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Summary 

 
Real-world problems commonly require the simultaneous consideration of multiple, 

often conflicting, objectives. Solving a multiobjective optimisation problem (MOP) is 

concerned with finding an ideal set of tradeoff solutions which are close to and uniformly 

distributed across the optimal tradeoff surface. Convergence and diversity are thus 

essential requirements of multiobjective optimisers, which are sometimes also required to 

focus on pertinent areas of the search space. Evolutionary computation (EC) techniques are 

stochastic, population-based, global search techniques well suited for solving MOPs. 

However, EC techniques can often involve a large number of objective function 

calculations which can make the convergence towards optimal tradeoff surfaces 

computationally expensive. Additionally, in the evolutionary multiobjective optimization 

community, the bi-objective case is the most heavily studied. Conclusions drawn from 

such low-dimensional frameworks used to be generalized for all problems’ dimensions. 

Research, however, has shown that high-dimensional problems (> 3 objectives) can 

possess different characteristics. One of the most important challenges faced in such 

optimisation scenarios is the conflict between convergence and diversity of solutions. 

 

In this study, new approaches are proposed for enhancing the convergence and 

diversification capacities of some of the best multiobjective evolutionary optimisers 

(MOEAs). The inclusion of quality metrics as indicators is implemented as an approach for 

solving the conflict between solutions’ convergence and diversity in high-dimensional 

optimisation problems. Moreover, a convergence acceleration technique for MOEAs which 

exploits the objective space, where the goal and objectives lies, is devised and assessed. In 

the final part of the study, some established progressive preference articulation techniques 

are examined, and their utility for tackling MOPs is discussed from the viewpoint of the 

decision maker. Progressive preference articulation techniques are effective methods for 

supporting the decision maker in guiding the search into pertinent regions of interest and 

coping with the curse of dimensionality. 
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Chapter 1 
 

Introduction 

 

1.1. Motivation 

 
Solving real-world problems commonly require the simultaneous consideration of 

multiple, and often, conflicting, performance measures. Examples of such real world 

problems include automotive, aerospace and biological applications and disciplines. Such 

applications generally provide illustrations of some typical design challenges and the 

considerable number of objectives and constraints usually involved in the problem solving 

process. Unfortunately, when tackling optimisation problems with many conflicting 

objectives, no single “Utopian” solution, which gives the best achievable performance 

across all the competing objectives, can be found. This is due to the fact that such 

“Utopian” solution would most likely be favouring a certain objective or subset of 

objectives whilst presenting poor performances in terms of the remaining competing 

objectives. Solving such problems is therefore concerned with finding an ideal set of 

tradeoff solutions that satisfies the decision maker’s (DM) preferences, and meets the goal 

values set for the problem objectives without violating any imposed constraints. Moreover, 

proximity, diversity and pertinence are three essential requirements sought when 

optimising a multiobjective problem. Proximity (or convergence) denotes the requirement 

for producing a set of tradeoff solutions with maximum closeness1 to the optimal tradeoff 

surface of a multiobjective optimisation problem (MOP). Diversity is the second 

requirement and denotes the requisite for a uniformly distributed set of solutions across the 

optimal tradeoff surface of a MOP. The third requirement for solution’s pertinency 

(Purshouse 2004), consists of producing solutions that reside in the DM’s region(s) of 

interest (ROI). At the end of the optimisation process, the DM can then decide on a single 

solution to be implemented based on preferences and application dependent high-level 

information.  

 

Evolutionary Algorithms (EAs) are stochastic, global search techniques well tuned for 

solving MOPs due to their ability to efficiently explore vast hyperspaces for valuable 

solutions and promising regions of interest. EAs symbolize a metaphor of evolutionary 

                                                 
1 Closeness is usually the Euclidean distance in most real-coded optimisation problems 



CHAPTER 1. Introduction 

  

2

biology and are built upon the concept of natural selection and the survival of the fittest. 

The inspiration of these optimisation and search techniques from a real world concept 

solidify their grasp and understanding and makes them attractive to, among others, 

engineers, evolutionary biologists and computer scientists. Nevertheless, traditional EAs 

usually consist of an explorative, stochastic and iterative set of procedures in the search 

space of a multiobjective problem. As a result, despite their well-established utility for 

solving MOPs, EAs usually require an extensive number of objective function evaluations 

in order for the search to converge to the Pareto optimal front in the objective space.  

In the Evolutionary Multiobjective Optimization (EMO) community the bi-objective case 

has been the most heavily studied. Conclusions drawn from such low dimensional 

multiobjective frameworks have been used to generalize the multiobjective branch of 

evolutionary optimisation problems. However, research (Khare, Yao and Deb 2003, 

Purshouse 2004) has showed that the case of high-dimensional optimisation problems 

(more than 3 objectives) termed as many-objective optimisation2 is a special case of 

evolutionary multiobjective problems that needs further investigation and an essential 

discrimination from the “2-3” objective cases. A whole set of difficulties and challenges 

arise in the field of evolutionary many objectives optimisation. Most importantly, the 

unambiguous conflict between solutions’ convergence and diversity -the two major 

requirements of EMO- can be noted in such high dimensional scenarios.  

 

In this thesis, a closer look at each of the EMO requirements -solutions’ convergence 

towards and diversity across the Pareto optimal front as well as their pertinence to the DM-

is realised in a many objective optimisation framework. Research is produced for 

investigating and devising innovative approaches for efficiently meeting the convergence 

and the diversity requirements, and enhancing the state of the art in EMO. A remedial 

measure for solving the revealed conflict between solutions’ convergence and diversity in 

the many-objective optimisation case (Khare, Yao and Deb 2003, Purshouse and Fleming 

2003b) is introduced and carefully assessed. Additionally, major progressive preference 

articulation (PPA) techniques are investigated and analyzed as an attempt to establish the 

advantages and disadvantages of each of these techniques and promote research into this 

highly beneficial but somehow overlooked area of EMO. PPA techniques are well-

established remedial measures for coping with the curse of dimensionality and satisfying 

the pertinence requirement in EMO.  

 

                                                 
2 Many objective is an expression introduced in the OR community (Farina and Amato 2002) to 
denote optimisation problems with more than two or three objectives. 
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1.2. Outline of the Thesis 
 

In Chapter 2 of the thesis, a review of multiobjective optimisation is presented. The 

essential requirements for a multiobjective optimisation problem are illustrated. Moreover, 

the concept of Pareto dominance and its utility for multiobjective optimisation is described. 

The discipline of evolutionary computation (EC) is described and introduced with a 

particular emphasis on evolutionary algorithms, one of its major fields. Fundamental and 

advanced concepts of evolutionary algorithms are illustrated. The utility of evolutionary 

algorithms for solving multiobjective optimisation problems is then described and 

contrasted with the utility of classical approaches for solving such problems. The major 

developments that the EMO community has witnessed over the last 20 years are presented 

emphasizing the different features suggested and implemented over the years for 

addressing MOPs’ requirements.  

 

In Chapter 3, an innovative approach for addressing the requirement for solutions 

convergence to the Pareto front is presented. The approach makes use of a beneficial local 

search in the objective space and the predictive capacities of neural networks for 

accelerating the convergence of an evolutionary search towards the Pareto front. The 

approach is implemented and tested on a number of optimisation problems with a various 

number of objectives in the range [2, 12]. The suggested convergence acceleration 

approach is meant to be a portable operator which can be hybridized with any population 

based multiobjective optimiser. In this work, the introduced approach was hybridized with 

two well-established and one of the most cited multiobjective evolutionary algorithms 

(MOEAs). For all the optimisation problems and objective dimensionality investigated, the 

integration of the convergence acceleration technique improved the performance of the 

MOEAs by producing better results which are closer to the Pareto front.  

 

In Chapter 4, the diversity requirement in EMO is further investigated in a many objective 

optimisation framework. An adaptive strategy for controlling and promoting the diversity 

requirement in EMO is presented and tested. The strategy uses a diversity indicator to 

detect undesirable diversity levels such as the over dispersal of solutions in the objective 

hyperspace, or otherwise the contraction of the handled solutions to certain regions of the 

search space. The diversity requirement is hence measured, evaluated and consequently 

controlled in a way which preserves the required level of diversity without sacrificing the 

convergence process towards Pareto optimal tradeoff surfaces. In Chapter 4, optimisation 

problems with a number of objectives ranging between 5 and 20 are deployed. Very good 

results are reported highlighting the utility of the diversity management strategy 

introduced.    



CHAPTER 1. Introduction 

  

4

 

In Chapter 5, the pertinence requirement in EMO is addressed. A comparative study of 

some of the most reputed and most popular preference articulation techniques are 

contrasted on multiple optimisation scenarios. In particular, progressive preference 

articulation is investigated. Well-established PPA techniques and new suggested 

techniques for progressively articulating preferences in EMO are contrasted and their 

major advantages and disadvantages are discussed. The aim of this Chapter is to promote 

research into progressive preference articulation, an overlooked but very beneficial area of 

research in EMO.  

 

Finally, in Chapter 6, conclusions, future work directions and suggestions are presented. 

 

1.3. Contributions 
 

During the course of this study, a number of contributions in terms of the three 

multiobjective optimisation requirements for convergence, diversity and pertinency were 

produced.  In the following, the main contributions of the thesis are briefly described. 

 

Contributions in terms of Convergence in Evolutionary Multiobjective Optimisation: 
 

A study by Adra et al (2005b) introduced a hybrid multiobjective evolutionary algorithm 

(MOEA) and was used to optimise a classical 8 objective problem of aircraft control 

system design. This work has pioneered one of the first approaches for manipulating 

objective values directly in the objective space as opposed to the EC traditional continuous 

search in the decision variable space, and decision space to objective space mapping. 

The framework of this research consisted of the Multiobjective Genetic Algorithm 

(MOGA) (Fonseca and Fleming 1993). The strategy suggested was composed of two main 

stages. The first stage consisted of training an artificial neural network (NN) with objective 

values as inputs and decision variables as outputs to model an approximation of the 

mapping function from objective space to decision variable space. The second stage 

consisted of a local improvement phase in the objective space preserving objectives 

relationships, and a mapping process to decision variables using the trained NN. Both the 

hybrid MOEA and the original MOEA were applied to an 8 objective optimisation 

problem of aircraft control system design application for assessment. In a decision-making 

framework integrating preference articulation, the objective space local improvement 

process played the role of a deterministic translator of the DM preferences by steering the 

search in the desired directions towards goal values and regions of interests. The results 

achieved by the introduced hybrid MOGA were significantly better than the results 

achieved by the standalone MOGA. The binary ε-Indicator (Zitzler et al 2003), a popular 



CHAPTER 1. Introduction 

  

5

binary performance indicator was deployed to test the performance of the introduced 

optimiser. 

Extending the work presented in Adra et al (2005b), a novel convergence accelerator using 

neural network predictions and objective space direct manipulation strategies is introduced 

in Adra, Griffin and Fleming (2007b). The convergence accelerator is meant to be a 

portable component that can be plugged into any population based, stochastic optimisation 

algorithm, such as genetic algorithms. The purpose of the operator is to enhance the search 

capability, convergence extent and the speed of convergence of the hosting stochastic 

global optimisation technique. The work presented in Adra, Griffin and Fleming (2007b) is 

further extended and improved in Chapter 3. The extended work presented in Chapter 3 is 

currently in the process of submission to the IEEE transactions on Evolutionary 

Computation. 

Moreover, in Adra, Griffin and Fleming (2007c), an operator termed as the Informed 

Convergence Accelerator (ICA) is introduced. The technique suggested in Adra, Griffin 

and Fleming (2007c) was inspired by, and derived from the work presented in Chapter 3. 

The major difference was that the training process of the NN took place offline during an 

entire execution of a multiobjective optimiser in order to enhance the predictive 

capabilities of the NN and eliminate the correction step described in Chapter 3. The ICA is 

a specialised operator which was implemented and intended for use in multiobjective 

optimisation scenarios under change and incertitude or for tackling robust optimisation 

problems where the results precision may vary within a certain range of tolerance. 

 

Contribution in terms of Diversity in Evolutionary Multiobjective Optimisation: 

 

In Adra, Griffin and Fleming (2005a), the authors presented a work which is concerned 

with memetic algorithms, a specific brand of evolutionary algorithms. A new local search 

technique with an adaptive neighbourhood setting process was introduced and hybridized 

with the Multiobjective Genetic Algorithm (MOGA) (Fonseca and Fleming 1993). The 

resulting memetic algorithm was executed to optimise a set of bi-objective test functions 

presenting different challenges such as multimodality, deception, discontinuity and 

convexity. Two performance criteria were assessed: the convergence of the achieved 

results towards the true Pareto fronts of the test functions used and the results diversity. 

The strategy deployed a performance indicator to steer the search into the right direction 

by promoting solutions diversity, one of the desired characteristics of an ideal MOEA. 

Simulation results showed that the algorithm introduced improvements for some of the test 

functions and had promising search capabilities. 
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Improving on the results achieved in the work published in the proceedings of GECCO 

2005, in Adra, Griffin and Fleming (2006), an enhanced local search technique with an 

adaptive neighbourhood setting process was introduced, integrated within the cycle of the 

global search process of MOGA and tested against a diverse set of test functions. The 

neighbourhood setting process was based on a measure of the local density of the locally 

best solutions and the extent of diversity of the population.  

 

Contribution in terms of Pertinency in Evolutionary Multiobjective Optimisation: 

 

Preference articulation techniques, especially progressive and interactive ones, are 

effective methods for supporting the decision maker and guiding the search towards 

pertinent regions of the search space. In Adra, Griffin and Fleming (2007a), some of the 

most recent and most established preference articulation techniques were examined, and 

their utility for tackling multiobjective optimisation problems is discussed and assessed 

from the viewpoint of the decision maker. The aim of the study presented in Adra, Griffin 

and Fleming (2007a) consisted of encouraging and promoting the research of incorporating 

progressive preference articulation techniques into evolutionary multiobjective 

optimisation. In this work, some of the most recent preference articulation techniques are 

discussed and upgraded to their progressive versions for incorporation into evolutionary 

multiobjective optimisation processes. Their major strengths and weaknesses for tackling 

multiobjective optimisation problems are discussed and illustrated on a straightforward bi-

objective scenario for simplicity. Although the deployed scenarios consisted of 2 and 4 

dimensional scenarios, the strengths, weaknesses, and therefore the efficiency and 

suitability of these PPA techniques for the many-objective optimisation were apparent. 

 

 

   

 

 



7  

 

Chapter 2 
 

Review of  Multiobjective Optimisation 

Methods 

 

2.1. Multiobjective Optimisation  

2.1.1. Introduction 

 
Problem solving is a cognitive process and one of the most complicated intellectual 

activities of the human brain. Regardless of the problem’s nature, the process of problem 

solving is concerned with finding solutions to certain predicaments or transitions from 

certain reviled states to desired states, such as the transition from unstable to stable or 

incorrect to correct. When a problem exists, a solution is sought and an objective is 

established. Unfortunately, finding a solution to certain problems or satisfying certain 

objectives can be a tricky and complicated process. An exact solution to some problems 

might simply be infeasible, especially if the problem consists of multiple conflicting and 

constrained objectives. In many applications, a good approximation or alternatively an 

optimised estimate to a solution might be deemed very good and sufficient.  

Real-world problems commonly require the simultaneous consideration of multiple 

performance measures. Buying a new car is a simple illustration of such real-world 

multiobjective tasks. Comfort, price, depreciation factor, safety features, road tax and 

running costs such as fuel, servicing and repairs are all criteria that usual car buyers 

consider and look to optimise when buying a new car. Most often, the multiple objectives 

are in conflict and compete with each other. Ultimately, the decision maker (DM) has to 

decide on an individual solution based on certain preferences and objectives’ priorities. As 

an example, a DM might decide that the safety features in a car are prioritised over the 

running costs of its fuel consumption while on the other side the car’s depreciation factor 

can be traded for its luxurious comfort.  

Whether trying to figure out the best road combination to take for reaching work before 

9:00 am and avoid getting stuck in crowded neighbourhoods or planning a nice vacation 

that suits both your expectations and finances, multiobjective optimisation is a common 

task that we frequently encounter in our daily lives. 
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Different from single objective optimisation which aims to maximize, minimize or achieve 

a certain goal value for a single objective, multiobjective optimisation consists of multiple 

criteria that need to be optimised simultaneously. These criteria can manifest pair-wise 

relationships such as independence, harmony or conflict. In the former two relationships, 

an improvement or, alternatively a deterioration in terms of a certain objective, will either 

have no influence on the performance of the remaining independent objectives or 

alternatively, an impact of a similar nature. Such multiobjective optimisation (MO) 

scenarios can be ultimately divided into a set of different single objective optimisation 

problems in the case of complete independence, or reduced to a single optimisation 

problem of one representative objective in the case of complete harmony. Optimising 

multiple competing objectives is by far the most complicated multiobjective scenario, as in 

such scenarios no single Utopian solution can be found. 

Without any loss of generality, a multiobjective optimisation problem (MOP) can be 

formally presented as a minimization problem of a certain vector function Z.  
 

Definition 2. 1: Multiobjective optimisation problem  

)......,(x)}x()x(),x({)xZ( mn xxxzzz 2121  .....min ==  

 

In Definition 2.1, Z(x) is a vector of objective functions, ‘n’ is the number of objectives to 

be optimised and ‘x’ is a vector of decision variables defined over a universe U. 

Single objective optimisation are usually solved using numerical analysis methods such as 

the classical gradient descent, Newton-Fourier and Levenberg-Marquardt methods which 

operate in a single search space, termed as the decision variable space. For a thorough 

literature about numerical analysis and optimisation techniques in the operations research 

(OR) community, the interested reader is directed to Luenberger (1984) and Hillier and 

Lieberman (2001). OR is an interdisciplinary science which deals with decision making, 

optimisation, planning and coordinating activities of complex nature from the real-world. 

In single objective optimisation, a solution explored in the decision variable space replaces 

the current best solution only if it presents a superior objective function value. Operating in 

a single search space is yet another major difference with the simultaneous optimisation of 

multiple objectives. Multiobjective optimisation consists of finding the set of vectors in the 

decision variable space which produce the best set of solutions in the objective space. 

Usually, the search in the decision variable space is steered and influenced by the 

information that becomes available in the objective space.  

Edgeworth (1932) states that in order to compare alternative solutions for a multiobjective 

optimisation problem or favour a single solution or set of solutions out of a collection of 

candidate solutions, a consistent line of preference for each objective is required. These 
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lines of preference constitute the basis for comparison and evaluation of solutions. Having 

a consistent basis for comparing candidate solutions and favouring a certain solution over 

another makes it appropriate to employ Pareto concepts for measuring optimality (Coello, 

Veldhuizen and Lamont 2002).  

 

In Figure 2.1 an optimisation problem consisting of two objectives and three decision 

variables is illustrated. Note that the dimensionality of the objective space and the decision 

variable space can be any positive integer. The grey bounded area in the decision variable 

space (Figure 2.1) denotes the feasible region of the space which is defined by certain 

application specific constraints. ‘Z’ is the objective vector function which maps a certain 

solution ‘x’ in the decision variable space to its corresponding objective vector. It is only 

through the objective function mapping that the performance of a certain candidate 

solution can be assessed. 

 

Figure 2. 1 The multiobjective problem domain 

 

Pareto Dominance 
 

"We will say that the members of a collectivity enjoy maximium ophelimity in a certain 

position when it is impossible to find a way of moving from that position very slightly in 

such a manner that the ophelimity enjoyed by each of the individuals of that collectivity 

increases or decreases. That is to say, any small displacement in departing from that 

position necessarily has the effect of increasing the ophelimity which certain individuals 

enjoy, and decreasing that which others enjoy, of being agreeable to some, and 

disagreeable to others." 

V. Pareto (1906, p: 261) 
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The idea of ‘optimal’ in MO can be traced back to the period between 1870 and 1900 with 

the work and philosophies of Ysidro Francis Edgeworth (1845-1926) and Vilfredo Pareto 

(1948-1923), some of the most brilliant economists of the 19th century.  Edgeworth main 

interests revolved around the utilitarian philosophy whose ultimate aim consisted of 

maximising society’s happiness by optimising the problem of resource allocation. Vilfredo 

Pareto, on the other hand, concentrated on the use of classical programming techniques 

such as differential calculus and Lagrangian multipliers for the analysis of general 

equilibrium theories and the optimisation of market efficiency. His work and theories 

constituted the foundation of the Pareto optimality concept which comprise the core of 

most multiobjective optimisers. 

 

A certain solution ‘A’ in the decision space of a multiobjective problem is superior to 

another solution ‘B’ if and only if Z(A) is at least as good as Z(B) in terms of all the 

objectives and strictly better than Z(B) in terms of at least a single objective. Solution ‘A’ 

is also said to strictly dominate solution ‘B’. The Pareto dominance concept is illustrated in 

Figure 2.2 in the objective space of a simple bi-objective scenario. 
 

Definition 2. 2 Pareto Dominance 

)B()A(:},...,{)B()A(},,...,{)B(Z)A(Z iiii ZZniZZniiff <∈∃∧≤∈∀ 11p  

 

In the case where no feasible solution ‘B’ can be found dominating solution ‘A’, solution 

‘A’ is said to be a non dominated solution or a Pareto optimal solution. In another words, a 

solution ‘A’ for a multiobjective optimisation problem is a Pareto optimal solution if and 

only if: 

Definition 2. 3 Pareto Optimal Solution 

)(Z)B(Z:B AU p   ∈∃¬  

 

A subset of the decision vectors produced will be therefore characterised by the fact that no 

other solution within the set of candidate solutions, also known as the approximation set 

(Zitzler et al 2003), offers better objective function values across all objectives. The 

corresponding objective vectors for such subset constitute the tradeoff surface also called 

the Pareto front. 

Other forms of solutions’ dominance exist and their use as an alternative to the standard 

Pareto dominance scheme is becoming more popular especially in the Evolutionary 

Multiobjective Optimisation (EMO) community. One of the most reputed alternatives of 

Pareto dominance is the relaxed ε-Pareto dominance (Helbig and Pateva 1994) which was 

established in the mid-1980s in the operations research community and refined in 2002 by 

Laumanns et al (2002a). 
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Figure 2. 2 Pareto Dominance Illustration in a 2-dimensional objective space 

 

The use of ε-Pareto dominance is beneficial to tune the granularity of the optimisation 

process and the convergence speed. Additive and multiplicative ε-Pareto dominance are 

two well-known forms of this modified Pareto dominance scheme. α-dominance (Ikeda et 

al 2001) and k-dominance (Farina and Amato 2004) are among other alternative forms of 

Pareto dominance. 

Definition 2. 4 Multiplicative ε -Pareto Dominance 

A certain solution ‘A’ for a multiobjective problem is said to ε-dominate another solution 

‘B’ for a certain ε > 0 if and only if: 

)B()A()(},,...,{)B(Z)A(Z iii ZZniiff ≤−∈∀  11 εεp  

 

In the Definition 2.4, the multiplicative form of ε-Pareto dominance, where the ε tolerance 

or deviation in terms of a certain objective is relative to the values of each criterion of 

Z(A), is illustrated. In Figure 2.3, an illustration of the multiplicative ε - Pareto dominance 

is presented using a two objective scenario. The shaded area corresponds to the region of 

the objective space which is ε–dominated by solution ‘A’.  Solution ‘B’ which is normally 

considered equally good to solution ‘A’ and non-dominated by ‘A’ using the standard 

Pareto dominance, is now considered ε–dominated by ‘A’. Each solution therefore 

dominates larger regions of the objective space. 

 

The additive ε-Pareto dominance, presented in Definition 2.5, is another form of ε -

dominance where the tolerance value (εi) in terms of a certain objective is absolute. 

Definition 2. 5 Additive ε -Pareto Dominance 

)B()A(},,...,{)B(Z)A(Z iii ZZniiff ≤−∈∀ εε 1  p  
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Figure 2. 3 Pareto Dominance Illustration in a 2-dimensional objective space 
 

2.1.2. Requirements of a multiobjective optimiser 
 

Three main requirements for multiobjective optimisers are usually sought and desired.  

• Convergence: The approximation set achieved for a multiobjective optimisation 

problem is required to as close as possible to the true Pareto front.  

• Diversity: Because of the non-existence of an ideal single solution in 

multiobjective optimisation frameworks with many competing objectives, and due 

to the fact that the global trade-off surface can potentially present an infinite 

number of solutions, the set of Pareto optimal solutions is also required to be well 

spread and uniformly covering wide areas of the Pareto front. Solutions diversity is 

conventionally preferred in the objective space as to present the DM with a well-

distributed set of solutions to choose from, based on certain preferences such as 

objective priorities or region of interest (ROI). Solutions’ diversity is however not 

restricted to the objective space, and can be a desired requirement in the decision 

space of some applications.  

• Pertinence (Purshouse 2004): As the dimensionality of the problem increases, the 

visualization of the optimisation process becomes a problem. The DM is usually 

interested in sub-regions of the search space which makes the decision-making 

process and the optimisation process more practical and efficient. Therefore, the 

convergence and the diversity of the solutions are particularly required in the 

pertinent areas of the space, or regions of interest (ROIs).  

Hence, convergence, diversity and pertinence are all desired and essential requirements 

of multiobjective optimisers (Purshouse 2004) and constitute their assessment basis. In 
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Figure 2.4, the ideal solution for a multiobjective optimisation problem is illustrated 

for a discontinuous problem.  

 

Figure 2. 4 The ideal solution to a multiobjective optimisation problem 

 

2.2. Evolutionary Algorithms 

2.2.1. Introduction 
 

According to Darwinism theories, the human’s physical and mental status with which we 

are privileged is the chronological result of successive biological evolutions. For example, 

prehistorically, within primate populations, the best individuals were able to survive 

biological and environmental crises such as climatic breakdowns, adapting to new 

environments and slowly undergoing minor advantageous mutations. This is “survival of 

the fittest”.  

Evolutionary Computation (EC) is a search discipline which is inspired by the “survival of 

the fittest” concept in evolutionary biology. More specifically, EC is a sub field of the 

ever-growing field of soft computing which is widely assimilated with the computational 

artificial intelligence (CI) discipline (Craenen and Eiben 2006). Traditional computing, 

also known as hard computing, is widely used in the OR community. Traditional 

computing techniques consist of finding hard and exact solutions to well-defined problems 

based on well-structured proofs and theorems. Soft computing is a discipline inspired by 

natural processes and has its main resemblance with the human way of reasoning. Soft 

computing differs from hard computing in the way it is dedicated to finding efficient 

solutions for complex problems characterised with uncertainties and tolerance. Soft 

computing techniques are usually considered a practical alternative to exact and 
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specialized computing methods which are known to face difficulties and fail to tackle such 

problems. EC has it roots in the natural selection concept by Darwin (1859) and the 

population genetics by Fisher (1930). In Figure 2.5 an illustration of the roots and the 

different branches of EC is presented. The highlighted nodes in Figure 2.5 represent the 

relevant topics that are covered in this study.   

 

Figure 2. 5 Roots and Branches of Evolutionary Computation 
 

Evolutionary Computation goes back to the late 1950s and had its early derivations in 

Friedberg’s works (Friedberg 1958, Friedberg, Dunham and North 1959) with the growth 

of interest into machine learning and AI. With the superb advancements in information 

technology and computational frameworks, more contemporary subfields of EC were 

innovated. The German Evolutionstrategian (Evolution Strategies (ESs)) (Rechenberg 

1973), the American Evolutionary Programming (EP) (Fogel, Owens and Walsh 1966) and 

the American Genetic Algorithm (GA) (Holland 1975) are the three founding approaches 

and independent schools of thought that defined the field of EC.  The differences between 

ES, EP and GA approaches has diminished with the different communities regularly 

interchanging ideas over the years, and EC researchers and practitioners are nowadays 

encouraged to think in broader terms (Michalewicz and Fogel 2000). As a result the term 
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‘Evolutionary Algorithm’ (EA) was adopted to denote a generic evolutionary search 

approach.  

2.2.2. Generic Evolutionary algorithm 

 
An evolutionary algorithm is a stochastic global search method that imitates the process of 

natural biological evolution (Goldberg 1989) by operating on “populations” of potential 

solutions and applying the law of the jungle where the survival is for the fittest, hopefully 

producing better approximations to a given application’s solution. Until a stopping 

criterion is reached (e.g. involving a certain number of generations or a mean deviation in 

the population), a new set of approximations is created at each generation by selecting 

“individuals” or solutions for ‘reproduction’. The general concept of evolutionary search 

can therefore be described as an iterative application of variation (v) and selection (s) 

operators to a population of solutions (P). This is illustrated in Equation 2.1 where P[t] is 

the population at time t (Michalewicz and Fogel 2000).  

 
s(v(P[t]))1]P[t =+           (2.1) 

 

The selection process usually reflects a solution’s fitness for survival. In other words, a 

fitter solution -in terms of its performance in its application domain- has a better chance of 

being selected for recombination and producing new solutions. Figure 2.6 illustrates a 

generic evolutionary algorithm. 

2.2.3. Population-Based Strategies 

 
The operative functionality of EAs on a family of candidate solutions rather than just a 

single point is a key advantage of these optimisation and search techniques. Starting from a 

certain population of potential solutions, an EA seeks to improve these solutions by 

filtering out relatively bad ones and exploring the search space for better approximations 

by applying operators borrowed from natural genetics.  

EAs usually operate on a population of solutions which are encoded as strings and 

composed over some “alphabet”. The encoded solutions are assimilated to 

“chromosomes”, the basic unit of genetics. The chromosomes’ values or “genotypes” are 

mapped onto the decision variable domain or “phenotype”. 
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Figure 2. 6 Generic Evolutionary Algorithm  
 

Classical EA approaches, in particular the Genetic Algorithm (GA) approach, widely 

focused on binary representations (Holland 1975, Goldberg 1989) whereby chromosomes 

are constituted by the concatenation of binary strings. This reputed choice of representation 

was endorsed by theoretical work suggesting that the use of low cardinality alphabets 

results in more efficient schema processing (Goldberg 1991). Despite its classical 

popularity, binary representation suffers from several deficiencies such as its unsuitability 

for numerical search spaces and high-precision applications (Michalewicz 1996).  

 

Other chromosome representations, such as integer representations and real-valued 

representations, are widely used. These representations are increasingly achieving usage 

interests, as they can result in several advantageous effects in many applications. 

Particularly, the use of real-value representation usually produces more efficient EAs 

(Wright 1991), as the adoption of this representation eliminates the need for converting 

chromosomes into their phenotypic values. Other benefits of such a representation is the 

reduced memory requirement needed by the whole optimisation process and the avoidance 

of the loss of precision that can result from the discretisation of phenotypic real values to 

binary encoding.  

Nevertheless, choosing a suitable representation for the population of solutions operated by 

an EA is an application-dependent design choice. In other words, if a real-valued 

optimisation problem is tackled, a real-valued representation is the straightforward choice 

(Herrara, Lozano and Verdegay 1998). In some applications, such as the design of a 

specialized cantilever beam, a mixed chromosome representation is deployed (Deb and 

Goyal 1996).  

Procedure EA 

  Begin 
              Gen=0                            
         Initialise P(Gen)               
              Evaluate P (Gen)                   
              While not finished do 

               Begin 
                            Gen = Gen+1    
                            Select P (Gen) from P (Gen-1) 
                            Reproduce pairs in P (Gen) 
                            Evaluate P (t)                             
                 End                                                               

End                                                  
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After selecting the type of representation that best suits the application, the next step 

usually consists of creating an initial population of potential solutions. Alternative methods 

for this process are widely adopted. One way of initialising the population consists of 

creating a random generation of the required number of individuals using a random 

number generator that uniformly distributes numbers in the desired range of definition. An 

alternative way is the “extended random initialisation” procedure (Bramlette 1991) 

whereby a given number of random initialisation trials is processed for each individual 

which will be initialised to the best performance trial. In situations where the nature of the 

application is well understood in advance, or where EAs are used in conjunction with 

knowledge based systems, the initialisation can be held in the vicinity of previously known 

good solutions. 

2.2.4. Evaluation 

 
The objective functions reflect the raw performance of each individual in the problem 

domain. Minimisation and maximisation tasks are the two approaches usually adopted. In 

the case of minimisation, the fittest individual is allocated the smallest numerical value 

resulting from the objective function evaluation. After calculating the objective function 

for all the candidate solutions, a fitness function is then used to transform the objective 

function’s values into measures of relative fitness. These relative fitness values are then 

used by an EA for selection and breeding purposes (described later). Whilst the objective 

function is a domain-specific parameter, the fitness function can be used in several 

environments and problem domains. Many versions are adopted for the fitness function, 

nonetheless, the proportional fitness assignment (Holland 1975) which assigns fitness 

values computed using a certain function of the objective function values, and the rank-

based fitness assignment (Baker 1985) which is based on the relative rank of a certain 

candidate solution in its population, are the most widely used versions. While the 

proportional fitness function ensures that each individual is allocated a probability for 

reproduction proportional to its relative fitness, it is susceptible to the problem of 

“premature convergence”, whereby certain locally fit solutions dominate the population 

leading the EA to converge to suboptimal regions of the search space. 

The rank-based fitness assignment was suggested as a solution to this problem. This fitness 

assignment method consists of adding constraints on the reproduction range by limiting the 

number of offspring an individual can produce to a certain maximum so that no individuals 

will generate an excessive number of offspring, and thus preventing premature 

convergence.  
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2.2.5. Mating Selection 
 

Having assigned the fitness values for every candidate solution, the next step will usually 

consist of a probabilistic selection of solutions. Based on their assigned fitness values 

denoting a reproduction expectation, solutions are selected for recombination, a process 

leading to the production of new solutions. Although the mating selection process, also 

termed as the selection for variation, is a stochastic process, solutions with high fitness 

values have higher chances for being selected for contributing to the next generation.  
 

Roulette wheel selection, also called stochastic sampling with replacement (SSR) 

(Goldberg 1989), Stochastic Universal selection (SUS) (Baker 1987) and Tournament 

selection are different kinds of selection methods commonly used in a wide range of 

application domains. Other selection schemes have been recurrently proposed in the 

literature. A meticulous review of selection schemes can be found in Blickle and Thiele 

(1995) or Goldberg and Deb (1991).  

Deploying a roulette wheel selection, the candidate solutions are allocated contiguous 

intervals whose length is in the range [0, sum], where “sum” denotes the sum of the 

expected selection probability of each individual. A random number (pointer) is then 

generated in the range [0, sum] and the individual whose segment spans the random 

number is selected. As a result, ‘fitter’ individuals occupy larger intervals and will have 

higher probabilities for being selected to breed and propagate to the next generations. The 

process is repeated iteratively until the desired number of individuals is obtained.  

In the roulette wheel selection method, the segment size and thus the selection probability 

remain invariant through the whole process. Indeed any individual with a segment size 

bigger than zero could entirely fill the next population. In order to avoid this situation and 

decrease the chances of premature convergence, Stochastic Sampling with Partial 

Replacement (SSPR), an extension of SSR reduces the interval’s size of an individual once 

selected. 

Stochastic Universal Sampling is generally more efficient than SSR as it consists of multi 

pointers allowing the selection of the required number of solutions in a single run. 

Selection methods are numerous and possess different advantages and drawbacks. 

Tournament Selection, for example, is usually considered particularly suitable for 

optimisation problems involving noisy objective functions (Miller and Goldberg 1995). 

2.2.6. Variation 
 

In evolutionary computation, variation denotes the explorative processes responsible for 

introducing new individuals into a population of candidate solutions. It is only by applying 

the variation operators that the exploration of good solutions in the search space takes 
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place and the optimisation process evolves. In the absence of variation, the search process 

converges to the best solution contained in the initial population. Recombination and 

mutation are the two operators that generally compose the variation process. Their notion 

is essentially borrowed from the counterpart recombination and mutation processes in 

natural biology. Similar to the selection process, numerous techniques and forms for the 

variation operators (recombination and mutation) are widely used in the literature. 

Choosing the right variation operators highly depends on the chromosome’s encoding used 

for optimising a certain application.  

 

The Recombination Operator 

The recombination operator (also called the crossover operator) operates on the solutions’ 

encodings (chromosomes or decision variables) and commonly requires two ‘Parent’ 

solutions. Nevertheless, multi-parent recombination operators exist and have been 

frequently used in the literature (Eiben, Raué and Ruttkay 1994). A comprehensive review 

of numerous recombination operators existing in the genetic algorithm (GA) literature can 

be found in Spears (1998). Based on a certain (usually high) recombination probability, the 

selected chromosomes recombine by exchanging genetic information and creating new 

individuals using the assumption that certain parts of the individuals’ genes produce on 

average fitter individuals. The single-point binary crossover, whereby two parent solutions 

exchange their genotypic material after a certain -randomly picked- crossover point on 

their chromosomes, is one of the simplest recombination operators. The single-point binary 

crossover, illustrated in Figure 2.7, was originally implemented and deployed in the 

classical GA (Holland 1975, Goldberg 1989). An extension of the single point crossover is 

the Multi-point Crossover (DeJong 1975) whereby multi-crossover points are chosen on 

the chromosomes. The chromosomes’ bits spanning consecutive crossover positions are 

then exchanged between the parents producing offspring sharing specific parts of both 

parents.  

 

Figure 2. 7 Single-point Binary Crossover 
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Other crossover operators are widely known and used in several varieties of problems. The 

“Uniform crossover” (Syswerda 1989), the “Shuffle operator” (Caruana, Eshelman and 

Schaffer 1989) and the “Reduced Surrogate” (Booker 1987) are some of the other 

crossover operators which are used with binary chromosomes’ representation. 

Alternatively, real valued chromosome representations possess a whole class of crossovers 

operators such as the “Intermediate Recombination” and the “Line Recombination” 

(Mühlenbein and Schlierkamp-Voosen 1993) which produce offspring phenotypes 

intermediate to the parents’ numerical values. The simulated binary crossover (SBX) (Deb 

and Agrawal 1995) is another well-reputed crossover operator for real coded applications. 

Using the SBX operator, the offspring value for a certain decision variable is determined 

using a probability distribution with a standard deviation based on the distance (usually 

Euclidean) between the parents’ values for that decision variable. A comprehensive review 

of real-coded operators can be found in (Herrara, Lozano, and Verdegay 1998).   

 

The Mutation Operator 

Early ES approaches used to consist of the selection and mutation operators only (Bäck, 

Hoffmeister and Schwefel 1991). Nevertheless, in most EC strategies, after a crossover is 

performed, mutation usually takes place. Unlike the recombination operator, mutation is a 

random process that operates on a single parent solution by modifying the value of a 

certain decision variable resulting in a new chromosome. Mutation is a backup operator 

ensuring the capability of escaping a certain local optimum. It is therefore usually 

considered as a safety operator which guarantees that the probability of searching a 

specific subspace is not zero. Mutation randomly changes the offspring resulting from the 

recombination process. Typically, mutation is applied with low probabilities in the range 

0.001 and 0.01 (Goldberg 1989). The “bit-flipping” mutation is one of the simplest 

operators used with binary encodings, and consists of switching a certain randomly chosen 

bit from 1 to 0 (or 0 to 1). The bit-flipping mutation is illustrated in Figure 2.8. 

 

Figure 2. 8 Bit Flipping Mutation 

 

On the other hand, real and integer encoded applications usually apply one of two 

conventional mutation approaches. The first approach consists of perturbing the 
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1 0 1 0 0 Mutated Solution 



CHAPTER 2. Review of EMO 

  

21

chromosomes values in their domain of definition, while the second approach consists of 

randomly selecting new values for the decision variables within a specific allowed range. 

For these kinds of representations (Integer and Real value), it is shown that higher 

mutation rates can be more desirable and enhances the explorative capabilities of EAs 

(Tate and Smith 1993).  

 

Differential Evolution 

Differential Evolution (DE) (Price and Storn 1995) is an evolutionary variation operator 

which is particularly suited for real coded applications. DE can be assimilated to a 

variation operator combining both recombination and mutation processes. DE uses a self-

adaptive strategy for determining the probability distribution parameters required for the 

recombination/mutation operators. For a good introduction about DE, the interested reader 

is directed to Lampinen and Storn (2004).  

2.2.7. Selection for survival 
 

The selection for survival process, also termed as the environmental selection or 

reinsertion operator, is the process of determining the subset of candidate solutions that 

will propagate to the next generation. Generally, the population of solutions handled by an 

EA has a predetermined size that has to be maintained all along the optimisation process. 

Nevertheless, at a certain generation ‘gen’ of the optimisation process, the variation 

operator produces a new offspring population of solutions P’(gen) from the parent 

population P(gen). As a result, the total number of candidate solutions at a certain 

generation exceeds the bounded size of the population. A strategy for choosing a subset of 

the solutions produced at a certain generation is therefore required to control the 

complexity of the algorithm and maintain a fixed population size. Two major schemes for 

the selection for survival process are widely adopted, and are referred to in ES by the 

notations (µ+λ) and (µ, λ) (Beyer and Schwefel 2002) where µ denotes the parent 

population of solutions and λ is the offspring population of solutions resulting from µ. In 

the (µ+λ) selection for survival scheme, both populations (parent and offspring) compete 

for inclusion in the population which will survive to the next generation. Applying the 

concept of “Survival for the fittest”, the best solutions usually get chosen for survival. 

However, other probabilistic selection strategies exist for selection for survival using the 

(µ+λ) scheme (Bäck 1996). The (µ, λ) selection scheme, on the other hand, only considers 

the offspring solutions for inclusion in the population P (gen+1). However, in some 

scenarios, the variation operators might be requested to produce fewer (or more) offspring 

solutions than the parent population. In such cases, the fraction difference between the 

initial and the new number of individuals is called a generation gap (De Jong and Sarma 
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1993). In order to maintain the number of individuals in a population, a reinsertion process 

of some of the parent (or alternatively a truncation process of some of the offspring) 

solutions is required. The common GAs’ reinsertion strategy consists of filling the 

generational gap with the best-fit individuals from the parent population. Despite its 

simplicity, it has been shown that no significant convergence differences are noted when 

using such reinsertion schemes compared to other schemes such as the random insertion of 

solutions (Fogarty 1989). Another strategy consists of reinserting the oldest members of a 

population, i.e. the individuals that were able to survive several generations, consequently 

demonstrating good performances.   

2.2.8. Exploration versus Exploitation 
 

A good explorative search strategy should possess the capability of efficiently exploring 

the search space for new potentially good solutions and reaching any possible sub-region 

of the space. An exploitative strategy on the other hand, should be well adjusted for mining 

and making the most of use of a certain local region of the space with good potentials. 

Exploitation is hence usually required in the good ‘neighbourhoods’ of a search space, 

where the good solutions reside and can be identified.  

The good performance of an EA highly depends on the right balance or tradeoff between 

the exploration process for new regions in the search space and the exploitation of already 

identified regions with good solutions (Holland 1975). For a good e-e balance, Bäck 

(1996) and Deb and Agrawal (1995) suggested automatic strategies for controlling the 

tradeoff between exploration and exploitation. Traditionally, the variation operators are 

considered as explorative processes in the EA community (Eiben and Schippers 1998). The 

selection process on the other hand, is widely regarded as an exploitative operator. Despite 

the direct metaphor from evolutionary biology and which can be inferred from this general 

classification, EA’s theory is more complicated than that. Indeed, a single operator such as 

the ‘blend crossover’ (Eshelman and Schaffer 1993) can be used to control both 

exploration and exploitation processes.  

 
Taking the requirement for a good e-e tradeoff into consideration, the impact of the 

exploitation process is commonly required to gradually increase, and exceed the impact of 

the exploration process as the search converges (Bäck 1992). This has been shown to be 

implicitly realised through the automatic reduction of the effect of the variation process 

(Eiben and Schippers 1998) when the search starts to converge.  
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2.2.9. Advanced Concepts in Evolutionary Computation 
 

Probabilistic models 

Another EA related search methodology, based on the probabilistic modelling of good 

areas of the search space, is also used in the community and known as ‘estimation of 

distribution algorithms’ or EDAs. EDAs are beneficial in the way they try to decipher the 

genetic material (decision variables) and highlight the specific parts of the chromosomes 

which can be responsible for a certain performance. They differ from classical EAs in 

terms of the variation process and hence the way new solutions are produced. They operate 

by generating a new solution using the probabilistic model they built for certain good 

regions of the search space. Based on the performance of the new solution, the 

probabilistic model gets then updated accordingly (Pelikan, Goldberg and Lobo 1999). 

Despite their utility of studying and exploiting the relationships between the decision 

variables and the objective values, EDA’s major drawback is their high computational 

requirement. The interested reader is directed to Pelikan, Goldberg and Lobo (1999) for a 

thorough review of EDAs. 

 

Niche Formation: Fighting Genetic Drift  

The need for niche formation is to prevent premature convergence towards sub-optimal 

regions of the objective space. Multimodal search landscapes are particularly susceptible 

for the premature convergence. Niche formation is a scheme that aims to maintain multiple 

subpopulations within a single global population operated by an EA. The multiple 

subpopulations are usually required to be maintained at distinct areas of the decision 

maker’s region of interest. Commonly the objective space is the space where the niche 

formation is targeted, although this might be required in the decision variable space or both 

spaces simultaneously. Premature convergence is a detrimental consequence usually 

caused by the finite size of the operated population which can infer cumulative sampling 

errors on expected selection rates. This phenomenon, which also occurs in biological 

population genetics, is termed genetic drift and originates from the impact of the finite 

population sizes on the selection process (De Jong 1975). Several genetic drift 

countermeasures were suggested in the EA literature. De Jong (1975) suggested that 

increasing the size of the evolutionary population or, alternatively, increasing the mutation 

rate, can help reduce the effect genetic drift. More specialised techniques for addressing 

the genetic drift problem, such as crowding (De Jong 1975) and fitness sharing (Goldberg 

and Richardson 1987), were also suggested and widely used. The main idea behind 

crowding or fitness sharing is to promote less dense areas of the search space and decrease 

the selection pressure in the dense areas. The crowding approach consists of 



CHAPTER 2. Review of EMO 

  

24

deterministically replacing a certain parent solution by its offspring solution in the case of 

high similarities between the two candidate solutions. Despite its simplicity, the crowding 

approach is not very efficient and well adjusted for tackling multimodal search spaces 

(Deb and Goldberg 1989). Fitness sharing on the other hand is an approach which seeks to 

decrease the fitness of the solutions lying in dense areas of the space. Moreover, the fitness 

value for a solution lying in a certain niche is decreased according to the number of 

neighbouring solutions which reside in the same niche. The function ‘sh’, illustrated in 

Equation 2.2, is the most commonly used sharing function. 
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In Equation 2.2, ‘d’ denotes the distance4 between two solutions5, ‘σshare’ represents the size 

of the niche and ‘α’ is a parameter used to shape the sharing function. After calculating the 

sharing value for all the solutions in the population ‘P’, the original fitness value of each 

candidate solution is then divided by its corresponding niche count (the sum of sharing 

values with respect to all the candidate solutions in the population, including itself).     
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The modified fitness value for a certain solution ‘i’ is presented in Equation 2.3, where fi 

denotes the original fitness value, ‘N’ is the total number of solutions and ‘d (i, j)’ is the 

distance between the solutions ‘i’ and ‘j’. 

Fitness sharing is a practical approach for niche formation, but its success is highly 

sensitive to the non-trivial choice of the niche size ‘σshare’. The choice of a niche size is 

however preferred to be relevant to the –usually unknown- landscape of the basin of 

attractions where the optimal solutions reside (Deb 2001). In the EC literature, several 

methods for estimating the niche size were proposed. The major techniques for estimating 

the niche size include the methods proposed by Deb and Goldberg (1989), Fonseca and 

Fleming (1993), Tan, Lee and Khor (1999), and Ray, Kang and Chye (2001). A rather 

notable approach for automatically selecting the niche size was suggested by Fonseca and 

Fleming (1995). The technique was based on the exploitation of the similarity between the 

kernel density estimation (specifically, Silverman’s (1986) approach for the Epanechnikov 

estimator) and the fitness sharing function. 

 

                                                 
4  The notion of Distance is usually an application dependent parameter, and is usually the 
Euclidean distance in most real coded applications. 
5 The distance between two candidate solutions is usually calculated in the objective space, although 
in some applications this might be equally required in the decision variable space. 
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Constraint Handling 

A solution for a certain problem can either be feasible or infeasible. A feasible solution 

satisfies all the constraints that might be imposed on it. The constraints’ complexity can 

vary from a simple logical statement such as “Price is less than ₤10000” to very complex 

functions that define a valid search space. Solving real-world problems most often requires 

the simultaneous consideration of multiple constraints. As a result, the process would 

usually consist of finding a feasible solution that does not violate such constraints. Unless 

equipped with a specific constraint handling strategy, stand-alone EAs do not 

automatically allocate any consideration to the constraints. In Coello (2002) and 

Michalewicz and Schoenauer (1996) a comprehensive survey of the different constraint 

handling techniques can be found. In the following, a brief illustration of four of the most 

commonly used techniques for handling constraints in EAs is illustrated. 

 

• Special representations and operators 

This class of constraint handling techniques constitute a rather specialised approach for 

dealing with constraints in specific problems. This approach can be briefly described as the 

custom made design of specialised representation schemes and variation operators that 

only generate feasible solutions to certain specific problems. Examples of some special 

representations and operators can be found in Davis (1991). 

 

• Penalty Functions 

Penalty functions are classical approaches for dealing with constrained optimisation 

problems and date back to the early 1940s (Courant 1943). When incorporated in an EA, 

the penalty function scheme operates by straightforwardly not allocating any direct 

consideration to the constraints, but reducing the fitness of the solutions that violates any 

constraint instead. The fitness value of a certain solution that violates some constraints is 

therefore penalised by usually using a certain function of the level of constraint violation.  

As a result, the search process is biased towards the areas of the search space that satisfy 

the constraints.  

 

• Repairing infeasible solutions 

Instead of penalising infeasible solutions, this constraint handling approach seeks to 

compensate and rectify any constraint violation in a certain infeasible solution. This is 

usually done by reflecting any out of bounds decision variables back to their domain of 

definition or deploying a certain local search approach in the neighbourhood of the 

infeasible solution in order to move such solution to the next feasible solution. There is no 

generalised repair technique, but instead, the process is usually designed to address a 

certain specific application. Nevertheless, repairing infeasible solutions is a practical 
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approach (Liepins and Potter 1991) and is especially suitable for combinatorial 

optimisation problems (Coello 2002).  

 

• Multiobjective formulation 

An approach for dealing with constraints is their formulation as objectives to be optimised 

alongside the ‘real’ objectives in a multiobjective optimisation scenario (Coello 2000b). 

Consequently, the constructed multiobjective optimisation problem can be approached 

using evolutionary multiobjective techniques such as Pareto optimality, non-dominance, 

the preferability operator (Fonseca and Fleming 1998) or the constrained domination (Deb, 

Pratap, Agrawel and Meyarivan 2002). 

 

Population Topology 

Three different topologies for the population of candidate solutions handled by an EA are 

usually used in the EC literature. These are the global topology, the island topology and the 

diffusion topology (Chipperfield and Fleming 1995). Whilst the global topology is the 

simplest and the most commonly used approach, the island and the diffusion models 

ensure parallelism and the ability of running an optimisation process on multi processors. 

For more information about the different population topologies, the interested reader is 

directed to Chipperfield and Fleming (1995).   

 

Fitness Approximation in Evolutionary Computation 

The population-based nature of EAs usually trails a considerable computational burden, 

which is especially emphasised when optimising expensive objective functions. At every 

generation of an optimisation tackled by an EA, multiple evaluations of the objective 

function are simultaneously required. Fitness approximation is a well-established remedial 

measure for reducing the expensive costs usually imposed by EAs. A good review of 

fitness approximation can be found in Jin (2005). The main idea of fitness approximation 

is the substitution of the objective function evaluations with the evaluation of a cheaper 

and simplified model which approximates the exact objective function and captures it as 

close as possible. The cheaper models are widely known as the meta-models and are 

usually deployed in expensive optimisation problems (e.g. C.Varcol and Emmerich 2005, 

Emmerich and Noujoks 2004) or noisy optimisation problems (Regis and Shoemaker 

2004). In order to design a meta-model for a certain application, a metamodelling 

technique is required. Metamodelling is an entire research area, and many well-established 

techniques for producing meta-models have been proposed and used in a variety of 

applications.  Neural networks (NN) (Hornik, Stinchcombe and White 1989), Kriging 

methods (Jin, Chen and Simpson 2001), polynomial regression (Chen et al 1996 and 

Simpson et al 1998), Gaussian processes (Ulmer, Streichert and Zell 2003) and support 
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vector machines (Abboud and Schoenauer 2002) have all been used as metamodelling 

techniques. A comprehensive survey and analysis of some of the most established 

metamodelling techniques can be found in Jin, Chen and Simpson (2001) or Rasheed, Ni 

and Vattam (2003). An essential matter that should be noted when deploying 

metamodelling techniques is that the solutions achieved for a meta-model should be 

cautiously analysed before being considered as solutions to the exact model which is 

usually of higher fidelity (Michalewicz and Fogel 2000). Interchangeably deploying the 

exact- and the meta-model, a practice known as controlled evolution, is a strategy 

suggested by Jin et al (2000) to avoid misleading the search process through the sole usage 

of a meta-model. In the controlled evolution, the evaluations of the exact objective 

function can also be actively used for enhancing the fidelity of the metamodel (Bull 1999). 

 

Memetic Algorithms: A Hybrid Approach 

“Memetic Algorithm” is a concept first introduced in 1989 by Moscato (1989). The term 

“Memetic” has its roots in the word “meme” introduced by Dawkins (1976) and which 

denoted the “unit of imitation” in cultural transmission. Memetic algorithms, also called 

hybrid evolutionary algorithms, are increasingly thriving metaheursitics for solving 

multiobjective optimisation problems. The essential idea behind Memetic Algorithms is 

the hybridization of local search refinement techniques within a population-based strategy, 

such as genetic algorithms. Memetic Algorithms share most of GAs’ characteristics 

although they introduce a new improvement procedure based on local search in the 

neighbourhood of newly generated individuals usually resulting from the recombination 

operators. The main conceptual difference between genetic algorithms and memetic 

algorithms is the approach and view of the information’s transmission techniques. Whereas 

genetic information carried by genes is usually transmitted intact to the offspring (e.g. 

genetic algorithms), “memes” the base unit of memetic algorithms are typically adapted by 

the individual transmitting them. These hybrid algorithms were applied to a wide variety of 

problems such as image segmentation (Bhanu, Lee and Das 1995), multiobjective 

optimization of space allocation problems (Burke et al 2001), radiotherapy treatment 

planning (Haas, Burnham and Mills 1998) and molecular geometry optimisation (Hodgson 

2000). They have proved to be highly effective, outperforming similar approaches such as 

pure evolutionary algorithms in several application domains in terms of convergence 

towards Pareto optimal solutions. 

 

While genetic algorithms are good at exploring the solution space due to their search from 

a set of candidate solutions and not just from a single point, they are not well suited for 

fine-tuning structures that are close to optimal solutions. As stated by Davis (1991) and re-

illustrated by Knowles (2002), for improving optimization results achieved by genetic 
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algorithms one should: “Hybridize where possible”. The hybridization of local 

improvement operators among the evolutionary steps of an EA is essential to deal with 

near optimal situations. This has been shown (Knowles (2002)) in several application 

domains to bring improvements to the standard results achieved by stand alone genetic 

algorithms in terms of results quality and speed of convergence. The combination of global 

and local search is a strategy used by many successful global optimization approaches, and 

has in fact been recognized as a powerful algorithmic paradigm for evolutionary 

computing (Goldberg 1989). 

 
Advantages and Disadvantages of EC 

The motivation for using EC as a search and optimisation technique is partly dependent 

upon the nature of the application under consideration. In other words, if the optimisation 

problem under investigation is mathematically “well-behaved”, then the appropriate choice 

would be the use of conventional, deterministic and specialized techniques (Michalewicz 

and Fogel 2000). Examples of such techniques are the classical linear and nonlinear 

programming techniques (Luenberger 1984), the deterministic gradient-based techniques 

such as Newton method and its derivatives and the simplex method (Dantzig 1963). 

However, these conventional optimisation techniques face major difficulties in several 

scenarios. For example, when the objective function is discontinuous or characterized by 

many local optima and points at which gradients are undefined, or when the estimation 

problem involves many parameters that interact in highly non-linear ways, classical 

optimisation techniques usually fail. In these situations, heuristic methods like EAs are 

powerful alternatives for exploring search spaces and finding good solutions that cannot be 

detected by conventional numerical techniques. 

 

Another major attraction of EC techniques is their flexibility and thus, their applicability to 

a vast variety of applications. This is an essential advantage of EC when compared with 

alternative optimisation and search methodologies. Classical optimisation techniques 

usually impose restrictions and require a lot of initial conditions and hard constraints, such 

as the linearity of an objective function or the shape of a tradeoff surface. EC techniques, 

such as EAs, are direct search methodologies whose functionalities only involve the 

calculation of the objective function (exact or metamodel), and do not require any other 

derivative or theoretical information. A decisive assessment and a choice of a solution is 

usually achieved through human interaction or a computerised simulation. EC techniques 

can also operate on any problem encoding and accept a wide variety of data structures 

while ensuring the possibility of devising suitable operators. 
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Nevertheless, the iterative and population based nature of EAs can be quite 

computationally expensive and should be taken into consideration, especially when 

tackling expensive objective functions. In addition, in order to achieve ‘good’ results using 

an EA, several design choices need to be cautiously decided. These design choices, among 

others, include the population size, the mutation probability, the recombination probability 

and the e-e tradeoff.  Choosing the right parameters for an EA is far from being a 

straightforward process, and requires practical EA expertise. Moreover, the success of 

certain EA parameters and operators cannot be generalised (Purshouse and Fleming 

2003b), instead these parameters should be domain specific and tailored to fit a certain 

application or search landscape. Some research was dedicated for designing methodical 

approaches, also known as competent EAs, for supporting the user in choosing the right 

parameters and designing the appropriate EA that accommodates the application at hand 

(Reed, Minsker and Goldberg 2000 and Lobo and Goldberg 2001). This research area is 

critical and requires more dedications.  

 

2.3. Evolutionary Algorithms for Multiobjective 

Optimisation 

2.3.1. EAs’ Convenience for Multiobjective Optimisation 
 

Classical approaches for solving multiobjective optimisation chiefly consist of multiple-

start strategies whose core is the transformation of a MOP into a single objective 

counterpart. Once converted into a single objective optimisation problem, it is possible to 

deploy a large variety of conventional optimisation techniques for solving the problem. 

Using the classical weighted sum approach (Jakob, Gorges-Schleuter and Blume 1992) for 

example, different weights are required to be assigned to the multiple objectives prior to 

the start of the optimisation problem. The weights’ values should be carefully chosen to 

reflect the importance and the priority of each objective. The optimisation problem is then 

converted, by aggregating the weighted objectives, into an optimisation of a weighted sum, 

therefore converting the multiobjective problem into a single objective problem. The 

success of the weighted sum approach is critically linked to the a priori choice of 

objectives’ weights, which is generally not a straightforward process from the DM point of 

view.  

 

Other widely used multiple-start strategies include the ε-constraint method and the goal 

programming approach. The ε-constraint method (Haimes, Lasdon and Wismer 1971) 

consists of transforming all but one of the objectives into constraints. The standard 

optimisation problem (illustrated in Figure 2.1) is consequently converted into a 
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constrained single objective optimisation problem (Definition 2.6). The ε values used to 

define the constraints are usually provided by the DM. 
 

Definition 2. 6 ε-constraint Method 
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Goal programming, on the other hand, is a term which was officially first introduced in 

1961 by Charnes and Cooper (1961). The method reduces a multiobjective optimisation 

problem into a single objective problem by transforming it into a minimization task of a 

weighted sum of deviations of the objectives from a certain defined goal vectors (Aouni 

and Kettani 2001).  

 

The major drawback of these classical MO approaches is that they can only produce a 

single solution on the tradeoff surface at a certain execution. In order to produce a diverse 

set of solutions on the tradeoff surface, these classical strategies need to be re-executed 

many times while changing the weight values and the optimiser’s configuration. In the 

case of the weighted sum approach, it was geometrically demonstrated that the method 

cannot produce solutions on non-convex regions of the tradeoff surface (Fleming and 

Pashkevich 1985). In fact, it was shown that the convexity of the tradeoff surface is a hard 

constraint that should be met in order to produce all the Pareto optimal solutions (Censor 

1977) using the weighted sum approach. The multiple-start strategy makes these 

techniques computationally expensive and requiring a considerable amount of objective 

function evaluations. In addition, these classical strategies do not make any use of the 

online interaction of the objectives and requires the aggregation of usually non-

commensurate objectives. 

 On the other hand, in addition to their advantages for single objective optimisation 

(described in Section 2.4.9), EAs are particularly suitable techniques for solving 

multiobjective optimisation problems. The population-based nature of EAs and their 

flexible selection mechanisms have proved to be extremely successful for solving 

multiobjective optimisation problems. The latter two factors make these optimisation 

strategies very practical in revealing a satisfactory approximation set to the desired 

globally optimal set of solutions in a single execution of the algorithm. Moreover, EAs’ 

simultaneous operation on multiple solutions makes the search for optimal solutions a 

more cooperative process and hence a faster process. Moreover, the Pareto dominance 

scheme that governs the majority of EC strategies makes it possible to tackle MOPs and 

assess candidate solutions to such problems without requiring the aggregation of non-
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commensurate objectives. This is an essential advantage of EAs for tackling multiobjective 

optimisation problems which allows the preservation of domain specific knowledge and 

precision as well as it promotes the better understanding of the search landscape and the 

objective tradeoffs all along the search progress. In Table 1, an illustration of the 

differences between EAs and classical optimisation techniques is presented.  

Table 1. 1: EAs versus Traditional Methods 

Evolutionary Algorithms Classical Methods 

Search a population of points in parallel Operate on a single point 

Do not require derivative or auxiliary 
information 

Generally requires derivative information 

Use probabilistic transition rules Generally use deterministic transition rules 

Do not require the aggregation of non-
commensurate objectives 

Generally require the aggregation of non-
commensurate objectives 

Produce multiple solutions per execution Produce a single solution per execution 
 

2.3.2. A Chronological Illustration of MOEAs Development 
 

Non Pareto-Based Approaches 

In Figure 2.9 a chronological chart illustrating the different MOEAs devised over the last 

20 years and their major additions and contributions to the EMO community is presented. 

Despite the early promotion of GAs as a potential approach for solving MOPs (Rosenberg 

1967) in the late 60s, and despite an early attempt for deploying GAs to solve a MOP (Ito, 

Akagi and Nishikawa 1983), it was only in 1985 that the first actual implementation of a 

multiobjective evolutionary optimiser, aimed at producing an approximation set, was 

introduced. Moreover, it is widely accepted in the evolutionary multiobjective optimisation 

(EMO) community that Schaffer’s Vector Evaluated Genetic Algorithm (VEGA) (Schaffer 

1985) represents the first implementation of a multiobjective evolutionary algorithm 

(MOEA).  
 

 

VEGA 

The Vector Evaluated Genetic Algorithm (VEGA) consists of a simple non-Pareto based 

genetic algorithm. Schaffer’s VEGA was inspired by Grefenstette’s GENESIS 

(Grefenstette 1984) program which was designed for solving single objective 

optimisations. VEGA operates by dividing the handled population of solutions into ‘N’ 

equally sized subpopulations at every generation of the process. Each subpopulation was 

designated to one of the ‘N’ objectives that constituted the optimisation problem. 

A proportional selection mechanism was applied to define the membership of a certain 

solution to a particular subpopulation and variation (crossover and mutation) operators 

were then applied to the whole population. The major drawback of VEGA lies in its 
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selection procedure. A solution with no particularly remarkable performance in terms of a 

certain objective is biased against and its chances for survival to successive generations are 

limited. In other words, the selection scheme used in VEGA prevents the preservation of 

compromise solutions on the tradeoff surface whilst only keeping solutions that excel in 

terms of a certain objective. This last problem is commonly known in genetics as the 

speciation problem.  
 

Other early MOEAs included Fourman’s (1985) lexicographic ordering GA (described 

below), the target vector optimisation (Wienke, Lucasius and Kateman 1992) which is 

based on the goal programming approach and Kursawe’s (1991) Vector Optimised ES 

(VOES). Kursawe’s VOES deploys a chromosome encoding which is more closely 

inspired from natural biology. Using VOES, each chromosome comprises a dormant and a 

recessive part and consequently possessed two objective vectors (one for each part of the 

chromosome). Despite its sophistication, VOES uses a selection scheme whose core is 

similar to the one used in VEGA, and hence presents the same speciation problem.   
 

Lexicographic ordering GA 

The lexicographic ordering approach consists of ordering the objectives in terms of their 

importance and priority. This objective ordering is performed before the start of the 

optimisation process. The optimisation task then consists of optimising a single objective 

function which corresponds to the objective with the highest priority. The next steps then 

consist of optimising the remaining objective functions, one at a time, and in a descending 

order in terms of the objectives’ priorities. Moreover, each optimisation task takes 

consideration of the objectives that precedes it in terms of priority. For example, when 

optimising the second objective function (which corresponds to the second prioritised 

objective), the only solutions kept are the ones that do not deteriorate the values of the 

solutions previously found for the preceding objective. Determining the objective’s 

priorities and ordering them is the major drawback of this technique. The lexicographic 

ordering approach suffers from the same problems as those of the weighted sum approach. 
 

Pareto-Based Approaches 

In order to overcome the drawbacks of VEGA, mainly linked to its selection mechanism, 

Goldberg (1989) proposed the use of Pareto dominance for assigning fitness scores to 

candidate solutions and consequently selecting solutions for recombination and survival. 

Goldberg also suggested the fitness sharing approach to promote diversity in the 

approximation set. Most of the modern MOEA approaches are influenced by Goldberg’s 

work (Coello et al 2002), and can be categorized into two consecutive generations. 
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First Generation MOEAs 

The Multiple Objective Genetic Algorithm (MOGA) (Fonseca and Fleming 1993), the 

Niched Pareto Genetic Algorithm (NPGA) (Horn, Nafpliotis and Goldberg 1994) and the 

Non-Dominated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb 1994) are the most 

reputed and cited MOEAs of the first generation. The major difference between these three 

MOEAs is their approach for deriving fitness scores from the Pareto dominance scheme 

and assigning them to the alternative candidate solutions. In addition, most of the first 

generation MOEAs incorporate fitness sharing among their processes (Goldberg and 

Richardson 1987) to encourage the production of well-distributed approximation sets. 

These MOEAs lack the concept of elitism, a critical concept ensuring the preservation of 

good solutions all along the optimisation process. The emphasis of this first generation of 

MOEAs is the simplicity of the approaches and the lack of methodology for assessing and 

contrasting the performance of MOEAs. 

 
MOGA and its Contributions 

Following a comparative study by Van Veldhuizen (1999), the Multiple Objective Genetic 

Algorithm (MOGA) was found to outperform NPGA and NSGA. The strategy used in 

MOGA (Fonseca and Fleming 1993) for assigning ranks, known as the Pareto-based 

ranking, corresponds to a slight alteration of Goldberg’s suggested ranking technique. In 

MOGA, a candidate solution is ranked according to the number of solutions in the current 

population that dominates it. In other words, a non-dominated solution would have been 

assigned the rank zero denoting that there is no solution in the population dominating it. 

Compared to the non-dominated sorting approach for ranking solutions (Goldberg 1989, 

Sirnivas and Deb 1994), the Pareto-based ranking used in MOGA presents a more efficient 

and a higher resolution ranking. Pareto-based ranking was later used in the multi-objective 

mixture-based iterated density estimation evolutionary algorithm (MIDEA) by Thierens 

and Bosman (2001). Moreover, also in the context of Fonseca and Fleming’s Pareto-based 

ranking (1993), Hughes (2001) implemented a method for calculating the probability of 

correctly deciding on the dominance of a certain solution over another in the presence of 

Gaussian noise and uncertainty.  

In MOGA, fitness sharing is also implemented and applied in the objective space in order 

to promote diversity and combat genetic drifts. 
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Figure 2. 9 Different MOEAs (1
st
 generation – 2
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NPGA and its Contributions 

The major contribution of the Niched Pareto Genetic Algorithm (Horn and Nafpliotis 

1993, Horn, Nafpliotis and Goldberg 1994) is its Pareto domination tournament scheme of 

selection. First, two candidate solutions are chosen at random from the population. A 

certain number ‘n’ of solutions is then selected randomly from the population to constitute 

the benchmark comparison set.The two selected solutions are compared with the 

comparison set of solutions. If one of the two solutions is non-dominated by the 

comparison set, then it is selected for variation. In the case of a tie (i.e. both selected 

solutions are non-dominated by the comparison set or alternatively dominated by at least 

one of the solutions in the comparison set), the two solutions are considered equivalent, 

and an equivalence class sharing is performed. Based on fitness sharing approach, the 

solution residing in the less dense area of the search space is selected.  

 

NSGA and its Contributions 

The Non-Dominated Sorting Genetic Algorithm (NSGA) was based on the non-dominated 

sorting strategy which was originally proposed by Goldberg (1989). A non-domination 

check is first performed on the whole population of solutions, and the non-dominated 

solutions are assigned the rank ‘zero’ denoting their membership with the first (and 

highest) level of non-dominance. The non-domination check is then applied on the 

population of solutions while excluding the solutions belonging to the rank zero. The 

process continues until all the solutions in the population are assigned a rank denoting their 

belonging to a certain non-dominance level. After ranking all the candidate solutions, 

fitness sharing is applied to every class of dominance. This is done in order to degrade the 

fitness values of the solutions, based on their density estimate in the objective space, 

within their class of dominance and hence without degrading their class of dominance 

itself. The multiple non-dominance checks at every generation of the process and the high 

sensitivity to σshare resulted in a less efficient performance of NSGA when compared to 

MOGA. 

 
Second Generation MOEAs 

The second generation of MOEAs incorporate elitism and deploy more sophisticated 

methods for promoting solution diversity. An increased emphasis and dedicated research 

was also given to improve the efficiency of these evolutionary approaches at the end of the 

1990s which resulted in the establishment of the second generation of MOEAs. The most 

representative and widely cited MOEAs of the second generation include, among others, 

the Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999), the Pareto 

Archived Evolution Strategy (PAES) (Knowles and Corne 2000), the Non-Dominated 
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Sorting Genetic Algorithm II (NSGA-II) (Deb et al 2002) and the Strength Pareto 

Evolutionary Algorithm 2 (SPEA2) (Zitzler, Laumanns and Thiele 2001).  

 
SPEA and its Contributions 

The Strength Pareto Evolutionary Algorithm (SPEA) operates on two active populations of 

solutions. The usual population of solutions and an external population or online archive 

which stores the non-dominated solutions and participates in the variation processes. 

Before the implementation of SPEA, the majority of MOEAs, such as MOGA, NPGA and 

NSGA, used an offline archive with an assumed infinite memory to store all the non-

dominated solutions achieved all along the optimisation process. The solutions stored in 

the offline archive were generally passive in that they did not interfere or participate in the 

evolutionary search process. The fitness assignment process in SPEA is more fine-grained 

compared to MOGA’s Pareto based-ranking. This is mainly due to the strength-based 

approach implemented in SPEA which takes into consideration the number of solutions 

that are dominated by a certain solution ‘S’ (also called Dominance count) and the number 

of solutions that dominate ‘S’ (also called Dominance rank). Dominance rank, dominance 

count and dominance depth are terminologies suggested by Zitzler (2002) and denote the 

methodologies that MOEAs use to rank candidate solutions while favouring locally non-

dominated ones. Dominance depth is the methodology used to rank a certain candidate 

solution based on the non-dominated sorting approach (e.g. NSGA). In a similar manner to 

MOGA’s ranking procedure, each solution in the external population is first assigned a 

strength value which is proportional to the number of solutions (in the population) that it 

dominates. Each solution in the population is then assigned a fitness value which is 

proportional to the strength of the solutions (in the external population) that dominate it. In 

order to maintain a diverse approximation set, SPEA ensures that the solutions in the 

external archive are evenly distributed using a clustering approach.  

The clustering approach seeks to distribute the solutions in the external archive into N 

different clusters. Initially, each of the N’ (>N) solutions in the population is considered as 

a separate cluster. A pair-wise measurement of the Euclidean distances between each of 

the N’ clusters and the remaining N’-1 clusters is calculated, and the two closest clusters 

are merged to form a single cluster. This procedure reduces the number of clusters from N’ 

to N’-1. The whole process is then executed on the reduced number of clusters until the 

required number of clusters N is achieved. When multiple solutions reside in a cluster, the 

Euclidean distance between two clusters is measured as the average Euclidean distance 

between all pairs of solutions, one from each cluster. This is illustrated in Figure 2.10 

where the clustering process is highlighted.  The clustering approach for promoting 

diversity is usually considered a more fine-grained technique compared to the crowding 
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approach (described later) used in NSGA-II (Deb, Mohan and Mishra 2003) but is 

generally more computationally expensive because of its required measurements and pair-

wise comparisons which are repeated at every iteration of the process. In Deb, Mohan and 

Mishra (2003), a substitution of the crowding measure in NSGA-II with SPEA’s clustering 

technique was attempted. Better diversity was achieved only at the expense of a more 

computationally expensive process. 

 

Figure 2. 10 Clustering Technique for Diversity Promotion 

 

Moreover, despite some earlier considerations of elitism for MO (Tamaki, Mori, Araki, 

Mishima and Ogai 1994 and Husbands 1994), the publication of SPEA (Zitzler and Thiele 

1999) in the IEEE transactions on Evolutionary Computation earned the authors the credit 

of formally introducing the concept of elitism.   

 

PAES and its Contributions 

The Pareto Archived Evolution Strategy (PAES) (Knowles and Corne 2000) is a simple 

(1+1) evolution strategy whereby a single parent solution produces a single offspring. 

PAES uses an archive (with an upper bound on its size) that contains all the non-dominated 

solutions which were previously found. This archive implements the elitism concept and 

plays the role of a reference set. The performance of the mutated solution (offspring 

solution) is assessed by comparing it to the performance of the solutions in the reference 

set. However, the major feature of PAES is its strategy for promoting diversity in the 

approximation set. PAES uses an adaptive (hyper-) gridding system in the objective space 

to divide it into several non-overlapping (hyper-) boxes. The belonging of a certain 

solution to a certain region in the (hyper-) box is determined by the objectives’ values 

which define the solution’s coordinates. In the case where an offspring solution is non-

dominated by the reference set, a crowding measure based on the number of solutions 

residing in a certain grid location is applied to determine whether the offspring solution is 

accepted or not. The major advantage of this diversity maintenance technique is that it does 

Cluster 1 
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Cluster 3 

Z1 
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not require setting any additional parameters such as the niche size parameter σshare in the 

fitness sharing approaches. The adaptive grid archiving (AGA) concept used in PAES later 

inspired several researchers, and was altered and deployed in multiple MOEAs such as the 

Pareto Envelope-based Selection Algorithm (PESA) (a population based version of PAES) 

(Corne, Knowles and Oates 2000), Coello and Pulido’s (2001) Micro Genetic Algorithm 

and Deb, Mohan and Mishra’s (2003) ε-Domination Based Multi-Objective Evolutionary 

Algorithm (ε-MOEA). 

 

NSGA-II and its Contributions 

NSGA-II was introduced in Deb et al (2000) (and Deb et al 2002)) as an enhancement to 

NSGA. In this enhanced approach, a candidate solution is ranked using the non-dominated 

sorting scheme but taking into consideration the dominance rank and the dominance count 

for a better dominance resolution. Moreover, an efficient density estimate approach 

(crowding) in the objective space is deployed for promoting diversity at the selection for 

variation and survival processes. The density estimate for a certain candidate solution ‘S’, 

known as the crowding distance, is measured by calculating the sum of the Euclidean 

distances (in the objective space) between the two neighbouring solutions from either side 

of ‘S’ along each of the objectives (i.e. in an objective-wise fashion). The crowding 

technique is illustrated in Figure 2.11 on a bi-objective problem. More generally, all the 

solutions are first sorted in descending order in terms of the first objective. Each solution is 

then assigned an objective-wise crowding measure equal to the normalised difference 

between its two neighbouring solutions. The crowding distance for a certain solution on a 

non-dominated front is then calculated as the sum of all such objective-wise crowding 

measures. Unlike SPEA and SPEA2 (described below) which use an external archive, 

NSGA-II uses a simple (µ+λ) scheme for the selection for survival. 

 

Figure 2. 11 Crowding Technique for Promoting Diversity 
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Hence, after sorting the combined population of solutions (Archive + Current Population) 

into different classes of dominance, the crowding distance is calculated for the whole 

combined population. A Pseudocode of NSGA-II will be given in Chapter 3. In the EMO 

community, NSGA-II is widely regarded as an efficient optimiser against which news 

optimisers should be assessed. 

 
SPEA2 and its Contributions 

Again, SPEA2 was aimed at improving the performance of its predecessor SPEA which 

suffered from some weaknesses. These weaknesses were highlighted and criticized in the 

EMO community at more than one occasion (Corne et al. 2000, and Deb, Pratap, Agarwel 

and Meyarivan 2000). Three new features were implemented in SPEA2 and differentiated 

the latter optimiser from its predecessor. The first improvement consisted of ameliorating 

the granularity of the ranking technique used in SPEA by taking into consideration the 

count of the dominating and the dominated solutions when ranking every solution in the 

population. The second improved feature implemented in SPEA2 consisted of deploying 

the k-th nearest neighbour strategy as a density estimate around every individual. The last 

modification introduced in SPEA2 altered the truncation method, which maintains a fixed 

size for the external population, ensuring that boundary solutions do not get filtered out.   

For an alternative survey about the features and the development of the major MOEAs 

introduced over the years, the interested reader is directed to Coello (2006) and Ghosh and 

Dehuri (2004). 

 
Performance Metrics and Test Functions 
 

In addition to the algorithmic enhancements and the various efficient and sophisticated 

techniques suggested for promoting diversity and proximity in EMO, the second 

generation of EMO witnessed many other major contributions. Notably, among these 

contributions are the formulation of structured performance criteria and the introduction of 

several assessment techniques and test functions for a better analytical and quantitative 

evaluation of MOEAs. Two main performance criteria for MOEAs were delineated. More 

specifically, the distance between the approximation set and the true Pareto front should be 

minimised, and the uniform diversity of the approximation set should be maximised along 

the Pareto front. 

In order to assess the performance of a MOEA in terms of the above criteria, several unary 

performance metrics were proposed. The Error Ratio (Van Veldhuizen 1999) and the 

Generational Distance metric (Veldhuizen 1999) are examples of unary metrics suggested 

for assessing the closeness of an approximation set to the Pareto optimal front. On the 

other hand, the Spread metric (Deb et al 2000a), the Maximum Spread (Zitzler 1999) and 
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the Chi-Square-Like Deviation Measure (Deb 2001) are examples of unary metrics that 

evaluate the diversity of an approximation set. For more information about performance 

metrics in EMO, the interested reader is directed to Deb (2001), Van Veldhuizen and 

Lamont (2000b), and Deb et al. (2000).  

Nevertheless, a theoretical study by Zitzler et al (2003) showed that there is no 

combination of unary metrics that can conclude the out-performance of a certain MOEA 

over another. As a remedial measure, the authors proposed the use of binary metrics which 

contrast the relative performance of two MOEAs simultaneously. Examples of binary 

metrics include the Set Coverage metric (Zitzler 1999) and the Binary ε-metric (Zitzler et 

al 2003). 

Moreover, in order to challenge the search capacities of MOEAs, a set of bi-objective test 

functions (Zitzler, Deb and Thiele 2000) as well as a set of seven scalable test functions (in 

terms of the number of objectives and decision variables) (Deb, Thiele, Laumanns and 

Zitzler 2002) were introduced. These test functions encapsulate characteristics, such as 

multi-modality and discontinuity, which are known to generally cause difficulties to most 

MOEAs. Also, the scalable test functions were intended for the evaluation of the 

performance of MOEAs when dealing with an increased number of competing objectives. 

These test functions are widely used as benchmark problems in the EMO community and 

were designed based on the suggested methodology by Deb (1999b), which is a blue-print 

for constructing test functions with challenging features to MOEAs. Huband et al (2005) 

also introduced a practical toolkit which allows the designer to construct scalable 

multiobjective test functions with well-defined Pareto fronts and desired characteristics. 

Using their toolkit, Huband et al (2005) also proposed a test suite of 9 scalable 

multiobjective problems featuring important characteristics such as multimodality and non-

separability6.       

2.3.3. Obtaining Good Proximity 

 
The proximity (or otherwise the convergence) of an approximation set to the Pareto front is 

the primary requirement of evolutionary multiobjective optimisation. In order to achieve 

proximity, the search process should be steered in the right direction towards the Pareto 

optimal front of a certain multiobjective problem. This steering is more accurately 

achieved through the selection processes that govern MOEAs. As a result, fitter solutions, 

hence closer to the Pareto front, have higher chances for being selected for contributing to 

the next generations through the variation operators. Additionally, at the environmental 

                                                 
6 A non-separable MOP is a problem characterised with variable dependencies. Non-separability is a 
desired feature which is common in real-life applications.  
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selection process, fitter solutions would equally have higher chances for being selected for 

survival to the next generations.  

Based on the Pareto dominance scheme, several techniques for ranking candidate solutions 

and assigning them fitness values were proposed in the EMO community. The major 

ranking approaches devised over the two generations of EMO were described in Section 

2.3.2. The interested reader is also referred to Zitzler, Laumanns and Bleuler (2004) for 

more information about ranking and fitness assignment in EMO. The fitness values 

assigned to alternative candidate solutions to a MOP usually reflect their relative 

performance, and hence their preferability in terms of closeness to the Pareto front. These 

fitness values are then used as the primary selection criteria for variation and contribution 

to the next generation. 
 

A major approach for improving the convergence of the population of solutions handled by 

a MOEA towards the Pareto front is the use of elitism. Elitism is a strategy which aims to 

ensure that any good solutions found during the optimisation do not get filtered out and 

lost (Zitzler et al. 2004). The implementation of an elitist strategy can be achieved by 

means such as deploying an active selection for survival strategy (similar to the (µ+λ)-ES), 

or using an external archive of non-dominated solutions. The latter elitist approach can be 

implemented in two different ways. An archive can be offline (or inactive) or otherwise 

online (or active). The first generation of MOEAs (e.g. MOGA) used to deploy offline 

archives to store all the non-dominated solutions achieved all along the optimisation 

process. The offline archive however did not have any impact on, or interaction with, the 

evolutionary search. On the other hand, some of the second generation of MOEAs (e.g. 

SPEA2) deploy an online archive as an elitist strategy. In addition to storing the best 

‘representative’ solutions, the content of the online archive is used to steer the search by 

participating in the mating procedures and contributing to the next generations. This last 

strategy of elitism is generally more efficient then its counterpart (deploying offline 

archives) and results in an accelerated convergence towards the Pareto front (Deb 2001). 

Examples of elitist strategies were described in Section 2.3.2. Moreover, it is worth 

mentioning that the majority of the first generation of MOEAs used to deploy a (µ, λ) 

strategy at the selection for survival stage. All the offspring solutions deterministically 

replaced their parents regardless of their performances. In other words, the selection for 

survival process can be described as inactive in the majority of the early EMO approaches 

and hence elitism was absent.  

Deploying elitism in the form of an external archive, the inclusion of candidate solutions in 

the archive is performed in en bloc or incremental fashion. The latter two terminologies 

were suggested by Zitzler (1999) and correspondingly denoted the strategy of 
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simultaneously including a set of solutions into the external archive (e.g. SPEA2) or 

otherwise the inclusion of one solution at a time (e.g. PAES, PESA). While in the latter 

approach, the order of including the solutions in the archive is essential, in en bloc 

strategies the order of inclusions is irrelevant. 

The importance of elitism was particularly highlighted after the outcome of several critical 

studies (Zitzler and Thiele 1999, Zitzler, Deb and Thiele 2000). These studies were 

conducted in the aim of contrasting the performance of multiple MOEAs on a set of bi-

objective optimisation problems. Some of the MOEAs included in the comparative studies 

deployed elitist strategies, while other MOEAs did not. The studies’ outcomes illustrated 

that the elitist MOEAs were generally outperforming their counterparts with no active 

elitist strategies. Indeed, study has shown that in order to ensure the convergence of the 

population of solutions handled by a MOEA in the limit, elitism is an essential and a 

theoretical requirement (Rudolph and Agapie 2000). The convergence requirement is 

further investigated in Chapter 3 where enhancements to this primary EMO criterion are 

devised. 

2.3.4. Obtaining Good Diversity 
 

Fitness sharing, a concept first introduced in 1989 by Goldberg (1989), is one of the 

earliest attempts for promoting diversity as a requirement in EMO.  Fitness sharing is 

based on a density estimation approach and was originally motivated by the need for niche 

formation to prevent premature convergence towards sub-optimal regions of the objective 

space. As its name reveals, the ‘fitness sharing’ method forces the sharing and therefore 

the degradation of the fitness values corresponding to solutions lying within a certain 

distance from each other. The notion of distance is an application dependent variable, and 

is usually the Euclidean distance in most real-coded applications. The process of sharing 

fitness values commonly penalises solutions populating dense areas of the search space 

without violating the Pareto dominance notion. In other words, fitness sharing 

discriminates each set of solutions belonging to a certain level of performance -or rank- in 

terms of diversity without degrading their membership with the rank they occupy. Hence, a 

non-dominated solution lying in a poorly populated area of the objective –or decision- 

space will always have the highest probability of selection for variation or survival. The 

major disadvantage of the fitness sharing method is that its success is highly dependent on 

the chosen niche size parameter σshare which was previously described in Section 2.2.9. 

 

Several alternatives to the fitness sharing technique for density estimation were proposed 

in EMO. An overview of diversity promotion strategies in EMO was given in Section 

2.3.2. The most widespread alternatives include the Nearest Neighbour approach and the 
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histogram based techniques. In a framework aiming to improve the performance of SPEA, 

Zitzler et al (2001) suggested a density estimate based on the use of the k
th nearest 

neighbour measure in the Euclidean objective-space. A statistical heuristic was deployed to 

determine the value of the critical parameter k based on the square root of the population 

size. Other density estimation approaches based on the nearest neighbour included the 

method suggested by Abbass, Sarker and Newton (2001) who replaced the use of the kth 

nearest neighbour measure as a density estimate with the mean Euclidean distances of the 

two nearest solutions. Sarker, Liang and Newton (2002) later on extended the technique by 

Abbass et al to incorporate the mean Euclidean distances of the M nearest solutions as the 

density estimate. The two most popular diversity-preserving operators based on the nearest 

neighbour density estimation are the clustering technique (Zitzler and Thiele (1999)) and 

the crowding technique (Deb et al 2002). These two techniques were previously introduced 

in Section 2.3.2.  

Despite their conceptual simplicity and their relatively low computational requirements, 

the nearest neighbour diversity promotion mechanisms suffer from a fundamental 

disadvantage due to their requisite for the consistency and scalability of potentially non-

commensurable objectives.  Another disadvantage of the nearest neighbour approaches is 

their requirement for a sensitive choice of the parameter k which is essential to the success 

of the technique. This disadvantage is vaguely similar to the choice of σshare in the fitness 

sharing approach for promoting diversity. 

On the other hand, histogram based techniques are an alternative density estimation 

procedure that overcome the disadvantage of requiring distance measurements and the 

concatenation of non-commensurable objectives in the nearest neighbour schemes. These 

alternative techniques operate by partitioning the objective space into a grid of different 

hyperboxes. The density estimation is then based on the count of the number of solutions 

residing in a certain hyperbox in the objective space. Several objective space gridding 

systems where introduced in the EMO community. In the context of the Pareto archived 

evolution strategy (PAES) by Knowles and Corne (1999), the user specifies the number of 

bisections in terms of each objective range, and therefore specifies the spacing between the 

objective space hyperboxes. These user-specified spacing ranges between partitions of the 

objective space are then used in an adaptive grid spacing system defined by the locally 

non-dominated solutions. Deb et al (2003) suggested a steady state approach (ε-MOEA) 

based on a combination of the ε-dominance concept introduced by Laumanns et al (2002a) 

and an adaptive grid archiving (ADA) similar to PAES. Laumanns et al (2002a) used the ε-

dominance concept to implement a histogram-based diversity promotion strategy based on 

the proposition by Papadimitriou and Yannakakis (2000). ε-MOEA maintains diversity in 

the archive by allowing only one solution in each pre-assigned hyperbox in the objective 
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space. No specific upper limit on the archive size is needed to be predetermined as the 

archive gets bounded according to the chosen ε vector in terms of each objective. 

Despite their increasing popularity in the EMO community, one of the major drawbacks of 

histogram-based diversity promotion techniques is their exponential computational 

complexity in the number of objectives. The gridding system applied in the objective space 

is yet another sensitive design parameter which can be inappropriate to some Pareto front 

structures. Choosing the right gridding system is particularly a hard design choice when 

the dimensionality of the objective space increases.  

Other miscellaneous approaches for promoting diversity in EMO include mating 

restrictions, lateral diversity and target vector approaches. Mating restriction was 

suggested by Deb and Goldberg (1989) after a study on multimodality. They have noticed 

that when solutions from remote areas of the search space (objective or decision space) 

recombine, they most often produce week offspring known as lethals. Imposing 

restrictions on the mating process was first introduced by Booker (1982) for promoting 

diversity in the approximation set (Deb and Goldberg 1989). Similar to fitness sharing’s 

parameter σshare, a parameter σmate is calculated to determine whether two selected solutions 

belong to different regions of the space and should be restricted from mating. Lateral 

diversity on the other hand, suggests maintaining diversity in the dominated regions of the 

space for obtaining an overall better diversity in the population. This is interpreted as a 

requirement for keeping a balanced tradeoff between diversity and proximity to the Pareto 

front (Bosman and Thierens 2003). Examples of studies deploying lateral diversity for 

maintaining a tradeoff between proximity and diversity include Deb and Goel (2001), 

Laumanns et al. (2001), Laumanns and Ocenasek (2002b), and Bosman and Thierens 

(2003). 

Moreover, target vector approaches, originally suggested in the OR community and used to 

assess the performance of EAs, are deployed as a diversity promotion techniques in EMO. 

The approach consists of suggesting a target point in the search space, and then seeks to 

minimize the distance between candidate solutions and the suggested target point (Wienke, 

Lucasius and Kateman 1992). Later on in the EMO community, the target vector approach 

was extended to allow the suggestion of multiple target objective vectors (Lohn, Kraus and 

Haith 2002). In the extended approach, better fitness scores get allocated to solutions close 

to certain target vectors. Nevertheless, fitness sharing takes place when multiple solutions 

reside in the neighborhood of a target objective vector in the aim of promoting diversity 

and avoid the genetic drift towards a single target vector. 
 

Chapter 4 will consist of a closer look at the diversity requirement in EMO. New 

approaches for addressing the requirement for a tradeoff between the two essential 
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requirements (diversity and proximity) will be investigated in a many objective 

optimisation scenario.  

2.3.5. Preference articulation techniques 
 

In most scenarios, a decision-making process is equally essential and required as the 

multiobjective optimisation task itself. In real-world multiobjective optimisation, a single 

solution is usually sought for implementation among several alternative candidate 

solutions. Providing the DM with a well-diversified approximation set along the Pareto 

optimal front is generally half the way towards solving the problem at hand. EAs are 

optimisation and search techniques with proven suitability for finding optimal 

approximation sets for multiobjective problems. However, having provided the DM with a 

well-distributed approximation set, a single solution is usually needed to be chosen. A 

psychology driven decision making requirement is hence providing the DM with an 

approximation set of representative solutions and reasonable size for him/her to choose 

from (Miller 1956). The selected solution is then selected, based on certain preferences and 

priorities and might undergo certain further analysis and testing (e.g. in terms of robustness 

through sensitivity analysis), before it is implemented. Decision Maker’s preferences are 

very important information and can affect the multiobjective optimisation process and 

delimit the search process to certain regions of interest if these were incorporated in the 

optimisation process.  

Multi-Criteria Decision Making (MCDM) in EMO is classified in three main categories 

reflecting ‘how’ and ‘when’ the preferences are articulated (Horn 1997). The three 

categories are listed below:  

1. A Priori preference articulation: This category of preference articulation denotes the 

process of introducing and incorporating the preferences before the search process. 

2. A Posteriori preference articulation: This category of preference articulation denotes 

the process of introducing and incorporating the preferences at the end of the search 

process. 

3. Progressive preference articulation: This category of preference articulation denotes 

the process of introducing, incorporating and modifying the preferences in an 

interactive and progressive way at any time during the search process. 

Purshouse (2004) has shown that evolutionary many-objective optimisation usually faces 

the unambiguous conflict of solutions convergence and diversity, also referred to as the 

curse of dimensionality which is mostly caused by the dominance resistance phenomenon. 

Dominance resistance is a problem first identified by Ikeda et al (2001) and denotes the 

inability of producing offspring solutions that dominate their parent solutions. Deploying 

preference articulation to delimit the high dimensional search space to certain regions of 
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interests is a remedial measure for overcoming the problem of dominance resistance and 

diminishing the curse of dimensionality. Nevertheless, compared to other aspects of EMO, 

the research into preference articulation has been neglected to some extent in EMO. 

Incorporating preferences in the evolutionary search can provide potential advantages over 

the use of pure Pareto-optimality, which is unfettered in its search and is liable to produce 

solutions outside the ROI as well as within it. Coello (1999) produced a comprehensive 

survey about handling preferences in EMO. Another more recent survey about preference 

articulation in EMO can be found in Rachmawati, L. and Srinivasan (2006). In the 

following, an overview of the three categories of preference articulation (a priori, 

progressive and a posteriori) used in EMO is presented.  

 
A Priori Preference Articulation 

In a priori preference articulation techniques, the DM is usually requested to know and 

articulate his/her preferences prior to the optimisation process. The majority of classical 

approaches for multiobjective optimisation were built upon the a priori preference 

articulation scheme. This category mostly consisted of aggregating functions which 

allocate weights to the different objectives considered and transform the optimisation 

problem into a single objective optimisation problem. Examples of classical multiobjective 

optimisation techniques that incorporate a priori preference articulation to transform the 

multiobjective problem into a single objective counterpart were presented in Section 2.3.2.  
 

In addition to its common use in multiple start classical optimisation techniques, a priori 

preference articulation is widely used in MOEAs. For example, in Parmee, Cvetkovic, 

Watson and Bonham (2000) a modified version of Pareto dominance was suggested for use 

in a MOEA framework. In the modified version of Pareto dominance, the dominance 

relation was altered to reflect the multiple weights assigned (a priori) to each objective, in 

a way favouring the solutions in the decision maker’s ROI. In order to facilitate the process 

of assigning different weight values to the objectives, (Cvetkovic and Parmee 1999) 

introduced a technique for converting vague and qualitative preferences into quantitative 

weights using pairwise fuzzy comparisons of the objectives. As the number of objectives 

increases, the number of pairwise comparisons becomes a tedious task for the DM 

(Cvetkovic and Parmee 2002). The use of transitive relations was therefore proposed to 

reduce the number of pairwise comparisons required from the DM. 

Another technique -the Guided MOEA (G-MOEA)- based on the underlying concept of 

modifying the Pareto dominance scheme was proposed by Branke et al (2001). Instead of 

assigning weights to the different objectives, pairwise tradeoff values (between each two 

objectives) were required to define the modified version of Pareto dominance, termed as 

the Guided dominance. These tradeoff values corresponded to all the maximally (or 
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otherwise minimally) acceptable units of degradation in terms of each objective ‘i’ that can 

be deemed compensable by a single unit of improvement in terms of each of the remaining 

objectives. G-MOEA, its advantages and disadvantages are fully described in Chapter 5 

which present a comparative study of some of the most interesting preference articulation 

techniques in EMO. 

Another approach for manifesting a priori preference articulations consists of modifying 

the fitness sharing used in many MOEAs for promoting diversity in the approximation set. 

This biased sharing approach was proposed by Deb (1999a), and suggested assigning 

weights to the different components (in terms of each objective) of the distance metric 

used for fitness sharing. The fitness sharing, and hence the diversity promotion process, 

was consequently biased towards the ROIs to the DM. In order to overcome the 

shortcoming of the biased sharing approach, presented by its inability of focusing on a 

certain intermediate region of the Pareto front (Deb, Sundar, N and Chaudhuri 2006), 

Branke and Deb (2004) introduced a fine-grained approach based on the biased sharing 

technique. The fine-grained approach, termed as biased crowding, provides the DM with 

facility of focusing on any part of a Pareto optimal front while controlling the intensity of 

the bias. The biased crowding technique is further explored and described in Chapter 5.  

 

Furthermore, inspired by the goal programming technique (Aouni and Kettani 2001) 

(previously described in Section 2.3.1), Deb (2001b) suggested the use of a multiobjective 

formulation of the goal programming approach within a MOEA (NSGA) framework. In 

order to overcome the classical difficulties of the weighted sum of deviations from unmet 

goal values, Deb (1999a) formulated the problem as a multiobjective task aiming to 

minimise the different deviations (each considered as an objective) from the unmet goal 

values for each objective. The goal values had to be articulated before the start of the 

optimisation process, and once met the optimiser did not seek to optimise past the pre-

determined goal values.   

A more recent approach for incorporating the DM preference prior to the optimisation 

process is also suggested by Deb et al (2006). This time the proposed technique was 

inspired by the classical approach of using reference points (Wierzbicki 1980). Unlike its 

original use for single objective optimisation, the technique proposed by Deb et al (2006) 

suggests the use of multiple reference points in the objective space to steer the search 

process of a MOEA in their directions.   

Finally, the operational research community produced a lot of valuable contributions that 

are successfully implemented as a priori preference articulation techniques in EMO. 

Examples of such contributions are the prominent outranking techniques PROMETHEE 

(Preference Ranking Organisation METHod for Enrichment Evaluations) (Brans, Vincke 
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and Mareschal 1986) and ELECTRE (Benayoun and Sussman 1966). Examples of studies 

incorporating such OR contributions into MOEAs include the use of ELECTRE (Xunxue 

Cui and Chuang Lin 2005) and PROMETHEE-II (Rekiek et al 2000) for guiding the 

search based on a priori preferences. It is worth noting that outranking techniques can be 

equally incorporated in MOEAs for a posteriori decision-making and preference 

articulation.  

 

The main disadvantage of a priori preference articulation is the assumption that the DM 

knows a priori his/her static preferences. In other words, in addition to the difficult 

requirement of knowing the preferences before the optimisation process, the use of a priori 

preference articulation does not provide the DM with the flexibility of changing these 

preferences as new information becomes available. In a lot of real world applications, 

especially when solid grasp of the application is lacking, the DM might be uncertain about 

his/her preferences. In such scenarios, a priori preference articulation might be very 

unsuitable.  

 
 

A Posteriori Preference Articulation 

A posteriori techniques require the DM to articulate his/her preferences and select a single 

preferred solution, or subset of solutions, from a family of solutions produced by an 

MOEA. This category of preference articulation is by far the most widely used in EMO. A 

good optimiser should provide the decision maker with an approximation set presenting 

well-distributed solutions across the Pareto optimal front. Having exposed a variety of 

optimal solutions to the DM, the next step would then consist of a subjective process of 

choosing a certain solution based on certain preferences. Such preferences might be 

endorsed by a potential better understanding of the application inferred from or highlighted 

by the search results and any revealed higher-level information.  

Three post-optimal techniques for assisting the DM in choosing a certain compromise 

solution were suggested by Deb (2001). The first technique consists of deploying a 

compromise programming approach (Yu 1973) for selecting the candidate solution whose 

Euclidean distance towards a certain ideal reference solution in the objective space is 

minimal. The second approach consists of choosing the solution whose marginal rate of 

substitution (Miettinen 1999) is maximal. The marginal rate of substitution denotes the 

amount of improvement in terms of a certain objective which can be gained at the expense 

of a unit of deterioration in terms of another objective. The third approach consists of 

calculating pseudo-weight vectors for each candidate solution and choosing the solution 

with the closest weight vector to the DM’s preferences.  
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Alternatively, MCDM techniques borrowed from the OR community, such as 

PROMOTHEE II or ELECTRE, can be used as a posteriori preference articulation for 

deciding on a certain particular solution from the approximation set. An example of such a 

posteriori approaches is the work by Massebeuf, Fonteix, Kiss, Marc, Pla and Zaras (1999) 

where PROMOTHEE II is used to select a specific solution from an approximation set 

produced by an MOEA. 

Compared to its a priori counterpart, a posteriori preference articulation allows a better 

understanding of the application at hand as well as its objective space. This should 

ultimately assist the DM in making an informed and better decision. Nevertheless, a 

posteriori preference articulation requires the multiobjective optimiser to produce the 

entire Pareto optimal front. This can be computationally expensive and might introduce 

problems such as the conflict between the EMO requirements for solutions’ convergence 

and diversity (this is explored in Chapter 4) as well as the difficulty of visualising the 

objective space as the number of objectives increase. Moreover, providing the DM with a 

large amount of data to choose from can be very confusing and complicates the a posteriori 

decision making process. 

 

Progressive Preference Articulation 

In progressive preference articulation (PPA) schemes, the DM articulates his/her 

preferences progressively throughout the optimisation process. Despite their preference in 

the OR community over their a priori and a posteriori counterparts (Cohon and Marks 

1975), progressive preference articulation is the least used approach for articulating 

preferences in the EMO community. For this purpose, Chapter 5 of this study is entirely 

dedicated for studying, comparing and analysing some of the most potential PPA 

techniques with the aim of promoting research in this overlooked direction. Among other 

benefits, progressive preference articulation is a useful technique for reducing the 

computational effort required for converging to the whole global tradeoff surface. This is 

especially beneficial in high-dimensional search spaces when tackling evolutionary many-

objective optimisation problems. Moreover, deploying PPA techniques, the DM can 

modify his/her preferences at any time of the optimisation process and make use of any 

tradeoff or beneficial information (such as objectives’ relationships or goal attainments). 

Interested readers are referred to (Hwang 1979, Coello (1999), Coello (2000a), Fleming, 

Purshouse and Lygoe 2005, and Andersson 2000) for a comprehensive literature about 

MCDM. 

The first truly progressive preference articulation was introduced in 1998 in the context of 

MOGA (Fonseca and Fleming 1998). Earlier, in 1993 a PPA technique suggested by 

Fonseca and Fleming (1993) allowed the user to interactively articulate goal information 
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for the multiple objectives under optimisation. The goal information was then used to 

interactively modify the fitness assignment process to reflect the DM’s preferences based 

on the classical goal attainment method (Aouni and Kettani 2001). The PPA technique 

introduced by Fonseca and Fleming in 1993 was later extended in 1998 to include goal and 

priority information about the multiple objectives (Fonseca and Fleming 1998). The goal 

and priority information were fed into a transitive relational operator termed as the 

preferability operator to modify accordingly the fitness assignment process. More details 

concerning the preferability operator will be presented in Chapter 5. 

Other PPA techniques were reported in the literature and presented a lot of similarities 

with Fonseca and Fleming’s preferability operator. Examples of such PPA techniques 

include the very similar scheme (know as favour) proposed by Drechsler, Drechsler and 

Becker (2001) and the constrained-domination approach suggested by Deb, Pratap, 

Agarwal and Meyarivan (2002). The latter approach differed from the preferability 

operator by seeking to optimise the overall goal violation in terms of the objectives. The 

constrained-domination approach ensured more information to the optimiser but required 

the forced cohesion of the different objectives. In the framework of preferability schemes, 

(Tan, Khor, Lee and Sathikannan 2003) also suggested a method for articulating 

alternative preference scenarios for the optimisation problem at hand. The technique 

allowed the articulation of hard and soft preferences such as priorities and constraints using 

logical (“AND” - “OR”) connectives. 

Abbass (2004) suggested a generic interactive framework which enables the DM to refine 

the results achieved by a MOEA. This is achieved by determining bliss points (desired and 

ideal points) from the actual approximation set produced by a MOEA. The identified bliss 

points might be infeasible (mapping to infeasible regions of the decision variable space), 

however the task would consist of enhancing the quality of the actual approximation set by 

minimising its distance to the infeasible bliss points and converging to the best feasible 

bliss points.     

Despite their utility, progressive preference articulation schemes can be quite demanding 

in terms of the interactions required from the decision maker. In order to overcome this 

burden which can require in some scenarios the interaction of the DM at every generation 

of the optimisation process (Takagi 2001), some methods for simulating and automating 

the DM interactions were suggested in the literature. Fonseca and Fleming (1993) 

suggested the use of an automated DM such as expert systems. Later on, Todd and Sen 

(1999) used an artificial neural network to implement such automated DM by training the 

NN with exact data (decisions) occasionally collected from the DM at certain intervals of 

the process to model his/her preferences. 
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2.4. Summary 
 

In this chapter, a review of multiobjective optimisation methods was introduced. The 

classical approaches for solving multiobjective problems were described alongside side 

their limitations. Moreover, the benefits of deploying evolutionary algorithms to solve such 

problems were illustrated. The discipline of evolutionary computation was presented and 

the popularity of one of its major branches -evolutionary algorithms- in solving 

multiobjective optimisation was described.  The concept of Pareto dominance and its 

utility for multiobjective optimisation was presented. The three essential requirements for 

multiobjective optimisers were described. These are correspondingly the convergence of 

the approximation set towards the tradeoff surface (proximity), the diversity of the 

approximation set across the tradeoff surface, and the pertinence of approximation set to 

the decision maker. Evolutionary algorithms were then comprehensively reviewed, and 

their features for tackling each of the three requirements were illustrated. In the remainder 

of this thesis, a closer look into EMO and its three requirements is given and innovative, 

beneficial and “remedial” approaches for achieving these three requirements are presented. 
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Chapter 3 
 

Evolutionary Multiobjective Optimisation: 

Enhancing the Convergence Perspective 

 

3.1. Introduction 
 

As discussed in Chapter 1, real-world problems commonly require the simultaneous 

consideration of multiple, competing, and generally non-commensurable performance 

measures. The use of population based optimisation techniques, such as evolutionary 

algorithms, is a suitable approach for addressing such real-world optimisation problems 

(see Section 2.3). When solving a MOP, the approximation set produced by a MOEA is 

required to be well-spread across the objective space and as close as possible to the true 

Pareto front, presenting the decision maker with a well-distributed set of solutions within 

the region(s) of interest (ROI). Moreover, to be of practical use for tackling real-world 

applications, which can be very computationally expensive, a multiobjective optimisation 

algorithm must produce an approximation set with acceptable proximity and diversity 

within limited computational resource (most importantly, a fixed and limited budget of 

objective function evaluations). The time taken by an algorithm to perform a given number 

of search iterations for a particular problem is dependent upon the available computing 

power. Nevertheless, the efficiency of a MO optimiser can be determined by the quality of 

the results achieved within a fixed budget of objective function evaluations. The 

performance of a stochastic multiobjective optimisation algorithm may then be determined 

by the proximity and diversity of the approximation sets produced from a given number of 

iterations and objective function evaluations over multiple runs of the algorithm.  

 

In this Chapter, two essential requirements for multiobjective optimisers are addressed and 

approached from a new perspective:   

• The convergence (or proximity) of the solutions to a multiobjective problem 

towards the true Pareto front, and 

• The speed of convergence of such solutions towards the true Pareto front and 

hence the efficiency of multiobjective evolutionary algorithms. 
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As a result, innovative enhancements to the second generation and well established 

MOEAs are sought. Under-exploited and unaddressed aspects of the evolutionary 

multiobjective optimisation problems are investigated and implemented, with the aim of 

introducing a new generation of optimisers which are better suited and equipped for 

addressing well-known difficulties and issues that are most often encountered in the ever 

growing field of evolutionary multiobjective optimisation. 

 

In Section 3.2, the conceptual framework and the motivational points for the study 

presented in this Chapter are introduced. This is aimed at highlighting potentially 

beneficial areas of research which will be investigated in the following sections. Section 

3.2 also serves as a preliminary sketch or conceptual outline for a new generation of 

MOEAs which addresses the requirements of evolutionary multiobjective optimisers from 

a new perspective. In Section 3.3 an innovative convergence enhancement strategy is 

introduced and described in details. The different experimental frameworks adopted for the 

convergence acceleration strategy are presented alongside carefully chosen performance 

metrics. The results produced by the introduced strategy for the different optimisation 

problems investigated in this work are presented and contrasted with the results achieved 

by some of the most established second generation MOEAs. 

 

3.2. Framework and Motivation 
 

3.2.1. Enhancing Evolutionary Algorithms: Motivations 
 

Traditional evolutionary computation techniques usually consist of an explorative set of 

procedures operating in decision variable space. These explorative procedures are usually 

represented by the recombination and mutation operators. Starting from a random 

population of candidate solutions or from a previously known set of solutions in decision 

variable space, EAs calculate the corresponding objective function values, assign them 

fitness scores reflecting their utility in the application domain and bias the search towards 

high-potential areas of the space by forcing the survival of the fittest solutions (see Section 

2.2). In other words, EAs operate in decision space and perform decision space to objective 

space mapping but fail to exploit direct use of the objective space - this is a lost 

opportunity. As a result, despite their utility for solving MO problems, the use of EAs 

often result in a large number of objective function calculations which can be 

computationally expensive especially when the objective functions themselves are 

expensive to evaluate.  
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The stochastic nature of EAs’ explorative processes is a major asset and a fundamental 

reason for the successful reputation of these algorithms. Indeed, EAs’ stochastic nature 

addresses many of the shortcomings that alternative deterministic and more classical 

optimisation techniques are known to confront. Examples of such challenges and 

difficulties include the increase of dimensionality, multimodality –local optima 

entrapments- and complexity of the landscape of some optimisation problems. The lack of 

derivative information and knowledge about the landscape of the solution spaces in some 

scenarios, two indispensable requirements for the functionality of most deterministic 

classical techniques, are other examples of frequent difficulties that can be overcome by 

deploying stochastic EC strategies such as EAs.  

However, given the stochastic nature of its operators, an evolutionary algorithm offers no 

guarantee of finding optimal solutions within a single run or more. Through the variation 

operators operating in the decision variable space, new solutions are produced with the 

assumption that “good” parents are more likely to produce “good” offspring and hence 

should contribute more to the next generations. The addition of some straightforward 

determinism to such stochastic strategies is sought as a remedial measure which is believed 

to enhance the performance and the efficiency of EAs. This motivates further 

investigations and experimentations within a framework hybridizing EAs strength and 

structure with some innovative deterministic components; a framework commonly known 

as a ‘Hybrid EA’ or ‘Memetic Algorithm’ (see Section 2.2.9).  

3.2.2. Objectives 

 
The aim of the study presented in this Chapter is to incorporate the direct exploitation of 

the objective space as an active component of a MOEA. This is designed to assist the 

stochastic exploration process and guide the search efficiently towards goal values and 

regions of interests in the objective space in a more or less deterministic way. Ultimately, 

the hybridization of deterministic components which directly exploit and explore the 

objective space within the cycle of an EA should introduce several benefits to the 

optimisation process. The main expected benefits should include the acceleration of the 

convergence of the handled solutions towards the Pareto front of a MOP and the reduction 

of the computational effort of these optimisation techniques. More specifically, the 

reduction in the computational effort is sought in terms of the number of objective function 

evaluations, which is the main computational burden in most real-world applications. In 

the following Section, a strategy implementing the targeted conceptual evolutionary 

multiobjective optimiser described in Section 3.2.1 is introduced. 
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3.3. Obtaining Better and Faster Proximity   

3.3.1. Introduction 

 
In many application domains, calculating the true objective function may be 

computationally expensive. Given their generational, population-based approach, EAs 

require a significant number of objective function calculations to be performed. The use of 

approximated models using Neural Networks (NN), or other metamodelling techniques 

such as Kriging-based approximations, or response surface models (Farina 2002, El-

Beltagy, Nair and Keane 1999) provides low computational burden alternatives to full 

objective function evaluation (Adra et al 2005b, Nariman-Zadeh et al 2005). An overview 

of fitness approximation techniques used in EMO was given in Section 2.2.9. Moreover, a 

comprehensive survey about fitness approximation is presented in Jin (2005). Fitness 

inheritance (Sastry, Goldberg and Pelikan 2001, Chen et al 2002) is another type of 

approximation technique which belongs to the class of Evolutionary Approximations. 

Fitness inheritance, a specific approximation technique which can solely be used in 

evolutionary algorithms, is an approach where expensive objective function evaluations are 

reduced by replacing the fitness evaluation (or objective function evaluation) of certain 

individuals with the interpolation of the fitness values of their parent solutions. Study has 

highlighted that fitness inheritance should be limited to convex and continuous problems, 

and is not well suited for addressing complex real-world applications (Ducheyne, Baets 

and Wulf 2003).  

 

In this Section, a Convergence Acceleration Operator (CAO) is introduced, which maps 

from objective space to decision variable space (in the reverse direction to a meta-

modelling technique). This operator is meant to be a portable component that can be 

hybridized with any population-based stochastic optimisation algorithm, such as 

evolutionary algorithms. The portability of the CAO is assessed by hybridizing it with two 

widely used EAs, the Non-Dominated Sorting Genetic Algorithm (NSGA-II) (Deb et al 

2000) and the Strength Pareto Evolutionary Algorithm (SPEA2) (Zitzler, Laumanns and 

Thiele 2001). The purpose of the CAO is to enhance the performance of the host stochastic 

global optimisation technique in terms of the proximity of the approximation set for a 

given number of objective function calculations without impeding the active 

diversification mechanisms of these search strategies. In contrast to EAs’ failure to exploit 

the direct use of the objective space, the CAO features a direct search in objective space 

and then a prediction mechanism to map from objective space to decision space. In this 

work, neural networks are deployed for the prediction process from the objective space to 

the decision space. Nevertheless, other prediction processes, such as Kriging or response 
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surface models, can be equally used within the CAO and will be investigated in a future 

work.    

The idea of performing local search in the objective space and seeking to map a certain 

objective vector back to its corresponding decision vector was first introduced in Gaspar-

Cunha and Vieira (2004) and Gaspar-Cunha, Vieira and Fonseca (2004). These two papers 

were then extended in Gaspar-Cunha and Vieira (2005) where the suggested technique was 

additionally assessed on a real world application problem. In these papers, the authors 

proposed a method to accelerate the search of a MOEA by approximating the function that 

maps from the objective space to the decision space using NN techniques. More 

specifically, Gaspar-Cunha et al’s method, which is hybridised with the Reduced Pareto 

Set Genetic Algorithm (RPSGA) (Gaspar-Cunha and Covas 2002), used a multi-layer 

perceptron (MLP) approach (Bishop 1995) to map in the reverse direction (i.e. objective 

vectors as inputs and decision vectors as outputs). The trained MLP is then deployed to 

predict the approximate vectors of decision variables which should correspond to the 

objective vectors introduced by a local search around the non-dominated solutions arising 

from the previous generation. The local search suggested by Gaspar-Cunha et al attempts 

to improve the locally non-dominated solutions by minimising their objective values 

(normalised in the range [0, 1]) directly in the objective space. Each objective value is 

minimised by an absolute and fixed step size, h, whose optimal value for the experiments 

carried in Gaspar-Cunha and Vieira (2004) was found in the range [0.2, 0.3]. Gaspar-

Cunha et al tested their technique on a set of bi-objective test functions (Zitzler et al 2000) 

and reported an accelerated convergence on these test functions compared to the 

standalone RPSGA. Moreover, Gaspar-Cunha et al also contrasted the performance of 

their inverse NN technique with the performance of RPSGA coupled with a standard 

metamodelling technique (i.e. with a forward NN). The metamodelling technique coupled 

with RPSGA consisted of introducing a metamodel of the actual objective function used. 

This was achieved by training a NN with exact data during the first K generations of the 

optimisation, then replacing (or interchanging) the evaluation of the actual objective 

function with the trained NN for the remaining generations of the process. The comparison 

of the inverse NN technique and the metamodelling technique in Gaspar-Cunha and Vieira 

(2004) is an interesting aspect of their work which highlighted a better performance for the 

inverse NN approach. 

Adra et al (2005b) extended Gaspar-Cunha et al’s approach and applied it to an 8 objective 

problem of aircraft control system design. The objective was to investigate the utility of 

deploying direct local search in the objective space and inverse neural network predictions 

on a many objective optimisation problem. In their experiments, Adra et al (2005b) used 

the Multiobjective Genetic Algorithm (MOGA) (Fonseca and Fleming 1993) which 
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integrated Fonseca and Fleming’s (1998) preferability operator for incorporating DM’s 

preferences for search space reduction. A comparative study of some of the most reputed 

preference articulation techniques will be presented in Chapter 5. 

The local search suggested in Adra et al (2005b) differs from the local search used in 

Gaspar-Cunha and Vieira (2004) with respect to the step size of improvement h. Adra et al 

(2005b) observed that when using a fixed and absolute value for the step size, the 

effectiveness of the local search, and hence the effectiveness of the convergence 

acceleration strategy, decreases quickly as the search starts to converge. It is to be expected 

that, as the search progresses, the probability of introducing infeasible solutions residing in 

the infeasible regions of the objective space becomes higher when using a fixed step size 

of improvement. As a result, the practical usage and the efficiency of the convergence 

accelerator become restricted to the early iterations of a MOEA. Moreover, the use of an 

absolute step size for the local search requires the normalisation of most likely non-

commensurable objectives and limits the portability and the applicability of the 

convergence acceleration technique to other applications. 

In Adra et al (2005b), the step size, h, is an adaptive parameter which varies throughout the 

iterations of the host MOEA and whose value is uniquely defined for each objective value 

chosen to undertake the local search. Moreover, Adra et al (2005b) promoted the online 

detection (i.e. as the NN is trained) of the different relationships that the objectives might 

exhibit (harmony, conflict or independence) and the consideration of any such 

relationships when performing the local search in the objective space. The technique was 

also promoted as a potential progressive preference articulation technique which allows the 

direct manipulation of the objective vectors in an informed way reflecting the DM’s 

preferences and priorities (Adra et al 2005b). This work of Adra et al (2005b) has been 

further enhanced and is described below.  

3.3.2. Overview of the Convergence Acceleration Operator  

 
The CAO is a 2–step process, which is illustrated in Figure 3.1 When the CAO is 

launched, it starts by deterministically improving the best solutions achieved; these 

solutions are the elite solutions stored in the online archive of the host algorithm.  

This improvement takes place in objective space and produces an enhanced version of the 

archive. The CAO then uses a trained neural network mapping procedure to predict the 

corresponding decision vectors for the enhancements to the archive. A check of these new 

decision vectors is made, aimed at reflecting any out-of-bounds decision variables arising 

from the mapping back into their allowed domain. A correction step is then applied, 

whereby the true objective values corresponding to all of these new decision vectors are 
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calculated. This is performed in order to maintain the exact fidelity of the optimisation 

problem and the produced solutions, since, as stated by Michalewicz and Fogel (2000), a 

solution is only a solution with respect to the model used. The correction step of the CAO 

is another enhancement to the technique suggested in Gaspar-Cunha and Vieira (2004) and 

Gaspar-Cunha at al (2004). 

The approach suggested in Gaspar-Cunha and Vieira (2004) and Gaspar-Cunha et al 

(2004) did not attempt to check the feasibility of the introduced solutions or rectify any 

predictions inaccuracy that might be introduced by the NN. 

 

Figure 3.1: The Convergence Acceleration Operator in Context 

 

After the correction step, the enhanced and the original archive of solutions compete to 

populate the new archive for the next generation, which will represent the pool from which 

solutions are selected and recombined. The two components of the CAO are described in 

detail in the following sections. 

3.3.3. Local Improvement in Objective Space 

 
The CAO takes place after the recombination and mutation processes and operates on the 

elitist solutions which would normally propagate to the following generation (or get 

presented to the DM). The CAO is an auxiliary local improvement operator which does not 

replace the variation operators in EAs. The first CAO step is a deterministic local 

improvement procedure in the objective space. This is the component responsible for 

speeding up convergence and hence reducing computational effort by producing better 

results within a fixed budget of objective function evaluations. It achieves this by steering 

objective values obtained by the MOEA towards an improved Pareto front. The objective 
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space local improvement process is implemented in this work for any number, n, of 

objectives, and is illustrated in Figure 3.2 on a bi-objective problem (n=2) for simplicity.  

In general, non-boundary solutions in terms of any specific objective (solutions B, C and 

D in Figure 3.2) will be improved in terms of all the performance measures by steering 

their objective values into a region of improved objective function values. The new 

“improved” values for the objectives (of each non-boundary solution) are determined by 

linearly interpolating a new value for each objective, between its current value and the next 

best value(s) achieved for that objective within the population7. This is described by: 

)),(),(( EDDCDDD yyhyxxhxZZ −+−+=′   (3.1) 

where Z(x,y) represents a point in the bi-objective space, ZD’ is the “improved” objective 

value and h is the interpolation step factor. This process is annotated for solution D in 

Figure 3.2. Compared to solution D, solution C has the next best value in terms of 

objective 1 while solution E possesses the next best value in terms of objective 2. 

Boundary solutions in terms of a certain objective or axis of performance (solutions A and 

E in Figure 3.2) are improved in terms of the remaining objectives.  

 

Figure 3. 2: Deterministic improvement of the trade-off surface  

in objective space 

                                                 
7 The non-dominated solutions are improved in an objective wise-order, each time sorting 
the archive of locally non-dominated solutions in terms of a certain objective. 
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In other words, solution A will be improved in the “Objective 2” axis direction, thereby 

enhancing its overall quality by improving it in terms of objective 2, and solution D will be 

improved in the “Objective 1” axis direction, consequently improving its overall worth by 

enhancing it in terms of objective 1. The step size, h, is an application dependent parameter 

and should be carefully chosen; ideally it should depend on the stage of the optimisation, 

the decision maker’s preferences, the regions of interests and the proximity of the 

population to the expected Pareto front. A larger h value is recommended for early 

generations of the optimisation, with its value gradually decreasing. Moreover, since the 

decision vectors of the improved front of solutions are to be predicted by the NN (a 

process described in the following section), it is essential that the new introduced solutions 

in the objective space reside within the neural network’s reliable zone of prediction. Neural 

networks are very practical tools for regression problems and data fitting, but in common 

with other curve fitting and data modelling techniques, they are known to be unsuitable for 

extrapolation tasks. As a result, the step factor h should be chosen in a way that maximises 

the local improvement step in the objective space, while preventing the introduction of 

solutions which reside outside the neural network local region of training. In this study, the 

value of h is manipulated based on the rate of success of the CAO. The rate of success is 

measured by counting the number of “effective” solutions which are introduced by the 

CAO, corrected at the correction step, and successfully chosen to propagate to the 

following generation. The CAO rate of success decreases in one of two cases, which are 

linked to the large size of h:  

1- The CAO introduces solutions beyond the Pareto front or the feasible region, or  

2- The CAO introduces solutions outside the NN reliable region of prediction, and 

thus the NN is making extrapolation predictions. 

When the CAO rate of success decreases, the step factor h is decreased simultaneously (by 

a factor of 1.5). For the optimisation problems used in this study, the manipulation of the 

step factor h based on the CAO rate of success was deemed sufficient. However, an 

additional technique for detecting NN extrapolation was investigated and implemented as 

an optional function whose execution can be automated or controlled by a DM. The 

technique is based on the approach described in Nabney (2001) (p. 110-113) whereby the 

prevention of NN extrapolation is performed by deploying a novelty detection step which 

uses Gaussian Mixture Models (GMM). GMM are very flexible semi-parametric 

estimation methods widely used for density estimation, clustering and classification 

problems. GMM are composed of a number of Gaussian function components. The 

Gaussian functions within a GMM are linearly combined and used to express a certain 

probability density function (pdf). The number of components that compose a GMM can 

be freely manipulated, which makes these methods very flexible. Given the right number 
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of components, GMM can approximate any density function within a certain precision. In 

this study, GMM are efficiently8 used to model the unconditional probability density 

function (pdf) of each new introduced solution in the objective space and contrast its 

likelihood with the range of pdfs corresponding to the neural network’s training data 

(Nabney 2001 and Bishop 1995). If the pdf of a certain new solution is very different from, 

and does not overlap with any of the pdf values of the training data, the step size is reduced 

(by a factor of 1.5) as an attempt to avoid extrapolation. Kernel density estimation (also 

known as Parzen windows) can alternatively be used for detecting novelty and 

extrapolation (Leonard et al 1992), and hence manipulating the step factor h.  
 

3.3.4. Objective Space to Decision Space mapping 

 
The description of the mapping method in Gaspar-Cunha and Vieira (2005) is very brief 

and differs from the local mapping approach described in this section. The second 

component of the CAO consists of a neural network trained to map the new solutions thus 

generated in objective space by the first phase of the convergence accelerator back to the 

corresponding decision variable vectors. Neural networks (NN) are a powerful approach 

for modelling stochastic and noisy patterns of data in order to produce predicted values of 

unknown systems. The NN needs to be trained to achieve desirable predictions and to 

model complex functions as closely as possible.  The process of training the NN consists 

of providing it with samples of input-output data and manipulating weighting variables by 

adjusting their values and minimizing prediction errors. For more information about neural 

networks, the interested reader is directed to Bishop (1995). 

The second component of the CAO only aims to build a local model of the function which 

maps from the objective space to the decision space at a certain iteration of the 

optimisation process. This is achieved by training a NN, using exact objective vectors as 

inputs and their corresponding decision variable vectors as outputs. The training data is the 

exact data resulting from the objective function values derived within a single iteration of a 

MOEA such as NSGA-II or SPEA2. More specifically, at every iteration of the 

optimisation process (or alternatively, when the CAO is called if the CAO is interruptedly 

executed), a new local model is built based on the locally non-dominated solutions 

(objective vectors and corresponding decision vectors). The local model is then solely used 

within the same iteration to predict the decision variables of the new objective values 

introduced by the first component of the CAO which locally steers the local Pareto front 

towards an enhanced Pareto front.  

                                                 
8 Since the goal was to get an approximate model of the data density rather than fitting an exact 
model to the data, only 5 iterations of the algorithm optimising the GMM parameters were executed. 



Chapter 3. Enhancing the Convergence Perspective 

  

62

When training a NN, it is vital to ensure well-spread and problem defining data. 

Abundance of data is an essential point for achieving well-trained NN and high-fidelity 

models but can be a problem in some computationally expensive applications.  

Nevertheless, the CAO is designed for accelerating population-based optimisation 

strategies such as evolutionary algorithms, where data abundance is usually an essential 

requirement for the success of such techniques. If an application is very computationally 

expensive, the requirement for data abundance can be addressed by using a cheaper and 

acceptable meta-model which approximates the objective function. Alternatively, since the 

prediction process within the CAO is promoted as a concept rather than an exact method, 

other substitutes to neural networks, which overcome the requirement of data abundance, 

can be deployed as the core of the prediction process within the CAO. In the context of this 

study, the investigation will confine to the use of neural networks within the framework of 

the CAO due to their flexibility and good reputation for universal approximation given a 

sufficient number of hidden units and a suitable choice of parameters (Hornik et al 1989 

and Nabney 2001). 

In this work, a specific type of neural networks, the radial basis function (RBF) (Nabney 

2001 and Bishop 1995) (Figure 3.3), is used to build the local models of the local Pareto 

fronts and for predicting the decision variables of the solutions introduced by the local 

search (Section 3.3.3).  

 

Figure 3. 3: Radial Basis Function Neural Network 
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the decision space. MLPs are feedforward neural networks generally trained with the 

standard backpropagation algorithm (Bishop 1995). MLPs are widely used in the field of 

pattern classification and recognition. The use of MLPs within an acceleration operator 

such as the CAO is a component that works against the purpose of an accelerator. This is 

due to the fact that, training a MLP is an iterative process which can be time-consuming. In 

the neural network literature, the back-propagation algorithm is one of the most studied 

and used algorithm for training MLPs (Bishop 1995 and Rojas 1996). When MLPs are 

trained using the back-propagation learning algorithm (Bishop 1995), the output results of 

the MLP and the exact results are compared and an error value is calculated and fed back 

through the network. The parameters (weights) of the MLP hidden units are then adjusted 

and optimised using a non-linear optimiser, usually the gradient descent algorithm. Two 

major drawbacks of MLPs when trained with the standard9 back-propagation algorithm and 

used within a convergence accelerator. These drawbacks are the slow convergence and the 

susceptibility of getting stuck at local minima in terms of the error functions (and hence 

sub-optimal weights for the MLP units). It should be noted however that nowadays many 

alternatives and modifications to the back-propagation algorithm and the gradient descent 

optimiser are commonly used (Bishop 1995). The conjugate gradient descent, the 

Levenberg-Marquardt algorithm, Quasi-Newton methods and Delta-bar-Delta (Patterson 

1996) are examples of such alternatives and usually perform significantly better than the 

back-propagation algorithm. RBF neural networks, on the other hand, are two-layered NNs 

and well known to be practical alternatives to MLPs due to their much faster, two-stage, 

training process (Bishop 1995 and Nabney 2001). In RBF neural networks, the activation 

functions of the hidden layer consist of radial basis functions, most commonly a Gaussian, 

which replace the non-linear activation functions (sigmoidal) used in MLPs. Unlike MLP 

training process whereby the activation of the hidden units consists of non-linear 

computation of the scalar product of the input vectors and the weight vectors of the hidden 

neurons, the hidden neurons of a RBF network are activated by calculating a non-linear 

function of the distance between the input and the RBF centres. The RBF network 

mapping to the output layer is described in Equation 3.2, where x is an input data, k is the 

number of output units, M is the number of radial basis functions Ø and wkj are the output 

layer weights.  

∑
=

=
M

j
jkjk

xwxy
0

)()( φ
    (3.2) 

The input data is passed through the input layer then processed by the radial basis 

functions of the hidden layer. The outputs of the hidden layer units are then linearly 

                                                 
9 Using the gradient descent optimiser 



Chapter 3. Enhancing the Convergence Perspective 

  

64

combined and processed at the output layer of the NN. The linear mapping of the hidden 

layer’s values into the output layer of an RBF network is an advantageous feature 

compared to MLPs. This advantage is due to the RBF training process which consists of 

adjustments to the linear mapping from the hidden layer to the output layer. As a result, the 

manipulation of a linear error function in terms of the RBF weights makes it 

straightforward to efficiently use linear algebra techniques to find the global optima in the 

parameter space of the error function and hence the optimal values for the RBF weights. 

Hence, RBF neural networks do not suffer from the problem of getting stuck at local 

minima in the parameter space because of their quadratic error function whose global 

minima can be easily found. In other words, in contrast to the MLP the RBF does not have 

the problem of getting stuck at local minima in the parameter space (i.e., NN weights).  

The parameter estimates are guaranteed to correspond to the global minimum for a given 

RBF structure.  However, it should be noted that similar to the MLP, the choice of a RBF 

structure (number of units, the position and widths of the basis functions) remains a 

nonlinear optimisation problem10. As a result, using RBF NN makes the training process a 

bit easier in that the parameter estimates will be optimal. The considerably faster learning 

process that RBF neural networks enjoy compared to MLPs make them a suitable choice 

for deployment within the CAO. This would make it possible to initialise and train a 

different RBF to model a local model at every iteration the CAO is executed. The ability to 

map objective vectors to decision variables will make it possible to search directly in 

objective space for desired combinations of objective values or to devise points of 

attractions to guide the search.  

Two possible approaches to training the NN component of the CAO hybridized with a 

MOEA are proposed: online and offline training modes. In this study, the online training 

mode is further elaborated and investigated. However, the interested reader is directed to 

Adra et al (2007c) where the offline training mode is explored and investigated. 
 

Neural Network Training Modes 

• Online Training Mode:  

The online mode consists of concurrently training and validating the NN during the 

execution of the MOEA. In the online mode, and at every generation of a MOEA, the 

training data is sequentially collected and instantly used for training a NN and hence 

building a local model of the mapping function from the objective space to the decision 

space. Many strategies for controlling the use of the CAO in this mode might be devised. 

                                                 
10 In this study, an unsupervised training process (i.e. without performing a non-linear optimisation) 
is used to set the number of RBF units, widths and centres (this is described in the next section) 
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In this mode, the CAO is a performance accelerator that can be launched upon the request 

of the decision maker (DM) during the execution of the optimisation process.  

 

• Offline Training Mode:  

An alternative use of the NN is to train it with a collection of data resulting from previous 

evaluations of the objective functions arising from complete executions of a MOEA. The 

NN is then incorporated in subsequent runs of a MOEA when used in conjunction with the 

CAO. In this training mode, the NN is trained on a richer data set and is used for building a 

global model of the mapping function from the objective space to the decision space. 

However, in the offline training mode, training the NN with conflicting data (caused by 

one-to-many mapping from the objective space to the decision space) can frequently occur 

and decrease the NN prediction reliability. The offline training mode also restricts the 

usage of the CAO to specific applications and optimisation scenarios where the re-

execution of a MOEA is necessary. In such applications, the CAO, with its previously 

trained NN, is subsequently hybridized with any optimiser attempting to solve the same 

problem. Thus, the CAO will benefit successive executions of the same or other optimisers 

solving the same problem by speeding up the search and has the potential to offer other 

benefit.  

3.3.5. CAO Summary  

 
Figure 3.4 illustrates the actions of the hybridised MOEA which includes the CAO.  

Trajectories 2-5 describe the specific actions of the CAO. 
 

• Trajectory 1: the mapping between a decision variables vector realised by a MOEA 

and its corresponding computed objective values vector.  

• Trajectory 2: the resulting objective vector – a member of the approximation set at 

generation n - is improved in the objective space. 

• Trajectory 3: a prediction of the decision variables vector corresponding to the 

improved objective vector is made using the neural network trained with the exact data 

resulting from earlier evaluations of objective functions –at the same generation n- 

during the MOEA search. 

• Trajectory 4: any invalid decision variable vector introduced by the NN mapping is 

rectified by reflecting out-of-bounds values of the produced decision variables to their 

nearest values in their domain of definition. 

• Trajectory 5: finally, the exact objective values vector for the proposed decision 

variables vector is calculated in the normal way. These candidate solutions will then 
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compete for archive update and insertion with the best solutions currently stored in the 

online archive.  

 

Figure 3.4: CAO steps used in generating a single candidate solution 

3.3.6. Experimental Framework 

In this section the different experiments investigated for testing the CAO are introduced. 

The experiments are divided into 2 different categories reflecting the dimensionality of the 

optimisation problem in the objective space. The two categories are: the bi-objective 

optimisation problems and the many-objective optimisation problems. Note, that without 

any loss of generality, all the optimisation problems used in this study consist of 

minimization problems. For each of the two categories considered, a description of the 

optimisation problems deployed will be given. Suitable and reliable performance metrics 

are also presented for each optimisation problem. Algorithmic illustrations of the CAO-

coupled MOEAs used in this study are then described alongside the parametrical 

configurations of the experiments. The different MOEAs investigated in this work are 

benchmarked in a way which is similar to the approach used in Bosman and Thierens 

(2003). In other words, the number of objective function evaluations is fixed beforehand 

and the best performances over multiple runs of the MOEAs are determined and compared. 

As a result, a MOEA “A” is deemed more competent than another MOEA “B” if its 

average performance over multiple runs is superior to the performance of B. This approach 

of benchmarking MOEAs is more efficient than the benchmarking approach where 

resources are determined for achieving the optimal results, known a priori, for a certain 

optimisation problem. Bosman and Thierens (2003) state that this way of benchmarking 
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“represents a more practical situation, since we usually do not assume that an unlimited 

number of function evaluations is available”.  
 

Bi-Objective Optimisation Scenarios 
 

In this study a well-established set of optimisation problems is first investigated and used 

to test the performance of the introduced convergence accelerator. These optimisation 

problems represent a subset of test functions that belong to a test suite of bi-objective 

problems presented in Zitzler, Deb and Thiele (2000), and which will be referred to as the 

ZDT test functions.  

 

The ZDT suite is comprised of six equations, each one of them presenting a specific 

characteristic and feature that generally cause difficulties to major evolutionary 

optimisation strategies.  

Minimize F (x) = (f1 (x1), f2(x)) 

Subject to f2(x) = g(x2,…, xm) h(f1 (x1), g(x2,…, xm)) 

Where x = (x1,…, xm) 

(3.2) 

 

Test function 1: 

Convex Pareto front formed with g(x) =1, m = 30 and xi  ∈[0,1] 

f1 (x1): g(x2,…, xm): h (f1, g): 

1x  ∑
=

−+
m

i

i mx
2

)1/(91  gf /1 1−  

Test function 3: 

Discrete Pareto front formed with g(x) =1, m = 30 and xi  ∈[0,1] 

f1 (x1): g(x2,…, xm): h (f1, g): 

1x  ∑
=

−+
m

i

i mx
2

)1/(91  )10sin()/(/1 1

2

11 fgfgf π−−  

Test function 6: 

Non uniform distribution across a non convex Pareto front formed with g(x) =1, m 

= 10 and xi  ∈[0,1] 

f1 (x1): g(x2,…, xm): h (f1, g): 

)6(sin1 1
64 1 xe

x π−−  4
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2
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(3.3) 
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(3.5) 

 

Deb (1999b) has recognized numerous features that are most likely to cause difficulties 

and present challenges to multiobjective EAs in term of their ability to converge towards 

the Pareto-optimal front while conserving a well-spread distribution of solutions. Isolated 
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optima, deception and multimodality are well known challenges tackled by evolutionary 

algorithms when converging towards Pareto optimal fronts. On the other hand, features 

like convexity, non-convexity, discreteness and non-uniformity are other well known 

difficulties that prevent evolutionary algorithms from achieving a good distribution of 

solutions and exploring “difficult to reach” regions of the search space. The ZDT test suite 

encapsulates these difficulties. Each of the ZDT problems consists of a minimisation 

problem of two competing objectives and comprise 3 distinct functions f1, g and h 

presented in Equation 3.2, where f1 is a function of the first decision variable x1 and g is a 

function of the remaining m-1 decision variables. The bi-objective test functions used to 

examine the effect of the introduced CAO are three of the most challenging problems, the 

ZDT1 (convex test function), the ZDT3 (discontinuous test function) and the ZDT6 (non-

uniform test function) presented in Equations 3.3, 3.4 and 3.5. 

 

Many Objective Optimisation Scenarios 
 
Test Functions  
 

Studies have shown that conclusions drawn from bi-objective optimisation frameworks 

cannot be generalized to the many-objective optimisation frameworks with more than 3 

competing objectives (Purshouse 2004). In order to rigorously investigate the effect of the 

convergence acceleration operator introduced, deploying optimisation scenarios with more 

than 2 objectives and various objective relationships were investigated. Hence, 3- 

objective, 5-objective and 8-objective versions of DTLZ2, a real-parameter scalable test 

function introduced in Deb et al (2002) to test the effectiveness of MOEAs in dealing with 

increasing number of objectives, were used. DTLZ2 is defined in Equation 3.6.  

In Equation 3.6, M presents the number of objectives, n = M +K−1 is the number of 

decision variables, and K is a “difficulty parameter” (K = 10 in this study). DTLZ2 (M) 

denotes an M-objective instance of DTLZ2. DTLZ2 possesses a continuous and non-

convex global Pareto front and comprises two types of decision variables responsible for 

controlling the solutions convergence towards the global Pareto front and the solutions 

distribution in the objective space respectively. The first m-1 decision variables (x1,…xm-1) 

control the proximity of the solutions to the true Pareto front via a k-dimensional quadratic 

bowl, g, with global minimum xm,…,n = 0.5. The decision variables (xm,…xn) are 

responsible for controlling the diversity of the solutions and their location on the positive 

quadrant of the unit sphere. 

The scalable DTLZ2 test function belongs to the DTLZ test suite which covers many 

problem characteristics, such as discontinuity and multimodality. DTLZ2 has been 

previously demonstrated in Purshouse (2003b) as a challenge for MOEAs especially as the 
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number of objectives increases. Since the CAO does not require any assumptions about the 

nature of the optimisation problem, the DTLZ2 was deemed sufficient to test the 

performance of the CAO on optimisation problems with an increasing number of 

objectives. 
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Real-world application: Aircraft Control System Design  
 
A real world engineering optimisation problem was used to investigate the utility of the 

CAO. The problem consisted of an 8-objective optimisation problem of the classical 

control system design of an aircraft. The 8-objective optimisation problem encapsulated 

different pair-wise objective relationships and was previously deployed in a recent study to 

demonstrate the utility of progressive preference articulation techniques (Fleming, 

Purshouse and Lygoe 2005). The importance, standardization, and abundant number of 

criteria to be optimised included in this classical problem were the main reasons for 

choosing this real world application as a benchmark for testing the proposed CAO-hybrid 

MOEAs. In this section a simplified illustration of an aircraft dynamical model is shown 

and a common understanding of the multiobjective optimisation problem is illustrated.  

Figure 3.5 illustrates the aircraft body in 3D Cartesian space. The motion of an aircraft in 

the air is described in terms of 3 main axes: the longitudinal, or Roll, axis, the lateral, or 

Pitch, axis and the vertical, or Yaw, axis.  During its motion, the aircraft makes a 

combination of changes in both angles and rates of angular velocities; therefore its 

dynamical model can be represented by an equation combining the main objectives 

involved in the motion of the aircraft. This equation is highly non-linear across the 

operating envelope of the aircraft, but it can be linearized for a small deviation around the 

equilibrium trajectory. 

A simplified dynamical model of an aircraft motion can be represented by a fourth order 

linear equation (Tabak, Schy, Giesy and Johnson 1979). This is presented in Appendix A. 
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In the context of this study, 8 essential objectives constituted the basis of the optimisation 

process. The actual dynamical model represents additional characteristics, but a simplified 

model describing the major issues in controlling aircraft stability is adopted in this work. 

Figure 3.5: Three main axes of the body of an Aircraft (source: www.grc.nasa.gov) 

The 8 objectives to be minimised consisted of the following:  

1. The control effort (sum of squares of gain vector).  

2. The spiral root λ8 

3. The damping in the roll root λR 

4. The dutch-roll damping ζd  

5. The dutch-roll frequency ωd. 

6. The bank angle at 1.0 seconds ( )1( sφ ) 

7. The bank angle at 2.8 seconds ( )8.2( sφ ) 

8. The sideslip deviation (β).  

For further details about the aircraft dynamic model and the variables mentioned the 

interested reader is referred to Blakelock (1995) and Etkin (1972). 

 

 

CAO-hybrid MOEAs 
 

The elitist Non-dominated Sorting Genetic Algorithm NSGA-II (Deb et al 2000) and the 

Strength Pareto Evolutionary Algorithm SPEA2 (Zitzler, Laumanns and Thiele 2001), two 

well-established MOEAs and highly cited second generation optimisers in the EMO 

community, were chosen as the comparison benchmark optimisers for the problems used in 

this study. Each was also hybridised - NSGA-II/CAO, SPEA2/CAO - with the introduction 

The characteristic 
roots of the matrix 
(A+BK) presented in 
Appendix A 

The required bank angle 
for the fighter aircraft 
(According to the 

military  

Specifications 1969) 
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of the CAO into their cycles to test its effect. Pseudocode descriptions of SPEA2 and 

NSGA-II are given in Figures 3.6 and 3.7 respectively. In Figures 3.8 and 3.9, the 

hybridisation interface of the CAO into SPEA2 and NSGA-II is illustrated within the 

pseudocode descriptions of the hybrid versions of the two optimisers: SPEA2/CAO and 

NSGA-II/CAO. 
 

Optimiser configurations used in the experiments involving these 4 optimisers –NSGA-II, 

SPEA2, NSGA-II/CAO and SPEA2/CAO are given in Table 3.1. In this study, the CAO 

was operating continuously from the 1st to the 50th (last) generation. At every generation, 

an RBF neural network is trained then used within the CAO for local improvement and 

predictions. Training the RBF NN with local and limited data and using it as a local model 

at a specific generation can help overcome the problem of training the NN with conflicting 

data resulting from possible one-to-many mappings from objective space to the decision 

space. 

     -Initialize Population  

     -Generate initial random population P0 – size Nind and an initial Archive A0     

     -Evaluate objective values 

     -Calculate fitness values of individuals in P0 and make A0 = P0 

     For i=1 to Gen 

-Copy all non-dominated individuals in Pi-1 and Ai-1 to Ai. 

If size of Ai  > Nind then reduce Ai  (clustering and truncation operators) 

Else fill Ai with dominated individuals in Pi-1 and Ai-1 

Generate new population Pi from Ai – size Nind 

-Binary tournament selection 
-Recombination  
-Mutation 
-Evaluate objective values for the offspring population Pi 

-Calculate fitness values of individuals in Pi and Ai based on the 
-objective vectors of Pi and Ai combined 

    End loop 

Figure 3. 6: SPEA2 Pseudocode 

As a result, and due to their faster training processes compared to MLPs11, using RBF NNs 

is more beneficial for deployment within a convergence accelerator for MOEAs. On the 

other hand, training a MLP with the standard back-propagation algorithm, requires much 

more time and effort and makes it impractical to initialize a new NN within the CAO, train 

it and use it as a local model at each generation of a MOEA. A comparative study 

assessing the performance of RBF NN with other types of neural networks (e.g. MLP with 

                                                 
11 When trained with the standard back-propagation algorithm 
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fast training algorithms) when coupled with the CAO is an interesting task that will be 

investigated in a future work. Because of the CAO correction step, the number of objective 

function evaluations per generation in NSGA-II/CAO and SPEA2/CAO is twice the 

number of objective function evaluations per generation in SPEA2 and NSGA-II. 

-Initialize Population and Generate random population P– size Nind 

-Evaluate objective values  

For i=1 to Gen 

-Assign rank based on Pareto Dominance using non-dominated sorting strategy 

-Determine crowding distance between points on each front of solutions (same rank) 

-Generate offspring population Q – size Nind 

-Binary tournament selection 
-Recombination  
-Mutation 
-Evaluate objective values for the offspring population Q 

 
-Combine parent population P and offspring Population Q – size: 2*Nind 

-Assign rank based on Pareto Dominance using non-dominated sorting strategy 

-Determine crowding distance between points on each front of solutions (same rank) 

-Select Nind solutions to propagate to the next generation (1st
: elitist -biased towards 

lower ranks- 2
nd

: crowding distance - bias less crowded solutions) 

End loop 

Figure 3. 7: NSGA-II Pseudocode 
 

In order to compare the algorithms for the same prefixed number of objective function 

evaluations (10000 evaluations), the CAO-coupled MOEAs were executed for 50 

generations per execution, while NSGA-II and SPEA2 were executed for 100 generations. 

The larger level of exploration and global search afforded NSGA-II and SPEA2 can be 

seen as an advantage in their favour but constitutes a considerable challenge for assessing 

the utility of the CAO. The configuration of the optimisers presented in Table 3.1 is a 

standard configuration usually used in the EMO community when using NSGA-II, SPEA2 

or other MOEAs for optimising most of the problems previously presented. The major 

difference was the number of generations used in this study for the CAO-coupled MOEAs, 

which was relatively smaller than the standard number of generations –around 150- 

usually used in comparative studies, such as the pioneering study by Zitzler, Deb and 

Thiele (2000). This choice of configuration was intended to study the effect of the 

convergence acceleration and any benefits that might be introduced by the CAO. 

Concatenation of real number decision variables was the convenient choice for encoding 

the problems under investigation. Due to the stochastic nature of the evolutionary 
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strategies, a well-based judgment concerning the performance of a specific algorithm 

cannot be stated unless the whole optimisation process is repeated a number of times. In 

the case of this work, each algorithm was subjected to 10 executions, each running for 100 

generations (for SPEA2 and NSGA-II) and 50 generations (for the CAO-coupled 

MOEAs). 

-Initialize Population 

-Generate initial random population P0 of size Nind and an initial Archive A0 

-Evaluate objective values 

-Calculate fitness values of individuals in P0 and make A0 = P0 

For i=1 to Gen 

     -Copy all non-dominated individuals in Pi-1 and Ai-1 to Ai. 

     If size of Ai > Nind then reduce Ai (clustering and truncation operators) 

     Else fill Ai with dominated individuals in Pi-1 and Ai-1 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

    -Generate new population Pi from Ai – size Nind 
    -Binary tournament selection 
    -Recombination  
    -Mutation 
    -Evaluate objective values for the offspring population Pi 

    -Calculate fitness values of individuals in Pi and Ai based on the 
…-objective vectors of Pi and Ai combined 

End loop 

Figure 3. 8: SPEA2/CAO Pseudocode 

Moreover, the parameters of the RBF networks for each optimisation problem solved are 

investigated within a set of initial experiments and are set to the best parameters achieved. 

One of the drawbacks of NNs is the lack of standardization in choosing the number of 

Apply CAO  
– Component: Objective Space local improvement - on Ai 

– Component: Objective Space to Decision Space Predictions 

– Component: Correction Step 

– Update Ai 

        

                                   OR (Alternative Usage) 

 

If CAO is executed by the DM 

    Apply CAO  
– Component: Objective Space local improvement - on Ai 

– Component: Objective Space to Decision Space Predictions 

– Component: Correction Step 

– Update Ai 

End 

Apply CAO - Component: Artificial Neural Network Training  

    -Initialize an RBF NN and train it with Ai  

    -Input: Objective Vectors of Ai  – Output: Decision Vectors of Ai 
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hidden layers and hidden neurons per layer, which constitutes the architecture of a NN. It 

is common practice to choose the NN architecture based on previous practise and expertise 

or based on trial-and-error experiments. 

-Initialize Population 

-Generate random population P0– size Nind 

-Evaluate objective values  

For i=1 to Gen 

-Assign rank to Pi-1 (non-dominated sorting strategy) 

-Determine crowding distance between points on each front of solutions in Pi-1  

-Generate offspring population Q – size Nind 
           -Binary tournament selection 
           -Recombination  
           -Mutation 
           -Evaluate objective values for the offspring population Q 
 

-Combine parent population Pi-1 and offspring Population Q – size: 2*Nind 

-Assign rank based on Pareto Dominance using non-dominated sorting strategy 

-Determine crowding distance between points on each front of solutions (same rank) 

-Select Nind solutions to form Pi (1
st
: elitist -biased towards lower ranks- 2

nd
: 

crowding distance - bias less crowded solutions) 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

End loop 

Figure 3.9: NSGA-II/CAO Pseudocode 

The training of the RBF NN is a two-stage process. The first stage consists of setting the 

parameters (centres and widths) of the radial functions (Gaussian functions) so that the 

network models the unconditional density of the training data. In the context of the CAO, 

Apply CAO - Component: Artificial Neural Network Training 

    -Initialize an RBF NN and train it with Pi  

    -Input: Objective Vectors of Pi  – Output: Decision Vectors of Pi 

Apply CAO  
– Component: Objective Space local improvement - on Pi 

– Component: Objective Space to Decision Space Predictions 

– Component: Correction Step 

– Update Pi 

 
                                   OR (Alternative Usage) 

 

If CAO is executed by the DM 

    Apply CAO  
– Component: Objective Space local improvement - on Pi 

– Component: Objective Space to Decision Space Predictions 

– Component: Correction Step 

– Update Pi 

End 
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the training data consists of the elite population of candidate solutions at a certain 

generation of the MOEA. As stated by Nabney (2001) (p. 199): “One of the main 

advantages of RBF networks, as compared to MLP, is that it is possible to choose good 

(though possibly not optimal) parameters for the hidden units without having to perform a 

full non-linear optimisation of all the network parameters”. 

Table 3. 1: Optimiser configurations 

Optimiser Configuration 

Size of Population 100 

Crossover operator 
Simulated Binary Crossover (SBX) (Deb and Agrawal 1995) 

Probability: 0.8 

Mutation Operator 
Polynomial Mutation 

Probability: 1/(number of Decision Variables) 

Number of generations 

NSGA-II: 100 
NSGA-II/CAO: 50 

 

SPEA2: 100 
SPEA2/CAO: 50 

Number of Runs 10 

Starting Population 
Same Random Population 

(Different at each run) 
 

In this work, 80 percent of the population of candidate solutions (objective vectors) are 

chosen at random and set as the centres of the RBF basis functions. The widths of the 

radial basis functions which compose the units of the RBF network, are an application 

dependent design choice, and should be chosen in way which allows sufficient overlap 

between the units.  

Table 3. 2 Neural Network and Step Size (h) Configuration 

RBF Neural Network 

ZDT1- ZDT3-ZDT6 DTLZ2 (3) – (8) – (12) 

No of Neurons = 80 

RBF Widths = 1 

Step size h = 1.5 

No of Neurons = 80 

RBF Widths = 5 

Step size h = 0.05 
 

In the context of this work, fixed widths values were chosen for each problem based on 

trial-and-error experiments and set to the values presented in Table 3.2. Alternatively, the 

values of the RBF widths can be optimised using special algorithms or informingly set by 

clustering, or calculating the average distances between, the training data. However, it 

should be noted that this latter approach for training the parameters of a RBF NN has the 

same shortcomings as the back-propagation algorithm when used with MLPs and does not 

solve the problem of getting stuck at a local optima of the error function. The second stage 

of the training of the RBF network consists of finding the weights of the output layer by 
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efficiently using linear algebra12 to solve a quadratic error function. In Table 3.2, the 

number of neurons used for the RBF neural networks and the initial values used for the 

step size h are illustrated for each of optimisation problem tackled. The number of neurons 

and the initial step size for each optimisation problem were determined based on trial-and-

error and after experimenting with a range of different values for each of the two 

parameters. 

 

Performance Metrics 
 
In Zitzler et al (2003) it was shown that there is no finite combination of unary metrics 

which can determine whether an approximation set ‘A’ outperforms another approximation 

set ‘B’. Zitzler et al (2003) also showed that binary indicators which compare the quality 

of one approximation set with another in terms of a certain criterion are suitable metrics for 

concluding that an approximation set is better than another in terms of the inspected 

criterion. The effectiveness of the CAO when tackling the bi-objective test functions 

(ZDT1, ZDT2 and ZDT3), the DTLZ test functions with 3, 8 and 12 objectives and the 8-

objective real world optimisation problem of aircraft control system design is assessed by 

using two well-established binary metrics which simultaneously consider the convergence 

and the diversity requirements:  
 

• The dominated distance metric (DD-Metric), which has its roots in Zitzler (1999), 

computes the dominated distance between two sets of objective vectors in the objective 

space. More closely, the DD-metric calculates the difference of dominated distances 

between two approximation sets produced by MOEAs ‘A’ and ‘B’ in the objective 

space. The dominated distance between an approximation set ‘A’ and an 

approximation set ‘B’ (ddAB) is the sum of Euclidean distances between each solution 

Ai in ‘A’ and the closest solution Bi which belongs to the subset of ‘B’ that dominates 

Ai. The dominated distances ddAB and ddBA are calculated respectively, and their 

difference forms the value of DD-Metric (A, B). 
 

• The coverage metric (C-metric) of Zitzler (1999), which calculates the percentage of 

solutions in a certain approximation set that are dominated or equal to any solution in 

another competing approximation set. 

 

Moreover, the hypervolume metric (Zitzler 1999) is used to analyze the performance of the 

optimisers and their CAO-hybridized versions on the bi-objective functions. The values of 

the hypervolume metric are plotted against the total time (s) spent at each of the 10 

executions of the MOEAs to illustrate their convergence extent versus their efficiency. 

                                                 
12 The weights of the output layer are efficiently optimised by calculating the pseudo-inverse of the 
matrix of hidden unit activations. 
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This approach was previously adopted for the bi-objective test functions in Gaspar-Cunha 

and Vieira (2004) within a different benchmarking approach which assumes infinite 

number of objective function evaluations. 

The hypervolume metric, also know as the S-metric or the Lebesgue integral, is a high 

quality unary metric which illustrates the relative quality of an approximation set in terms 

of both desired criteria –convergence and diversity- by measuring the amount of objective 

space that the approximation set dominates. Unlike other metrics requiring some prior 

knowledge about the Pareto front or the targeted tradeoff surface, the computation of the 

hypervolume metric requires the proposal of an anti-ideal solution to act as a reference 

point. The values of the hypervolume metric can than be normalised in terms of the 

hypervolume measure of the ideal solution. In Figure 3.10, the hypervolume metric is 

illustrated on a bi-objective optimisation problem for visualisation convenience. 

 

Figure 3. 10 Hypervolume Metric (Minimisation problem assumed) 

 

The hypervolume metric was not deployed as a performance metric on the many-objective 

optimisation problems because of its well-known limitation presented by the metric’s 

computational complexity which is exponential in the number of objectives (Knowles 

2002). 

3.3.7. Results 
 

The performance and utility of the CAO is investigated in this section. The effect of the 

introduced operator is examined by deploying the specific performance metrics presented 

in the previous section and comparing the results achieved by NSGA-II and SPEA2 with 

the results achieved by their hybridised versions, NSGA-II/CAO and SPEA2/CAO. 

Moreover, a modified version of the CAO is also implemented for comparison reasons. It 
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is similar to the approach described by Gaspar-Cunha and Vieira (2004) and uses a MLP 

NN to replace the RBF NN. The modified version of the CAO will be termed as CAO-

MLP while the promoted acceleration technique will be termed as CAO-RBF or simply 

CAO. The MLP configurations used when optimising ZDT1, ZDT2 and ZDT3 were based 

on trial-and-error and were set to the values used by Gaspar-Cunha and Vieira (2005). The 

number of hidden neurons and the learning rate of the MLP are (10, 0.2) for ZDT1, (20, 

0.3) for ZDT3 and (10, 0.2) for ZDT6. At every generation of the MOEAs, 50 iterations of 

the standard backpropagation algorithm (Bishop 1995), with a gradient descent 

optimisation process, is executed for training the MLP neural network and calculating its 

weights values. The number of hidden neurons and the learning rate of the MLP used with 

DTLZ2 (3), (8) and (12) are respectively (20, 0.3), (30, 0.3) and (40, 0.3). The same initial 

values used for the step size h in the CAO-RBF are used with the CAO-MLP. 

 

Bi-objective Test Functions: Results 
 
In Figure 3.11, the values achieved for the S-metric at each of the 10 executions of NSGA-

II, NSGA-II/CAO-RBF and NSGA-II/CAO-MLP are illustrated. The three MOEAs were 

optimising the convex test function ZDT1. The S-metric values achieved at each execution 

of the algorithms are plotted against the total time spent by each algorithm at the 

designated execution. The reference point used for calculating the S-metric consisted of the 

point whose coordinates corresponded to the worst values achieved for each objective by 

the algorithms combined and within 10 executions.  

From Figure 3.11 it can be deduced that NSGA-II/CAO-RBF was consistently, in 9 out of 

10 executions, achieving larger values for the S-metric compared to the S-metric values 

achieved by NSGA-II. Within just 50 generations per execution and a fixed budget of 

objective function evaluations, the S-metric values achieved by NSGA-II/CAO-RBF were 

closer to the solid red line which represents the S-metric value of the true Pareto front. 

Moreover, it was observed that, despite optimising a straightforward and computationally 

cheap problem (ZDT1), the time spent by NSGA-II/CAO-RBF at each of the 10 

executions was comparable to the time spent by NSGA-II. This observation indicates that 

the CAO-RBF was improving the results achieved by NSGA-II for very little additional 

cost. Thus the use of CAO-RBF is practical for addressing a wide variety of problems and 

not just restricted to computationally expensive optimisation problems. On the other hand, 

NSGA-II/CAO-MLP requires much more time (5 times longer) per execution while 

presenting some improved results and, at few executions, some remarkable and near 

optimal values for the S-metric. 
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Figure 3. 11: S-metric Values achieved by NSGA-II, NSGA-II/CAO-RBF and NSGA-

II/CAO-MLP on ZDT1 at each of the 10 executions 

 

A more consistent behaviour for NSGA-II/CAO-MLP can be achieved by optimising the 

efficiency of the MLP and training it within more iterations (epochs) or using complex 

training algorithms. An improved behaviour, however, can only be achieved at the expense 

of increasing the computational complexity of the algorithm. Such tradeoff might be 

impractical and unacceptable within the context of straightforward optimisation problems 

such as the ZDTs but desirable when dealing with computationally expensive problems. 

Nevertheless, from Figure 3.11 it was clear that on a straightforward and computationally 

cheap problem such as ZDT1, and within the same budget of objective function 

evaluations, NSGA-II/CAO-RBF was accelerating the convergence of NSGA-II without 

requiring any significant increase in the computational efforts. 
 

The S-metric values achieved by NSGA-II, NSGA-II/CAO-RBF and NSGA-II/CAO-MLP 

for the discontinuous and the non-uniform test functions ZDT3 and ZDT6 are illustrated in 

Figure 3.14 and 3.17 and similar results are observed. The same observations which 

highlighted the utility of the CAO (with a MLP or RBF NN in particular) on ZDT1, are 

observed for ZDT3 and ZDT6. In Figure 3.12, the C-Metric values achieved by NSGA-II 

and NSGA-II/CAO-RBF are illustrated. For 7 out of 10 executions, the results produced by 

NSGA-II/CAO-RBF were achieving 100% coverage of the results achieved by NSGA-II. 

The best coverage achieved by NSGA-II consisted of 21% coverage of the results 

produced by NSGA-II/CAO-RBF. This was achieved at the 10th execution. Nevertheless, 
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NSGA-II/CAO-RBF achieved 38% coverage of NSGA-II results at the same execution. 

The remarkably higher coverage achieved by NSGA-II/CAO-RBF (Figure 3.12) reflected 

a positive contribution by the CAO-RBF. 
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Figure 3. 12 C-Metric Values achieved by NSGA-II and NSGA-II/CAO-RBF on 

ZDT1 at each of the 10 executions 
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Figure 3.13 DD-Metric Values achieved by NSGA-II, NSGA-II/CAO-RBF and 

NSGA-II/CAO-MLP on ZDT1 at each of the 10 executions 
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Similarly, the C-metric values achieved by NSGA-II and NSGA-II/CAO-RBF for the 

discontinuous test function ZDT3 and the non-uniform test function ZDT6 are illustrated 

in Figures 3.15 and 3.18. The same observations made for ZDT1 concerning the C-metric 

are again observed for ZDT3 and ZDT6. Moreover, in Appendix B, the C-metric values 

achieved when comparing the results produced by NSGA-II/CAO-RBF and NSGA-

II/CAO-MLP are presented for the convex, discontinuous and non-uniform test functions 

(ZDT1, 2 and 3). For 7 out of 10 executions, NSGA-II/CAO-RBF was covering and 

outperforming the results produced by NSGA-II/CAO-MLP when the convex test function 

was optimised. NSGA-II/CAO-MLP, in its turn, outperformed NSGA-II/CAO-RBF on 3 

different occasions, which illustrates some competition between the two CAO approaches. 

Nonetheless, within limited time and resources, the competition between CAO-RBF and 

CAO-MLP tends to decrease, highlighting the efficiency of CAO-RBF.  
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Figure 3. 14: S-metric values achieved by NSGA-II, NSGA-II/CAO-RBF and NSGA-

II/CAO-MLP on ZDT3 at each of the 10 executions 
 

 

The competitiveness between CAO-RBF and CAO-MLP seemed to increase when ZDT3 

and ZDT6 were optimised with some evidence which favours CAO-RBF in terms of its 

consistency, robustness and lower computational time. In Figure 3.13, the dominated 

distance metric (DD-Metric) is computed for ZDT1 and its results are shown for each run 

of the algorithms. Similar to the C-metric, the DD-metric is a binary metric that highlights 

whether an approximation set resulting from an algorithm A is better than another 

approximation set resulting from an algorithm B. A negative DD-metric value denotes that 
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the first input of the metric (e.g. Algorithm A in DD-Metric (A, B)) is better than and 

dominates most or part of its second input (e.g. Algorithm B)13. From the DD-metric 

results presented in Figure 3.13, it can be observed that NSGA-II/CAO-RBF was 

outperforming NSGA-II in terms of the DD-metric for all 10 executions of the algorithms. 

This is highlighted by the green line joining the negative DD-metric values achieved at 

each execution. On the other hand, when the DD-metric is computed for NSGA-II/CAO-

MLP and NSGA-II, NSGA-II/CAO-MLP outperformed NSGA-II in 7 out of 10 

executions. 
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Figure 3. 15 C-Metric Values achieved by NSGA-II and NSGA-II/CAO-RBF on 

ZDT3 at each of the 10 executions 
 

This is highlighted by the red line in Figure 3.13. Finally, the DD-metric of NSGA-

II/CAO-RBF and NSGA-II/CAO-MLP is computed. The blue line in Figure 3.13 indicated 

that for 7 out of 10 executions NSGA-II/CAO-RBF presented a better performance 

compared to NSGA-II/CAO-MLP. The DD-metric values achieved by NSGA-II, NSGA-

II/CAO-RBF and NSGA-II/CAO-MLP for the discontinuous test function ZDT3 and the 

non-uniform test function ZDT6 are illustrated in Figures 3.16 and 3.19. The results 

presented in Figures 3.16 and 3.19 depict the same DD-metric observations made for 

ZDT1. CAO-RBF and CAO-MLP both proved to be competent, introducing improvements 

to the results achieved by NSGA-II. The use of a RBF NN within the CAO is shown to be 

                                                 
13 In Figure 3.14, 3.18 and 3.22, RBF vs MLP, for example, denotes that Algorithm A is NSGA-
II/CAO-RBF and Algorithm B is NSGA-II/CAO-MLP 
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more practical than a MLP NN mainly due its much faster training process which makes it 

efficient for deployment within a convergence acceleration technique. 
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Figure 3.16 DD-Metric Values achieved by NSGA-II, NSGA-II/CAO-RBF and 

NSGA-II/CAO-MLP on ZDT3 at each of the 10 executions 
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Figure 3.17: S-metric values achieved by NSGA-II, NSGA-II/CAO-RBF and NSGA-

II/CAO-MLP on ZDT6 at each of the 10 executions 
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Figure 3.18: C-Metric Values achieved by NSGA-II and NSGA-II/CAO-RBF NN on 

ZDT6 at each of the 10 executions 
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Figure 3.19: DD-Metric Values achieved by NSGA-II, NSGA-II/CAO-RBF and 

NSGA-II/CAO-MLP on ZDT6 at each of the 10 executions 
 

Similar observations are made when the CAO is hybridised with SPEA2. In fact, the CAO 

seemed to introduce even more benefits to the performance of SPEA2. The results 
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achieved for the S-metric, C-metric and DD-metric when the CAO is hybridized with 

SPEA2 are illustrated in Appendix C, and, again, demonstrate the impact of the CAO on 

one of the best-performing MOEAs. 

 

Scalable test Function DTLZ2: Results  
 
Tables 3.2 – 3.7 illustrate the results highlighting the effect of the CAO on optimisation 

problems with a larger number of objectives. The scalable test function DTLZ2, with 3, 8 

and 12 objectives, was chosen to investigate the performance of the CAO. In a similar 

manner to the experimentations carried on the bi-objective problems, the effect of the CAO 

was underlined by contrasting NSGA-II with its CAO hybridized counterparts (NSGA-

II/CAO-RBF and NSGA-II/CAO-MLP).  

Table 3.2: C-metric results for DTLZ2 (3) 

DTLZ2 - 3 Objectives 
(A = NSGA-II/CAO-RBF, B = NSGA-II/CAO-MLP and C = NSGA-II) 

Run 

No: 
C-Metric (A, C) C-Metric (C, A) C-Metric (B, C) C-Metric (C, B) 

1 7% 1% 3% 1% 
2 7% 2% 5% 1% 

3 7% 0% 7% 0% 

4 9% 1% 1% 3% 
5 4% 4% 0% 8% 

6 7% 3% 5% 0% 
7 4% 3% 5% 3% 

8 4% 1% 3% 2% 
9 4% 4% 1% 3% 

10 7% 1% 1% 1% 

Mean 
Value: 

6% 2% 4% 2.2% 
 

 

 

Table 3.3: DD-metric results for DTLZ2 (3) 

DTLZ2 - 3 Objectives 
(A = NSGA-II/CAO-RBF, B = NSGA-II/CAO-MLP and C = NSGA-II) 

Run 

No: 
DD-Metric (A, C) .10-3 DD-Metric (B, C) .10-3 

1 -0.838 1.025 

2 -1.140 -1.010 
3 -2.311 -1.560 

4 -1.683 0.0811 
5 1.324 1.780 

6 -2.105 -1.245 
7 2.574 -0.163 

8 -1.293 -0.672 

9 0.752 -0.351 
10 -1.297 -2.746 

Mean 
Value: 

-0.601 -0.486 
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The experiments have shown that the fronts achieved by the CAO-hybridised versions of 

NSGA-II most frequently achieve a higher coverage compared to the coverage achieved by 

NSGA-II (Tables 3.2, 3.4 and 3.6). Over the 10 executions of the algorithms, NSGA-

II/CAO-RBF produced an average of 6%, 18.5% and 3.10% coverage of the results 

achieved by NSGA-II for the 3, 8 and 12 objective versions of DTLZ2 respectively. 

On the other hand, NSGA-II only achieved an average of 2%, 0.09% and 0.09% coverage 

of the results achieved by NSGA-II/CAO-RBF for DTLZ2 (3-8 and 12) including several 

runs with 0% coverage. NSGA-II/CAO-MLP has similarly produced a coverage of NSGA-

II results which is higher than the coverage achieved by NSGA-II on all three versions of 

DTLZ2. On average, NSGA-II/CAO-MLP covered 4%, 15.5% and 2.8% of the results 

produced by NSGA-II for DTLZ2 (3), (8) and (12) respectively while NSGA-II only 

achieved an average coverage of 2% for DTLZ2 (3) and 0.001% for DTLZ2 (8) and (12). 

Based on the C-metric results highlighted in Tables 3.2, 3.4 and 3.6, it was observed that 

when hybridized with NSGA-II, the 2 versions of CAO were producing higher C-metric 

values compared to the standalone NSGA-II.  
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Figure 3.20 Computational Time per execution for DTLZ2 (3) 

The same observations highlighted for the C-metric were observed for the DD-metric 

(Tables 3.3, 3.5 and 3.7). The DD-metric has consistently produced results (< 0) which 

favoured NSGA-II/CAO (RBF and MLP) over NSGA-II for all dimensions of the 

problems investigated. Nevertheless, it was remarkable that the RBF version of CAO was 

introducing the best C-metric and DD-metric values compared to NSGA-II and NSGA-

II/CAO-MLP. In addition, the use of the RBF neural network was fulfilling its intended 
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purpose by making NSGA-II/CAO-RBF more efficient and requiring less computational 

effort compared to NSGA-II/CAO-MLP. 

Table 3.4: C-metric results for DTLZ2 (8) 

DTLZ2 - 8 Objectives 
(A = NSGA-II/CAO-RBF, B = NSGA-II/CAO-MLP and C = NSGA-II) 

Run 

No: 
C-Metric (A, C) C-Metric (C, A) C-Metric (B, C) C-Metric (C, B) 

1 37% 0% 5% 0% 

2 24% 0% 8% 0% 
3 16% 2% 24% 0% 

4 12% 0% 19% 0% 
5 16% 0% 4% 0% 

6 23% 0% 19% 0% 

7 9% 0% 21% 0% 
8 22% 2% 18% 0% 

9 9% 4% 5% 1% 
10 17% 1% 32% 0% 

Mean 
Value: 

18.5% 0.09% 15.5% 0.001% 

 

In Figures 3.20, 3.21 and 3.22, the computational time spent at each execution of the 

algorithms optimising DTLZ2 (3) (8) and (12) is illustrated. The time complexity of 

NSGA-II/CAO-MLP was on average 3 times larger than the time complexity of NSGA-

II/CAO-RBF. The use of simple and computationally cheap test functions (ZDTs and 

DTLZ2) for assessing the CAO has helped emphasize the efficiency of CAO-RBF over 

CAO-MLP by putting their performance into perspective.  

Table 3.5: DD-metric results for DTLZ2 (8) 

DTLZ2 - 8 Objectives 
(A = NSGA-II/CAO-RBF, B = NSGA-II/CAO-MLP and C = NSGA-II) 

Run 

No: 
DD-Metric (A, C) .10-3 DD-Metric (B, C) .10-3 

1 -720.44 -67.361 
2 -404.82 -99.053 

3 -264.05 -402.810 
4 -145.32 -315.900 

5 -236.01 -65.649 

6 -360.64 -315.530 
7 -133.75 -438.230 

8 -307.27 -427.580 
9 -110.53 -40.731 

10 -192.23 -579.870 
Mean 
Value: 

-287.500 -275.300 

 

From the results presented in this section, it was observed that despite the improvements 

introduced by the CAO, the DD-metric and the C-metric results were highlighting a closer 

competition between NSGA-II/CAO and NSGA-II on the many-objective problems. This 

observation makes it intriguing to assess the reliability and accuracy of the C-metric and 
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the DD-metric as the dimensionality of the objective space increases. This issue will be 

investigated closely in Chapter 4. From the results illustrated in this section, it is also 

remarkable that in the 8-objectives version of DTLZ, the CAO exhibits the most 

significant improvement in coverage and dominated distance measures. This feature 

deserves further study in order to understand why the performance on the 8-objectives 

version might be significant for this dimension of problem.  
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Figure 3.21 Computational Time per execution for DTLZ2 (8) 
 

Table 3.6: C-metric results for DTLZ2 (12) 

DTLZ2 - 12 Objectives 
(A = NSGA-II/CAO-RBF, B = NSGA-II/CAO-MLP and C = NSGA-II) 

Run 

No: 
C-Metric (A, C) C-Metric (C, A) C-Metric (B, C) C-Metric (C, B) 

1 0% 0% 3% 0% 

2 0% 0% 1% 0% 
3 2% 0% 0% 0% 

4 3% 0% 3% 0% 
5 2% 0% 4% 0% 

6 3% 0% 7% 0% 

7 5% 0% 5% 0% 
8 8% 0% 1% 1% 

9 3% 0% 3% 0% 
10 5% 0% 1% 0% 

Mean 
Value: 

3.10% 0% 2.80% 0.001% 

 

Studying the interactions between the decision variables and the objectives, through the 

use of heatmaps (Pryke, Mostaghim and Nazemi 2007) or estimation of distribution 

algorithms (EDAs) (Pelikan, Goldberg and Lobo 1999) for example, is a suggested 

approach for investigating the behaviour of CAO on DTLZ2 (5). 
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Table 3.7: DD-metric results for DTLZ2 (12) 

DTLZ2 – 12 Objectives 
(A = NSGA-II/CAO-RBF, B = NSGA-II/CAO-MLP and C = NSGA-II) 

Run 

No: 
DD-Metric (A, C) .10-3 DD-Metric (B, C) .10-3 

1 0 -38.451 

2 0 -11.933 
3 -28.295 0 

4 -24.469 -21.525 
5 -6.104 -65.927 

6 -54.574 -108.940 
7 -92.507 -76.071 

8 -184.270 -4.692 

9 -15.873 -27.631 
10 -97.144 -20.298 

Mean 
Value: 

-50.300 -37.500 

 

Similar to NSGA-II/CAO, when the CAO is hybridised with SPEA2, SPEA2/CAO has 

out-performed SPEA2 on all three versions of DTLZ. The C-metric and DD-metric results 

achieved for the set of experiments contrasting SPEA2, SPEA2/CAO-RBF and 

SPEA2/CAO-MLP are presented in Appendix C. Further experiments were undertaken in 

an attempt to quantify the extent of superiority of the CAO hybridized optimisers. It was 

noted that, on average, the population size of NSGA-II and SPEA2 must be increased to a 

minimum of 150 individuals (1.5x the population size of NSGA-II/CAO and 

SPEA2/CAO) in order to match the quality of the fronts achieved by their hybridized 

counterparts. 
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Figure 3.22 Computational Time per execution for DTLZ2 (12) 
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Thus, SPEA2 and NSGA-II require more objective function evaluations (around 5000 

more evaluations) to match the performance of their CAO hybridised equivalent optimiser. 

This conclusion holds for all the test functions used in this work. The set of experiments 

conducted in this section highlights the benefits of the CAO in general and the CAO-RBF 

in particular and demonstrate the improvement it confers to two of the most established 

MOEAs. 

 

Aircraft Control System Design Problem: Results 
 

The NSGA-II/CAO (RBF) was also tested against the multiobjective optimisation problem 

of aircraft control system design (ACSD). The intention was to contrast the performances 

of NSGA-II and NSGA-II/CAO on a real world application. In Table 3.8, the dominated 

distance metric (DD-Metric) and the Coverage metric (C-metric) are computed and their 

results are shown for each run of the algorithms. These experiments have shown that the 

fronts achieved by NSGA-II were constantly outperformed by their counterparts deploying 

the CAO.  

The DD-metric consistently has produced negative results favouring NSGA-II/CAO over 

NSGA-II for the ACSD problem. On the other hand, the solutions achieved by NSGA-

II/CAO over the 10 executions of the algorithms have covered an average of 4.6% of the 

solutions achieved by NSGA-II for the 8-objectives problem. NSGA-II only scored an 

average of 0.8% coverage of the results achieved by NSGA-II/CAO, including several runs 

with 0% coverage.  

Table 3.8: DD-metric and C-metric results for the ACSD problem 

Aircraft Control System Design 
(8 Objectives, A = NSGA-II/CAO and B = NSGA-II) Run 

No: DD-Metric 

(A, B) .10-3 

C-Metric 

(A, B) 

C-Metric 

(B, A) 

1 -844.7 2% 0% 
2 -433.9 5% 3% 

3 -2599.5 3% 0% 

4 -935.1 9% 0% 
5 -588.7 4% 1% 

6 -354.02 0% 0% 
7 -3519.2 12% 1% 

8 -3454.4 7% 2% 
9 -6221.1 4% 0% 

10 -2892.0 0% 1% 

Mean 
Value: 

-2184.3 4.6% 0.8% 
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Computational Effort 
 

In this section, the additional computational effort required by the CAO (the RBF NN 

learning process in particular) is reported. It should be noted that such computational effort 

measurements depend on the hardware/software resources available. In this study, 

MATLAB14 was used for implementing, executing and testing all the optimisation 

frameworks presented in this work.  Furthermore, all the experiments were undertaken on a 

Pentium 4 machine with 512 megabyte of Random Access Memory (RAM). Netlab 

(Nabney 2001), an open source neural network toolbox for use with Matlab, was used for 

implementing, training and validating the ANN used in the CAO context. 

The neural network training process is a structural and arithmetical process which deals 

with numerical data (inputs and outputs). Hence, the computational effort required for 

training the neural network is highly influenced by the number of inputs, outputs, weights 

and parameters (especially if the last two are being optimised), rather than in terms of the 

complexity of the objective function being solved by the hosting MOEA. The neural 

network architecture, configuration and training algorithms are thus the variables that 

affect the computational effort required for training a NN. These variables form an 

optimisation problem in themselves. In this work, these variables were carefully chosen 

after a considerable number of trial-and-error experimentations. In order to formulate an 

idea about the computational effort of the CAO deployed in this study, the portable 

component was hybridized with NSGA-II in an optimisation framework attempting to 

solve the Gasifier problem (Griffin et al 2000), a relatively expensive (computationally) 

problem. Gasifiers are increasingly used reactors for power generation from coal, due to 

their cleanliness and environment friendliness. The gasifier problem described in Griffin et 

al (2000) is a design and optimisation problem of a control system for a linear model of the 

gasifier. The gasifier problem was purely used in this section as a computationally 

expensive -14-objective- benchmark problem for contrasting the computational effort 

required by the CAO (in particular the training and validation of the RBF neural network) 

and the computational effort required for computing the gasifier’s objective function. For 

more information about the gasifier problem, the interested reader is directed to Griffin et 

al (2000). In Figure 3.23, the values achieved by NSGA-II/CAO and NSGA-II at each of 

the 10 executions are shown. NSGA-II/CAO was covering an average of 34% of the 

results achieved by NSGA-II, while NSGA-II was only covering an average of 5% of the 

results achieved by its CAO-hybridized counterpart.  

                                                 
14 Matlab is a software package for technical computing, developed by The MathWorks, Inc. 
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Figure 3. 23 C-Metric Values achieved by NSGA-II/CAO-RBF and NSGA-II on the 

Gasifier problem at each of the 10 executions 
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Figure 3. 24 DD-Metric Values achieved by NSGA-II/CAO-RBF and NSGA-II on the 

Gasifier problem at each of the 10 executions 

 



Chapter 3. Enhancing the Convergence Perspective 

  

93

 

Figure 3. 25: NSGA-II Computational Effort  

 

Figure 3. 26: NSGA-II/CAO Computational Effort 

 

In a similar way, the DD-metric values presented in Figure 3.24 consisted of negative 

values which highlighted the outperformance of NSGA-II/CAO over NSGA-II at all 10 

executions. The computational effort measurements of the major components of NSGA-II 

and NSGA-II/CAO optimising the gasifier problem for 30 and 15 generations respectively 

are presented in Figures 3.25 and 3.26. Except for the reduced number of generations (15 

for NSGA-II/CAO and 30 for NSGA-II), population size (= 20) and the initial value of the 

step size h (= 20), the same configuration used for NSGA-II and NSGA-II/CAO in the 

previous sections was deployed. Note that in Griffin et al (2000), a larger population size 
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-Update Neural Network Training 
-Improve Objective Vectors 
-Predict new Decision Variable Vectors 
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Time Cost 
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(Gasifier application, Pop Size: 20, Number of generations: 15) 

Generations 

1 to 30 
 

Evaluate the Objective Functions 

Perform Global Search operations  
(Selection, Recombination, Mutation, Archiving) 

3560s 
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and number of generations were deployed for optimising the gasifier problem. However, 

the configuration used in this section was deemed sufficient since the goal of the presented 

experiments was to contrast the efficiency of NSGA-II and NSGA-II/CAO within a limited 

budget of objective evaluations rather than solving the gasifier problem itself. 

From the results illustrated in Figures 3.25 and 3.26, it was clear that the total 

computational time required by NSGA-II and NSGA-II/CAO were comparable. In fact, 

NSGA-II/CAO has required 3542.60 seconds to perform the optimisation process (Figure 

3.26), saving approximately 18 seconds when compared to the computational effort 

required by NSGA-II (3562 seconds) to perform the equivalent optimisation process 

(Figure 3.35). Moreover, compared to the total computational time used for calculating the 

gasifier’s objective function (3532 seconds - ≈ 59 min- in Figure 3.26), the total 

computational time spent for training and validating the RBF neural network within the 

CAO was very negligible (9.5 seconds 	 ≈ 0.27 % of the total time required for 

calculating the gasifier’s objective function). In computationally expensive problems such 

as the gasifier application, it is worth noting that the computational time required for 

training and using a MLP NN instead of a RBF NN can also be considered as negligible 

compared to the time needed for computing the objective functions. As a result, despite the 

preferability for using the CAO with a RBF neural network, in expensive optimisation 

applications, the use of a MLP NN within a convergence accelerator such as the CAO can 

be considered as equally beneficial and efficient.  

3.3.8. Conclusion 

 
A portable convergence accelerator operator has been proposed for incorporation in 

existing algorithms for evolutionary multiobjective optimisation. This operator works by 

suggesting improved solutions in objective space and using neural network mapping 

schemes to predict the corresponding solution points in decision variable space. Two 

leading MOEAs have been hybridised through introduction of the CAO and tested on a 

variety of recognised test problems. These test problems consisted of convex, 

discontinuous and non-uniform test functions, with numbers of objectives ranging from 2 

to 12. In all cases introduction of the CAO led to improved results for comparable numbers 

of function evaluations. 

When deploying an active strategy for promoting diversity within a slowly converging 

process to the Pareto front, the convergence process of a MOEA can be hampered and 

delayed, especially in optimisation problems with many competing objectives. This is an 

important issue which will be addressed in Chapter 4. Due to the convergence acceleration 

caused by the CAO, the active diversification mechanisms of the hosting MOEAs get an 
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increasing emphasis. However, the increasing emphasis of the active diversification 

mechanisms is manifested at converged and near optimal regions of the search space rather 

than at remote and suboptimal regions. In other words, the CAO not only enhances the 

convergence towards the Pareto fronts, but should also help enhancing the diversity at 

regions of interests and promising areas of the search space which are closer to the Pareto 

front. 

It is important to recognise that the CAO introduces additional computational effort 

through the requirement to train the neural network. When using a RBF NN, this 

computational effort is negligible even when compared with the execution time associated 

with computing a ZDT function, for example, since these functions are trivially simple to 

compute. However, using a MLP within the CAO increases the computational effort and 

makes it substantial when compared with the execution time associated with the 

computation of a ZDT function. For example, the MLP training time proved to be 

approximately 1500 times that of computing the ZDT functions. Clearly, one would not 

advocate use of CAO-MLP in such situations. However, in a real-world problem such as 

the ALSTOM gasifier problem (Griffin et al 2000), it was found that MLP training time 

proved to be approximately one-hundredth of the time required to compute the ALSTOM 

gasifier problem objectives. Moreover, here we have not sought to optimise performance 

of the NN mapping methodology. Nonetheless, it was demonstrated that while the CAO 

with a RBF NN is a practical and efficient approach for accelerating the convergence of 

MOEAs on a variety of problems (ZDT(1, 3, 6), DTLZ2 (3, 8, 12), the ACSD problem and 

the Gasifier problem), the CAO with a MLP is better restricted for use in real-world 

problems where objective function computation is non-trivial.  
 

Thus, a portable operator has been described that can be incorporated into any MOEA to 

improve its convergence. However, it should be noted that the ZDT and DTLZ2 test 

functions used in this study presented common similarities in the decision space. In 

particular, the different versions of the DTLZ2 test function used in this study are 

characterised by the fact that the last k decision variables of any Pareto optimal solution 

presented the same value. This last feature is rarely present in real life applications and can 

be seen as simplifying the NN prediction process deployed within the CAO. As a result, 

investigating the performance of the CAO on challenging test functions, such as the test 

functions suggested by Huband et al (2005), or other real problems with non-separable 

variables and deceptive/multimodal decision spaces should be undertaken in future work. 
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3.4. Summary 
 

In this Chapter, a strategy for addressing the MO requirement for solutions convergence 

towards the Pareto front of MOPs was introduced. The suggested strategy consisted of the 

convergence acceleration operator (CAO). The CAO is a portable component that can be 

integrated within the cycle of any multiobjective evolutionary optimiser. CAO operates by 

performing direct manipulations in the objective space to guide the evolutionary search 

towards good areas of solutions and adding a profitable deterministic process to the EAs 

stochastic approach. CAO also integrates machine-learning strategies in the form of neural 

networks for acquiring knowledge about the mapping function from the objective space to 

the decision variable space. The acquired knowledge is used efficiently to accelerate the 

convergence of MOEAs. CAO was hybridized with two of the best MOEAs and tested on 

a variety of optimisation problems and number of objectives. The introduced operators 

proved successful and the hybrid algorithms significantly outperformed the original 

algorithms. 

Having addressed the convergence requirement for multiobjective optimisation problems, 

the diversity requirement is studied in the following Chapter. 
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Chapter 4 
 

Evolutionary Multiobjective Optimisation: 

Enhancing the Diversity Perspective 

 

4.1. Introduction 

 
Finding a “good” set of solutions to a multiobjective optimisation problem consisting of m 

objectives can be more accurately thought of as an optimisation scenario with m+2 

objectives. These m+2 objectives are divided into m tangible and application specific 

objectives and an additional 2, general and theoretical, objectives. The latter 2 objectives 

are the required convergence of the solutions to a MOP towards the Pareto front and their 

diversity across the tradeoff surface in the objective space. In certain scenarios, diversity 

might be required in the decision space as well. When solving multiobjective optimisation 

problems, the existence of objective preferences and priorities, and their incorporation in 

the search process is an optional, and application dependent scenario. Nevertheless, one 

thing is explicit and common: the solutions’ convergence criteria is usually biased and 

prioritised over the diversity criteria.  As a result, diversity promotion is usually deployed 

as a second consideration to proximity promotion in most MOEAs. This is well justified 

since, as stated by Bosman and Thierens (2003):  

... the goal is to preserve diversity along an approximation set that is as close 

as possible to the Pareto optimal front, rather than to preserve diversity in 

general, the exploitation of diversity should not precede the exploitation of 

proximity. 

In fact, the diversity requirement is mainly sought in multiobjective optimisation scenarios 

with competing objectives where no single optimal solution can be found. In such 

scenarios, diversity is requested to provide the decision maker with a diversified set of 

solutions, with varying tradeoff performances across the objectives, to choose from. This 

prioritization of the convergence requirement over the diversity can be observed in the 

selection for variation and the selection for survival procedures of most MOEAs. In the 

context of NSGA-II, the selection for variation used is a type of binary tournament 

selection (Brindle 1981) termed as the crowded-comparison operator and defined by Deb 

et al (Deb, Pratap, Agarwel, and Meyarivan 2002).  When selecting solutions for inclusion 

in the mating pool, two solutions are first chosen randomly from the population and 
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compared primarily in terms of their non-dominated ranks.  The solution with the higher –

Pareto dominance based- rank is selected for inclusion in the mating pool. In the case 

where the two selected solutions share the same rank, and hence are equally good in terms 

of Pareto dominance, the secondary criterion for the selection for variation would consists 

of their crowding measure and therefore the diversity requirement. The solution lying in 

the less dense area of the space would be selected for inclusion in the mating pool, thus 

promoting diversity. In the case where the two selected solutions shared the same rank and 

populated equally dense areas of the objective space, one of the solutions get selected at 

random for inclusion in the mating pool.  

Similarly, the selection for survival process in NSGA-II uses the same hierarchy of 

selection criteria. Deploying a strategy that maintains a fixed size for the online archive, 

NSGA-II uses a selection for survival procedure that starts by filling the online archive 

with the highest ranked solutions following a non-dominated sorting strategy. These 

solutions are selected from the set of solutions combining the newly produced solutions at 

a certain generation of the optimisation process and the solutions populating the online 

archive at the same generation. Only in the case where filling the empty –remaining- slots 

of the archive necessitates the selection of a subset of solutions from a certain non-

domination level or rank does the diversity requirement intervene as a selection criterion.  

The selection for survival procedure used in NSGA-II is illustrated in Figure 4.1.  

 

Having described the diversity requirement and its priority in EMO, in this Chapter the 

requirement for solutions’ diversity in multiobjective optimisation, with an emphasis on 

optimisation problems consisting of many conflicting objectives, is explored.  

In section 4.2, the motivation for promoting and introducing new methods for diversity 

promotion and maintenance in EMO, especially as the number of conflicting objectives 

increases, is justified. In section 4.3, a new approach for tackling the diversity requirement 

from a new perspective is introduced. The suggested approach is embodied in an adaptive 

local strategy that incorporates well-established diversity indicators within the cycle of 

MOEAs for guiding and manipulating the optimisation and search process. 

In Section 4.4, the experimental results achieved by the introduced strategy for a set of 

multiobjective optimisation problems with increasing number of conflicting objectives are 

illustrated. Performance evaluation and conclusions will be based on an analytical 

comparison of the results produced by the suggested optimisation strategy and another 

well-established and representative MOEA. A summary of the chapter is presented in 

Section 4.5. 
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Figure 4. 1: NSGA-II Selection for Survival 

 

4.2. Study Framework and Motivation 

 
Since the late 1980s, many diversity promotion strategies were introduced in EMO. In 

Chapter 2, an overview of the major milestones in the development of diversity promotion 

methods for EMO is illustrated. Their known benefits and limitation were also stated. Most 

of the early approaches for obtaining good distribution of solutions in an approximation set 

required some density estimation of the population around every single solution. Although 

some of the density estimators used in the diversity promotion strategies in EMO were 

borrowed from other scientific disciplines, mostly statistics, other techniques used for 

density estimation were specifically devised for EMO. The motivation for further research 

for this particular requirement of EMO is subsequently described.  

 

The Motivation for New Diversity Promotion Techniques 
 
The objective of the study presented in this Chapter is to investigate new approaches and 

strategies for promoting diversity in evolutionary many objective optimisation. This is 

Pareto Front 
1st Level of dominance 

2nd Level of dominance 

3rd Level of dominance 

Selected Solutions Based on 
Crowding  

Archive of Fixed Size (20) 

Rejected Solutions  

Selection Criteria: Pareto 
Dominance Rank 

Selection Criteria: Pareto 
Dominance Rank 

+ 
Diversity (Crowding) 



Chapter 4. Enhancing the Diversity Perspective 

  

100

initially motivated by the outcome of the studies reported in Section 2.3.4 that highlighted 

the shortcomings of the different diversity promotion techniques (see Chapter 2).  

Moreover, Purshouse and Fleming (2003b) and Purshouse (2004) showed that classical 

settings for a representative set of recombination and mutation operators might be suitable 

for optimisation problems with a small number of objectives, but are inappropriate for 

optimisation frameworks with a large number of conflicting objectives. The experimental 

results of their study highlighted the conflict between the primary MOP requirement for 

convergence towards the Pareto front, and the secondary requirement for maintaining 

diversity in the approximation set. This conflict between the convergence and diversity 

requirements in multiobjective optimisation has a detrimental impact on the optimisation 

process and is particularly aggravated and detected in the many-objective optimisation 

frameworks.  

In fact, the size of the feasible objective space for a certain MOP increases with the 

increase in the dimensionality of the optimisation problem -in terms of the number of 

objectives. Consequently, the probabilities for the handled solutions to become locally 

non-dominated (Pareto dominance wise) increase. In fact, no matter how far it is from the 

Pareto front, any solution close to a certain axis of performance in the objective hyperspace 

will have a high chance of being preferred in terms of Pareto dominance and the diversity 

criterion (being considered as an extreme solution) for selection for variation and survival. 

The increasing proportion of non-dominated solutions explored in large objective 

hyperspaces leads to the diversity promotion mechanisms becoming more emphasized and 

hence, diversity gradually becomes the primary selection criterion. This tends to 

overemphasize the diversification process at the expense of the convergence requirement. 

As a result, when performing selection for variation, solutions from various distant areas of 

the hyperspace will have greater chances for recombining and producing lower 

performance offspring known as lethals (Deb and Goldberg 1989). The superfluous 

production of lethals, known as dominance resistance, will consequently spoil the 

optimisation process and the convergence towards the Pareto front. Ikeda et al (2001) were 

the pioneers to recognize the problem of dominance resistance followed by Deb, Thiele, 

Laumanns and Zitzler (2002). Another impact of the increasing number of redundant non-

dominated solutions, the emphasis of diversity over convergence, and the dominance 

resistance problem, is the combined effect of the aforementioned observations on the 

selection for survival process. When attempting to downscale the size of the active archive 

to its pre-determined size by such means as the truncation procedure in SPEA2, good 

locally non-dominated solutions in terms of proximity towards the Pareto front might be 

filtered out at the expense of keeping good solutions in terms of diversity, but which may 

be distant from the Pareto front. Consequently the search process becomes dispersed in the 
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wide objective space and evolves away from the Pareto front producing an ‘over-

diversified’ approximation set with poor proximity to the tradeoff surface. This latter 

observation introduces an oscillatory behavior to the evolutionary search by repeatedly 

discovering and filtering out good solutions that might have been previously explored. This 

oscillatory behavior delays the convergence process towards the optimal tradeoff surface. 

As a result, as the number of competing objectives increase, the occurrence of the problem 

of speciation increases due to the combined effect of Pareto dominance based selection and 

the active diversity promotion mechanisms. At the end of the optimisation process, the 

probability of exclusively producing an approximation set with solutions excelling in a 

certain particular objective increases. This problem was originally present in Schaffer’s 

VEGA, widely considered as the first approach for using EAs to solve multiobjective 

optimisation. 

 

Having explained the motivations for the study, a new approach for diversity promotion in 

the many-objective optimisation frameworks is suggested, investigated and discussed in 

the next section.  

 

4.3. An Adaptive Strategy for Diversity Promotion 

4.3.1. The ‘Memetic’ Approach 

 
In this Chapter, the requirement for promoting diversity in MOEAs is envisaged as a local, 

adaptive and varying requirement rather than a global necessity and is therefore 

investigated within a ‘Memetic algorithm’ philosophy which connotes the acquisition of 

new proficiencies and the cultural and local adaptation to certain environments or 

communities.  

The incorporation of exact local search techniques such as Hill Climbing, Simulated 

Annealing (Kirkpatrick, Gelatt and Vecchi 1983) or Tabu Search (Glover and Laguna 

1997), as well as application specific and new local searcher, within MOEAs has been 

heavily investigated and this research area is still attracting increasing interest. However, 

the suggested local search techniques usually consist of iterative procedures that require 

additional objective function evaluations. 

 

Adaptability, evolution and “self generation” within local search techniques have been 

proposed in (Krasnogor 2000, Krasnogor and Gustafson 2002, Krasnogor and Gustafson 

2004, Krasnogor and Smith 2000 and Adra, Griffin and Fleming 2005a) and demonstrated 

to be beneficial for several domains. In Krasnogor and Smith (2000) an adaptive, two-

purpose, Monte Carlo (MC) (Robert and Casella 2004) based local search was introduced 
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and hybridized with a genetic algorithm. The local search adaptively modified the 

temperature variable; an essential parameter in simulated annealing methods used to 

control the acceptance process of newly discovered solutions based on a thermodynamics 

metaphor. This adaptive setting of the temperature was deployed to reflect the extent of the 

solutions’ diversity in terms of their corresponding fitness values. The LS served two main 

purposes by operating in one of two modes; fine tuner mode when the current solutions 

from the GA are well distributed or diversifier mode when the distribution is poor.  

 

In Adra, Griffin and Fleming (2005a), experiments were carried out to investigate new 

ways of addressing the diversity requirement in evolutionary multiobjective optimisation. 

In the first part of the study, three well-known techniques were hybridised as a local search 

with the Multi Objective Genetic Algorithm (Fonseca and Fleming 1993), a simple non-

elitist evolutionary algorithm that uses fitness sharing for promoting diversity (Goldberd 

and Richardson 1987). The three local search algorithms consisted of a simulated 

annealing technique, a hill-climbing technique and a Tabu search technique. The three 

resulting hybrid algorithms were applied to a suite of bi-objective test functions introduced 

by (Zitler, Deb and Thiele 2000). The suite of test functions, commonly known as the 

ZDTs, comprises six test functions, each one of them presenting specific features that 

generally cause difficulties to major evolutionary optimisation strategies. The aim of the 

hybridizations was to investigate the effect of such local search techniques on the 

evolutionary multiobjective optimisation process in terms of solutions’ convergence to the 

Pareto front, and particularly in terms of the solutions’ diversity across the tradeoff 

surfaces.  
 

The results achieved by the hybrid algorithms were compared with the results achieved by 

the standard MOGA. In order to provide a well-based comparison, these algorithms were 

balanced in terms of the number of objective function evaluations that were performed. 

Careful consideration should be taken when hybridizing an evolutionary algorithm with a 

local search technique. Excessive emphasis upon the local search at the expense of the 

evolutionary operators may result in the algorithm underachieving and even deteriorating 

the quality of the results. The experimental results showed that the hybrid “MOGA/Hill 

climbing local search” algorithm was particularly suitable for the ZDT problems and was 

outperforming the standalone MOGA and the MOGA hybridized with Simulated annealing 

or Tabu local search. These results were intuitive in the context of the ZDT problems due 

to the greedy behaviour of the hill climbing local search, which was the main cause behind 

the performance of that hybrid algorithm. On the other hand, despite their well recognized 

benefits, the extra functionality of simulated annealing (escaping local optima) and the 

Tabu search (keeping a record of previously visited solutions and fighting oscillatory 
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exploration behaviour) were unnecessary adds-ons in the continuous domain of most of 

these bi-objective problems and consequently redundant computational effort was 

allocated to these local searches at the expense of the evolutionary global search. 

The second part of the study (Adra, Griffin and Fleming 2005a) introduced a specialised 

local search technique which was hybridised with MOGA and used to optimise the ZDT 

test functions as well. The specialised local search incorporated the use of diversity 

indicators to set the size of the local search neighbourhood around the local front of 

solutions. When the spread of the solutions is damaged, i.e. the distribution of the solutions 

gets worse due to effects such as the genetic drift and the premature convergence leading 

to high concentration of solutions in certain areas of the search space and poor or null 

concentrations in other areas, the local search process extends the size of the current 

solutions’ neighbourhood, thereby extending the search range in order to explore solutions 

in a wider neighbourhood. The process is reversed when the distributions of the solutions 

is good in order to fine tune the solutions in a more tightly constrained neighbourhood 

without detriment to the spread of solutions. Compared with the traditional results 

achieved by MOGA, the experimental results produced by the hybrid approach have 

shown an improved optimisation performance for some of the ZDT test functions and have 

demonstrated that an optimisation strategy might cope well with some features and might 

not be well tuned to deal with other features such as the shape of Pareto fronts. 

The local search introduced in Adra, Griffin and Fleming (2005a) was later on extended to 

adapt the size of the local search neighbourhood for each individual candidate solution 

based on the current distribution of the solutions in objective space and the density 

estimate around the current individual under consideration (Adra, Griffin and Fleming 

2006).  
 

Simulations’ results demonstrated further improvements of the performance of the hybrid 

algorithm relative to the MOGA. The improvements were observed in terms of the 

closeness of the solutions achieved by the hybrid optimisation technique to the true Pareto 

fronts of the ZDT test functions and in terms of distribution for most of the test functions. 

In particular, the adaptive hybrid algorithm coped well with challenging features such as 

multimodality and deception. The adaptive local search was also shown to provide higher 

suitability compared to the fitness sharing technique (Goldberg and Richardson 1987) used 

in that study (Adra, Griffin and Fleming 2006) for promoting solutions diversity for some 

of the test functions. 



Chapter 4. Enhancing the Diversity Perspective 

  

104

4.3.2. The Proposed Diversity Management Operator  

 

Introduction 
 
In this study, a diversity management operator (DMO) for controlling and promoting 

diversity in the many-objective (> 3 objectives) optimisation framework is introduced and 

hybridized with NSGA-II. NSGA-II is an evolutionary multiobjective optimiser which can 

be broadly regarded as a representative for a larger family of EMO optimisers. The DMO 

resembles the local search introduced in Krasnogor and Smith (2000) by serving the two 

essential purposes of fine-tuning and diversifying the population of solutions conveniently. 

However, the adaptive strategy introduced in this work drastically differs from Krasnogor 

and Smith technique in more than one aspect. The DMO is not based on MC or other exact 

methodologies. It is an adaptive strategy that promotes the integration of very effective 

performance and diversity indicators, such as the hypervolume metric (Zitzler 1999) and 

the maximum spread metric (Zitzler 1999) to efficiently guide the search process of an 

MOEA towards the tradeoff surface of a MOP while controlling the diversity requirement. 
 

Despite the recognised utility of the hypervolume metric (Zitzler et al 2003) and its 

potential as a selection for survival strategy (Fleischer 2003, and Knowles and Corne 

2003b) and as a solution ranking strategy replacing the Pareto dominance concept whose 

practicality is particularly debatable in the many-objective frameworks, the hypervolume 

metric suffers from some limitations (Zitzler et al 2003, and Knowles and Corne 2002). 

These limitations include the requirement for a sensitive choice of non-trivial reference 

parameters, the multiplication of potentially non-commensurable objectives and 

importantly the computational complexity of calculating the hypervolume metric, which is 

exponential in the number of objectives (Knowles 2002). The latter limitation has been 

believed to be addressed by Fleischer (2003) who has put forward an algorithm that should 

reduce the computational complexity of measuring the hypervolume metric to a 

polynomial magnitude. However, further research has later showed that the complexity of 

Fleischer’s algorithm was actually exponential in the number of objectives (While 2005). 

In this study which promotes the integration of performance metrics in the optimisation 

processes of MOEAs, the DMO has integrated a particular, computationally efficient, 

diversity metric which is based on the maximum spread indicator introduced by Zitzler 

(1999) and defined in Equation 4.1. Purshouse and Fleming (2003b) previously used the 

spread indicator in an exploratory study aimed at investigating the suitability of some 

classical settings of MOEA parameters for optimisation problems with more than 3 

objectives. 
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In Equation 4.1, D represent the measure of the diagonal of the hypercube formed by the 

extreme objective values attained in a certain approximation set ZA. M denotes the number 

of objectives and zA is a candidate objective vector solution which belongs to the 

approximation set ZA. 
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In a similar way to the study by Purshouse and Fleming (2003b), this investigative study 

experiments with different versions of the scalable DTLZ2 test function introduced by Deb 

et al (2002) and described in Section 3.3.6. The different versions of DTLZ2 deployed to 

test the performance of the suggested adaptive strategy vary in terms of the number of 

competing objectives to be optimised. DTLZ2, with its well-defined Pareto fronts, is a 

suitable test function for the theoretical analysis and the examination of the performance of 

new optimisation strategies and their interactive behaviour in the many optimisation 

contexts.  

In order to track the diversity quality of the manipulated set of solutions, the value of the 

spread indicator presented in Equation 4.1 is normalised with respect to the optimal spread 

corresponding to the set of solutions representing the Pareto front of these test functions, or 

alternatively, representing a targeted reference front of solutions. It is only by knowing the 

normal and the desired condition, that the abnormal and the undesired conditions, such as 

the dispersal of solutions in suboptimal regions of the objective space or alternatively the 

convergence to contracted regions of a Pareto optimal space, can be defined and avoided. 

In other words, an application dependent scale defining the approximate notion of a low, 

ideal, high and average quality of diversity is required to overcome the “clash of the 

requirements” (convergence and diversity), which is specially evident in high dimensional 

problems (objective dimensionality).  

 

In the context of the suggested DMO, the DM, usually and preferably an application 

expert, is only required to suggest an approximate estimate of the defining extremities of 

the desired tradeoff surface. These extremities will then serve as the vertices of the 

hypercube containing the ideally sought Pareto front. In an optimisation problem 

consisting of two conflicting objectives, these extremities will correspond to the 

coordinates (approximate objective values) of the two solutions presenting the best-

expected performance in terms of one of the two objectives alongside the worst 

performance in terms of the competing objective.   
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Equation 4.1 will then be normalised with respect to the length of the diagonal of such a 

hypercube and the normalised diversity indicator will be defined by Equation 4.2. 
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The spread indicator (IS) can take any positive real value. Ideally an indicator value close 

to unity (IS = 1) is sought. Indicator values smaller than one (IS < 1) point out a lack of 

diversity among the solutions manipulated compared to the desired spread of solutions.  

This is most likely due to a convergence towards a contracted area - potentially a Pareto 

optimal sub region - of the solution space. On the other hand, indicator values larger than 

one  (IS > 1) highlight an excessive dispersal of the solutions in the objective space. This 

kind of excessive dispersal in the hyperspace most likely causes the divergence of the 

solutions from the Pareto optimal front and hampers the optimisation process by 

introducing an oscillatory behaviour forcing the MOEA to repeatedly explore previously 

visited regions of the space.     

 

DMO Functionality 
 
A schematic presentation of the diversity management operator (DMO) is illustrated 

respectively in Figure 4.2 within the context of NSGA-II. The DMO is composed of two 

main steps:  

 

Step 1: 

Step 1 of DMO is illustrated below: 

 

1. Calculate the spread indicator Is for the current approximation set at generation i 

a. If Is < 1-ε  

Activate the diversity promotion mechanism in the selection for 

variation and the selection for survival process 

b. Else If Is ≥ 1-ε 

Deactivate the diversity promotion mechanism in the selection 

for variation and the selection for survival process 

 

The first step consists of calculating the spread indicator defined in Equation 4.2 for the 

local front of non-dominated solutions achieved. The calculation of the spread indicator 

takes place at every generation of the optimisation process prior to the execution of the 

genetic operators (selection for variation and selection for survival).  
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Figure 4. 2 NSGA-II with the addition of the DMO steps 
 

The DMO then adjusts and controls the global search processes of the MOEA in an 

informative way based on the local level of spread optimality. In other words, if the spread 

indicator reports an excessive dispersal of the local front of solutions in the objective space 

(i.e. Is ≥ 1-ε, ε being an optional –application dependent- tolerance value defined by the 

DMO: 
(Step 1) Calculate the Spread Indicator and Activate or Deactivate the 
Diversity as a Selection Criterion in the Selection for Variation and the 

Selection for Survival Processes 
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No 

Gen ≤ MaxGen 
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DM), the DMO switches off the diversification mechanisms within the subsequent 

selection for variation and selection for survival procedures. The goal is to maintain the 

optimal tradeoff between the convergence and diversity requirements. In NSGA-II context, 

at the selection for variation stage, deploying the binary tournament selection procedure, 

two candidate solutions are picked randomly and compared in terms of their Pareto 

dominance rank. The solution with the highest Pareto dominance rank is inserted in the 

mating pool. In the case where the two solutions share the same Pareto dominance rank, 

one of the two solutions is chosen randomly and included in the mating pool, disregarding 

the NSGA-II crowding measure which usually constitutes the secondary criterion for 

selection for variation. The selection for variation process continues until the mating pool 

is filled. 

At the selection for survival stage, the diversity measure is again eliminated as a 

discriminatory criterion for selection. In the situation where the number of locally non-

dominated solutions exceeds the prefixed size of the active archive, the solutions are 

selected randomly for survival and propagation to the succeeding generation of the 

optimisation process.  

On the other hand, when required (i.e. Is < 1-ε), the diversity promotion mechanisms are 

automatically activated in the selection for variation and the selection for survival 

procedures based on the diversity indicator monitoring the diversity of the locally non-

dominated solutions. 

 

Step 2: 

The second step of the DMO consists of a novel mutation operator designed to ensure the 

usual explorative and diversity preserving benefits of the mutation process in evolutionary 

algorithms. Moreover, the new mutation operator is designed to take into consideration the 

diversity requirement to minimise the problem of having the mutation process causing a 

deterioration by uncovering, in a high dimensional search space, a non-dominated solution 

which is remote from the Pareto front and which can hinder the search process. The 

introduced mutation operator can be compared with Deb and Goyal’s (1996) polynomial 

mutation to some extent. The polynomial mutation enjoys a good reputation tackling real-

valued optimisation problems and has been deployed within several studies solving the 

DTLZ2 test function used in this study (Deb, Thiele, Laumanns and Zitzler 2002, Khare et 

al 2003 and Purshouse and Fleming 2003b).  

 

The polynomial mutation is presented in Equation 4.3, where Oi is the mutated (or the 

offspring) value of the i
th decision variable of a certain candidate solution SA in an 

approximation set of decision vectors A. In Equation 4.3, Pi is the original (or the parent) 

value of the i
th decision variable of SA. Ui and Li denote respectively the upper and the 
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lower bounds of the ith decision variable, ηm is the mutation distribution parameter and ri is 

a random number generated uniformly from the range [0, 1]. 
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Using the polynomial mutation operator, the magnitude of the normalised variation of a 

certain decision variable is inversely proportional to the mutation distribution parameter ηm 

whose value is set at the start of the optimisation process. A common setting for the 

mutation distribution parameter is ηm = 20 alongside a mutation probability of pm = 1/n for 

each individual decision variable, where n is the total number of decision variables. The 

previous settings for the polynomial mutation were deployed in studies such as Deb, 

Thiele, Laumanns and Ziztler (2002) and Khare, Xao and Deb (2003). 

The degree of similarity between the DMO’s mutation operator and the polynomial 

mutation is that they both integrate a control process for the mutation magnitude of a 

certain candidate solution. However, in a manner which is different from the polynomial 

mutation which requires a fixed mutation distribution parameter (ηm) to control the 

magnitude of the expected mutation of a certain decision variable, the mutation operator of 

the DMO adapts the magnitude of the expected mutation for a certain decision variable 

based on two complementary criteria:  
 

(1) the value of the spread indicator (Is) measuring the relative ‘global’ diversity worth 

of the locally non-dominated set of solutions and 

(2) the NSGA-II ‘crowding’ measure which highlights the ‘local’ diversity worth of 

each single solution separately. 
 

DMO Mutation Operator 

The mutation operator of the DMO, illustrated in Figure 4.3, receives its input in the form 

of the decision variable vectors of the whole population of solutions. These decision 

variables vector are produced by the selection for variation process from the active archive, 

containing the set of locally non-dominated solutions, followed by the recombination 

process. In this study the simulated binary crossover (SBX) (Deb and Agrawal, 1995), a 

popular recombination operator for real coded optimisation tasks, is used.  

The mutation operator then adaptively determines the range of mutation for each solution 

in the population. More precisely, the boundaries of the mutation range for each decision 

variable are locally, and adaptively, determined in a two-step process and centred over the 

value of each decision variable chosen to undertake mutation. After determining the local 

(4.3) 
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range of mutation for each decision variable of each candidate solutions, the third step then 

consists of perturbing the decision variables chosen for mutation within their pre-

determined local range of mutation. 

 

Determining the global range of mutation for the whole current approximation set 

1. At a certain generation ‘gen’ of the evolutionary optimisation process, a global 

mutation range, ‘Rgen’, for the whole set of locally non-dominated solutions is first 

determined based on the value of the spread indicator presented in Equation 4.2. This 

process is illustrated by the first step in Figure 4.3. The spread indicator Is is a positive 

real number whose minimum value is zero and optimal value is 1. At a certain 

generation of the optimisation process, the value of the spread indicator is normalised 

in the range [0.01, 1] to represent the global mutation range (Rgen) for current 

approximation set of solutions. Rgen defines a certain percentage of the total range of 

definition [Li, Ui] of every decision variable dvi.  

a. A value of Is tending to zero highlights a very poor diversity quality, and will 

correspond to the value 1 in the normalisation range [0.01, 1], therefore 

articulating the request for the highest level of mutation possible.  

b. On the other hand, for Is values increasing from 0.9 (i.e. < 1-ε, in here ε = 0.1) 

(to any positive number), the global mutation range Rgen will tend to the value 

0.01 to reduce the amplitude of the mutation process. 

 

Refining the global range of mutation by separately determining local ranges of 

mutation for each candidate solution in the current approximation set 

2. After having determined the length of the global range of mutation for the set of 

locally non-dominated solutions, customised local ranges of mutation Rgen(zA) for each 

single solution zA are then set based on the crowding measure around each solution 

(the second step in Figure 4.3).  

a. In the finite set of locally non-dominated solutions, the crowding measure for 

each solution is calculated.  

b. These crowding values are then normalised in the range [0.01,  Rgen],  with the 

minimum local crowding measure mapped to Rgen and the maximum local 

crowding measure mapped to 0.01.  

This is conveying the request for higher mutation magnitudes for the crowded solutions 

and vice versa. The normalised values of the crowding measures define the amplitude of 

the mutation range for each decision variable of each candidate solution. The determined 

local mutation ranges are then centred over the values of the pre-mutated decision 

variables for each solution. This is illustrated by the third step in Figure 4.3. 
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Figure 4. 3 DMO: The Adaptive Mutation 
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Mutating the decision variables in their defined local mutation range 

3. After defining the local mutation range for each decision variable of all the candidate 

solutions, the value of a certain decision variable chosen to undertake mutation is 

perturbed randomly within its determined local mutation range. Based on a uniform 

two-sided coin flip probability, the new value for a mutation subjected decision 

variable is randomly interpolated in one of the 2 ranges: 

[local_lower_mutation_boundary, current_value) or 

(current_value, local_upper_mutation_boundary] 

 

The DMO mutation operator is applied uniformly to every decision variable with a 

probability pm=1/n, where n is the total number of decision variables. This is a standard 

probability for uniform mutation operators and is used in studies deploying the polynomial 

mutation for solving real-coded multiobjective optimisation problems such as Deb, Thiele, 

Laumanns and Zitzler (2002) and Khare et al (2003). The setting pm=1/n in the context of 

the DMO, which uses its own adaptive distribution parameter, conforms to the findings by 

Purshouse and Fleming (2003b). Purshouse and Fleming (2003b) showed that despite 

being unsuitable for optimisation problems with many competing objectives when 

combined with the prevalent settings of the distribution parameter in the polynomial 

mutation context, the setting pm=1/n was a good choice of mutation probability (in the 

context of the DTLZ2 test functions) for a wide range of distribution parameters (in terms 

of solutions convergence and distribution).  

In Figures 4.4 a pseudocode description of the proposed DMO within the context of 

NSGA-II is presented. A pseudocode description of the DMO mutation operator (i.e. step 

2) is also given in Figure 4.5. 

In the following section, the experimental framework used to test the performance of the 

DMO is presented. This will include a summary of the different optimisation problems 

used, the configuration of the optimisers and the different performance metrics utilised for 

assessing the utility of the DMO. 

 

Test Functions, Configurations and Performance Metrics 
 
Test Functions and Optimiser Configurations 

 
The DMO is incorporated in the context of NSGA-II. The resulting optimisation strategy 

will be referred to as NSGA-II/DMO. Four different versions of the scalable DTLZ2 test 

function, featuring 6, 8, 12 and 20-objective optimisation problems, are used to assess the 

performance of NSGA-II/DMO. 
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-Initialize random population P 15 

-Evaluate the objective values of P and store them in A16 

For gen = 1 to Max_Gen 

-Assign ranks to the solutions in P using non-dominated sorting strategy 

-Determine the crowding distance 
AZCrd for each solution ZA in P  

-Generate offspring population Q from P– size Nind 

-DMO Step 1:  

 

-Calculate Is (Equation 4.2) for the local Pareto front 17 presented in A 

-If Is < 1-ε 18  

-Binary tournament selection (Standard Tie Breaking – diversity promotion active) 
-Else 

-Binary tournament selection (Random Tie Breaking – diversity promotion inactive) 
 

-Recombination  
 

-DMO Step 2: 

Adaptive Mutation Operator (described in Figure 4.4) 
 

-Evaluate objective values for the offspring population Q 
 

-Combine parent population P and offspring Population Q – size: 2*Nind 

-Assign ranks to the combined population using non-dominated sorting strategy 

-Determine the crowding distance for each solution in the combined population 

-DMO Step 1 continued: 

 

-If Is < 1-ε 

Select Nind solutions to propagate to the next generation (Selection Criteria: 1st: 
elitist -biased towards lower ranks- 2nd: crowding distance - bias less crowded 
solutions – diversity promotion active) 

-Else 
       Select Nind solutions to propagate to the next generation (Selection Criteria: 1st: 

elitist -biased towards lower ranks- 2nd: random – diversity promotion inactive)  
 

 

End loop 

Figure 4. 4 Pseudocode of NSGA-II with the addition of the DMO steps 

 

                                                 
15 ‘P’ is a 2D array of decision variables and its dimension is Nind x Nvar, where Nind is the size of the 
population of candidate solutions and Nvar is the number of decision variables. 
 
16 ‘A’ is a 2D array of objective values and its dimension is Nind x Nobj, where Nobj is the number of 
objectives being optimised.   
 
17 For the DTLZ2 test function used in this study, Is is normalized with respect to the true Pareto front, i.e. the 

minimum and maximum values for each objective (
*

mz in equation 4.2) are respectively 0 and 1. 
18  ε = 0.1 in this study. 
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/* Calculate the global mutation range Rgen: */19 

If Is > 2  

Rgen = 0.01 
Else 

Rgen
20

02

001.021

02

101.0

−

×−×
+

−

−
×= sI  

 

/* Find the minimum and maximum crowding values Crd */  
/* Crdmin corresponds to the most crowded solution in A at generation ‘gen’ */ 
/* Crdmax corresponds to the least crowded solution in A at generation ‘gen’ */ 

genAZ AZCrdCrd
A

∈= :minmin ,  

genAZ AZCrdCrd
A

∈= :maxmax ,  
 

For each solution ZA in P 

maxmin

maxmin

maxmin

01.001.0
)(

CrdCrd

CrdCrdR

CrdCrd

R
CrdZR

gengen

ZAgen A −

×−×
+

−

−
×=  

For each decision variable 
Nvar

1=idv in ZA 

If r1 ≤ 1/Nvar21  

/* Set the magnitude of the local mutation range Rmut */ 

)()( iiAgenmut LUZRR −×=  
 

/* Set the lower boundary of the local mutation range */ 

If imuti LRdv <− )2/(  

iimut LdvL =)(  

Else 

2/)( mutiimut RdvdvL −=  
 

/* Set the lower boundary of the local mutation range */ 

If imuti URdv >+ )2/(  

iimut UdvU =)(  

Else 

2/)( mutiimut RdvdvU +=  

/* Mutate the decision variable dvi */ 

2))()(()( rdvLdvUdvLdv imutimutimutimut
×−+=  

End If 

End For 

End For 

Figure 4. 5 Pseudocode of the DMO step 2 (The Adaptive Mutation) 

                                                 
19 /*This is a comment*/ 
 

20 Rgen and Rgen (ZA) are calculated using the data scaling formula:  

minmax

minmaxmaxmin

minmax

minmax

XX

YXYX

XX

YY
XY

−

×−×
+

−

−
×=

  
where Ymax and Ymin are the boundaries of the new normalisation range, and Xmax and Xmin are 

the boundaries of the range of the original data. Note that the values of Is and 
AZCrd  are 

normalised in the reverse order within the ranges [0.01, 1] and [0.01, Rgen] respectively. 
 

21 r1 and r2 are random numbers drawn from a uniform distribution on the unit interval. 



Chapter 4. Enhancing the Diversity Perspective 

  

115

 
These four instances of DTLZ2 will be referred to as DTLZ2 (6), DTLZ2 (8), DTLZ2 (12) 

and DTLZ (20) respectively. Some of the DTLZ2 versions used in this chapter (DTLZ2 (6) 

and DTLZ2 (12)) were investigated by Purshouse and Fleming (2003b) in their study 

which identified that despite being suitable for multiobjective optimisation problems with a 

reduced number of objectives (no more than 3), the classical and widespread parameter 

settings of the simulated binary crossover (pic and ηc) were not suitable for a higher number 

of objectives.  

 

Similar to Pusrhouse and Fleming’s study, the simulated binary crossover (SBX), a two-

parent crossover operator that produces two new solutions, is used in this study as well. 

SBX is illustrated in Equation 4.4, where Oi,1 and Oi,2 are the two offspring values for the 

ith decision variable whose parent values are Pi,1 and Pi,2, ηc is a distribution parameter and 

ri is a random number generated uniformly from [0, 1]. Similar to the study by Purshouse 

and Fleming, in this work, each decision variable dvi is independently considered for 

undertaking the variation operator. The probability of uniformly applying the variation 

operator on a certain decision variable, pic, is commonly set to a value of 0.5 alongside a 

distribution parameter value ηc = 15 (Deb, Thiele, Laumanns and Zitzler 2002) and a 

probability of applying variation to a certain pair of solutions pc = 1.  

 

In Purshouse (2004) and Purshouse and Fleming (2003b) these settings were shown to be 

convenient for optimising the DTLZ2 (3) but inappropriate for the DTLZ2 (6) and DTLZ2 

(12) problems, in terms of the resulting convergence of the produced results towards the 

Pareto fronts of these test functions, as well as in terms of the solutions diversity.  

In this study, two scenarios deploying two different settings for the SBX operator are 

investigated to assess the performance of the DMO when operating in the NSGA-II 

framework and optimising each version of the DTLZ2 test function. The first scenario 

consisted of the SBX operator configured with standard parameters usually used in the 

EMO community (ηc = 15, pic= 0.5 and pc = 1) (Deb, Thiele, Laumanns and Zitzler 2002, 

Khare et al 2003). Additionally, based on the findings by Purshouse and Fleming (2003b) 

and Purshouse (2004), the second scenario for each of the DTLZ2 functions consisted of 

well-chosen parameters for the SBX operator and which were expected to be more suitable 

for each of the DTLZ2 functions investigated. These two scenarios were intended to 

investigate the impact of the DMO and quantify the level of improvement or deterioration 

that the strategy might introduce when operating in the standard or the informed 

(optimised) configurations. In the NSGA-II context, the polynomial mutation operator was 

used and configured with the standard parameters for each of the DTLZ2 functions.  
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The configuration of NSGA-II and NSGA-II/DMO is presented in Table 4.1 below. The 

two algorithms were balanced in terms of the number of objective function evaluations. 

 

Performance Metrics 

The performance of the NSGA-II/DMO is compared with the results achieved by NSGA-II 

for each of the four versions of DTLZ2 deployed. In order to make a rigorous comparison 

of the two optimisers and an accurate judgment over their performances, NSGA-II/DMO 

and NSGA-II were each executed 10 times and their produced results were compared at 

every execution. The DD-metric (Zitzler 1999), which computes the difference between 

the dominated distances of two approximation sets, is one of the two binary performance 

metrics used to assess the quality of the approximation sets achieved by NSGA-II/DMO 

and NSGA-II. The other binary metric deployed is the C-metric, previously described in 

Chapter 4. The previous two metrics were intended to highlight the quality of the 

approximation sets achieved by NSGA-II/DMO and NSGA-II in terms of the Pareto 

dominance concept.  

However, in the many-objective optimisation scenarios, the sole usage of the Pareto 

dominance concept to determine whether an optimiser A is better than optimiser B can be 

very misleading. In fact, the approximation sets achieved by both such optimisers A and B 

might be deemed non-dominated to each other and equally good if one of the 

approximation sets uniquely included non-dominated solutions lying on a contracted 

region close to the Pareto front, while the other approximation set exclusively contained 

non-dominated solutions lying around single axes of performances (in a high dimensional 

objective space) but which are remote from the Pareto front. It is therefore necessary to 

assess the proximity of the solutions achieved by an optimisation strategy towards the 

Pareto front and their diversity across the region of interest (in this study the ROI is the 

whole Pareto front) simultaneously. Hence, the normalised maximum spread metric 

(Equation 4.2) was used to measure the performance of the two optimisers in terms of the 

diversity quality of their produced results. 

(4.4) 
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Table 4. 1 Optimiser Configuration 

Size of Population 
NSGA-II: 100 

NSGA-II/DMO: 100 

NSGA-II: SBX 

NSGA-II/DMO: SBX 

Standard 

Configuration 

Informed 

Configuration  

ηc pc Pic ηc pc Pic 

DTLZ2 (6) 15 1 0.5 15 1 0.1 

DTLZ2 (8) 15 1 0.5 10 1 0.1 

DTLZ2 (12) 15 1 0.5 10 1 0.05 

Crossover operator 

DTLZ2 (20) 15 1 0.5 5 1 0.01 

NSGA-II: Polynomial Mutation  
Probability: 1/(number of Decision Variables) 

 ηm pm  

DTLZ2 (6) 20 ≈ 0.06 

DTLZ2 (8) 20 ≈ 0.05 

DTLZ2 (12) 20 ≈ 0.04 

DTLZ2 (20) 20 ≈ 0.03 

Mutation Operator 

NSGA-II/DMO:  

DMO Adaptive Mutation 
Probability: 1/(number of Decision Variables) 

Number of 

generations/ Run 
200 

Number of Runs 10 

 

The ideal diversity measure sought was Is =1 and which represents an intermediate, 

uniform, spread measure between the two extreme situations:  

(1) Dispersal of solutions in sub-optimal regions of the objective space, and  

(2) Contracted diversity in a possible sub region of the Pareto front.   

On the other hand, the convergence quality of the achieved approximation sets is assessed 

in terms of their proximity to the well-defined Pareto fronts (k-dimensional quadratic bowl, 

k is defined in Section 3.3.6) of the DTLZ2 test function. A specialised proximity metric 

for DTLZ2 is used to measure the median proximity of the achieved approximation sets 

(ZA) to the Pareto fronts of each of the DTLZ2 versions investigated. The proximity 

metric, presented in Equations 4.6, is none other the generational distance (GD) metric 

(Veldhuizen 1999) for the case of a continuous Pareto optimal reference set Z*.  
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The equality in Equation 4.5 (where M is the number of objectives) only holds when the 

objective vector z is a Pareto optimal solution. 

Finally, in order to illustrate the performance of the two optimisers in terms of the desired 

requirements –convergence and diversity- the Non-Dominated Evaluation metric (Deb 

2001) was used to simultaneously visualise the performance of the optimisers in terms of 

proximity to the Pareto front and in terms of diversity. The spread metric and the 

generational distance metric were posed as two objective functions evaluating two 

competing objectives: Objective 1: Convergence and Objective 2: Diversity. The problem 

can then be formulated as a two-objective optimisation scenario optimising (minimising) 

these two objectives. As a result, the performance of an optimiser A would be confidently 

deemed superior to the performance of another optimiser B if its approximation set to the 

posed bi-objective optimisation problem dominates the approximation set achieved by B. 

The Non-dominated evaluation metric is illustrated in Figure 4.6 where it can be inferred 

that optimiser A outperforms optimiser B in terms of convergence and diversity but it 

cannot be concluded that A outperforms C. 

 

Figure 4. 6.  The Non-Dominated Evaluation Metric 

 
In the following section, the results achieved by NSGA-II/DMO are illustrated and 

compared with the results achieved by NSGA-II for each of the test functions investigated. 

Conclusions and a summary of the findings are given in the final section of the chapter. 
 

4.4. Results 

 
The adaptive strategy for controlling and promoting diversity (DMO) is composed of two 

components previously illustrated in Section 4.3.2. The DMO is assessed within two sets 

of experiments consisting of many-objective optimisation scenarios.  

A 

B 

C 

Convergence Metric 

Spread Metric 
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The first set of experiments was aimed at evaluating the performance of the suggested 

strategy (DMO) by measuring its impact on the optimisation process. The final 

approximation sets achieved by NSGA-II/DMO and NSGA-II for each of the DTLZ2 test 

functions after 200 generations are contrasted. Each optimiser was executed 10 times in 

order to assess the significance of the observed results and to make sure that the 

observations have not arisen by chance.  
 

The second set of experiments was aimed at assessing the second component of the DMO 

in particular. The second component consisted of an adaptive mutation operator replacing 

the polynomial mutation. Consequently, a standard NSGA-II optimiser employing the 

polynomial mutation operator was executed 10 times (200 generations per execution) to 

optimise the DTLZ2 test functions used in this study. The quality (convergence and 

diversity) of the approximation sets achieved by NSGA-II for each test function was 

compared with the quality of the approximation sets achieved by a slightly modified 

version of NSGA-II using the DMO’s mutation operator instead of the polynomial 

mutation. 
 

In Table 4.2, the DD-metric results and the C-metric results achieved by NSGA-II/DMO 

and NSGA-II for DTLZ2 (6) are illustrated. The two optimisers were similarly configured 

with the standard SBX parameters usually used in the EMO community. The C-metric is 

not a symmetric indicator, and therefore in order to have an informative idea about the 

relative quality of two approximation sets, the metric had to be executed twice, switching 

the order of its input.  

Table 4. 2. DD-metric and C-metric results for DTLZ2 (6) 

A = NSGA-II/DMO and B = NSGA-II (Standard SBX configuration) 

 DTLZ2 (6)  

Execution 

Number: 
C-Metric (A, B) C-Metric (B, A) DD-Metric (A, B) 

1 0.34 0 -0.65711 

2 0.35 0 -0.58455 

3 0.5 0 -0.85758 

4 0.66 0 -1.3793 

5 0.54 0 -1.017 

6 0.47 0 -0.73012 

7 0.44 0 -0.70773 

8 0.46 0 -0.88246 

9 0.47 0 -0.88319 

10 0.51 0 -0.81869 

Mean Value: 0.4740 0 -0.8518 
 

Form Table 4.2, it can deduced that the approximation sets achieved by NSGA-II/DMO 

were covering an average of 47% of the solutions achieved by NSGA-II over the 10 runs. 
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On the other hand, NSGA-II was repeatedly achieving nil coverage of the solutions 

achieved by its DMO hybridized counterpart. 

The dominated distance metric was uniformly producing results that highlight the superior 

quality of the approximation sets achieved by NSGA-II/DMO. A negative DD-metric 

value denotes that the first input of the metric (e.g. Algorithm A in DD-Metric (A, B)) 

produced an approximation set which is overall better than and dominates most or part of 

the approximation set produced by its second input (Algorithm B). Note that the results of 

the two metrics highlighted in Table 4.2 are measured based on the Pareto dominance 

concept which constitutes the underlying quality criterion for both binary metrics. In 

Figure 4.7, the black circles, whose (x, y) coordinates are the values of the GD-metric and 

the maximum spread indicator respectively, represent the values of the non-dominated 

evaluation metric achieved by NSGA-II/DMO at each of the 10 executions of the optimiser 

solving DTLZ2 (6) and using a standard SBX configuration. The values of the non-

dominated evaluation metric achieved by NSGA-II for the same optimisation scenario are 

represented by the red squares. The values of the GD metric achieved by NSGA-II/DMO 

over the 10 runs were constantly lower than 0.1 and were accompanied by spread measures 

with an approximate ceiling value of 2. 
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Figure 4. 7. NSGA-II/DMO VS NSGA-II in the context of DTLZ2 (6) (Standard SBX 

configuration) 
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The observed results highlight good proximity to the Pareto front alongside a simultaneous 

near-optimal diversity22. On the other hand, the GD values achieved by NSGA-II over the 

10 runs constantly exceeded the value 0.2 alongside an average diversity measure of 6. 

From the results illustrated in Figure 4.7, it was very clear that the performance of NSGA-

II/DMO was superior to the performance of NSGA-II in terms of both requirements 

(convergence to the Pareto front and desired diversity).  

Table 4. 3. DD-metric and C-metric results for DTLZ2 (6) 

A = NSGA-II/DMO and B = NSGA-II (Informed SBX configuration) 

 DTLZ2 (6)  

Execution 

Number: 
C-Metric (A, B) C-Metric (B, A) DD-Metric (A, B) 

1 0.03 0 -0.0090581 

2 0.04 0 -0.016966 

3 0 0 0 

4 0.04 0 -0.018131 

5 0.03 0 -0.0089042 

6 0 0 0 

7 0.04 0 -0.018709 

8 0.02 0 -0.010254 

9 0.02 0 -0.0072117 

10 0.03 0 -0.013414 

Mean Value: 0.0250 0 -0.0103 
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Figure 4. 8. NSGA-II/DMO VS NSGA-II in the context of DTLZ2 (6) (Informed SBX 

configuration) 

                                                 
22 Optimal in terms of diversity extent. Future research will look at optimising the uniformity of the 
diversity (e.g. using entropy based metrics) while controlling the diversity extent using the DMO. 
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The results achieved by NSGA-II were much more diverse in terms of dispersal in the 6-

dimensional objective space. Nevertheless, absolute diversity, which can be achieved using 

a completely random search process, is undesirable in many-objective optimisation 

scenarios and once again led to the deterioration of the convergence of the search process 

towards the optimal regions of the space. 

In Table 4.3, the results of the C-metric and the DD-metric are highlighted for the same 

DTLZ2 (6) test function. However, an informed setting for the SBX operator was used, 

based on the findings in (Purshouse 2004). The observed results showed an improved 

performance of the NSGA-II conforming to the findings by Purshouse. This is highlighted 

by the reduction of the average value of the C-metric and the DD-metric achieved by 

NSGA-II/DMO over the 10 runs. Nevertheless, the binary metric values were still 

favouring NSGA-II/DMO. In Figure 4.8, a dramatic improvement in the performance of 

NSGA-II for the 6-objective problem was observed. The enhanced performance of NSGA-

II was due to the decrease in the level of exploration manifested by the optimised setting of 

the SBX operator (pe is reduced from 0.5 to 0.1). NSGA-II/DMO on the other hand was 

less susceptible to the SBX settings for the same test function, but retained a significantly 

superior performance in terms of both criteria (Figure 4.8). The immunity of the NSGA-

II/DMO against the setting modification of the SBX operator, in terms of the convergence 

and the diversity criteria, was quite understandable and is due to the diversity management 

operator. 

Similar to the results achieved for DTLZ2 (6), the results achieved for the 8-objective 

version of DTLZ2 highlight a significantly superior performance of the NSGA-II/DMO 

when compared with the performance of NSGA-II. 

Table 4. 4. DD-metric and C-metric results for DTLZ2 (8) 

A = NSGA-II/DMO and B = NSGA-II (Standard SBX configuration) 

 DTLZ2 (8)  

Execution 

Number: 
C-Metric (A, B) C-Metric (B, A) DD-Metric (A, B) 

1 0.45 0 -1.028 

2 0.25 0 -0.55142 

3 0.57 0 -1.3388 

4 0.59 0 -1.3333 

5 0.31 0 -0.70815 

6 0.35 0 -0.77246 

7 0.4 0 -0.84258 

8 0.37 0 -0.76733 

9 0.42 0 -0.90902 

10 0.19 0 -0.42073 

Mean Value: 0.39 0 -0.8672 
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The values of the C-metric and the DD-metric achieved by NSGA-II/DMO and NSGA-II, 

each optimising the DTLZ2 (8), are illustrated in Table 4.4 (standard SBX) and Table 4.5 

(optimised SBX). The same observations highlight the superior performance of NSGA-

II/DMO (higher coverage and lower dominated distances). Once more, the mean values of 

the coverage extent and the dominated distances seemed to reduce when a suitable setting 

for the SBX operator was used. This was only indicating an increased number of relatively 

non-dominated solutions when the approximation sets produced by A and B were 

compared.  

However, Figures 4.9 and 4.10 demonstrated again the superiority of the NSGA-II/DMO 

over NSGA-II when a fine-grained analysis of the convergence and the diversity 

requirements is performed simultaneously.   
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Figure 4. 9. NSGA-II/DMO VS NSGA-II in the context of DTLZ2 (8) (Standard SBX 

configuration) 

From Figure 4.10, it can be observed that when equipped with an optimised SBX operator, 

NSGA-II/DMO was actually able to achieve an enhanced (compared to the scenarios 

deploying a standard SBX) and near optimal convergence to the Pareto fronts at certain 

runs of the algorithm for the 8-objective version of DTLZ2. Nevertheless, the enhanced 

convergence seemed to cause a minor deterioration of the diversity measure by increasing 

the average value of the spread metric achieved over the 10 runs to a value of 2 (the 

average value of the spread metric in Figure 4.9 was ≈ 1.3). This observation once again 

endorses the conflict between the convergence and the diversity requirements in EMO. 

Nonetheless, the results achieved by the NSGA-II/DMO were significantly better than the 

results achieved by NSGA-II for the 8-objective optimisation problem, highlighting the 

beneficial impact and utility of the DMO. 
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Table 4. 5. DD-metric and C-metric results for DTLZ2 (8) 

A = NSGA-II/DMO and B = NSGA-II (Informed SBX configuration) 

 DTLZ2 (8)  

Execution 

Number: 
C-Metric (A, B) C-Metric (B, A) DD-Metric (A, B) 

1 0.02 0 -0.0062699 

2 0.05 0 -0.020835 

3 0 0 0 

4 0.02 0 -0.0058416 

5 0 0 0 

6 0 0 0 

7 0 0 0 

8 0 0 0 

9 0 0 0 

10 0 0 0 

Mean Value: 0.0090 0 -0.0033 
 

In Tables 4.6 and 4.7 the values of the C-metric and the DD-metric achieved at each 

execution of A and B, when standard and optimised settings for the SBX operator were 

used, are respectively presented. This time the optimisers were solving a 12-objective 

version of the DTLZ2 test function. The same conclusions drawn from the 6- and 8- 

objective scenarios are achieved for the 12-objective scenario. 
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Figure 4. 10. NSGA-II/DMO VS NSGA-II in the context of DTLZ2 (8) (Informed 

SBX configuration) 

The results of the non-dominated evaluation metric for the 12-objective scenarios 

(incorporating standard and optimised SBX settings) are presented in Figures 4.11 and 

4.12 respectively. The significantly superior performance of the NSGA-II/DMO in terms 

of convergence and diversity was very apparent.   
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Finally, a 20-objective version of the DTLZ2 test function was tackled. In Tables 4.8 and 

4.9 the values of the C-metric and the DD-metric achieved at each execution of A and B, 

when standard and optimised settings for the SBX operator were used, are respectively 

presented. In both scenarios (standard and informed SBX settings), the results achieved by 

NSGA-II/DMO were not covering any of the solutions achieved by NSGA-II and vice 

versa.  

Table 4. 6. DD-metric and C-metric results for DTLZ2 (12) 

A = NSGA-II/DMO and B = NSGA-II (Standard SBX configuration) 

 DTLZ2 (12)  

Execution 

Number: 
C-Metric (A, B) C-Metric (B, A) DD-Metric (A, B) 

1 0.08 0 -0.18421 

2 0.17 0 -0.42636 

3 0.07 0 -0.17411 

4 0.2 0 -0.4973 

5 0.03 0 -0.070199 

6 0.06 0 -0.15524 

7 0.12 0 -0.3052 

8 0.19 0 -0.4975 

9 0.17 0 -0.44757 

10 0.12 0 -0.29128 

Mean Value: 0.1210 0 -0.3049 
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Figure 4. 11. NSGA-II/DMO VS NSGA-II in the context of DTLZ2 (12) (Standard 

SBX configuration) 
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The dominated distance metric measuring the difference of any dominated distances 

between the 2 approximations sets in the objective space was constantly producing a zero 

difference. These observations were actually expected in a 20 dimensional objective space. 

As the dimensionality of the objective space increases, a certain solution has a higher 

chance of becoming non-dominated. 

Table 4. 7. DD-metric and C-metric results for DTLZ2 (12) 

A = NSGA-II/DMO and B = NSGA-II (Informed SBX configuration) 

 DTLZ2 (12)  

Execution 

Number: 
C-Metric (A, B) C-Metric (B, A) DD-Metric (A, B) 

1 0.01 0 -0.011096 

2 0.01 0 -0.016474 

3 0.04 0 -0.04734 

4 0.06 0 -0.088352 

5 0 0 0 

6 0.04 0 -0.044164 

7 0.01 0 -0.013294 

8 0 0 0 

9 0 0 0 

10 0.06 0 -0.085266 

Mean Value: 0.0230 0 -0.0306 
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Figure 4. 12. NSGA-II/DMO VS NSGA-II in the context of DTLZ2 (12) (Informed 

SBX configuration) 

In the context of the 2 scenarios optimising DTLZ2 (20), basically all the solutions 

achieved by the optimisers A and B over the 10 runs were considered non-dominated with 

respect to each other in terms of pure Pareto optimality. The results of the experiments 
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undertaken in this study have highlighted the fact that as the number of objectives 

increases, the C-metric and the DD-metric become increasingly useless and uninformative. 

This is an interesting finding which, to the author’s knowledge, has not been investigated 

in a proof of principle context and within a many-objective framework. The increasingly 

misleading outcomes of the C-metric and the DD-metric as the number of objectives 

increases is due to the fact that these metrics assess the relative performance of two 

approximation sets by finding pairs of vectors that dominate each other. However, as the 

dimensionality of the objective space increases, finding pairs of objective vectors that 

dominate each other becomes much less likely and leads the metrics to conclude 

equivalence between 2 approximation sets. More information on performance metrics used 

in the EMO can be found in Zitzler (1999), Deb (2001) and Knowles (2002). 
 

Table 4. 8. DD-metric and C-metric results for DTLZ2 (20) 

A = NSGA-II/DMO and B = NSGA-II (Standard SBX configuration) 

 DTLZ2 (20) 

Execution 

Number: 
C-Metric (A, B) C-Metric (B, A) DD-Metric (A, B) 

1-10 0 0 0 

Mean Value: 0 0 0 
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Figure 4. 13. NSGA-II/DMO VS NSGA-II in the context of DTLZ2 (20) (Standard 

SBX configuration) 

Stopping the assessment process at this step would have concluded that the 2 optimisers 

are equally good and efficient. However the results of the non-dominated evaluation metric 

presented in Figures 4.13 and 4.14 revealed a different outcome. From Figures 4.13 and 

4.14 it was very clear that the NSGA-II/DMO was more suitable for the optimisation 
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problem consisting of 20 competing objectives. NSGA-II/DMO was achieving 

approximation sets much closer to the Pareto front while maintaining a much ‘better’ 

diversity in the required rather than the global sense. The use of an optimised configuration 

for the SBX operator introduced a lot of improvements to the results achieved by the 2 

optimisers. NSGA-II results were improved in terms of convergence to the Pareto front 

and in terms of reducing the dispersal of solutions in non-optimal regions of the objective 

space. On the other hand, the use of an optimised SBX operator has specifically improved 

the quality of the results achieved by NSGA-II in terms of their convergence to the Pareto 

optimal front (Figure 4.14). Despite these performance improvements caused by the use of 

a well-tuned SBX operator, NSGA-II/DMO was still significantly outperforming NSGA-II 

by producing overall better quality approximation sets in terms of convergence and ‘good’ 

desired diversity. 

Table 4. 9. DD-metric and C-metric results for DTLZ2 (20) 

A = NSGA-II/DMO and B = NSGA-II (Informed SBX configuration) 

 DTLZ2 (20)  

Execution 

Number: 
C-Metric (A, B) C-Metric (B, A) DD-Metric (A, B) 

1-10 0 0 0 

Mean Value: 0 0 0 
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Figure 4. 14. NSGA-II/DMO VS NSGA-II in the context of DTLZ2 (20) (Informed 

SBX configuration) 
 

The second set of experiments was intended to assess the performance of the second 

component of the DMO in particular. The second component of the DMO consists of an 
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adaptive mutation operator, and was previously described in section 4.3.2.  The effect of 

the DMO mutation operator was compared with the effect of the polynomial mutation 

operator. In order to evaluate the effect of the polynomial mutation and the effect of the 

DMO mutation operator on the optimisation process, similar experiments to the ones 

undertaken to assess the performance of the DMO are produced. However, the 2 contrasted 

optimisers (A and B) were respectively:  

• (A) Standard NSGA-II optimiser using a simulated binary crossover (ηc = 15, pc = 1 

and pic = 0.5) and the DMO mutation operator (pm = 1/n, where n is the number of 

decision variables)  

• (B) Standard NSGA-II optimiser using a simulated binary crossover (ηc = 15, pc = 1 

and pic = 0.5) and a polynomial mutation (ηm = 20 and pm = 1/n). 
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Figure 4. 15. Polynomial Mutation VS DMO Mutation in the DTLZ2 (6) context 
 

Each of the 2 optimisers were optimising the same DTLZ2 test functions used in the first 

set of experiments and were executed 10 times (200 generations per execution). In Figures 

4.15, 4.16, 4.17 and 4.18, the results of the non-dominated evaluation metric for each of 

the DTLZ2 (6) –(8) –(12) and (20) achieved at each run of the two optimisers are 

presented respectively. In the 6-objective optimisation context, it was noticed that despite 

showing some competitiveness, the effect of the DMO mutation was generally more 

beneficial to the optimisation process compared to the effect of the polynomial mutation. 

NSGA-II using the DMO mutation operator was constantly achieving convergence values 

larger than 0.2 but smaller than 0.22 for the DTLZ2 (6). These values were much more 

superior to the values achieved when the same SBX configuration was deployed alongside 

the whole DMO (Figure 4.17). On the other hand, NSGA-II only achieved a convergence 

DMO 



Chapter 4. Enhancing the Diversity Perspective 

  

130

value in the range [0.21, 0.22] in 2 out 10 executions. In terms of ‘good’ diversity, the 

optimiser ‘A’ using the DMO mutation operator was shown to generally achieve better 

values over the 10 executions (worst value achieved < 6) compared to the values achieved 

by the optimiser ‘B’ (worst value achieved > 6.3). 
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Figure 4. 16. Polynomial Mutation vs DMO Mutation in the DTLZ2 (8) context 

 

0.24 0.25 0.26 0.27 0.28 0.29 0.3
5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

Proximity to The Pareto Front

D
iv

e
rs

it
y
 (

o
p

ti
m

a
l 
v
a

lu
e
 i
s

 1
)

DTLZ2 (12)

NSGA-II + ALS-Mutation

NSGA-II + Polynomial Mutation

 

Figure 4. 17. Polynomial Mutation vs DMO Mutation in the DTLZ2 (12) context 
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As the dimensionality of the optimisation problem increased (in both spaces: objective and 

decision variable space) the competitiveness between the 2 optimisers (‘A’ and ‘B’) 

seemed to totally vanish (Figures 4.16, 4.17 and 4.18). 
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Figure 4. 18. Polynomial Mutation vs DMO Mutation in the DTLZ2 (20) context 

 

NSGA-II using the DMO mutation operator was clearly outperforming its identical 

counterpart optimiser using the standard polynomial mutation (but not outperforming 

NSGA-II deploying the whole DMO) in terms of solutions convergence to the Pareto front 

and in terms of the ‘good’ diversity of the solutions achieved. 

 

4.5. Conclusion 

 
From the set of experiments presented in this Chapter, the success of the diversity 

management operator was established on a set of many-objective optimisation problems. 

The DMO is a beneficial strategy that addresses the conflict between the EMO requirement 

for a good proximity towards the Pareto front and the requirement for maintaining a 

diverse set of solutions. Purshouse (2004) and Purshouse and Fleming (2003b) highlighted 

that a successful configuration for the recombination and the mutation operators might be 

suitable for a certain multiobjective optimisation problem but unsuitable for another. As a 

result, the parameters of the recombination and mutation operators should be adequately 

tailored to fit a certain multiobjective optimisation problem rather than being standardised.  

Despite using a set of test functions with a simultaneously varying dimensionality in the 

objective and the decision variable space, Purshouse and Fleming (2003b) have suggested 

that the increase of the number of competing objectives is most likely the main influence 

DMO 
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on the success of certain recombination and mutation settings. However, using a similar 

experimental framework to the one used in Purshouse and Fleming (2003b) and Purshouse 

(2004), it was shown that when NSGA-II was equipped with the DMO, the resulting 

optimiser was less susceptible to the change of the parameter settings of the genetic 

operators. This is a very beneficial contribution of the DMO by itself. Additionally, the 

DMO was demonstrated to be highly beneficial for controlling the diversity requirement 

which usually hampers the search process and therefore the convergence of the 

manipulated solutions to the Pareto front of a MOP with many conflicting objectives.  

NSGA-II/DMO was significantly and repeatedly outperforming NSGA-II by producing 

solutions closer to the Pareto front and maintaining a near optimal and desired diversity 

among the solutions, for a set of many-objective optimisation problems (6 to 20 

objectives). DMO was tested on set of test functions with well-defined Pareto fronts. 

Nevertheless, the strategy can be used to solve any multiobjective optimisation problem 

which is tackled by a MOEA. The DMO is an efficient strategy that does not require high 

computational efforts. The decision maker/operator is only required to provide an 

approximate, targeted or desired, value for the extreme solutions (in terms of each 

objective) in the objective space.  These solutions will serve to define an approximation to 

the vertices of the hypercube which contains the desired ROI, and therefore to define the 

notion of a ‘good’ diversity. Note that these suggested vertices will solely play a role 

defining the notion of a desired diversity measure in order to efficiently control the 

diversity promotion mechanisms in a MOEA and guide the search towards the Pareto 

optimal front. The notion of a ‘desired’ or ‘good’ diversity can then be progressively and 

appropriately modified using a progressive preference articulation technique such as the 

technique by Fonseca and Fleming (1998) or Branke and Deb (2004).  

The use of progressive preference articulation techniques to manipulate the definition of 

dominance and reduce the dimensionality of the search spaces is highly commendable for 

solving evolutionary multiobjective optimisation problems and will be addressed in 

Chapter 5. 

4.6. Summary 

 
The Proximity of an approximation set towards the Pareto optimal front of a multiobjective 

optimisation problem, and the diversity of the solutions within the approximation set are 

two essential requirements in EMO. These two requirements are found to be conflicting 

with each other in the many-objective optimisation scenarios. This conflict is hindering the 

optimisation process of some of the most established MOEAs that uses Pareto dominance 

as a primary selection criterion alongside the diversity measure as a secondary 
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discriminator. In this chapter an adaptive local strategy for controlling and promoting 

diversity in the many-objective optimisation scenarios is introduced and tested on a set of 

test functions with varying number of objectives. The results achieved by the introduced 

strategy outperformed the results achieved by a reputed and representative MOEA in terms 

of both criteria: convergence and diversity. The strategy is very promising and future work 

should include its testing on a real world optimisation problem. 

Having addressed the convergence requirement in Chapter 3 and the diversity requirement 

in Chapter 4, in the following chapter progressive preference articulation techniques, a 

commendable approach for dealing with both requirements in evolutionary multiobjective 

optimisation will be explored. 
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Chapter 5 
 

Progressive Preference Articulation:  

The Practical Approach for EMO 

 
 
‘You must have an aim, a vision, a goal. For the man sailing through life with no 

destination or "port-of- call”, every wind is the wrong wind’.        

Tracy Brinkmann 

 

5.1. Introduction 
 

As the number of competing objectives increases the optimisation becomes more 

complicated. This is due to the introduction of new difficulties such as the obvious 

dimensionality increase of the Pareto front, and the difficulty of visualizing such scenarios.  

Reducing the dimensionality and therefore the complexity of an optimisation task is a 

straightforward way for dealing with the high-dimensional problems. Early approaches 

such as the weighted sum or the Tchebyshev method (Coello, Veldhuizen and Lamont 

2002) consisted of scaling techniques to convert multiobjective problems into a single 

objective counterpart. Such approaches presented several shortcomings, mainly the 

absence of the desired parallel search capacity. More recent techniques of dimensionality 

reduction for dealing with multiobjective optimisation problems consist of techniques to 

identify objectives redundancy and eliminate it. Principal Component Analysis has been 

used as an example of such a technique (see for example Purshouse (2004), Purshouse and 

Fleming (2003a) or Deb and Saxena (2005)). Its aim is to identify redundant objectives, 

whose absence has no substantial effect on the optimisation process, thereby simplifying 

the complexity of certain high dimensional problems and reducing the hyperspace of 

solutions. More recent research into dimensionality reduction in EMO includes the work of 

Brockhoff and Zitzler (see Brockhoff and Zitzler (2006a) and Brockhoff and Zitzler 

(2006b)). Brockhoff and Zitzler have investigated the problem of finding the minimum 

subset of objectives which are essential to the optimisation problem. They proposed an 

exact algorithm for solving the minimum objective subset problem (MOSS). The 

complexity of the proposed algorithm is polynomial in the number of decision variables 
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and exponential in the number of objectives. While dimensionality reduction is a remedial 

measure to tackle multiobjective optimisation problems, it can only be deployed in 

reducible scenarios where redundancy or objective relationships such as independence or 

harmony exist and are detectable. 

In scenarios, where insufficient redundancy can be detected in a high-dimensional 

problem, progressive preference articulation (PPA) is a proven useful alternative remedial 

measure. The incorporation of DM preference into evolutionary multiobjective 

optimisation algorithms is very useful for guiding the search into pertinent regions of 

interest (ROI), which are relevant to the decision maker. Coello (2000a) has produced a 

comprehensive survey about handling preferences in EMO. More recent surveys about 

preference articulation techniques in evolutionary multiobjective optimisation can also be 

found in Rachmawati and Srinivasan (2006). PPA can also provide advantages over the 

use of pure Pareto-optimality, which is unfettered in its search and is liable to produce 

solutions outside the ROI as well as within it.   

Until recently, most EMO research has focused on bi-objective problems where the need 

for incorporating the decision maker’s preferences is less apparent. The aim of the study 

presented in this Chapter is to encourage and promote the research of incorporating 

progressive preference articulation techniques into evolutionary multiobjective 

optimisation. In this chapter, some of the most established and most recent preference 

articulation techniques are discussed and upgraded to their progressive versions for 

incorporation into evolutionary multiobjective optimisation processes. The use of the 

increasingly popular ε-dominance concept as a potential PPA technique is also 

implemented and investigated. The major strengths and limitations of the investigated PPA 

techniques for tackling multiobjective optimisation problems are discussed from a decision 

maker’s point of view. Their utilities are evaluated by assessing the pertinence of their 

achieved results to the DM’s preferences. 

 

The preference articulation techniques investigated in this work include Branke’s “guided 

dominance principle” Branke et al (2001), Deb’s “biased crowding technique” (Branke 

and Deb 2004), a suggested technique based on a simple modification of the ε-dominance 

concept within the framework of Deb’s steady state ε–MOEA (Deb, Mohan and Mishra 

2003) and the preferability based approach operator (FF-PPA) (Fonseca and Fleming 

1998), one of the first truly PPA techniques for EMO.  

 

In Section 5.2, a description of the preference articulation techniques inspected in this 

study is given. In Section 5.3, the usefulness and practicality of the studied progressive 

preference articulation techniques are illustrated on simple bi-objective and 4-objectives 
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scenarios. In some cases, a progressive capability is introduced into existing preference 

articulation techniques. The strengths, weaknesses, user-friendliness and efficiency of 

these PPA techniques, in a multiobjective optimisation context, are also discussed from the 

viewpoint of the decision maker. Lastly, in Section 5.4, some concluding remarks are 

presented. 

 

5.2. The Investigated Preference Articulation Techniques 
 

In this section a brief description of some of the most recent preference articulation 

techniques is provided:  

5.2.1. Guided Dominance for EMO 
 

Branke et al (2001) introduced the guided dominance principle within the context of a 

novel optimiser, termed as the Guided Multi-Objective Evolutionary Algorithm (G-

MOEA). The principle of guided dominance manifested the DM’s preferences through a 

modification of the definition of dominance. The user has to determine all maximally 

acceptable tradeoffs between all pairs of objectives.  

To illustrate this concept, consider an optimisation problem consisting of two competing 

objectives. In order to use the guided dominance scheme, the DM has to decide a priori the 

maximum acceptable amount of degradation in terms of ‘objective 2’ which can be 

deemed worthy to be recompensed by a single unit of improvement in terms of ‘objective 

1’, and vice versa. Applying the guided dominance principle modifies the standard Pareto 

dominance concept which generally governs the selection processes in EAs.  

The modified dominance principle, affected by the guided dominance scheme, is presented 

in Equation 5.1. The parameters m12 and m21 denote correspondingly the maximum 

acceptable amount of degradation in terms of objective 1 and 2 which are compensated by 

a single unit of improvement in terms of objective 2 and 1 respectively. Using the guided 

dominance principle, a solution x is said to dominate an alternative solution y following 

the definition presented in Equation 5.1 with an inequality in at least one case. The 

articulated tradeoff values between pairs of objectives relax the standard Pareto dominance 

principle. As a result, a certain solution x will then dominates a larger region in the 

objective space.  
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From a geometrical point of view, the tradeoff values (m12 and m21) defined by the decision 

maker represent the slope values of the borders demarcating the regions of the objective 

space which are dominated by each candidate solution. By carefully setting suitable trade-

off values, the decision maker can articulate a particular region of interest on a convex 

Pareto front. Such ROI will be bounded by the solutions possessing certain tradeoff 

functions which are tangent to the convex Pareto front. However, because of the linear 

utility assumed in the guided dominance principle, it might not be possible to articulate a 

certain ROI on a concave or multimodal Pareto front. 

The guided dominance principle is illustrated in Figure 5.1 on a simple bi-objective 

optimisation problem. Suppose that the two candidate solutions A and B in Figure 5.1 had 

the following values in terms of objectives 1 and 2 respectively: A = (2, 1), B = (1, 2). 

From a pure Pareto dominance point of view, these two solutions are considered non-

dominated with respect to each other. 

In a different scenario, deploying the guided dominance principle, the DM might decide 

that ‘Objective 2’ is more important than ‘Objective 1’. For example, if the DM decides 

that ‘one’ unit of improvement in terms of ‘Objective 1’ is worth a maximum of ‘one’ unit 

of deterioration in terms of ‘Objective 2’, then m21 = 1. On the other hand, if the DM 

decides that ‘one’ unit of improvement in terms of ‘Objective 2’ can be traded with a 

maximum of ‘two’ units of deterioration in the performance of ‘Objective 1’, then m12 = 2. 

 

Figure 5. 1 Pareto Dominance versus Guided Dominance 

 

Manifesting the previous decision maker preferences via the guided dominance principle 

highlights that the candidate solution A is now preferred and therefore dominates the 

solution B. In other words, applying Equation 5.1 indicates that solution A dominates 

solution B despite being non-dominated with respect to solution B using the standard 

Pareto dominance principle ( )]112()211[()]221()122([ ×+≤×+∧×+<×+→BAf ). 
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The guided dominance principle can be assimilated with the standard Pareto dominance 

principle applied to a simple transformation of the objective space. This makes its 

incorporation into dominance-based evolutionary algorithms straightforward and practical.  

5.2.2. Biased Crowding Distance 

 
The biased crowding distance approach is one of the state-of-the-art preference articulation 

techniques that allows the user to efficiently focus on certain regions of interest on a 

convex or concave Pareto front. This technique has its roots in the biased fitness sharing 

approach (Deb 1999a) which was employed in the Non Dominated Sorting Genetic 

Algorithm (NSGA) (Deb et al 2002). In Deb (1999a), the sum of Euclidean distances 

between a certain candidate solution and its nearest-neighbours, which are measured in 

terms of each dimension of the objective space and used as a density estimate for sharing 

fitness values between solutions residing densely populated areas of the objective space 

and hence for promoting diversity, were affected by weighting values defining certain DM 

preferences and objective priorities. The transformation of the sum of distance measures 

into a weighted sum of measures was termed the biased fitness sharing approach and 

allowed the DM to focus on a certain specific objective from a set of objectives. However, 

the biased fitness sharing approach did not provide the utility of focusing on an 

intermediate ROI.  The biased crowding measure is inspired by the biased sharing 

approach, and addresses the shortcomings of the latter approach by providing the DM with 

the capability of focusing on a certain region of interest on the Pareto optimal front.   

The biased crowding measure is defined for any solution k on any particular front (in the 

objective space) all along the optimisation process as follows: 
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(5. 2) 

In Equation 5.2, dk is the original crowding measure for the solution k based on its 

neighbouring solutions, and dk’ is the crowding measure of the projected solutions on the 

plane whose direction is specified by the user to express a certain region of interest on the 

Pareto front. The parameter α is responsible for controlling the bias intensity. As a result, 

solutions located on the region of the front which is tangent to the DM’s devised projection 

plane, which reflect a certain preference of a ROI, will be biased and favourite to be 

retained because the ratio dk’/ dk will be close to unity, and therefore Dk will be 

approximately the same measure as the original crowding value for such solutions. The 

crowding measure applied is the nearest-neighbour density estimate used in NSGA-II and 

which was presented in Section 2.3.2.  
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Figure 5.2 illustrates the concept of the biased crowding distance for three different ROIs 

on a convex front. In the first part of Figure 5.2 (a), the DM specifies a direction vector η 

indicating his/her ‘vague’ preference of ROI in the 2-dimensional objective space. The 

user-specified direction vector η denotes the direction of the solution projections needed to 

compute the biased crowding measure. In Figure 5.2a, the DM has articulated an interest in 

the region of the convex Pareto front which bias ‘objective 2’ (f2). The projection plane 

‘P’ can then be any line or plane whose ‘normal’ vector is η. 

 

Figure 5. 2 Biased Crowding Distance (P = Projection Plane, ή = Projection 

Direction) 

By projecting the local front of solutions achieved by a MOEA on the projection plane P 

and calculating the biased crowding distance defined in Equation 5.3, the solutions lying 

around the lower part of the Pareto front which is tangent to the projection plane P will be 

favored for selection for variation and survival. In Figures 5.2b and 5.2c, two other 

preference scenarios are illustrated using the biased crowding distance. 

5.2.3. ε –MOEA: Manipulating the ε-dominance 

 
Laumanns, Thiele, Deb, and Zitzler (2000) proposed the ε-MOEA, one of the state-of-the-

art multiobjective evolutionary optimisers. At a later stage, Deb, Mohan and Mishra (2003) 

introduced further improvements to the ε-MOEA. It is a steady-state algorithm composed 

of two populations of solutions, which co-evolve simultaneously, but independently. A 

solution can only be included in the archive, which eventually should contain a 

representative bounded set of solutions which form the Pareto front, if it is not ε-dominated 

(see Section 2.1.1) by any of the other members of the archive. ε-MOEA uses a grid-like 

strategy similar to PAES (Knowles and Corne 2000), but more sophisticated, to divide the 
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objective space into hyperboxes and promote solution diversity without setting an upper 

limit on the archive size prior to the approximation. Instead the strategy used in ε-MOEA 

ensures that the archive will eventually be bounded with a well-distributed and limited 

number of solutions, which represent the Pareto front. Despite the sophistication and 

usefulness of ε-MOEA, the deployed ε-dominance concept is the reason behind choosing 

this optimisation technique as a preference articulation technique to be investigated along 

with the other techniques used in this work. By setting a vector of progressively articulated 

ε-values, instead of a single fixed value, to form the basis for solutions selection and 

inclusion in the archive, ε-MOEA is upgraded to a PPA technique which enhances its 

overall performance, at least from a decision maker’s point of view within a many-

objective optimisation context. Each single ε value will correspond to the accuracy or 

tolerance in terms of a certain specific dimension or objective. The motivation behind this 

upgrade is to investigate and exploit the efficacy of the ε-dominance concept as a PPA 

technique. 

 

The ε-MOEA procedure as described by its original authors is presented in Figure 5.3 and 

is thoroughly illustrated in the following. 

At a certain iteration t of the optimisation process, two solutions p and e are first selected 

respectively from the population of solutions P and the online archive A for recombination. 

The solution p is selected from the population P(t) following the procedure pop_selection 

described below. 

pop_selection 

 The selection process starts by picking two random solutions from P. The dominating 

solution, using standard Pareto dominance, will constitute the solution p. In the case where 

the two randomly picked solutions from P(t) were non-dominated with respect to each 

other, one of them is picked at random to constitute the solution p.  

On the other hand, using the archive_selection procedure, one solution is randomly chosen 

from the archive A(t) to constitute the other parent solution e. The two picked solutions p 

and e are then recombined and one single offspring solution c is created and used to update 

both parent and archive populations. When updating the population P(t), the usual Pareto 

dominance check is applied between the offspring solution c and all the solutions in P. c is 

accepted for inclusion in the population following the pop_acceptance procedure described 

below. 

pop_acceptance 

 If c dominates one or more solutions in P, then it replaces the solution (or a random 

solution out of the subset of solutions) it dominates. On the other hand, if any of the 

solutions in P dominate c then the offspring solution is rejected. In the last case where the 
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two previous checks fail indicating that c is non-dominated with respect to all of the 

solutions in P, c is accepted in the population P replacing a randomly picked solution from 

P for elimination. A fixed population size is therefore maintained throughout the 

optimisation process.  

The most important and innovative process of the ε-MOEA procedure is the archive 

acceptance step (archive_acceptance). The archive population is updated based on the ε-

dominance concept illustrated in Figure 5.4. 

Each solution ‘y’ in the archive is assigned a so-called ‘identification array’ B (y) = (B1, 

B2, ….Bn) (where n is the number of objectives). The identification array represents the 

coordinates of the main corner point (A in Figure 5.4) in the objective space which defines 

the region ε-dominated by the solution ‘y’. The value of the identification array in terms of 

a certain objective ‘i’ is defined in Equation 5.3 for a minimization problem (where fi
min 

and εi are respectively the minimum possible value and the tolerance for the ith objective). 

 iiii ffB ε)(
min

−=       (5.3) 

 

 Step 1  Randomly initialize a population P(0).  
             The non-dominated solutions of P(0) are copied to an 

archive population A(0). Set the iteration counter t =0. 
 

Step 2   One solution p is chosen from the population P(t) using 
the pop_selection procedure. 

 

Step 3   One solution e is chosen from the archive population   

A(t) using an archive_selection procedure. 
 

Step 4   One offspring solution c is created using p and e. 
 

Step 5   Solution c is included in P(t) using a pop_acceptance 
procedure. 

 

Step 6   Solution c is included in A(t) using an archive_acceptance 
procedure. 

 

Step 7 If termination criterion is not satisfied, set t = t + 
1 and go to Step 2, else report A(t). 

Figure 5. 3 The ε-MOEA procedure 
 

This scheme divides the whole objective space into different hyperboxes whose sizes 

correspond to the vector of ε –values representing the permissible tolerance in terms of 

each objective.  

In Deb, Mohan and Mishra (2003), the solved optimisation problems consisted of 

scenarios with equally weighted objectives, hence no objective preferences or 

discriminations were articulated using the vector of ε-values. As previously mentioned, ε-
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MOEA was reported to show superior performance on a set of test functions with varying 

number of objectives (2 to 4) when compared to some of the most established MOEAs. 

 

Figure 5. 4 ε-Pareto dominance for 2 objectives 

 

Table 5. 1 archive_acceptance 

Case Action 

The identification array of the offspring 
solution c is dominated by one or more 

identification arrays which correspond to 
certain solutions in A(t) indicating that c is 

ε-dominated 

Reject c 

The identification array of the offspring c 
dominates an identification array of a 

certain solution in A(t) 

Accept c for inclusion in the archive 
replacing the solution that it ε-dominates 

Dominance Check: Using the standard 

Pareto dominance concept: Sub-Case 1  
 

(1) The offspring c dominates s 
Accept c and reject s. 

(2) s dominates the offspring c 
Reject c 

The offspring 
solution c share the 
same identification 
array with a certain 

solution s in the 
archive A(t) 

(3) s and c are non-dominated 
Keep the solution with the smallest 

Euclidean distance to the shared 
identification array. 

Sub-Case 2 

The identification 
array of the 

offspring solution c 
is ε non-dominated 

with respect to all of 
the solutions in A(t). 

The offspring 
solution c does not 

share the same 
identification array 
with any solution in 

the archive A(t) 

Accept c for inclusion in the archive 

 

F(x) 

F(y) 

F1 

F2 

Region dominated by F(x) 

Region ε-dominated by F(x) 
(1 – ε2) F2(x) 

(1 – ε1) F1(x) A 
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However, the main motivation for including the ε-MOEA procedure in this comparative 

study is investigating the deployment of the ε –dominance concept that it incorporates in 

its beneficial strategy for updating the archive as a potential PPA technique. The 

identification array for the new offspring solution c and all of the solutions in A(t) are 

calculated using the vector of ε values defined a Priori by the DM. The offspring solution 

c is then either rejected or accepted for inclusion in the archive based on one of four 

possible cases following a standard Pareto dominance check between the identification 

arrays corresponding to the offspring solution c and all of the solutions in the archive P(t). 

The four cases are presented in Table 5.1. 

5.2.4. FF-PPA Technique 
 

Formulated and implemented in 1998 as an extension to the rank-based fitness assignment 

method (Fonseca and Fleming 1993), Fonseca and Fleming’s (1998) PPA technique 

remains an important approach to progressive preference articulation. This technique is 

based on a combination of concepts such as Pareto optimality, constraint optimisation and 

satisfaction, the lexicographic method (Fourman 1985) and goal programming (Kursawe 

1991). The core of this PPA technique is based on the Preferability operator, which is a 

transitive relational operator that incorporates goal and priority information about the 

objectives and which consequently modifies the dominance definition.  

Using FF-PPA, two alternative solutions A and B are first compared in terms of their 

objectives with the highest priority while disregarding the objectives of this priority class 

that meets their goal values. In the case where the objectives, belonging to the same 

priority class, of solutions A and B meet all their goal values or contrarily violate some or 

all of their goal values in an exact similar way, the next priority class will be considered. 

This process continues until reaching the lowest priority class, where solutions are 

compared based on the usual Pareto optimality concept. Using the preferability operator as 

a decision strategy reduces the usual Pareto dominance based optimisation to the particular 

scenario where all the objectives possess the same priority class and no targeted goal 

values are set up. On the other hand, in the case where goal values are articulated within an 

optimisation problem consisting of equally weighted objectives that belong to the same 

priority class, the fitness assignment process allocates higher importance to the objectives 

not yet satisfying their goals. A candidate solution A is then said to be preferred to an 

alternative candidate solution B if one of the three following conditions is valid: 

(1) Solution A meets the goal values for a certain subset of objectives and is better (in 

terms of Pareto dominance) than B in terms of the remaining objectives (not 

meeting their goals in A). 
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(2) The value of the objectives not meeting their goals in A are exactly equal to the 

values of the same objectives in B, but A is better (in terms of Pareto dominance) 

than B in terms of the remaining objectives (meeting their goals in A). 

(3) The value of the objectives not meeting their goals in A are exactly equal to the 

values of the same objectives in B, but B does not meet the goal values for the 

remaining objectives (meeting their goals in A). 

1 2 3 4 5 6 7 8

C
o
s
t

Objective no.  

 

Figure 5. 5 The user interface of Fonseca and Fleming’s PPA technique  

(Optimising an 8 objective problem of Aircraft control system design)  
 

Through a user-friendly interface, the DM can set goal values for the objectives being 

optimised and can change the priorities of the objectives in a progressive fashion at any 

time during the optimisation process; the dominance concept gets updated accordingly. In 

other words, using this technique the DM has full control of the optimisation process and 

can efficiently focus on any region of interest and reduce the dimensionality of the search 

space at any time and upon request. Figure 5.5 illustrates the user interface of this PPA 

technique which includes the parallel coordinates graph (Inselberg 1985), an efficient, FF-

PPA independent, visualization technique for any problem dimension. Here, using parallel 

coordinates, each line in the graph connects the performance objectives achieved by an 

individual member of the population and represents a potential solution to the design 

problem. This is in contrast to the usual Cartesian method of representation and has the 
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advantage of being able to handle representations where the number of objectives exceeds 

three. 
 

In the next section, a graphical demonstration of the above mentioned PPA techniques will 

be presented illustrating the accuracy, efficiency and usefulness of these techniques from a 

DM point of view. 

 

5.3. PPA Techniques in Practice 
 

A major benefit for incorporating the decision maker’s preferences into the evolutionary 

multiobjective optimisation process is the manipulation of the Pareto dominance concept 

which widely governs the selection mechanisms of most MOEAs. Tailoring a pertinent 

definition of solutions’ dominance that fits the DM’s preferences is very beneficial for 

reducing the dimensionality of the search space and dealing with the conflict between 

solutions’ convergence towards the Pareto front and their required diverse distribution. 

This last conflict is especially apparent in optimisation frameworks with many competing 

objectives and has been linked to the active diversity promotion techniques deployed in 

most MOEAs. Being able to progressively articulate preferences, a DM can then make use 

of any information that becomes available during the optimisation process to modify or 

refine his/her preferences and steer the search process of a MOEA in the right direction.  
 

In the absence of preference articulation, a certain remote solution ‘A’ diverging from the 

Pareto front but presenting remarkable performance in terms of one of many competing 

objectives can be explored and deemed non-dominated. Such a solution can potentially 

spoil the convergence process towards the Pareto front. The latter observation was 

previously described in Section 4.2 and a diversity management operator addressing this 

issue was introduced in Chapter 4. This highlights a drawback of the standard Pareto 

dominance when used as a primary selection criterion alongside an active diversity 

promotion mechanism in the many objective optimisation scenarios. On the other hand, in 

an optimisation scenario incorporating the DM’s preferences, the same solution ‘A’ is only 

considered as a non-dominated solution if it lies in the decision maker’s ROI or when the 

objective in which ‘A’ is excelling is prioritised.  
 

In this section, the performance of the guided dominance concept, the biased crowding 

measure, the use of ε-dominance and FF-PPA technique will be assessed. These techniques 

allow the decision makers to articulate their subjective preferences and therefore assist 

them in the decision making process. Assessing the utility of PPA techniques from a DM 

point of view involves many psychological criteria (e.g. ease of use, effort to be skilful, 

ease of learning and effectiveness) and many assessment strategies can be used (e.g. 
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making surveys and collecting feedback from different DMs). In this study, the assessment 

and comparison of these techniques is confined to a subjective yet logical appreciation of 

each technique’s utility based on their responses to different type of DM preferences 

(mainly exact and vague preferences). In other words, a ‘Black Box Testing Strategy’ will 

be adopted in this section. Black box testing is a strategy used in software engineering to 

test software applications without requiring the knowledge of their implementation codes 

and internal designs. Moreover, two essential factors are examined in order to assess the 

quality of the investigated PPA techniques. Since PPA techniques require DM interaction 

and are meant to be helper tools for decision makers, it is hence very crucial to investigate 

whether these techniques do actually meet the DM requirements (i.e. preferences). The 

first assessment factor therefore consists of checking whether a certain PPA technique 

meets the essential user requirements. Assessing this feature is very essential for evaluating 

new processes and systems, and is widely known as “User Acceptance Testing” (Davis 

1989) in the fields of software engineering, cognitive sciences and human-machine 

interactions. In this study, the main principle of “User Acceptance Testing” is deployed to 

assess each PPA technique. This is performed by simulating well-defined PPA scenarios 

and analysing the level of preference satisfaction provided by each PPA technique. 

Alternatively, user acceptance testing could be realised by letting the user (DM) 

experiment with the different PPA techniques and report about his/her satisfaction with the 

utility meeting his/her expectation. However, the second approach for user acceptance 

testing is better deployed when a fairly similar (ideally, the same) interface (e.g. GUIs) 

between the DM and each PPA technique is provided. The second examined factor 

consists of checking whether a certain PPA technique meets its intended purpose as 

described by its original author(s). The broad concept of assessing whether a certain 

system or process meets its intended purpose is widely known as ‘Usability Testing’ 

(Lindgaard 1994).  

The efficiency and practicality of the investigated techniques will therefore be examined 

from the decision maker’s point of view, assuming that their expertise in evolutionary 

computation might be very limited or nil. In addition to the previously described testing 

strategy, the goal is to highlight the utility of these PPA techniques to a DM in terms of 

reducing the search space, and focusing on a desired ROI. Several bi-objective scenarios, 

convenient for graphical illustrations, will be deployed to highlight the strengths and 

weaknesses of these techniques, and will permit the inference of well-based conclusions 

for high-dimensional cases. Additionally, further progressive PPA scenarios will be 

undertaken on a 4-objective optimisation problem. Note that NSGA-II was chosen to be 

the underlying optimiser for hybridizing the biased crowding technique and the FF-PPA. 
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All of the optimisers used similar configurations and were balanced in terms of the number 

of objective function evaluations. 

5.3.1. Demonstration of the Guided Dominance principle as a 
PPA technique 
 

Similar to the frameworks which will be applied for assessing the other PPA techniques (in 

Sections 5.3.2, 5.3.3 and 5.3.4), in this Section, the goal was to assess the utility of the 

guided dominance principle as a PPA technique and promote the use of such techniques in 

the evolutionary multiobjective optimisation community. The guided dominance method 

can be assimilated with the Pareto dominance concept operating on a suitably transformed 

objective space. Note, that the objective space transformation is a straightforward process 

when dealing with bi-objective optimisation scenarios, but becomes more complicated as 

the number of objectives increases. The intention was to upgrade the guided dominance 

principle to a progressive preference articulation technique which can be used interactively 

by a DM. In Figure 5.6 the suggested user interface for the guided dominance based PPA 

technique is illustrated.  

 

Figure 5. 6 GUI of the Guided dominance based PPA technique 

Figures 5.7-5.10 illustrate the results achieved by G-MOEA for the convex test functions 

ZDT1 for four different consecutive preferences. In Figure 5.7, the amount of degradation 

in terms of objective 2 that merits a unit of improvement in terms of objective 1 was set to 

the value 0.8 (m21= 0.8), i.e. four times bigger than the amount of degradation in terms of 

objective 1 which was deemed worthy to be compensated by a single unit of improvement 

in terms of objective 2 (m12= 0.2). The articulated preferences were therefore favouring 

objective 1. Within 200 generations of the search process, the bias in terms of objective 1 

was observed. The achieved region of the Pareto optimal front was bounded by the 

solutions whose tradeoff functions are tangent to the Pareto front. 
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Figure 5. 7 G-MOEA Running on ZDT1 (m12 = 0.2, m21= 0.8), 200
th

 generation 
 

In Figure 5.8, the preferences previously articulated were reversed. The new intention was 

to prioritize objective 2. The amount of degradation in terms of objective 1 that merits a 

unit improvement in terms of objective 2 was increased to the value 1.4, therefore 

favouring objective 2. On the other hand, the permissible amount of degradation in terms 

of objective 2 was reduced to the value 0.1. Within 50 more generations, the new 

preferences were manifested by the achieved results which populated the lower part of the 

convex Pareto front and which favoured objective 2.  
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Figure 5. 8 G-MOEA Running on ZDT1 (m12 = 1.4, m21= 0.1), 250
th

 generation 
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Figure 5. 9 G-MOEA Running on ZDT1 (m12 = 0.7, m21= 0.7), 300
th

 generation 
 

In Figure 5.9, there were no preferences between the 2 objectives. Instead, the middle part 

of the Pareto optimal front was sought.  The ROI was therefore decided vaguely by 

choosing an equal maximal amount of acceptable degradation for the 2 objectives when the 

other objective improves by a single unit (m12 = m21= 0.7). The bounds of the decision 

maker’s ROI could not be simply expressed; instead there was a need for an intermediate 

translation of the DM preferences into line slopes that delimit the desired ROI. 

Nonetheless, the desired -vague- ROI was efficiently emphasized at the 300th generation 

of the optimisation process. Finally, the amount of degradation in terms of the two 

objectives, which can be redeemed by a single unit of improvement in terms of the other 

objective, was increased furthermore at the 300th generation (m12 = m21= 0.9 in Figure 

5.10). There was still no priority preference between the two objectives, but the aim was 

now to achieve a smaller ROI on the middle part of the Pareto front. At the 350th 

generation, the produced results were conforming to the vague preference of achieving a 

smaller part of the middle region of the Pareto front, compared to the precedent articulated 

preference. 

 

Overall, it was not a straightforward method from the DM’s point of view to execute a 

specific optimisation and a detailed search scenario. The guided dominance was better 

suited for efficiently articulating vague preferences. Moreover, a simple PPA scenario 

based on the guided dominance technique was performed on an optimisation problem with 

4 competing objectives. The optimisation problem consisted of a 4-objective version of the 

scalable test function DTLZ2. In Figures 5.11 and 5.12, the results achieved by G-MOEA 

at the 200th and the 300th generation are illustrated respectively.   
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Figure 5. 10 G-MOEA Running on ZDT1 (m12 = 0.9, m21= 0.9), 350
th

 generation 

 

Each of the four quadrants in Figures 5.11 and 5.12 illustrated the values achieved for a 

certain objective. The red and the black horizontal lines in each quadrant correspondingly 

presented the median and the mean value of a certain objective. Moreover, as an 

alternative to the results’ illustration technique adopted and presented in Figures 5.11 and 

5.12 (and later used in Sections 5.3.2, 5.3.3 and 5.3.4 to illustrate the results achieved for 

DTLZ2 (4) by the remaining PPA techniques discussed in this Chapter), parallel 

coordinates were also used for presenting the results achieved for the 4 objectives DTLZ2 

test function. The parallel coordinates graphs are presented in Appendix D. Using the 

guided dominance, it is only possible to focus on a certain ROI by articulating desired 

quantitative tradeoffs between pairs of objectives. The results achieved in Figure 5.11 were 

affected by the pair wise tradeoffs presented in Table 5.2. The values of the articulated 

tradeoffs denoted the maximum value of deterioration in terms of a certain objective ‘i’ 

(row index), which can be deemed worthy of a single unit of improvement in terms of 

objective ‘j’ (column index).  

Table 5. 2 Maximum deterioration tradeoffs between Objective ‘i’ and Objective ‘j’ 

 j 

i Objective 1 Objective 2 Objective 3 Objective 4 

Objective 1 0 0.1 0.1 0.2 

Objective 2 0.7 0 0.3 0.7 

Objective 3 0.7 0.3 0 0.7 

Objective 4 0.2 0.1 0.1 0 
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Figure 5. 11 The achieved results in terms of each objective (200
th

 generation) 
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Figure 5. 12 The achieved results in terms of each objective (300
th

 generation) 
 

The maximum acceptable amount of degradation in terms of objectives 2 and 3 was 7 

times larger than its counterpart in terms of objectives 1 and 4. Overall, objectives 1 and 4 

were deemed equally important and were prioritized over objectives 2 and 3. The results 
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achieved at the 200th generation of G-MOEA were conforming to the articulated tradeoff 

values. Noting that the 4 objectives were commensurate, the median values achieved for 

objectives 1 and 4 presented a near optimal value (zero being the optimal value) alongside 

a mean value less than 0.1. On the other hand, the median and the mean values achieved 

for objectives 2 and 3 surpassed the value 0.5. At the 200th generation of the optimisation 

process, the DM’s preferences were interactively altered. The new preferences consisted of 

a balanced optimisation scenario allocating the same priority to the four objectives. All the 

pair wise tradeoff values presented in Table 5.2 were set to the value 0.1. The results 

achieved at the 300th generation of the process and affected by the newly articulated 

preferences are illustrated in Figure 5.12. The mean and the median values achieved for the 

four objectives resided in the same vicinity and illustrated comparable and intermediate 

values close to 0.5. 

 

5.3.2. Demonstration of the Biased Crowding as a PPA technique 
 

The biased crowding measure was integrated in NSGA-II in order to assess its 

performance as a progressive preference articulation technique. NSGA-II used the same 

configuration deployed in Branke and Deb (2004): (i.e. population size = 100, SBX 

crossover (probability = 1, distribution parameter = 10) and a variable-wise polynomial 

mutation (probability = 1/n, n = number of decision variables, and distribution parameter = 

20)).  

Moreover, NSGA-II was equipped with a progressive capability allowing the decision 

maker to interactively articulate and modify his/her central direction of interest in the 

objective space (direction vector η). The decision maker was also provided with the facility 

of progressively articulating the parameter α in order to control the accuracy of the 

produced results. Once articulated by the decision maker, the direction vector η, which 

constitutes a linearly weighted utility function, and the control parameter α were fed to the 

biased crowding operator to adapt to the new preferences and bias the selection for 

recombination and survival processes conveniently. In Figure 5.13, a graphical user 

interface designed to accept any number of objectives is illustrated. The GUI is suggested 

to assist the decision maker with the progressive preference articulation and facilitate the 

use of the biased crowding operator. Additionally, the GUI was equipped with the utility of 

plotting the parallel coordinates graph which composes one of the most efficient 

techniques for visualising the interactions between the objectives in a high dimensional 

space. In optimisation problems with more than three objectives, the parallel coordinate 

graph is believed to assist the decision maker in articulating the direction vector η and 

formulating vague preferences. 
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Figure 5. 13 GUI of the biased crowding based PPA technique 

 

In Figures 5.14-5.17 correspondingly, a progressive articulation of a ROI was expressed 

for the convex test function ZDT1. This was performed by interactively modifying the 

direction of the projection line and the control parameter α, which are the basis of the 

biased crowding technique. In Figure 5.14, the results achieved at the 200th generation by 

NSGA-II deploying the biased crowding operator (NSGA-II/Biased Crowding) are 

illustrated by the red circles. The decision maker’s preferences consisted of a vague 

interest in exploring solutions on the middle part of the convex Pareto front, using the 

direction vector η (1, 1) and an intensity bias parameter α = 200. At the 210th generation, 

the decision maker progressively articulated another vague preference, this time pointing 

in the direction of the upper part of the convex Pareto front. The coordinates of the 

direction vector η were therefore modified from (1, 1) to (1, 0.2).  
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Figure 5. 14 NSGA-II/Biased Crowding running on ZDT1 (η = (1, 1), α=200) 
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Figure 5. 15 NSGA-II/Biased Crowding running on ZDT1 (η = (1, 0.2), α=100) 

 

The modified direction vector η therefore now constitutes the directed line joining the 

point with the coordinates (1, 0.2) and the axes origin (0, 0) and which is perpendicular to 

the projection (hyper)-plane illustrated for each scenario. The corresponding α parameter 

for the new scenario in Figure 5.15 was also reduced (α = 100) conveying a smaller bias 

intensity. In Figure 5.16, the DM articulated a new vague preference at the 300th generation 

of the same optimisation process. This time the requested ROI consisted of the lower part 

of the Pareto front while maintaining the same bias intensity (η = (0.2, 1), α = 100).   The 

final part of the PPA scenario is illustrated in Figure 5.17, where the direction vector and 

the bias intensity had the following values respectively: (η = (1, 0.8), α = 500).  

The increased value of the parameter α denoted a request for a higher bias intensity in the 

direction of the vector η. This was reflected by the produced results in Figure 5.17. The 

PPA utility of the biased crowding technique is then assessed on an optimisation problem 

with 4 competing objectives using DTLZ2 (4). In Figure 5.18, the mean and the median 

values achieved for each of the 4 competing objectives are illustrated at the 100th 

generation. The decision maker’s preferences were articulated at the first generation of the 

optimisation process. Noting the limitation of the biased crowding approach presented by 

its unsuitability for articulating exact preferences, the DM articulates an equal importance 

to the 4 objectives by devising a direction vector η with the coordinates (1, 1, 1, 1). The 

control parameter α was set to the value 100. Despite some, un-requested, minor bias in 

terms of objectives 2, 3 and 4 presented by the smaller median and mean values (≤ 0.4), 

the results presented in Figure 5.18 illustrated mean and median values in the range [0.4, 

0.51] for all of the four objectives. At the 100th generation, the direction vector η was 
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interactively modified to express a new direction of interest. The coordinates of η were set 

to (0, 1, 1, 0) and denoted a higher priority for objectives two and three. 
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Figure 5. 16 NSGA-II/Biased Crowding running on ZDT1 (η = (0.2, 1), α=100) 
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Figure 5. 17 NSGA-II/Biased Crowding running on ZDT1 (η = (1, 0.8), α=500) 

 

Figure 5.19 illustrate the results achieved at the 200th generation of the optimisation 

process. Objectives 2 and 3 presented mean and median values lower than 0.4. One more 

time, an unexpected bias in terms of Objective 3 was observed with a median value less 

than 0.2. At the same time, the mean and median values achieved for the remaining two 

objectives (1 and 4) were larger than 0.4 as a direct response to their expressed lowered 

priorities.   
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Figure 5. 18 DTLZ2 (4) Results achieved at the 100
th

 generation  

(η = (1, 1, 1, 1), α = 100) 

Finally, at the 200th generation, the preferences expressed at the 100th generation were 

reversed. Objectives 1 and 4 were now prioritized over objectives 2 and 3. The new 

interactively articulated direction of interest was articulated by modifying the coordinates 

of the direction vector η from (0, 1, 1, 0) to (1, 0, 0, 1). As a result, the mean and the 

median values of objectives 2 and 3 were deteriorated and increased towards the values 0.5 

and 0.4 respectively (Figure 5.20). The mean and median values of objectives 1 and 4 were 

on the other hand improved and decreased. In particular, the median value achieved for 

objective 4 was significantly improved. Overall, the results achieved for the 4 objectives 

problem conformed to the vague DM’s preferences.  Because the biased crowding 

technique was designed for articulating vague preferences rather than exact preferences, 

the unexpected responses to exact preferences and the unpredictable biases in terms of 

certain objectives is explicable. Nevertheless, the utility of the biased crowding was shown 

to be particularly beneficial for articulating vague preferences and fulfill its intended 

purpose. The results presented in Figures 5.18, 5.19 and 5.20 are also illustrated using 

parallel coordinates graphs in Appendix D.  

For these continuous well-shaped Pareto fronts (DTLZ2), the biased crowding operator 

seemed to perform well. However, when dealing with highly multimodal, discontinuous 

and mathematically ill-behaved Pareto fronts, setting the direction vector η can be a tricky 

process to the decision maker, especially in high dimensional search spaces which are 
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difficult to visualise. As a result, when optimising a problem with an unknown or 

multimodal Pareto front, the decision maker might articulate a certain direction vector η 

which points to infeasible areas of the objective space or even to regions of the search 

space which differs from the decision maker’s interest. On the other hand, despite its 

efficiency in shifting the search focus to certain preferred regions in the objective space, 

the biased crowding operator is not a suitable technique for reducing the size of the search 

space (which is particularly useful in scenarios comprising many competing objectives) as 

it does not really enforce preferences or manipulate the underlying Pareto dominance 

concept. 
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Figure 5. 19 DTLZ2 (4) Results achieved at the 200
th

 generation  

(η = (0, 1, 1, 0), α = 100) 

 

The biased crowding operator artificially manipulates the density estimate around the 

current solutions in the objective space in a way that biases the solutions residing near the 

vague region of interest. Density estimates are usually incorporated in MOEAs for 

promoting diversity among the solutions of a multiobjective problem. However, the 

diversity measure itself is a secondary selection criterion in most MOEAs including 

NSGA-II. Hence, in many occurring scenarios, the diversity discrimination process can be 

obscured and phased out from the selection for recombination and/or the selection for 

survival procedures. For example, the deactivation of the diversity criteria, and therefore 

the effect of the crowding/biased crowding operators, occurs if the mating pool and/or the 

online archive are completely filled with solutions which are picked based on their non-
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domination level. In other words, the online archive or the mating pool is filled without 

necessitating the selection of a subset of solutions, which belong to the same non-

domination level. 
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Figure 5. 20 DTLZ2 (4) Results achieved at the 300
th

 generation  

(η = (1, 0, 0, 1), α = 100) 

 

Additionally, despite focusing on the areas of the Pareto optimal front which are parallel to 

the projection plane with the normal vector η, the biased crowding does not necessarily 

bias the solutions residing in the (hyper)-areas of the objective space which are logically 

bounded by the DM’s vague preferences. This is illustrated in Figure 5.21, where the 

solutions D, E and F are biased against using the biased crowding.  

Despite being in the preferred area of the objective space, the solutions D, E, and F are 

aligned in a near perpendicular way to the projection plane. Hence, the crowding measure 

of the solution E, for example, will be much bigger than the crowding measure based on 

the location of the projected images of E and its neighboring solutions D and F on the 

projection plane (solutions D’, E’ and F’). Solution E will be consequently biased against, 

as it would be considered artificially crowded using the biased crowding. On the other 

hand, solutions A, B and C will be favored for selection despite populating a non-desired 

region of the objective space. This is due to their alignment which is more closely parallel 

to the projection plane compared to the alignment of the solutions D, E and F. The effect of 

the biased crowding operator is therefore more efficient and practical around near optimal 
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areas of the objective space, ideally when the achieved solutions start taking the form of 

the Pareto front.  

 

Figure 5. 21 Projection of the Solutions following the direction vector η  
 

5.3.3. Demonstration of ε –Dominance as a PPA technique in the 
ε –MOEA Context 
 

The ε-dominance concept is originally designed for specifying the precision of the required 

set of solutions to a multiobjective optimisation problem. The concept is also beneficial for 

reducing undesirable MOEA behaviours (oscillatory search process and divergence from 

the Pareto front in high dimensional objective spaces) usually caused by the strict Pareto 

dominance scheme. The precision specification process can be realized in terms of each 

objective separately by (linearly or logarithmically) rescaling the corresponding axis of 

performance. This is achieved by choosing a different epsilon value εi for each objective 

(1≤ i ≤ m, where m is the total number of objectives). The resulting vector of ε values 

denotes the tolerance in terms of each objective below which two values are deemed 

insignificant to the DM. The objective space is consequently divided into hyper-boxes 

whose sizes in the ith objective are determined by the corresponding tolerance value εi. This 

concept is illustrated in Figure 5.22 on a simple bi-objective problem with a convex Pareto 

front. Reducing the values of ε1 and ε2 in Figure 5.22 should ideally result more solutions 

being produced on the Pareto front, therefore controlling the solutions’ distribution.  

In this Section, the potentiality of the ε-dominance as a PPA technique is examined. The 

aim is to slightly alter the ε-dominance concept deployed in ε-MOEA such that the overall 

resulting technique allows the DM to reduce the dimensionality of the search space and 

stress out a certain ROI. Despite frequently stating its potential for articulating objective 
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preferences in the literature, the ε-dominance concept is widely used in the EMO 

community to pre-fix a certain tolerance threshold in terms of a certain objective. 

Moreover the same ε value is usually specified for all of the objectives and used to 

determine the precision and the distribution of the final results without really exploiting the 

ε-dominance concept to articulate objective preferences or regions of interests. 

 

Figure 5. 22. ε-dominance defining the acceptable tolerance in each objective 

 

A strategy similar to the ε-dominance approach used in ε-MOEA is suggested for 

articulating the decision maker preferences. Using the modified strategy, the axis of 

performance for each objective is divided into several contiguous ranges specified by the 

DM, each having its own ε value. In other words, instead of specifying a single fixed ε 

value for each objective, several ε values specified over a certain specific (vague or exact) 

range of performance are assigned for each objective. The number of performance’s ranges 

in terms of each objective and their corresponding boundaries should be constructed in a 

way that reflects the decision maker’s preferences.  For example, in an optimisation 

problem consisting of n objectives (n is any positive integer) defined over the range [min, 

max] (min and max correspond to the minimum and the maximum possible value for each 

objective), the decision maker might decide that he/she is only interested in finding 

solutions with the following constraints: 

(In the following example, n = 3, min = 0 and max = 10 for all 3 objectives) 

• The values in terms of objective 1 lie in the ranges [2, 4] and [6, 8],  

• The values in terms of objective 2 lie in the range [2, 8], and 

• The values in terms of objective 3 are less than or equal to 5. 

Objective 1 

Objective 2 
ε2 
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The previous decision maker’s preferences are illustrated graphically in Figure 5.23 where 

Ri,j denotes the jth range for the ith objective and εi,j is the corresponding ε value for the ith
 

objective over the jth range. The ranges highlighted in red constitute the regions of interest 

to the DM and therefore should be provided by the DM alongside their corresponding εi,j 

values which denote the required distribution and precision over each range. In exact 

preference scenarios where the DM provides exact ranges of interests, and is exclusively 

interested in his/her articulated ranges of interest in terms of each objective, the ε values 

for the remaining ranges such as ε1,1 or ε2,1 in Figure 5.23 are assigned the value zero (i.e. 

ε1,1 = ε1,3 = ε1,5 = ε2,1 = ε2,3 =ε3,2= 0). 

 

Figure 5. 23. The DM preferences using the ε-dominance strategy 
 

On the other hand, when articulating vague preferences, the ε values corresponding to the 

non-preferred ranges such as R1,1, R2,1 or R3,2 in Figure 5.23 should correspond to large  

tolerance values (compared to the tolerance values of the ranges of interest) decided by the 

DM and strictly defined within the boundaries of their corresponding ranges. Similar to the 

strategy used in Deb, Mohan and Mishra (2003), the archive acceptance process is applied 

on every candidate solution considered for inclusion in the archive after determining its 

corresponding identification array. The only difference is that the identification array for a 

certain solution ‘y’ is now determined using the local attributes (fi
min and ε value) of the 

corresponding ranges of performance to which each of its objective values belongs. 

However, when solving an exact preference scenario, a slightly different process is used to 

determine the coordinates of the identification array of a certain solution ‘y’ presenting 
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some objective values in the non-preferred ranges of performance (i.e. with a 

corresponding ε value equal to zero). This is illustrated in the objective space of a bi-

objective optimisation problem (Figure 5.24) without any loss of generality. The ROI in 

Figure 5.24 is the intersection of the ranges R1,2 and R2,2.  The identification array of a 

certain solution ‘y’ will have its coordinates in terms of the objectives whose values lie in 

the non-preferred ranges defined as follows: 

 

1- Any solution ‘y’ residing in R2,1 (with ε2,1 = 0) will have an identification array whose 

coordinate in terms of objective 2 is the lower boundary of R2,1. Its coordinate in terms 

of objective 1 is locally specified using the corresponding attributes of the range R1,j 

where the solutions ‘y’ resides.  

2- Any solution ‘y’ residing in R2,3 (with ε2,3 = 0) will have an identification array whose 

coordinate in terms of objective 2 is the upper boundary of R2,3. (The calculation of its 

coordinates in terms of objective 1 is similar to case 1 above).  

3- Any solution ‘y’ residing in R2,2 (with ε2,3 ≠ 0) will have an identification array whose 

coordinate in terms of objective 2 is calculated using Equation 5.4 (where f2
min 

corresponds to the lower boundary of R2,2 and ε = ε2,3). (The calculation of its 

coordinates in terms of objective 1 is similar to cases 1 and 2 above). 

4- Any solution ‘y’ residing in R1,1 (with ε1,1 = 0) will have an identification array whose 

coordinate in terms of objective 1 is the upper boundary of R1,1. Its coordinate in terms 

of objective 2 will be locally specified using the corresponding attributes of the range 

R2,j where the solutions ‘y’ resides. 

5- Any solution ‘y’ residing in R1,3 (with ε1,3 = 0) will have an identification array whose 

coordinate in terms of objective 1 is the lower boundary of R1,3. (The calculation of the 

coordinates in terms of objective 2 is similar to case 3 above) 

6- Any solution ‘y’ residing in R1,2 (with ε1,2 ≠ 0) will have an identification array whose 

coordinate in terms of objective 1 is calculated using Equation 5.4 (where f1
min 

corresponds to the lower boundary of R1,2 and ε = ε1,2). (The calculation of the 

coordinates in terms of objective 2 is similar to cases 4 and 5 above). 

7- Finally, any solution ‘y’ residing in the ROI (between the two points A and B on the 

Pareto front) defined by the intersection of R1,2 and R2,2 will have an identification 

array whose coordinates in terms of objectives 1 and 2 are locally specified by the 

procedure used in ε-MOEA for defining identification arrays (Equation 5.4) using the 

values ε1,2 and ε2,2 and the lower bounds of R1,2 and R2,2 respectively. 

 

More generally, a solution ‘y’ whose value in terms of a certain objective ‘i’ resides in a 

range Ri,j (continuously) preceding a certain range of interest Ri,j+1 for that objective will 

have an identification array whose coordinate in terms of the i
th objective is the upper 
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boundary of Ri,j. On the other hand, a solution ‘y’ whose value in terms of a certain 

objective ‘i’ resides in a range Ri,j (continuously) succeeding a certain range of interest Ri,j-

1 for that objective will have an identification array whose coordinate in terms of the ith 

objective is the lower boundary of Ri,j. The last case would be the case where a solution ‘y’ 

presents a value in terms of a certain objective ‘i’ which lies in a range Ri,j between two 

ranges of interest Ri,j-1 and Ri,j+1 for that objective. In such scenario, the identification array 

in terms of the ith objective will be the boundary of Ri,j which is closest to the value of the 

ith objective in ‘y’.  

 

Figure 5. 24. Different ε-values for each objective over different ranges 

 

The modified ε-dominance scheme previously described scales to any number of 

objectives and can be used to allow the DM to articulate regions of interests and objective 

priorities. Using the ε-dominance based PPA technique, the DM should define the (vague 

or exact) boundaries of the desired ROI in terms of each objective separately, alongside the 

required precisions in each objective.  

Using the ε-dominance scheme, the progressive reduction of the ε resolution is achieved by 

merging neighbouring hyperboxes. However, it should be noted that progressive 

preference articulation techniques which are based on the ε-dominance scheme and 

coupled with a MOEA that maintains a fixed archive size23 are known to present a major 

limitation. This limitation is presented by their inability of dealing with interactively 

                                                 
23 A practical approach in real-life applications 
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reduced ε values (Laumanns, Thiele, Deb and Zitzler 2002a) which denotes the request for 

higher resolution compared to the initial ε specification. For example, at certain stages of 

the optimisation when the archive upper bound is reached, increasing the requested 

resolution might have no effect as this will require increasing the archive upper bound. A 

PPA framework, starting with the highest resolution required and interactively relaxing the 

resolution can address this limitation, but can however frequently cause the optimisation 

process to produce a single solution while merging neighbouring boxes in order to 

maintain the fixed archive size. As a remedial measure, Laumanns, Thiele, Deb and Zitzler 

(2002a) suggested the use of a multiple restart strategy to overcome this limitation. 

In Figure 5.25, a suggested graphical user interface (GUI) is designed and implemented for 

the case of a 6 objective optimisation problem. Note that the GUI can be designed to 

automatically self-configure based on the number of objectives and the number of ranges 

required. The underlying optimisation process is the ε-MOEA procedure with the modified 

ε-dominance concept described above.  Parallel coordinates (Inselberg 1985) are used to 

visualize the progress of the optimisation process and to assist the DM with the decision-

making and the PPA processes.  
 

1 2 3 4 5 6
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Objective no.  

 

Figure 5. 25 GUI of the PPA technique based on the ε-dominance 
 
 



Chapter 5. Progressive Preference Articulation 

  

165

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Obj 1

O
b
j 
2

ZDT 1

True Pareto Front

E-MOEA

 

Figure 5. 26 ε –MOEA running on ZDT1 with ε1,1 = 0,  ε1,2 = ε2 = 0.01 at generation 

100 
 

In Figures 5.26-5.29, the convex test function ZDT1 was deployed to investigate the utility 

of manipulating the ε–dominance concept in terms of each dimension separately as an 

attempt to simulate a progressive preference articulation scheme. The objective space was 

only divided into two continuous ranges in terms of objective 1. The two ranges R1,1 and 

R1,2 were correspondingly [0, 0.5] and (0.5, ∞). The first preference articulation consisted 

of an exact scenario requesting solutions whose values in terms of objective 1 belong 

exclusively to R1,2. The articulated tolerance in terms of objective 1 in the range R1,1 was 

therefore nil (ε1,1 = 0). Hence, any solution presenting an objective 1 value in the range R1,1 

had an identification array whose coordinate in terms of the 1st objective had the value 0.5. 

On the other hand, the articulated tolerance in terms of objective 1 in the range R1,2 was 

0.01 (ε1,2 = 0.01) and it was equal to the tolerance value in terms of objective 2 (ε2 ) which 

was defined over its whole range of definition R2 = [0, ∞). Except for the ε values, in 

Figure 5.26-5.29 ε –MOEA was executed on ZDT1 using the same configuration used in 

Deb, Mohan and Mishra (2003). Starting with ε1,1 = 0 and ε1,2 = ε2 = 0.01, it was clear that 

ε-MOEA was operating on a reduced search space bounded by the value 0.5 in terms of 

objective 1 (Figure 5.26). Within an additional 100 generations, the results achieved by ε-

MOEA have converged to the desired ROI (Figure 5.27). However, in Figure 5.27, a new 

value for ε1,2 and ε2 was progressively articulated (ε1,2=ε2=0.05) indicating an increased 

tolerance over the ROI which resulted in the reduction of the number of solutions. In 

Figure 5.28, the value of ε1,1 was progressively modified from nil to 0.2 indicating a new 

vague preference of focusing on the previous ROI while obtaining some solutions in R1,1. 

The values of ε1,2 and ε2 were also both reduced to 0.02. The new articulated preferences at 

the generation 210 were manifested by the production of two solutions on the Pareto front 

in the range R1,1 reflecting the requested tolerance ε1,2 in the 1st objective (more than 0.2 
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units apart from each other). On the other hand, the number of solutions in R1,2 was 

increased following the tolerance reduction in this particular area of interest in the 

objective space. In the scenarios illustrated in Figures 5.26-5.28, the articulated ROIs 

reflected an overall priority of objective 2 over objective 1. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Obj 1

O
b
j 
2

ZDT 1

True Pareto Front

E-MOEA

 

Figure 5. 27 ε –MOEA running on ZDT1 with ε1,1 = 0,  ε1,2 = ε2 = 0.05 at generation 

200 

In Figure 5.29, the articulated ε values were all decreased to a value of 0.01 (ε1,1 = ε1,2 = ε2 

= 0.01), therefore eliminating the priority of objective 2 and articulating the preference of 

finding solutions all along the convex Pareto front. The results achieved at the 250th 

generation (Figure 5.29) were conforming to the desired preference which stated no 

priorities between the 2 objectives. Following the progressive preference articulation 

scenario presented in Figures 5.26-5.29, it was shown that the ε-dominance concept can be 

used as a PPA technique for articulating priorities among objectives, regions of interests 

and reducing the dimensionality of the search space.  
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Figure 5. 28 ε –MOEA running on ZDT1 with ε1,1 = 0.2,  ε1,2 = ε2 = 0.02 at generation 

210 
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Figure 5. 29 ε –MOEA running on ZDT1 with ε1,1 = ε1,2 = ε2 = 0.05 at generation 250 

 

The described PPA technique allows the DM to control the selection for variation and the 

selection for survival strategies in a MOEA by manipulating the underlying Pareto 

dominance concept and hence the solutions’ ranking process in a way translating the 

required preferences. Moreover, the ε-dominance based PPA technique does not require 

any assumption about the shape of the Pareto front or the search spaces. Therefore, from an 

algorithmic point of view, the technique is straightforward and well constructed and should 

have no difficulty in scaling to any number of objectives. However, for high number of 

objectives, this technique can be quite demanding as it requires the DM to specify the 

hyper-area of interest which is constituted by the intersection of many axis of 

performances. Therefore a certain vague knowledge about the topology of a high 

dimensional search space is required. 
 

Visualising search spaces with high dimensionalities (more than 3 objectives) is a 

problematic issue by itself. In addition to its requirement for decomposing each objective’s 

axis of performance into different ranges of performance, the ε-dominance PPA technique 

requires the DM to devise multiple ‘weighting’ values (ε values) defined over different 

ranges of performance for each single objective. Assigning quantitative weights to 

different objectives constituting an optimisation problem is a well-known difficulty that the 

DM usually faces when using the classical weighed sum approach. As a result, from a DM 

point of view, the PPA technique described in this section can be more demanding than the 

traditional weighted sum approach in certain scenarios, especially as the number of 

objectives increases. 
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Figure 5. 30 DTLZ2 (4) Preferences of the First Scenario (after the 200
th

 generations)   
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Figure 5. 31 DTLZ2 (4) Results achieved at the 200
th

 generation 
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Figure 5. 32 DTLZ2 (4) Results achieved at the 300
th

 generation 

 

In order to assess the utility of the suggested ε-dominance strategy as a PPA technique in 

optimisation frameworks with more than two objectives, an optimisation scenario 

consisting of four objectives (DTLZ2 (4)) was deployed. In Figures 5.31 and 5.32 a 

statistical presentation of the results achieved by ε-MOEA is illustrated in terms of each 

objective.  The first set of preferences was articulated at the first generation and allocated 

the same priority level to the 4 objectives. The aim was to produce a set of Pareto optimal 

solutions with a tolerance value ε = 0.1 in terms of the four objectives. In Figure 5.31 the 

corresponding results achieved at the 200th generation are illustrated. The mean and the 

median values in terms of the 4 objectives for the set of solutions achieved were closely 

located in the Pareto optimal range [0.3, 0.5]. The results presented in Figure 5.32 were 

achieved at the 300th generation of the optimisation process and were affected by the 

preferences articulated at the 200th generation and illustrated in Figure 5.30. 

The new preferences decreased the priority level for objectives 2 and 3 by articulating an 

exact preference for solutions whose values in terms of these two objectives are bigger 

than 0.6. The results achieved at the 300th generation (Figure 5.32) conformed to the 

progressively articulated preferences by illustrating a reduced set of solutions which 

manifested the desired preferences. The results presented in Figures 5.31 and 5.32 are also 

illustrated using parallel coordinates graphs in Appendix D.  
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5.3.4. Demonstration of FF-PPA technique 
 

Figures 5.33-5.36 illustrate an interactive optimisation scenario solving ZDT1. The PPA of 

the DM was expressed using Fonseca and Fleming’s preferability operator. The underlying 

search algorithm consisted of NSGA-II with the same configuration used in sections 5.3.1 

and 5.3.2. In the following scenario, the two objectives had the same priority level but 

different desired goals in order to emphasize the facility of reducing the search space and 

focusing on regions of interest. A certain ROI on the convex Pareto front was articulated in 

terms of the goal values for each objective. The goal value for a certain objective ‘i’ 

denoted the maximum acceptable value in terms of that objective. Consequently, any 

candidate solution whose value in terms of each objective was at least achieving the goal 

value for that objective would have therefore been considered as a preferred solution. 
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Figure 5. 33 FF-PPA technique running on ZDT1 (190
th

 generation)  

 

In Figures 5.33-5.36 the desired goal values for objective 1 and objective 2 were as follows 

respectively: Figure 5.33 	(0.2, 1), Figure 5.34 	(1, 0.2), Figure 5.35 	(0.5, 0.5), and 

Figure 5.36 	(0.3, 0.5). From the scenarios presented in Figures 5.33-5.36, it was very 

obvious that FF-PPA technique was a precise and DM-oriented facility. The numerical 

goal value in each dimension was the only information required from a DM to reduce the 

search space and focus on certain parts of a Pareto front. The goal values (or worst case 

scenario for each objective) progressively articulated by the DM are input to the optimiser 

to modify the concept of dominance and steer the search and selection process in the 

desired search region.  
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Figure 5. 34 FF-PPA technique running on ZDT1 (210
th

 generation) 
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Figure 5. 35 FF-PPA technique running on ZDT1 (230
th

 generation) 
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Figure 5. 36 FF-PPA technique running on ZDT1 (240
th

 generation) 

 

FF-PPA is a straightforward technique which allows the articulation of exact preferences, 

as well as the articulation of vague preferences by interactively relaxing the goal values for 

the objectives, and therefore enlarging the boundaries of the requested ROI. In Figure 5.37, 

the articulated goal value for the two objectives was ‘one’ (Figure 5.37 	(1, 1)).The aim 

was to produce results all along the Pareto optimal front. Figure 5.37 (a) illustrate the 

results achieved for the articulated preference (Figure 5.37 (c)) at the 300th generation. In 

Figure 5.37 (b) the parallel coordinate graph for the achieved solutions at the 300th 

generation is illustrated. All the solutions were achieving the goal values set for the two 

objectives. 

 

Finally, in Figure 5.38, two snapshots of the optimisation progress are visualised at the 

100th (a) and the 190th (b) generation of the optimisation process. The aim was to highlight 

the efficiency of Fonseca and Fleming’s PPA technique in terms of reducing the search 

space. From Figure 5.38 (a), it was obvious that FF-PPA technique was restricting the 

search process of NSGA-II to a reduced region of the objective space. Space reduction is a 

desirable feature especially valued in high dimensional objective spaces. The FF-PPA 

technique was then assessed on an optimisation problem presenting an increased number 

of objectives. DTLZ2 (4) was again used to achieve the desired task. The results achieved 

at the 200th generation of the optimisation process are illustrated in Figure 5.39. These 

results were affected by the preferences showed in Figure 5.39c and articulated at the 1st 

generation. The parallel coordinate graph presented in Figure 5.39b included all the 

solutions achieved at the 200th generation and which presented the desired criteria 
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articulated by the DM. At the 200th generation, the desired goal value for objective 2 was 

reduced to the value 0.2 (similar to the goal values of objectives 1 and 4) (Figure 5.40c). 

The new articulated preferences were efficiently fed to the underlying optimisation process 

which steered the search in the direction of the new ROI. The results achieved at the 250th 

generation (Figure 5.40a and 5.40b) illustrated the satisfaction of the new preferences by 

reducing the mean and the median values achieved for the 2nd objective. 
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Figure 5. 38 FF-PPA technique reducing the search space (ZDT1) 
 

The last preference articulation was then articulated at the 250th generation. The goal 

values for all the objectives were set to the value 0.5 in an attempt to produce optimal 

solutions in terms of the four objectives and which reside on the intermediate region of the 

well-defined Pareto optimal front of the DTLZ2 test function. At the 300th generation 

(Figure 5.41), the median and the mean values for all the four objectives presented values 

in the range [0.4, 0.5] which conformed with the required goal values 
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Figure 5. 39: (a) DTLZ2 (4) Results achieved at the 200
th

 generation. (b) Parallel 

Coordinates of the results achieved affected by the preferences illustrated in (c) and 
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Figure 5. 40 (a) DTLZ2 (4) Results achieved at the 250
th

 generation. (b) Parallel 

Coordinates of the results achieved affected by the preferences illustrated in (c) and 
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Figure 5. 41 (a) DTLZ2 (4) Results achieved at the 300
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 generation. (b) Parallel 
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. 

5.4. Discussion and Summary 
 

Progressive preference articulation is a useful approach for reducing high-dimensional 

spaces and tackling evolutionary multiobjective optimisation problems. It has benefits 

when compared with its a priori preference articulation technique counterpart, which 

requires the DM to know his/her preferences in advance, and which makes no use of the 

information that becomes available during the search process.  

In the previous sections, experiments were carried out using some of the most recent and 

most established PPA techniques. Although the deployed scenarios consisted of 2 and 4 

dimensional scenarios only, the strengths, weaknesses, and therefore the efficiency and 

suitability of these PPA techniques for the many-objective optimisation were apparent.  

 

The FF-PPA technique clearly still stands as an efficient, DM focused and truly 

“progressive” articulation technique. It is a user-friendly and direct technique which allows 

the articulation of exact as well as vague preferences. The accuracy and pertinence of the 

results achieved by the FF-PPA technique are realised with modest computational effort, 

and easily scales to any number of objectives. The utility of FF-PPA technique in reducing 

the search space and focusing on a certain ROI was also demonstrated in Fleming, 

Purshouse and Lygoe (2005) on an optimisation scenario consisting of 8 objectives. In 

evolutionary many-objective optimisation scenarios, supervised by an application-expert 

DM, the FF-PPA technique is a suitable optimisation technique. The technique’s 

traditionally criticised weakness24 of setting easily achievable, or contrarily very optimistic 

goal values that can hinder the search (e.g. Branke and Deb 2004), can be overcome by 

deploying an automated DM such as expert systems (Todd and Sen 1999) which can play 

the role of a progress sensor detecting such optimisation anomalies and modifying the goal 

values as appropriate with or without DM intervention. 
 

The biased crowding concept is a well-established preference articulation technique that 

can be used in a progressive manner to focus on a certain ROI. It is mostly useful and 

practical from the DM’s point of view when used with convex or concave optimisation 

problems with no more than 3 objectives. When dealing with multimodal, ill-behaved or 

high-dimensional problems, using the biased crowding is not efficient, especially in high-

dimensional problems, because it can be very confusing for a DM to devise a plane or 

hyperplane of interest for solutions projection. This difficulty can be broadly compared to 

the difficulty of devising weight values for the objectives in the weighted sum approach. 

                                                 
24 A weakness which is common to goal programming approaches 
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Even in the best scenarios, it was actually noted that the resolution of the ROI achieved by 

the biased crowding based PPA technique is not as precisely aligned with the DM 

preferences when compared with the FF-PPA technique, but which can be suitable for 

addressing vague user preferences.  
 

On the other hand, setting epsilon values for each objective and ensuring the facility of 

progressively modifying the epsilon values can establish the ε –dominance concept within 

the ε-MOEA as another PPA technique. From the DM’s point of view, it will remain, 

however, a demanding approach, involving the manipulation of ε-values rather than 

numerical goal values for the objectives. Nonetheless, the diversity promotion mechanism 

employed in ε-MOEA is a state-of-the-art multiobjective optimisation technique for 

limiting archive size and promoting diversity, and is highly commendable. Although it 

seems so far that the use of ε –dominance is better reserved for defining results precision 

and the magnitude of computational requirements - which can be used to reduce the effect 

of dominance resistance in high dimensional problems- future research into using ε –

dominance as a method to articulate preferences is required. 
 

Lastly, despite its simplicity and practicality for certain optimisation problems, the use of 

the guided dominance scheme as a PPA technique suffers from several weaknesses. 

Because the modification of the dominance scheme implicitly assumes linear utility 

functions, it can be quite complicated to handle multimodal and non-convex optimisation 

problems. In addition, when tackling high-dimensional problems this technique can be 

computationally expensive and demanding (Branke and Deb 2004), especially from a DM 

point of view, as the number of required pair-wise tradeoff values for this technique 

becomes very high ( )!2(! −nn  tradeoff value required, where n is the number of 

objectives). The guided dominance principle is best reserved for optimisation scenarios 

where specific tradeoffs among pairs of objectives are envisioned and devisable.  
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Chapter 6 
 

Conclusions 

 

6.1. Evolutionary Multiobjective Optimisation 

6.1.1. Requirements of Multiobjective Optimisation  

 
It is not possible to find a single optimal solution across all the objectives when tackling a 

multiobjective optimisation problem with conflicting objectives. Instead a set of optimal 

solutions, known as the Pareto front, is anticipated. This set of optimal solutions should 

ideally consist of a set of tradeoff solutions, each of which cannot be improved further in 

terms of a certain objective without introducing some deterioration in terms of one or more 

of the other competing objectives. The set of solutions achieved by a multiobjective 

optimiser is therefore required to be close to the true Pareto front. Because of the non-

existence of an ideal single solution, the set of optimised solutions is also required to be 

well spread and covering wide areas of the Pareto front, presenting the decision maker with 

a well distributed set of solutions to choose from. Deciding on a certain solution is a 

process usually based on subjective preferences such as objectives’ priorities or regions of 

interest. Moreover, and especially when dealing with real world applications, it is in the 

designer’s best interest that the approximation set is achieved fast and within an acceptable 

amount of time and a limited budget of objective function evaluations. Therefore, 

convergence, diversity, pertinence to the DM (ROI) efficiency and speed of convergence 

are all desired and essential requirements of multiobjective optimisers and constitute their 

assessment basis. 

6.1.2. Research Motivations 
 

Over the last two decades, the field of evolutionary multiobjective optimisation has 

considerably evolved. Many major milestones and multiobjective evolutionary optimisers 

were devised over the years with sophisticated features addressing the requirements sought 

when solving a multiobjective problem. The requirement for solutions’ convergence 

towards the Pareto front, the diversity of an approximation set and its pertinence to the 

user, and the efficiency, speed and practicality of MOEAs are all matters that have been 

investigated and researched over the years. Nevertheless, multiobjective optimisation has 

traditionally focused on problems consisting of two or three objectives. Real-world 
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problems often require the optimisation of a considerably larger number of objectives. 

Research has shown that conclusions drawn from experimentations carried on two or three 

objectives cannot be generalized for a higher number of objectives. The curse of 

dimensionality is a problem that faces decision makers when confronted with many 

objectives. As a result in scenarios involving large numbers of competing objectives, many 

aspects of EMO remain under- exploited and -explored. In this thesis, research was 

undertaken and new ideas were proposed with the aim of exploring such critical areas of 

EMO. Moreover, the goal was to promote and preserve EAs’ popularity and increase their 

suitability for solving multiobjective optimisation. This was achieved by introducing 

innovative remedial measures for some of their widely criticised drawbacks such as their 

heavy computational load and number of objective function evaluations for convergence 

towards Pareto fronts and the conflict between convergence and diversity in problems with 

many competing objectives. This last drawback is widely linked to dominance resistance 

and the increasing probability of producing, in a high dimensional objective space, non-

dominated solutions which are redundant, most often excelling in a single objective and 

remote from the Pareto front. The previous problems are known to be caused by the impact 

of the Pareto-based selection mechanisms, generally used in EAs, when deployed in 

conjunction with active diversity promotion strategies.  
 

6.1.3. Faster and Better Convergence 
 

In order to address the requirement for an enhanced proximity and a fast convergence 

towards Pareto fronts, the latter feature being especially valuable for real world 

applications, a portable Convergence Accelerator Operator (CAO) was proposed for 

incorporation in MOEAs. Traditionally, EAs operate in decision space and perform 

decision space to objective space mapping but fail to exploit direct use of the objective 

space. The novel multiobjective optimisation accelerator (CAO) uses direct manipulation 

in objective space together with neural network mappings from objective space to decision 

space. More precisely, the CAO uses a specific type of neural networks, the radial basis 

function as opposed to the multilayer perceptron (MLP) used in a series of papers by 

Gaspar-Cunha et al. The main reason behind using an RBF neural network within the CAO 

is its much faster training process compared to MLPs 25. Using an MLP neural network 

within a convergence accelerator strategy, such as the CAO, works against the purpose of 

the operator and imposes a considerable computational effort on the optimisation process. 

The use of RBF neural networks generalises the use of the CAO by making it practical to 

deploy the CAO on a wide variety of problems and not restricted to computationally 

                                                 
25 Trained with the gradient descent back-propagation algorithm 
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expensive objective functions. Moreover, a correction step integrated within the CAO is 

applied as an attempt to rectify any inaccuracies that might be introduced by the neural 

network predictions. This is performed in order to maintain the exact fidelity of the 

solutions and the optimisation problem being solved.  

The CAO is thus a transferable component that can be hybridized with any multiobjective 

optimisation algorithm. The purpose of this convergence acceleration operator is to 

enhance the search capability and the speed of convergence of the host algorithm. The 

operator acts directly in objective space to suggest improvements to solutions obtained by 

a multiobjective evolutionary algorithm (MOEA). These suggested improved objective 

vectors are then mapped into decision variable space and tested. The CAO was 

incorporated with two leading MOEAs, the Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) and the Strength Pareto Evolutionary Algorithm (SPEA2) and tested on a 

variety of recognised test problems with increasing number of competing objectives. In all 

cases, the introduction of the CAO led to improved convergence and solution’s diversity 

for comparable numbers of function evaluations.  

6.1.4. The Diversity Requirement 
 

The conflict of requiring solutions’ convergence towards the Pareto front while promoting 

diversity in the approximation set of an optimisation problem with many conflicting 

objectives was approached from a new perspective. A strategy for monitoring, promoting 

and controlling diversity in high-dimensional objective spaces was introduced. The 

diversity requirement widely regarded as a secondary requirement had to be redefined as a 

local and adaptive requirement. As a result the approach consisted of setting an 

approximation for the notion of a good and targeted diversity requirement, so that the latter 

requirement can be monitored and maintained simultaneously. In other words, when a 

wide dispersal of solutions is detected, the suggested strategy freezes the diversity 

requirement as a discriminator when selecting solutions for variation and survivals. Such 

wide dispersal is easily attainable in high-dimensional objective spaces and generally 

comes on the expense of a local divergence from the Pareto front. As a result, the diversity 

requirement is redefined to be perceived as a requirement that needs be controlled in a way 

that does not deteriorate the primary requirement for convergence towards the tradeoff 

surface. The suggested strategy for controlling and promoting diversity, termed the 

diversity management operator (DMO), was used in the context of NSGA-II and deployed 

to solve a set of test functions with increasing number of competing objectives (6	20 

objectives). For all the problem dimensions used, the utility and the beneficial contribution 

of the suggested technique was demonstrated. Compared to the results achieved for each of 



Chapter 6. Conclusions and Future Work 

  

183

the test functions by the standalone NSGA-II, significantly enhanced results were achieved 

when the DMO was operating and governing the selection processes of NSGA-II. 

 

Moreover, in scenarios with many competing objectives, it was shown that widely used 

metrics, such as the cover set metric or the dominated distance metric, which are usually 

considered suitable for comparing the performance of two MOEAs, cease to be 

informative. This is due to the fact that the majority of such metrics are built upon the 

Pareto dominance concept26 which intuitively adopts an equal importance for the 

convergence and the diversity requirements. While this intuition might be beneficial in 

scenarios with two or three competing objectives, equally weighting the two requirements 

can ultimately be seen as reducing an optimisation problem with many competing 

objectives to multiple single objective problems. This analogy is due to the increasing 

probability of producing solutions which are particularly optimal in terms of a single 

objective, especially as the number of competing objectives increase. This problem was 

originally detected in Schaffer’s (1985) VEGA, which is considered one of the first 

attempts for using EAs to solve multiobjective problems. In addition, it was shown that the 

non-dominated evaluation metric (Deb 2001) was more suitable and a more informative 

‘binary’ metric. The latter metric can be manipulated, by means such as the guided 

dominance or the ε-dominance principle to set the precision in terms of each of the two 

‘objectives’ (i.e. convergence and diversity), in order to assign the desired weighting value 

to the two requirements.  

6.1.5. The Pertinence Requirement 
 

Finally, the study presented in Chapter 5 was aimed at promoting the research and the use 

of progressive preference articulation techniques in the EMO community. Preference 

articulation techniques, and especially progressive preference articulation (PPA) 

techniques are effective methods for supporting the decision maker. Progressive preference 

articulation is a useful approach for reducing high-dimensional spaces and tackling 

evolutionary many-objective optimisation problems. It has benefits when compared with 

its a priori preference articulation technique counterpart, which requires the DM to know 

his/her preferences in advance, and which makes no use of the information that becomes 

available during the search process. PPA techniques also have benefits when compared 

with a posteriori approaches. The latter do not impose reductions on the search space and 

thus can be susceptible to problems such as speciation, dominance resistance and the 

conflict between convergence and diversity, especially as the number of competing 

                                                 
26 They assign performance scores by finding pairs of non-dominated vectors, which becomes less 
likely when the dimensionality of the objective space increases 
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objectives increase. Moreover, optimisation approaches deploying a posteriori preference 

articulation are more likely to produce approximation sets with overwhelming sizes which 

complicates the decision making process. 

 

Due to the fact that until recently most EMO research focused on bi-objective optimisation 

problems where the need for preference articulation is less apparent, preference 

articulation in EMO is somehow overlooked. In this study, some of the most recent, 

potential and most established PPA techniques are examined, contrasted and their utility 

for tackling multiobjective optimisation problems is discussed and compared from the 

viewpoint of the decision maker. The strengths and limitations of four well established and 

novel PPA techniques were illustrated and demonstrated on a set of multiobjective 

optimisation problems with varying scenarios of preferences. 

 

6.2. Future Perspectives 
 

The addition of deterministic improvement steps to stochastic MOEAs by exploiting the 

strategy of manipulating and performing direct search in the objective space to assist the 

evolutionary optimisation process is one of the major contributions of this thesis. Such 

deterministic processes have been shown to enhance the suitability of evolutionary 

algorithms for solving multiobjective optimisation problems by enhancing their practicality 

and their search convergence towards Pareto optimal regions of the search space. Further 

research concerning the improvement of the performance of neural networks investigating 

sophisticated learning algorithms and architectures is certainly profitable. More 

specifically, devising optimised strategies for training neural networks, especially for 

dealing with multimodal objective functions, is very beneficial. Increasing the confidence 

in the prediction quality of neural networks from the objective space to the decision 

variable space is an area of research that should be seriously considered, as this should 

confer a lot of potential improvements to multiobjective optimisation. Neural networks 

constitute a well-established branch of computational intelligence and are highly beneficial 

for multi- (as well as single) objective optimisation when merged with EAs. Investing data 

mining techniques from machine learning and artificial intelligence disciplines, as well as 

the investigation of alternatives to neural networks, such as Kriging models, self 

organizing maps and response surface models for capturing the mapping relationship from 

the objective space to the decision variable space, and vice versa, is another very 

promising and beneficial area of research.  

 

Future work should be invested in interactively executing the convergence acceleration 

operator (CAO) on request by the DM and in deploying the operator in a progressive 
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preference articulation technique to assist in guiding the search towards specific regions of 

interest (ROI). Being able to integrate progressive preference articulation techniques 

within the CAO is another major benefit; as an example, the objective space local 

improvement process might then be permitted to improve one of two competing objectives 

while ignoring or deteriorating the performance of the competing one by an acceptable 

amount reflecting the decision maker’s preferences. Furthermore, the interpolation step 

factor used for objective space improvement is an application-dependent parameter and 

will be influenced by the landscape of the objective space. In the experiments undertaken 

in this study, step factors ranging from 0.01 up to 0.2 were tried before settling for h=0.1 

as the step factor to be used for the tests. There is scope to explore the use of adaptive step 

factors as MOEAs explore the objective space. Future work will also include optimising 

test functions and real world problems with increasing number of competing objectives 

using MOEAs which simultaneously deploy the CAO and the diversity management 

operator (DMO).    
 

In addition, the identification of pair-wise objective relationships can also be learned and 

detected during the NN training component of the CAO. This is can be endorsed by 

deploying visual techniques such as Parallel Coordinates (Fonseca and Fleming 1998 and 

Inselberg 1985) or Scatterplot matrices or quantitative approaches such as Kendall sample 

correlation statistic (Kendal 1938). Building up knowledge about objective-relationships as 

the NN is trained can be used to identify objective redundancies and suggest 

dimensionality reductions that can accelerate the optimisation process. It can also be used 

in the objective space improvement component of the CAO by improving the objectives in 

a certain order reflecting their relationships (e.g. (1) harmonious objectives	(2) 

independent objectives 	(3) competing objectives). 

 

Finally, a suggested list of various future work directions is presented below:  
 

• Recent research and evidence (e.g. Knowles and Corne, 2007) has shown that as the 

number of competing objectives increase, random search algorithms become 

competitive with MOEAs. An interesting future investigation would therefore consist 

of assessing the performance of the CAO and the DMO (independently and combined) 

against the performance of random search algorithms on multiobjective problems with 

increasing number of objectives. 

• Future research investigating the use of heat maps (Pryke, Mostaghim and Nazemi 

2007), probabilistic models and novel approaches for determining and exploiting 

relationships between the decision variables and the different objectives constituting a 

multiobjective optimisation problem is highly beneficial and required. 
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• Thorough experimentation with other evolutionary computation techniques such as 

particle swarm or ant colony for solving multiobjective optimisation with many 

competing objectives is an interesting future work direction. A comparative study 

analysing and contrasting the performance of different evolutionary computation 

techniques including genetic algorithms on many-objective optimisation problems is 

essential to establish a detailed understanding of their strength and limitations. 

Important conclusions can be drawn from such comparative studies and might benefit 

the field of multiobjective optimisation.   

 

• Checking the effect of decision space dimensionality on the optimisation process of 

many competing objectives. This can be achieved by using scalable objective functions 

where the number of objectives large is fixed and the number of decision variables is 

varied. The objective is to quantify and understand the effect of the objective space 

and the decision space dimensionalities, separately, on the optimisation process. 

 

• Research has shown that despite being suitable for certain objective space dimensions 

the parameters for the widespread recombination and mutation operators are not 

suitable for higher dimensionalities (Purshouse and Fleming 2003b). Some research 

was dedicated for designing methodical approaches (Minsker and Goldberg (2000) and 

Lobo and Goldberg (2001)), known as competent EAs, for supporting the user in 

choosing the right parameters and designing an appropriate EA that accommodate the 

application at hand. Further research investigating the implementation of totally self-

configurable and adaptive MOEA that adapts to the dimension of the optimisation 

problem and the nature of its search spaces is another interesting research direction. 
 

• Examining and experimenting with the hypervolume metric or other performance 

metrics as an alternative to the usual ‘Pareto Dominance’ concept which widely 

governs the selection processes of MOEAs is very beneficial. Some research has 

already been produced in this area, however this interesting research topic is still far 

from being fully explored. 
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Appendix A 

Simplified Dynamical Model of  Aircraft 

Motion 

A simplified dynamical model of an aircraft motion can be represented by a fourth order 

linear equation (Tabak, Schy, Giesy and Johnson 1979). The corresponding state equation 

is: 
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The control vector, u, is represented by Equation A.2 where up is the pilot’s control input 

vector: 
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By substituting equation (A.2) into (A.1) we get: 

pBCuxBKAx ++= )(
0

         (A.3) 

The Eigen values of the matrix (A+BK) define the stability properties of the system 

modelled in Equation A.3.  
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Appendix B 
 

Below are presented the C-metric results achieved when comparing NSGA-II/CAO-RBF 

and NSGA-II/CAO-MLP on ZDT1, ZDT3 and ZDT6 at each of the 10 executions: 
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Figure B.1 C-Metric Values achieved by NSGA-II/CAO-RBF and NSGA-II/CAO-

MLP on ZDT1 at each of the 10 executions 
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Figure B.2 C-Metric Values achieved by NSGA-II/CAO-RBF and NSGA-II/CAO-

MLP on ZDT3 at each of the 10 executions 
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Figure B.3 C-Metric Values achieved by NSGA-II/CAO-RBF and NSGA-II/CAO-

MLP on ZDT6 at each of the 10 executions 



190  

Appendix C 
 

Below are presented the results achieved when the CAO is hybridized with SPEA2: 
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C.1 S-metric Values achieved by SPEA2, SPEA2/CAO-RBF and SPEA2/CAO-MLP 

on ZDT1 at each of the 10 executions 
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C.2 C-Metric Values achieved by SPEA2 and SPEA2/CAO-RBF on ZDT1 at each of 

the 10 executions 
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C.3 C-Metric Values achieved by SPEA2/CAO-RBF and SPEA2/CAO-MLP on ZDT1 

at each of the 10 executions 
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C.4 DD-Metric Values achieved by SPEA2, SPEA2/CAO-RBF and SPEA2/CAO-

MLP on ZDT1 at each of the 10 executions 
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C.5 S-metric Values achieved by SPEA2, SPEA2/CAO-RBF and SPEA2/CAO-MLP 

on ZDT3 at each of the 10 executions 
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C.6 C-Metric Values achieved by SPEA2 and SPEA2/CAO-RBF on ZDT3 at each of 

the 10 executions 
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C.7 C-Metric Values achieved by SPEA2/CAO-RBF and SPEA2/CAO-MLP on ZDT3 

at each of the 10 executions 
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C.8 DD-Metric Values achieved by SPEA2, SPEA2/CAO-RBF and SPEA2/CAO-

MLP on ZDT3 at each of the 10 executions 
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C.9 S-metric Values achieved by SPEA2, SPEA2/CAO-RBF and SPEA2/CAO-MLP 

on ZDT6 at each of the 10 executions 
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C.10 C-Metric Values achieved by SPEA2 and SPEA2/CAO-RBF on ZDT6 at each of 

the 10 executions 
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C.11 C-Metric Values achieved by SPEA2/CAO-RBF and SPEA2/CAO-MLP on 

ZDT6 at each of the 10 executions 
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C.12 DD-Metric Values achieved by SPEA2, SPEA2/CAO-RBF and SPEA2/CAO-

MLP on ZDT6 at each of the 10 executions 
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Table C.1: C-metric results for DTLZ2 (3) 

DTLZ2 - 3 Objectives 
(A = SPEA2/CAO-RBF, B = SPEA2/CAO-MLP and C = SPEA2) 

Run 

No: 
C-Metric (A, C) C-Metric (C, A) C-Metric (B, C) C-Metric (C, B) 

1 5% 0% 4% 0% 

2 10% 1% 5% 1% 
3 3% 0% 0% 1% 

4 4% 2% 7% 0% 
5 8% 1% 0% 0% 

6 6% 0% 4% 0% 
7 6% 0% 5% 0% 

8 12% 0% 5% 2% 

9 6% 2% 2% 0% 
10 7% 0% 2% 2% 

Mean 
Value: 

6.7% 0.06% 3.4% 0.06% 

Table C.2: DD-metric results for DTLZ2 (3) 

DTLZ2 - 3 Objectives 
(A = SPEA2/CAO-RBF, B = SPEA2/CAO-MLP and C = SPEA2) 

Run 

No: 
DD-Metric (A, C) .10-3 DD-Metric (B, C) .10-3 

1 -1.303 -0.881 
2 -3.1246 -1.668 

3 -0.423 0 

4 0.980 -1.182 
5 -1.368 0 

6 -3.219 -0.457 
7 -1.550 -1.863 

8 -3.228 -1.803 
9 2.472 -0.205 

10 -4.131 -1.026 

Mean 
Value: 

-1.500 -0.9 

 

Table C.3: C-metric results for DTLZ2 (8) 

DTLZ2 - 3 Objectives 
(A = SPEA2/CAO-RBF, B = SPEA2/CAO-MLP and C = SPEA2) 

Run 

No: 
C-Metric (A, C) C-Metric (C, A) C-Metric (B, C) C-Metric (C, B) 

1 1% 0% 5% 0% 

2 6% 0% 4% 0% 
3 21% 0% 10% 0% 

4 8% 0% 20% 0% 
5 18% 0% 35% 0% 

6 3% 0% 7% 0% 

7 33% 0% 18% 0% 
8 11% 0% 6% 0% 

9 2% 0% 5% 0% 
10 16% 0% 5% 0% 

Mean 
Value: 

12.9% 0% 11.5% 0% 
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Table C.4: DD-metric results for DTLZ2 (8) 

DTLZ2 - 3 Objectives 
(A = SPEA2/CAO-RBF, B = SPEA2/CAO-MLP and C = SPEA2) 

Run 

No: 
DD-Metric (A, C) .10-3 DD-Metric (B, C) .10-3 

1 -50.30 -45.94 

2 -49.45 -70.20 
3 -209.41 -160.99 

4 -270.92 -376.14 
5 -190.24 -715.37 

6 -37.59 -110.62 
7 -807.08 -284.25 

8 -205.77 -91.72 

9 -54.01 -76.58 
10 -95.05 -70.35 

Mean 
Value: 

-196.9820 -200.2160 

 

Table C.5: C-metric results for DTLZ2 (12) 

DTLZ2 - 3 Objectives 
(A = SPEA2/CAO-RBF, B = SPEA2/CAO-MLP and C = SPEA2) 

Run 

No: 
C-Metric (A, C) C-Metric (C, A) C-Metric (B, C) C-Metric (C, B) 

1 2% 0% 2% 0% 

2 5% 0% 5% 0% 
3 1% 0% 1% 0% 

4 1% 0% 3% 0% 
5 6% 0% 5% 0% 

6 3% 0% 2% 0% 
7 5% 0% 3% 0% 

8 2% 0% 4% 0% 

9 1% 0% 2% 0% 
10 6% 0% 2% 0% 

Mean 
Value: 

2.7% 0% 2.9% 0% 

 

Table C.6: DD-metric results for DTLZ2 (12) 

DTLZ2 - 3 Objectives 
(A = SPEA2/CAO-RBF, B = SPEA2/CAO-MLP and C = SPEA2) 

Run 

No: 
DD-Metric (A, C) .10-3 DD-Metric (B, C) .10-3 

1 -12.620 -29.900 

2 -5.921 -17.228 
3 -32.017 -18.920 

4 -18.742 -12.232 
5 -26.200 -98.023 

6 -51.027 -99.780 

7 -67.332 -101.907 
8 -179.892 -10.561 

9 -28.920 -9.703 
10 -100.320 -17.131 

Mean 
Value: 

-52.2991 -41.5385 
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C.13 Computational Time per execution for DTLZ2 (3) 
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C.14 Computational Time per execution for DTLZ2 (8) 
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C.15 Computational Time per execution for DTLZ2 (12) 
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Appendix D 

Parallel Coordinates Graphs 

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
b
je

c
ti
v
e
 V

a
lu

e

Objective no.
 

Figure D.1: Parallel Coordinates of the results achieved for DTLZ2 (4) (also 

presented in Figure 5.11) for the scenario expressed using the guided dominance PPA 

technique (illustrated in Section 5.3.1) 
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Figure D.2: Parallel Coordinates of the results achieved for DTLZ2 (4) (also 

presented in Figure 5.12) for the scenario expressed using the guided dominance PPA 

technique (illustrated in Section 5.3.1) 



Appendix D. Parallel Coordinates Graphs 

  

201

1 2 3 4

O
b
je

c
ti
v
e
 V

a
lu

e

Objective no.
 

Figure D.3: Parallel Coordinates of the results achieved for DTLZ2 (4) (also 

presented in Figure 5.18) for the scenario expressed using the biased crowding PPA 

technique (illustrated in Section 5.3.2) 
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Figure D.4: Parallel Coordinates of the results achieved for DTLZ2 (4) (also 

presented in Figure 5.19) for the scenario expressed using the biased crowding PPA 

technique (illustrated in Section 5.3.2) 

 

 



Appendix D. Parallel Coordinates Graphs 

  

202

1 2 3 4

O
b
je

c
ti
v
e
 V

a
lu

e

Objective no.
 

Figure D.5: Parallel Coordinates of the results achieved for DTLZ2 (4) (also 

presented in Figure 5.20) for the scenario expressed using the biased crowding PPA 

technique (illustrated in Section 5.3.2) 
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Figure D.6: Parallel Coordinates of the results achieved for DTLZ2 (4) (also 

presented in Figure 5.31) for the scenario expressed using the ε-dominance based 

PPA technique (illustrated in Section 5.3.3) 
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Figure D.7: Parallel Coordinates of the results achieved for DTLZ2 (4) (also 

presented in Figure 5.32) for the scenario expressed using the ε-dominance based 

PPA technique (illustrated in Section 5.3.3) 
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