the required tracking thumbprint performance, with step
responses for all plant templates located satisfactory within
the required time-domain tacking envelope.
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Fig. 7 Progress ratio Pr versus generation for MOEA
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Fig. 10 Thumbprint performance in the time domain

6. CONCLUSION

This paper has developed an evolutionary based controller
design methodology to satisfy the robust tracking
thumbprint performances in QFT. Unlike conventional two-
stage design using loop-shaping methods, the evolutionary
technique is capable of evolving both controller and pre-
filter concurrently to reduce the design complexity in QFT.
In addition, the evolutionary optimization can easily
accommodate practical soft/hard constraints and allows
engineers to examine different trade-offs among the
conflicting design specifications. The advantages of the
proposed evolutionary technique are illustrated upon a
benchmark QFT design problem. The multi-objective
evolutionary design for QFT is currently being applied to

S
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multi-input multi-output (MIMO) system and to incorporate
other design specifications such as economical cost
consideration. Progress and results will be reported in due
course.
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