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ABSTRACT

This paper investigates the use of a multi-objective approach
for evolving artificial neural networks that act as controllers
for the legged locomotion of a 3-dimensional, artificial quadruped
creature simulated in a physics-based environment. The Pareto-
frontier Differential Evolution (PDE) algorithm is used to
generate a pareto optimal set of artificial neural networks
that optimizes the conflicting objectives of maximizing loco-
motion behavior and minimizing neural network complexity.
Here we provide an insight into how the controller gener-
ates the emergent walking behavior in the creature by ana-
lyzing the evolved artificial neural networks in operation. A
comparison between pareto optimal controllers showed that
ANNs with varying numbers of hidden units resulted in no-
ticeably different locomotion behaviors. We also found that a
much higher level of sensory-motor coordination was present
in the best evolved controller.

Keywords: artificial evolution, artificial life, embodied cog-
nitive science, evolutionary robotics.

1. INTRODUCTION

There has been a strong resurgence of research into the evo-
lution of morphology and controller of physically simulated
creatures. The pioneering and captivating work of Sims [17]
in 1994 has not been parallelled until very recently. Further
work in this area was limited by the complexity of program-
ming a realistic physics-based environment and the steep com-
putational resources required to run the artificial evolution.
These physically realistic simulations of evolving artificial
minds and bodies have become more accessible to the wider
research community as a result of the recent convergence in
the maturation of physics-based simulation packages and in-
crease of raw computing power of personal computers [18].

Research in this area generally falls into two categories:
(1) the evolution of controllers for creatures with fixed [4, 9]
or parameterized morphologies [12, 16], and (2) the evolu-
tion of both the creatures’ morphologies and controllers si-

multaneously [8, 11, 14, 18]. Some work has also been car-
ried out in evolving morphology alone [6] and evolving mor-
phology with a fixed controller [13]. Related work using mo-
bile robots have also shown promising results in robustness
and the ability to cope with changing environments by evolv-
ing plastic individuals that are able to adapt both through evo-
lution and lifetime learning [7].

However, considerably little has been said about the role
of controllers in the artificial evolution of such creatures. It
has been noted that the potential of designing more complex
artificial systems through exploitation of sensory-motor co-
ordination remains largely unexplored [15]. As such, there
is currently a lack of understanding of how the evolution
of controllers affects the evolution of morphologies and be-
haviors in physically simulated creatures. It remains unclear
what properties of an artificial creature’s controller allow it to
exhibit the desired behavior. A better understanding of con-
troller complexity and the dynamics of evolving controllers
should pave the way towards the emergence of more complex
artificial creatures with more complex morphologies and be-
haviors.

In this paper, we investigate the use of a multi-objective
approach in evolving controllers for a fixed morphology ar-
tificial creature. By generating a pareto-frontier consisting
of multiple ANNs with differing locomotion capabilities and
varying architecture complexities, a comparison of controller
size against behavior fitness can be made. This study will
hopefully provide some insights into the architectural com-
plexity of controllers required for generating walking behav-
iors in 3D, physically simulated creatures. A further advan-
tage of using a multi-objective approach for artificial evolu-
tion is that genetic diversity is maintained naturally during
the course of the evolutionary process. It has been observed
that loss of genetic diversity causes problems in the artifi-
cial evolution of virtual creatures [10]. In this paper, the
Pareto-frontier is used to evolve a pareto optimal set of ar-
tificial neural networks (ANNs) [1, 2] that act as controllers
for the quadruped creature.



2. CONTROLLER EVOLUTION USING PDE

The simulation is carried out in a physically realistic environ-
ment which allows for rich dynamical interactions to occur
between the creature and its environment. This in turn en-
ables complex walking behaviors to emerge as the creature
evolves the use of its sensors to control the actuators in its
limbs through dynamical interactions with the environment.
Furthermore, the accurate modelling of the simulation envi-
ronment plays a crucial part in producing artificial creatures
that move and behave realistically in 3D [18]. The Vortex
physics engine [5] was employed to generate the physically
realistic artificial creature and its simulation environment. A
screen capture of the quadruped moving in its environment is
shown in Figure 1.

Figure 1: Screen capture of quadruped in the simulation en-
vironment.

The artificial creature is a basic quadruped with 4 short
legs. Each leg consists of an upper limb connected to a lower
limb via a hinge (one degree-of-freedom) joint and is in turn
connected to the torso via another hinge joint. The mass of
the torso is 1kg and each of the limbs is 0.5kg. The torso
has dimensions of 4 x 1 x 4m and each of the limbs has di-
mensions of 1 x 1 x 1m. The hinge joints are allowed to ro-
tate between -1.57 to 0 radians for limbs that move counter-
clockwise and 0 to 1.57 radians for limbs that move clock-
wise from their original starting positions. Each of the hinge
joints are actuated by a motor that generates a torque pro-
ducing rotation of the connected body parts about that hinge
joint. The creature’s overall central nervous system is illus-
trated in Figure 2.

Correspondingly, the artificial creature has 12 sensors and
8 actuators. The 12 sensors consist of 8 joint angle sensors
(x1, x2, x3, x4, x5, x6, x7, x8) corresponding to each of the
hinge joints and 4 touch sensors(x9, x10, x11, x12) corre-
sponding to each of the 4 lower limbs of each leg. The 8
actuators(y1, y2, y3, y4, y5, y6, y7, y8) represent the motors
that control each of the 8 articulated joints of the creature.
These motors are controlled via outputs generated from the
ANN controller which is then used to set the desired velocity
of rotation of the connected body parts about that joint.

The Pareto-frontier Differential Evolution (PDE) algo-
rithm [3] is used to evolve a pareto optimal set of artificial
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Figure 2: The quadruped’s central nervous system. The three
letter abbreviations identify each of the 8 different limbs. The
first letter denotes (U)pper or (L )ower, the second denotes to
(F)ront or (B)ack, and the third denotes (R)ight or (L )eft.
Here only the value for the 4 lower limbs are shown as touch
sensors are only located in these parts of the creature’s legs.

neural networks (ANNs) [1, 2] that act as controllers for the
quadruped creature. An entire set of controllers is generated
in each evolutionary run without requiring any further modi-
fication of parameters by the user. The artificial evolutionary
system proceeds along two separate goals: to (1) maximize
horizontal locomotion and, (2) minimize the complexity of
the controller. In this initial study, controller complexity is
measured using the number of hidden nodes that are used in
the ANN. In future work, we intend to define more rigor-
ous measures of controller complexity by taking into consid-
eration other ANN architectural features such as number of
connection weights as well as number of nodes in the input
and output layers. The aim here is to produce a set of pareto
optimal controllers that trades-off between locomotion capa-
bilities and controller complexity.

Similar to [1, 2], our chromosome is a class that contains
one matrixΩ of real numbers representing the weights of the
artificial neural network and one vectorρ of binary numbers
(one value for each hidden unit) to indicate if a hidden unit
exists in the network or not; that is, it works as a switch to
turn a hidden unit on or off. The sum of all values in this
vector represents the actual number of hidden units in a net-
work. This representation allows simultaneous training of
the weights in the network and selecting a subset of hidden
units.

3. EXPERIMENTS

3.1. Experimental Setup

A total of 480 evolutionary runs were conducted with varying
population sizes, crossover rates, and mutation rates while
fixing the fitness evaluation window to 500 timesteps. The



crossover rate used were 0, 0.1, 0.2, 0.5 and 1 and the muta-
tion rates used were also 0, 0.1, 0.2, 0.5 and 1 (the evolution-
ary setup with a crossover rate of 0 and a mutation rate of 0
was omitted since this setup does not generate any variabil-
ity at all in the population). The maximum number of hid-
den units permitted in evolving the artificial neural network
was fixed at 15 nodes. Each experimental setup was repeated
using 10 different seeds to allow the artificial evolution to
commence from different starting points in the search space.
The number of generations and population size were fixed at
20 and 30 respectively for the first set of runs. In the second
set of runs, these parameter values were reversed to 30 for
number of generations and 20 for population size to enable
a fair comparison between the effect of the two population
sizes (the total number of genotypes over the entire span of
the evolutionary process was kept constant at 600 genotypes
in both these setups).

3.2. Results and Discussion

High quality and a low spread of solutions were obtained
with low mutation and low to medium crossover whereas
mediocre solutions with a wider variety of controller sizes
were obtained with high mutation and low to high crossover.
Population size did not appear to significantly affect the qual-
ity and spread of pareto optimal solutions in these experi-
ments although a very slight advantage in terms of quality
and variety of controller sizes was observed with the larger
population size of 30.

In the rest of this section, we analyze the 5 pareto optimal
controllers in operation. To conduct these analyses, the best
evolved ANNs described in the previous section were used
individually to control the quadruped and the simulation pe-
riod was extended to 5000 timesteps. This enables analysis
of not only the evolved behavior but also its behavior beyond
the fitness evaluation window. Table 1 lists the correlation
coefficients between the joint angles of the respective limbs
of the creature in motion over 5000 timesteps.

UBL UFL UBR UFR LBL LFL LBR LFR
UBL 1 -0.29 0.95 -0.11 -0.55 -0.29 0.09 -0.28
UFL 1 -0.24 0.73 -0.07 0.89 0.02 0.98
UBR 1 -0.07 -0.45 -0.24 0.09 -0.23
UFR 1 -0.13 0.88 0.02 0.71
LBL 1 -0.09 -0.04 -0.06
LFL 1 0.02 0.88
LBR 1 0.03
LFR 1

Table 1: Correlation coefficients between the joint angles of
the creature’s 8 limbs in motion over 5000 timesteps with 4
hidden units. The three letters are as presented in Figure 2.

The correlation analysis of the best evolved controller
with 4 hidden units has 7 strongly positive correlation co-

efficients (>0.7). This indicates that the creature has evolved
an ANN that has learned how to coordinate the movement
of 7 sets of its limbs in order to achieve the most successful
locomotion behavior among the pareto optimal controllers.
With a correlation of 0.98, there is almost perfect coordina-
tion between the upper front left (UFL) and lower front right
(LFR) limbs. Another almost perfectly coordinated motion
comes from the upper back left (UBL) and upper back right
(UBR) limbs with a correlation of 0.95. There is also a high
level of correlation between the upper front left (UFL) and
upper front right (UFR), lower front left (LFL) and upper
front left (UFL), lower front left (LFL) and upper front right
(UFR), upper front right (UFR) and lower front right (LFR),
and lower front right (LFR) and lower front left (LFL) limbs.
In summary, the creature achieves locomotion by coordinat-
ing the movements between:

1. upper limbs of its back legs (0.95)

2. upper and lower limbs of its front left leg (0.89)

3. upper and lower limbs of its front right leg (0.71)

4. upper limbs of its front legs (0.73)

5. lower limbs of its front legs (0.88)

6. opposing limbs of its front legs (0.98, 0.88)

Some of these coordinated movements are quite obvi-
ous when inspecting the movement of the quadruped visu-
ally during simulation, for example the coordination present
between the front legs and between the back legs. However,
some coordinated movements are less obvious visually, for
example the movements of opposing limbs in the front legs.
Such complex coordinations are expected in locomotion of
legged creatures, which largely explains why hand-designing
controllers for such creatures tends to be extremely difficult
and normally results in less than desirable behaviors. The il-
lustrations that follow in Figure 3 graphically illustrate the
correlation between the 8 limbs during motion over 5000
timesteps along with the number of times each leg makes
contact with the ground.

Analysis of the less successful pareto optimal networks
reveals that there is far less coordination achieved by these
controllers. At most 3 strongly correlated sets of limb move-
ments were obtained using these controllers compared to 7
strongly correlated sets of limb movements using the best
evolved controller. It can be seen from the graphical illus-
tration that the best evolved controller with 4 hidden units
achieved high coordination between all of the creature’s front
limbs as well as in one set of its back limbs. However, with
all of the other less successful controllers, coordination was
only achieved in some of its front limbs and no coordination
was present at all in the back limbs. In these latter cases,
the creature is only able to generate useful movements from
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Figure 3: Illustration of correlation between limbs for pareto
optimal controllers.

its front legs with no contribution at all from its back legs
which resulted in poor locomotion behavior. Furthermore,
5 strongly negative correlations (<-0.8) were detected in the
controller with 1 hidden unit. These limbs are not only un-
coordinated but are generating forces that act in direct oppo-
sition to each other, thereby further hindering the creature’s
ability to move.

Next, we analyze the synchronization between the touch
sensors. The value used in this analysis represents the total
number of times each pair of legs either contact the ground
or is in the air, as explained in the equation below:

• Touch = count(xi=xj)
Total number of timesteps

LBL LFL LBR LFR
LBL 1 0.35 0.53 0.34
LFL 1 0.63 0.65
LBR 1 0.50
LFR 1

Table 2: Touch synchronization between the creature’s legs
in motion over 5000 timesteps with 4 hidden units. The three
letter abbreviations identify each of the 8 different limbs.

The previous equation was used for all networks on the
pareto frontier. The best spread of synchronization between
pairs of legs are achieved in the controller with 4 hidden
units, which demonstrated the best locomotion behavior, as
shown in Table 2. This can be attributed to the fact that a
balance between the number of times each leg synchronizes
with a particular leg, for example to balance the body, as

well as with other legs, for example to push the creature for-
wards, needs to be achieved in order to generate useful lo-
comotion. Looking at the controllers with less numbers of
hidden units, a larger spread of synchronization can be no-
ticed, which means that the creature has pairs of limbs that
spend the majority of the time either balancing the body or
attempting to push the creature forwards without striking a
balance between these two critical aspects of successful lo-
comotion.

Finally, we analyze the path of movement that was taken
by the creature in attempting to maximize its horizontal dis-
tance covered during the extended simulation window of 5000
timesteps. Here we compared the paths of all networks on the
pareto-frontier of the last generation of controller evolution.
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Figure 4: Path of movement using controller with 0, 1, 2, 3,
and 4 hidden units.

As can be seen from the graphs depicting the movement
of the creature, the least amount of movement was achieved
by the controller with no hidden units. The creature was only
able to partially stand up and hardly moved at all from its ori-
gin. Not much improvement was achieved by the controller
that used 1 hidden unit. Its behavior was almost identical
to the controller with no hidden units although it did man-
age to move slightly further away from its origin. We start
to see significantly more movement with the controller with
2 hidden units where after standing up fairly efficiently, it
manages to move in a small U-shape path away from its ori-
gin. Using the controller with 3 hidden units, the creature
again manages to stand up very efficiently and follow a fairly
straight path away from the origin. The distance covered us-
ing this controller was slightly more than the controller with
2 hidden units. Finally the best evolved controller which used
4 hidden units showed a significantly higher locomotion ca-
pability where it very successfully carved a large U-shape
path along the X and Z planes starting from its origin. Using
this controller, the creature first stood up very quickly and



moved in a reasonably straight line toward 10 m along the
X plane during the first 500 timesteps, which represented the
evaluation window during evolution. Beyond the evaluation
window, the controller appears to veer the creature towards
the Z plane and eventually turns around on its original path
and heads in the reverse direction along the X plane. This
shows that although the creature’s controller performed well
during the period where its fitness was subjected to evolu-
tionary pressure, its long-term locomotion behavior beyond
this point was noticeably different from the original intended
behavior. Comparing across the controllers with different
numbers of hidden units, we can also observe that controller
complexity does in fact play a strong role in determining the
emergent locomotion behaviors within the same creature. On
one extreme, we have a controller with no hidden units that
is only able to partially stand up and achieves virtually no
horizontal movement to the other extreme where we have a
controller with 4 hidden units that is able to not only stand up
quickly but also move the creature over very large distances.

Another interesting outcome from these multi-objective
evolutions is that we get a range of controllers that vary in
architectural complexity and locomotion capability. On the
one hand, we have a totally random ANN with no hidden
nodes but is still able to move the creature away from its ori-
gin, although the movement achieved within the stipulated
500 timesteps is extremely minimal (approximately 0.5m).
In this random network, there is still an act of force on the
creature permitting the small initial movement but is unable
to perform further locomotion due to the lack of synchroniza-
tion ability. On the other hand, we have the best ANN that
uses 4 hidden nodes and is able to move almost 10m within
the same time period. In addition, we have a further 3 ANNs
that utilize between 1 and 3 hidden nodes which again have
differing locomotion capabilities. Thus, the multi-objective
approach is able to provide the experimenter with a whole
range of controllers within a single run that trades off be-
tween the individual optimization goals. This represents a
significant advantage over single-objective evolutionary sys-
tems that need to be re-run multiple times in order to test the
effect of other factors such as number of hidden units on the
performance of artificial creatures [4].

4. CONCLUSION

We have demonstrated a multi-objective approach to evolv-
ing artificial neural networks for controlling the locomotion
of a 3D, physically simulated artificial creature. The pareto-
frontier that resulted from each single evolutionary run pro-
vided a set of ANNs which maximized the locomotion ca-
pabilities of the creature and at the same time minimized
the size of the controller. The correlation and path analy-
ses of the pareto optimal controllers in operation provided
an insight into how the complex coordination between the

quadruped’s different limbs generated the emergent locomo-
tion behavior. For future work, we intend to investigate the
effects of controller complexity when both the morphology
and controller are co-evolved simultaneously.
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