
Elucidating the Benefits of A Self-Adaptive Pareto EMO Approach for Evolving
Legged Locomotion in Artificial Creatures

Jason Teo
School of Engineering and Information Technology,

Universiti Malaysia Sabah,
Kota Kinabalu, Sabah, Malaysia.

j.teo@ums.edu.my

Hussein A. Abbass
Artificial Life and Adaptive Robotics (A.L.A.R.) Lab,

School of Information Technology and Electrical
Engineering, University of New South Wales @

Australian Defence Force Academy, Canberra, Australia.
h.abbass@adfa.edu.au

Abstract- A self-adaptive Pareto Evolutionary Multi-
objective Optimization (EMO) algorithm based on differ-
ential evolution is proposed for evolving locomotion con-
trollers in an artificially embodied legged creature. The
objective of this paper is to demonstrate the trade-off
between quality of solutions and computational cost. We
show empirically that evolving controllers using the pro-
posed algorithm incurs significantly less computational
cost compared to a self-adaptive weighted sum EMO al-
gorithm, a self-adaptive single-objective evolutionary al-
gorithm and a hand-tuned Pareto EMO algorithm. The
main contribution of the self-adaptive Pareto EMO ap-
proach is its ability to produce sufficiently good con-
trollers with different locomotion capabilities in a single
run, thereby reducing the evolutionary computational
cost dramatically. Moreover, the performance of our
proposed Pareto EMO algorithm was found to be com-
parable against a current state-of-the-art Pareto EMO
algorithm, the NSGA-II algorithm, for evolving legged
locomotion controllers.

1 Introduction

The automatic synthesis of embodied and situated crea-
tures through artificial evolution has become a key area
of research in robotics [Lipson and Pollack, 2000], artifi-
cial life [Taylor and Massey, 2001] and the cognitive sci-
ences [Nolfi and Floreano, 2002]. This concept stresses the
importance of studying systems that have a body and are
situated in a physical environment. It also emphasizes the
utilization of artificial evolution as the primary mechanism
for driving the self-organization process. This approach en-
ables artificial creatures to autonomously develop intelli-
gent behavior through the dynamic interactions between its
body, nervous system and environment.

However, research into evolving artificial creatures have
focused mainly on generating the desired behavior us-
ing single-objective fitness functions. These evaluation
functions typically consist only of a single term for as-
signing the fitness of individuals generated [Sims, 1994,

Lipson and Pollack, 2000, Bongard and Pfeifer, 2002] or a
combination of multiple terms into a single weighted objec-
tive when the desired behavior cannot be achieved with sim-
pler single-termed functions [Floreano and Mondada, 1998,
Hornby and Pollack, 2001, Reil and Husbands, 2002]. It is
highly surprising that a true multi-objective optimization
approach involving optimization of explicitly distinct objec-
tives has remained largely unexplored thus far for artificial
creature evolution. Such explorations may very well reveal
significant advantages over standard single-objective EAs
in terms of the evolutionary optimization process itself in
addition to the possibility of generating greater varieties of
creature morphologies and behaviors.

2 The Pareto EMO Approach

EMO combines the fields of evolutionary computa-
tion with multiple criteria decision-making for solv-
ing multi-objective optimization problems [Deb, 2001,
Coello Coello et al., 2002]. A multi-objective optimiza-
tion problem gives rise to a number of optimal solu-
tions, known as Pareto optimal solutions, of which none
can be said to be better than the others with respect to
all objectives. EAs are particularly suited for tackling
multi-objective optimization problems by virtue of their
population-based nature that allows for the generation of
multiple solutions of the Pareto set within a single run
[Deb, 2001, Coello Coello et al., 2002].

The use of EMO for the evolution of embodied ar-
tificial creatures allows for the consideration of dif-
ferent objectives simultaneously. Although there have
been some studies that appear to have multi-objectivity
present in the evolutionary system, such as predator-
prey simulations [Nolfi and Floreano, 2000], coevolution
[Hornby and Pollack, 2001] and evolution by physical com-
petition [Sims, 1994], they do not explicitly impose the evo-
lutionary search on distinctly different optimization crite-
ria. Consequently, the resulting artificial creatures cannot
exhibit clear trade-offs in terms of their different evolution-
ary goals.



An EMO approach has been previously used in a
robotics design problem although the experiment involved
only a non-autonomous subject in the form of an attached
robotic manipulator arm [Coello Coello et al., 1998]. EMO
has also been used for the design of autonomous robots
[Leger, 1999] although the focus was for optimizing the
physical configurations of modular robotic components
rather than for the generation of autonomous robotic con-
trollers. The use of EMO has also been reported for solv-
ing navigational problems in simulated 2D mobile agents
[Gacogne, 1999, Kim and Hallam, 2002].

We have previously demonstrated the use of EMO for
evolving locomotion controllers in fully embodied and
situated creatures that minimized the hidden layer size
of the controller and maximized locomotion capability
achieved [Teo and Abbass, 2002] as well as for charac-
terizing the complexity of artificially evolved creatures
[Teo et al., 2003]. Our experiments were aimed at generat-
ing legged locomotion in 3 dimensions rather than wheeled
or mobile locomotion behaviors that are restricted to 2 di-
mensions. In this paper, our main aim is to compare the
trade-off between using a self-adaptive Pareto EMO ap-
proach against more conventional EA methodologies in
terms of solution quality and computational cost. The ob-
jectives of these comparisons are firstly to elucidate the
effectiveness of using these conventional algorithms for
generating high quality locomotion controllers and sec-
ondly whether the advantages of the self-adaptive Pareto
approach are truly beneficial against these more common
methods of evolutionary optimization. Finally, a compar-
ison of our proposed algorithm is made against NSGA-II
[Deb et al., 2002], a well-known and state-of-the-art hand-
tuned Pareto EMO algorithm.

3 The Virtual World

3.1 Physics Engine

The Vortex physics engine [CM Labs, 2002] was employed
to generate the physically realistic artificial creature and its
simulation environment. Vortex is a commercial-off-the-
shelf (COTS) simulation toolkit which consists of a set of
C++ routines for robust rigid-body dynamics, collision de-
tection, contact creation, and collision response. However,
as Vortex is a constraint-based simulation, it naturally suf-
fers from increasingly higher computational requirements
as the number of objects being simulated in the world in-
creases. As such, the design of the artificial creature and
its world are kept relatively simple in order to maintain a
reasonable run time, especially when conducting the evo-
lutionary experiments. The experiments were carried out
using a Pentium IV 2.4GHz PC with 256MB RAM. A sin-
gle typical evolutionary run would take on average 4 hours

Figure 1: Screen dump of the simulated quadruped.

Figure 2: Geometric description of the creature.

to complete using this hardware configuration.

3.2 Creature Morphology

The artificial creature is a basic quadruped with 4 short legs.
Each leg consists of an upper limb connected to a lower limb
via a hinge (one degree-of-freedom) joint and is in turn con-
nected to the torso via another hinge joint. The hinge joints
are allowed to rotate between 0 to 1.57 radians. Each of the
hinge joints is actuated by a motor that generates a torque
producing rotation of the connected body parts about that
hinge joint. The mass of the torso is 1g and each of the
limbs is 0.5g. The torso has dimensions of 4 x 1 x 2cm and
each of the limbs has dimensions of 1 x 1 x 1cm. The artifi-
cial creature has 12 sensors and 8 actuators. The 12 sensors
consist of 8 joint angle sensors corresponding to each of the
hinge joints and 4 touch sensors corresponding to each of
the 4 lower limbs of each leg. The joint angle sensors return
continuous values in radians whereas the touch sensors re-
turn discrete values, 0 if no contact and 1 if contact is made.



Figure 3: Artificial neural network architecture.

The 8 actuators represent the motors that control each of
the 8 articulated joints of the creature. These motors are
controlled via outputs generated from the ANN controller
which are then used to set the desired target velocity of ro-
tation of the connected body parts about that joint. The ac-
celerations of the hinge motors required to reach the target
angular velocities are automatically calculated by Vortex.

3.3 Controller Architecture

The ANN architecture used in this study is a fully-
connected feed-forward network with recurrent connections
on the hidden units as well as direct input-output connec-
tions. Recurrent connections were included to allow the
creature’s controller to learn time-dependent dynamics of
the system. Direct input-output connections were also in-
cluded in the controller’s architecture to allow for direct
sensor-motor mappings to evolve that do not require hidden
layer transformations. Bias is incorporated in the calcula-
tion of the activation of the hidden as well as output layers.

3.4 Genotype Representation

Let I be the number of inputs, H the number of hidden
units, and O the number of outputs. The genotype is a
class with an (I + H) × (H + O) dimension matrix Ω,
an H dimension vector ρ, δ as the crossover rate and η
as the mutation rate. ωij ∈ Ω is the weight connecting
unit i with unit j, where i = 0, . . . , (I − 1) is the in-
put unit i, i = I, . . . , (I + H − 1) is the hidden unit
(i − I), j = 0, . . . , (H − 1) is the hidden unit j, and
j = H, . . . , (H+O−1) is the output unit (j−H). ρh ∈ ρ is
a binary value used to indicate the existence of hidden unit
h.

∑H

h=0
ρh, represents the actual number of hidden units

in a network. ρ allows a hidden node to evolve even if it is
not active during a generation.

Figure 4: Morphogenesis of genotype into ANN controller.

4 Experimental Setup

First, we outline our proposed self-adaptive Pareto EMO al-
gorithm. Then we explain each of the other four EAs. The
evolutionary parameters were set as follows in all experi-
ments: 1000 generations, 30 individuals, maximum of 15
hidden units, 500 timesteps and 10 repeated runs for each
setup. The objectives were to (1) maximize the locomotion
distance achieved, and (2) minimize usage of hidden units
in the ANN controller.

Algorithm 1: SPANN – A Self-Adaptive Pareto EMO
Algorithm. Recently, the SPDE algorithm [Abbass, 2002]
was combined with the MPANN algorithm [Abbass, 2001]
for evolving artificial neural networks called the Self-
adaptive Pareto Artificial Neural Network (SPANN) algo-
rithm, implementation details of which can be found in
[Abbass, 2003]. The evolutionary mechanism of SPANN is
based on differential evolution [Storn and Price, 2995] but
self-adapts the crossover and mutation rates. In this pa-
per, we propose a modified version of SPANN for con-
troller evolution. There are two major differences between
this proposed version and the original version of SPANN.
Firstly, the original version uses back-propagation whereas
this modified version purely uses evolutionary adaptation.
Secondly, the repair function used in the original algorithm
for evolving the crossover and mutation rates (which trun-
cates the whole number portion leaving only the decimal
portion), though useful for the data mining task, was found
to cause premature convergence of these rates to the lower
boundary of 0 when evolving controllers. Consequently, the
evolutionary optimization process would also prematurely
stagnate due to the lack of crossover and mutation during
reproduction. The new repair function, which adds (if rates
< 0) or substracts (if rates > 0) a random number between
0 and 1, is proposed in this modified version.



Algorithm 2: A Self-Adaptive Weighted Sum EMO Al-
gorithm. Here, we used an EMO algorithm with a single-
objective that combined the two objectives using a weighted
sum. Apart from the change to the manner in which the ob-
jectives are evaluated, the weighted sum EMO algorithm is
otherwise similar to SPANN in all other respects. 10 differ-
ent values were used for the relative weight which was con-
trolled using the γ parameter. For example, when γ = 10%,
the weight put on maximizing locomotion is set to 10%
while the weight put on minimizing the number of hidden
units is set to 90%. A (λ + µ) strategy is used where the
15 best individuals of the population are carried over to the
next generation intact.

Algorithm 3: A Self-Adaptive Single-Objective EA.
Next, we used a conventional EA which optimizes only one
objective of maximizing the locomotion distance achieved
by the ANN controller while keeping the hidden layer size
fixed. As in the weighted sum EMO algorithm, the (λ + µ)
strategy is used in this single-objective EA. Sixteen sepa-
rate sets of evolutionary runs were conducted corresponding
to each one of the different number of hidden units rang-
ing from 0 to 15, which is the range allowed in the multi-
objective runs.

Algorithm 4: A Hand-Tuned Pareto EMO Algorithm.
In this set of experiments, an EMO algorithm identical to
SPANN is used but with the exception that the crossover and
mutation rates are user-defined rather than self-adaptive.
Apart from the non-self-adapting crossover and mutation
rates, the hand-tuned EMO algorithm is otherwise similar
to SPANN in all other respects. The following crossover
and mutation rate combinations were used respectively —
Setup 1: 50%, 50%; Setup 2: 50%, 90%; Setup 3: 90%,
50%.

Algorithm 5: NSGA-II – A Hand-Tuned Pareto EMO
Algorithm. NSGA-II requires a number of parameters to be
set by the user including the non-self-adaptive crossover and
mutation rates. Recently, the authors of NSGA-II conducted
a comprehensive comparative study of NSGA-II against
other EMO algorithms [Deb et al., 2002]. Hence, in the
first setup, these user-defined parameters were set accord-
ing to those used in the above-mentioned comparative study
as follows: crossover rate 90%, mutation rate for real-coded
variables 0.1553% (representing the reciprocal of the num-
ber of real-coded variables), and mutation rate for binary-
coded variables 6.6667% (representing the reciprocal of the
number of binary-coded variables), distribution index for
crossover operator 20, distribution index for mutation oper-
ator 20, and single-point crossover. As with the setup used
in the hand-tuned Pareto EMO experiments, the following
crossover and mutation rate combinations were used respec-
tively — Setup 2: 50%, 50%; Setup 3: 50%, 90%; Setup 4:
90%, 50%.

5 Results and Discussion

The results obtained from SPANN are first contrasted
against the weighted sum EMO algorithm, the single-
objective EA and the hand-tuned EMO algorithm. A com-
parison of the trade-off between quality of solutions ob-
tained and the associated computational cost involved with
these evolutionary runs is given. Finally, the results of
SPANN is compared against NSGA-II.

5.1 SPANN Against a Weighted Sum EMO Algorithm

Algorithm Average Best t-value No. of
Locomotion Distance (against Hidden
± Standard Deviation SPANN) Units

SPANN 13.9626 ± 1.7033 - 4.9 ± 2.6
γ=10% 9.8571 ± 1.4277 (5.97) 0.0 ± 0.0
γ=20% 10.4613 ± 2.6883 (3.19) 0.1 ± 0.3
γ=30% 8.4306 ± 1.3288 (7.96) 0.1 ± 0.3
γ=40% 9.4011 ± 2.1017 (4.46) 0.5 ± 0.8
γ=50% 11.3924 ± 3.0330 (2.15) 0.8 ± 0.9
γ=60% 12.1794 ± 2.9865 (1.86) 1.6 ± 1.0
γ=70% 13.7448 ± 2.4376 (0.33) 3.3 ± 1.9
γ=80% 14.0521 ± 2.3034 0.09 4.1 ± 1.5
γ=90% 15.1119 ± 1.9977 1.76 5.6 ± 1.9
γ=100% 15.2829 ± 3.6578 1.04 8.1 ± 1.5

Table 1: Comparison of best locomotion distance for
Pareto/best solutions obtained over 10 independent runs
with SPANN and the weighted sum EMO algorithm which
utilizes the γ parameter.

In Table 1, we compare the weighted sum EMO against
the Pareto SPANN algorithm. Results comparable to those
obtained using the SPANN algorithm are achieved only with
γ = 70%. Although slightly higher locomotion distances
were achieved using higher values of γ, which places more
emphasis on the locomotion component of the weighted ob-
jective function, in all cases the standard deviation of the so-
lutions were higher for the average best fitness for locomo-
tion distance. Also, the case where γ = 100%, which does
not put any pressure whatsoever towards optimizing the size
of the hidden layer, results in a very high average of hidden
units used in the evolved controllers. This suggests that a
significant amount of redundancy may be present in these
networks, given that a t-test showed none of these weighted
sum solutions were significantly better than those obtained
with SPANN at both the α = 0.05 and α = 0.01 signifi-
cance levels. Conversely, three of the weight combinations
resulted in solutions significantly worse than SPANN at the
α = 0.01 significance level (γ = 10%, 30%, 40%) and one
weight combination worse than SPANN at the α = 0.05
significance level (γ = 20%). Therefore, obtaining good
solutions when using a weighted sum method critically de-



pends on the choice of weights used on the respective objec-
tive functions and to find this right combination of weights
would require multiple evolutionary runs to be conducted.
Hence, the Pareto approach adopted in our SPANN algo-
rithm is preferable from a computational cost point of view
over a weighted sum method since it is able to proceed with
the evolutionary optimization process without any tuning of
weights and is still able to produce highly competitive re-
sults.

5.2 SPANN Against a Single-Objective EA

Algorithm No. of Average Best t-value
Hidden Locomotion Distance (against
Units ± Standard Deviation SPANN)

SPANN 4.9 ± 2.6 13.9626 ± 1.7033 -
SO-EA 0 15.7516 ± 2.9721 1.53
SO-EA 1 15.1441 ± 2.0260 1.33
SO-EA 2 16.3236 ± 2.7242 2.43
SO-EA 3 15.1532 ± 3.1696 1.05
SO-EA 4 15.2088 ± 2.2106 1.61
SO-EA 5 15.1562 ± 2.8741 1.32
SO-EA 6 16.0317 ± 2.0719 2.86
SO-EA 7 15.8033 ± 1.6159 2.07
SO-EA 8 17.4358 ± 3.2508 2.89
SO-EA 9 15.7375 ± 2.6430 1.53
SO-EA 10 16.1514 ± 2.1318 2.49
SO-EA 11 15.0614 ± 3.5612 0.86
SO-EA 12 15.4287 ± 3.0020 1.41
SO-EA 13 15.0359 ± 1.8909 1.19
SO-EA 14 16.6273 ± 2.8095 2.70
SO-EA 15 15.6150 ± 2.4605 2.58

Table 2: Comparison of best locomotion distance for
Pareto/best solutions obtained over 10 independent runs
with SPANN and single-objective EA (SO-EA). Number of
hidden units is fixed in the single-objective EA.

In Table 2, we compare the single-objective EA against
the multi-objective SPANN algorithm. In all the single-
objective runs, higher locomotion distances were achieved
by the evolved controllers in terms of the mean of the best
solutions compared to SPANN. This is expected since all the
evolutionary optimization pressure is focused only on the
one objective of maximizing locomotion distance whereas
this pressure is halved in the EMO case, where it is being
shared with the objective of minimizing the hidden layer
size. However, none of these results were significantly
different at the α = 0.01 significance level compared to
SPANN while only six out of the sixteen different setups
were significantly different at the α = 0.05 significance
level (number of hidden units = 2, 6, 8, 10, 14 & 15). How-
ever, it should be noted that the standard deviations in 15 out
of the 16 different setups in the single-objective EA were

higher than SPANN which suggests that even though the
search space is much larger in the EMO case, the SPANN
algorithm is still more stable in terms of its optimization
results. It should also be remembered that 150 more evo-
lutionary runs (15 setups × 10 repeats) were required in
the single-objective case simply to investigate the effects of
the hidden layer size on the evolution of these controllers.
This would be a serious limitation for such investigations
if the different number of setups required increases in mag-
nitude (for example, consider the case where 100 or 1000
hidden units are allowed) or if the additional factors to be
investigated are not discrete in nature (for example varia-
tions in the morphological parameters of the artificial crea-
ture). Moreover, in obtaining these better locomotion ca-
pabilities, there is a significant trade-off since the overall
computational costs in terms of evaluating the ANN during
evolution is much higher for the single-objective EA com-
pared to SPANN (see Table 4).

5.3 SPANN Against a Hand-Tuned EMO Algorithm

Algorithm Average Best t-value No. of
Locomotion (against Hidden
Distance ± SPANN) Units

Standard Deviation
SPANN 13.9626 ± 1.7033 - 4.9 ± 2.6

c=50%,m=50% 15.3819 ± 2.3195 1.39 6.5 ± 1.7
c=50%,m=90% 13.1881 ± 1.4715 (1.03) 7.7 ± 2.5
c=90%,m=50% 13.1978 ± 1.6447 (1.42) 6.1 ± 1.4

Table 3: Comparison of best locomotion distance for Pareto
solutions obtained over 10 independent runs with SPANN
and the hand-tuned EMO algorithm which requires the user
to set the crossover rate c and the mutation rate m.

As shown in Table 3, the use of hand-tuned crossover
and mutation rates did not provide any significant advan-
tage over the SPANN algorithm in terms of the average best
locomotion distance achieved by the evolved controllers. A
t-test showed no significant differences at the α = 0.05 and
α = 0.01 significance levels. One combination of the hand-
tuned EMO algorithm gave a marginally better result over
the 10 runs in terms of the average best solution obtained
while two other combinations performed worse than the
SPANN algorithm. In terms of the number of hidden units
used, the three combinations of the hand-tuned EMO algo-
rithm used an average of 1.8 nodes more than SPANN. As
such, the self-adaptive SPANN algorithm is beneficial com-
pared to a hand-tuned EMO algorithm in that it reduces the
computational runs required while still being able to main-
tain the same quality of solutions generated both in terms of
the locomotion distance achieved as well as in the number
of hidden units required in the controller.



Algorithm Best +/ − % Total +/ − %
Locomotion of SPANN Computational of SPANN

Distance Cost
SPANN 17.6994 - 909,520,500 -

Weighted Sum EMO 21.8228 +23.3% 3,073,867,500 +238.0%
Single-Objective EA 22.4069 +26.5% 1,441,441,000,000 +15748.4%
Hand-Tuned EMO 19.5051 +15.9% 2,509,938,000 +176.0%

Table 4: Comparison of overall best locomotion controller obtained and corresponding computational cost using SPANN
against the weighted sum EMO algorithm, the single-objective EA and the hand-tuned EMO algorithm.

5.4 Trading-Off Solution Quality Against Computa-
tional Cost

Table 4 compares the overall best solution found by the dif-
ferent algorithms against the overall computation cost in-
volved in discovering these solutions. The computational
cost is estimated using the total number of hidden unit ac-
tivations registered during the search process for each algo-
rithm. This is a reasonable estimate since most of the com-
putational time involved in conducting these experiments
is spent on the evaluation of different ANN controllers by
way of physically simulating the creature as guided by each
newly generated controller within the Vortex physics-based
world (see Section 3.1). Therefore, the computational cost
(C) will differ between different algorithms as a function of
the number of hidden unit activations required to evaluate
the fitness of each newly generated genotype (A), the num-
ber of new genotypes generated per evolutionary run (G)
and the number of evolutionary runs per algorithm (R), as
described by the following equation:

C = A × G × R (1)

The best overall solution in terms of locomotion dis-
tance was obtained using the single-objective EA where the
improvement over SPANN was 26.5%. However, the cor-
responding computational cost was a staggering 15,748%
more than SPANN. This was mainly due to the number of
repeated runs required for each different hidden layer size as
well as the high usage of hidden units in the runs involving
larger hidden layer sizes, which cannot be changed within
each evolutionary run. Again, although better locomo-
tion capabilities were obtained using the hand-tuned EMO
and weighted sum EMO, dramatically higher computational
costs were also associated with the use of the hand-tuned
(176%) as well as the weighted sum methods (238%) com-
pared to SPANN. Again these increases can be attributed
to the need for repeated evolutionary runs required to test
different weight assignments and crossover/mutation rates
respectively in these algorithms. However, the inclusion of
another objective in these two algorithms, which allowed
for the minimization of the hidden layer size, did reduce

the computational cost significantly compared to the single-
objective EA.

In summary, although better controllers were evolved for
locomotion distance using the single-objective EA, the cor-
responding trade-off in terms of overall computational cost
was dramatically and unfavorably large. The trade-off be-
tween obtaining better locomotion capabilities and compu-
tational cost was again significantly and unfavorably large
using the hand-tuned and weighted sum EMO algorithms.
Hence, the SPANN algorithm has been shown to provide
reasonably good results in terms of evolving locomotion
controllers while at the same time providing the lowest over-
all computational cost compared to three other evolutionary
methodologies investigated.

5.5 SPANN Against NSGA-II

Algorithm Overall Best Average Best t-statistic
Locomotion Locomotion (against

Distance Distance ± SPANN)
Standard Deviation

SPANN 17.6994 13.9626 ± 1.7033 -
Setup 1 15.5452 11.7421 ± 2.0497 (3.78)
Setup 2 18.3941 16.2022 ± 1.5860 2.85
Setup 3 20.4144 17.8635 ± 1.9744 4.54
Setup 4 20.9806 16.2667 ± 2.1868 2.54

Table 5: Comparison of best locomotion distance for Pareto
solutions obtained over 10 independent runs with SPANN
and NSGA-II which utilizes setups 1 through 4.

Table 5 lists the best Pareto solutions for locomotion dis-
tance obtained using the NSGA-II algorithm and compares
them against those obtained using the SPANN algorithm.
The best solutions obtained using the first setup for NSGA-
II produced controllers that used no hidden units in all 10
runs. The overall best locomotion distance achieved was
lower than that obtained using SPANN. The very small mu-
tation rate used in this setup most probably caused the evo-
lutionary search to prematurely converge to local optima



centered around controllers which did not use any hidden
units. A t-test showed that the results obtained using NSGA-
II were significantly worse than SPANN at the α = 0.01
significance level for this setup. Also, the overall best con-
troller from SPANN achieved over 2 units of distance more
than the overall best controller obtained from this setup of
NSGA-II (representing a decrease of 12.2% compared to
the overall best locomotion distance achieved by SPANN).

To overcome the inferior results obtained using the setup
reported in [Deb et al., 2002], a second experiment utilizing
the best combination of crossover and mutation rates ob-
tained from the hand-tuned EMO was conducted. This sec-
ond setup used crossover and mutation rates of 50% with
all other parameters unchanged. Much better results were
obtained in this second setup, where the overall best con-
troller in terms of locomotion achieved a higher distance
than that obtained using SPANN by just under 0.7 units
(representing a 3.9% improvement over the best locomotion
distance achieved by SPANN). A t-test showed that the so-
lutions obtained using NSGA-II with the second setup were
significantly better than those obtained using SPANN at the
α = 0.05 significance level.

A third experiment using a setup with an even higher
mutation rate of 90% while maintaining the crossover rate
at 50% was conducted. However, a t-test comparing the
results from this third setup against the second setup for
NSGA-II showed no significant improvements. A fourth
experiment was conducted using a setup with crossover rate
of 90% and maintaining the mutation rate at 50%. Again, a
t-test showed no significant improvements in the results ob-
tained with the fourth setup compared to the second setup
of NSGA-II. The solutions obtained with third and fourth
setup for NSGA-II were significantly better than those ob-
tained with SPANN at the α = 0.01 and α = 0.05 levels re-
spectively. The best solutions obtained from the third setup
of NSGA-II used an average of 8.4 hidden units, which is al-
most double the number used by the best solutions obtained
using SPANN, while the fourth setup used an average of 7.7
hidden units.

Figure 5 plots the global Pareto-front for all the differ-
ent algorithms used in evolving ANN controllers for the ar-
tificial creature. It can be seen that the Pareto-front gen-
erated through 10 runs of SPANN is comparable though
dominated by the Pareto-front generated through 40 runs of
NSGA-II (10 runs each in Setup 1–4). The solution with 0
hidden units of the NSGA-II global Pareto-front was con-
tributed by the first setup of NSGA-II while the remain-
ing 8 other solutions on the global Pareto-front were con-
tributed by the other three setups. It is clear that the per-
formance of NSGA-II is also sensitive to the parameters
used. Although the Pareto-front of SPANN was not as opti-
mal as the other algorithms, the controller with the highest
locomotion distance discovered by each algorithm had the

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Locomotion distance

N
o.

 o
f h

id
de

n 
un

its

Global Pareto−Frontier for All Algorithms

SPANN
WS−EMO
SO−EA
HT−EMO
NSGA−II

Figure 5: Global Pareto-front of controllers obtained using
SPANN, weighted sum (WS-EMO), single-objective (SO-
EA), hand-tuned (HT-EMO) and NSGA-II algorithms. X-
axis: Locomotion distance, Y-axis: No. of hidden units.

smallest hidden layer size for SPANN (4 nodes) compared
to NSGA-II (9 nodes), the hand-tuned EMO algorithm (9
nodes), the weighted sum EMO algorithm (7 nodes) and the
single-objective EA (14 nodes) but more importantly, the
computational cost incurred was much higher in all of the
other evolutionary algorithms compared to the SPANN al-
gorithm in finding the right parameter settings to generate
these more optimal Pareto fronts.

6 Conclusion

The self-adaptive Pareto SPANN algorithm was com-
pared against EMO algorithms that utilized hand-tuning of
crossover/mutation rates and weighted sum approaches as
well as a single-objective EA. It was found that SPANN
discovered reasonably good quality controllers but most
importantly required significantly less overall computa-
tional costs. Although better solutions were found using
the single-objective EA, the weighted sum and hand-tuned
EMO algorithms, the trade-off in terms of computational
costs was extremely high in comparison to SPANN. The
performance of SPANN was also found to be comparable
to that of a current state-of-the-art benchmark Pareto EMO
algorithm, NSGA-II. Therefore, the self-adaptive Pareto
SPANN algorithm has been shown to be a highly beneficial
EMO algorithm to use for evolving artificial creature con-
trollers compared to other more conventional evolutionary
optimization algorithms. As future work, it would be inter-
esting to implement a self-adaptive version of NSGA-II for
a direct comparison against the self-adaptive SPANN.



Bibliography

[Abbass, 2001] Abbass, H. A. (2001). A memetic Pareto
evolutionary approach to artificial neural networks. 14th
International Joint Conference on Artificial Intelligence,
LNAI 2256, pp. 1–12. Springer-Verlag, Berlin.

[Abbass, 2002] Abbass, H. A. (2002). The self-adaptive
Pareto differential evolution algorithm. 2002 Congress
on Evolutionary Computation, pp. 831–836. IEEE Press,
Piscataway, NJ.

[Abbass, 2003] Abbass, H. A. (2003). Speeding up
back-propagation using multiobjective evolutionary al-
gorithms. Accepted to appear in Neural Computation.

[Bongard and Pfeifer, 2002] Bongard, J. C. and Pfeifer, R.
(2002). A method for isolating morphological effects on
evolved behavior. Seventh International Conference on
the Simulation of Adaptive Behavior, pp. 305–311. MIT
Press, Cambridge, MA.

[CM Labs, 2002] CM Labs (2002). Vortex Toolkit [online].
http://www.cm-labs.com.

[Coello Coello et al., 1998] Coello Coello, C. A., Chris-
tiansen, A. D., and Aguirre, A. H. (1998). Using a new
GA-based multiobjective optimization technique for the
design of robot arms. Robotica, 16:401–414.

[Coello Coello et al., 2002] Coello Coello, C. A., Van
Veldhuizen, D. A., and Lamont, G. B. (2002). Evo-
lutionary Algorithms for Solving Multi-Objective Prob-
lems. Kluwer Academic, New York.

[Deb, 2001] Deb, K. (2001). Multi-objective Optimization
using Evolutionary Algorithms. John Wiley & Sons,
Chicester, UK.

[Deb et al., 2002] Deb, K., Pratab, A., Agrawal, S., and
Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evo-
lutionary Computation, 6(2):182–197.

[Floreano and Mondada, 1998] Floreano, D. and Mon-
dada, F. (1998). Evolutionary neurocontrollers for au-
tonomous mobile robots. Neural Networks, 11:1461–
1478.

[Gacogne, 1999] Gacogne, L. (1999). Multiple objective
optimization of fuzzy rules for obstacles avoiding by an
evolution algorithm with adaptative operators. Fifth In-
ternational Mendel Conference on Soft Computing, pp.
236–242, Brno, Czech Republic.

[Hornby and Pollack, 2001] Hornby, G. S. and Pollack,
J. B. (2001). Body-brain coevolution using L-systems as

a generative encoding. 2001 Genetic and Evolutionary
Computation Conference, pp. 868–875. Morgan Kauf-
mann, San Francisco.

[Kim and Hallam, 2002] Kim, D.-E. and Hallam, J. (2002).
An evolutionary approach to quantify internal states
needed for the Woods problem. Seventh International
Conference on the Simulation of Adaptive Behavior, pp.
312–322. MIT Press, Cambridge, MA.

[Leger, 1999] Leger, P. C. (1999). Automated Synthesis and
Optimization of Robot Configurations: An Evolutionary
Approach. PhD thesis, Carnegie Mellon University.

[Lipson and Pollack, 2000] Lipson, H. and Pollack, J. B.
(2000). Automatic design and manufacture of robotic
lifeforms. Nature, 406:974–978.

[Nolfiand Floreano, 2000] Nolfi, S. and Floreano, D.
(2000). Evolutionary Robotics: The Biology, Intel-
ligence, and Technology of Self-Organizing Machines.
MIT Press, Cambridge, MA.

[Nolfiand Floreano, 2002] Nolfi, S. and Floreano, D.
(2002). Synthesis of autonomous robots through evo-
lution. Trends in Cognitive Science, 6(1):31–36.

[Reil and Husbands, 2002] Reil, T. and Husbands, P.
(2002). Evolution of central pattern generators
for bipedal walking in a real-time physics environ-
ment. IEEE Transactions on Evolutionary Computation,
6(2):159–168.

[Sims, 1994] Sims, K. (1994). Evolving virtual creatures.
21st Annual Conference on Computer Graphics and In-
teractive Techniques, pp. 15–22. ACM Press, New York.

[Storn and Price, 2995] Storn, R. and Price, K. (1995).
Differential evolution: A simple and efficient adaptive
scheme for global optimization over continuous spaces.
Technical Report TR-95-012, Berkeley, 1995.

[Taylor and Massey, 2001] Taylor, T. and Massey, C.
(2001). Recent developments in the evolution of mor-
phologies and controllers for physically simulated crea-
tures. Artificial Life, 7(1):77–87.

[Teo and Abbass, 2002] Teo, J. and Abbass, H. A. (2002).
Multi-objectivity for brain-behavior evolution of a
physically-embodied organism. 8th International Con-
ference on Artificial Life, pp. 312–318. MIT Press, Cam-
bridge, MA.

[Teo et al., 2003] Teo, J., Nguyen, M. H., and Abbass,
H. A. (2003). Multi-objectivity as a tool for constructing
hierarchical complexity. 2003 Genetic and Evolution-
ary Computation Conference, LNCS 2723, pp. 483–494.
Springer-Verlag, Berlin.


