
Niching Ant Colony Optimisation

Daniel John Angus, BEng. BSci.

Complex Intelligent Systems Laboratory

Faculty of Information & Communication Technologies

Swinburne University of Technology

Melbourne, Australia

Submitted in partial fulfilment for the degree of

Doctor of Philosophy

July 2008





Abstract

Optimisation, in the mathematical sense, is the process of finding solutions to a problem such

that one or many objectives are minimised or maximised. Optimisation problems are diverse

in form, necessitating the need for many different optimisation algorithms. These algorithms

can be defined in two categories: deterministic and non-deterministic algorithms. Determinis-

tic algorithms usually have set execution schedules and are fairly exhaustive search methods.

Non-deterministic algorithms use randomness and prove useful for problems where it may

not be possible to execute a deterministic algorithm due to the size, or nature of the problem

search space. In these cases a deterministic algorithm may take days or months to find an opti-

mal solution, whereas a non-deterministic algorithm can usually find an approximate but still

near-optimal solution in a matter of minutes or seconds.

Ant Colony Optimisation (ACO), a non-deterministic algorithm class, aims to mimic (and ex-

ploit) the behaviours of real ant colonies to solve real-world optimisation problems. ACO algo-

rithms are a class of constructive heuristic algorithms, which build solutions to a given optimi-

sation problem, one solution component at a time, according to a defined set of rules (heuris-

tics), i.e. starting with an ‘empty’ solution add solution components until a complete solution

is built. ACO algorithms are unique in this class by their use of past solutions in manipulating

an artificial ‘pheromone’. The pheromone being a measure associated to every unique solution

component which reflects the estimated utility of this solution component. These pheromone

values are used to bias solution construction by influencing the probability of a solution com-

ponent being added to a growing solution based on the amount of pheromone it contains.

The Population-based Ant Colony Optimisation (PACO) algorithm is a recently developed ant-

inspired algorithm which, unlike traditional ACO algorithms, maintains a finite population

of solutions as well as pheromone information. It has been demonstrated to be an efficient

optimisation algorithm when applied to a range of difficult single-objective, multi-objective

and dynamic problem instances. In this thesis a review of existing PACO algorithms is offered

and an identification of common features is used in the development of a Population-based

ACO framework.

Using the new Population-based ACO framework, several new PACO algorithms imbued with

a diversity preservation technique known as niching are defined. Niching has been used exten-

sively in the field of Evolutionary Computation, but to the best knowledge of the author, has

never been explicitly applied to an ACO algorithm per se. An empirical analysis of these novel
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implementations is presented using a variety of single and multiple objective continuous func-

tion and combinatorial optimisation problems. These optimisation problems have been chosen

since they demonstrate the advantages and disadvantages of adding niching to a PACO algo-

rithm. To conclude, two of these new PACO algorithms are applied to a real-world optimisation

problem.
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CHAPTER 1

Introduction

1.1 Background to the study

As humans in an increasingly busy world we are confronted with optimisation problems on

a daily basis. We are often striving to solve these problems more efficiently and effectively,

regardless of whether we are consciously aware of it or not. The simple task of commuting

between our homes and workplace can be treated as an optimisation problem since we may

seek to minimise the time taken (objective value) to perform this commute. Furthermore there

is a finite (albeit large) set of decision variables we can choose from such as roads, bus/train

routes and walking paths. Yet while this simple and sometimes mundane task may seem trivial

for us as humans to solve, it can prove to be quite difficult for a computer.

Although real world optimisation problems come in a variety of different forms, optimisation

algorithm practitioners usually treat these depending on the interplay between problem vari-

ables. Consequently, two very popular and well studied problem classes are function optimi-

sation, and combinatorial optimisation. The first class is concerned with selecting values for a

finite set of problem variables, defined along either a discrete or continuous range. The later

class includes problems where not only the value but also the ordering of variables is important,

e.g. Travelling Salesman Problem, Shortest Path Problem, University Timetabling Problem, etc.

Methods used to solve optimisation problems are usually defined into one of two categories:

deterministic and non-deterministic algorithms. Deterministic algorithms are usually well de-

fined and understood since their deterministic nature allows for more accurate analysis and

estimation of performance. Non-deterministic (stochastic) algorithms are not always under-

stood, and hence performance estimations for these algorithms are usually given as confidence

measures.

Non-deterministic algorithms are useful for problems where it may not be possible to execute a

deterministic algorithm due to the size, or nature of the problem’s search space. Such problems

are usually denoted as NP-hard or NP-complete. In these cases a deterministic algorithm may

take days or months to find an optimal solution, whereas a non-deterministic algorithm can

usually find an approximate but hopefully still near-optimal solution in a matter of minutes or
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seconds.

Ant Colony Optimisation (ACO) is a non-deterministic algorithm class that is based on the for-

aging behaviours of Argentine ants. ACO algorithm aim to mimic (and exploit) the behaviours

of real ant colonies in order to solve optimisation problems. ACO algorithms belong to the class

of constructive heuristic algorithms which work by building solutions to a given optimisation

problem one solution component at a time according to a defined set of rules (heuristics). In

other words these algorithms start with an ‘empty’ solution and add solution components one

at a time until a complete solution is built. ACO algorithms are characterised by this solution

construction and by their use of past solutions in manipulating an artificial ‘pheromone’. This

pheromone is a numeric value which is associated to every unique solution component. It re-

flects the estimated utility of each unique solution component. These pheromone values are

used to bias solution construction by influencing the probability of a solution component being

added to a growing solution based on the magnitude of the pheromone value.

The ability of ACO algorithms to solve more difficult artificial problem instances is important

for researchers, as these difficult artificial problems are often close approximations of industrial

(real-world) applications. However, as the complexity of the problem increases, the optimi-

sation performance of many standard ACO algorithms will often decrease. To address this

decrease in performance, practitioners often make augmentations to standard ACO algorithms

in an attempt to increase their performance on a specific problem, usually through the intro-

duction of complex operations and extra problem specific parameters. These modifications

generally adjust the type or amount of problem specific information that the algorithm has

access to, or the algorithm behaviour to balance the amount of computation time spent:

• Searching for solutions radically different from those already found (exploration).

• Exploiting information learnt through previously evaluated solutions (exploitation).

Exploration and exploitation somewhat define the difference between the various available

algorithms which comprise the field of computational intelligence. It is the (often dynamic)

balance between these behaviours that can define a specific algorithms suitability on a given

problem.

1.2 Research Motives and Contributions

The Population-based Ant Colony Optimisation (PACO) algorithm is a recently developed ant-

inspired algorithm which, unlike traditional ACO algorithms, maintains a population of solu-

tions as well as pheromone information. It has been demonstrated to be an efficient algorithm

when applied to a range of difficult single-objective, multi-objective and dynamic problem in-

stances. It is believed that there may still be ways in which to further increase its effectiveness

at solving some complex optimisation problems, and that population diversity plays an impor-

tant role in addressing this issue.

Presently there are a number of disparate algorithms inspired by the first PACO algorithm.
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These algorithms are often very different from the inspiration and only loosely base themselves

around the idea of maintaining a population rather than strictly reusing all of the procedures

defined by the original PACO algorithm. The lack of a common framework for these algorithms

makes it difficult for newcomers to the field to identify what the core ideas underpinning the

PACO algorithms are, and also makes it difficult for new research to be developed since it is

unclear what effect subtle implementation differences have on algorithm performance.

The first contribution of this thesis is a comprehensive review of existing PACO algorithms,

identification of common features and use of these features in the development of a PACO

framework. The amount of existing work on PACO is minimal but not insignificant, as such

the new framework will incorporate elements from the broader fields of ACO and Evolutionary

Computation where appropriate. It is intended that this framework should not only encompass

existing PACO algorithms but also allow for extension to several new algorithms.

The second contribution is the development of several new PACO algorithms imbued with a

diversity preservation technique known as niching. Niching has been used extensively in the

field of Evolutionary Computation, but has never been explicitly applied to an ACO algorithm

per sé. An empirical analysis of these novel implementations is presented using a variety of

single and multiple objective continuous function and combinatorial optimisation problems.

These problems have been chosen since they demonstrate the advantages and disadvantages

of adding niching to a PACO algorithm.

The final contribution is the application of the new PACO algorithms to an industrial applica-

tion. This application is included to demonstrate the niching PACO algorithms’ applicability to

a ‘real-world’ optimisation problem instance.

1.3 Thesis Structure

To ease the comparison and explanation of key concepts, several standard problem classes are

explained in Chapter 2. Performance metrics which will be used to measure algorithm perfor-

mance are also presented in this chapter. Existing theory from the field of ACO is presented

in Chapter 3. Several PACO algorithms and the PACO Meta-heuristic Framework are pre-

sented in Chapter 4. Evolutionary Computation and Niching are presented in Chapter 5, as

well as several novel Niching PACO algorithms. The new PACO algorithms are tested on sev-

eral benchmark single objective optimisation problems in Chapter 6 and several benchmark

multiple objective problems in Chapter 7. The findings from these chapters are used in the ap-

plication of the newly developed algorithms to a previously untested industrial application in

Chapter 8. Finally, a summary and outlook for future research is offered in Chapter 9.

3





CHAPTER 2

Optimisation Problems

When you can measure what you are speaking about and express it in numbers,

you know something about it; but when you cannot measure it, when you cannot

express it in numbers, your knowledge is of a meagre and unsatisfactory kind.

Lord Kelvin, 1883

2.1 Introduction

Our world has no shortage of optimisation problems, whose difficulties range from trivially

simple to infinitely difficult. Many of these problems are able to be modelled in a way which

makes them amenable to optimisation by a computer algorithm. These optimisation problems

generally comprise a set of finite solution components (variables) and optional constraints gov-

erning the range and composition of these solution components required for a feasible solution.

Any feasible solution to an optimisation problem is usually able to be assessed for quality (how

well it solves the optimisation problem) by a fitness function.

A first challenge in solving a specific problem is representing the problem in a meaningful

way. The process of problem representation is a very important step in the overall algorithmic

design challenge. A good problem representation not only allows an algorithm to produce

feasible solutions, but may also aid the algorithm in finding optimal, or near-optimal solutions

to the problem. Conversely a poor problem representation may hinder an algorithms ability to

effectively or efficiently find a good solution.

This chapter discusses several classes of optimisation problem, with examples of each problem

class included. For each problem class discussed an appropriate problem representation is

included. All problems introduced in this chapter are used later in the thesis, either for assisting

the explanation of an existing algorithm, explaining a general problem solving issue, or for use

as benchmarks for the testing of new algorithms.

5



2.2. COMBINATORIAL OPTIMISATION

2.2 Combinatorial Optimisation

Consider the real world problem of scheduling, be it for designing a students timetable or for

sequencing a group of machines in a production line. In these examples the problem is in

selecting and ordering a set of discrete components. These are combinatorial optimisation prob-

lems, where the sequencing of a (usually) finite set of solution components defines the utility

(goodness) of a solution [99].

2.2.1 Travelling Salesman Problem

The Travelling Salesman Problem (TSP) [127] can be described as:

Given a set of n cities (vertices) and weights for each pair of cities, find a round-trip

of minimal total weight that visits every city exactly once.

The total number of feasible solutions of a symmetric TSP, that is a TSP for which the weight

connecting any two cities is the same regardless of direction of travel is that of (2.2.1). Given

the development of many very good heuristics for the TSP (Nearest Neighbour [132], Lin-

Kernighan [101]) the size of the search space required to locate the optimal solution and thus

the search complexity is much lower than the size of the feasible solution space. Even given

these heuristics though, the problem is still classified as NP-hard.

Total Solutions =
(n− 1)!

2
(2.2.1)

A suite of standard TSP instances is available from an online reference, TSPLIB [126, 128], and

includes a variety of datasets ranging in size and representation. TSP datasets are usually repre-

sented in a standard coordinate data system such as 2-dimensional Euclidean, or geographical

(using latitude and longitude). This representation is mostly chosen given the nature of the

dataset itself, e.g. Burma14 is a dataset which represents 14 cities in Burma using geographical

coordinates. Using an appropriate formula the distances connecting each vertex (Tab. 2.1) is

calculated and stored in a matrix (Tab. 2.2).

City X Y
1 1 49
2 14 26
3 -20 43
4 30 32
5 27 -44

Table 2.1: 5 city TSP represented using 2D Euclidean coordinates

Examples of the TSP can be found in more practical scenarios than just the original context of a

travelling salesman. Printed Circuit Board manufacture often requires the drilling of a number

of holes and/or placement of a number of components (Fig. 2.1). To minimise the time required

to drill/place we can interpret the locations as ‘cities’ and minimise the problem to minimise
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2.3. CONTINUOUS FUNCTION OPTIMISATION

City (to/from) 1 2 3 4 5
1 0.00 26.42 21.84 33.62 96.57
2 26.42 0.00 38.01 17.09 71.20
3 21.84 38.01 0.00 51.20 98.88
4 33.62 17.09 51.20 0.00 76.06
5 96.57 71.20 98.88 76.06 0.00

Table 2.2: 5 city TSP edge weight matrix

the time required to process each PCB. Solving this problem can save a manufacturer much

time due to the large number of PCBs processed. Since hundreds of thousands of identical

PCBs may be manufactured in a single batch, a small saving in time to manufacture a single

PCB may scale to a large saving in the total processing time.

Figure 2.1: Optimal tour of the PCB3038 TSP (Available from http://www.tsp.gatech.edu/
gallery/itours/pcb3038.html)

2.3 Continuous Function Optimisation

Many systems, good examples being those arising in economics and engineering, are modelled

as Continuous Function Optimisation (CFO) problems. These systems accept a combination of

input parameters that are then combined in some way to produce an output value or values. An

example may be in a chemical engineering process where measured amounts of input chemicals

are combined to produce a single output. Depending on the system, the relationship between

the inputs and the output may be well understood, however if the system is complex enough it

may be the case that the output can’t be reliably back propagated to the inputs.

The principal components of a CFO problem are an objective function (fitness function). This

maps the n-dimensional input vector to a single, or multiple output values. As previously illus-

trated the input vector will represent a set of unique scalar qualities of the system being mod-
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elled. Additionally, the input vector is usually defined within boundaries, or constraints. These

constraints may be physical, technical, economic, environmental, legal, societal depending on

the system. The objective function may still return values outside the constraint boundaries,

however the n-dimensional input will be said to be infeasible since it violates the constraints.

Depending on the problem the objective function may be defined over any variety of number

systems to any order of precision, and some objective functions may accept mixed input vectors

e.g. a combination of floating point decimal and binary.

When solving CFO problems the objective is to usually maximise or minimise the output

value(s) which can represent physical or non-physical quantities such as profit, product quality,

speed of service or job completion, cost, risk, etc. Then though a systematic adjustment of the

input values, one or many good or optimal solution(s) are selected.

2.4 Modality

In the context of this thesis, modality refers to the number of optimal (or near-optimal) solutions

that exist in the search space of any optimisation problem. Multi-modal problems are interest-

ing to researchers since the modality of a problem is usually associated with its difficulty and

thus these problem domains offer challenges in algorithm design. Multi-modal problems are

not necessarily the same as deceptive problems. This is because the symmetry of some multi-

modal problems may allow optima to be located through the location of other optima thus their

modality can actually assist an algorithm rather than hinder it. Deceptive problems tend to trap

algorithms at local optima, in effect stopping algorithms from finding better optima by making

them converge in the wrong direction.

Closely related to the issue of modality is the requirement for single or multiple final solutions.

This may be for robustness e.g., multiple solutions means if one solution proves inadequate an-

other solution may be used. If the problem is dynamic, having multiple solutions may provide

the user with more options in the event of a change to the problem. In the case of multi-objective

optimisation (Sec. 2.5) we don’t always know what shape the Pareto front (Sec.2.5.2) will take

and therefore we may not want to pre-define our final solution selection criteria. Due to these

circumstances algorithms can sometimes be judged by their ability to locate and maintain mul-

tiple (usually spatially separated) optima rather than just one optimum.

2.5 Multiple Objective Optimisation

The simple task of commuting between our home and workplace can be treated as a single ob-

jective optimisation problem if we are only concerned with minimising the time taken to travel

between the two. This example is fairly simple though, since if time was the only factor in de-

termining our decision, then would it not be best to take an extremely fast (and expensive) form

of transport e.g. a helicopter, to work? In fact cost is an important factor in our decision mak-

ing, therefore is it not best to consider time and cost as separate objectives? If so, then we can

8
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consider this problem as a Multiple Objective (Multi-objective) optimisation (MOO) problem,

which is a more general class of optimisation problem of which single-objective optimisation is

a subset.

Multi-objective optimisation is, in general, approached in three ways in the literature [88]:

• A Priori Preference Articulation – The decision maker combines all objectives into a single

objective through the use of a weight vector, turning the multi-objective problem into a

single-objective problem to search.

• Progressive Preference Articulation – The decision maker may provide partial preference

information and adjust this preference information as the search continues by interpreting

the results of the search.

• A Posteriori Preference Articulation – The decision maker does not provide any preference

information, instead the decision maker is presented with a set of candidate solutions

(generated by some search process) to choose from.

Neither approach is perfect for all situations and the method must always be matched to the

needs of the problem and this will be discussed further in Sec. 2.5.4.

2.5.1 Objective and Solution space

Although multiple definitions exist in Evolutionary Computation literature for phenotypic and

genotypic information [3] in this thesis the following definition will apply. Genotypic informa-

tion refers to a solution encoding such as a permutation in the case of a TSP or input vector

information as in a CFO. Phenotypic information refers to what is sometimes called fitness or

objective information, e.g., the tour length in a TSP or the function value in CFO.

For single-objective optimisation problems, the genotypic information is usually mapped into

an n-dimensional space called the solution space, or decision variable space, with the pheno-

typic information being the value of the points contained in this space. For multi-objective

optimisation the relationship between genotypic and phenotypic information is more complex,

and as such, the n-dimensional spaces that represent the genotypic and phenotypic informa-

tion are clearly defined as the solution (decision) and objective (fitness) spaces respectively. It is

said to be complex since it is possible that solutions which are close in proximity in the solution

space are not necessarily close in the objective space. Due to this non-linearity it must always

be clear in which space we are applying operators such as diversity maintenance techniques.

In most multi-objective optimisation problems the genotypic information does not alter from a

similar single-objective optimisation problem. The multi-objective TSP is comprised of multiple

distance matrices of the same size. A solution in this case is still a permutation, however in this

case the permutation is evaluated multiple times according to each individual distance matrix.

To interpret this in a real-world context think of each distance matrix corresponding to different

costs between cities, e.g. time, distance, monetary value.

9



2.5. MULTIPLE OBJECTIVE OPTIMISATION

2.5.2 Pareto Optimality

Every multi-objective optimisation problem has two or more complimentary or competing ob-

jective functions. In the case of complimentary objective functions, a single optimal solution

may exist which maximises (or minimises) all objective functions. In the case of competing ob-

jectives it will be the case that multiple trade-off solutions exist, and each of these solutions is

said to be Pareto optimal after the economist Vilfredo Pareto. A Pareto optimal solution is said

to be the best trade-off between any objective function such that there exists no change that can

be made which will simultaneously benefit multiple objectives.

The number of Pareto optimal solutions making up the Pareto set and the shape of the resultant

Pareto front depends on the specific problem instance. Several standard shapes are defined in

the literature for specific Pareto fronts, illustrated in Fig. 2.2.

(a) Convex Pareto front (b) Concave Pareto front (c) Discontinuous Pareto
front

Figure 2.2: Illustrations of different Pareto fronts plotted in the objective space.

2.5.3 Dominance

The dominance relationship is a means by which solutions are able to be compared and sub-

sequently ranked. Simply put it compares two solutions (s1,s2) and indicates which of the

following conditions apply:

• If s1 is not worse than and is at least better in one objective (but not in all) than s2, s1 is

said to weakly dominate s2, denoted as s1 � s2.

• If s1 is better in all objectives than s2, s1 is said to strongly dominate s2, denoted as s1 ≺ s2.

• If neither of the above conditions is true s2 is said to be non-dominated by s1, denoted as

s1 6� s2.

The principle of dominance relationships is important for search algorithms that rely on di-

rectional (fitness) information to guide their search process since it allows direct comparisons

between multiple solutions. The dominance relationship represents one way to rank solutions

for this purpose but other methods such as indicator-based selection and hypercube calcula-

tions also exist. A possible problem with dominance ranking is that it may not produce enough
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grading since simply saying s1 dominates s2 does not indicate how much s1 dominates s2 by.

This is due to the simplicity of the dominance relationship which can also be misleading by in-

troducing a bias due to the projection angle by which solutions are compared [133]. This said,

alternative measures are often very complex or cannot be scaled well to more than two or three

objectives.

A non-dominated set is a set of solutions which are not weakly dominated by any other solution

in the set. A Pareto optimal set will be a non-dominated set however the converse need not be

true.

2.5.4 Solving Multiple Objective Optimisation Problems

As discussed in Sec. 2.5 MOO problems are, in general, solved in three ways: a priori, progressive

and a posteriori. Knowledge, or lack thereof, of the Pareto front may aid the choice of technique

as in some instances it has been proved that an a priori weighting can prevent a solver from

returning a solution which is Pareto optimal [36]. Furthermore, an even distribution of solu-

tions across the Pareto front is not guaranteed with even spaced weight vectors given a convex

Pareto front [32].

In the absence of sufficient knowledge of the Pareto front a progressive or a posteriori approach

may be useful since it may uncover facts about the shape and nature of the objective space.

These approaches often strive to meet two conflicting goals:

• Find solutions which are close to the Pareto front.

• Maintain a diverse range of solutions along the Pareto front.

These goals are said to be conflicting since most algorithms adapted to solve MOO work best

when concentrating (converging) on specific areas of the search space, however this search

behaviour will often lead to a loss of diversity. Thus an ideal approach must be able to balance

exploratory (diversity preserving) behaviour with exploitative (quality enhancing) behaviour.

In this thesis the focus is on developing and comparing MOO algorithms that address these

goals.

2.5.5 Existing Algorithms

A discussion of all existing MOO algorithms is outside the scope of this thesis. Several algo-

rithms are discussed later in the thesis in Sec. 7.2 since these algorithms are used for comparison

purposes.

2.6 Choice of Problems

In this thesis several classes of problem have been selected. Each problem chosen has been

carefully selected from a much wider family of optimisation problems. Although it would
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be desirable to be able to solve every problem to optimality using the same algorithm with a

minimal amount of computation, this is simply not possible. It is generally accepted that there

is no silver bullet i.e., no algorithm which can solve every problem better than any other, and

the no free lunch theorem [162] supports this hypothesis. Alternatively, as algorithm designers

the task then becomes to discover the best fits between algorithm and problem i.e., for what

problems does a specific algorithm work best.

In the case of the Travelling Salesman Problem (TSP) (Sec.2.2.1) the best performing algorithm

in terms of ability to locate an optimal solution at present is a deterministic solver named Con-

corde [2]. This algorithm has been able to solve some of the most challenging TSP problems

proposed in the literature, the largest currently being a TSP of 33,810 cities (The computation

took 15.7 CPU years). This Concorde solver is a highly specialised algorithm that relies on

parallel computing and large amounts of virtual memory.

Even given the existence of Concorde, algorithm designers still decide to test new algorithms

on the TSP for a number of reasons:

• An algorithm designer may believe that they can achieve a better algorithm design than

that of Concorde, i.e., one that can find the optimal solution in less computational time

with less or similar computational resources.

• Given that Concorde requires massive amounts of computational resources an algorithm

designer may wish to develop an algorithm that trades an amount of solution quality for

lower computational resource.

• The TSP is a well known problem which is well understood, thus observing an algorithms

behaviour on the TSP may give insight into the nature of that algorithm.

It is interesting that Ant Colony Optimisation algorithms tend to be most closely associated

with TSP, no doubt because the first ACO algorithms were applied to the TSP. This is akin to

Genetic Algorithms (GA) being associated with CFO. De Jong commented that algorithms tend

to be defined in very general terms and are later specialised to fit specific applications, hence a

case of the cart coming before the horse [89]. Given this, it is often (unfortunately) evident that

algorithms are typecast depending on the first problems they are applied to, even if they are by

definition more general paradigms.

In this thesis several problems will be used to highlight important properties of proposed al-

gorithms, however, it should not be thought that these problems are by any means the only

problems able to be addressed with these algorithms. The ACO paradigm is, by definition, a

general algorithmic framework, as such it is possible to apply it to, with an amount of speciali-

sation, a broad range of problems. It is intended that the later problem analyses will highlight

general features of the algorithms that will enable the future application of the algorithms to

other problems that also exhibit similar features. With this in mind problems have been selected

on purpose to identify algorithm strengths and weaknesses so as to allow reasonable postulates

as to the expected performance of the algorithms if applied to other problems.
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Throughout the thesis many state-of-the-art algorithms for specific problem classes are in-

cluded. The inclusion of these algorithms is primarily to obtain an expected level of good

performance. In the literature there is sometimes a tendency to try to competitively compare

two algorithms in order to conclude that one is better [83, 6]. It was maybe put best in [83] that

‘most experimental studies of heuristic algorithms resemble track meets more than scientific

endeavours’. This thesis, rather than try to competitively compare algorithms, relies on con-

trolled experimentation to obtain insight into a new algorithms behaviour. Existing algorithms

can then be used to assist in placing the new algorithm behaviour in the right context, i.e. while

the new algorithm might achieve a better quality solution than the control algorithm, and in

some instances this is certainly the intent, it is of more interest to answer the question, ‘why did

it achieve a better quality solution?’

2.7 Performance Statistics

As results from multiple different algorithms are to be compared, it may be necessary to in-

dicate the statistical significance of such a comparison. Some statistical methods assume that

data is taken from a known distribution, such as a normal distribution. If this assumption can

be made these tests are usually quite reliable and powerful ways of reporting on any difference

between two or more samples. As a general rule though these parametric statistical methods

are not applied when testing stochastic algorithms. Instead non-parametric statistical methods

that rely on rank or permutation tests are commonly used, as these tests make no assumptions

as to the nature of the distribution [26].

Rank tests, such as the Mann-Whitney [111], Wilcoxon Rank-sum [161] and Kruskal-Wallis [97]

tests pool values from multiple samples and sort them according to some unitary measure, such

as path length. In the case of the Mann-Whitney test all samples are assumed to have come from

the same population, and the null hypothesis is that the samples are the same. Thus, when the

assigned ranks are summed together from individual samples any differences have an effect on

whether this null-hypothesis is accepted or rejected. If the samples contain multiple ties then

the use of a permutation test such as Fisher’s test may be considered, since this test does not

discard as much information, however it is far more computationally intensive.

In this thesis many of the aforementioned statistical techniques will be used when comparing

algorithms, however, they are reserved for use only when robust conclusions need to be made.

For example during a simple qualitative analysis such statistical significance is not required,

however when comparing multiple algorithms to determine suitability for a particular appli-

cation then statistical significance is mandatory.

Statistical significance implies that if a difference between two groups of results is observed

then this difference is not the result of chance. The usual method to perform such an analysis

is to formulate a null hypothesis and test this hypothesis. An example and commonly used

null hypothesis is that results obtained from algorithm A are the same as the results obtained

from algorithm B. After defining a null hypothesis, a significance level (α) for the hypothesis
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to be rejected must also be selected. Common values for significance are 5% or α = 0.05. A

statistical significance test (such as those mentioned earlier) will return a p value and if this p

value is lower than the significance level (α) then the null hypothesis is rejected. As an example,

in determining whether algorithm A is better than algorithm B a pair-wise non-parametric

statistical test returns results that find that:

• algorithm A is better than algorithm B with p = 0.01

• algorithm B is better than algorithm A with p = 1

From these results we can conclude that algorithm A is the better than algorithm B with a

significance level of 1%, however algorithm B cannot be said to be better than A since the p

value is larger than the generally accepted significance level of 5%. In this thesis the generally

accepted 5% significance level is used, unless otherwise explicitly noted.

2.8 Chapter Summary

This chapter introduced the concept of optimisation and gave examples of several optimisa-

tion problems. Specifically it concentrated on explaining concepts associated with single and

multiple objective optimisation and the Travelling Salesman Problem and Continuous Function

Optimisation Problem. The next chapter introduces Ant Colony Optimisation, an optimisation

paradigm inspired by the foraging behaviour of ants.
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CHAPTER 3

Ant Colony Optimisation

The neglect of ants in science and natural history is a short-coming that should be

remedied, for they represent the culmination of insect evolution, in the same sense

that human beings represent the summit of vertebrate evolution.

Hölldobler and Wilson, 1990

3.1 Introduction

Ants, while displaying complex and yet efficient emergent collective behaviours such as nest

construction and food collection, are inherently simple on an individual ant level. What is even

more amazing is that these emergent properties seem to exist without the requirement for cen-

tralised control. This last observation has made this biological system an attractive inspiration

for optimisation algorithm research. As such a whole new field of algorithm research has been

developed in the last 15 years formally known as ant inspired algorithms.

In this chapter Sec. 3.2 presents the first 10 years of the field, from theoretical biological model

and associated experiments, to the development of the first ant inspired algorithms through to

the eventual definition of the Ant Colony Optimisation Metaheuristic Framework (ACO). Sec-

tion 3.3 details ACO while Sec. 3.4 reproduces and discusses implementation details of several

ACO algorithms. Sec. 3.5 discusses several salient issues arising from the field of ACO.

3.2 Early Development

3.2.1 Biological Inspiration

Tetramorium caespitum ants have evolved to suit an ecological niche where food sources are

plentiful and a desired emergent behaviour is one which optimises the distribution of colony

resources to maximise the food collection activity [117]. These ants rely on randomness to influ-

ence their decision making behaviour, however with the absence of any individual long term
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memory, ants rely more on intra-colony communication mechanisms (stigmergy)1 to influence

their foraging decisions.

This species of ant exhibits three distinct behaviours: group-recruitment, mass-recruitment and

random-exploration. Group recruitment occurs when an ant finds a new food source, returns

to the nest and upon returning to the nest attempts to coerce other ants to follow it back to the

food source, laying pheromone (a biochemical marker) along the trail as they move. This re-

cruitment can eventually lead to a mass-recruitment if the food source is large enough, and the

pheromone trail is reinforced enough so that ants can begin to follow the pheromone trail in-

dependently. Random exploration can occur at any stage, where an ant following a pheromone

trail decides to leave the trail to search virgin territory in the hope of finding more food, or a

more efficient path to already discovered food. The probability of such an event occurring is

inversely proportional to the amount of pheromone and directly proportional to the distance

away from the nest.

The importance of random-exploration is to encourage exploration and avoid exploitation of

one food source (or collection path) neglecting other possibly more rich food sources or shorter

paths [41]. This emergent effect was perhaps most profoundly demonstrated in the double

bridge experiments [40, 73]. In these experiments a single food source was placed away from

a nest of Iridomyrmex humilus ants and two tubes (bridges) of equal length connected the nest

to the food (Fig. 3.1). Initially the ants were observed to use both bridges fairly equally to re-

trieve the food, however the majority of the colony began to favour one bridge over the other

(Fig. 3.2) eventually leading to the colony only using this bridge. The experimental set-up was

reinitialised several times and it was documented that the colony selected the bridges with an

even probability. The experiment was modified with bridges of unequal length [73] to deter-

mine which bridge the ants would favour. The result was that in a majority of the experiments

the ants favoured the shorter bridge. The researchers explained this emergent (autocatalytic)

effect by the fact that a shorter distance means that ants can forage on this path more quickly

and in a given time this branch will be positively reinforced with more pheromone.

Nest Food

15cm

60◦

Figure 3.1: Double bridge experimental setup

Using the observations from the double-bridge experiment, a model for calculating the selec-

1Stigmergy, a term coined by Grassé [74], is interpreted in this context as an indirect communication mechanism
which relies on alterations to an environment to relay information.
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(a) Time = 1 minute (b) Time = 6 minutes (c) Time = 10+ minutes

Figure 3.2: Graphical reproduction of the double bridge experiment using paths of equal length.

(a) Time = 1 minute (b) Time = 6 minutes (c) Time = 10+ minutes

Figure 3.3: Graphical reproduction of the double bridge experiment using paths of unequal
length.

tion probability of each bridge was created. The model uses the number of ants that have

traversed either bridge as variables (m1 and m2) along with two user-specified parameters, h

and k. The result of Equ. 3.2.1 is the probability of an ant choosing a particular bridge, p1 where

p2 = 1− p1. Experimental results suggest that setting k ≈ 20 and h ≈ 2 will lead to the same

behaviour observed in the biological experiments.

p1 =
(m1 + k)h

(m1 + k)h + (m2 + k)h (3.2.1)

3.2.2 The Ant Systems Algorithm

The double bridge experiments described in Sec. 3.2.1 led to the development of three algo-

rithms, Ant-density, Ant-quantity and Ant-cycle [55, 46]. What differentiated these algorithms

from the biologist’s algorithms was their purpose. The biologists were mainly interested in

modelling the behaviour of ants to understand issues such as emergent behaviour and collec-

tive intelligence. These new algorithms were the first of their kind to harness the collective

behaviour of an ant colony in an attempt to solve an artificial optimisation problem, the TSP.

In these algorithms each (artificial) ant iteratively constructs a solution to a TSP by probabilisti-

cally selecting an edge to include to a (initially empty) tour based on a nearest neighbour heuris-

tic, and an artificial pheromone density which is adapted by the artificial ants as the search

progresses (much like the mass-recruitment process described in Sec. 3.2.1), the distinguishing

feature of each algorithm being the way that this pheromone is adapted. After experimenting

with the three simple models, Ant-cycle was shown to be the most effective at optimising the

TSP problems addressed [24] and was later refined and reintroduced as Ant Systems (AS) [56]2.

2Until this paper Ant System was used to collectively refer to the Ant-density, Ant-quantity and Ant-cycle algo-
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The Ant Systems algorithm for the TSP from [56] will be discussed in Sec. 3.4.1.

3.2.3 Ant Colony Optimisation

After the initial successes of AS, several researchers extended the work of Dorigo et. al. by

applying AS to other optimisation problems, and by augmenting the algorithm with extra fea-

tures intended to improve its performance (a listing of some of these algorithms is provided in

Tab. 3.1). Around 1996 some researchers began to use the term Ant Colony Optimisation in ref-

erence to the core ideas underlying the first AS algorithms3. By 1998, Ant Colony Optimisation

had entered mainstream usage by researchers to describe algorithms inspired by ant behaviour.

By this stage a substantial body of work on ant algorithms was appearing and at the turn of

the century several researchers published a formalised algorithmic framework for these algo-

rithms: The Ant Colony Optimisation Metaheuristic Framework (ACO) [49, 48, 50, 108]. This

early development of ACO is presented visually in Fig.3.5.

Algorithm name Problem type Reference
Ant Cycle TSP [24, 46, 55]
Ant System (AS) TSP [56]

TSP & QAP [23]
QAP [109, 110]
Job-Shop Scheduling [25]

Ant-Q TSP [52, 66]
Ant Colony System (ACS) TSP [53, 65]
ANTCOL Graph colouring [30]
Hybrid Ant System VRP [15]
AntNet Routing [43, 44, 45]
MAX −MIN Ant System (MMAS) TSP [147, 148, 149]

Flow Shop Problem [146]
Rank-based AS (RBAS) TSP [16, 17]
Parallel Ant Systems Combinatorial [18]
ANTS Frequency Assignment [107]

Table 3.1: Research Papers published before the formalisation of ACO

The first papers published on ACO cite reasons for proposing the framework as: “the desire to

provide a unitary view of the ongoing research in this growing field”, and that “such a cate-

gorization will help to identify the most important aspects of these algorithms”. Additionally,

several other references discussing ACO exist [27, 47, 57, 11]. A formal description of ACO is

included in the proceeding section.

3.3 The Ant Colony Optimisation Metaheuristic Framework

A framework can be defined as the skeleton upon which various objects are integrated for a given

solution. In other words it is a generic structure which is further specialised for a particular

rithms, much like ACO is used today to refer to many different ant-inspired algorithms.
3The first known reference to mention Ant Colony Optimisation was [51] which was later published as [53]
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application. ACO is a generic algorithmic structure responsible for the scheduling of three

processes:

• Ants generation & activity

• Pheromone trail evaporation

• Daemon actions

This section defines these processes as well as other data structures required for the implemen-

tation of an ACO algorithm for a specific optimisation problem. A visual representation of the

organisation of these processes is provided as Fig. 3.4.

Ants generation
& activity

Pheromone values

Extra problem
information

(heuristic)

Heuristic values

Pheromone update

Pheromone
map

Pheromone

decay

Figure 3.4: Process organisation of the Ant Colony Optimisation Metaheuristic Framework
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A collection of ant-inspired

algorithms collectively called

Ant System are introduced. It

initially comprises three

algorithms. Ant Cycle is found to

be best performing of three.
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Optimisation Metaheuristic Framework.

Figure 3.5: Early development of the field of ACO
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3.3. THE ANT COLONY OPTIMISATION METAHEURISTIC FRAMEWORK

3.3.1 Pheromone mapping

The pheromone mapping is the means by which solution components are able to be ranked

and selected based on past usefulness. The pheromone mapping connects pheromone values

from a pheromone map (usually a matrix structure) to specific solution components. The as-

sumption usually being that if a prior solution is good then at least some of its parts (solution

components) should also be good, and therefore a remixing of these components with other

good components may lead to an optimal or near-optimal solution. A first step in defining an

ACO algorithm is to define the pheromone mapping.

The problem domain will dictate how the pheromone mapping should be defined. In apply-

ing an ACO algorithm to a combinatorial optimisation problem such as the travelling salesman

problem (TSP) it is not of interest which specific components are included, as any feasible so-

lution will include every city once (and only once), it is the order of these components which

is important in finding an optimal solution. For the TSP the transition points (edges/arcs) be-

tween the specific components can be assigned a specific pheromone value in order to reflect

which order of cities works the best. That is, that if a solution included an edge connecting city

a to city b and the solution is good then this should be reflected in the pheromone level on this

specific edge and the other edges included in the solution.

3.3.2 Ants Generation and Activity

This process is responsible for the creation of new candidate solutions to the optimisation prob-

lem being addressed by the algorithm. A temporary population of (artificial) ants is used to

construct feasible solutions to the problem being addressed. Each ant is evaluated upon the

completion of a feasible solution and the solution information encoded into a global pheromone

mapping. Each individual ant is discarded after entering their specific solution information

into the pheromone mapping and a new ‘empty’ ant is created in its place, until some stopping

criterion is met.

An ant has the following properties:

• An ant searches for a minimum (or maximum) cost solution to the optimisation problem

being addressed.

• Each ant has a memory used to store all solution components used to date, so that the can-

didate solution can be evaluated at the completion of solution construction; the memory

can be used as a tabu list such as in the case of the TSP so that no component is reused.

• An ant can be assigned a starting position, for example an initial city in a TSP.

• An ant can include any feasible solution component (an example of a feasible solution

component in a TSP would be a city which has not already been included in the candidate

solution) until such time that no feasible components exist or a termination criterion is

met (usually correlating to the completion of a candidate solution).

20



3.4. ACO ALGORITHMS

• Ants include solution components according to a combination of a pheromone value and

a heuristic value which are associated with every solution component in the problem, the

choice of which solution component is usually a probabilistic one.

• When including a new solution component in the growing candidate solution the phero-

mone value associated with the transition between these components (arc/edge in a TSP),

or the solution component itself can be altered (online step-by-step pheromone update).

• An ant can retrace a candidate solution at the completion of a solution, updating the

pheromone values of all transitions and/or solution components used in the solution

(online delayed pheromone update).

• Once a candidate solution is created, and after completing online delayed pheromone

update (if required) an ant dies, freeing all allocated resources.

3.3.3 Pheromone Trail Evaporation

Like the biological ant colony, the artificial ant colony employs a pheromone evaporation mech-

anism. This mechanism serves as a useful way of ‘forgetting’ older search bias [49]. As ACO

uses positive reinforcement, if pheromone was allowed to accumulate without decay the sys-

tem would very quickly converge on a single solution since this solution would continue to be

reinforced.

3.3.4 Daemon Actions

Daemon actions can be used to perform specialised functions which often require more knowl-

edge than an individual ant is allowed [49, 47]. For example, a daemon action could inspect all

solutions generated in one search cycle, identify the best solution and increment the pheromone

values of its solution components more than the regular pheromone update (offline pheromone

update). An alternative daemon action could be the application of a local search procedure.

3.4 ACO Algorithms

3.4.1 Ant System for the Travelling Salesman Problem

In this instance pheromone values correspond to transitions between cities (edges) and are

uniformly initialised to an amount slightly higher than what is expected to be added in one

iteration of the algorithm as in Equ. 3.4.1.

After initialisation the AS algorithm runs a pheromone trail evaporation procedure which is imple-

mented by applying the rule Equ. 3.4.5 for every pheromone value. This procedure is followed

by ants generation & activity which is implemented in the following steps:

1. A temporary population of m ants are placed at randomised starting cities.
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2. Each ant k applies the random proportional rule Equ. 3.4.2 to decide which city to add to its

current tour.

3. Step 2 is repeated until every ant k constructs a complete solution.

4. Every individual solution is evaluated and the edges used in this specific solution have

their pheromone value adjusted according to Equ. 3.4.4. This equation allocates a higher

proportion of new pheromone to better solutions in order to ‘reinforce’ good decisions

and is an implementation of an online delayed pheromone update strategy.

5. The temporary population of ants is discarded.

The pheromone trail evaporation and ants generation & activity procedures are continually repeated

until a termination criterion is reached, such as an amount of computation time, or alternatively

by implementing a daemon action to observe the similarity of the solutions obtained over several

iterations of the algorithm to test the convergence of the algorithm.

∀ (i, j) , τij = τ0 = m/Cnn (3.4.1)

pk
ij =

[
τij
]α [

ηij
]β

∑l∈Nk
i
[τil ]

α [ηil ]
β

, if j ∈ Nk
i (3.4.2)

ηij =
1

dij
(3.4.3)

τij = τij +
Q
L

(3.4.4)

τij = (1− ρ) τij (3.4.5)

Where:

τij : Pheromone value for edge connecting city i & j

m : Number of ants

Cnn : Length of path found using a nearest neighbour heuristic

pk
ij : Probability of ant k selecting the edge connecting city i & j

α : Magnitude of pheromone influence on probabilistic decision

ηij : Heuristic value for edge connecting city i & j

β : Magnitude of heuristic influence on probabilistic decision

Nk
i : The set of cities that ant k has not yet visited

dij : The distance between city i & j

ρ : Pheromone evaporation rate

Q : Amount of pheromone to deposit

L : Path length
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3.4.2 Ant Colony Systems

Ant Colony Systems [53, 65](initially introduced as Ant Q [52, 66]) differs from AS in three

areas:

• Introduction of a local pheromone update.

• Modification of the global pheromone update.

• Modification of the random proportional rule to become the pseudo-random proportional

rule.

The local pheromone update is applied by all ants during the solution construction phase. Ev-

ery ant continually applies the update rule to the last solution component used as in Equ. 3.4.6.

The aim of this pheromone update rule is to attempt to diversify the search process as much

as possible during the solution construction phase. Without it most ants will simply create the

same solution which will lead the search into a stagnation behaviour.

τij ← (1− ρ) · τij + ρ · τ0 (3.4.6)

The global pheromone update is modified so that only the best-so-far or iteration-best solution

updates the pheromone map at the completion of solution construction. This means that unless

a solution component has been included in the best solution it will not receive any modification

from the global pheromone update, as in (3.4.7).

τij =

 (1− ρ) · τij + ρ · ∆τij if (i, j) belongs to best tour,

τij otherwise.
(3.4.7)

The value of ∆τij reflects the utility of the solution and is dependent on the problem e.g. for the

TSP as in Sec. 3.4.1 it can simply be the inverse of the path length of the solution.

The final and perhaps most important difference between ACS and AS is the modification of

the random proportional rule to become the pseudo-random proportional rule. This rule intro-

duces a new parameter q0. When a uniformly random value q in the range [0, 1] is less than

q0, the largest transition probability value generated by Equ.3.4.2 is used, rather than using a

roulette wheel selection of all generated probabilities.

3.4.3 MAX -MIN Ant Systems

TheMAX -MIN Ant Systems algorithm (MMAS) [147, 148, 149] improved the AS algorithm

by introducing pheromone thresholds to counter premature convergence observed in AS. This

thresholding is achieved through the introduction of upper and lower pheromone bounds, τmin

and τmax. The AS global pheromone update is modified to that of ACS Equ. 3.4.7 and as in ACS

only the global best solution is used to apply this update. Pheromone decay is the same as that
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of AS. When applying update and decay any individual pheromone value is restricted to the

range [τmin, τmax]. Guidelines for determining the values of τmin and τmax are outlined in [150].

In early works on MMAS the standard AS random proportional rule is used to determine transi-

tion probabilities, however in later works some researchers opt to use the ACS pseudo-random

proportional rule instead. MMAS employs a pheromone re-initialisation scheme which upon

detection of convergence initialises all pheromone values to τmax, while retaining the best solu-

tion found so far.

3.4.4 Rank Based Ant Systems

Rank Based Ant Systems (RBAS) is another improvement of AS which works by ranking so-

lutions against each other and only using the µ best for global pheromone updating. It was

postulated that since AS reinforces pheromone, albeit to a differing degree, on all found solu-

tions that this could lead to the over-reinforcement of poor solution components.

RBAS modifies the global pheromone update of AS by introducing several steps. All solutions

generated in a single iteration of the algorithm are evaluated and ranked against each other.

The µ best solutions are then selected and each of these solutions is allowed to update their

components pheromone values according to Equ. 3.4.8. Solution construction is by means of

the AS random proportional rule.

τij = ρ · τij + ∆τij + ∆τ∗ij (3.4.8)

∆τij =
σ−1

∑
µ=1

∆τ
µ
ij (3.4.9)

∆τ
µ
ij =

 (σ− µ) Q
Lµ

if the µ-th best ant travels on edge (i, j) ,

0 otherwise.
(3.4.10)

∆τ∗ij =

 σ Q
L∗ if edge (i, j) is part of the best solution found,

0 otherwise.
(3.4.11)

3.5 Salient Issues in ACO

3.5.1 Ant Inspired Algorithms

The field of ant inspired algorithms contains any algorithm which is inspired by the mechanics

of a biological ant colony. ACO is considered a class of ant inspired algorithms, however while

all ACO algorithms are considered ant inspired algorithms the converse is not true. Many ant

inspired algorithms use concepts from ACO but don’t fall within the strict definition of ACO.

Hence common properties of these algorithms are:
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• Use of a common history repository (pheromone map) so that every solution component

is assigned a singular value (pheromone value) representing the desirability of using this

solution component in future solution construction.

• Stepwise solution construction. Starting with an empty solution (or in some cases a par-

tially built solution) incrementally add solution components until a termination criterion

is met.

• Use of a population of multiple individual agents (ants) to construct candidate solutions

sequentially or in parallel.

Examples of algorithms which are classed as ant inspired algorithm but fall outside of the scope

of ACO are:

• An ant inspired reinforcement learning process for robot navigation[100].

• An ant inspired system for making strategic decisions in games[60].

• Ant colony metaphor for searching continuous design spaces [9].

• Hybrid ant system for the quadratic assignment problem [69, 151].

• Population based ACO algorithms that retain a population of solutions in conjunction

with the pheromone map (These will be discussed in Chapter 4).

A number of these algorithms were published around the same time as the seminal papers

on ACO, however these algorithms have not been the subject of continued research effort like

ACO.

3.5.2 Local search

In general ACO algorithms are rarely applied to challenging ’real-world’ problem instances

without the addition of a domain-specific local search. This local search can be applied se-

quentially so that the ACO algorithm produces a set of starting positions for the local search to

attempt to improve, or in parallel so that candidate solutions are sometimes improved before

updating the pheromone map. Local search algorithms are mostly iterative improvement algo-

rithms, and in general are somewhat sensitive to their given starting location. In the absence

of a good starting location these techniques may require far more computational resources to

achieve an optimal result, or may get stuck in a local optima.

In this work we are most interested in ascertaining algorithms’ global search performance char-

acteristics when applied to a variety of different problem domains, under different execution

conditions. It is assumed that the amount of improvement that a local search algorithm can

provide to two different global search algorithms will be relative to the existing utility of these

algorithms. For this reason, when the performance of two different algorithms is to be com-

pared, local search procedures have been omitted. However, all algorithms in this work could

quite easily be augmented with local search and it would be expected that this would further

increase their search efficacy.

25



3.6. CHAPTER SUMMARY

3.6 Chapter Summary

This chapter has introduced the development and definition of the field of ant inspired algo-

rithms and ACO. Biological models and experiments such as the double-bridge experiment and

their influence on the creation of the first ant algorithms for optimisation were discussed. The

development and introduction of a specific optimisation paradigm, The Ant Colony Optimisa-

tion Metaheuristic Framework was reviewed. Several ACO algorithms were reproduced with

important features highlighted and discussed. Lastly several salient issues in the field were

presented.

The next chapter discusses a class of ant-inspired algorithms known as Population-based ACO.

These algorithms use the same probabilistic step-wise construction rules as ACO, however they

maintain a storage of a discrete population of solutions. This is unlike ACO algorithms which

only use solutions to influence pheromone levels before discarding them, only ever storing a

single elite solution in its entirety (in some particular cases).
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CHAPTER 4

Population-based Ant Colony

Optimisation

It’s not population or enormous resources which open the golden doors to success,

but a skillful use of brains and scientific know-how.

John T. Conner

4.1 Introduction

After the construction and consequent evaluation of new solutions, ACO algorithms generally

encode new solutions’ quality (phenotypic) information into a pheromone map (pheromone

update) and discard the solution (genotypic) information. An exception to this is Elite Ant

Systems (Elite-AS) [56] and its variants which store a single elite solution to facilitate the posi-

tive reinforcement of its solution components in future iterations. An alternative to discarding

solutions is to store all solutions in a population structure much like that of a GA. Such an ant-

inspired algorithm has been previously proposed by Guntsch1 and is called Population-based

ACO (PACO).

This chapter provides a description of several PACO algorithms. Determining features are

identified and a reinterpretation of the seminal work which describes these features and allows

for further specialisation is introduced. The chapter concludes with a section describing Proba-

bilistic Model Building Genetic Algorithms, which as will be discussed, have many similarities

to PACO algorithms.

4.2 FIFO-Queue ACO

The first published PACO algorithm, FIFO-Queue ACO [78] was applied to static instances of

the TSP and QAP and was shown to be competitive against other state-of-the-art ACO algo-

1The seminal work on Population-based ACO algorithms is Guntsch’s thesis [76].
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rithms. This work introduced the idea of using a population of stored solutions alongside a

pheromone map and demonstrated that no decrease in performance (in terms of quality of so-

lution found) is incurred through the modification. A motivation for the development of the

algorithm was that the population facilitates a fast pheromone update process.

The algorithm uses the pseudorandom proportional rule to construct solutions (like that of

ACS), however the pheromone modification is different from any existing ACO algorithm.

Each iteration a single solution is added to a finite sized population, and as each solution is

added to the population its associated component’s pheromone values are positively updated.

Once a finite population size (k) is reached, solutions are also removed from the population

with their pheromone values negatively updated.

4.2.1 Algorithm Description

Prior to execution of the algorithm the pheromone map’s values are initialised uniformly as

(τinit) and a maximum pheromone value is set (τmax). Every iteration m solutions are created

using the random proportional rule and evaluated. The best (new) solution of these m solu-

tions is selected and compared against the current population. If the new solution is better

than the current elite solution it replaces it and updates the associated pheromone values ac-

cording to Equ. 4.2.1 with the old elite solution decrementing its associated pheromone values

by Equ. 4.2.1. For the first iteration the new solution simply becomes the elite solution. The

parameter we is the weighting applied to the single elite solution.

If the new solution is not better than the elite solution it is added to the population with its

associated pheromone values incremented according to (4.2.2). Once this general population

is full (= k− 1) the oldest solution is removed as a new solution is added and the pheromone

associated with the old solution decremented by (4.2.2). An algorithmic representation of FIFO-

Queue ACO is provided in Alg. 1.

∆τe = (we) (τmax − τinit) /k (4.2.1)

∆τ = (1− we) (τmax − τinit) /k (4.2.2)

This update process removes the requirement for decay, and as such reduces the complexity

of the standard ACO pheromone update and decay processes from n2 to that of 2n, since only

those pheromone values associated with the solutions entering and leaving the population re-

quire updating versus all pheromone values in the normal case. As such, this process is referred

to as a fast pheromone update.
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Algorithm 1 FIFO-Queue ACO

1: Uniformly initialise pheromone map values to τinit
2: Construct m solutions
3: Select best solution and insert into population as elite
4: Update pheromone values using elite update (+∆τe)
5: while stopping criterion not met do
6: Construct m solutions
7: Select best solution
8: if Best Solution is better than Elite Solution then
9: Remove old elite solution information from pheromone map (−∆τe)

10: Replace elite solution
11: Add new elite solution information into pheromone map (+∆τe)
12: else
13: if currentPopulationSize < k− 1 then
14: Insert best solution into population
15: Insert best solution information into pheromone map (+∆τ)
16: else
17: Remove oldest solution information from pheromone map (−∆τ)
18: Remove oldest solution from population
19: Add best solution to population
20: Add best solution information into pheromone map (+∆τ)
21: end if
22: end if
23: end while

4.2.2 A Useful Population

An added advantage of maintaining a small population is that it provides the algorithm with

a quick way to adjust the pheromone map if a change occurs to the problem being optimised,

since the population can be re-evaluated and the pheromone map adjusted to reflect any change.

In dynamic optimisation the speed with which the search algorithm can adapt its history is a

strong determinant of its performance. In reference to ACO applied to dynamic optimisation,

Guntsch and Middendorf [78]*pg 112 comment: ‘it will usually be faster to modify a few solutions

directly than to modify the whole pheromone information of a usual ACO algorithm’. Although the

FIFO-Queue ACO algorithm was applied successfully and competitively to static instances of

the TSP and QAP problems, its real benefits were postulated to be in dynamic optimisation for

the reasons mentioned above.

4.3 PACO for Dynamic Problems

In [77] the FIFO-Queue algorithm was renamed Population-based ACO (PACO) and was ap-

plied to instances of the dynamic TSP and dynamic QAP problems. The main contributions of

this paper were the application of the PACO algorithm to dynamic problems, and the introduc-

tion and comparison of several population update strategies. Quite rightly steady-state genetic

algorithms are quoted as being an inspiration for the strategies listed in the proceeding section.
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4.3.1 Population Update Strategies

Age

This strategy is the same as that used in the original FIFO-Queue algorithm. The oldest solu-

tions are removed from the population to be replaced by the newer incoming solutions.

Quality

If a new solution is better (in terms of quality) than the worst quality member of the population,

the new solution replaces the worst solution, otherwise there is no change to the population.

The aim of this strategy is that the population will retain good solutions which may have been

found earlier in the search process. A possible weakness of this strategy is that there is no way

to ensure that the population does not end up with what are essentially multiple copies of the

same solution.

Probability

This strategy addresses the weakness of the Quality strategy by probabilistically replacing solu-

tions in the population based on their quality. This way there is a chance that any solution from

the population will be replaced with poor quality solutions being more likely to be replaced.

Age & Probability

This is a combination of two of the aforementioned strategies. Firstly the new candidate solu-

tion is added to the population, then a population member is selected for removal using the

Probability scheme. Using this scheme it is possible that the new solution could be added to and

removed from the population in a single iteration.

4.4 PACO for Multi-objective Problems

When applied to multi-objective problems PACO maintains a different pheromone matrix for

each objective [79]. For each iteration of the algorithm, where iteration refers to every artificial

ant creating a complete solution, a random ant is selected from the population (Q) along with its

k closest neighbours2 to form a sub-population P. At any time Q will contain the complete set

of non-dominated solutions found to date. The ants in P are then used to update the individual

pheromone matrix for each objective. When available a separate heuristic matrix is used for

each objective, e.g. in the case of the TSP these heuristic matrices are simply the corresponding

edge weights for each individually defined TSP.

2Closest neighbour refers to a match in the decision space, not the objective value space. Depending on the problem
this distance could be obtained by taking a Euclidean or Hamming distance measure.
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PACO uses an average-rank-weight method to weight the importance of each objective. These

weightings (w) are used to bias the solution construction towards satisfying specific objectives

over others. Briefly, the average-rank-weight method measures how well each solution in P satis-

fies each individual objective. Objectives which are better satisfied by the solutions in P relative

to the entire population Q are given a higher rank and a subsequently larger weighting.

Once the pheromone matrices have been created and the objective weightings defined the tran-

sition probabilities are calculated using (4.4.1), where h is the total number of objectives. The

Ant Colony Systems greedy transition rule [54] is then used to create one or more new solutions.

pij =
h

∑
d=1

wd ·

[
τd

ij

]α
·
[
ηd

ij

]β

∑l∈Nk
i

[
τd

il
]α ·

[
ηd

il
]β

 (4.4.1)

Once created, each new solution (s) is evaluated for each objective. For s to be inserted into

Q it must be checked for dominance against the entire population Q. If s is found to be non-

dominated by all members of Q then s is inserted into Q. If s is inserted into Q then Q must be

checked for dominance by s. If any existing solutions in Q are dominated by s they are removed

from Q.

This approach was shown to be among the state-of-the-art ACO approaches for the multi-

objective TSP in [70]. It was conjectured that the good performance of the algorithm can be

attributed to the algorithm’s ability to target specific areas of the approximate Pareto front for

improvement. This is possible since the algorithm is able select few solutions from a larger

population to create a temporary pheromone map.

4.5 ACO for Continuous Domains

To date, many ant-inspired approaches for application to CFO problems have been proposed.

The Ant Colony Metaphor for Continuous Design Spaces [9] was the first ant-inspired search

proposed for CFO. That algorithm starts by placing a ‘nest’ somewhere in the n-dimensional

search space, after which it projects a group of vectors (ants) into the search space around

the nest. Over successive iterations it gradually adjusts the direction of these vectors towards

promising areas of the search space. Other approaches include ACO for Continuous Domains

with Aggregation Pheromones Metaphor (APS) [155, 156], Continuous Interacting Ant Colony

(CIAC) [59, 58] and Continuous ACO (CACO) [120]. Strictly speaking most of these approaches

are ant-inspired but do not fit the criteria of ACO [142].

ACO for Continuous Domains (ACOCD) [142, 143] is an extension of PACO (Sec. 4.3). It

maintains a population where every population member represents a single point in the n-

dimensional search space. Each population member is also assigned a weight (w) which is

used for selection purposes. Solution construction is achieved by way of sampling each dimen-

sion in turn (stepwise) using a combination of the population’s Probability Density Functions

to resolve each new point (Illustrated in Fig. 4.1). Newly constructed solutions are evaluated
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(only if they fall within the bounds of the solution space) and inserted into the population us-

ing the PACO Quality population management strategy, albeit with a large population size (the

minimum allowable population size is equal to the number of independent dimensions).

Algorithm 2 ACO for Continuous Domains (ACOCD)

1: Initialise history with uniform random solutions
2: while stopping criterion not met do
3: Rank population according to fitness (Fittest member l = 1)
4: for i = 1 to k do
5: Calculate selection probabilities for population according to (4.5.2)
6: end for
7: for i = 1 to m do
8: Select s using biased random selection
9: for j = 1 to n do

10: s′ji ← Gaussian distributed random value with mean µ
j
l = sj

l and standard devi-

ation µ
j
l according to (4.5.3)

11: end for
12: Evaluate s′i
13: end for
14: Select best new solution s′ from all new solutions (s′0, . . . , s′m)
15: if s′ is better than worst solution in population then
16: Replace worst solution in population with s′

17: end if
18: end while

wl =
1

q× k×
√

2π
e
− (l−1)2

2q2k2 (4.5.1)

pl =
wl

∑k
r=1 wr

(4.5.2)

σi
l = ξ

k

∑
e=1

∣∣xi
e − xi

l

∣∣
k− 1

(4.5.3)

Where:
s : Solution in population
s′ : New solution
si

l : i-th coordinate of l-th ranked solution
l : Solution rank
wl : Weight of l-th ranked solution (fitness)
q : Solution selection greediness factor
k : Size of history
n : Number of problem dimensions
m : Number of ants
pl : Probability of selecting the l-th ranked solution from the population
σi

l : Standard deviation of i-th dimension of l-th ranked solution (used for
creating new solutions)

ξ : Convergence rate
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Figure 4.1: An illustration of the new solution creation procedure of ACOCD.
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4.6 Hardware Implementation of ACO

Worth briefly mentioning is the successful hardware implementation of PACO demonstrated

in [139, 137]. Primarily, applications of ACO are in software, operating on individual sequen-

tial machines. Some researchers have attempted to further improve the efficiency of ACO by

implementing a multiple colony ACO where several ACO algorithms operate on parallel pro-

cessors intermittently sharing pheromone information. These approaches are limited by the

architecture on which they operate in that there are often large overheads associated in sharing

information between colonies as well as the fact that they are often only able to share informa-

tion about elite solutions. These communication overheads can be considerably reduced if the

algorithm is embedded in hardware, as hardware approaches are often naturally parallel. The

iterative structure and parallel nature of ACO makes it amenable to a hardware implementa-

tion.

ACO is not directly transferable to hardware for a number of practical reasons. Pheromone and

heuristic values are usually represented as floating point numbers. Evaporation and update

procedures involve a large number of multiplication operations (although it is possible to per-

form multiplication operations in hardware it is often costly). The use of exponential operators

(α, β) to create probability tables is again a costly operation.

These problems are addressed by using an integer based pheromone scheme (Counter-based

ACO [138]) coupled with a PACO approach to historic information storage. Pheromone val-

ues are calculated from the population as required, so that at no point in time does an entire

pheromone map exist, only a partial pheromone map. Thus the pheromone update & decay pro-

cess is performed as required to ensure all relevant information is contained in the pheromone

map.

4.7 A Population-based ACO Meta-heuristic Framework

Arguments presented in this chapter for the use of PACO algorithms are:

• To speed-up the pheromone maintenance procedures allowing the algorithm to make fast

changes in an unstable search environment increasing the overall search efficacy as in the

case of FIFO-Queue ACO (Sec. 4.2).

• To increase the applicability of ant-inspired search to continuous domains as in the case

of ACO for continuous domains (Sec. 4.5).

• To allow for efficient hardware implementation (Sec. 4.6).

This section outlines a reinterpretation of PACO as a generic algorithmic framework which

encompasses the features common to the aforementioned PACO algorithms, as well as allowing

for future specialisations.
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4.7.1 Process Level Organisation

PACO algorithms reuse many of the processes defined in ACO (discussed previously in Sec. 3.3)

and Fig. 4.2 illustrates the process level organisation of ACO as compared to PACO. A subtle

difference between ACO and PACO is the introduction of the solution storage & maintenance

process and removal of the pheromone decay process.

Ants generation
& activity

Pheromone values

Extra problem
information

(heuristic)

Heuristic values

Pheromone update

Pheromone
map

Pheromone

decay

(a) ACO process organisation
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Extra problem
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Pheromone

update & decay

Pheromone

map

Solution

storage &

maintenance

Candidate

solutions

(b) PACO process organisation

Figure 4.2: Process organisation of original ACO framework versus the PACO framework

4.7.2 Solution Storage and Maintenance

This process is responsible for the storage of candidate solutions and their translation into

pheromone information. Solutions generated by the ants generation & activity process are added

to a finite sized population of solutions. There are many possible replacement schemes which

can be implemented to customise the search behaviour of the algorithm. Several of these

schemes were already discussed in Sec. 4.3

How the population interacts with the pheromone map is implementation specific. The first

PACO algorithms used a concurrent update mechanism where the pheromone map is ever-

present and as solutions are added and removed from the population they adjust the map to

reflect this change. This tight coupling between pheromone map and population results in

fast updates to the pheromone map. An alternative would be to use a temporary pheromone

map such as that of PACO for multi-objective problems (Sec. 4.4) where at every algorithmic

cycle the current population (or a sub-population) adjusts the pheromone values of an initially

uniform pheromone map which is used to create the next batch of candidate solutions. After

the next batch of candidate solutions is created this pheromone map is discarded and a new

pheromone map created thus it is called a temporary pheromone map. In the Hardware-based

ACO presented in Sec. 4.6 pheromone values are calculated from the population as required,
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so that at no point in time does an entire pheromone mapping exist.

The traditional pheromone decay process is replaced by the solution storage & maintenance process.

The population will at any time contain the most up-to-date solutions obtained by the algorithm

and the use of any of the pheromone maintenance schemes outlined previously eliminate the

requirement for decay. If a solution is removed from the population its associated pheromone

information is either simultaneously removed or not added during the next algorithmic cycle.

As can be seen there are many ways to implement the solution storage & maintenance process.

To reiterate, this process is responsible for the addition and removal of candidate solutions to a

finite population of stored solutions. Furthermore this process is responsible in translating the

population of solutions into pheromone information to be used by the ants generation & activity

process.

4.8 Similarity to Genetic Algorithms

The similarities between ACO algorithms and GA3 are known and have been previously dis-

cussed in numerous studies [10, 112, 27, 167]. This research highlights two particular classes

of GA known as Probabilistic Model Based Genetic Algorithms (PMBGA) [118] and Estimation

of Distribution Algorithms (EDA) [115] as the most similar. These methods, developed mostly

throughout the mid to late 90s, are extensions of the canonical GA and share many similarities

with ACO algorithms since they also use probabilistic models to rank solution components.

Most comparisons centre on differences between traditional ACO algorithms (such as Ant Sys-

tems) and a typical PMBGA, the Population Based Incremental Learning (PBIL) algorithm [4].

Of importance here though is the similarity of PACO to algorithms such as PBIL since PACO

algorithms have a more population centric focus which may mean that PACO algorithms are

now the closest ant-inspired algorithms to the PMBGA family. In this section the PBIL algo-

rithm is introduced and then a subsequent comparison between PBIL and ACO is offered to

determine similarities and points of difference.

4.8.1 Population Based Incremental Learning

The PBIL algorithm (Alg. 3), like many other PMBGA, was motivated by an observed lack of

efficacy when traditional GAs were applied to combinatorial optimisation problems such as the

TSP that require recombination of many small solution components rather than recombination

of few large solution components [118]. A key idea of PBIL is the replacement of the traditional

GA Population with a single probability vector (length = l) that indicates for each bit the prob-

ability that it should be 1. This vector can then be used to spawn a generation of solutions (size

= n) of which a single best solution can be used to update the probability vector to direct the

algorithm towards more promising areas of the search space. The magnitude of the update is

controlled by a learning rate (LR) that can be used to control algorithm convergence. Mutation

3For those readers unfamiliar with them, Genetic Algorithms are introduced in Sec. 5.2.1
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is applied per bit with a frequency dependent on a mutation event parameter (mutateevent) and

a magnitude controlled by another parameter (mutatemag).

Algorithm 3 Population Based Incremental Learning (PBIL)

1: for i = 1 to l do
2: Pl = 0.5 . Initialise all elements of probability vector (P) as 0.5
3: end for
4: while stopping criterion not met do
5: for i = 1 to n do
6: Create new solution (si) by sampling P
7: Evaluate si
8: end for
9: Select best new solution (s) from all new solutions (s1, . . . , sn)

10: for i = 1 to l do
11: Pl = Pl × (1.0− LR) + sl × LR . Update probability vector
12: if random(0, 1] < mutateevent then
13: Pl = Pl ×

(
1.0−mutatemag

)
+ random (0 or 1)×mutatemag . Mutate probability

vector
14: end if
15: end for
16: end while

4.8.2 Similarities and Differences

There are many similarities between PBIL and PACO, and it is true that PACO pushes the ACO

paradigm somewhat conceptually closer to PBIL. Some points of difference still exist though

and these are commented on here.

Solution construction in both instances is achieved by sampling a probability distribution in a

stepwise manner, however PBIL does not incorporate heuristic information into this process.

This said, PACO algorithms like ACOCD do not incorporate heuristic information either and

so depending on their application this distinction may or may not exist.

The canonical PBIL only uses the best solution found in a single generation to update the proba-

bility vector, whereas it is possible for PACO algorithms to use many solutions of varied quality

to influence the pheromone information. As with the incorporation of heuristics though it could

be possible for PACO to be run with only an individual elite solution updating the population

in a generation. This is the case with the original PACO algorithm, FIFO-Queue ACO, which

was parameterised in this manner in some experiments.

One of the more obvious differences between PBIL and ACO is the solution representation.

PBIL, like the canonical GA, encodes solutions as strings of bits, whereas the canonical ACO al-

gorithms tend to use higher level encodings incorporating real numbers or integers as solution

component identifiers. Exceptions as in the case of the RVGA do exist and it would be fairly

trivial to make this change to the PBIL algorithm.

These observations should highlight that these techniques are indeed very similar. Given the

right parameterisation it could be quite possible for an existing PACO algorithm to be almost

identical to PBIL. However this is exactly the point to be made, these exact parameter settings
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do not exist for any one PACO algorithm, as such there was not one PACO algorithm reviewed

which was the same as PBIL.

4.8.3 General Comments

The development of biologically inspired techniques are shaped by the point where they first

depart from the biological system. Core ideas from these inspirations emerge and it is natural

that researchers take these ideas and apply them where they are useful. In short it is entirely

possible that researchers while starting from one inspiration find themselves close, or closer,

to another inspirational source. These cases are often interesting in their own right since they

can benefit both communities by identifying the transition from one field to another, helping to

paint a complete picture of biologically inspired computation.

At first inception the GA and ACO communities were quite distinct, however through ongoing

research their respective boundaries have become more blurred. This should be quite evident

in the work of this thesis, which blurs the boundary even more by augmenting ACO algorithms

with niching, a concept developed in the GA community. Of course one must be careful that

any newly developed hybridisation does not simply rename an existing work. Thus the recent

creation of a sub-field, Evolutionary Algorithms based on Probabilistic Models [102], aims to

encompass existing work and provide clear research directions for the GA and ACO commu-

nities.

All care has been taken in this thesis to ensure that the algorithms and subsequent analysis are

novel in their own right. Even though the work presented here is developed using the ACO

paradigm it must be made clear that it could just as easily have been developed from a PMBGA

or EDA perspective. This choice is a fairly arbitrary one, biased by the authors prior familiarity

with ACO. It is in the ACO field that a majority of inspiration for this thesis is derived, to be

clear though this choice does not reflect any advantage of one biological inspiration over the

other.

4.9 Chapter Summary

The initial motivation for the introduction of a discrete population to ACO was to address

dynamic optimisation problems using the population to achieve fast pheromone updates. From

the examples presented in this chapter though it is clear that several other benefits exist. PACO

is useful in addressing other problem domains such as CFO, as was demonstrated in Sec. 4.5,

and multiple objective optimisation as in Sec. 4.4. It is also a suitable way to address several

shortcomings when implementing ACO in hardware (Sec. 4.6). While the algorithms presented

differ very minimally from the original PACO algorithm, FIFO-Queue ACO, each is useful in

demonstrating how PACO can be applied to a variety of different optimisation problems.

After describing the existing PACO algorithms a common framework encompassing these al-

gorithms was detailed. This framework, like the ACO Meta-heuristic framework, is a useful
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way to describe these many different algorithms and from hereon PACO refers to this general

description. An important observation made was the similarities between PACO and GA, re-

alised mostly due to the addition of a permanent population structure. Benefits of this include

the ability to take ideas from EC algorithms (like the GA) and apply them directly to create

novel PACO algorithms, or allow hybridisation of ACO algorithms with other EC algorithms,

previously difficult due to differing historical information storage methods i.e., the lack of a

permanent population structure in ACO.

The next chapter describes two novel niching PACO algorithms which use niching concepts

from Evolutionary Computation. As will be discussed in the next chapter these niching adap-

tations are made possible through the addition of a population to ACO.
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CHAPTER 5

Niching for PACO

The question that will decide our destiny is not whether we shall expand into space.

It is: shall we be one species or a million? A million species will not exhaust the

ecological niches that are awaiting the arrival of intelligence.

Freeman Dyson

5.1 Introduction

The concept of diversity has been mentioned as an important factor in algorithm design. For

some problems diversity may not be required to obtain optimal solutions while in others it is

critical. This chapter discusses a particular diversity preservation technique called niching.

This chapter firstly introduces Evolutionary Computation (EC) as an algorithm class. Several

EC algorithms which use niching as a diversity preservation technique are presented alongside

motivations for their use. Finally, two novel niching PACO algorithms are presented. These

algorithms will be the subject of further analysis for the remainder of the thesis.

5.2 Evolutionary Computation

Evolutionary Computation (EC)1 is a field of research dedicated to the study of algorithms

which maintain some form of solution memory which is used to bias future solution creation.

Some common examples of algorithms fitting into this broad definition of EC are:

• Genetic Algorithms (GA) [81, 82, 71]

• Genetic Programming (GP) [61, 96]

• Evolutionary Strategies (ES) [125, 140, 8]

• Differential Evolution (DE) [145]

1Evolutionary Computation derives its name from its similarities with Darwinian Evolution.
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• Simulated Annealing (SA) [91, 20]

• Particle Swarm Optimisation (PSO) [90]

• Ant Colony Optimisation (ACO) (Sec.3)

The descriptor Evolutionary Computation was first used around 1993 to unite the GA, GP and

ES fields. However, in recent times EC has grown to include many more algorithms. This

inclusion has enabled an increase in the amount of reuse and hybridisation of concepts between

fields. As a generic algorithm methodology EC can be visualised as Fig. 5.1

Population

Selection

Solution

Construction
Evaluation

Replacement

Figure 5.1: Generic algorithmic structure of Evolutionary Computation

5.2.1 Genetic Algorithm

The canonical Genetic Algorithm (GA) [81, 82, 71] differs from other EC algorithms by its so-

lution representation and combination of selection, recombination, mutation and replacement.

Solutions were normally binary strings of a fixed length governed by the number of problem

variables and precision required for each variable. While much of the early GA used binary

strings, later work also includes solutions encoded as arrays of floating point numbers (Real

Value Genetic Algorithm – RVGA). The GA is usually initialised with a population of random

solutions, although some ‘seed’ the initial population with solutions which are thought to be

good.

After initialisation the GA loops through the following processes until some termination criteria

is met:

1. Selection – Select ‘parent’ solutions from the population using a fitness proportionate se-

lection mechanism such as tournament selection or biased roulette wheel selection[3].

2. Recombination – Also known as crossover, components of the selected solutions (parents)

are mixed to create new candidate solutions (children).

3. Mutation – Mutation involves targeting a candidate solution’s individual solution compo-

nents and perturbing them (e.g. flipping a bit value) to introduce local variation.
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4. Evaluation – The candidate solution(s) are evaluated using a fitness function to determine

their utility.

5. Replacement – Candidate solutions are inserted into the population usually replacing older

or less fit solutions.

5.3 Niching in Evolutionary Computation

The concept of the niche was first introduced in [75], although the definition has altered some-

what since its introduction. In [87] it was suggested that each species occupies its own unique

niche within the environment. To define a species’ niche we firstly take every facet of the natu-

ral environment (e.g. temperature, humidity, abundance of predators, availability of food) and

represent them along individual dimensions creating an n-dimensional hyperspace, the envi-

ronment. The n-dimensional volume defined by mapping a particular species in this space to

where we know it could possibly survive is this species’ fundamental niche. The same species

mapped in this space but restricted to where we know the species does exist will encompass a

smaller n-dimensional volume which represents this species’ ecological niche. A species’ niche

can be a useful way to describe the behaviour of this species in a particular environment e.g.

removal of competition for resources may result in a species’ ecological niche expanding to fill

more of its fundamental niche.

Niching as an EC concept was first formally applied to the GA but has also been applied to other

EC algorithms such as PSO [13, 14]. Most EC algorithms tend to focus their search in individ-

ual areas of the search space. Niching aims to diversify the search focus of an EC algorithm

to multiple areas of the search space which is beneficial for multi-modal and multi-objective

problems.

In [71] three key features of niching algorithms are presented:

1. Stable maintenance of subpopulations. Once an optimal area of the search space has been

located a niching algorithm should maintain several population members in that location

so as not to lose (forget) this area of interest.

2. The size of a subpopulation decreases according to the fitness of the area of interest. Con-

sidering the limited resources of an algorithm, exploration of any area of the search space

should be proportional to the potential quality of solutions returned from a niche.

3. Subpopulations should not compete. Since resources are most likely to be of a fixed size,

a niching algorithm should not allow subpopulations to ‘fight’ for dominance of one area

of the search space.

Mahfoud [105] provides a classification scheme for niching algorithms:

1. Spatial: Algorithms that form niches in one algorithm run, sometimes called parallel nich-

ing.
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(a) Intra-Population (Population): All niches are formed within a single population.

(b) Inter-Population (Geographical): Niches are formed across multiple populations (is-

land populations).

2. Temporal: Algorithms form niches in subsequent sequential runs usually through use of

some form of restart strategy (sequential niching).

There have been so many different niching methods presented in recent years that a compre-

hensive study of all is not possible within the scope of this thesis. Instead two parallel niching

methods have been included since they are perhaps the most important historically and will

be used later in the thesis. These niching methods are crowding (Sec. 5.3.1) and fitness sharing

(Sec. 5.3.2).

Some niching methods require the calculation of similarity measurements between solutions

such as a Euclidean distance or a Hamming distance. These measurements are explained in

more detail in Sec. 5.3.3.

5.3.1 Crowding

The crowding factor model was introduced as a diversity maintenance scheme by De Jong [39].

This scheme was not a niching method according to the criteria outlined in Sec. 5.3, as it was

used to increase population diversity, not to locate and maintain multiple optimal areas of the

search space [80]. However, the crowding factor model laid the foundation for much of the later

work on niching and was most significantly reworked as a niching strategy by Mahfoud [103,

105].

Mahfoud’s technique, Deterministic Crowding, was designed to slow convergence and maintain

diversity by limiting dominant building blocks in a population. The replacement policy in

deterministic crowding involves a candidate solution competing (based on solution quality)

for a place in the history with the most similar of its parent solutions. If a candidate solution is

better than its most similar parent, the parent is replaced, otherwise the candidate solution is

discarded.

Another variation of Crowding is Restricted Tournament Selection(RTS) [80]. RTS is similar to

Deterministic Crowding, but instead of a candidate solution only being compared against its

parents, it is compared to a subset of the entire population. The size of this subset in called

the window size and the most similar solution from this subset is sought and is replaced if the

candidate solution is of higher fitness.

5.3.2 Fitness Sharing

Instead of modifying the replacement mechanism to introduce niching behaviour, as in Crowd-

ing, Fitness Sharing [72, 71] modifies the selection mechanism. Since most Genetic Algorithms

use a fitness proportionate selection mechanism to select parent solutions, Goldberg and Rich-
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ardson found that modifying the selection of parents will avoid convergence to one area of the

search space thereby introducing niche formation.

Fitness Sharing derates2 solutions which occupy the same or a similar position in the search

space. For example the adjusted quality (Q′) of two solutions which occupy the same position

in the search space will be half of their original quality (Q). The result of this adjustment is

to remove the selection bias present through a solution being represented multiple times. The

removal of this bias allows simultaneous convergence to multiple areas of the search space.

Niche formation, specifically with regard to Fitness Sharing, was explained in [72] using a vari-

ation of the k-armed bandit problem [82, 39, 129]. The problem involves a poker machine with

k handles, each handle having set pay-out odds. There is also a population of gamblers, who

wish to maximise their individual winnings from the poker machine. The variation introduced

is that after every gambler has selected a handle they must share their winnings with every-

one else who chose their particular handle. For example if there are two handles each having

expected payouts of $25 and $75 and 100 gamblers all pull the better handle they would each

walk away with $75/100 = $0.75. If however the population divides across both handles pro-

portionate to the expected payout of those handles the expected payout per gambler will be

$75/75 = $25/25 = $1.00. From this simple experiment it was shown that modifying the

payout function in the k-armed bandit problem can introduce a reward for niche formation.

Q′i =
Qi
ci

(5.3.1)

ci =
m

∑
j=1

sh
(
dij
)

(5.3.2)

sh (d) =

1−
(

d
σshare

)α
if d < σshare,

0 otherwise.
(5.3.3)

Where:

Qi : Quality of individual solution i

ci : Niche count for solution i

dij : Distance (difference) between solution i and solution j

sh (x) : Sharing function

σi : Niche radius

α : Power used to modify the shape of the sharing function

With Equ. 5.3.1, 5.3.2 & 5.3.3 if a solution is alone in a neighbourhood (i.e. its nearest neighbour

is of a distance > σshare), then its quality is unaltered since: sh (d) = 1 for itself, and this will be

the only contribution to the niche count (ci), (Q′i = Qi in this case). As presented previously, if

two identical solutions are acted upon with the fitness sharing equations then their respective

2Derate is a commonly used term in niching literature that means ‘to decrease the fitness of’.
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quality will be halved since the niche count (ci) = 2, and this effectively halves the quality of

each solution (Q′i = Qi/2).

5.3.3 Difference Measures

Difference can be calculated (or estimated) in the phenotypic or genotypic space. In the geno-

typic space the problem encoding will define the use of difference (similarity) measurement.

A common method used to calculate the genotypic similarity of solutions encoded as permu-

tations (e.g. TSP) is to use adjacency matrices for each solution and calculate the Hamming

Distance [114, 131].

Firstly the adjacency matrix of each permutation (Tab. 5.1 & 5.3) is constructed (Tab. 5.2 & 5.4).

The adjacency matrix is constructed according to the rule: If two solution elements(cities) are

adjacent to each other in a permutation this element is set to 1 in the adjacency matrix, other-

wise it is set to 0. For example, in the case of a TSP the adjacency matrix highlights the edge

connections of a candidate TSP solution.

The adjacency matrices (Tab. 5.2 & 5.4) are insensitive to the starting city of the solution, i.e.

solution 3-4-5-6-1-2 would produce the same matrix as that shown in Tab. 5.2. This insensi-

tivity to starting position is important since the starting position is irrelevant when comparing

solutions to a TSP.

The Hamming distance can be calculated by using an AND operation on each solutions ad-

jacency matrix and summing all of the values in the matrix (Tab. 5.5). To calculate the shared

edges between permutations of a symmetric TSP it is necessary to divide the Hamming distance

by 2; for this example the shared edges would equal 4. In order to obtain a difference mea-

surement it is necessary to alter the edge count using Equ. 5.3.4. Using Equ. 5.3.4, one would

represent the solutions being completely different i.e. sharing no common edges, whereas zero

represents the solutions being exactly the same.

Difference = 1− shared edges
number of cities

(5.3.4)

In CFO problems where solutions genotypic information are points in some n-dimensional

hyperspace a Euclidean distance can be used to calculate the genotypic distance between two

solutions (x, y) as in Equ. 5.3.5.

EuclideanDistance =
n

∑
i=1

√
(xi − yi)

2 (5.3.5)

The use of phenotypic distance is usually avoided in niching since it does not provide an accu-

rate reflection of the spatial separation of solutions, i.e., two solutions with similar fitness may

be located on separate optima a large genotypic distance away from each other.
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Position 1 2 3 4 5 6
City 1 2 3 4 5 6

Table 5.1: Example candidate solution 1

Cities 1 2 3 4 5 6
1 0 1 0 0 0 1
2 1 0 1 0 0 0
3 0 1 0 1 0 0
4 0 0 1 0 1 0
5 0 0 0 1 0 1
6 1 0 0 0 1 0

Table 5.2: Example candidate solution 1 adjacency matrix

Position 1 2 3 4 5 6
City 1 2 4 3 5 6

Table 5.3: Example candidate solution 2

Cities 1 2 3 4 5 6
1 0 1 0 0 0 1
2 1 0 0 1 0 0
3 0 0 0 1 1 0
4 0 1 1 0 0 0
5 0 0 1 0 0 1
6 1 0 0 0 1 0

Table 5.4: Example candidate solution 2 adjacency matrix

Cities 1 2 3 4 5 6
1 0 1 0 0 0 1
2 1 0 0 0 0 0
3 0 0 0 1 0 0
4 0 0 1 0 0 0
5 0 0 0 0 0 1
6 1 0 0 0 1 0

Table 5.5: AND operation applied to solution 1 & 2 adjacency matrices
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5.3.4 Pros and Cons of Niching

Most search algorithms are designed (or were initially designed) to find a single optimal solu-

tion to a difficult problem. This design trait is borne of the problems that exist in the literature

where the goal tends to be optimisation of a single objective, some of which where discussed

in Sec. 2. Niching algorithms tend to be best applied in situations where multiple optimal solu-

tions are required rather than a single optimum, such as in multi-modal and multiple objective

problems.

Alternatively, niching algorithms can also be applied in situations where a single optimum

solution is desired. This may be because some search advantage is gained over non-niching al-

gorithms due to the specific search landscape of the problem. Niching algorithms in this sense

may permit a more effective use of available resources by a search algorithm by either implic-

itly or explicitly dividing and searching different areas of the search space in parallel [106].

Such automatic resource re-allocation is useful in preserving useful population diversity for an

extended search time.

Since niching techniques spread the population across a wider search area, they can often waste

computation by continually searching areas of the search space where no interesting optima

exist. Also recombination of solution components from different niches can lead to the intro-

duction of ‘lethals’ [38] which are solutions created between two optima but not located on an

optima themselves. Some niching techniques introduce extra parameters in addition to the base

algorithm. These parameters often come without good heuristics to set them and thus require

extra sensitivity analysis to ensure best performance [160].

5.3.5 Sequential versus Parallel Niching

The Sequential Niching Genetic Algorithm (SNGA) [7] which is typical of many sequential

niching techniques works as follows:

1. A randomly initialised GA is used to search the search space until convergence or some

alternative stopping criteria is met.

2. The location of the best optima found and saved.

3. The fitness of this optima as well as the fitness of neighbouring points for a specified

radius (much like the sharing radius of fitness sharing) is decreased.

4. Repeat steps 1-3 until a finishing criteria is met.

In [104], Mahfoud compared four niching methods on a variety of multi-modal CFO prob-

lems: fitness sharing, deterministic crowding, parallel hill-climbing and the SNGA. The study

showed that parallel hill-climbing performed best on simple problems, however it was fitness

sharing and deterministic crowding that performed best across all problems, particularly those

with complex search spaces. SNGA did not perform well on any of the test problems and per-

48



5.4. NICHING ANT COLONY OPTIMISATION

formed particularly poorly on the complex problems. This poor performance was attributed to

a number of factors:

• The deration of optimal solutions restricts their good solution components from being

reused to find other optima which also use these good solution components.

• The deration of areas of the search space may create false optima or eliminate some op-

tima entirely.

• While it may be easy to locate optima at the start of the search, some optima may be left

located in areas of uniform fitness where they will be harder to find at the end of the

search due to an absence of directional information.

• The algorithm repeatedly converges to the same optima, despite the deration of these

optima.

Other detractors of the algorithm included a slower runtime than the parallel niching algo-

rithms and the number of evaluations of SNGA being between 5-8 times that of fitness sharing.

The large number of evaluations was attributed to the same optima being re-discovered over

subsequent restarts. Also, since the SNGA had to start from random positions each restart, it

meant that the algorithm wasted a lot of time re-exploring areas of the search space previously

explored.

In a practical context, Horn’s doctoral thesis [84] outlined a pipeline design problem that was

shown to contain five optima of varied cost. Of these optima it was noted that several were

found more frequently than others using a restart strategy, however the parallel niching model

presented in the thesis was able to identify all five optima in a single run.

5.4 Niching Ant Colony Optimisation

5.4.1 Constraints

To be able to easily implement standard niching methods such as crowding and fitness sharing

with ACO, the ability to readily measure the distance between solutions is required. Since most

standard ACO algorithms store solution quality (phenotypic) information in the pheromone

map but don’t store the actual solutions (genotypic) we cannot access genotypic distance in-

formation between multiple generations of solutions. While it may be possible to achieve a

niche-like behaviour in ACO, it is much more straightforward to use PACO (Sec. 4) to imple-

ment standard niching techniques such as crowding and fitness sharing, since in PACO, access

to a multi-generational population in the traditional EC sense is guaranteed.

5.4.2 Fitness Sharing Population-based Ant Colony Optimisation

Fitness Sharing PACO (FSPACO) uses a generational replacement where each generation all

newly created solutions are inserted into the population, supplanting the oldest solutions (much
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like FIFO-queue ACO in Sec. 4.2). After the population is updated, the fitness sharing equations

(Sec. 5.3.2) are applied to the entire population to determine how much each solution’s fitness

is derated by (if any). Once the adjusted fitness values are calculated, a temporary pheromone

map is constructed using the entire population. This temporary pheromone map is used for the

construction of the next generation of solutions then discarded. A general pseudo code repre-

sentation is provided as Alg. 4. In this pseudo code example p represents the population, and

pi the ith member of that population.

Algorithm 4 Fitness Sharing Population-based Ant Colony Optimisation: FS-PACO

1: while stopping criterion not met do
2: Construct temporary pheromone matrix
3: Construct Solutions
4: Update history (Replace oldest solutions)
5: De-rate quality
6: end while
7: procedure DE-RATE QUALITY
8: for j = 1 to psize do
9: nicheCount = 0

10: for k = 1 to psize do
11: d = distance

(
pj, pk

)
12: if d < σ then
13: shareValue =

(
1− (d/σ)α)

14: else
15: shareValue = 0
16: end if
17: nicheCount = nicheCount + shareValue
18: end for
19: hj.quality = hj.quality/nicheCount
20: end for
21: end procedure

5.4.3 Crowding Population-based Ant Colony Optimisation

Unlike the GA, PACO algorithms do not select parent solutions for new solution construction

and the pheromone map tends to reflect the experience of the entire population. Given this,

Restricted Tournament Selection is a suitable crowding model since it compares new solutions

against a subset of the entire population. The size of the subset selected is denoted as the

crowding size (window size), thus Crowding PACO (CPACO) introduces one extra parameter

to the basic PACO algorithm. The crowding size can be set anywhere between one and the

size of the population. A general pseudo code representation of Crowding PACO (CPACO) is

outlined in Alg 5.

5.4.4 Alternative ACO Diversity Preservation Methods

As indicated in Horn’s doctoral dissertation[84] it is prudent to discuss alternative diversity

preservation mechanisms alongside niching, as niching is itself a form of diversity preserva-

tion. Focusing on ACO algorithms, the issue of diversification versus intensification has been
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Algorithm 5 Crowding Population-based Ant Colony Optimisation: CPACO

1: Uniformly initialise pheromone map values to τinit
2: for j = 1 to h do
3: Create and evaluate random solution
4: Insert random solution into history
5: Add random solution information into pheromone map (+∆τ)
6: end for
7: while stopping criterion not met do
8: Construct m new solutions (snew)
9: Evaluate solutions

10: Crowding history update
11: end while
12: procedure CROWDING HISTORY UPDATE
13: for j = 1 to m do
14: Select random subset (size=c) of solutions (s) from population (p)
15: for k = 1 to c do
16: d = distance

(
snew

j , sk

)
17: if d < leastDistance then
18: leastDistance = d
19: sclosest = sk
20: end if
21: end for
22: if snew

j .quality > sclosest.quality then
23: Remove sclosest information from pheromone map (−∆τ)
24: Remove sclosest from population
25: Add snew

j to population
26: Add snew

j information into pheromone map (+∆τ)
27: end if
28: end for
29: end procedure

a driving force behind the development of ACO and the balance between these factors is often

cited as one of the distinguishing features of different ACO algorithms. This is particularly

evident in algorithms such as ACS (Sec. 3.4.2) that use elite solutions to promote intensification

and localised decay to ensure diversification.

Some research specifically targets the issue of diversification by adding features to basic ACO

algorithms which introduce randomness [116, 68, 123, 124] dependent on different criteria such

as the measured diversity of the population. For the problems addressed those techniques al-

low the modified algorithms to overcome some of the issues associated with premature conver-

gence to suboptimal solutions. While these approaches do improve the basic ACO algorithms

they are very different to niching. These modifications usually delay convergence to a single

area of the search space. While niching aims at increasing diversity, it does not hold off con-

vergence or prevent it, nor does it purposely introduce extra randomness. Niching aims at

creating and maintaining stable subpopulations. This is quite different to slowing convergence

or introducing randomness since niching algorithms can be tuned to be highly convergent, but

convergent to multiple areas of the search space.
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5.5 Chapter Summary

This chapter discussed two popular niching techniques, fitness sharing and crowding. Two

new PACO algorithms which incorporate these forms of niching were presented. In the next

chapter these algorithms are applied to a group of single-objective optimisation problems to

characterise their performance and provide insight into their behaviour.
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CHAPTER 6

Single Objective Optimisation

Normal people don’t understand this concept; they believe that if it ain’t broke,

don’t fix it. Engineers believe that if it ain’t broke, it doesn’t have enough features

yet.

Scott Adams, The Dilbert Principle, 1996

6.1 Introduction

Historically the TSP is the first application for most new ACO algorithm variations, and this

has been used in the analysis of Niching PACO. While it is not expected that the niching adap-

tation will be useful for TSP an analysis is still included. The intention of such an analysis is

that it should allow the identification of interesting features, since the Niching PACO can be

directly compared to existing non-niching ACO algorithms. After this analysis the Niching

PACO algorithms are applied to several CFO problems, since this is a problem domain that

most niching algorithms tend to predominantly be applied to. The choice of this domain is

mostly due to the ability to readily design challenging benchmark problems with features such

as multiple diverse optima. The problems are also easily scaled to multiple dimensions which

can rapidly increase the computational complexity, but such scaling does not necessarily come

at a cost to our ability to analyse and comment on algorithms applied to them. This is because

these CFO problems allow for easy visualisation of their search space, while still preserving

their neighbourhood relationships. This is not so true of combinatorial domains whose search

spaces tend to be quite easily disrupted if visualised in a lower number of dimensions1. In this

later analysis two criterion for success are used, the algorithms’ ability to locate and maintain

multiple optimal or near-optimal solutions, and the best quality optimum found overall. A set

of metrics are defined which are useful in benchmarking the Niching ACO algorithms against

standard niching Genetic Algorithms and ACO approaches to the CFO problem.

1Techniques exist to map all solutions to an n-dimensional TSP into a 2-dimensional space [154], however these
techniques fail to preserve the neighbourhood relationship of the TSP.

53



6.2. NICHING PACO FOR THE TRAVELLING SALESMAN PROBLEM

6.2 Niching PACO for the Travelling Salesman Problem

The TSP is perhaps the most common problem used by the ACO research community. As was

previously mentioned it is useful to include an analysis of the Niching PACO algorithms ap-

plied to the TSP for comparison purposes with other well established ACO algorithms. In this

section implementation details of the Niching PACO algorithms are outlined. The algorithms

are tested on several standard benchmark and one original TSP instance. Results of testing are

included and reasons for the algorithms’ performance given.

6.2.1 Algorithm Details

FSPACO-TSP and CPACO-TSP are similar to the PACO algorithm presented in Sec. 4.3 but for

a few differences which are discussed in this section.

Solution Construction (Ants Generation & Activity)

Solution construction is performed in the same way as that of ACS, MMAS and PACO for TSP

by using the greedy transition rule. At each transition a random number between 0 and 1 is

selected and if this number is above the threshold Q the absolute best solution component is

added to the current solution, otherwise a solution component is probabilistically selected. Like

any other ACO-TSP algorithm a tabu list that restricts possible solution components to those

cities not yet visited is used.

Pheromone Update

FSPACO-TSP uses an inverse tour length to determine the original solution quality and this

quality is then adjusted using the niche count. The adjusted quality is then used to update the

pheromone values of a temporary pheromone matrix which is reinitialised before update at

every iteration.

CPACO-TSP uses the inverse of the tour length to update the pheromone values, which means

that the PACO fast pheromone update procedure can be used. A rank based approach was

considered but rejected on the grounds that if used it would mean that a temporary pheromone

matrix would be required. This is because re-ranking of solutions may mean that solutions

that have already updated the pheromone values when entering the population would need to

adjust their pheromone values if they change rank.

Solution Storage and Maintenance

For FSPACO-TSP a generational replacement method is implemented where at each iteration

the entire population is replaced with the newly created solutions. For CPACO-TSP the crowd-

ing comparison operation explained in Sec.5.4.3 is used to manage the insertion of new solu-

tions into the population. For both algorithms an initial population is created using a uniform

54



6.2. NICHING PACO FOR THE TRAVELLING SALESMAN PROBLEM

random sampling of the the search space.

6.2.2 Results and Discussion: Crown Problem

At the outset applying a niching algorithm to the TSP does not seem to be a good idea since

it has been shown that the TSP seems to benefit from greedy search behaviour, focused on

one area of the search space at a time [150]. In their work on MAX −MIN Ant System

(MMAS) [147, 148, 149], Stützle and Hoos comment that Ant Systems (AS) performs poorly

on the TSP in comparison to later ACO algorithms because AS does not exploit good solu-

tions strongly enough. This is true since all of the ACO algorithms mentioned in Sec. 3 that

have improved on the results of AS for problems such as the TSP include variations such as

greedy transition rules or pheromone update rules that strongly bias the reinforcement of elite

solutions. Since elitism tends to correlate strongly with an increase in search efficacy this may

indicate something about the problem: that the n-best solutions to a TSP all contain similar

elements and thus are located in a similar area of the search space. To test this the best 100 so-

lutions to a small TSP instance2, the Burma14 have been compared to each other to determine

their similarity. Figure 6.1 details the average similarity (number of common edges) of each of

the best 100 solutions compared to the other 99 best solutions. In this figure the most similar

any two solutions can be without being identical is 12 edges. Error bars are included to indicate

the standard deviation of each average taken. For comparison 100 random solutions have also

been selected and subjected to the same test.
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Figure 6.1: Average number of similar edges amongst the best 100 and a randomly selected 100
solutions to the Burma14 TSP

As is indicated in Fig.6.1 the best 100 solutions all occupy a similar space in the overall search

space having on average 9 similar edges to all of the other best solutions. The baseline random
2Since an exhaustive search was required to find the best 100 solutions only a small instance could be used.
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sample indicates that from a random sample of 100 solutions only 2 edges are the same on

average when selecting from across the entire search space.

Since niching algorithms strive to maintain diversity, it is intuitive that niching algorithms are

not suited to solving problems such as the single-objective TSP that benefit from strong con-

vergent behaviour. However, cases may exist where a niching algorithm would be suited to

solving the TSP, to examine let’s consider a fabricated TSP: the Crown problem.

The Crown problem is a symmetric, 2-Dimensional Euclidean TSP containing 6 vertices

(Fig. 6.2)3, and has the interesting property of containing two distinct yet equal global optima

(Fig. 6.3). These optima are also a reasonable distance apart only sharing 3 out of 6 edges

(difference = 0.5).
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Figure 6.2: Crown TSP problem visual representation
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(b) B - 1,2,5,6,4,3 length = 541

Figure 6.3: Optimal solutions to Crown problem

For comparison purposes the MMAS algorithm was tested4 using 50 ants per iteration, and

the number of times either of the two optima were found per iteration was recorded. This

experiment was repeated 100 times for consistency of reported results. The graphs presented

in Fig. 6.4a, Fig. 6.4b and Fig. 6.4c, although illustrating single experimental runs, are indicative

of each algorithms behaviour. These graphs indicate that on any individual experimental run

the MMAS algorithm is able to locate both optima (not surprising given the small size of the

search space) however, over time the algorithm will converge to only one of these optima.

Conversely both FSPACO-TSP and CPACO-TSP are able to locate and maintain both optima

for an extended period of time.

6.2.3 Results and Discussion: Standard Problems

The Crown problem is trivially small and quite unique, with regard to the presence of two

distinct optima. For completeness the niching PACO algorithms are tested on several small-
3The coordinates of this dataset are: {{0,0},{0,100},{50,50},{100,50},{150,100},{150,0}}
4Using the standard parameters as in [149]
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Figure 6.4: Crown problem: Occurrence of the two optimal paths over time for a single (al-
though indicative) experiment run (A & B are the two distinct optimal paths). Each algorithm
tested constructs 50 solutions per iteration. Different running times are reported to better illus-
trate specific algorithm behaviour, importantly though the convergence characteristics do not
change past the maximum number of iterations reported on the graphs.
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medium sized TSP from TSPLIB [128] to observe the effect of niching on the algorithm perfor-

mance (with regard to locating the optimal solution). The results of the testing are presented in

Tab. 6.1, the parameters used for this experimentation are included in Tab. 6.2. For comparison

purposes the MMAS algorithm and PACO algorithm using the Quality replacement strategy

from Sec. 4.3 are also included in the testing.

Problem \Algorithm FSPACO-TSP CPACO-TSP MMAS PACO
Berlin52 0.077 0.085 0.027 0.058
KroA100 0.120 0.209 0.092 0.105
eil101 0.101 0.132 0.119 0.035
ch130 0.115 0.243 0.091 0.063
ch150 0.110 0.300 0.060 0.057
gr202 0.122 0.196 0.064 0.084

Table 6.1: Results of testing FSPACO-TSP, CPACO-TSP, MMAS and PACO on standard TSP
instances. Each algorithm was allowed n× 1000 solution evaluations (where n is the number of
cities) and were repeated 100 times with different random seeds. The figures reported are the
percentage deviation from the optimum with the best performing algorithm(s) for each problem
highlighted in bold (in some cases two algorithms tied). The statistical significance of the results
are included in the Appendix as Tab. 10.1

FSPACO for the TSP

FSPACO manages convergence by de-rating similar solutions. This process ensures that optima

become populated in a fitness-proportionate way, as was described in Sec. 5.3.2. In the case of

the TSP most local optima will contain many similar components to the global optima. Thus

if these tightly clustered solutions are all present in a population they will be subsequently de-

rated, effectively deterring the algorithm from recombining their parts. Thus as is indicated in

Tab. 6.1, the performance of FSPACO-TSP as compared to the PACO and MMAS algorithms is

quite poor, and for these problems fitness sharing does not seem to offer any advantage. Worse

still, the computational complexity of the FSPACO-TSP algorithm is higher than the PACO

algorithm considered here which makes the extension even more inefficacious.

To elaborate, FSPACO-TSP adds a fair amount of computational complexity to the standard

PACO algorithm. The most significant area of computational complexity increase is in the com-

parison of population members to each other to determine the niche count. To determine the

niche count every population member must be measured against every other population mem-

ber resulting in a non-optimised n2 comparisons. While it is possible to reduce this complexity

to n (n− 1) /2, the resultant number of comparisons can still be seen as an extra computational

burden.

FSPACO-TSP uses a generational replacement and thus it is possible that the entire popula-

tion may change from one iteration to the next, thus a temporary pheromone matrix is used.

Every iteration the pheromone matrix must be initialised and the elements in the matrix corre-

sponding to solutions in the population must be adjusted. This will result in an increase in the

number of pheromone value adjustments per iteration. Since the low number of adjustments

required to the pheromone matrix was one of the original selling points of PACO this change is

undesirable.
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CPACO-TSP
Parameter Value
Number of ants / Population size 50
Initial Pheromone 1/Nearest Neighbour Solution Length
Pheromone Exponent (α) 1
Heuristic Exponent (β) 3
Solution selection greediness (q) 0.5
Crowding window size 0.1
FSPACO-TSP
Parameter Value
Number of ants / Population size 50
Initial Pheromone 1/Nearest Neighbour Solution Length
Pheromone Exponent (α) 1
Heuristic Exponent (β) 3
Solution selection greediness (q) 0.5
Niche radius 0.10
Sharing Power 1
MMAS
Parameter Value
Number of Ants 25
Initial Pheromone 1/Nearest Neighbour Solution Length
Pheromone Exponent (α) 1
Heuristic Exponent (β) 3
Maximum Pheromone (τmax) 1.0
Decay factor (ρ) 0.1
PACO
Parameter Value
Number of ants 10
Population size 2
Initial Pheromone 1/Nearest Neighbour Solution Length
Pheromone Exponent (α) 1
Heuristic Exponent (β) 5
Maximum Pheromone (τmax) 1.0
Solution selection greediness (q) 0.5
Elite factor 0.25

Table 6.2: Parameter settings used in testing of the TSP
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In some cases extra computation may be worthwhile if it results in an increase in solution

quality or algorithm robustness, however in the case of FSPACO the modifications did not

increase either of these qualities and thus the increase in computational complexity cannot be

justified.

CPACO for the TSP

Like FSPACO-TSP, CPACO-TSP did not perform well on the benchmark TSP instances reported

in Tab. 6.1. This poor performance is most likely due to the structure of the search space not

being compatible with the crowding replacement operation.

Any ACO algorithm applied to the TSP usually uses a strong heuristic bias (β ≈ 3). While this

is beneficial to standard ACO algorithms applied to this problem for reasons discussed earlier

in Sec. 6.2.2, this heuristic does disrupt the operation of the crowding replacement operation of

CPACO. It was observed that if CPACO-TSP is initialised with a random population that many

of the population members present at this initialisation are also present at the end of run time.

This is due to a subset of the population always ‘winning’ the closeness comparison operation

and thus being the only members of the population to ever be given the chance to be updated.

This effect is magnified by the presence of the heuristic; since the heuristic restricts the search

space and thus any initial population members that have been initialised outside this restricted

search space will have a very low chance of being updated. To highlight this, a table indicating

the initial and final population after a single run of CPACO-TSP applied to the Berlin52 TSP is

included in Tab. 6.3.

A possible way to address this negative effect is to reduce the crowding window size. This

allows for the possibility of replacement of solutions from a larger distance away even if closer

solutions exist in the population. This is because these close solutions are not always included

in the subset of solutions that can be replaced by a new solution. The side-effect of this is that

it allows for duplicate solutions to be entered into the population as is indicated in Tab. 6.4.

Even when tested with a small population size the solution duplication problem is still evident.

The Eil101 TSP was tested using the same parameters as for Berlin52 however this time the

population size was reduced to 5. Table 6.5 contains the path lengths of the initial population

and the final population (after 10000 iterations).

CPACO-TSP adds a small amount of computational complexity to the standard PACO algo-

rithm. Like FSPACO-TSP the most significant area of computational complexity increase is

in the comparison of new solutions to existing population members to determine the closest

match. This replacement routine is dependent on the crowding window size and has a worst

case complexity if the crowding window is the same size as the population. At all times the

total complexity of the crowding replacement operation per iteration is c · m, where c is the

crowding window and m is the number of new solutions (ants). A reduction in the crowd-

ing window size will reduce the overall replacement complexity, however the trade-off is an

increase in the probability of duplicate solutions as was seen in Sec.6.2.3.

The number of modifications to the pheromone matrix may be higher than that of the standard
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Initialisation After 1000 Iterations Initialisation After 1000 Iterations
26538 7615 29937 29937
27095 27095 30019 30019
27711 27711 30066 30066
27828 27828 30386 30386
27955 27955 30507 30507
27973 27973 30512 30512
28065 28065 30551 30551
28232 28232 30645 30645
28325 28325 30708 30708
28494 28494 30745 30745
28685 28685 30745 30745
28745 28745 30780 30780
28951 28951 30801 30801
29047 29047 30845 30845
29068 29068 30890 30890
29211 29211 31002 31002
29419 29419 31073 31073
29446 29446 31131 31131
29475 29475 31501 31501
29638 29638 31708 31708
29703 29703 31777 31777
29717 29717 31936 31936
29755 29755 32177 32177
29855 29855 32235 32235
29930 29930 33288 33288

Table 6.3: Path lengths of solutions contained in the population of CPACO-TSP after initialisa-
tion (ordered by length) and the final population after 1000 iterations (constructing 50 solutions
per iteration) for Berlin52. In this example CPACO-TSP has a large crowding window size.
While it is possible for different solutions to have the same path length, those solutions re-
ported with the same path length are in fact the same solution. Note that only one solution in
the final population is different from the initial population.
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Initialisation After 1000 Iterations Initialisation After 1000 Iterations
26538 8066 29937 8066
27095 8066 30019 8066
27711 8066 30066 30066
27828 8066 30386 30386
27955 8066 30507 30507
27973 8066 30512 30551
28065 8066 30551 8066
28232 28232 30645 8066
28325 8066 30708 30708
28494 8066 30745 30745
28685 8066 30745 30745
28745 8066 30780 30780
28951 8066 30801 30801
29047 29047 30845 30845
29068 8066 30890 8066
29211 8066 31002 31002
29419 29419 31073 31073
29446 29446 31131 31131
29475 29475 31501 31501
29638 29638 31708 31708
29703 29703 31777 31777
29717 29717 31936 31936
29755 8066 32177 32177
29855 29855 32235 32235
29930 29930 33288 33288

Table 6.4: Path length of solutions contained in the population of CPACO-TSP after initialisation
(ordered by length) and the final population after 1000 iterations (constructing 50 solutions per
iteration) for Berlin52. In this example CPACO-TSP has a small crowding window size. While it
is possible for different solutions to have the same path length, those solutions reported with the
same path length are in fact the same solution. Note the duplication of one particular solution
throughout the final population. While many solutions from the initial population have been
replaced they have all been replaced with the same solution.

Initialisation After 10000 Iterations
3153.0 723.0
3399.0 723.0
3559.0 3559.0
3586.0 723.0
3696.0 3696.0

Table 6.5: Path length of solutions contained in the population of CPACO-TSP after initialisation
and the final population after 10000 iterations (constructing 5 solutions per iteration) for Eil101.
While it is possible for different solutions to have the same path length, those solutions reported
with the same path length are in fact the same solution. Note the duplication of one particular
solution throughout the final population.
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PACO5 since it is likely for there to be higher solution turnover in the population, however this

was not specifically tested given the poor results obtained.

6.2.4 Summary

It was mentioned at the beginning of this section that the performance of the niching PACO

algorithms on the single objective TSP was unlikely to be good. For the benchmark problems

tested from TSPLIB the results tend to agree with the initial postulate that the use of niching for

this problem does not seem to be justified. Not only is the quality of the result worse, but the

algorithms add additional computational complexity.

Given these findings though, it must be said that while the standard TSP instances of TSPLIB

did not benefit from niching, the special case Crown problem did. While this problem was

entirely contrived it did demonstrate the niching algorithms’ strength in the simultaneous lo-

cation and maintenance of multiple optima on a combinatorial problem domain. For the over-

whelming majority of single objective TSP in TSPLIB[128] this property is probably not re-

quired, however there do exist other variations to the basic TSP that require the location and

maintenance of diverse solutions, one such variation being the multiple objective TSP investi-

gated in Sec. 7.4.

6.3 Niching PACO for Continuous Function Optimisation

CFO is perhaps the most highly tested problem by niching evolutionary algorithms. Reasons

for this were provided in Sec. 6.1. An analysis of the Niching PACO algorithms applied to the

CFO will firstly allow a determination as to whether niching has been implemented success-

fully. Secondly it will allow a determination as to how useful this adaptation is as compared

to other existing niching and non-niching techniques. Implementation details of the Niching

PACO algorithms for CFO are firstly outlined. A brief sensitivity analysis on several bench-

mark CFO problems of small dimensionality is performed to determine the effect of certain

introduced parameters. Following this sensitivity analysis the algorithms are run in set config-

urations on more benchmark CFO problems with varied qualities and difficulty to determine

their effectiveness at locating multiple diverse optima and locating a single global optimum.

The algorithms are analysed using a combination of qualitative and quantitative analysis tech-

niques.

6.3.1 Algorithm Details

FSPACO-CFO and CPACO-CFO are similar to the PACO algorithm for Continuous Domains

(ACOCD) presented in Sec. 4.5 but for a few differences which are discussed in this section.

5Pheromone modification only takes place when a solution is replaced which means that if there are no replacements
the pheromone matrix is left untouched.
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Solution Representation

In FSPACO-CFO and CPACO-CFO each individual solution is represented as a vector (length=n,

where n is the number of dimensions) of real values restricted to be within the bounds of the

search space (feasible search region). If s is a solution then si is the ith component of that solu-

tion. Each solution (once evaluated) also contains a solution quality value (sscore) which can be

used to determine the fitness of the solution, if required.

Solution Construction (Ants Generation and Activity)

Like ACOCD a Gaussian sampling technique is used to generate a new position in the n-

dimensional search space. However, unlike ACOCD, different solutions from the population

(population size = k) can be used to determine the mean for each dimension of the problem.

The solution construction procedure is described in Alg. 6 and visually in Fig. 6.5.

Algorithm 6 Solution construction procedure for CFO

1: Calculate selection probabilities for population according to Alg.7, Alg.8 or Alg.9.
2: Create new empty solution snew

3: for i = 1 to n do
4: Probabilistically select a solution (s) from the population using a biased roulette wheel

selection strategy with replacement.
5: µ = si
6: r = |nmax − nmin| . Calculate dimension range
7: c = (sin (π/2× remaining evaluations/maximum evaluations))2 . Calculate

convergence factor
8: σ = r× c/6 . Calculate standard deviation
9: repeat

10: snew
i = Gaussian weighted random value according to Equ. 6.3.1

11: until nmin <= snew
i <= nmax . New coordinate must be within bounds of problem

otherwise resample
12: end for

f (x) =
1

σ
√

2π
exp−

(x−µ)2

2σ2 (6.3.1)

There are three variants of the solution selection scheme: Rank, Quality and Unity. These

schemes relate to the method of calculation of the selection probabilities of the solutions in

the population. With rank-based (Alg.7) each solution is ordered based on its fitness value and

assigned a rank from 1 to k, where k is the size of the population. The inverse of this rank is

then used as the basis for selection, thus a larger rank (worse solution) has a lower probabil-

ity of selection. Quality-based (Alg.8) firstly determines the minimum and maximum fitness

values, then it normalises the fitness of every solution between these bounds so that the best

solution will have a fitness value of 1 and the worst solution a fitness value of 0. The reason for

this normalisation is that it makes the quality-based selection strategy impervious to the scale

of the fitness function. Unity-based (Alg.9) assigns an even probability of selection to every so-

lution. In essence this rank procedure is unnecessary as the entire solution selection procedure

could simply be replaced with a uniform random selection strategy with replacement, however
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this way it can be applied in the same manner as the other solution selection schemes.

Algorithm 7 Rank based solution ranking procedure for CFO. Determines probability (p) of
selecting Solution i based on the rank of this solution relative to the rest of the population.

Sort population from best to worst.
ptotal = 0
for i = 1 to k do . Calculate probabilities (unscaled & non-normalised)

p (i) = 1/i
ptotal = ptotal + p (i)
for i = 1 to k do . Normalise and power scale probabilities

p (i) = (p (i) /ptotal)
α

end for
end for

Algorithm 8 Quality based solution ranking procedure for CFO. Determines probability (p)
of selecting Solution i based on the normalised quality of this solution.

for i = 1 to k do . Find bounds of solution scores
if si

score > max then
max = si

score
end if
if si

score < min then
min = si

score
end if

end for
for i = 1 to k do . Calculate probabilities (unscaled & non-normalised)

if Minimisation Problem then
p (i) = 1−

(
si

score −min
)

/ (max−min)
end if
if Maximisation Problem then

p (i) =
(
si

score −min
)

/ (max−min)
end if
ptotal = ptotal + p (i)

end for
for i = 1 to k do . Normalise and power scale probabilities

p (i) = (p (i) /ptotal)
α

end for

Algorithm 9 Unity based solution ranking procedure for CFO. Assigns every Solution i an
even probability (p) of selection.

for i = 1 to k do . Calculate probabilities (normalised)
p (i) = 1/k

end for

Solution Storage and Maintenance

For FSPACO-CFO a generational replacement method is implemented where at each iteration

the population is replaced with the newly created solutions. For CPACO-CFO the crowding

comparison operation explained in Sec.5.4.3 is used to manage the insertion of new solutions

into the population. For both algorithms an initial population is created using a uniform ran-

dom sampling of the search space.
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1. Search space

(fitness not indicated)

with current

population members

indicated as black

dots.

2. A solution is

selected per

dimension to

determine the mean of

a Gaussian

distribution defined

for each individual

dimension. Each

dimension is sampled

independently.

3. Although the new

solution is constructed

dimension at a time

the resultant

probability

distribution for the

position of the new

solution is as

indicated.

Variable 1

V
ar
ia
b
le
 2

Solution selected for variable 1

Solution selected for variable 2

Figure 6.5: An illustration of the new solution creation procedure for FSPACO-CFO and
CPACO-CFO.
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Reasons for differences with ACOCD

A fundamental characteristic of ACO algorithms is probabilistic stepwise construction based

on prior utility of individual solutions. In ACOCD each ant performs stepwise construction,

however this stepwise construction is based mostly around a single solution from the popula-

tion. ACOCD performs a Gaussian sampling around a single existing solution with a unique

standard deviation for each dimension. This means that the new solution is most likely to be

in the neighbourhood of the original solution. This choice was made since the selection of a

different mean for each dimension did not provide enough convergence pressure (K. Socha,

personal communication, 3rd May, 2007).

In the case of FSPACO-CFO and CPACO-CFO it is not desirable to converge to a single optima

so the ACOCD construction method was replaced by the afore-mentioned solution construction

method (Alg. 6). The reduction in convergence behaviour is addressed by reducing the stan-

dard deviation of samples over time which is demonstrated visually in Fig.6.6. More-so since

FSPACO-CFO and CPACO-CFO are treated as global-search techniques their aim is to produce

a population of distributed solutions in good neighbourhoods of the search space which can

subsequently be improved by a local search technique.

Figure 6.6: Plot demonstrating the variation of the standard deviation over the number of func-
tion evaluations made. Although in this figure the standard deviation is plotted for 10,000
evaluations the slope of the graph is always the same relative to any arbitrary number of eval-
uations.

6.3.2 Test Problems Used

A suite of commonly used CFO problems have been selected as benchmark test problems.

These problems have been used in past studies to analyse the behaviour of niching algorithms

[72, 105] and are useful problems for preliminary analysis since they can be easily visualised

in two dimensions while still being moderately difficult to solve. Each problem used has been

selected due to properties such as modality, uniformity, quantity of noise and deceptiveness.

Some of the problems are strictly defined in 2 dimensions, while others are able to be scaled to

an arbitrary number of dimensions. Although the majority of the functions contain numerous

optima, the target optima (those optima we wish the algorithms to locate) varies depending on

the problem definition. In this section each problem is described in terms of these qualities.
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Of the eight problems chosen, half require the identification of multiple optima and the other

half require the identification of only a single global optimum. Of the eight problems, four

unique problems were chosen for each of the sensitivity and quantitative analyses. The choice

of problem was fairly arbitrary, however it was ensured that the balance was kept at two single

optimum and two multiple optimum problems per analysis.
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3-pot holes

The 3-pot holes function[122] is a minimisation problem containing three distinct optima (re-

gardless of the number of dimensions) with large basins of attraction leading towards these

optima. This problem can be defined in any number of dimensions and in each dimension it

is defined over the bounds [−10, 10]. As the optima are not spaced in-line in any individual

dimension this problem may prove difficult for algorithms which exhibit axis searching be-

haviour (this will be discussed in later sections). When defined in any number of dimensions

the objective is to locate all three optima.

f (x) =

√√√√√ n

∑
i=1

(
(x (i) + 8)2 + 0.1

)
+

√
n

∑
i=1

(
(x (i) + 2)2 + 0.2

)
+

√
n

∑
i=1

(x (i)− 3)2 (6.3.2)
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Figure 6.7: Three Pot Holes function defined in two dimensions.
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Ackley’s

Ackley’s function[1], also known as Ackley’s Path Function, is a minimisation problem that

contains a global optimum at the origin. The function also contains other false optima (3n − 1

in total, where n is the number of dimensions) located at the function bounds. The function

contains a minor amount of uniform noise. It can be defined over any number of dimensions

and in each dimension is defined over the bounds [−32.768, 32.768]. The objective is to locate

the single global optima at the origin.

f (x) = −a× exp

(
−b×

√
1/n×

n

∑
i=1

(
x (i)2

))

− exp

(
1/n×

n

∑
i=1

(cos (c× x (i)))

)
+ a + exp 1 (6.3.3)

Where: a = 20, b = 0.2, c = 2π;
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Figure 6.8: Ackley’s function defined in two dimensions.
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Branin’s R-Cos

Branin’s R-Cos function[12] is defined in two dimensions within the bounds: −5 ≤ x ≤ 10,

0 ≤ y ≤ 15. It is a minimisation problem which could be best described as a valley with three

optima located on the valley floor. Its difficulty lies in that while the valley walls are steep

the valley floor is flat. These conditions combined may lead an algorithm to quickly locate

and converge on one (but not necessarily the best) optima on the valley floor. This problem is

defined in two dimensions and like the 3-pot holes problem contains optima that are not in-

line in individual dimensions. When searching this problem the objective is to locate all three

optima.

f (x, y) = a
(

y− b× x2 + c× x− d
)2

+ e (1− f )× cos (x) + e (6.3.4)

Where: a = 1, b = 5.1/
(

4π2
)

, c = 5/π, d = 6, e = 10, f = 1/ (8π)

-4 -2 0 2 4 6 8 10

0

2

4

6

8

10

12

14

plots.nb 1

0.4

300

150

200

250

100

50

Figure 6.9: Branin’s R-Cos function defined in two dimensions.
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Himmelblau’s

Himmelblau’s function[34] contains 4 distinct optima that, like Branin’s R-Cos function, are

located at the bottom of a valley. These optima are not regularly spaced (like 3 Pot-Holes and

Branin’s R-Cos) and the lack of gradient information may prove difficult for an algorithm to

successfully locate all optima. It is defined over the bounds: −6 ≤ x ≤ 6,−6 ≤ y ≤ 6. This

problem is defined in two dimensions and when searching this problem the objective is to locate

all four optima.

f (x, y) =

((
x2 + y− 11.0

)2 +
(
x + y2 − 7.0

)2
)

2186
(6.3.5)
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Figure 6.10: Himmelblau’s function defined in two dimensions.
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Rastrigin’s

Rastrigin’s function was first proposed in [153] as a difficult, highly multi-modal test function.

It is a minimisation problem and the function has a general bowl shape sloping toward the

global optimum but contains numerous, though evenly spaced, optima overlaid onto this bowl.

The function is defined in the bounds [−5.12, 5.12] per dimension and can be defined in any

number of dimensions. The objective is to locate the single global optimum.

f (x) = 10× n +
n

∑
i=1

(
x (i)2 − 10× cos (2π × x (i))

)
(6.3.6)
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Figure 6.11: Rastrigin’s function defined in two dimensions.

73



6.3. NICHING PACO FOR CONTINUOUS FUNCTION OPTIMISATION

Schaffer’s

Schaffer’s function[136] is a two dimensional ‘trapping’ function. The function contains a single

global optimum at the origin that is surrounded by a series of rings. The problem is a maximi-

sation problem, with the value of the global optimum being one. The rings that surround the

optimum alternate between large values close to one and small values close to zero and tend to

a value of 0.5 at the limit. The effect is that while it may be easy to traverse through one of these

rings at the edges of the function the difference between the peak and trough becomes larger as

we approach the optimum. This gives rise to the trapping effect since an algorithm can easily

settle at a peak of a ring and simply navigate around the ring rather than moving towards the

origin[33]. The objective of this function is to locate the single global optimum.

f (x, y) = 0.5 +
sin2

(√
x2 + y2

)
− 0.5

(1 + 0.001 (x2 + y2))
(6.3.7)
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Figure 6.12: Schaffer’s function defined in two dimensions.
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Schwefel’s

Schwefel’s function [141] is a deceptive, multi-modal function. Given that the global optimum

is a significant distance from the next best optimum there is a chance that a search algorithm

will converge in the wrong direction thereby missing the global optimum. It can be defined in

any number of dimensions and is bounded between [−500, 500]. As the number of dimensions

increases so does the number of optima, however when searching this problem the goal is to

locate just the global optimum.

f (x) =
n

∑
i=1

(
−x (i) · sin

(√
|x (i)|

))
(6.3.8)
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Figure 6.13: Schwefel’s function defined in two dimensions.
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Shekel’s foxholes

Like the name suggests, Shekel’s foxholes[39] are a series of evenly spaced minima (holes) of

varying depth, totalling 25 in two dimensions. This function is difficult due to the small radius,

number and closeness of optima. It is defined over the bounds: −65.54 ≤ x ≤ 65.54,−65.54 ≤
y ≤ 65.54. The function is defined in two dimensions, and the goal is to locate all 25 optima.

1
f (x, y)

=
1

500
+

25

∑
j=1

 1

j + ∑2
i=1

((
x− aij

)6 +
(
y− aij

)6
)
 (6.3.9)

Where: aij =

 −32 −16 0 16 32 · · · 0 16 32

−32 −32 −32 −32 −32 · · · 32 32 32
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Figure 6.14: Shekel’s foxholes function defined in two dimensions.
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6.3.3 Performance Metrics

Modified Max-Peak Ratio

The max-peak ratio is a ratio of the number of optima present in the final population (within

a small radius of the actual optima) versus the number of actual optima. This measure is an

indicator of an algorithms ability to obtain solutions across multiple optima. The max-peak

ratio is a binary measurement and optima are either said to be located or not located. The

reasoning behind this method is that if a hill-climbing algorithm was seeded with a solution

within the radius of the optima it would be able to navigate easily to the actual optima.

Rather than assign a radius and measure whether a solution is contained within the radius; a

similar measurement would be to locate the closest solutions to each known optima and mea-

sure the average Euclidean distance between the solutions and the optima. This modification

to the max-peak ratio means that:

• It removes the requirement for an arbitrary radius.

• An algorithm which does not come anywhere close to the optima is no longer equivalent

to one that finds solutions quite close but not within the pre-defined radius.

• Two algorithms are no longer said to be equivalent when one algorithm does a much

better job at finding solutions at the very extremes of the optima.

The modified max-peak ratio is included as Alg.10.

Algorithm 10 Calculation of modified max-peak ratio

1: totalDistance = 0
2: for i = 1 to numberOfOptima do
3: s← Closest solution to optimai
4: distance = 0
5: for j = 1 to numberOfDimensions do

6: distance = distance +
(
|sj−optimaij|
|maxj−minj|

)2

7: end for
8: totalDistance = totalDistance +

√
distance/

√
numberOfDimensions

9: end for
10: ModifiedMaxPeak = totalDistance/numberOfOptima

Ideally an algorithm would obtain a modified max-peak ratio of zero. The ratio is independent

of the number of optima and dimensions so it should be able to provide a good measure to

compare algorithms across a single problem defined over a different number of dimensions.

The ratio has been simplified in that it does not introduce optima quality proportionate infor-

mation. This means that all optima are treated evenly regardless of their quality, the reasoning

behind this choice is that for the benchmarks chosen the optima are for the most part fairly

comparable with regards to quality anyway.
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6.3.4 Results and Discussion: Sensitivity Analysis

This section outlines a sensitivity analysis of the three CPACO-CFO algorithm variants and the

FSPACO-CFO algorithm using different parameter configurations with the aim of determining

the effect of these parameters on algorithm performance, in terms of the modified max-peak

ratio. Four of the test problems described in Sec.6.3.2 are used for this analysis. The results of

this analysis are used to apply the Niching PACO algorithms with set parameter configuration

to four more, previously untested, problems and then to two of these problems over a larger

number of dimensions.

A qualitative analysis of the sampling behaviour of the Niching PACO algorithms is also pro-

vided to give an insight into their niche formation and maintenance characteristics. To perform

this analysis several test runs of two of the functions are made with all solutions created in

those runs reported and a qualitative assessment of the niching quality made.

The problems chosen for the sensitivity analysis are: Ackley’s, Rastrigin’s, Shekel’s Fox Holes

and Three Pot Holes. All of these functions are defined in two dimensions, with Ackley’s

and Rastrigin’s functions containing a single desired optima (but still containing other optima)

while Shekel’s Fox Holes and Three Pot Holes each contain multiple desired optima. The results

reported are the average modified max-peak-ratio from 50 repeats of each specific algorithm

configuration. The parameters that are set constant for this analysis are reported in Tab.6.6. No

statistical significance tests are used in this section as this is a simple introductory evaluation

of the effects of various parameters. Robust conclusions about the algorithms performance

relative to each other are left for the following sections.

CPACO-CFO
Parameter Value
Number of ants / Population size 50
History Exponent (only used with CPACO-
Quality & CPACORank)

0.1→ 2.0

Crowding window size 0.1→ 1.0
FSPACO-CFO
Parameter Value
Number of ants / Population size 50
History Exponent 0.2→ 2.0
Niche radius 0.02→ 0.4

Table 6.6: Parameter settings used for sensitivity analysis

To produce the surfaces in Fig. 6.15 for FSPACO-CFO, the history exponent (α) was varied

in the range [0.2, 2.0] in increments of 0.2 and the niche radius varied in the range [0.02, 0.4]

in increments of 0.02. In Fig. 6.16 and Fig. 6.17, CPACORank-CFO and CPACOQuality-CFO

respectively, the history exponent (α) was varied in the range [0.1, 2.0] in increments of 0.1

and the crowding window size varied in the range [0.1, 1.0] in increments of 0.1. For Fig. 6.18

the history exponent is not required thus only the crowding window size was varied in the

range [0.1, 1.0] in increments of 0.1. Each of these surfaces have been smoothed using a Kriging

interpolation method[42] the parameters of which are included in Appendix 10.

For FSPACO-CFO the algorithm tends to achieve a better result as the niche radius decreases
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(a) Ackley’s (b) Rastrigin’s

(c) Shekel’s Fox Holes (d) Three Pot Holes

Figure 6.15: Plots indicating the effect on the max-peak-like performance metric when the niche
radius and history exponent of FSPACO-CFO are varied.
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(a) Ackley’s (b) Rastrigin’s

(c) Shekel’s Fox Holes (d) Three Pot Holes

Figure 6.16: Plots indicating the effect on the max-peak-like performance metric when the
crowding window size and history exponent of CPACORank-CFO are varied.
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(a) Ackley’s (b) Rastrigin’s

(c) Shekel’s Fox Holes (d) Three Pot Holes

Figure 6.17: Plots indicating the effect on the max-peak-like performance metric when the
crowding window size and history exponent of CPACOQuality-CFO are varied.

81



6.3. NICHING PACO FOR CONTINUOUS FUNCTION OPTIMISATION

(a) Ackley’s (b) Rastrigin’s

(c) Shekel’s Fox Holes (d) Three Pot Holes

Figure 6.18: Plots indicating the effect on the max-peak-like performance metric when the
crowding window size of CPACOUnity-CFO is varied.
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and the history exponent is increased. This said the actual level of performance was not spec-

tacular compared to the CPACO-CFO variants however this will become clearer in the next

section of experimentation. As far as selecting parameters for this algorithm is concerned a

niche radius equal to 0.02 and a history exponent equal to 1.4 seem to be reasonable parame-

ter settings. From a theoretical standpoint these parameters seem to make sense since a larger

niche radius increases the likelihood of overlap between niches which is undesirable according

to [34].

For the CPACO-CFO variants the results of the sensitivity analysis point to the development

of very distinct algorithm behaviours that are dependent on the nature of the problem being

addressed. For Shekel’s Fox Holes decreasing the crowding window size for all algorithms

decreased the modified max-peak ratio performance. This is an intuitive result as this problem

is characterised by several tightly spaced optima, and therefore reducing the crowding window

size increases the possibility of replacement error quite dramatically. To explain consider an

example.

Figure 6.19 shows minimisation problem with a single dimension multi-modal landscape and

three coloured dots representing two existing population members (red and blue) and a newly

created solution (green). Let us say that a new solution has been created close to an optimum

where there is already another solution in the population that is close to this particular optimum

(red dot). If a crowding window size of 1.0 is used then the red solution will be used to compare

against the new (green) solution, and the end result will be that the red solution is replaced by

the green solution. However if the crowding window size is decreased it will become more

likely that the red solution may not be selected to be compared against. Thus another solution

that is located close to another optimum may be selected for comparison instead e.g., the blue

solution. Since the green solution is of better fitness than the blue solution, the blue solution

will be replaced and the algorithm will have ‘stolen’ a solution from another optimum and in

this case it means that the knowledge of this other optimum is lost.

Figure 6.19: Replacement error example. The red and blue dots represent existing population
members, the green dot is a newly created solution (see text for explanation).

This replacement error can be visualised by displaying all solutions created in a single exper-
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iment run using different crowding window sizes as in Tab. 6.7. This figure clearly highlights

that as the crowding window size decreases the number of optima that the algorithm identifies

and maintains decreases. Interestingly as well the history exponent can accelerate this effect

as it provides some positive feedback to the selection process. If a replacement error occurs it

may also mean that some optima begin to contain many solutions and thus also have a greater

chance of being used in future solution construction. This may increase the number of replace-

ment errors as the number of solutions being created around a particular optima will increase.

It may not be clear in this figure that in all cases where the crowding window size was set to 1.0

all optima were located and maintained. However, the distribution of the searching was influ-

enced by the history exponent, this meant that when the history exponent was larger the better

optima were selected more frequently thus directing the search pattern to be located mostly

around these better optima6. A smaller history exponent saw an increase in uniform sampling

of all optima, regardless of their relative quality.

When applied to the 3-pot holes problem the replacement error problem was not as evident,

probably due to the fact that there were fewer optima to consider than Shekel’s fox holes. This

is to some extent validated by the results for CPACOUnity-CFO whose results were fairly uni-

form for the range of values tested for the crowding window size. However, while the crowd-

ing window size didn’t have a marked effect, the performance of CPACOQuality-CFO and

CPACORank-CFO seemed to depend mostly on the history exponent with better performance

observed when this parameter was smaller. This result may be due to the positive reinforce-

ment process described in the previous example. Even though the population is seeded with

a uniform random sample, if the history exponent is large then a few solutions may dominate

the selection process. Thus a large proportion of the population may reside close to one op-

timum. This may mean that even though there may be population members located at other

optima, they will not be improved towards their respective optima since they are unlikely to be

selected, thus increasing the value of the modified max-peak ratio.

To this point the problems that require multiple solutions seem to be advantaged by large

crowding window size and small history exponent values. For problems requiring the iden-

tification of a single global optima, i.e., Rastrigin’s and Ackley’s, the reverse was observed to be

true. These problems seem to favour smaller crowding window sizes and larger history expo-

nents. This result is not unexpected since for the two dimensional case these problems are not

overly complex and so it may not be so beneficial to spread the population around the search

space. An effect of the application of niching is a slowing down of convergence to some degree.

This means that when the CPACO-CFO variants are tuned for multiple solution cases (large

crowding window, and small history exponent), they have no doubt located the same global

optima as their counterparts that are tuned for a single solution case (small crowding window,

and large history exponent). The difference is that by tuning for single solutions the algorithms

spend more time exploiting the best solutions and thus return a better result for this individual

global optimum. In this case the replacement error problem that was identified earlier can ac-

tually be beneficial to the algorithms search development since it allows more resources (in the

6Remember that the 25 optima in Shekel’s Fox Holes are of different quality
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Table 6.7: Shekel’s foxholes: Effect of varying crowding size and history exponent, white dots
represent all solutions evaluated during 50,000 evaluations.
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form of population members) to be allocated to the best areas of the search space.

6.3.5 Results and Discussion: Quantitative Analysis

Using the insights gained from the sensitivity analysis we can now embark on an analysis

of the performance of the Niching PACO algorithms as compared to existing algorithms. To

judge the new algorithms’ performance a PACO algorithm without niching (ACOCD) and the

Deterministic Crowding Genetic Algorithm (CGA), are also applied to the chosen benchmarks.

It is expected that for problems requiring the location of multiple optima the CGA will be a

good benchmark of expected performance, and for problems requiring the location of a single

global optimum ACOCD will be a good basis for comparison. Initially the modified max-peak

ratio will be used to report the performance of the algorithms, later the best solution found is

used as a basis of comparison for one of the problems scaled to larger numbers of dimensions.

The existing algorithms are used as benchmarks of an approximate level of good performance

that the niching PACO algorithms should be able to achieve. The significance of results found

are discussed where appropriate using the Mann-Whitney rank-sum test.

Four benchmark problems have been chosen for the first experiment: Schaffer’s, Schwefel’s,

Himmelblau’s and Branin’s R-Cos. All of these problems are defined in 2 dimensions, and like

the previous sensitivity analysis there are two problems with a single desired optimum and

two problems with multiple desired optima.

The second experiment involves two problems: Schwefel’s and Three Pot Holes. These prob-

lems are chosen since they can be scaled to any number of dimensions. This experiment is to

test the scalability of the algorithms, namely how well the algorithms perform as the size of the

search space is increased.

It was highlighted in the sensitivity analysis that the performance of all CPACO-CFO variants

is strongly dependent on the number of optima required and that by altering the crowding win-

dow size and history exponent these algorithms can be tuned for multiple or single optimum

cases. As such the CPACO-CFO variants are tested using three configurations that benefit the

location and maintenance of a single optimum, multiple optima and a balance of both. In the

sensitivity analysis it was found that the FSPACO-CFO algorithm performed similarly on sin-

gle and multiple optima instances and thus a single parameter configuration is used to test this

algorithm. The CGA and ACOCD algorithms are configured to enhance their best performance

as multiple optima and single optimum algorithms respectively. The parameter settings chosen

for all algorithms are presented in Tab. 6.8. The CPACO-CFO variants use the following com-

binations of crowding window size and history exponent: Greedy (0.1,2.0), Balanced (0.5,1.0),

Fair (1.0,0.2).
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CPACO-CFO
Parameter Value
Number of ants / Population size 50
History Exponent (only used with CPACO-
Quality & CPACORank)

2.0, 1.0, 0.2

Crowding window size 0.1, 0.5, 1.0
FSPACO-CFO
Parameter Value
Number of ants / Population size 50
History Exponent 1.4
Niche radius 0.02
ACOCD
Parameter Value
Number of ants 2
History Size 50
Solution selection greediness (q) 0.85
Convergence rate (ξ) 0.0001
CGA
Parameter Value
Population size 200
Crossover Probability 0.95
Mutation Probability 0.85
Standard Deviation of Gaussian used for Mu-
tation

0.01% of dimension range

Table 6.8: Parameter settings used for quantitative analysis

Experiment 1: 2D Problems

For this experiment each algorithm was allowed 50,000 function evaluations7. Each algorithm

was run 100 times using different random seeds and the results presented as box-and-whisker

plots (Fig. 6.20) to indicate not only the mean level of performance but also the reliability of

each algorithm. Tables indicating the statistical significance of the results are included in the

Appendix as Tab. 10.2, 10.3, 10.4 & 10.5.

For Schaffer’s function the ACOCD algorithm produced the best minimum performance, how-

ever the median performance was the second worst just ahead of FSPACO-CFO. This erratic

performance is most likely due to the presence of other local optima in the search space. The

ACOCD suffers from premature convergence to a suboptimal area of the search space and thus

while it does converge quite well to the extreme of the optimum it selects, it is making the

wrong choice of optimum to converge towards. The CPACOUnity-CFO and CPACOQuality-

CFO algorithms performed better with the balanced and greedy configurations proving the

best.

For Schwefel’s function the ACOCD algorithm was not overcome by the premature conver-

gence problem it had with Schaffer’s function and managed to converge very close to the global

optimum in all cases. The greedy configuration of CPACORank-CFO and ACOCD performed

the best but all of the algorithms tested (except for FSPACO-CFO) managed to get extremely

close to the global optimum (within 0.00001%). It was no surprise that for this problem the

7Past this many evaluations the increase in quality of the result was no longer worthwhile; since the algorithm is
intended to be a global search algorithm, past this point a local search routine would be far more effective.
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(a) Schaffer’s

(b) Schwefel’s

Figure 6.20: Results (modified max-peak performance metric) presented from 100 repeats of the
Niching PACO algorithms and the ACOCD and CGA each allowed 50,000 solution evaluations
per experimental run and configured according to the parameters presented in Tab. 6.8.
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(c) Himmelblau’s

(d) Branin’s R-Cos

Figure 6.20: (cont’d) Results (modified max-peak performance metric) presented from 100 re-
peats of the Niching PACO algorithms and the ACOCD and CGA each allowed 50,000 solu-
tion evaluations per experimental run and configured according to the parameters presented in
Tab. 6.8.
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CPACO-CFO variants performed somewhat better when configured to be more greedy.

The algorithms behaved consistently on the remaining two functions, Himmelblau’s and Bra-

nin’s R-Cos. For these problems the ACOCD and FSPACO performed poorly, this being no

surprise in the case of ACOCD since it has no inbuilt mechanism to simultaneously converge

to multiple optima. CPACOUnity-CFO and CPACOQuality-CFO produced consistently good

results when configured to be fair or balanced, however when configured as greedy they both

produced a wide range of average results. CPACORank-CFO produced consistently good re-

sults when configured to be fair.

To summarise the findings for this section, the balanced configuration settings for CPACO-

CFO produced consistently good, reliable results. It could be concluded then, that if noth-

ing is known of a problem domain that these settings would be a good way to configure the

CPACO-CFO algorithms, and as such these settings are used for the next experiment. When

compared to the control algorithms the CPACO-CFO variants produced good results whereas

the FSPACO-CFO algorithm performed poorly on all problems tested. The poor results ob-

tained by FSPACO-CFO are in-line with findings obtained from earlier work with fitness shar-

ing which comment that the high sensitivity of the niche radius and other parameters hinder

the ability of fitness sharing to obtain good results [31, 157].

The poor results for FSPACO may also be attributed to the combination of solution construction

(stepwise construction) and population replacement techniques. FSPACO uses a generational

replacement operation where the current population is replaced completely by the new gener-

ation. This means that if a good solution component is not used (or only used in poor quality

solutions) it may be lost in successive generations. This is confirmed somewhat by the good

results of the CPACO-CFO variants which utilise a form of elitism by only allowing existing

solutions to be replaced with better solutions. This said FSPACO-CFO is still included for com-

parison in the next experiment, although its performance is not expected to be good for the

reasons just provided.

The variation of the crowding window size and history exponent of the CPACO-CFO vari-

ants produced the expected behaviours for multiple and single optimum problems. For the

next experiment the CPACO-CFO variants are parameterised using the balanced setting, with

a crowding window of 0.5 and a history exponent of 1.0. These settings are sufficient to obtain

a mean level of performance to determine the scalability of the CPACO-CFO variants.

Experiment 2: Higher Dimension Problems

This experiment will determine how well the niching PACO algorithms perform as the number

of decision variables (dimensions) is increased. Two test problems, Schwefel’s and Three Pot

Holes, have been selected since they allow arbitrary scaling of their dimensions and are single

optimum (Schwefel’s) and multiple optima (Three Pot Holes) problems.

Schwefel’s function is defined in 2, 5, 10, 30 and 100 dimensions and Three Pot Holes is defined

in 2-10 and 100 dimensions. Each algorithm was allowed 50,000 function evaluations for every

instance, except for the Three Pot Holes function in 100 dimensions which was allowed up
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to 300,000 function evaluations. In the case of the random search 100 uniformly distributed

random samples were taken. Each algorithm was run 100 times using different random seeds

and the results, in the form of the average modified max-peak ratio and average percentage

deviation from optimum8, are presented in (Fig. 6.21).

The results for the Three Pot Holes problem speak well for the niching PACO algorithms ability

to locate and maintain multiple optima. As far as the niching PACO algorithms were concerned

the CPACO-CFO variants performed best on the lower dimensions (2-10). The performance

of the CPACO-CFO variants followed that of the CGA algorithm closely although the perfor-

mance of CPACORank-CFO was slightly worse than CPACOQuality-CFO and CPACOUnity-

CFO. Figure 6.22 presents the results of testing all algorithms on the Three Pot Holes problem

in 100 dimensions with increasing numbers of function evaluations (up to 300,000 function

evaluations).

An analysis of Fig. 6.22 reveals a steep increase in performance when the number of func-

tion evaluations are doubled from 50,000 to 100,000, however past this point there is minimal

increase in performance. The better performing algorithms are the CGA, FSPACO-CFO and

CPACOQuality-CFO.

For Schwefel’s problem the average best solution found by CGA, CPACO-CFO and FSPACO-

CFO algorithms surpassed that found by the non-niching algorithm, ACOCD. This result sug-

gests that the useful diversity gained through the use of crowding and fitness sharing means

an increase in solution quality for larger numbers of function dimensions. As an additional

side benefit this result is good since niching allows multiple optima to be located while, in this

case, simultaneously assisting the identification of a global optimum. A priori, it was expected

that the identification of multiple optima would decrease the algorithms ability to exploit good

areas of the search space, however, as has been demonstrated, this is not the case. Of the nich-

ing algorithms tested the CPACO-CFO variants produced very good results. These algorithms

were the best performing algorithms for the parameters and range of dimensions tested.

6.3.6 Summary

In this section the niching PACO algorithms CPACO-CFO and FSPACO-CFO were tested on a

variety of single objective function optimisation problems. Niche formation and maintenance

by the niching PACO algorithms was demonstrated on a variety of test cases. A range of pa-

rameter settings were tested to determine the effect of newly introduced algorithm specific

parameters. For the CPACO-CFO variants the following determinations were made:

• For problems requiring the location of multiple closely located optima, a large crowding

window size (1.0) and small history exponent (0.2) are recommended.

• The converse is true for problems containing few or individual optima that are located

a distance from each other, as such better performance is obtained by a small crowding

8The average percentage derivation from optimum is a ratio derived by normalising the returned value across the
functions range, so that all points will be in the range [0,1].
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(a) Average modified max-peak ratio found for 3 Pot Holes Function
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(b) Average best solution found (% deviation from optimal) for Schwefel’s Function

Figure 6.21: Results of testing on benchmark functions in various numbers of dimensions (de-
cision variables).
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Figure 6.22: Results of testing on Three Pot Holes defined in 100 dimensions with a varied
number of function evaluations. Results reported are the average modified max-peak ratio.

window (0.1) and large history exponent (2.0).

• If in doubt about the nature of the optima for a function, moderate settings of the crowd-

ing window (0.5) and history exponent (1.0) are recommended.

Of the three variants tested CPACOUnity-CFO is assessed as being the most promising CPACO-

CFO variant. This is due to it demonstrating good performance for all problems tested (in terms

of both multiple optima location and maintenance and the location of single global optimum)

and that it has the lowest computational complexity of the CPACO-CFO variants tested since

it does not require any ranking of solutions in the population to assign individual quality mea-

sures.

The performance of FSPACO-CFO was poor compared to the CGA and CPACO-CFO variants

and it is postulated that this poor performance may be due to two factors: disruptive solution

construction and generational replacement. These two factors mean that over time the algo-

rithm may lose good solution information and as such ‘forget’ specific optima.

6.4 Chapter Summary

In this chapter the niching PACO algorithms were applied to a variety of single objective TSP

and CFO problems. The algorithms do indeed exhibit niche formation and maintenance char-

acteristics which meant that results for the CFO problems were good with regard to the ability

to locate and maintain multiple optima and to assist in the location of single global optimum.

For the benchmark TSP problems tested it was evident that niching does not assist in the loca-

tion of global optimum. It was demonstrated that the most likely cause for this result was the
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nature of the search space of the TSPs tested. A single test case, the Crown TSP, was fabricated

to demonstrate how niching may be useful for a very specific kind of TSP.

In the next chapter the multiple objective TSP and multiple objective function optimisation

problems are introduced which extend the complexity of the single objective cases presented

here. While niching has been demonstrated to be of no benefit to solving standard single objec-

tive TSPs, the multiple objective TSP is a different case since it requires the location of multiple

solutions versus a single global optimum. The multiple objective function optimisation prob-

lem is also different since in some cases it contains an infinite number of optima, rather than a

finite number like the single objective case.
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CHAPTER 7

Multiple Objective Optimisation

The project will come in on time, on budget and will be of good quality... now pick

any two

Engineering adage

7.1 Introduction

In this chapter two PACO algorithms incorporating niching concepts are developed to attempt

to solve two challenging multiple objective problem classes. The problem classes chosen are

extensions of the previously tested single objective problem classes; The Travelling Salesman

Problem and Continuous Function Optimisation. A PACO algorithm has already been pre-

viously defined for the Multiple Objective Travelling Salesman Problem (MOTSP), thus the

proposed niching PACO algorithm is an extension to this algorithm. For the Multiple Objective

Function Optimisation problem (MOFO) no true ACO approaches exist and thus a new algo-

rithm is proposed by reusing and extending upon algorithmic components already discussed

in this thesis.

An analysis of existing approaches for Multiple Objective Optimisation (MOO) is offered first

which includes discussion of some ant-inspired approaches. Several quantitative analysis tech-

niques are described which are used for algorithm performance analysis in the later sections.

The remainder of the chapter is dedicated to the MOTSP and MOFO problems with one niching

PACO algorithm developed for each problem class. The new algorithms are tested in each of

these sections on several benchmark problems with results compared against current state-of-

the-art MOO algorithms.

Current research trends [22, 36] include the application of multiple objective evolutionary algo-

rithms (MOEA) to problems with more than two objectives, and the reduction of computational

complexity, thus the two MOO problems presented in this section include variants with more

than two objectives. Of interest as well is the identification in the literature of the importance

of niching/diversity preservation in MOO algorithms. This will be commented on later as it is

a major motivation for the application of Niching PACO algorithms to these problems.
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7.2 Existing Algorithms

Research into MOEA has been ongoing for the last two decades, however it has received some-

what of a surge of interest in the past decade [21]. In this section several important MOEA are

introduced and discussed. The focus of the discussion is not to reiterate the exact algorithm

implementation details, rather it is on identifying the key features of these algorithms and as

such what are deemed as essential components of a MOEA.

Historically the first MOEA proposed was the vector evaluated GA or VEGA, which was first

proposed by Schaffer in 1984 [134, 135]. The VEGA was a simple idea which extended on the

canonical GA. The difference came in the evaluation of solutions for selection purposes for

which VEGA partitioned the population evenly according to the number of objectives (e.g. a

population of 90 for a three objective problem would be partitioned into three groups of 30).

After partitioning, each partition is evaluated according to a single objective. The intention

being that solutions that are good for one objective will mix with good solutions from other

objectives in the reproduction phase and produce better solutions closer to the Pareto front.

Realistically though, what actually happens is that the population ends up comprised of mostly

solutions that are good in one objective only. As a first approach to MOO though, VEGA was a

computationally lean and somewhat effective algorithm.

Little work on MOEA was published for ten years after Schaffer’s initial VEGA, although the

VEGA was mentioned by Goldberg in [71] and some suggested improvements made which

incorporated early ideas on the use of dominance for solution ranking and niching as a way to

enhance population diversity. These ideas, while not imbued into a specific algorithm at the

time, form the basis of most state-of-the-art MOEA today.

MOGA which stands for Multi-objective Genetic Algorithm, was introduced in [62]. Like

VEGA it is a very simple extension of the canonical GA which alters the fitness assignment

routine. It is mentioned here because the fitness assignment is a rank-based procedure which

tests solutions in the population for dominance. If a solution is non-dominated it receives a

rank of one, otherwise it receives a rank equal to one plus the number of solutions dominating

it. These ranks are then used as the basis for a second fitness assignment routine which also

incorporates fitness sharing to enhance population diversity.

The aforementioned algorithms are among what are known as first generation MOEA [22], to

which other similar algorithms such as the Non-dominated Sorting Genetic Algorithm (NSGA)

[144] and Niched Pareto Genetic Algorithm (NPGA) [85, 86] also belong. These first generation

MOEA are typified by simplistic dominance-based solution ranking and the use of standard

crossover and mutation routines. The second generation MOEA began to emerge in the mid

to late 90s and represent a body of algorithms designed from the ground up to be applied to

multi-objective problems rather than modifications of single objective algorithms applied to

multi-objective problems. Many second generation MOEA include multiple populations and

the use of explicit elitism.

While there are many algorithms that belong to the second generation MOEA, such as SPEA
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[165], SPEA2 [164], PAES [93], PESA [29] and PESA2 [28], this chapter focuses on one second

generation MOEA, the NSGA-II, since this algorithm remains a state-of-the-art MOEA today

and contains many important characteristics of a well designed MOEA.

NSGA-II [37] despite its name is not simply an extension to NSGA. From a population of solu-

tions (size = N) the algorithm creates N new solutions using a crowding tournament selection

routine and standard GA crossover and mutation operations. The new solutions are added to

the population such that the population becomes of size 2N. To control the size of the popu-

lation the solutions are sorted according to successive dominance, Fig. 7.1 gives an example of

the resultant solution ranks assigned using this ranking procedure. The worst ranked solutions

are successively discarded from the population in groups until such time as to discard a partic-

ular ranked group would allow the population to become less than N. At this point this group

of solutions are ranked according to a second criterion, a crowding distance that, simply put,

measures the distance from this solution to its closest neighbours in the entire population. The

worst solutions are those that are closest to another solution in the population and using this

criterion the population is reduced to size = N.
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Figure 7.1: Example of the resultant ranks assigned to a set of solutions using the NSGA-II
dominance ranking procedure

MOEA are not limited to only Genetic Algorithms or Evolutionary Systems approaches. Since

the early 90’s researchers in the ACO field have also attempted to solve MOO problems through

the modification of existing ACO-based approaches. The focus in this area though has been

on solving mostly multi-objective combinatorial problems rather than multi-objective function

optimisation problems as in the GA community.

The earliest references found to a multi-objective ACO algorithm were with [68, 67] and [130].

The first of these suggested the use of a multi-colony ACS variant for a multiple objective vehi-

cle routing problem (MACS-VRP). For this problem the total number of vehicles and total travel

time were to be minimised (these are purported to be conflicting objectives). The algorithm is
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not a Pareto-based approach since it optimises the objectives independently in the two separate

colonies, although it shares solutions between these processes. The reduction in travel time

seems to be the dominant objective whereas the reduction of vehicles is mostly a secondary

consideration. Given this it seems unlikely that the algorithm would be able to be applied to

a MOO problem with evenly weighted objectives, though it does seem to produce very good

results for its chosen problem. The second example approaches a water distribution problem

in much the same way with an extension of the Ant-Q algorithm (MOAQ). MOAQ distributes

a population of ants amongst the objectives evenly and independently optimises each objective

while assigning reward to those solutions that produce solutions that satisfy a primary objec-

tive well. Like the previous example MOAQ is not Pareto-based approach and thus it would

be unlikely that the MOAQ algorithm would perform well on more general MOO problems.

Another two-phase approach is used in solving a bi-criteria flow shop problem in [152]. This

example may almost be considered an example of multi-objectivization [95], which is the pro-

cess of constructing a multi-objective problem from a single-objective problem instance with

the view that the problem can be solved better if phrased in a multi-objective way.

MACS-VRP was extended in [5] with a Pareto-based approach that eliminated the requirement

for multiple pheromone matrices1. In the new algorithm the amount that solutions update the

pheromone matrix depends on how close they are to the Pareto front as compared to other

solutions of the same generation. The extension proved to be successful on a multicast routing

problem that was defined using multiple conflicting objectives.

Shelkoar et. al. [121] proposed an ant-inspired approach for the MOFO problem, however,

since this approach was based on the Ant Colony Metaphor for Continuous Design Spaces it is

strictly not an ACO algorithm per se [142]. While the algorithm was demonstrated as a good

approach for the problems tested, it resembles something closer to a Genetic Algorithm since it

uses crossover and mutation to generate new solutions rather than stepwise construction.

Cardoso et. al. implemented a simple multi-objective ACO variant to a bi-objective TSP in

[19]. This variation involved multiple pheromone and heuristic matrices that were combined

to form a single probability value for each solution component (much like that of PACO-MO

in Sec. 4.4). The algorithm performed well against a Genetic Algorithm, and was the subject

of a later study when many other ACO approaches were also compared on a series of multi-

objective TSP [70]. This was mentioned previously in Sec. 4.4 since the PACO-MO algorithm

was tested and performed amongst the best of all tested algorithms. This algorithm is included

later in this chapter as a benchmark algorithm since it is a demonstrated good approach for

solving the Multi-objective TSP and because it is a PACO algorithm.

1It should become apparent that most multi-objective ACO algorithms tend to split the objectives amongst multiple
colonies or pheromone matrices.
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7.3 Performance Metrics

Performance metrics that reflect the different facets of algorithm performance are important

in stochastic algorithm design and validation. For single objective problems these metrics are

usually fairly straightforward to obtain. This is because algorithms applied to these problems

usually return a single best solution leading to the development of a univariate distribution

when run multiple times. This means that a wealth of parametric and non-parametric statistical

techniques are available to allow comparison between multiple experimental runs, some of

which have been used in prior chapters of this thesis.

MOO presents a further challenge to this performance analysis process since MOO algorithms

can return multiple Pareto and sub-Pareto optimal solutions rather than a single best solution.

A non-trivial exercise is the development of unary quality metrics that, when compared, can

allow the algorithm designer to make a reliable comparison between different algorithms. In

[166] and [94] the authors offer an excellent analysis of many older unary metrics that measure

the distribution of solutions and their closeness to the actual Pareto front. The metrics include

Generational Distance [158], Spacing Metric [37], Maximum Pareto Front Error [158] and Extent

of Approximation Set [36]. In their analysis the authors challenge many assumptions about the

reliability of these metrics by providing case studies where many of these indicators give false

or misleading assessments as to the quality of different distributions. One important conclusion

made is that the combination of these older metrics was often thought to provide more reliable

information, in a ‘strength in numbers’ way. However, this is not the case as the combination

of multiple inaccurate metrics does not make them any more accurate. In fact it is argued that

just one good quality unary metric would be better than multiple bad metrics.

In this section many carefully chosen performance metrics are introduced. The metrics in-

troduced are for the most part reliable enough to be used on their own, however, as will be

discussed some metrics are complimentary and when used together allow more robust conclu-

sions to be made.

7.3.1 Summary Attainment Surface

The summary attainment surface is in some ways inspired by the traditional univariate distri-

bution. In traditional univariate distributions single values represent the mean, minimum and

maximum among other important features. With summary attainment surfaces the same is

true, however instead of a single value being used, a multi-dimensional surface (with the same

number of dimensions as the number of objectives), represents these features [64].

Once obtained, summary attainment surfaces that describe different algorithms’ mean perfor-

mance on a single problem can be compared using non-parametric statistical methods like

Mann-Whitney and Kruskal-Wallis rank sum tests. An advantage of this approach is that it

eliminates the requirement for specialised knowledge of the problem domain (such as a-priori

knowledge of the location of Pareto optimal solutions). Other performance metrics tend to

require knowledge of the Pareto front to obtain difference measurements between it and an
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experimental result. A concern is that this limits the kind of problems that can be measured.

Mainly because a deterministic solver must be used to ensure Pareto optimal solutions from

across the entire Pareto front are obtained, and can also mean that different Pareto fronts are

obtained by different researchers, thus skewing results.

In this study summary attainment surfaces are used for a combination of qualitative and quan-

titative analysis. The summary attainment surface plotting method [92] is used to visualise and

thus qualitatively compare multiple summary attainment surfaces. All summary attainment

surfaces produced in this study have been created with the aid of Knowles’ software package

available from http://dbkgroup.org/knowles/plot_attainments/.

7.3.2 Hypervolume

The hypervolume metric [163] is a measure of the volume of the enclosed space between a

reference point z and the weakly dominated portion of the objective space (fig. 7.2). The setting

of the reference point can be accomplished by taking the two sets to be compared, taking the

extreme worst objective values of these sets and using the combination of those values as the

reference point. The reference point must be strongly dominated by every member in all sets

for any comparison to be meaningful.

Figure 7.2: Example of two hypervolumes created from two different sets, A and B. In this
example A would be better than B since A’s hypervolume is larger.

7.3.3 Epsilon Indicator

Introduced in [166] the epsilon indicator is a value ε that represents the minimum factor that

every point in one set needs to be multiplied by, so that the resultant transformed set is weakly
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dominated by a second reference set. The principle of ε-dominance is defined as (7.3.1).

s1 �ε s2 ⇔ ∀i ∈ 1..n : s1
i ≤ ε× s2

i (7.3.1)

In short this metric indicates the amount by which the solutions in one set would have to be

moved to be equivalent to a reference set. The less movement that is required, the better. This is

a useful metric as, like the hypervolume, it provides an indication as to the extent by which one

set is better or worse than another. However, being slightly different to the hypervolume it may

be possible to get a reversed outcome when comparing two sets which would indicate that the

two sets are incomparable. In this way it is very useful to treat the hypervolume and epsilon

indicator as a joint measurement pair that can reliably indicate whether one set of solutions is

better, no different or worse than another.

7.3.4 Use of Performance Metrics

The summary attainment surfaces provide us with a good visual qualitative assessment tool

and can also be compared using a statistical testing procedure to provide a more formal assess-

ment as to whether two sets of results are comparable. In this chapter summary attainment

surfaces will be used to provide visual inspection and also used to compare algorithms perfor-

mance. Results will be reported visually in the form of two and three dimensional plots and

tests will be reported in tables with the statistical significance of any comparison reported.

Hypervolume and Epsilon Indicators are both useful as they allow another form of comparison

between two or more algorithms. The actual values for these metrics are not reported though

since the use of a reference point (z) means that the actual metric value is relative to the setting of

this reference point. Even though the reference point can be reported, from a future comparison

point of view reporting the final population of solutions is more beneficial. By reporting the

final population it allows any other future comparison to be made, not just those reported here.

Furthermore, in this case the metrics are supplementary to the summary attainment surface

comparison, therefore the actual results are less meaningful than the comparison which will be

used to validate conclusions made using the summary attainment surface method.

7.4 Niching PACO for the Multiple Objective Travelling Sales-

man Problem

Instead of just considering one cost matrix as in the single objective TSP we can consider sev-

eral (maybe conflicting) cost matrices which may refer to length, monetary cost, time, etc. This

problem is a multiple objective TSP (MO-TSP) where we are interested in obtaining solutions

that optimise multiple, usually conflicting, objectives. A practical example of a multiple objec-

tive TSP can be found in transportation where we can simultaneously consider the length of a

route, monetary cost (the route may include toll roads) and the time taken (the shorter route
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in terms of length may include more congested or lower speed limited roads). The MO-TSP is

similar to the single objective TSP in terms of the solution representation, however, the resultant

search spaces are quite different.

As was stated in Sec.7.2 there have been many ant-inspired algorithms proposed for multi-

objective optimisation problems. In [70] eight major ant-inspired algorithms along with two

state-of-the-art Genetic Algorithms (NSGA-II & SPEA2) were benchmarked using the MO-TSP.

For the particular test cases used (instances of a bi-criteria TSP) the ant-inspired algorithms

performed well. One algorithm in particular, Population-based ACO for multiple objectives

(PACO-MO) (discussed in Sec. 4.4), performed consistently within the top three ant-inspired

algorithms. Since PACO-MO is amongst the best ACO approaches for the MO-TSP, it is used

as a benchmark here. It was highlighted by Guntsch [76] that an area of improvement for the

PACO-MO algorithm may be the introduction of an intelligent population control mechanism,

since the PACO-MO algorithm does not place an upper bound on the population size. The

use of a niching mechanism to control which solutions are inserted into the population may

provide an answer to this previously posed research question.

In this section an extension of the PACO-MO algorithm is introduced, Crowding Population-

based Ant Colony Optimisation for the Multi-objective TSP (CPACO-MOTSP). This algorithm

is then tested using several benchmark MO-TSP, specifically moderate sized bi-objective cases.

The results of this initial testing are used as the basis of a qualitative and quantitative assess-

ment of the performance of the new algorithm as compared to PACO-MO. The new algorithm

is then tested with an increased number of objectives to determine its scalability, with regard to

the number of objectives.

7.4.1 Algorithm Details

Rather than use the super/sub-population scheme as in PACO-MO, a single population (S)

of pre-set size is maintained, which is initialised with randomly generated solutions. Every

generation a population of new solutions is created (Y) and a crowding replacement operation

is used where each new solution is compared against a randomly selected subset S′ of S to find

its closest match and only replaces the existing solution if the new solution is better. In the

case of multi-objective problems better is taken to mean strongly-dominating. This procedure

is outlined in Alg. 11.

Algorithm 11 CPACO-MOTSP Crowding Replacement Scheme

1: for i = 1 to Ysize do
2: S′ = c randomly chosen solutions from S
3: S′j = closest match from S′ to Yi

4: if Yi �� S′j then
5: Replace S′j with Yi
6: end if
7: end for
8: Discard Y

Whereas PACO-MO uses individual pheromone and heuristic matrices for each objective, CP-
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ACO-MOTSP uses a single pheromone matrix with individual heuristic matrices. Each iteration

a new pheromone matrix is calculated as follows:

1. All solutions (s) in the population (S) are assigned an integer rank according to the domi-

nance ranking procedure used by the NSGA-II algorithm.

2. All elements in the pheromone matrix are initialised to a pre-determined value (τinit).

3. All solutions in the population increment their corresponding elements in the pheromone

matrix according to the inverse of their rank, i.e. ∆τs
ij = 1/

(
srank

)
.

CPACO-MOTSP does not use the PACO-MO average-rank-weight method to determine weight-

ings for each objective as this is seen as computationally expensive and unnecessary, instead it

assigns each ant a set of random heuristic exponent weighting factors (λ), similar to the pro-

cedure outlined in [5]. This allows each unique ant to exploit heuristic matrices by different

amounts while still using a common pheromone matrix. The procedure used to assign these

values is outlined in Alg. 12 and the transition probabilities are calculated using (7.4.1), where

h defines the number of objectives.

Algorithm 12 CPACO-MOTSP Heuristic Scaling Value Assignment Procedure

1: for i = 1 to h do
2: Ri = random [0, 1]
3: end for
4: Sort R in ascending order
5: λ1 = R1
6: for i = 2 to h− 1 do
7: λi = Ri − Ri−1
8: end for
9: λh = 1− Rh

pij =

[
τij
]α ·

h
∏

d=1

[
ηd

ij

]λd β

∑l∈Nk
i
[τil ]

α ·
h

∏
d=1

[
ηd

il
]λd β

(7.4.1)

7.4.2 Test Problems

The ‘Kro’ set of Travelling Salesman Problems have been selected to test the CPACO-MOTSP

algorithm. This set consists of a series of four 100, two 150 and two 200 city TSP which are

combined to create four bi-objective TSPs of varying complexity and a single quad-objective

TSP. The individual instances are labelled KroA100, KroB100, KroC100, KroD100, KroA150,

KroB150, KroA200 and KroB200 and are available from [128]. Each of the multi-objective TSPs

contains a discontinuous, convex Pareto front.
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7.4.3 Results and Discussion

Experiment 1: Bi-objective Problems

Both PACO-MO and CPACO-MOTSP were run 50 times using different random seeds and

allowed 50,000 solution evaluations on each bi-objective problem using the parameter settings

given in Tab. 7.1, where n is the number of cities. This is clearly quite a small amount of solution

evaluations when one considers the size of the problems. However, it is deemed enough to

determine the general global optimisation performance of these algorithms since after this point

the amount of improvement made to the Pareto set begins to fall off quite rapidly. There is no

reason why we could not run a local search process at the completion of the global search phase,

however to compare the performance of these two global optimisers this local search phase is

omitted lest it skew the results. The 1% (best) and 50% (average) attainment surfaces for each of

these problems are presented as Figs. 7.3, 7.5, 7.7 & 7.9 and Figs. 7.4, 7.6, 7.8 & 7.10 respectively.

These figures indicate that for all bi-objective problems tested, CPACO-MOTSP was able to

obtain better mean and absolute attainment surfaces than PACO-MO. This result is validated

by the comparison of the attainment surfaces in Tab. 7.2. Also reported with these results are

the results of comparing the hypercube and epsilon indicator metrics which both indicate that

CPACO achieves a better quality result than PACO.

PACO-MO
Parameter Value
Number of Ants 1
Sub-population size (k) 5
Population size n/2
Initial Pheromone (τmax) 1/(n− 1)
Pheromone Exponent (α) 1
Heuristic Exponent (β) 3
Solution selection greediness (q) 0.9
Maximum Pheromone 1
CPACO-MOTSP
Parameter Value
Population size n/2
Number of Ants n/2
Initial Pheromone 1/(n− 1)
Pheromone Exponent (α) 1
Heuristic Exponent (β) 3
Solution selection greediness (q) 0.9
Crowding window size 0.1

Table 7.1: Algorithm parameter settings for Bi-objective TSP Problems

It is speculated that the PACO-MO algorithm’s lack of diversity preservation, combined with a

greedy selection strategy and a strongly biased pheromone matrix (PACO-MO only uses a min-

imal subset of its population to construct the pheromone matrix) most likely leads to premature

convergence in suboptimal areas of the search space.

While the strongly biased pheromone matrix allows the algorithm to improve existing solutions

towards the Pareto front through small perturbations, it may be making it too difficult for the

algorithm to construct solutions which are vastly different from those already in the population
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Figure 7.3: 1% (best) attainment surface for kroA100 and kroB100 using PACO-MO & CPACO-
MOTSP

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 20000  40000  60000  80000  100000 120000 140000 160000 180000 200000

k
ro

B
1

0
0

kroA100

"CPACO"

"PACO"

Figure 7.4: 50% (average) attainment surface for kroA100 and kroB100 using PACO-MO &
CPACO-MOTSP
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Figure 7.5: 1% (best) attainment surface for kroC100 and kroD100 using PACO-MO & CPACO-
MOTSP
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Figure 7.6: 50% (average) attainment surface for kroC100 and kroD100 using PACO-MO &
CPACO-MOTSP
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Figure 7.7: 1% (best) attainment surface for kroA150 and kroB150 using PACO-MO & CPACO-
MOTSP
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Figure 7.8: 50% (average) attainment surface for kroA150 and kroB150 using PACO-MO &
CPACO-MOTSP
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Figure 7.9: 1% (best) attainment surface for kroA200 and kroB200 using PACO-MO & CPACO-
MOTSP
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Figure 7.10: 50% (average) attainment surface for kroA200 and kroB200 using PACO-MO &
CPACO-MOTSP
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Problem Metric
Attainment surface Hypervolume Epsilon indicator

KroA100KroB100 > (0) > (0) > (0)
KroC100KroD100 > (0) > (0) > (0)
KroA150KroB150 > (0) > (0) > (0)
KroA200KroB200 > (0) > (0) > (0)

Table 7.2: Results of comparison between PACO-MO and CPACO using the summary attain-
ment surface, hypervolume and epsilon indicator metrics. Indicators used indicate if CPACO is
significantly better than PACO-MO (>), if there is no significant difference (=), or if PACO-MO
is significantly better than CPACO (<). The statistical confidence of the result (p value) is also
indicated. The Kruskal-Wallis test was used for summary attainment surface comparisons and
the Mann-Whitney Rank-Sum test for all other comparisons.

(Fig. 7.11).

The CPACO-MOTSP algorithm is able to locate and maintain a diverse set of solutions across

the Pareto front which may also contribute to the algorithm’s ability to find better solutions

along all areas of this front (Fig. 7.12). There may be some wasted effort in CPACO-MOTSP

since it constructs solutions based on a pheromone matrix which reflects the performance of the

entire population, regardless of a solution’s position on the approximate Pareto front; however

this, combined with the greedy transition rule, makes for a good balance between exploration

and exploitation. It is worth noting that the ranking of solutions using the NGSA-II ranking

procedure is a vast improvement over early attempts which did not use any ranking and al-

lowed solutions to update the pheromone matrix uniformly.

Experiment 2: Quad-objective Optimisation

CPACO-MOTSP was tested on the KroABCD100 quad-objective problem to examine its per-

formance on a larger problem than the bi-objective problem. The results of the trials were

analysed using attainment surfaces by isolating two objectives at a time (kroA100/kroB100

and kroC100/kroD100), even though the problem was attempted simultaneously on all four

unique objectives. The attainment surfaces generated from the original bi-objective cases (kro-

A100/kroB100 and kroC100/kroD100) were used as comparisons against the quad-objective

case isolated to two objectives. An ideal outcome of the analysis would be if little to no differ-

ence is observed between the previously obtained attainment surfaces and the quad-objective

case analysed in two objectives.

For this experiment the population size and number of ants were both increased to 200, the

crowding replacement size was kept at 0.1, and the number of iterations was increased from

50,000 to 100,000, 250,000 and 500,000. All other parameters remain the same as stated in

Tab. 7.1, results are reported for 50 repeats from random starting positions. Results of just the

quad-objective cases isolated to objectives kroA100 & kroB100 and kroC100 & kroD100 with

different numbers of iterations are included in Figs. 7.13, 7.14, 7.15 & 7.16. The 100,000 itera-

tion quad-objective case isolated to objectives kroA100 & kroB100 and kroC100 & kroD100 is

compared against the original bi-objective cases in Figs. 7.17, 7.18, 7.19 & 7.20.

From the attainment surfaces it is evident that the extra iterations provided to the CPACO-
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Figure 7.11: PACO-MO sampling behaviour for one complete experimental run (20,000 evalu-
ations) of the algorithm on the KroA100KroB100 problem. Each point indicates an evaluated
solution.
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Figure 7.12: CPACO-MOTSP sampling behaviour for one complete experimental run (20,000
evaluations) of the algorithm on the KroA100KroB100 problem. Each point indicates an evalu-
ated solution.
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Figure 7.13: 1% (best) attainment surface for CPACO-MOTSP applied to kroA100, kroB100,
kroC100 & kroD100 (isolating KroA100 & KroB100) with 100,000, 250,000 and 500,000 solution
evaluations.
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Figure 7.14: 50% (average) attainment surface for CPACO-MOTSP applied to kroA100, kroB100,
kroC100 & kroD100 (isolating KroA100 & KroB100) with 100,000, 250,000 and 500,000 solution
evaluations.
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Figure 7.15: 1% (best) attainment surface for CPACO-MOTSP applied to kroA100, kroB100,
kroC100 & kroD100 (isolating KroA100 & KroB100) with 100,000, 250,000 and 500,000 solution
evaluations.
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Figure 7.16: 50% (average) attainment surface for CPACO-MOTSP applied to kroA100, kroB100,
kroC100 & kroD100 (isolating KroA100 & KroB100) with 100,000, 250,000 and 500,000 solution
evaluations.
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Figure 7.17: 1% (best) attainment surface for CPACO-MOTSP applied to kroA100, kroB100,
kroC100 & kroD100 (CPACO_ABCD), and CPACO-MOTSP applied to only kroA100 & kroB100
(CPACO_AB)
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Figure 7.18: 50% (average) attainment surface for CPACO-MOTSP applied to kroA100, kroB100,
kroC100 & kroD100 (CPACO_ABCD), and CPACO-MOTSP applied to only kroA100 & kroB100
(CPACO_AB)
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Figure 7.19: 1% (best) attainment surface for CPACO-MOTSP applied to kroA100, kroB100,
kroC100 & kroD100 (CPACO_ABCD), and CPACO-MOTSP applied to only kroC100 & kroD100
(CPACO_CD)
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Figure 7.20: 50% (average) attainment surface for CPACO-MOTSP applied to kroA100, kroB100,
kroC100 & kroD100 (CPACO_ABCD), and CPACO-MOTSP applied to only kroC100 & kroD100
(CPACO_CD)
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MOTSP algorithm do little to improve the quality of the solutions obtained. It could be assumed

then that the algorithm has converged near 100,000 iterations and it would be better to allow

a local search to take over rather than continuing to run the CPACO-MOTSP algorithm. As

far as the quality of the results is concerned, when isolating the quad-objective results in both

the kroA100 & kroB100 and kroC100 & kroD100 objectives the original bi-objective attainment

surfaces are better. This is not unexpected given that the quad-objective case is a much more

difficult problem due to the added complexity of two extra objectives. It is interesting that the

major difference occurs in the mid-point of the approximate Pareto front which suggests that

CPACO-MOTSP may not be making best use of its historic (pheromone) information. This is

likely a trade-off of using the entire population in the creation of new solutions.

Computational Efficiency

The CPACO-MOTSP algorithm is comparably, if not less, computationally complex than the

PACO-MO algorithm. CPACO-MOTSP reconstructs the pheromone matrix every iteration like

PACO-MO reconstructs its pheromone matrices (one per objective) and, although CPACO-

MOTSP includes more information in the matrix since it uses the entire population rather than

a subset, this is offset by the fact that CPACO-MOTSP constructs many more solutions from the

pheromone matrix per iteration than the PACO-MO algorithm. PACO-MO also requires the

identification of k closest neighbours, an operation which has a worst case complexity of O(N2)

where N is the population size. Using the parameters from this study for the KroA100KroB100

test problem:

• CPACO-MOTSP constructs 50 solutions per matrix which is composed of 50 solutions

• PACO-MO constructs 1 solution per set of matrices which are composed of 6 solutions

Using these parameters, PACO-MO performs pheromone matrix modifications on twice the

number of pheromone matrices, six times more frequently than CPACO-MOTSP.

PACO-MO does not require dominance ranking every iteration like CPACO-MOTSP since all

solutions are assigned a uniform pheromone update value. However, since the NSGA-II rank-

ing procedure is used, the worst case complexity of this ranking procedure is O(hN2) where h is

the number of objectives. PACO-MO does use the average-rank-weight method to assign ranks

to solutions which is of approximate worst-case complexity O(hN2), which is comparable.

When checking whether to insert a new solution into the population, PACO-MO performs a

non-dominance check of worst-case complexity O(hN). If the new solution is non-dominated

by the population then it is inserted and the population is checked for non-dominance by the

new solution with a worst case complexity of O(hN2). CPACO-MOTSP selects a subset (in this

case 0.1 of N) of the population and uses a crowding comparison to find the closest subset mem-

ber to the new solution and then performs a single non-dominance check, of total complexity

O((N/10)2 + h).

The observed average final population size during experimentation was larger for PACO-MO

than the static population size used for CPACO-MOTSP (Tab. 7.3). Even though these figures
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indicate the average final population size, it was observed that the population size grew rapidly

at the start of algorithm execution before fluctuating about the final recorded level. As noted

earlier the uncontrolled population size was highlighted as an issue for future development for

PACO-MO.

Table 7.3: Average final population size of PACO-MO versus static population size of CPACO-
MOTSP for all test problems

Problem PACO-MO final pop size
(avg)

CPACO-MOTSP pop size

KroA100/KroB100 105 50
KroA150/KroB150 135 75
KroA200/KroB200 148 100

To summarise, both PACO-MO and CPACO-MOTSP require the use of a distance sorting rou-

tine (albeit for different purposes), although CPACO-MOTSP does so on a subset of the popu-

lation reducing the computation considerably. PACO-MO maintains a larger population than

CPACO-MOTSP, and performs approximately six times as many pheromone updates as CP-

ACO-MOTSP (across multiple pheromone matrices). CPACO-MOTSP uses the non-dominance

sorting routine to assign ranks to solutions, while PACO-MO uses the average-rank-weight

method to assign objective rankings (both of similar complexity). PACO-MO requires non-

dominance checking of the entire population per insertion of a new solution while CPACO-

MOTSP only performs one non-dominance check per insertion. PACO-MO maintains a larger

population which is on average twice the size of CPACO-MOTSP. PACO-MO thus appears to

be a more computationally expensive algorithm than CPACO-MOTSP.

Reasons for Success

The influence of the heuristic is a strong determinant of the performance of the CPACO-MOTSP

algorithm. The heuristic filters the historical (pheromone) information so that the probability

of selecting edges which are better for specific areas of the Pareto front are boosted.

Without access to heuristic or pheromone information the CPACO-MOTSP algorithm would

behave as a random search. Upon introducing heuristic information the probable search space

(the search space most likely to be explored) becomes much smaller than the original search

space. As heuristics go, the nearest neighbour heuristic for the TSP is a good approximate

heuristic which on its own can restrict the size of the search space but can’t guarantee an optimal

solution. This heuristic in combination with historic search information (i.e., a meta-heuristic)

has been proven to be a good technique at locating near-optimal solutions.

In the case of the multiple-objective TSP many ant-inspired techniques use multiple histories

(usually one for each objective) as was mentioned in Sec. 7.2. When determining the next com-

ponent to be selected they combine all heuristic and historic information using exponential

weightings much like in CPACO-MOTSP. It is suggested that in the case of the MO-TSP the use

of one history versus multiple histories (for each objective) does not reduce the performance of

the algorithm. To test this consider a test case, the KroA100KroB100 problem.
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Test case: multiple versus single pheromone matrices The reasons for wanting to maintain

multiple pheromone matrices is to ensure that when constructing a solution at a specific area

of the approximate Pareto Front only local solutions are used in biasing solution construction.

The basic premise is that a stored solution which trades-off against objective A to advantage

objective B would probably not be a good solution to use in constructing a solution which tries

to optimise objective A over objective B. This multiple pheromone matrix strategy assumes

that an even mixture of solutions from objective A and objective B will allow good solution

construction at the midpoint (that is the 50/50 trade-off point) of these objectives, which may

not be true. Storing solutions’ quality information in a single pheromone matrix which are good

solutions for the entire extent of the approximate Pareto Front means that when targeting the

midpoint of two objectives there should be a good representative solution for this area of the

approximate Pareto Front. This means that the assumption that a mixture of historic solutions

from objective A and objective B will provide good solutions at the midpoint does not have to

be true for good performance.

To investigate this further, consider two Pareto optimal solutions that are located at opposite

ends of the Pareto front of the KroA100KroB100 MO-TSP, i.e., the nadir points. The solution

satisfying objective A is denoted solA, and the other solution solB.

An ant is heuristically weighted 10%/90% to objective A and objective B respectively and is

initialised at city 5. While all cities connecting to city 5 receive an initial amount of pheromone

(≈ 0.01) four specific components also receive an extra unit (1) of pheromone since these com-

ponents are included in SolA and SolB, being cities 43 and 86 and cities 53 and 62 respectively.

Without a heuristic (using only the pheromone) the probability weightings from city 5 would

resemble something like Fig. 7.21.

Probability

20.2%

20.2%

20.2%

20.2%

19.2%

43

53

62

86

Other

Figure 7.21: Selection probabilities from city 5 using only pheromone information.

However as this ant constructs a solution it is desirable that it pays more attention to the solu-

tions components that are biased by solB, since it has been weighted 10%/90%. After consid-

ering heuristics the probability weightings are closer to that of Fig. 7.22, and as can be seen the

heuristic has ensured that cities 62 and 53 have a strong selection bias.

While this is a very simple test case, it does illustrate the strong influence that the heuristic

has on the selection probabilities. In the case of the MO-TSP the heuristic could be considered
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Figure 7.22: Selection probabilities from city 5 using a combination of pheromone information
and biased heuristic information (10%/90%).

as a ‘filter’ that boosts pheromone information that is relevant while eliminating pheromone

information which isn’t. To split the pheromone information up amongst the objectives seems

unnecessary since the heuristic simply filters out unwanted pheromone information anyway.

7.4.4 Summary

In this section the CPACO-MOTSP algorithm was introduced and tested on several benchmark

multiple objective TSP. The results for the bi-objective TSP speak well for the CPACO-MOTSP

which was able to achieve a better result, in terms of the attainment surface, with less com-

putational complexity than its inspiration, PACO-MO. The CPACO-MOTSP was also tested on

a quad-objective TSP which when analysed by isolating two objectives at a time saw a small

decrease in the quality of the solutions found. By increasing the number of solution evaluations

it was demonstrated that the CPACO-MOTSP algorithm had converged at around 100,000 so-

lution evaluations, meaning that an increase in quality would be best obtained using a local

search process on the final population.

The use of a crowding replacement operation was demonstrated to be a good way to control

the population size and make-up. The use of a single pheromone matrix was justified by the

presence of multiple heuristic matrices which, depending on the specific heuristic weighting of

an ant, was able to filter the necessary information from the pheromone matrix.

In the next section a niching PACO algorithm for the Multiple Objective Function Optimisation

Problem is introduced. Elements of the CPACO-MOTSP algorithm are used in the design of this

algorithm, however, considering the problem lacks heuristic information a different algorithmic

approach is required.

7.5 Niching PACO for Multi-objective Function Optimisation

The multiple objective function optimisation (MOFO) problem is often treated as an extension

of the single objective continuous function optimisation (CFO) problem. However Deb [36]

offers an interesting insight, that the single objective case is actually a specialisation of the

multiple objective case. Like the CFO, MOFO involves the optimisation of multiple decision
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variables that map, via multiple objective functions, to multiple objective values. The prob-

lems may require the minimisation or maximisation of these objectives and the exact mapping

between the decision variables and the objective space is usually non-linear.

As the CFO seems to be most closely associated with Evolutionary Algorithms such as the

Genetic Algorithm, most early attempts at solving complex MOFO problems tended to be with

Multi-objective Evolutionary Algorithms such as those introduced in Sec. 7.2. These algorithms

offer a benchmark of good performance and as such one of these algorithms, NSGA-II has been

selected as a control algorithm in this analysis.

Three experiments are performed and observations that are relevant to those specific experi-

ments are included. More general comments about generic algorithm behaviour and areas of

likely improvement are reserved for the final summary. The intention in this section is not to

derive an algorithm that outperforms the control, since on the benchmark problems included in

this section the control algorithm is near optimal anyway. The intention rather is to extend some

of the ideas from CPACO-MOTSP (Sec. 7.4) to observe how they apply to a multiple objective

problem domain that does not include reliable heuristics.

The experiments included are in no way exhaustive, however care has been taken to include

problems with features that do test the algorithms’ ability to obtain multiple diverse Pareto

optimal solutions. The experiments are organised into three sections based on the combination

of decision variables and objective functions, these experiments are:

1. Two decision variables, two objectives.

2. Multiple decision variables, two objectives.

3. Two decision variables, multiple objectives.

7.5.1 Algorithm Details

PACO-MOFO is an extension of CPACO-CFO that incorporates similar design elements as

those in CPACO-MOTSP. Given the problem domain, a pheromone matrix comprised of dis-

crete values is not required, instead Probability Density Functions are used in a similar fashion

to the algorithms discussed in Sec. 6.3. The population is modified using a crowding replace-

ment operation. While this crowding replacement operation ensures that the population retains

diverse solutions from the objective space, a fitness sharing selection strategy encourages an

even sampling of the objective space, details of which can be found in Sec. 7.5.1. Like CPACO-

CFO, PACO-MOFO is an a posteriori preference articulation method as defined in Sec. 2.5. Al-

gorithm 13 outlines the PACO-MOFO algorithm details.

Niching Methods

As was previously mentioned, PACO-MOFO uses two forms of niching, crowding and fitness

sharing, for the population replacement and selection mechanisms. The crowding technique
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Algorithm 13 Population-based ACO for Multi-objective Function Optimisation (PACO-
MOFO)

1: Initialise population with uniform random solutions (size = number of ants)
2: while stopping criterion not met do
3: Rank population according to NSGA-II fitness ranking procedure
4: Set fitness of each population member as inverse of rank
5: Adjust fitness of population by applying fitness sharing
6: for i = 1 to number of ants do
7: Create new empty solution snew

i
8: for j = 1 to number of dimensions do
9: Probabilistically select a solution (s) from the population based on the adjusted

fitness raised to a history exponent power (fitnessα), using a biased roulette wheel selection
strategy with replacement.

10: µ = sj . Calculate mean
11: r = Dimension j’s range
12: c = (sin (π/2× remaining evaluations/maximum evaluations))2

13: σ = r× c/6 . Calculate standard deviation
14: repeat
15: snew

i,j = Gaussian weighted (Equ. 6.3.1) random value using calculated σ and
µ.

16: until snew
i,j is within bounds of dimension j

17: end for
18: Evaluate new solution snew

i for all objectives
19: end for
20: for i = 1 to number of ants do
21: Select random subset of solutions S from population
22: if snew

i is better in all objectives (strongly dominates) than closest matching solution
from S (closest match in terms of objective space) then

23: Replace closest matching solution with snew
i

24: else
25: Discard snew

i
26: end if
27: end for
28: end while

is the same as that used in CPACO-MOTSP (Sec. 7.4). Used in this way crowding is respon-

sible for managing the amount of stored diversity in the population. For the MO-TSP the use

of crowding alone was enough to ensure an even sampling of the entire Pareto front, due to

the nature of the Pareto front and also since the selection mechanism incorporated heuristic

information which balanced the focus of the search across the entire Pareto front.

For the MOFO some thought must be given as to how to ensure an even sampling of the Pareto

front since for this problem there is no heuristic information, nor can we guarantee an evenly

distributed, convex Pareto front. To explain further, when a problem has a decision space that

maps fairly linearly to the objective space, the crowding replacement encourages the initial

population to spread out to encompass the entire Pareto front fairly uniformly, as was demon-

strated with the MO-TSP. However, when the mapping is skewed to favour a particular region,

it means that a large proportion of initial solutions are located in a specific area of the objective

space which can lead to an over-sampling of this area. This behaviour is self-reinforcing since

the more sampling that occurs in one area the better those solutions will become in terms of

their NSGA-II ranking and thus the more likely they are to continue to be re-used. In other
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words if only a subset of solutions in the population are ever selected then this negates the use-

fulness of having diversity in the population in the first place. In PACO-MOFO fitness sharing

has been employed to ensure a balanced sampling of the population.

The fitness sharing distance calculation is based on the proximity of solutions in the objective

space and it derates the quality2 of similar solutions. In this way the best solutions are those

that are located close to the Pareto front and which also belong to sparsely populated regions of

the objective space. Before applying fitness sharing, all of the extreme maximum and minimum

objective values in the current population are used in the determination of normalised objective

values for all population members. This is a temporary value which is only used to assist the

fitness sharing derating process and is described in Alg. 14, where m is the population size,

sj
i the jth objective value of the ith population member and h the number of objectives. These

values are important since they allow for a generalised fitness sharing radius, rather than a

problem specific one.

Algorithm 14 Objective Value Normalisation Procedure

1: for i = 1 to m do
2: for j = 1 to h do

3: sj′

i =
(

sj
i − jmin

)
/ (jmax − jmin)

4: end for
5: end for

The general rule to determine the fitness sharing radius has been derived to ensure that with the

use of fitness sharing the introduction of extra algorithm parameters is kept to a minimum. The

rule is derived by approximating the Pareto surface to a linear plane and dividing this plane

into sections depending on the size of the population, the ideal case being that the population

is distributed evenly across the entire plane. Of course, this is an approximation and cannot

account for discontinuities and irregularities in the real Pareto front. The rule is presented in

(7.5.1), where m is the population size and h the number of objectives.

sharing radius =
√

h
m1/h − 1

(7.5.1)

7.5.2 Test Problems

The problems selected for testing the proposed algorithm are well documented benchmark test

functions each chosen for specific properties such as the shape of the Pareto front, and the

mapping between the decision space and the objective space. They are the same as those used

in Van Veldhuizen’s PhD Dissertation [158], and the naming convention from that source is

reused, although the primary sources are included.

2Quality here is the rank assigned by the NSGA-II ranking procedure.
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MOP1

Schaffer’s two objective function [135] is a historically significant test function. It has a one

dimensional decision space and two objectives. It is usually unbounded or defined over large

bounds, in this work the bounds were set to: −105 ≤ x ≤ 105.

f1 (x) = x2

f2 (x) = (x− 2)2 (7.5.2)

MOP2

Fonseca’s two objective function [63] is a useful test problem since it allows arbitrary scaling

of the number of decision variables without changing the shape of the Pareto front which is

continuous and concave. The decision variable space is defined for each dimension as: −4 ≤
xi ≤ 4; i = 1, 2, . . . , n

f1 (~x) = 1− exp

(
−

n

∑
i=1

(
xi −

1√
n

)2
)

f2 (~x) = 1− exp

(
−

n

∑
i=1

(
xi +

1√
n

)2
)

(7.5.3)

MOP3

Poloni’s two objective function [119] contains two decision variables and is a maximisation

problem that has two discontinuous Pareto fronts. Its decision space is bounded as: −π ≤
x, y ≤ π

f1 (x, y) = −
[
1 + (A1 − B1)

2 + (A2 − B2)
2
]

f2 (x, y) = −
[
(x + 3)2 + (y + 1)2

]
(7.5.4)

A1 = 0.5× sin (1)− 2.0× cos (1) + sin (2)− 1.5× cos (2)

A2 = 1.5× sin (1)− cos (1) + 2× sin (2)− 0.5× cos (2)

B1 = 0.5× sin (x)− 2.0× cos (x) + sin (y)− 1.5× cos (y)

B2 = 1.5× sin (x)− cos (x) + 2 sin (y)− 0.5× cos (y)

MOP4

Kursawe’s two objective function [98] is comprised of three disconnected Pareto fronts which

map to multiple discontinuous and non-symmetric areas of the decision space. Like MOP2

the number of decision variables is unspecified, however, changing the number of decision
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variables does affect the shape and position of the Pareto front. The decision variable space is

defined for each dimension as: −5 ≤ xi ≤ 5; i = 1, 2, . . . , n

f1 (~x) =
n−1

∑
i=1

(
−10 exp

(
−0.2×

√
x2

i + x2
i+1

))
f2 (~x) =

n

∑
i=1

(
|xi|0.8 + 5 sin (xi)

3
)

(7.5.5)

MOP5

Viennet’s third MOFO problem [159] is a three objective problem that contains a single complex

Pareto front in three dimensions. The decision space that corresponds with this Pareto front is

disconnected. Its decision space is bounded as: −3 ≤ x, y ≤ 3

f1 (x, y) = 0.5×
(

x2 + y2
)

+ sin
(

x2 + y2
)

f2 (x, y) =
(3x− 2y + 4)2

8
+

(x− y + 1)2

27
+ 15

f3 (x, y) =
1

(x2 + y2 + 1)
− 1.1 exp

(
−x2 − y2

)
(7.5.6)

MOP6

This problem was proposed by Deb [35] and is a two objective, two decision variable problem

with four discontinuous Pareto fronts. The decision variable space is defined as: 0 ≤ x, y ≤ 1

f1 (x, y) = x

f2 (x, y) = (1 + 10y)×
[

1−
(

x
1 + 10y

)2
− x

1 + 10y
sin (8πx)

]
(7.5.7)

MOP7

Viennet’s second MOFO problem [159] is a three objective problem that contains a single Pareto

front in three dimensions. The decision space that corresponds with this Pareto front is con-

nected and the mapping is simple. Its decision space is bounded as: −4 ≤ x, y ≤ 4

f1 (x, y) =
(x− 2)2

2
+

(y + 1)2

13
+ 3

f2 (x, y) =
(x + y− 3)2

36
+

(−x + y + 2)2

8
− 17

f3 (x, y) =
(x + 2y− 1)2

175
+

(−x + 2y)2

17
− 13 (7.5.8)
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7.5.3 Results and Discussion

Experiment 1: Testing With Two Decision Variables and Two Objectives

This section outlines an analysis of the PACO-MOFO algorithm applied to several two objec-

tive, two decision variable MOFO problems. Attainment surface comparison is used to deter-

mine the performance of the PACO-MOFO algorithm as compared to the NSGA-II.

The MOP1, MOP2, MOP3, MOP4 and MOP6 problems described in Sec. 7.5.2 are used in this

analysis and both PACO-MOFO and NSGA-II were run 50 times on each of the test problems

defined with two decision variables and two objectives (as some of the problems can be config-

ured otherwise). Each algorithm was allowed 100,000 solution evaluations (as this was enough

evaluations to observe algorithm convergence) and the final population was recorded. The al-

gorithm configuration parameters were the same for all trials and are reproduced in Tab. 7.4.

These parameters were chosen based on previous experimentation with similar algorithms

such as CPACO-MOTSP, CPACO-CFO and FSPACO-CFO. The best and average attainment

surfaces obtained for the five test problems are shown in Fig. 7.23, 7.24, 7.25, 7.26 & 7.27.

NSGA-II
Parameter Value
Population size 50
Crossover Probability 0.97
Mutation Probability 0.50
Std. Dev. of Gaussian Mutation 1% of dimension range
PACO-MOFO
Parameter Value
Number of ants (m) / Population size 50
History Exponent 1.0
Crowding Window Size 0.5
Fitness Sharing Radius (h = objectives) 1/

(
(m)1/h − 1

)
Fitness Sharing Power 1.0

Table 7.4: Algorithm parameter settings for MOFO problems

Problem Metric
Attainment surface Hypervolume Epsilon indicator

MOP1 < (0) < (0) < (0)
MOP2 = < (0) < (0)
MOP3 = > (0) =
MOP4 = < (0) < (0)
MOP6 = > (0.01) > (0.02)

Table 7.5: Results of comparison between PACO-MOFO and NSGA-II using the summary at-
tainment surface, hypervolume and epsilon indicator metrics. Indicators used indicate if PACO-
MOFO is significantly better than NSGA-II (>), if there is no significant difference (=), or if
NSGA-II is significantly better than PACO-MOFO (<). The statistical confidence of the result
(p value) is also indicated. The Kruskal-Wallis test was used for summary attainment surface
comparisons and the Mann-Whitney Rank-Sum test for all other comparisons.

As is indicated in Tab. 7.5, with the exception of MOP1 (where NSGA-II is better) there is no sta-

tistical difference between the attainment surfaces generated for the control algorithm (NSGA-

II) and the PACO-MOFO algorithm. While the other metrics indicate differences, any difference
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Figure 7.23: Attainment surfaces generated from 50 runs of PACO-MOFO and NSGA-II applied
to MOP1
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Figure 7.24: Attainment surfaces generated from 50 runs of PACO-MOFO and NSGA-II applied
to MOP2
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Figure 7.25: Attainment surfaces generated from 50 runs of PACO-MOFO and NSGA-II applied
to MOP3
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Figure 7.26: Attainment surfaces generated from 50 runs of PACO-MOFO and NSGA-II applied
to MOP4
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Figure 7.27: Attainment surfaces generated from 50 runs of PACO-MOFO and NSGA-II applied
to MOP6
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even though it is statistically significant is deemed to be minor given the result of the summary

attainment surface comparison. As such these other results are not used in drawing conclu-

sions about the performance of the algorithms. This result is passable for PACO-MOFO as it

demonstrates that on these few benchmark instances the PACO-MOFO algorithm performs just

below an accepted state-of-the-art MOO algorithm.

Important qualitative assessments of the PACO-MOFO algorithm were also observed. Fig-

ure 7.28 indicates typical final populations from individual runs of PACO-MOFO and NSGA-

II. As can be seen PACO-MOFO distributes its population fairly evenly across the entire Pareto

front, particularly in difficult cases where the Pareto front is concave, or discontinuous. More-so

it displays strong convergence to the Pareto front. This behaviour is different to that of NSGA-II

whose final population tends to contain more solutions from other non-Pareto optimal areas.

This is expected since the crowding replacement routine of PACO-MOFO aims to ensure that

the entire population approaches the Pareto front and only allows replacement if a new solution

dominates an existing solution. In essence PACO-MOFO is more elitist than NSGA-II.

Experiment 2: Testing With More Decision Variables and Two Objectives

The MOP2 and MOP4 problems were included in the test problem suite since they allow arbi-

trary scaling of the decision space. Scaling MOP2 does not affect the shape or position of the

Pareto front, however, scaling MOP4 does. To test the PACO-MOFO algorithms ability to scale

(with regard to the number of decision variables) the MOP2 and MOP4 problems were defined

in various decision variable dimensions (5,10,15,20) and compared against the NSGA-II algo-

rithm. Each algorithm was allowed 100,000 function evaluations, and was repeated 50 times.

The average attainment surfaces generated are included in Fig. 7.29 and Fig 7.30.

Dimensions Metric
Attainment surface Hypervolume Epsilon indicator

2 = < (0) < (0)
5 = < (0) < (0)
10 = < (0) < (0)
15 > (0.04) < (0) < (0)
20 > (0) > (0) > (0)

Table 7.6: Results of comparison between PACO-MOFO and NSGA-II on MOP2 using the sum-
mary attainment surface, hypervolume and epsilon indicator metrics. Indicators used indicate
if PACO-MOFO is significantly better than NSGA-II (>), if there is no significant difference (=),
or if NSGA-II is significantly better than PACO-MOFO (<). The statistical confidence of the
result (p value) is also indicated. The Kruskal-Wallis test was used for summary attainment
surface comparisons and the Mann-Whitney Rank-Sum test for all other comparisons.

Perhaps the most interesting, and obvious, observations between the two algorithms is the dif-

ference in the solutions found in the centre of the Pareto front where the solutions found by

NSGA-II are worse than those found by PACO-MOFO, while at the extremes the converse is

true. The MOP2 problem is extremely difficult in higher dimensions due to the lack of direc-

tional information (i.e. the objective functions return a value of 1 for most points in the decision

variable space). Given that a random initial population will most likely contain many solutions

with objective values of (1.0, 1.0), the PACO-MOFO algorithm will approach the Pareto front
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Figure 7.28: Example of a typical final population of PACO-MOFO and NSGA-II after each
algorithm was allowed 100,000 solution evaluations. The Pareto front was approximated by
taking 10,000,000 random evaluations and removing all dominated solutions. Note the strong
convergence of the PACO-MOFO algorithm to and along the Pareto front.
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Figure 7.28: (cont’d) Example of a typical final population of PACO-MOFO and NSGA-II af-
ter each algorithm was allowed 100,000 solution evaluations. The Pareto front was approxi-
mated by taking 10,000,000 random evaluations and removing all dominated solutions. Note
the strong convergence of the PACO-MOFO algorithm to and along the Pareto front.
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Figure 7.29: Attainment surfaces generated from 50 runs of PACO-MOFO and NSGA-II applied
to the benchmark function, MOP2, in 2, 5, 10, 15 and 20 dimensions
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Figure 7.30: (cont’d) Attainment surfaces generated from 50 runs of PACO-MOFO and NSGA-II
applied to the benchmark function, MOP4, in 5, 10, 15 and 20 dimensions
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Figure 7.30: (cont’d) Attainment surfaces generated from 50 runs of PACO-MOFO and NSGA-II
applied to the benchmark function, MOP4, in 5, 10, 15 and 20 dimensions
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Dimensions Metric
Attainment surface Hypervolume Epsilon indicator

2 = < (0) < (0)
5 > (0.006) = < (0.04)
10 > (0) < (0.01) < (0)
15 > (0) < (0) < (0)
20 > (0) < (0) < (0)

Table 7.7: Results of comparison between PACO-MOFO and NSGA-II on MOP4 using the sum-
mary attainment surface, hypervolume and epsilon indicator metrics. Indicators used indicate
if PACO-MOFO is significantly better than NSGA-II (>), if there is no significant difference (=),
or if NSGA-II is significantly better than PACO-MOFO (<). The statistical confidence of the
result (p value) is also indicated. The Kruskal-Wallis test was used for summary attainment
surface comparisons and the Mann-Whitney Rank-Sum test for all other comparisons.

from the top-right corner of Fig. 7.29b. Since a crowding replacement scheme is being used, the

PACO-MOFO algorithm will be slow in exploring outward across the extent of the entire Pareto

front in a similar way to the problem faced when solving the single objective TSP (Sec. 6.2.3).

With the single objective TSP it was demonstrated how many of the initial population mem-

bers aren’t replaced since they are never selected for replacement and thus continue to persist

in the population for a long time. This effect explains, to some degree, the convex Pareto fronts

generated by PACO-MOFO. Adding to this, the only way a solution can be replaced is if it is

strongly dominated, meaning that the population make-up will change quite slowly and may

stagnate to some degree. Similar results were obtained when the algorithms were tested on

MOP4, however, with this problem it is more difficult to observe the progressive worsening of

the results as the Pareto fronts can’t be directly compared.

The NSGA-II algorithm does not suffer from the replacement problem observed with PACO-

MOFO since it replaces all solutions in the population every iteration and then removes those

which are located furthest away from the Pareto front. Since the NSGA-II population is chang-

ing far more frequently it means a quicker uptake of solutions from across the entire Pareto

front, since old solutions are more likely to be left out of the population over successive gener-

ations.

These differences are also highlighted in the statistical comparison which for most problem

variants ranks the NSGA-II better in terms of the hypervolume and epsilon indicator metrics,

while the PACO-MOFO is deemed better in terms of the summary attainment surface compar-

ison. As such it cannot be said which algorithm is better, since each seems to achieve different

goals, the NSGA-II covers the Pareto front more evenly, while the PACO-MOFO algorithm

finds better solutions in the centre of the Pareto front to the detriment of diversity. As an aside

it was of interest that NSGA-II failed to find any solutions other than those with objective val-

ues (1.0, 1.0) when tested on MOP2 above 20 dimensions, while it took PACO-MOFO until 30

dimensions to do the same.
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Experiment 3: Testing With Two Decision Variables and Three Objectives

In this section the PACO-MOFO and NSGA-II algorithms are tested on two three-objective

MOFO problems, MOP5 and MOP7. This test should give some indication as to how well the

PACO-MOFO algorithm performs as the number of objectives is increased. To reiterate each of

the MOP5 and MOP7 problems contain two decision variables and a single connected Pareto

front. The NSGA-II and PACO-MOFO algorithms were allowed 100,000 function evaluations

per experiment run, and were repeated 50 times for statistical significance. The summary at-

tainment surfaces have been included (Fig. 7.31 and Fig. 7.32) however they can’t be used for

anything but qualitative assessment purposes due to the presence of three objectives. The hy-

pervolume and epsilon indicators are used for quantitative assessment purposes and are in-

cluded in Tab. 7.8.

Problem Metric
Hypervolume Epsilon indicator

MOP5 > (0) > (0)
MOP7 > (0) > (0)

Table 7.8: Results of comparison between PACO-MOFO and NSGA-II using the hypervolume
and epsilon indicator metrics. Indicators used indicate if PACO-MOFO is significantly better
than NSGA-II (>), if there is no significant difference (=), or if NSGA-II is significantly bet-
ter than PACO-MOFO (<). The statistical confidence of the result (p value) is also indicated.
The Kruskal-Wallis test was used for summary attainment surface comparisons and the Mann-
Whitney Rank-Sum test for all other comparisons.

The hypervolume and epsilon indicators indicate that PACO-MOFO achieves a statistically sig-

nificant better result than NSGA-II on the MOP5 and MOP7 problems. A visual inspection of

the attainment surfaces for MOP5 and MOP7 confirms that for the majority of the attainment

surfaces plotted PACO-MOFO does achieve a better result than NSGA-II. To interpret these

graphs correctly the perspective shown looks towards the origin, since the attainment surface

of PACO-MOFO is hidden behind that of NSGA-II it should be clear that the attainment sur-

face of PACO-MOFO is closer to the origin and the true Pareto front. This result, while limited

to two simple MOFO problems does speak well for the PACO-MOFO algorithms’ ability to

attempt the optimisation of more than two objective MOFO problems.

Computational Efficiency

Neither algorithm’s implementation was optimised for execution speed, as a general guide

though the run times of the NSGA-II and PACO-MOFO were approximately equal. More pre-

cisely though, the computational complexity of the PACO-MOFO algorithm is derived mostly

from two sources, solution ranking (including fitness sharing) and population maintenance

(replacement).

The solution ranking procedure comprises two steps, the first step is the NSGA-II ranking pro-

cedure which has a worst case complexity of O(hN2) where h is the number of objectives, and

N the population size. The second step is the fitness sharing quality adjustment which has a

complexity of O(N2) since every population member has to determine its closest members. It
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Figure 7.31: Attainment surfaces generated from 50 runs of PACO-MOFO and NSGA-II applied
to MOP5
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Figure 7.32: Attainment surfaces generated from 50 runs of PACO-MOFO and NSGA-II applied
to MOP7
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may be possible to mitigate some of this computational effort by combining these two steps.

The complexity of the crowding replacement operation is dependent on the size of the crowd-

ing window (w) since it selects a subset (in this case 1/2 of N) of the population and uses an

objective space comparison to find the closest subset member to the new solution and then

performs a single non-dominance check, of total complexity O((N/w)2 + h). The solution cre-

ation procedure is relatively lean compared to these other processes and as such has not been

included. Compared to NSGA-II the PACO-MOFO algorithm is comparable since both algo-

rithms perform similar sort and crowding distance calculations.

7.5.4 Summary

In this section the PACO-MOFO algorithm was introduced and tested on several benchmark

multiple objective function optimisation problems. The benchmark functions were broken into

three distinct categories, two variable two objective, multiple variable two objective and two

variable multiple objective. For the simple two variable two objective problems the PACO-

MOFO algorithm was able for the most part to achieve similar results to that of an accepted

state-of-the art MOFO algorithm. When scaled to include more decision variables, the PACO-

MOFO algorithm was observed to concentrate on improving the middle of the Pareto front

which was attributed to the nature of the decision space becoming increasingly flat as the num-

ber of decision variables was increased. Perhaps the best result was reserved for last though

where on two simple two variable three objective MOFO problems the PACO-MOFO algorithm

was able to achieve a better result than the control algorithm. This result must not be overstated

since it is in no way conclusive of a trend given that the experiment was limited to two prob-

lem instances and static parameter configurations. However, overall the results do provide

some confidence in the ability of PACO-MOFO to obtain good solutions to a variety of MOFO

problems.

7.6 Chapter Summary

In this chapter two niching PACO algorithms CPACO-MOTSP and PACO-MOFO were in-

troduced and tested on the multiple objective TSP and CFO problems respectively. CPACO-

MOTSP, an extension of an existing multi-objective PACO algorithm, was demonstrated to im-

prove not only the solution quality in terms of diversity and closeness to the Pareto front but

also the computational complexity when applied to the MO-TSP. The use of a crowding replace-

ment operation was identified as a good way to control the population size and composition

for this problem. The presence of a strong heuristic was identified as a possible reason for the

strong performance of the algorithm and also as a way to successfully do without a pheromone

matrix per objective, as is the case with many previously proposed ACO algorithms. By re-

moving the requirement for multiple pheromone matrices the CPACO-MOTSP seems better

equipped to handle combinatorial optimisation problems with larger numbers of objectives.

This is due to the complexity of the algorithm not scaling as poorly as alternative algorithms as
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the number of objectives is increased.

The second algorithm, PACO-MOFO was proposed as an extension of CPACO-MOTSP to de-

termine how a similar algorithm would perform on a problem lacking heuristic information. To

be fair, the results on some of the simple two decision variable two objective, while good, were

not as good as NSGA-II which was to be expected given that the NSGA-II is a second generation

MOEA and was designed specifically for the MOFO problem. However, the experimentation

did point out some weaknesses in the algorithm design, such as the slow uptake of solutions

when using a crowding replacement operation. This said, the results of the last experiment

(two decision variables, three objectives) were promising with the CPACO-MOFO algorithm

achieving better results (with regards to the summary attainment surface, hypervolume and

epsilon indicators) on both benchmark instances than NSGA-II.

The next chapter is the final experimentation chapter where a real-world optimisation problem

has been selected for analysis. The problem is represented in two ways, as a single objec-

tive continuous function optimisation and multiple objective continuous function optimisation

problem. Up to this point the algorithms presented have only been applied to problems with

known optima and well understood search spaces. By applying the Niching PACO algorithms

to a problem with unknown search space characteristics and unknown optima, a greater un-

derstanding of the algorithms’ wider applicability is possible.
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CHAPTER 8

Case Study: Antenna Correlation

Astronomy is perhaps the science whose discoveries owe least to chance, in which

human understanding appears in its whole magnitude, and through which man can

best learn how small he is.

Georg C. Lichtenberg (1742-1799)

The testing of Niching PACO algorithms on several simple multi-modal CFO problems in

Sec. 6.3 indicated that the addition of a specific form of niching (crowding) to existing PACO al-

gorithms generally increases the algorithm performance in terms of the overall search efficacy

and diversity. Another Niching PACO algorithm, PACO-MOFO, which uses both crowding

and fitness sharing was applied in Sec. 7.5 to several MOFO problems with fairly acceptable re-

sults when compared to an existing state-of-the-art MOEA algorithm. While these previously

presented problems are all challenging NP-hard problem instances, they still contain known

global optima and much is known about their particular search space characteristics such as

their modality. To be useful in a ‘real-world’ context, the Niching PACO algorithms should be

able to be applied to other unknown problem domains and return a performance similar to

those obtained on these benchmark problem instances.

In this chapter the Crowding PACO and PACO-MOFO algorithms are applied to a challenging

‘real-world’ problem for the purpose of determining their performance on a complex, unknown

problem domain. The problem instances presented in this chapter are previously untested us-

ing global optimisation techniques and as such little information is available about their search

space characteristics. Also, there is no specific knowledge of exact global optimal locations. The

results gained in this experimentation give a glance at the usefulness of these search techniques

when applied to a previously untested problem domain.

The problem chosen is an antenna correlation problem from the field of Very Long Baseline

Interferometry (VLBI) and is described in Sec. 8.1. The problem is concerned with reducing the

error in an astronomical observation through the use of a parameterised model. The solution

to this problem is significant to radio astronomers, since an accurate geometric model is essen-

tial to correctly align sampled data sequences from different antennae in the time domain for

any interferometry experiment. The problem can be closely modelled as a multiple objective
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or single objective CFO problem which is useful as the previously presented Niching PACO

algorithms can be applied directly to the problem without modification.

As the search space, and consequently the global optimum, is unknown, the results obtained

by the Niching PACO algorithms are validated by comparing them against a baseline random

sample and two control algorithms: NSGA-II and the Deterministic Crowding Genetic Algo-

rithm (CGA). These algorithms have been used previously in this thesis (Sec.6.3 and Sec.7.5)

as they are state-of-the-art algorithms for multiple and single objective problems respectively.

Given that little is known about the nature of the search space, experiments are presented which

control various aspects of the algorithm execution, mostly centred around the setting of the

problems’ parameter bounds. Each experiment contains a brief description followed by results

and relevant discussion. General conclusions from these experiments are made by relating the

results back to the ‘real-world’ problem in Sec. 8.5.

8.1 Problem Details

8.1.1 Problem Description

Radio interferometry involves the temporal alignment of signals from different radio telescopes

(by means of electronic delays) and the correlation of the signals for the purpose of determining

information about the spatial frequencies of the radio sky within the telescope’s field of view.

The collected data is later Fourier transformed to create an image of the radio sky. This data

stream alignment requires each telescope’s geocentric (geographical) position to be precisely

determined, and is made more difficult due to the addition of propagation delays through

the Earth’s atmosphere, time-stamping errors, the source position and structure, and Earth

orientation.

The residual (unmodelled) delay between a pair of antennas (a baseline) can be estimated by fit-

ting the correlated signal phase as a function of frequency, a process known as fringe-fitting. For

typical astronomical observations, the residual delay (usually resulting from unmodelled atmo-

spheric contributions and time-stamp errors) is simply an error that is removed, and its source

is immaterial. However, it is possible to use the residual delays to determine errors in antenna

positions, a procedure known as geodesy. Geodesy is a challenging problem, since attaining mil-

limetre accuracy requires measurement of relative delays on the order of picoseconds, and the

removal of all other contaminating effects on the residual delay. The value of residual delay δ

from antenna B to antenna A obtained from the fringe-fit solutions can be written as Equ. 8.1.1.

δB−A = ((B′ · Ŝ′ − B · Ŝ)− (A′ · Ŝ′ −A · Ŝ))/c + (CB − CA) + (AA − AB) + NBA (8.1.1)
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Where:

B and A : Geocentric antenna vectors (user defined variables)

Ŝ : Unit vector toward the source (user defined)

B′ and A′ : Geocentric antenna vectors (observed values)

Ŝ′ : Unit vector toward the source (observed value)

c : Speed of light

C : Time-stamp error at an antenna

A : Unmodelled delay due to atmospheric propagation

NBA : Error introduced by finite signal/noise.

Of these values, NBA and C have no dependence on antenna or source position. NBA is ran-

domly distributed and C is a smoothly varying function of time with modern frequency stan-

dards, leaving the geometric (A,B,Ŝ) and propagation terms (A). In a dedicated geodesic ex-

periment, weather information is monitored at all antennas and used to correct a priori atmo-

spheric propagation models, leaving antenna position errors as the dominant contribution to

residual delay. However, even if atmospheric and source position errors cannot be completely

subtracted from the residual delays, an estimate of antenna position errors can still be made by

assuming the atmospheric and source error delay contributions to be uncorrelated with base-

line error delay contributions. An example of an observed residual delay for a single baseline

tracked over a 24 hour period is presented in Fig. 8.1.

Figure 8.1: The observed residual delay for one observing band of a baseline (Parkes and ATCA)
tracked over a 24 hour period taken from data set STA-131AV.
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8.1.2 Objective Function

From an optimisation perspective the interest is in minimising the magnitude of the residual

delay per baseline (antenna pair). This is achieved in this case by selecting appropriate values

for the vectors A,B and Ŝ. It is not possible to back-propagate the observed data to obtain

the vector values, thus like most black box optimisation problems these values are obtained

through trial and error.

The vectors translate into 14 configurable (scalar) parameters per baseline. However, since

one antenna is used as a common reference antenna for all antennae in the system, the actual

number of configurable parameters per antenna is 7. These values represent the x, y, and z

positions, two clock offsets (one per observed frequency band), a clock rate (electronic delay)

and clock acceleration (drift in timestamp error). The numbers are real numbers limited within

the range given in Tab. 8.1 and are valid within this entire range. Units for these values are

indicated in Tab. 8.1.

Parameter (units) Lower bound Upper bound Range
1,2,3 (m) -1.0 1.0 2.0
4,5 (sec) -5.0E-9 5.0E-9 1.0E-8
6 (sec/day),7 (sec/day2) -5.0E-8 5.0E-8 1.0E-7

Table 8.1: The default range of the search space per individual problem dimension for all
datasets.

The objective value for each baseline is calculated by measuring the difference between each

predicted data point (derived from the 14 parameters selected per baseline) and its correspond-

ing observed (real) data point. These differences are combined in an RMS fashion into a single

composite objective value for each baseline. An optimal parameter selection would allow the

predicted and observed residual delays to overlap each other perfectly such that if one was

subtracted from the other they would essentially cancel each other out. Due to the random

noise term NBA though, such a result is impossible, and a solution with minimal difference is

deemed optimal.

8.1.3 Problem Data

The problem data used was gathered from five observation points, Parkes, ATCA, Mopra, Ho-

bart and Ceduna. For all data sets Parkes is used as the reference antenna for all baselines as

it is the most sensitive, thus minimising the contribution of the noise term NBA. The data sets

STA-131AU and STA-131AV were based on observations of two different sets of radio sources

and are available upon request from the Australia Telescope National Facility1. Use of these

datasets gives rise to four baselines using Parkes as a common reference, this configuration is

visualised in Fig. 8.2.

1Contact: vlbi@atnf.csiro.au
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Parkes

ATCA

Hobart MOPRA

Ceduna

Figure 8.2: Arrangement of baselines for the STA-131AU and STA-131AV datasets. As the com-
mon reference, Parkes is included in the calculation of the residual delay for all four baselines.

8.2 Experiment One: Naive Optimisation

8.2.1 Experiment Description

As described in Sec. 8.1.2 each antenna in the system has 7 configurable continuous (real num-

ber) parameters. As such, the problem can be treated as a 7n dimension CFO problem, where n

is the number of antennae inclusive of the reference antenna2. The bounds of the search space

(described in Tab. 8.1) are set to a reasonably large size, using domain-specific expert knowl-

edge, such that the global optimal solution is in all likelihood contained within this search

space. It is worth mentioning that possible problems with such an approach are that the search

space is too large to be effectively searched, even for a niching algorithm.

The calculation of objective values for each baseline was described in Sec. 8.1.2. This objective

function scoring routine results in an individual error for each baseline, which in turn lends it-

self to multiple objective optimisation with n− 1 objectives (where n is the number of antennae

inclusive of the reference antenna). Alternatively all objective values for all baselines can be

summed together to form a single composite error for all baselines which lends itself to single

objective optimisation.

In this experiment several multiple and single objective algorithms are applied to the problems,

treating each problem instance as a 35 dimension problem and using multiple or single objec-

tive cost functions as appropriate. In addition a random search is applied to provide a baseline

for comparison.

2This is one of many possible ways of formulating the problem. Other alternative problem formulations are de-
scribed in later experiments.
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8.2.2 Results and Discussion

Initial Analysis

To gain an initial understanding of the search space composition, a random search with crowd-

ing replacement was used to obtain multiple interesting search space features. This search in-

volved a total of 200 million independent random samples which were created in a sequential

fashion. 100 samples were generated at a time with the first 100 comprising the initial popu-

lation. At each iteration the new samples were compared against the existing population and

a crowding replacement operation was used to update the population. This crowding replace-

ment operation is the same as has been used with CPACO with a crowding window size of 1.0.

The intent is that after 200 million samples the remaining population of 100 solutions should

provide insight into some of the major features of the search space.

This process was applied to two known uni-modal and multi-modal functions, a simple linear

function with a global optima at the origin and Schwefels’ function (Sec. 6.3.2), in multiple di-

mensions. The application of this technique to known functions (Fig. 8.3) is used to illustrate

the difference between these cases in an effort to assist in the correct interpretation of the re-

sults of the random sampling of the problem data from Sec. 8.1.3. All solutions are normalised

according to the possible dimensional boundaries and are plotted for comparison in Fig. 8.3. In

Fig. 8.3 all dimensions are presented in order along the x-axis while the normalised position of

a solution in this dimension is presented on the y-axis, with each solution’s values connected

with a line.

Observation of the graphs in Fig. 8.3 highlights several interesting features. It is observed that

the STA-131AV dataset contains the same erratic jumps that are also evident in the multi-modal

example. It is also observed that there is some regularity to the samples, with regard to the

extent of coverage of the domain in all graphs. For the unimodal example this is an indication

that all interesting points are located in a single area of the search space, which is known to be

the case. For the multimodal example many values are at the extremes of the range which is

also to be expected since the optima are located at the boundaries. It is to be noted that there

is not the same clustering evident in this example since the presence of these many optima

cause the crowding replacement to return many suboptimal solutions. There is a periodicity

in the STA-131AV example dataset which is due to the fact that there are four antennae (each

with seven variables) displayed along the x-axis and for each baseline the last two variables

(acceleration and rate of acceleration) seem to always be values that are close to zero3. This

indicates that for this problem these values should most likely be kept close to zero since this is

likely to be where optimal solutions exist.

It should be clear that for each baseline, five of the seven variables tend to behave erratically

across the entire variable boundaries and thus overall the STA-V131 dataset more closely re-

sembles that of the multi-modal control dataset. The conclusion therefore is that the STA-131AV

dataset, and by extension other similar datasets, are most likely multi-modal in nature.

3Note that zero in the search space domain is normalised to 0.5 on this graph
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(a) Linear function with optima at origin (Unimodal)
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(b) Schwefels function (Multi-modal)
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(c) STA-131AV dataset (Unknown)

Figure 8.3: Figures illustrating 100 interesting features of two known problems and one un-
known problem generated using sequential random solution generation (200,000,000 samples)
with a crowding reduction strategy.
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8.2. EXPERIMENT ONE: NAIVE OPTIMISATION

Single Objective Analysis

As was indicated in the experiment description, one version of this particular experiment com-

bines the error from all antennae into a composite RMS error value, and it is desirable to min-

imise this single error value. Figure 8.4 illustrates the overall distribution of results from 100

repeats of several algorithms using different random seeds with the mean and standard devi-

ations reported in Tab. 8.2. Each algorithm was allowed 100,000 function evaluations with the

best value found in that particular run recorded. The parameter settings of each algorithm are

described fully in Tab. 8.3.

Algorithm / Problem STA-131AU STA-131AV
Random* 12.60 (1.44) 12.66 (1.62)
CGA 2.44 (0.51) 2.22 (0.39)
CPACOQuality 1.19 (0.16) 1.18 (0.21)
CPACORank 1.23 (0.24) 1.21 (0.25)
CPACOUnity 1.29 (0.19) 1.38 (0.23)

Table 8.2: Quantitative comparison of the Random, CGA and CPACO algorithms applied to
the STA-131AU and STA-131AV problems. The values indicated are the mean (with standard
deviation) and those highlighted in bold are the best values found. The statistical significance
of the results are included in the Appendix as Tab. 10.6. *Note that the random search generated
200,000,000 samples and this measure indicates statistics of 100 of the best samples found.

CPACO
Parameter Value
Number of ants / Population size 100
History Exponent (only used with CPACOQuality & CPA-
CORank)

1.0

Crowding window size 0.1
CGA
Parameter Value
Population size 100
Crossover Probability 0.95
Mutation Probability 0.85
Standard Deviation of Gaussian used for Mu-
tation

0.01% of dimension range

Table 8.3: Parameter settings of test and control algorithms

As can be seen from Fig. 8.4 the CPACO algorithms all produce good quality solutions as com-

pared to the control algorithms. Of these CPACO variants the CPACOQuality algorithm pro-

duced the best quality results, although the difference is marginal when compared to previous

results presented in Sec. 6.3.

Multiple Objective Analysis

By keeping the antennae errors separate the problem is able to be treated as a multiple ob-

jective problem with 7n dimensions and n− 1 objectives (where n is the number of antennae

inclusive of the reference antenna). For the STA-V131AU and STA-V131AV problems n = 5, as

such this makes it difficult to analyse the resulting objective space given that the space is four
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Figure 8.4: Results (RMS error value) presented from 100 repeats of the Crowding PACO algo-
rithms and the control algorithm (Crowding Genetic Algorithm) applied to the 35 Dimension
problems with each algorithm allowed 100,000 solution evaluations per experimental run.
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8.2. EXPERIMENT ONE: NAIVE OPTIMISATION

dimensional. Instead the results are compared by using the hypervolume and epsilon quality

metrics.

The NSGA-II and PACO-MOFO algorithms were both applied to the STA-V131AU and STA-

V131AV problems and allowed 100,000 solution evaluations. The final populations were recor-

ded for each experiment run, of which there were 100. The results of the quantitative analysis

are indicated in Tab. 8.4. The parameters for both the NSGA-II and PACOMOFO algorithms

are included in Tab. 8.5.

Problem Metric
Hypervolume Epsilon indicator

STA-V131AU > (0) > (0)
STA-V131AV > (0) > (0)

Table 8.4: Results of comparison between PACO-MOFO and NSGA-II on STA-V131AU and
STA-V131AV datasets using the hypervolume and epsilon indicator metrics. Indicators used
indicate if PACO-MOFO is significantly better than NSGA-II (>), if there is no significant differ-
ence (=), or if NSGA-II is significantly better than PACO-MOFO (<). The statistical confidence
of the result (p value) is also indicated. The Mann-Whitney Rank-Sum test was used for all
comparisons.

NSGA-II
Parameter Value
Population size 50
Crossover Probability 0.97
Mutation Probability 0.50
Std. Dev. of Gaussian Mutation 1% of dimension range
PACO-MOFO
Parameter Value
Number of ants (m) / Population size 50
History Exponent 1.0
Crowding Window Size 0.5
Fitness Sharing Radius (h = objectives) 1/

(
(m)1/h − 1

)
Fitness Sharing Power 1.0

Table 8.5: Parameter settings of the multiple objective algorithms

As indicated in Tab. 8.4, PACO-MOFO outperformed NSGA-II using both the hypervolume

and epsilon metrics. For interest, the solutions were also evaluated using the single objective

cost routine, meaning that all objectives were summed together to form a single objective value.

The best (in terms of the single objective score) Pareto solution was extracted for each repeat

and the average and standard deviation of these values are presented in Tab. 8.6. As can be seen

in Tab. 8.6 the multiple objective algorithms did not achieve the same solution quality using the

single objective cost function. This result is to be expected given that these algorithms must

concentrate their search across a much larger area of the search space when compared to the

single objective algorithms.

A simple dominance check was performed between the results of the CPACORank algorithm

and the PACOMOFO algorithm. This dominance check was performed such that a single best

solution from a single run of the CPACORank algorithm was compared against the entire Pareto

set from a single run of the PACOMOFO algorithm, with this pair-wise comparison repeated
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for all 100 runs. It was found that the single CPACORank solutions strongly dominated the

PACOMOFO Pareto solutions in all 100 runs. This suggests that for this particular problem a

multiple objective approach such as this is not justified. It is postulated that this may be because

the problems’ objectives are not strictly orthogonal, thus the remainder of experimentation is

performed using only the single objective cost function.

Algorithm / Problem STA-131AU STA-131AV
PACO-MOFO 8.36 (1.81) 8.89 (2.25)
NSGA-II 39.84 (14.02) 43.09 (18.73)

Table 8.6: The average and standard deviation of the best multiple objective solutions when
evaluated using the single objective cost routine.

8.3 Experiment Two: Problem Decomposition

8.3.1 Experiment Description

In the previous experiment the problem was treated as a 7n dimension problem, where n is the

number of antennae, inclusive of the reference antenna. Alternatively, if the values for the ref-

erence antenna are fixed at zero this allows the problem to be decomposed into several smaller

(less dimensions) problems since the effect of the reference is removed. Removal of the refer-

ence antenna’s variability is a valid approach since baseline measurements are always relative

to this reference antenna, and as such it will mean that all baseline variation is occurring at the

individual antennae rather than at both the reference and individual antennae. By fixing the

reference antenna the problem can be treated as a single 28 dimension problem or as four in-

dependent 7 dimension problems (four independent baselines). These choices are represented

visually in Fig. 8.5 . For this experiment these two configurations are each tested against the

original 35 dimension configuration to determine what effect they have on the overall solution

quality. All experiments are completed using the CPACORank algorithm with the same algo-

rithm parameters as used in experiment one, and the algorithm is run for the same number of

evaluations (being 100,000). In this experiment the problem is only treated as a single objective

problem.

8.3.2 Results and Discussion

The results reported in Tab. 8.7 indicate that the alternative problem decompositions increase

the quality of the result. This result is not unexpected given the findings from Sec. 6.3.5 which

indicated that all of the algorithms used here decrease in efficacy as the number of dimensions

is increased. Also of interest is the decrease in computational complexity of the algorithms

that comes as a result of the reduction in number of dimensions. Given that the complexity

of the crowding comparison operation is proportional to the number of dimensions, the less

dimensions required for comparison, the smaller the search complexity becomes. This result

speaks well for the 4×7D decomposition which is computationally less complex and achieves
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(a) All antennae are allowed to vary, as such a change
in the reference antenna will affect all antennae in the
system.

(b) All antennae are allowed to vary except for the
reference antenna which is fixed at zero.

(c) All antennae are allowed to vary except for
the reference antenna which is fixed at zero and
the problem is decomposed into several sub-
problems.

Figure 8.5: Figures illustrating possible problem compositions.
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a better result than the 28D and 35D variations.

A qualitative comparison of these results is offered by plotting the predicted (modelled) resid-

ual delays against the observed residual delays (Fig. 8.6). The results displayed in Fig. 8.6

are presented for one specific baseline, Ceduna and Parkes, where Parkes is the reference an-

tenna. It is clear from Fig. 8.6 that the quality of the fit between the observed and the predicted

data improves on a qualitative level as the number of dimensions in the problem is decreased.

Specifically the area of most improvement between the 35D and 28D variants is at the start of

the graph, however both seem to do a poor job of fitting the latter half of the observed data.

It is postulated that there may be some local minima that correspond to solutions that fit the

first half of the data well, but not the second, and that both the 35D and 28D variants get

trapped there4. It is clear from comparing quantitative results in Tab. 8.7 and qualitative results

in Fig. 8.6, that a halving of the RMS error between the 35D and 4×7D variants results in a

dramatic improvement in the solution obtained.

Problem STA-131AU STA-131AV
35D 1.20 (0.16) 1.18 (0.21)
28D 1.01 (0.14) 0.96 (0.14)
4×7D 0.60 (0.04) 0.53 (0.02)

Table 8.7: Quantitative comparison of the 35D, 28D and 7D variants of the STA-131AU and
STA-131AV problems. The values indicated are the mean (with standard deviation) when using
the CPACORank algorithm for 100,000 solution evaluations. The statistical significance of the
results are included in the Appendix as Tab. 10.7

(a) 35D

Figure 8.6: (Continued on next page)

4There is nothing to suggest though that local minima do not exist that fit the latter half of the data well while not
fitting the first half of the data.
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(b) 28D

(c) 4×7D

Figure 8.6: Results obtained by plotting the predicted (modelled) residual delays against the
observed residual delays. These plots are indicative of the mean level of performance of the
CPACORank algorithm when run for 100,000 solution evaluations on the various problem de-
compositions. The plots indicate one specific baseline for one observing frequency band, Ce-
duna and Parkes, where Parkes is the reference antenna, even though the optimisation process
was performed across multiple (4) baselines.
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To be clear the same number of solution evaluations were allowed for all problems, such that

each of the four 7D problems contained in the single 4×7D problem was allowed 100,000 solu-

tion evaluations. Thus the results reported for the 4×7D problem have been allowed 400,000 so-

lution evaluations. However, given that the solution evaluation procedures’ complexity scales

linearly, the equivalent number of solution evaluations is approximately the same as for the

28D problem being allowed 100,000 solution evaluations. Thus the result is as close to a di-

rect comparison as possible, meaning that the original observation of the 4×7D problem being

superior in terms of computational complexity and solution efficacy holds true.

8.4 Experiment Three: Application of Heuristics

8.4.1 Experiment Description

It is intuitive that there is a finite amount of the search space that can be examined in any optimi-

sation run, given that the number of function evaluations is finite. For the stochastic algorithms

used in this analysis, a reduction in the overall search space size equates to a reduction in the

problem complexity, which can hopefully lead to an increase in efficiency (speed to solution),

efficacy (quality of solution), or both. A possible downside to such a reduction in search space

would be that the search space no longer includes the global optimum. The purpose of this

experiment is to test whether a search space reduction improves the overall result.

The search space size is reduced using a solution estimation technique which performs a rough

fit of the data. This first pass rough fit of the data is performed, after which the search space

is initialised around the location of the estimate solution. The estimation is performed using a

first order approximation that minimises the error per individual baseline.

This experiment is performed in a similar manner to the previous experiments. All algorithms

are allowed 100,000 solution evaluations of the heuristically adjusted problems with results

reported for 100 repeats of each algorithm.

8.4.2 Results and Discussion

Fixed Position

After executing the solution estimation technique, the search space was initialised within the

ranges given in Tab. 8.8, and Tab. 8.9 for the STA-131AU and STA-131AV datasets respectively.

For comparison, refer back to the default window sizes used for the previous experiments pro-

vided in Tab. 8.1. By comparing these tables it can be seen that the search space size has been

dramatically reduced by the heuristic routine.

Figure 8.7 indicates the performance of all single objective algorithms on the STA-131AV and

STA-131AU datasets. The average and standard deviation of the best solutions found for all

100 repeats is reported in Tab. 8.10.

The results reported in Fig. 8.7 and Tab. 10.8 are better (with regard to the average solution
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Parameter (units) / Baseline ATCA Mopra Hobart Ceduna
1,2,3 (m) 0.274 0.355 0.401 1.324
4 (sec) 4.69E-10 6.16E-10 6.72E-10 2.21E-9
5 (sec) 4.45E-10 5.69E-10 6.66E-10 2.20E-9
6 (sec/day),7 (sec/day2) 9.14E-10 1.19E-9 1.34E-9 4.42E-9

Table 8.8: The magnitude of the search space per individual problem dimension for the STA-
131AU dataset after execution of the heuristic routine.

Parameter (units) / Baseline ATCA Mopra Hobart Ceduna
1,2,3 (m) 0.236 0.272 0.530 1.099
4 (sec) 3.52E-10 4.68E-10 8.34E-10 1.95E-9
5 (sec) 4.36E-10 4.4E-10 9.33E-10 1.72E-9
6 (sec/day),7 (sec/day2) 7.88E-10 9.08E-10 1.77E-9 3.67E-9

Table 8.9: The magnitude of the search space per individual problem dimension for the STA-
131AV dataset after execution of the heuristic routine.

Problem STA-131AU
35D 28D 4×7D

CGA 0.71 (0.11) 0.66 (0.01) 0.59 (0.00)
CPACOQuality 0.65 (0.04) 0.63 (0.00) 0.58 (0.00)
CPACORank 0.61 (0.03) 0.63 (0.00) 0.58 (0.00)
CPACOUnity 0.65 (0.03) 0.63 (0.00) 0.58 (0.00)
Problem STA-131AV

35D 28D 4×7D
CGA 0.64 (0.09) 0.54 (0.01) 0.52 (0.00)
CPACOQuality 0.57 (0.04) 0.52 (0.00) 0.51 (0.00)
CPACORank 0.56 (0.02) 0.52 (0.00) 0.51 (0.00)
CPACOUnity 0.58 (0.04) 0.52 (0.00) 0.51 (0.00)

Table 8.10: Quantitative comparison of the 35D, 28D and 7D variants of the STA-131AU and
STA-131AV problems using a heuristic to reduce the search space size. The values indicated are
the mean (with standard deviation) when using the CPACO algorithms and the CGA algorithm
each for 100,000 solution evaluations and 100 repeats. The statistical significance of the results
are included in the Appendix as Tab. 10.8
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Figure 8.7: Figure indicating the performance of test and control algorithms on 35D, 28D and
7D variants of the STA-131AU and STA-131AV problems using a heuristic to reduce the search
space size. The values indicated are the RMS error values obtained per run when using the
CPACO algorithms and the CGA algorithm each for 100,000 solution evaluations and 100 re-
peats

159



8.4. EXPERIMENT THREE: APPLICATION OF HEURISTICS

found) than those reported in the previous experiment which did not use a heuristic to re-

duce the search space size. It is interesting that in the STA-131AU example, the 35D problem

variation found a better absolute minimum solution, although on average it was worse than

the 28D and 4×7D problems. This highlights a concern that the reduction of the window size

combined with a reduction in the number of searchable dimensions may exclude the optimal

solution. When one considers the likelihood of actually finding this optimal solution, it may be

likely that the heuristic improves the average solution quality, even though it has eliminated the

global optimal solution, as has been found in this particular case. A similar result was reported

in [113], where through the use of heuristics for a bin packing problem the optimal solution was

excluded, however the average solution quality returned by an ACO algorithm was increased.

In these cases since the location of global optimum is unlikely anyway, it is deemed better to

achieve a better average solution quality than to execute a futile search for the global optimum.

In other words it is preferred that the solution quality robustness be increased.

Overall the variation in performance (in terms of the quality of solutions found) between dif-

ferent algorithms has been reduced substantially, and one may conclude that the algorithms are

approaching a minimum boundary. This result confirms that even though the ideal solution to

the problem would be zero, due to random noise in the model, such a result is impossible to

obtain.

Variable Position

While problem variable ranges are chosen carefully, by expanding the range beyond where

optima should be located there is no certainty that this does not exclude good areas of the

search space. A simple approach to solve this problem is to expand the search space for the

few variables that require a larger range, however the variables that require a larger range are

often different for each problem tested, thus it is never known a-priori which variable ranges

will require adjustment. This means that if the search space was to be expanded, it would

have to be expanded for all variables, which can result in the search space becoming orders

of magnitude larger in all dimensions, thus removing the benefit of the initial reduction in the

search space size.

Another solution to the problem is to allow the algorithm to search the space for a given number

of solution evaluations, and to then reposition the search space boundaries evenly around the

best solution found. After repositioning the search space boundaries the algorithm can be re-

initialised and run again from this new position. This process of running the algorithm and

moving the search space boundaries can be repeated as many times as is required by the user,

and means that if an algorithm converges at a boundary, or boundaries, in a particular run

the next iteration will see this boundary lie in the centre of the new range. This method is

not entirely foolproof, as a possible problem is that the algorithm may converge to the wrong

end of a particular dimension of the searchable search space, and thus the next run will see

the window move in the wrong direction. By comparing the results from the fixed window

position experiments it should become quickly apparent whether this is the case though.
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Figure 8.8: Results (RMS error value) presented from 100 repeats of the variable search strategy
versus the fixed search strategy applied to the 4×7D problem with each algorithm allowed
1,000,000 solution evaluations per experimental run.
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To test this variation the CPACORank algorithm was run for 1,000,000 solution evaluations

with 10 shifts. This equates to 100,000 solution evaluations per unique window position. The

window was initialised as in the previous experiment using the heuristic search space reduction

technique. Results comparing this technique to the static search space set using the heuristic

are reported in Fig. 8.8 and Tab. 8.11.

Problem Variation / Problem STA-131AU STA-131AV
Variable 0.52 (0.00) 0.48 (0.00)
Fixed 0.58 (0.00) 0.51 (0.00)

Table 8.11: Quantitative comparison of the fixed and variable search strategies applied to the
STA-131AU and STA-131AV problems. The values indicated are the mean (with standard devi-
ation) and those highlighted in bold are the best values found. For both strategies the CPACO-
Rank algorithm was used as the base algorithm.

The results reported in Tab. 8.11 and Fig. 8.8 indicate that the initial assumptions about the

convergence of the algorithm to boundaries of the search space was correct. By allowing the

algorithm to adjust the search space boundaries dynamically, it is shown that the algorithm

efficacy can be improved. It is important to note that this result is not simply due to more

solution evaluations being available to the algorithm, since the fixed heuristic strategy was also

allowed 1,000,000 solution evaluations, and returned solutions similar to those obtained when

only 100,000 solution evaluations were allowed. When combined, a heuristic to reduce the

search space size and dynamic search space relocation are shown here to be effective problem

solving strategies.

8.5 Final Solution Analysis

Given that the results obtained in this chapter are for an actual ‘real world’ problem, it is useful

to make a brief comment as to whether the results meet the needs of a radio astronomy domain

expert. A more accurate geodesy model than the model used in this analysis was used in an

external experiment (this experimental analysis is currently unpublished) to compute the posi-

tional errors for the STA-131AV dataset. While the values reported using this complex model

are more accurate than those obtained in this chapter, this complex model requires magnitudes

more computational effort and incorporates more domain specific (heuristic) information to

obtain a result. The results for the positional errors are reported for all four antennas (using

Parkes as the reference) using the complex model (Tab. 8.12) and to compare the best result

obtained using the 4×7D model with a heuristic and shifting search space boundaries from

Sec. 8.4.2. The difference between these results are reported in Tab. 8.14 which indicates the

difference between both approximations.

The results reported in Tab. 8.14 are acceptable considering the geodesy model used5. Given

that the estimated error in the alternative model’s measurements are approximately±10cm per

dimension, the results for both ATCA and Mopra are deemed comparable to the alternative

5According to a personal communication with a domain expert (Adam Deller, Centre for Astrophysics and Super-
computing, Swinburne University of Technology).
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Baseline x (m) y (m) z (m)
ATCA -0.08 0.13 0.31
Mopra -0.08 0.08 0.31
Hobart 0.00 0.18 -0.07
Ceduna -1.72 1.65 -0.89

Table 8.12: Positional errors obtained for the STA-131AV dataset using an alternative (but more
complex) geodesy model.

Baseline x (m) y (m) z (m)
ATCA -0.16 0.14 0.22
Mopra -0.15 0.16 0.13
Hobart -0.15 0.36 -0.31
Ceduna -1.54 1.47 -0.58

Table 8.13: Positional errors obtained for the STA-131AV dataset using the 4×7D problem de-
composition, heuristic search space reduction and relocation technique from Sec. 8.4.2.

complex model. For the Hobart and Ceduna baselines the positional errors are larger than

the allowed ±10cm, which may be due to unaccounted systemic errors or the optimisation

algorithm not obtaining a good solution.

Systemic errors could manifest themselves in a variety of ways since:

• The complex model uses cleaner data where all the radio sources are good, as opposed to

the data used here where the sources are less reliable.

• The complex model models the atmosphere better thus reducing introduced noise.

• The complex model uses multiple widely spaced frequency bands which results in an

increase in sensitivity.

While further improvements could possibly be made to the optimisation algorithm used, the

results obtained suggest that systemic errors account for the discrepancy in results for the Ho-

bart and Ceduna baselines. The consistently good results obtained for the ATCA and Mopra

baselines suggest that the optimisation algorithm is able to optimise the model effectively, since

in these cases the model may be more accurate. In the case of Hobart and Ceduna the model

may be less accurate, thus no amount of optimisation would be able to produce positional

errors that agree with the complex model’s reported findings. In future experimentation the

previously mentioned systemic errors could be addressed and if the results are improved this

would strengthen such an assertion. For this experiment though it may be suggested that the

results obtained are good, given the model used.

Baseline x (m) y (m) z (m)
ATCA 0.08 0.01 0.09
Mopra 0.07 0.08 0.18
Hobart 0.15 0.18 0.24
Ceduna 0.18 0.18 0.31

Table 8.14: Magnitude of difference between the positional errors reported in Tab. 8.12 and
Tab. 8.13.
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8.6 Chapter Summary

In this chapter the Crowding PACO and PACO-MOFO algorithms were applied to an antenna

correlation problem from the field of VLBI. The problem was concerned with the reduction of

errors in an astronomical observation through the use of a parameterised model. The problem

was modelled as single and multiple objective function optimisation problems, with the best

results obtained for a 4×7D decomposition of the problem using a single objective error mea-

surement. The use of a heuristic to reduce the search space size improved the obtained result

which is not an unintuitive finding. The combination of heuristic and dynamic search space

boundaries provided the best results for all experiments tried. This result was shown to be

good in a real-world context when systematic errors are taken into consideration. Overall the

results obtained in this chapter speak well for the applicability of Niching PACO algorithms

to complex ‘real-world’ problems, however further successful testing on different optimisation

problems would strengthen such an assertion.
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CHAPTER 9

Summary and Final Remarks

9.1 Summary

Through a review of existing PACO algorithms a general descriptive framework for PACO

was developed. Using the framework, several new PACO algorithms were developed all in-

corporating diversity preservation techniques from the Evolutionary Computation field. These

niching techniques had been previously demonstrated to be effective at maintaining population

diversity with a limited population size. The niching techniques had also been demonstrated

to be effective at increasing the algorithm efficacy in many different problem domains.

An empirical analysis of these novel implementations was presented using a variety of bench-

mark single and multiple objective continuous function and combinatorial optimisation prob-

lems. These problems were chosen since they demonstrate the advantages and disadvantages

of adding niching to a PACO algorithm. The empirical results indicated that the use of niching

benefited some problem domains while offering no substantial advantage to others. The most

meaningful results from empirical testing are:

• Single objective TSP: For the problems tested there seemed to be a marked decrease in

obtained solution quality. A study of the neighbourhood relationship of an indicative TSP

problem instance highlighted that the TSP may offer a natural advantage to algorithms

that tend to direct search effort in one area of the search space. A simple TSP problem

was constructed to demonstrate that the Niching PACO algorithms tested were exhibiting

niche formation behaviour, but ultimately for this problem domain there seems to be no

advantage in the application of these niching techniques.

• Single objective CFO: Unlike the single objective TSP some of these problems did con-

tain multiple spatially separated optima. The performance metrics used were such that

algorithms were rewarded for identification and continued maintenance of many of these

spatially separated optima, thus algorithms without niching were placed at a distinct

disadvantage. Of the Niching PACO algorithms tested the Crowding PACO variants ex-

hibited the best performance, while the Fitness Sharing PACO algorithm did not seem

to perform as well. Reasons for this lack of performance were most probably due to the
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sensitivity of parameter selection.

Other problems without multiple optima were also tested and while this lifted the perfor-

mance of the non-niching algorithms tested, the niching PACO algorithms were still able

to locate the global optimal solution within a small number of function evaluations. These

results illustrated that niching can be of benefit not just in the location and maintenance

of multiple optima but also in assisting the location of a single global optimum.

• Multiple objective TSP: Unlike the single objective TSP which saw poor results for the

Niching PACO algorithms, the application of the Crowding PACO algorithm to the mul-

tiple objective TSP saw a marked increase in algorithm efficacy and computational ef-

ficiency. For the problems tested, the Crowding PACO algorithm was able to maintain

a good coverage of the approximate Pareto front which was closer to the actual Pareto

front than that of the control algorithm. The algorithm was able to achieve this increase in

efficacy while simultaneously decreasing the computational complexity of the control al-

gorithm. This decrease was achieved through the reduction of the number of pheromone

maps, a reduction in population size, and by constructing more solutions per iteration.

• Multiple objective CFO: The Crowding PACO algorithm that was applied to the MOTSP

was modified to include fitness sharing for application to the MOFO problem domain.

The resultant algorithm, PACO-MOFO, was demonstrated to be able to achieve results

mostly on par with an existing state-of-the-art MOEA algorithm, NSGA-II. For some of

the problem instances the PACO-MOFO algorithm tended to concentrate its search on the

middle of the approximate Pareto front, this behaviour being attributed to the crowding

replacement operation.

The final chapter discussed the application of the Niching PACO algorithms to an industrial ap-

plication. This application was included to investigate the algorithms’ applicability to a ‘real-

world’ optimisation problem. The results demonstrated that the Niching PACO algorithms

were able to consistently optimise the given problems better than the control algorithms and

most importantly better than had been previously achieved using other problem solving tech-

niques. This result confirms to some degree that the algorithms presented are able to be applied

with confidence to problems where the optimal solution is unknown.

9.2 Contributions

The first contribution of this thesis was the review of all known PACO algorithms which fo-

cused on the identification of features common to these algorithms. The purpose of the review

was to use commonalities between existing PACO algorithms for the development of a PACO

framework. The framework presented was able to make use of existing elements from previous

PACO algorithms and shows a strong similarity to the existing ACO Metaheuristic Framework.

The framework provides a new perspective on existing work, while allowing for further algo-

rithm developments and refinement.
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The second contribution was the development of several new PACO algorithms imbued with

a diversity preservation technique known as niching. Niching has been studied extensively

in the field of Evolutionary Computation, but had never been explicitly applied to an ACO

algorithm. Two of the more popular niching techniques, crowding and fitness sharing were

implemented with algorithms extended from the PACO framework.

Of the problem domains used to test the new algorithms, the continuous function optimisation

problem domain is one which has not received as much attention as other discrete combina-

torial problem domains by the ACO literature. As such, modifications to the basic solution

construction were made which extend existing ACO solution construction techniques for this

problem domain. Prior to this study most ACO algorithms tended to use a single solution

for new solution construction, whereas an alternative solution construction technique which

samples the domain more coarse way was presented here.

While many Multiple Objective ACO algorithms have been presented in the past, this study

provided the first Multiple Objective ACO algorithm that combines a single pheromone ma-

trix, with Pareto based evaluation and an online population. This algorithm was shown to

dramatically improve on an existing state-of-the-art Multiple Objective ACO algorithm. A gen-

eral discussion of the utility of using multiple pheromone maps in Multiple Objective ACO

algorithms was also provided. While many Multiple Objective ACO have been proposed, this

work is the first to present an ant-inspired algorithm for the Multiple Objective Function Opti-

misation problem.

The final contribution was the application of the new algorithms to an industrial application.

This like many problems residing in the astrophysics domain had never previously been at-

tempted to be optimised by a nature-inspired metaheuristic technique. This last contribution

is perhaps then the most significant since it demonstrates to the Computational Intelligence

community the effectiveness of some of these Niching PACO algorithms, while also demon-

strating to the Astrophysics community the possible advantages gained through the use of

nature-inspired problem solving techniques.

9.3 Future Work

PACO is naturally suited to be run as a multiple population (island population) algorithm. The

presence of a permanent population makes for easy sharing of solutions between populations

(migration) and each population can be used to influence its own pheromone map. To-date

there have not been any multiple population algorithms using the PACO metaphor, and this is

an area of likely future work.

The niching algorithms developed in this thesis are able to maintain diverse (yet stable) popu-

lations of solutions over an extended period of time, while still making incremental improve-

ments to the problem being solved (when it has not been solved to optimality). This observed

behaviour could prove useful on dynamic problem instances where a non-diverse population

may have difficulty adapting to changing problem constraints. Since the niched population is
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already dispersed across the solution space it may prove quicker to adapt or react to changes

in the solution space.

The PACO algorithm was chosen for the application of niching since niching requires access to

a population of solutions for comparison against new solutions (crowding) or to influence new

solution construction through modification of the fitness landscape (fitness sharing). While

this is a very straightforward way to achieve niche formation, it may be possible to achieve

niche formation through other means without resorting to explicit niching techniques such as

those presented here. Alternative niching techniques would no doubt prove as useful as those

presented in this study in similar problem domains where convergence to multiple areas of the

search space is advantageous to the overall search efficacy.

Another area of possible future work is the application of the Niching PACO algorithms to

other industry problems. One such problem identified but not tested in this thesis is from the

field of control theory. The problem is concerned with the optimisation of a closed-loop control

system through the insertion of a Proportional Integral Derivative (PID) controller. Such PID

controllers require the setting of parameters to control the overall system behaviour and have

been previously tuned by deterministic and non-deterministic algorithms, including EC tech-

niques. The purpose of such a controller is to optimise several conflicting and complimentary

objectives such as stability, overshoot, steady-state error, rise time and settling time. However,

much of this research has focused on single objective variations which combine these param-

eters a priori. It may be worthwhile to attempt the optimisation of such a system using an a

posteriori multiple objective optimisation approach.

On a theoretical level an analysis of PACO in the context of Evolutionary Algorithms based on

Probabilistic Models (EAPM) would be rewarding. Some discussion was offered on the similar-

ities between EAPM and PACO in Sec. 4.8. In this analysis it was concluded that PACO does fit

into this category, as such it may be useful to more fully demonstrate exactly what features are

common between PACO and other EAPM. It may also be interesting to investigate the effects of

extra constraints on the effectiveness of PACO. Such extra constraints are often found in MOO

problems, thus an understanding of the addition of extra constraints on algorithm performance

could hopefully lead to a wider applicability of Multiple Objective PACO algorithms.
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CHAPTER 10

Appendix

FSPACO CPACO MMAS PACO
FSPACO = (0.57) < (0) < (0.039)
CPACO = (0.57) < (0) < (0.017)
MMAS > (0) > (0) > (0)
PACO > (0.039) > (0.017) < (0)

(a) Berlin52

FSPACO CPACO MMAS PACO
FSPACO > (0) < (0.003) = (0.168)
CPACO < (0) < (0) < (0)
MMAS > (0.003) > (0) = (0.099)
PACO = (0.168) > (0) = (0.099)

(b) KroA100

FSPACO CPACO MMAS PACO
FSPACO > (0.009) = (0.055) < (0)
CPACO < (0.009) = (0.224) < (0)
MMAS = (0.055) = (0.224) < (0)
PACO > (0) > (0) > (0)

(c) eil101

Table 10.1: Statistical significance of results for single objective TSP. Indicators used indicate if
the algorithm in the left column is significantly better than the algorithm in the top row (>),
if there is no significant difference (=), or if the algorithm in the top row is significantly better
than the algorithm in the left column (<). The statistical confidence of the result (p value) is also
indicated. The Mann-Whitney Rank-Sum test was used for all comparisons.
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FSPACO CPACO MMAS PACO
FSPACO > (0) < (0.011) < (0)
CPACO < (0) < (0) < (0)
MMAS > (0.011) > (0) < (0.002)
PACO > (0) > (0) > (0.002)

(d) ch130

FSPACO CPACO MMAS PACO
FSPACO > (0) < (0) < (0)
CPACO < (0) < (0) < (0)
MMAS > (0) > (0) = (0.617)
PACO > (0) > (0) = (0.617)

(e) ch150

FSPACO CPACO MMAS PACO
FSPACO > (0) < (0) < (0)
CPACO < (0) < (0) < (0)
MMAS > (0) > (0) > (0.001)
PACO > (0) > (0) < (0.001)

(f) gr202

Table 10.1: (cont.) Statistical significance of results for single objective TSP. Indicators used
indicate if the algorithm in the left column is significantly better than the algorithm in the top
row (>), if there is no significant difference (=), or if the algorithm in the top row is significantly
better than the algorithm in the left column (<). The statistical confidence of the result (p value)
is also indicated. The Mann-Whitney Rank-Sum test was used for all comparisons.
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CPACOQuality CPACORank CPACOUnity CGA
CPACOQuality > (0.013) > (0) > (0)
CPACORank < (0.013) > (0) > (0)
CPACOUnity < (0) < (0) > (0)
CGA < (0) < (0) < (0)

(a) STA-131AV

CPACOQuality CPACORank CPACOUnity CGA
CPACOQuality > (0.01) > (0) > (0)
CPACORank < (0.01) > (0) > (0)
CPACOUnity < (0) < (0) > (0)
CGA < (0) < (0) < (0)

(b) STA-131AU

Table 10.6: Statistical significance of results for for 35D Antenna Problems. Indicators used
indicate if the algorithm in the left column is significantly better than the algorithm in the top
row (>), if there is no significant difference (=), or if the algorithm in the top row is significantly
better than the algorithm in the left column (<). The statistical confidence of the result (p value)
is also indicated. The Mann-Whitney Rank-Sum test was used for all comparisons.

35D 28D 4×7D
35D < (0) < (0)
28D > (0) < (0)
4×7D > (0) > (0)

Table 10.7: Statistical significance of results for for 35D, 28D and 4×7D antenna problems. In-
dicators used indicate if the result in the left column is significantly better than the result in the
top row (>), if there is no significant difference (=), or if the result in the top row is significantly
better than the result in the left column (<). The statistical confidence of the result (p value) is
also indicated. The Mann-Whitney Rank-Sum test was used for all comparisons.

35D 28D 4×7D
35D < (0) < (0)
28D > (0) < (0)
4×7D > (0) > (0)

Table 10.8: Statistical significance of results for for 35D, 28D and 4×7D antenna problems using
heuristics. Indicators used indicate if the result in the left column is significantly better than the
result in the top row (>), if there is no significant difference (=), or if the result in the top row is
significantly better than the result in the left column (<). The statistical confidence of the result
(p value) is also indicated. The Mann-Whitney Rank-Sum test was used for all comparisons.
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