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Abstract

The world today is full of information systems which make huge quantities of information
available. This incredible amount of information is clearly overwhelming Internet end-
users. As a consequence, intelligent tools to identify worthwhile information are needed,
in order to fully assist people in finding the right information. Moreover, most systems
are ultimately used, not just to provide information, but also to solve problems.

Encouraged by the growing popular success of Internet and the enormous business
potential of electronic commerce, e-catalogs have been consolidated as one of the most
relevant types of information systems. Nearly all currently available electronic catalogs are
offering tools for extracting product information based on key-attribute filtering methods.
The most advanced electronic catalogs are implemented as recommender systems using
collaborative filtering techniques.

This dissertation focuses on strategies for coping with the difficulty of building intelli-
gent catalogs which fully support the user in his purchase decision-making process, while
maintaining the scalability of the whole system. The contributions of this thesis lie on
a mixed-initiative system which is inspired by observations on traditional commerce ac-
tivities. Such a conversational model consists basically of a dialog between the customer
and the system, where the user criticizes proposed products and the catalog suggests new
products accordingly.

Constraint satisfaction techniques are analyzed in order to provide a uniform frame-
work for modeling electronic catalogs for configurable products. Within the same frame-
work, user preferences and optimization constraints are also easily modeled. Searching
strategies for proposing the adequate products according to criteria are described in de-
tail.

Another dimension of this dissertation faces the problem of scalability, i.e., the problem
of supporting hundreds, or thousands of users simultaneously using intelligent electronic
catalogs. Traditional wisdom would presume that in order to provide full assistance to
users in complex tasks, the business logic of the system must be complex, thus preventing
scalability. SmartClient is a software architectural model that uses constraint satisfaction
problems for representing solution spaces, instead of traditional models which represent
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solution spaces by collections of single solutions. This main idea is supported by the fact
that constraint solvers are extreme in their compactness and simplicity, while providing so-
phisticated business logic. Different SmartClient architecture configurations are provided
for different uses and architectural requirements.

In order to illustrate the use of constraint satisfaction techniques for complex electronic
catalogs with the SmartClient architecture, a commercial Internet-based application for
travel planning, called reality, has been successfully developed. Travel planning is a par-
ticularly appropriate domain for validating the results of this research, since travel infor-
mation is dynamic, travel planning problems are combinatorial, and moreover, complex
user preferences and optimization constraints must be taken into consideration.



Résumé

Le monde d’aujourd’hui est rempli de systèmes d’information qui rendent disponibles
d’énormes quantités de données. Cet incroyable quantité d’information surpasse claire-
ment l’utilisateur d’Internet. C’est pourquoi des outils intelligents permettant d’identifier
les informations pertinentes sont nécessaire pour pouvoir aider les personnes à trouver
l’ information adéquate. De plus, la plupart des systèmes sont finalement utilisés non
seulement pour trouver de l’information mais également pour résoudre des problèmes.

Encouragés par le succès croissant d’Internet et l’énorme potentiel du commerce électro-
nique, les catalogues électroniques sont devenus un des types de systèmes d’information les
plus incontournables. La plupart de ceux-ci permettent de rechercher des produits grâce
à des méthodes de filtrages basés sur leurs attributs. Les catalogues électroniques les plus
évolués sont conçus comme des systèmes de recommandation utilisant des techniques de
filtrage coopératif.

Cette thèse se concentre sur les stratégies pour faire face à la difficulté de construire des
catalogues intelligents qui supportent l’utilisateur dans son processus de décision d’achat
tout en préservant la scalabilité du système. Les contributions de cette thèse se reposent
sur modèle d’interaction inspiré par l’observation du commerce traditionnel. Ce modèle
consiste d’un dialogue entre le client et le système, où l’utilisateur critique les produits
proposés et le catalogue suggère de nouveaux produits en conséquence.

Les techniques de satisfaction de contraintes sont analysées afin de fournir un cadre
uniforme pour la modélisation de catalogues électroniques de produits configurables. A
l’intérieur de ce cadre, les préférences d’utilisateur ainsi que les contraintes d’optimisation
sont aussi facilement modélisées. Des stratégies de recherche pour proposer les produits
conformes à ces préférences et contraintes sont décrites en détails.

Un autre aspect de cette thèse fait face au problème de scalabilité, c’est-à-dire au
problème de supporter des centaines, ou milliers, d’utilisateurs simultanés des catalogues
électroniques. La sagesse traditionnelle présumerait que, pour fournir une assistance com-
plète à l’utilisateur pour des tâches complexes, la logique du système doit être complexe
donc empêchant toute scalabilité. SmartClient est un modèle d’architecture logicielle qui
utilise les problèmes de satisfaction de contraintes pour représenter les espaces de solu-
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tions à la place des modèles traditionnels qui les représentent à l’aide de collections de
solutions isolées. La principale idée est soutenue par le fait que les algorithmes de résolu-
tion par contraintes sont extrêmement compacts et simples tout en fournissant une logique
sophistiquée. Différentes configurations de l’architecture SmartClient sont données pour
différentes utilisations et spécifications d’architecture.

Afin d’illustrer l’utilisation des techniques de satisfaction de contraintes pour des ca-
talogues électroniques complexes utilisant l’architecture SmartClient, une application com-
merciale pour la planification de voyages, appelée reality, a été développée avec succès. La
planification de voyages est un domaine particulièrement approprié pour la validation des
résultats de cette recherche car l’information est dynamique, les problèmes de planification
sont combinatoires et, de plus, de complexes préférences d’utilisateur et des contraintes
d’optimisation doivent être prises en considération.
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teu incondicional suport. M’has ajudat molt més del què et penses... Gràcies!
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Chapter 1

Introduction

A weekday edition of the New York Times contains more information than the average
person was likely to come across in a lifetime in seventeenth-century England.

Information Anxiety, Richard Saul Wurman.
New York, Doubleday, 1989.

1.1 Motivation

The world today is full of information systems which make huge quantities of information
available. A good example is the travel domain, where information systems accessible
through the Internet provide information about schedules, fares and availability of almost
any means of transport throughout world.

The first generation of information systems provided simple database access facilities
such as SQL1 which allow a user to access specific information. The current generation
provides some intelligence for locating the right information, for example by searching for
flights at a certain fare or with certain schedule constraints.

However, most information systems are ultimately used to not just provide information,
but to solve problems. Thus, we believe that the next generation of intelligent information
systems should provide explicit support for the problem-solving activities that a user
carries out with them. For example, a travel information system should assist the user
plan an entire trip according to constraints and preferences, and not just give information
about certain airlines schedules.

One dimension of this new generation is the integration of various information systems
into a uniform framework using agents. Such integration is appearing for example in
shopping robots, or in the integrated travel information system designed by Siemens as a
demonstration within the FIPA2 consortium.

Another dimension is to provide explicit problem-solving capabilities: help with con-
figuring a complete solution, possibly consisting of many parts. For example, a travel
planning system would configure an entire trip with matching outbound and inbound

1SQL stands for Structured Query Language.
2Foundation of Intelligent Physical Agents (FIPA) is a non-profit organization aimed at producing

standards for the interoperation of heterogeneous software agents. http://www.fipa.org.
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flights, ground connections, and so on. An insurance planner would configure a suitable
insurance package from offers of different companies with different parameters. Such prob-
lem solvers will be essential to support people deal with the complexity of the information
provided by the information servers.

Scalability is another major issue in this kind of application, since web servers often
have to deal with hundreds of users at the same time. Traditional wisdom would say
that in order to make intelligent tools, it will have to include a lot of complex code and
data, i.e., complex software. Thus, having complex software to better support the user
apparently increases the difficulty of building scalable architectures.

1.2 Information systems

Recently, it has been estimated that there are 200 million host servers, and 820 million
internet users3. Clearly, this incredible growth of available information through Internet
entails an overload of information. Thus, intelligent tools to process information to
identify worthwhile information are needed.

overload of information −→ intelligent tools

These tools exist for different purposes, ranging from e-mail filters to web search engines.
Several techniques for extracting and filtering the right information are widely applied
to assist the user. However, in complex domains, more sophisticated techniques to fully
support the user are required. This dissertation focuses on a specific kind of information
system in the area of electronic commerce, namely electronic catalogs.

1.2.1 Electronic commerce

Traditional commerce can be defined as the set of activities involved in selling and buy-
ing goods or services. Analogously, electronic commerce (also called e-commerce) is the
electronic counterpart of traditional commerce, i.e., the activities are carried out in some
electronic environment, usually through Internet. Actually, the goals of any commerce ac-
tivity are the same in its traditional form than in its electronic form. The main differences
between these commerce modes are the nature of the stakeholders and the interactions
among them:

Traditional commerce activities are done directly between human individuals or orga-
nizations. The selling and buying activities involve humans without any automatic
computerized process. Therefore, traditional commerce activities are achieved by
means of human interactions.

3Data provided by Netsizer of Telcordia Technologies on August 2002, http://www.netsizer.com and

http://www.telcordia.com. These estimations are done by samplings of 150,000 randomly generated IP

addresses each day.
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Electronic commerce activities are carried out within computer mediated environments.
This thesis focuses on electronic commerce systems where the seller is replaced by a
software entity4. The user is a human being who interacts with the selling software
entity. Hence, the e-commerce activity implies human-computer interactions.
Note that e-commerce systems could also involve buyer software entities with hu-
man sellers. Even more, one could imagine e-commerce systems where the whole
process is done through software entities. However, this thesis deals with electronic
commerce software where only the seller is implemented within a software entity,
which is currently the most commonly used form of electronic commerce in the in-
dustry.

Electronic mediated commerce arises a broad range of new issues, involving many
different disciplines:

• Security is an important issue in electronic commerce, for both the buyer and the
seller. It involves mechanisms to guarantee that the buyer gets the goods he pays
for, and the seller receives the money for the goods. Security in electronic commerce
also deals with preventing the hacking of the system, especially in the electronic
transaction phase (electronic payments).

• Trust reputation faces the difficulties that users encounter to identify to what
extent a seller in an e-commerce environment can be trusted. Sometimes, it is
difficult for the user to identify the organization behind an e-commerce system.

• Law applied to the paradigm of electronic commerce emerges as a new discipline to
cover a new way of trading goods and services world-wide electronically.

• Payment mechanisms are needed to accomplish transactions electronically in a
secure way. Besides the payment security issue, new electronic payment mechanisms
arise in the area of electronic transactions.

• Advertising can be adapted to increase its efficiency into new electronic forms. For
instance, electronic environments allow organizations much more targeted and cost
effective marketing.

• Ontologies are needed to build electronic market places where several organizations
or individuals share and use heterogeneous sources of information.

• Intermediaries have to deal with new challenges in electronic commerce. It is
believed that e-commerce is changing the way people exchange goods and services,
thus the role of intermediaries has been adapted according to these changes.

• Back-office management is also changing for those traditional commerce orga-
nizations that are combining traditional with electronic commerce or completely
migrating to e-commerce.

4A software entity is also called a software agent by some authors. However, since software agents are

studied in a specific topic in computer science and this work is not directly related to it, the term software

entity will be preferred in the reminder of the thesis.
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• Negotiation can be done (semi) automatically by means of software agents. Negoti-
ation techniques have received a lot of attention from the research community, lead-
ing to new e-commerce possibilities such as electronic auctions or shopping robots.

• Personalization is about adapting an e-commerce system to each user or poten-
tial buyer. Personalized electronic commerce systems allow organizations to build
electronic commerce platforms that are able to propose personalized contents and
interfaces depending on user profiles.

• On-line catalogs can be seen as tools for supporting the buyer to find the best
product according to his preferences.

Note that commerce activities handle many different types of products or services
(items in general). Depending on different properties, one can distinguish the following
types of items:

• Tangible goods are traded almost daily by all of us. These are items that can be
physically examined. Intangible goods are normally traded by means of contracts
between the buyer and the seller. Some examples of intangible items are insurance
policies, flight tickets, services, and so on.

• Configurable goods are formed by several components. Usually, these components
must satisfy a set of configuration or compatibility rules. Thus, these items accept
a degree of personalization in the sense that buyers can build their own product
(customization). For instance, consider a holiday package which is composed by a
flight ticket, a hotel reservation and a rental car booking. Clearly, travel agencies
accept variances of such packages under certain compatibility rules. Other examples
of configurable goods are houses which can be personalized in many ways, cars which
have many available options, insurances which can be adapted to specific needs, and
so forth. Note that unconfigurable items will be also called atomic.

1.2.2 Electronic catalogs

An electronic catalog5 is defined here6 as an information system that provides access to
a collection of product descriptions7 that an organization wants to offer. The items
of the catalog are identified by a set of attributes, and the whole set of items define the
product space.

Electronic catalogs can be implemented in numerous ways. The most widely accepted
architecture, called 3-tier layer architecture, involves the layers and components shown
in Figure 1.1:

5Electronic catalogs are called by many different terms, for instance e-catalogs, on-line catalogs, elec-

tronic shops, or internet stores.
6To our knowledge, no formal definition of electronic catalog exists in the research community, thus our

definition is given to fit the topic of this thesis.
7Note that the term item will be referred to as product and vice-versa indifferently throughout this

thesis.
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Figure 1.1: Basic components involved in electronic catalogs within a 3-tier architecture.
The presentation layer provides graphical user interfaces between the user and the system.
The business logic layer processes the data from the presentation layer to the persistence
layer and vice-versa. The persistence layer is used to store the data of the catalog and
provides mechanisms for updating and retrieving data.

• Persistence layer organizes and stores the products of the catalog. It can also
contain other information, for instance user profiles which keep relevant information
about users. In general, the persistence layer can be composed by several internal
or external databases or other information systems. Basically, the persistence layer
handles mechanisms for:

– Updating data. Catalogs in general are dynamic since organizations change
their offers by adding or removing items, adjusting prices and so on. Thus,
these changes must be reflected accordingly in the persistence layer.

– Retrieving data. This mechanism allows the system to retrieve information
from the databases or other information systems and it can be implemented in
a more or less sophisticated manner. The simplest method would be to directly
access specific products by some attributes. More sophisticated methods exist
for accessing several products that match a set of criteria, for example, in the
case of a database, by means of SQL queries.

• Business logic layer processes data between the persistence layer and the presen-
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tation layer, in both directions:

– presentation layer → persistence layer: this component takes the user
requests and performs the appropriate queries to the retrieving component in
the persistence layer in order to access the information he is looking for. This
process could imply to split the user request into several queries for the different
databases or information systems of the persistence layer. In the case the
user expresses preferences about the product he would like, this process should
adapt the queries, taking these preferences into account. Another approach
for handling user’s preferences would be to deal with them after getting the
information, and in such case this process would take place in the following
component (persistence layer → presentation layer).

– persistence layer → presentation layer: this component gets product in-
formation from the retrieve component of the persistence layer to serve user
requests. For configurable products, this process should take care of building
the products satisfying the compatibility rules. It could also rank the products
by some criteria, for example according to the user preferences. In general, a
mechanism could exist to transform the data from the persistence layer into
an appropriate format for the presentation layer. In this way, the information
can be shifted to different types of graphical user interfaces such as dedicated
applications, web browsers, PDAs8, mobile phones, and so forth.

Other mechanisms can be implemented in this layer. For example, some organiza-
tions are interested in producing statistics on the users’ requests or profiles. This
information could then be used to adapt their marketing strategy.

• Presentation layer is responsible for the interaction with the user by means of
Graphical User Interfaces (GUI). Eventually, the presentation layer can contain sev-
eral GUIs to support different interaction modes, e.g., dedicated application, web
browser, PDA, mobile phone, and so forth. It is able, in general, to provide mecha-
nisms for handling the following steps:

1. Querying: the user states his main request by specifying the type of product
he is looking for. Preferences can also be expressed within this step. The query
information is sent to the business logic layer.

2. Browsing: the user browses through the product space provided by the busi-
ness logic layer. By browsing the product space, the user is able to evaluate the
different proposed alternatives.

3. Selecting: the user selects the product he prefers the most, in order to conclude
the purchase decision making process. The selected item is then sent to the
business logic layer to be processed.

8Personal Digital Assistants.
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When the 3-tier layers are implemented separately, i.e., the code belonging to each layer
is clearly separated, the resulting architecture is called a 3-tier architecture. Nowadays, it is
widely accepted that the best architecture for information systems is a 3-tier architecture.
The independence of the three tier layers ease the maintenance of such systems. Usually,
the communication between the presentation layer and the business layer is done through
Internet, but it is not a requirement.

Many different types of electronic catalogs are currently available, see for example
the classification made by Spiller and Lohse in [227]. They identify the characteristics of
Internet retail stores and compare a large set of representative real electronic catalogs in
the industry.

1.2.3 Configuration

As a consequence of the increasing demand for customized products, the industry is of-
fering more and more configurable products in contrast to the old model based on mass-
production [186]. Faltings and Freuder in [60] wrote that Henry Ford reportedly said that
his customers could have their cars in any color as long as it was black. Today, no car
company could survive with such a narrow range of choices. The main advantages of
applying configuration or customization to many industries can be summarized as follows:

1. Better serve customers. Nowadays, people are used to a much wider range of
products available in the market than ever before, and thus, configurable products are
required to better serve customers, by satisfying their specific needs and preferences.

2. Differentiate from competitors. In the current highly globalized market, or-
ganizations try to differentiate their offer from the competitors. Clearly, having
products that can be customized can be a relevant factor in order to achieve such
differentiation.

3. Decrease production costs. In many industries, the process of manufacturing
separate components and then assembling them together, is much more cost effective
than directly manufacturing different customized products. For example, in the car
industry, many components are built separately and cars are then customized with
such components in an on-line demand basis.

4. Avoid wrong customer orders. Wrong customer orders can be avoided by hav-
ing in place configurator software. These order mistakes can be produced by the
seller or the buyer. For example, the seller can promise delivery dates that cannot
be accomplished because the vendor has made some mistake in the delivery plan-
ning. The customer can also make mistakes in his orders by, for instance, evaluating
price/performance trade-offs in a wrong way or by misunderstanding his specific
preferences.

5. Better understand product engineering phases. Manufacturing complex prod-
ucts is a cumbersome task that can be eased by applying configuration techniques.
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In this way, organizations improve their knowledge about the product engineering
process.

As a consequence of the aforementioned advantages, configuration task plays an impor-
tant role in many commercial activities. In [78], Freuder wrote that according to Charles
Carson, companies lose “2-3% of revenue in rework and penalty costs due to errors made
in the initial product configuration”9. Moreover, in [78], several companies identified the
usefulness of constraint technology10 for the configuration problem applied to the business
process:

• Lucent Technologies, Bruce Ambler: “Once the resources required and offered by each
component are specified, the constraint-resolution process can select and balance the
resources needed to satisfy a customer need”.

• Triology Development Group, David Franke: “Configuration knowledge can signifi-
cantly improve business-process efficiency in the obvious way, by reducing errors in
customer orders”.

• ILOG SA, Daniel Mailharro and Jean-François Puget: “Constraint programming lets
us program the solution-search procedure and integrate domain-expert knowledge as
search strategies for each decision of the configuration task. Constraint programming
also lets us define optimization algorithms that answer the actual need for intelligent
configurators to be able to minimize one or several criteria, such as the price of the
built artifact or the number of components used”.

• Concentra Corp., Bob Phillips: “The complexity of selling and servicing a wide range
of products in a highly competitive global market requires that there be a control-
ling architecture for product knowledge throughout the enterprise. We can realize
this controlling architecture through a combination of technologies (. . ., constraint
technology) that will let everyone share product knowledge to improve customer
satisfaction”.

The configuration problem A configurable product is composed by several compo-
nents. Each component can be selected from a set of choices. Choices for components
can be combined together in predefined ways which are stipulated by configuration
rules. The configuration problem can be informally defined as the task of selecting
and arranging choices for a set of given components in a way that the configuration rules
are satisfied. In general a configuration problem involves two tasks [204]:

1. Domain knowledge description: The knowledge for a configuration task comprises
the type of components with their choices, and the configuration rules.

2. Problem specification: A configuration problem is specified by the components that
must be present in a solution.

9PC AI, January-February 1996.
10Constraint satisfaction techniques are introduced later, in Chapter 3.
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For example, consider the problem of configuring a personal computer (PC)11. The
domain knowledge can be described by:

• the type of components with the description of their choices, for example:

– CPU: Pentium 1.7, 1.8, 2.0, 2.2 GHz, Celeron 1.3, 1.4 GHz, · · · ,
– RAM memory: 64MB, 128MB, · · · ,
– motherboard: number of slots, memory type, · · · ,
– graphic card: speed, resolution, · · · ,
– monitor: resolution, size, · · · ,
– keyboard: standard, wireless, country, · · · ,
– mouse: standard, wireless, optic, · · · ,
– printer: B&W, color, fax, photo, laser, · · · ,
– scanner: paper, photo, film, · · · ,
...

• configuration rules between some type of components, for example:

– CPU ↔ RAM memory,

– CPU ↔ motherboard,

– graphic card ↔ monitor,

...

Following the above example, a configuration problem for a PC can be formulated as
“I would like a PC with at least 256MB of RAM, very fast, without a keyboard or mouse,
but with a color printer. My budget is around 2,000 CHF”. Such a problem would imply to
select a choice from each of the demanded components in the problem: a motherboard, a
processor unit, RAM memory, a monitor, and a printer. Besides the configuration rules of
the domain knowledge, the problem has to consider the configuration rules coming from the
user request (256MB of RAM, fast processor unit and color printer). Many configurator
software are publicly available on the web, see for example the web site of Dell12.

A configuration problem can have several solutions which are called feasible or valid
configurations. In the previous example, there could be many different PC configurations
satisfying the configuration rules from the domain knowledge and from the user request.

11The purpose of this example is to illustrate the concepts related to configuration, but it is not a

complete and rigorous example about configuring PCs.
12Dell, http://www.dell.com.
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Approaches for the configuration problem Configuration problems have been stud-
ied for many years in the areas of operational research and artificial intelligence. In [205],
Sabin and Weigel reviewed the main product configuration frameworks in the following
way:

• Ruled-based reasoning or expert systems are based on production rules of type
if condition then consequence that express

1. the actions that must be performed to obtain a valid configuration, and

2. when an action can appropriately occur in relation to other actions.

The knowledge base are the facts that are known to be true together with the
rules. Then, the solving procedure, called inference procedure, chains the rules in a
forward or backward manner (respectively, forward chaining and backward chaining)
taking into account the facts in the knowledge base. The knowledge base then is
modified by new facts, hopefully containing a solution (valid configuration). The
main drawback of this approach is that maintaining knowledge bases for complex
domains is extremely difficult and cumbersome.

• Model-based reasoning appeared to overcome the maintenance difficulty of ruled-
based reasoning systems:

– Logic-based approaches are based on description logic (DL). DL models deal
with three types of elements: individuals (objects), concepts (set of individuals)
and roles (binary relations between individuals). The main inference mecha-
nism is subsumption which is the decision whether one concept is more general
than another. DL frameworks can support configuration tasks in two ways:

1. to provide support to other configuration engines by means of efficient and
organized taxonomy of objects, and

2. solve the entire configuration problem.

Entirely solving the configuration problem with DL implies to guide the user
through some key questions to make initial selections. Then, through more
questions to the user, the system guides the process to complete valid configu-
rations.

– Resource-based approach transforms the configuration problem into a pro-
ducer consumer model, where abstract resources represent how the components
interact (configuration rules). The goal is then formulated as finding a set of
components that bring the overall set of resources in a balanced state, in which
all demands are fulfilled. The solving method is a generic backtracking algo-
rithm where the starting point is an initial configuration. At each step, the
algorithm selects a resource which is not yet balanced and chooses another
component that can be assigned to that resource. In a dead-end situation, it
backtracks to the previous chosen resource.
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– Constraint-based approach was the first attempt to define general-purpose
configuration engines (see [173]). Configuration problems can be naturally de-
scribed as constraint satisfaction problems13 (CSP) where variables are the com-
ponents of the product and constraints define the configuration rules. Because
the mapping between functional roles and the set of components available is typ-
ically many-to-many, the configuration task is dynamic in nature. This observa-
tion yields to an extension to the CSPs into dynamic CSPs [172, 111]. Sabin and
Freuder proposed in [204] a different constraint satisfaction framework for con-
figuration called composite constraint satisfaction. In this framework, variables
represent complete sub-problems. This allows an increased representational
power (organization of components by means of aggregation and classification)
and efficiency solving methods (specific CSP consistency algorithms).

Constraint satisfaction techniques are used throughout this thesis and the sug-
gested modeling and solving techniques for electronic catalogs are described in
detail in Chapter 3 and Chapter 4. Furthermore, Appendix B reviews the main
classical constraint satisfaction solving strategies.

• Case-based reasoning (CBR) is based on a base of cases which represents valid
product configurations. This case base can be initially built by hand with valid
configurations and be enlarged with new configurations, as long as the system finds
more valid product configurations. The solving approach consists in identifying the
most similar case to the one to be solved. Then, the system adapts this similar
case in order to satisfy the specific configuration problem requirements. The idea
behind CBR relies on the assumption that similar problems have similar solutions.
The steps of the overall process are 1) input customer requirements, 2) retrieve a
configuration of a similar problem from the case base, 3) adapt the case to the new
problem, and 4) store the new configuration to the base case.

In [205], the reader can find many references to the literature with respect to the above
described models for product configuration.

Configuration for electronic catalogs Clearly, when electronic catalogs offer config-
urable products, configuration techniques are needed. As it will be shown in Chapter 3
and Chapter 4, constraint satisfaction techniques are very well suited for modeling complex
electronic catalogs.

1.2.4 Personalization

Personalization of information systems can be defined in numerous ways. From a marketing
point of view, the Personalization Consortium14 defined personalization as the combination

13Formal definition of CSP is given in Chapter 3.
14The Personalization Consortium is an international advocacy group formed to promote the development

and use of responsible one-to-one marketing technology and practices on the World Wide Web. For more

information, see http://www.personalization.org.
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of information technology with marketing practices to provide:

• better services to the customer by anticipating needs,

• efficient and satisfactory interactions for both parties, and

• relationships that encourage the customer to return for subsequent purchases.

Actually, in a marketing sense, personalization is a common activity in traditional
commerce. Human vendors are used to anticipate concrete customers’ needs, and to adapt
their behavior depending on specific customers.

Regarding electronic forms of commerce, it is believed that business activities are
changing from the model where organizations search customers for their products to the
model where organizations search products for their customers15. Richard Danzel16 said
that the key issue for a virtual shop is to constantly change to be adapted to every
individual customer. In this direction, Jeff Bezos, CEO of Amazon, said “if I have 2
million customers on the Web, I should have 2 million stores on the Web”.

Often, a distinction between customization and personalization is done17. Customiza-
tion is more related to systems where the user can explicitly select certain options, i.e.,
the user is active in the process. On the other hand, personalization is often referred to
systems which guess the customer’s needs by implicit information, i.e., the user is more
passive whilst the system is more active. Throughout this document, the term person-
alization will be preferred than the term customization and no distinction will be made
among both terms.

From a technology point of view, personalization is about applying techniques to infor-
mation systems for adapting interfaces and contents to particular users. Such personaliza-
tion techniques can mainly use two different types of data: explicit and implicit. Explicit
data comes from direct interactions with the user, for example, input forms, question-
naires, profile editors and so on. Implicit data comes, for example, from the user behavior
when browsing through Internet. Techniques such as collaborative filtering and case-based
reasoning, among others, are used to provide personalization to information systems.

Note that configuration can be seen as a technique for achieving personalization. Ac-
tually, an electronic catalog that is able to configure their products according to user’s
preferences is serving the customer in a personalized manner.

1.2.5 Recommender systems

Recommender systems18 can be seen as information systems that use personalization tech-
niques to recommend the right information or item, to the right user and at the right time.

15Don Peppers from Peppers and Rogers Group Consulting, paraphrased in [113].
16Amazon, http://www.amazon.com.
17Jakob Nielsen’s Alertbox for October 4, 1998: Personalization is Over-Rated, http://www.useit.com/

alertbox/981004.html.
18Also called personalized systems.



1.2. Information systems 13

See [197] for a brief introduction on recommender systems. Following this informal defini-
tion, personalized electronic catalogs can be also seen as recommendation systems. Recom-
mender systems can be implemented using numerous techniques. For example, the tutorial
about recommender systems given by Jameson, Konstan and Riedl [124] enumerates the
following AI techniques: case-based reasoning, content-based methods, demographically
based methods, hybrid algorithms, utility-based methods, and knowledge-based methods.

Recommender systems arise naturally in the area of electronic commerce, where they
can assist the user to find the product that fits his needs. This is especially relevant
since customers are often faced with an overwhelming selection of items. Nowadays, rec-
ommender systems are deployed on many different sites, serving millions of customers.
When applying recommender systems’ techniques to electronic commerce, the following
enhancements have been identified by Schafer et al. in [210]:

• Finding the right product. By means of recommender systems, users are assisted
in their purchase decision making process. In this way, users are not directly faced
with the problem of selecting the best product among a huge amount of available
items.

• Cross-selling. Recommender systems can improve cross-selling by suggesting ad-
ditional products to users. For example, in the checkout process, the system could
suggest products related to the items which are already selected in the shopping
basket of the user.

• Loyalty. Recommender systems offer an added-value with respect to the relationship
between the seller organization and the buyer. This added-value can increase the
loyalty of users to the system.

As described by Schafer et al. in [210], different types of recommendations are identified.
Recommender systems use one (or a mix) of the following recommendation types:

Non-personalized recommendations are independent of each user, thus all users get
exactly the same recommendations. They are usually made by rankings that other
users have made. For example, Amazon19 and E!Online20 recommend products
(books and movies respectively) upon what the other customers have said about
them. Another example of non-personalization recommendation is eBay21 where
users rank other users.

Attribute-based recommendations or preference-based item recommendations are based
on syntactic attributes of the products. Customers enter the desired properties of
the products, and the system proposes the available items according to the cus-
tomer preferences. For instance, the electronic commerce site of FNAC22 is based
on hierarchical categories of products from where customers can browse and select

19http://www.amazon.com.
20http://movies.eonline.com.
21http://www.ebay.com.
22http://www.fnac.com.
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properties of the wished items. Stolze and Rjaibi explains attribute-based recom-
mendation applied to electronic catalogs in [232]. They also describe an XML23

framework for representing simple value functions that allow developers easily im-
plement preference-based recommendation for e-catalogs. Another approach pointed
out in [64] proposes to recommend products for non-expert customers in a needs-
oriented way, instead of in a featured-oriented way.

Item-to-item correlation based recommender systems use a set of products the cus-
tomer has expressed interest in for recommending other related products. For ex-
ample, in Amazon, when a user has selected a book, other similar or related books
are automatically suggested.

People-to-people correlation or collaborative filtering is based on the correlation be-
tween the customer and other customers that have already used the system. It
is based on the principle that similar customers purchase similar products. For in-
stance, Album Advisor from CDnow Online24 infers customer opinions upon the user
profile a customer sets up. Collaborative filtering has been successful in research, see
for example the GroupLens project25 described in [135]. O’Connor et al. in [179] de-
scribes a recommender system called PolyLens which recommends items for groups
of users, rather than for individuals. In the domain of job finders, Bradley et al. [25]
use case-based reasoning for recommending job positions to the users. In [112], the
authors explore how to implement explanation interfaces of recommendations done
by collaborative filtering engines. They argue that providing explanations about
recommendations, the customer acceptance can significantly increase.

Sarwar et al. analyze in [208] different recommendation algorithms and evaluate them
within the context of electronic commerce.

Our approach for personalizing electronic catalogs, from a user-system interaction point
of view, is based on a mixed-initiative system and it is described in detail in Chapter 2.
From a recommender systems point of view, our approach is based on attribute-based
recommendations, see Chapter 3 and Chapter 4 for more details on this aspect.

1.3 Complex electronic catalogs

This thesis focuses on modeling and solving complex electronic catalogs in order to support
the user in the purchase decision making process. Complex electronic catalogs have the
following two characteristics:

• Configuration. Complex electronic catalogs contain items that result from a con-
figuration process. A configurable product or service is not just an atomic item but
a set of compatible components. Configuration rules define which components can
be put together to form a feasible or valid product.

23XML stands for eXtended Markup Language.
24http://www.cdnow.com.
25http://www.cs.umn.edu/Research/GroupLens.
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Figure 1.2: Complex electronic catalogs require to handle configuration and personaliza-
tion in order to support the user in the selection decision making process.

• Personalization. A key issue in complex electronic catalogs is how to personalize
the contents of the catalog. In this sense, complex electronic catalogs should consider
different user profiles (user’s preferences) being able to support him in the purchase
decision making process.

In spite of the above characteristics of complexity, this work deals with catalogs which
are huge, i.e., that handle a huge set of items. One could imagine complex catalogs which
only contain few items, and in such a case, the catalog can be modeled as a simple catalog
where the products are precomputed off-line. On the other hand, however, modeling and
solving large complex catalogs clearly require more sophisticated techniques in order to
support the user in the purchase decision making process.

Figure 1.2 shows graphically the concepts of configuration and personalization applied
to electronic catalogs.

1.3.1 Examples in the industry

Some relevant domains where complex catalogs arise are:

Travel industry was one of the earliest industries to go online, and is one of the most
important areas of electronic commerce in terms of market volume [110]. Nowadays,
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users can book flights together with hotels and cars easily on the web, see for ex-
ample Travelocity26, Expedia27, or Orbitz28. However, these booking engines do not
provide sufficiently intelligent tools to support the user. Most of the on-line book-
ing engines use interfaces to GDSs29 to retrieve the travel information according to
specific user’s needs (locations and dates). Then, the user can browse through all
the options to evaluate the alternatives and choose the one that best fits his/her
preferences. The most advanced booking engines allow the user to express some
preferences about preferred airlines, time schedules or aircraft types. In such sys-
tems, a simple attribute-based filtering process ranks the options according to the
user’s preferences. For example, ITA Software30 allows users to express preferences
and rank the options by a specified attribute. In most cases, on-line booking engines
present the available options to the user in the form of a flat list. Therefore, cur-
rent on-line booking engines are far away from the quality of service that traditional
travel agencies offer in terms of supporting the user in the purchase decision making
process.

Insurance industry is present in numerous different services such as car insurances,
life insurances and house insurances. Insurance policies are very complex because
they are highly customizable. Very often, insurance companies offer a huge range
of products, and in addition to that, they can be personalized with many options.
Encoding and processing all the available options and insurance policies is not feasible
using traditional software. In this area, much more intelligent tools than the ones
used currently are required, in order to provide the necessary support for the user.

Financial industry has a lot of potential regarding complex catalogs. For example, one
could imagine the management of stock exchange portfolios. Users of such systems
would state their preferences on the type of industry to invest in, the investment
risk, the period of the investment, and so on. Then, a intelligent process would
recommend a concrete portfolio. Other domains in the financial industry where
complex catalogs arise are: credits or saving plans.

Employment market is prominent in the Internet by means of electronic job banks,
also called job finders31. The concept is based on the fact that there are people look-
ing for jobs and companies looking for employees. Job banks allow companies and
unemployed people to be connected, but again, the support these systems currently
offer to users, companies and people looking for a job, could be improved with more
sophisticated techniques. Usually, these systems only allow to browse job positions

26http://www.travelocity.com.
27http://www.expedia.com.
28http://www.orbitz.com. It is relevant to note that the technology behind Orbitz has been developed

by ITASoftware, http://www.itasoftware.com, which uses advanced constraint satisfaction techniques.
29GDS stands for Global Distribution System. GDSs are information systems which distribute electron-

ically travel information, such as fares or seat availability in flights.
30http://www.itasoftware.com.
31See for example, http://www.jobfinder.ie.
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by some general criteria such as industry domain, or type of job position.

Logistic cargo industry is another complex industry where electronic catalogs could
add value to the traditional environments. For instance, merchandise transport
companies could offer their services to companies that need transportation services
with specific needs. Clearly, many preferences and configuration rules appear to
find out the best way of transporting merchandise. Examples of constraints are:
specific means of transport regarding the type of merchandise, constraints for opti-
mizing routes, or schedule constraints ensuring the delivery on time to the correct
destination.

Telecommunication industry could offer electronic catalogs for bandwidth allocation.
The users of these catalogs would be Internet providers or companies that need some
quality of service for their networks. This is a very specialized industry, and much
work has been done to attack this problem. For example, the reader is referred to the
thesis of Christian Frei [75] for static bandwidth allocation and the thesis of Steven
Willmott [263] for the dynamic case.

Electronic catalogs for the above industries offer configurable and intangible goods.
Complex catalogs also exist for tangible goods, consider for example, home electronic
goods such home theaters, complete photo equipments, or customized computers.

Chapter 6 describes how to model complex electronic catalogs with a concrete example
on the travel industry. Furthermore, Chapter 7 shows a commercial application, called
reality, for air travel planning which is based on the concepts of this thesis. Appendix A
illustrates how realityworks with a concrete scenario with the corresponding screenshots
of the software.

1.4 Contributions

The main contributions of the thesis can be briefly summarized as follows.

Mixed-initiative system for electronic catalogs based on a conversational model where
the user criticizes product proposals provided by the catalog, the goal being to
converge to a reduced set of satisfactory solutions. This user interaction model is
inspired by the traditional conversational model between the customer and the seller.
Such mixed-initiative system is detailed in Chapter 2.

Modeling and searching strategies for complex electronic catalogs. An uniform frame-
work for modeling electronic catalogs using constraint satisfaction problems is pro-
posed in Chapter 3. Such constraint-based model supports configuration rules, user
preferences and optimization constraints. Two different approaches to generate so-
lutions (products) are analyzed. The first approach deals with linear combinations
of constraint violations, while the second approach deals with the concept of Pareto-
optimality. Solving strategies for both models are described in Chapter 4.
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SmartClient architecture faces the problem of scalability for complex electronic cata-
logs. SmartClient architecture is an architectural model that uses constraint satis-
faction problems for representing solution spaces, instead of traditional models which
represent solutions spaces by collections of single solutions. Different configurations
of the SmartClient architecture are provided for different architecutal requirements.
This software architecture is described in detail in Chapter 5.

Validation of the main thesis contributions is provided through Chapter 6 and Chapter 7.
The validation of the main contributions of this work has been done by applying them
to a concrete application domain. The chosen domain is the travel planning because
its complexity and relevance in the electronic commerce area. Chapter 6 describes
the problem of travel planning in detail, and Chapter 7 illustrates a commercial
application for travel planning that uses the concepts provided in this thesis.

1.5 Overview of the dissertation

In Figure 1.3 the organization of this thesis is shown. This chapter has introduced the main
basic concepts and challenges of this work which focuses on electronic catalogs. In Chap-
ter 2 a model for personalizing electronic catalogs is proposed. This model suggests how to
support the user in the purchase decision making process in complex electronic catalogs,
i.e., in catalogs for configurable products. After proposing an user interaction model to
deal with catalogs, Chapter 3 proposes to encode complex catalogs by means of constraint-
based techniques. Such a constraint-based model yields to the need of considering solving
algorithms, described in Chapter 4, that allow to search for products in complex catalogs
by taking into account the preferences of the user. In order to really exploit the ideas pre-
sented in previous chapters in a networked environment, a software architectural model
is described in Chapter 5. Finally, the ideas of this thesis are illustrated in Chapter 6 de-
scribing the problem of planning travels. A commercial application that puts in practice
the ideas of this work within the example of planning travels is showed in Chapter 7.
The contents of this thesis can be summarized as follows:

Chapter 1: Introduction introduces the topics of the thesis. It gives the needed no-
tions about electronic commerce and electronic catalogs, and it introduces the complexity
of e-catalogs for handling configuration and personalization. Some domains in the indus-
try where complex catalogs are needed to support users are identified. Finally, the main
contributions of the thesis are summarized.

Chapter 2: Personalization suggests a mixed-initiative system for electronic catalogs
to support the user in the decision making process of choosing the product that best fits his
needs and preferences. The model is based on the dialog that takes place in any traditional
commerce conversation involving a seller organization and a customer.
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Chapter 3: Modeling Electronic Catalogs gives a modeling framework for electronic
catalogs based on constraint satisfaction techniques. It analyzes two different approaches:
the quantitative approach and the qualitative constraint combination approach. The first
approach is based on weighted constraint satisfaction problems and the second one deals
with the Pareto optimality concept.

Chapter 4: Solving Electronic Catalogs explores different problem solving ap-
proaches, taking into account the modeling frameworks of Chapter 3 and the mixed-
initiative based system proposed in Chapter 2.

Chapter 5: The SmartClient Architecture describes an architecture for electronic
catalogs where the main processing is done on the client side. SmartClient architecture is
designed for supporting personalization as is described in Chapter 2. The proposed archi-
tecture is analyzed and compared with standard client-server architectures for electronic
catalogs.

Chapter 6: The Travel Planning Problem gives a complete description of an ex-
ample of complex catalogs in the travel industry.

Chapter 7: A Commercial Application for Travel Planning: reality validates
the techniques suggested throughout this dissertation. A commercial application for plan-
ning air travels which uses the techniques of this thesis, is described in detail.

Chapter 8: Conclusions provides a brief summary of the thesis work and its contri-
butions. Limitations are also discussed and future research directions are proposed.

The appendixes are given to support the contents of this thesis:

Appendix A: Using reality : a scenario shows by means of a collection of screenshots
how realityworks. The purpose of this chapter is to illustrate graphically some of the
concepts of this thesis applied to a commercial application for planning air trips.

Appendix B: Solving classical Constraint Satisfaction Problems reviews the
main solving techniques for classical constraint satisfaction problems.

Appendix C: Extended Constraint Satisfaction Problems exposes the main ex-
tensions to the classical CSP model.

Appendix D: Java Constraint Library describes a library for solving classical CSPs.
The library is written in Java and can be used to examine CSP techniques over the Internet.

This document ends with bibliography used and an index of the main key words of the
dissertation.
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︸ ︷︷ ︸

Scalable Intelligent Electronic Catalogs

Chapter 5 Chapter 2 Chapter 3 Chapter 4

Chapter 1

Chapter 6 Chapter 7

Chapter 8

Figure 1.3: Outline of the thesis and dependencies of chapters.



Chapter 2

Personalization

The time to stop talking is when the other person nods his head affirmatively but says
nothing.

Anonymous.

2.1 Introduction

Personalization can be defined as the capacity to adapt contents and interfaces of infor-
mation systems to the particular user’s needs. Actually, traditional commerce activities
often incorporate more or less sophisticated capacities for personalization.

In traditional commerce, complex trading activities are carried out by means of con-
versations between the involved parties, namely: the seller and the buyer. For example, in
the travel domain one could have the conversation illustrated in Figure 2.1. These trading
dialogs are sequences of proposals from the buyer and critiques of such proposals made by
the customer. Each time the customer criticizes some attributes of the proposed items,
the seller tries to change or adapt his last proposals to better fit the customer particular
needs. The goal of these trading dialogs is to reduce the product space and thus converge
to a satisfactory small set of products as depicted in Figure 2.2. At the end, the user
decides which is his best option among the products that result from the dialog. These
kind of dialogs are especially relevant within complex domains, such as travel, insurance,
banking and so forth. Without these trading conversations, few people could be able to
decide about, for instance, optimal travel combinations, their best insurance policy, or a
well-balanced investment portfolio. Customers are used to having support from experts
(such as travel agents, insurance vendors or investment managers) in order to be assisted
in the purchase decision making process.

From the customer’s point of view, in the context of trading dialogs within complex
domains, the following two observations can easily be made:

Observation 1: Initial rough idea about the product.
Very often, when people decide to purchase a good which is significantly complex, they



22 Chapter 2. Personalization

I am living in Bern and I have a meeting
in the Sillicon Valley next Thursday. Do you prefer to depart from Zürich or

Geneva ?

I do not really care... To go to Sillicon Valley, you can choose
between arriving at San Jose (SJC) or
San Francisco (SFO).

I would prefere SFO, but SJC is also fine.
There is an AA flight arriving at SFO at
4p.m. for 2,000 CHF.

It is too late ! Could it be possible to
leave in the morning ? Well, there is another flight arriving at

12p.m., but it costs 2,800 CHF.

That’s perfect !

conversation

the traveller the travel agent

Figure 2.1: Example of an interaction between the buyer and the seller in the travel
domain. The conversation supports the user to find out the flight that best fits his needs
and preferences. Observation 1 and Observation 2 are illustrated in this dialog.

conversation

the buyer the seller

product space

satisfactory products !

Figure 2.2: The goal of a trading conversation between the seller and the buyer is to
narrow down the initial available product space to a reduced set of satisfactory products.

have only a very rough idea about their criteria or preferences. For example, in the travel
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level of expertise initial request

professional Sigma 70-200mm 2.8 EX

amateur expert covering 70-200mm and around 2.8 of aperture
amateur large focal length and wide aperture
neophyte pictures of animals

ex
pe

rt
is

e

su
pp

or
t

Figure 2.3: Example about the level of vagueness of initial requests for photo lenses to
take animal pictures. The level of expertise of the customer influences the precision of the
initial request. The customer’s level of expertise indicates the customer’s needed support
in the purchase decision making process.

domain, one would specify to the travel agent “I would like to go to Barcelona for one day
in the middle of next week” rather than “I would like to book the flights IB4493 GVA→BCN

and IB8936 BCN→GVA on March 27th, in business class, at the fare of 1,479 CHF”.
Another example of this observation, in the photo equipment domain, is that a cus-

tomer would ask for a lenses for making pictures of wild animals rather than directly asking
for a concrete product, for instance a Sigma 70-200mm EX 2.8. In general, the level of
vagueness of the customer’s initial request strongly depends on his level of expertise in the
domain. Figure 2.3 shows this concept, in the aforementioned example about photo lenses
for wild animal photography.

The justification of this observation can be done through the following question: “how
can people concretely specify the product they are looking for if they are not really experts
in the product domain and if they do not know the available offers for that product ?”. The
answer could be with difficulty, and it depends on the level of expertise of the customer1.

Observation 2: Criteria are mainly discovered by reacting to samples.
As a consequence of Observation 1, people in general do not state their preferences up-front
because initially they only have a rough idea of the product they would like. Hence, the
question that precedes this observation is: “how and when people state their preferences
about products in complex domains ?”.

Usually, criteria about the product the customer would like to purchase are specified
during the dialog with the seller. Furthermore, people express naturally their criteria
reacting to concrete samples. For example, in Figure 2.1, the user reacts to the first
concrete proposal of the travel agent by asking for an earlier flight. In this way, people
are used to express their criteria incrementally as long as they react to product samples.

In some cases, expert customers know precisely what product they need, even in com-
plex domains. In these situations, they do not need assistance from expert vendors. This

1This work focuses on intelligent tools for supporting the user in electronic shopping activities within

complex domains. Obviously, really expert users do not need such assisting tools, since they can directly

order concrete items.
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query

propose products

critisize productssatisfied ?

select

no

yes

conversation

Figure 2.4: Conversational model for electronic catalogs. In the main query, the potential
customer specifies his rough idea about the product. Then, a conversation takes place in
order to converge to a satisfactory product. The conversation mainly consists in a loop
where the buyer criticizes, and the seller proposes items according to the user’s critiques.

situation can be translated in the area of electronic catalogs where expert customers would
not need intelligent tools, which are the focus of this thesis. However, note that in some
domains, even expert users need to be assisted because available products dynamically
change. This remark can be easily illustrated in the travel industry, where available seats
on flights, ticket fares or special offers constantly change.

This chapter suggests a human-computer interaction model for supporting the user in
complex electronic catalogs. The model is based on the interactions used in traditional
commerce relationships, more concretely on the aforementioned Observation 1 and Obser-
vation 2.

2.2 A mixed-initiative system for electronic catalogs

A mixed-initiative system [118] can be defined as a system where a software entity2 and a
human user collaborate to achieve a common goal. In electronic commerce, the collabora-
tion takes place between the potential customer and the electronic catalog tool, the goal
being to find the product that best fits the particular criteria and needs of the user.

2A software entity could also be called software agent, but in the remainder of the thesis the term

software entity is preferred. This is because software agents are not directly related to the topics of this

thesis and they are studied in a concrete field of computer science.
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2.2.1 Conversational model

Our approach is based on a mixed-initiative collaboration between the user and the soft-
ware entity [192] (Figure 2.4). This collaboration is done through the following steps:

1. Main query: According to Observation 1, the user has only a rough idea about the
product. Therefore, at this first step only a initial vague query is entered into the
system. Some preferences can also be entered at this step, but the key point is that
they are not necessarily required.

2. Conversation within a mixed-initiative system: After entering the main query
which specifies the product in a high level, the conversation between the user and
the system begins. Such a conversation is a loop involving the two following steps:

• The reasoning engine proposes solutions according to the user’s criteria. The
first time that the engine proposes solutions, user preferences are not available
yet. Then, optimization criteria, which are built upon common sense, are used
by the reasoning engine to propose optimal solutions. Chapter 3 and Chap-
ter 4 describe the framework and the solving strategies respectively for such a
reasoning engine based on constraint satisfaction techniques.

• The user evaluates the alternatives by browsing the product space suggested
by the reasoning engine. Properties of the proposed solutions can be criticized
by means of preference elicitation Section 2.2.2.

This interaction loop finishes once the user has found the product that really fits his
criteria. As indicated in [222], if there is nothing to criticize, they have already found
what they were looking for. However, note that in many cases, perfect solutions do
not exist, and the customer is forced to make trade-offs among several unsatisfied
criteria. In many situations, the criterion about price is faced to other preferences
or qualities of items. For instance, it is quite evident that a car that costs 4 times
more than another, will be more powerful, and/or safer and/or more luxurious.

3. The selection process: Once a satisfactory product has been encountered, the
user can select it in order to proceed with the purchase process3.

2.2.2 Preference elicitation

A typical user has many constraints that are not stated up front as discussed in Obser-
vation 1. The user becomes aware of these only when proposed solutions violate them as
pointed out by Observation 2. Actually, preferences arise in a natural manner from the
critique the user makes to concrete examples. In the following subsections, the way users
elicitate their preferences in our mixed-initiative system, is explained.

3The processes taking place after the purchase decision has been made, are out of the scope of this

thesis.
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2.2.2.1 Preferences in any order at any time

In many electronic catalogs, users are forced to enter their criteria in a fixed order and in a
specific sequence in time. Such fixed schemas do not allow the simulation of the metaphor
of traditional commerce interactions. In our model, users are able to enter preferences
in any order and at any time [193]. This can be done by using constraint satisfaction
reasoning engines, as described in Chapter 3 and Chapter 4.

2.2.2.2 Posting preferences

Posting preferences on attributes (representing properties of the products) is the way users
express their critiques to the examples suggested by the system. Such critiques can be
done either positively or negatively :

• Positive critiques are done via preferences on attributes of the product, enforcing
the reasoning engine to propose products satisfying such properties.

• Negative critiques are also done via preferences on attributes of the product,
enforcing the reasoning engine to avoid proposals with such properties.

For instance, consider a user planning air travel with an electronic booking platform.
The user receives, from the system, 5 different alternative itineraries. One alternative is
operated by Swiss whilst the other 4 are operated by Lufthansa. If the user really prefers
to fly with Swiss, he must be able to indicate that the 5 alternatives he is looking at
should be operated by Swiss. This could be done by a positive critique on the airline
attribute. Such a critique could be formulated textually as “the airlines should be Swiss”.
Now consider that, one of the suggested itineraries includes a flight with a Boeing 737,
and he really does not like this aircraft. He must be able to negatively criticize this option
by making a negative critique on the aircraft type attribute. This negative critique could
be expressed in words as “I do not want to fly with Boeing 737”.

It is worth remarking that positive and negative critiques are complementary and have
different usages. Following the above example about airlines (4 alternatives operated by
Lufthansa and one by Swiss), the following critiques are not equivalent:

1. positive critique: “I want to fly with Swiss”

2. negative critique: “I do not want to fly with Lufthansa”

The first critique would force the reasoning engine to prioritize itineraries operated by
Swiss, whilst the second critique would force the reasoning engine to discard itineraries
operated by Lufthansa.

It seems therefore natural that users who are experts in the domain of the product,
make positive critiques, while neophyte users are more likely to make negative critiques.
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2.2.2.3 Retracting and modifying preferences

Retracting and modifying preferences are the mechanisms that users can use to correct
previous critiques. These mechanisms are especially important, because it could happen
that a user enters a criterion that he thinks will be appropriate for narrowing down the
product space, but the system suggests unexpected items. Since attributes of products
are correlated4, changing one property may involve changing other properties that were
satisfactory to the user. Considering such situations, the system must be able to allow the
user to retract or modify previously entered criteria.

2.2.2.4 Contextual preferences

Contextual preferences are preferences with a condition of the form:
if condition then preference. Contexts or conditions for contextual preferences are boolean
functions on some attributes of a solution, indicating if the preference must be applied or
not5.

The reason for considering contextual preferences is that they naturally appear in many
situations. For example, let us consider an example in the travel domain. The user in the
example is living in Yverdon, and is able to depart either from Zürich or Geneva. Zürich
is 2 hours by train from Yverdon, and Geneva 1 hour. He really does not want to wake-up
before 8 a.m., thus our user would like to express this requirement, however, as he lives in
Yverdon, the necessary time to get to Geneva airport or Zürich airport is different. Such
preference can be easily and naturally expressed with two following contextual preferences:

1. if departAirport = Geneve then departTime > 9:30 a.m., and

2. if departAirport = Zürich then departTime > 10:30 a.m.

2.2.3 Converging to satisfactory solutions

As in the case of traditional trading conversations, the goal of posting preferences is to con-
verge to a small set of satisfactory products. As customers are used to traditional trading
dialogs, they can easily use an electronic metaphor of such methodology. Converging to a
reduced set of satisfactory solutions can be done in the two following different manners:

1. By ranking the set of solutions, the user has the perception that solutions are
converging to the satisfactory ones. The purpose of this alternative is that, as long
as the user posts constraints, the first ranked solutions become more and more
satisfactory, while the last ranked solutions become less and less satisfactory. In

4Correlations among different properties of items are mainly expressed in our approach by configuration

rules, user preferences and optimization constrains. See Chapter 3 and Chapter 4 for the whole framework

dealing with configuration rules, user preferences and optimization criteria.
5Contextual preferences can be modeled as normal soft constraints (described in Chapter 3). Note that

when the context of a preference does not apply, the constraint is completely satisfied. One could perfectly

implement contextual constraints by considering the context in the valuation function of the constraint.

Nevertheless, in some applications, it can be useful to implement contexts as real boolean functions to

activate the associated constraints
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other words, the quality (the ranking function) of the suggested solutions becomes
more and more disperse as long as the number of the user’s preferences increase.

2. By reducing the set of solutions, the user clearly has the perception that the so-
lutions proposed by the system are converging to a hopefully satisfactory set of
solutions.

One could also think about combining the two aforementioned approaches. In this
manner, the set of shown solutions would be reduced and also ranked as long as the user
express his criteria.

Solving techniques for converging to satisfactory solutions according to user’s prefer-
ences are described in detail in Chapter 4. Concretely, in Section 4.4 the two ways of
converging to satisfactory solutions (by ranking and by reducing) are discussed.

2.3 Requirements for online interaction

The mixed-initiative approach described above requires an online interaction between the
user and the system. In this context, online interaction requires the capacity of the system
to process user’s requests in a short time. In this way, the traditional trading conversation
can be really simulated through the system. For achieving such a quick online interaction,
the following requirements must be fulfilled:

• Reasoning engine must be powerful enough to process the user’s criteria quickly.
For complex domains with configuration, this implies the use of advanced problem
solving techniques. Chapter 3 and Chapter 4 suggest the use of constraint satisfac-
tion techniques to deal with the problem of finding optimal products according to
the user’s particular preferences in a reasonable computation time.

• Architecture must allow the system simulate a conversation with the user. In
order to achieve this goal, the accesses to the server should be minimized, and the
processing must be done on the client side as much as possible. SmartClient is
an architectural model that meets this requirement, especially when combined with
constraint satisfaction reasoning. On top of that, SmartClient architectures allow to
build scalable systems. This architecture is detailed in Chapter 5.

2.4 Related Work

Some work has been done by the research community about similar approaches to the
one presented in this chapter. On the other hand, most of the current available electronic
catalogs are based on user profiles. In the following, related work to our approach is
highlighted and the major drawbacks of using user profiles are outlined.
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2.4.1 Personalization by mixed-initiative systems

In human-computer interaction (HCI) area, some work has been done on conversational
models where the user expresses criteria by criticizing proposed examples. For instance,
see [153] for an example on the travel domain or [222] for a tool to find apartments.
These approaches are similar to the one described in this chapter. Nevertheless, our
mixed-initiative system is reinforced with the usage of constraint satisfaction techniques
(Chapter 3 and Chapter 4) together with the SmartClient architecture (Chapter 5).

2.4.2 Personalization by user profiles

Most of the current electronic catalogs available through Internet propose interfaces to
allow the user to enter his user profile when using the system for the first time. However,
using user profiles implies certain important drawbacks, namely:

• Criteria stated up-front. It is difficult to state all the criteria up front, specially in
complex domains (see Observation 1). Koenemann et al. [132] observed this aspect
with a usability study with an interactive retrieval information system.

• Criteria stated forever. Criteria of a user profile is not applicable in the same
way for different situations, because criteria change. Often, preferences are different
for the same person for different purchases. For example, in the travel domain,
the same user profile is not applicable in the case the user plans a business trip
or a holiday trip. Sometimes criteria are different for the same person for different
purchases. Stolze and Strobel [233] propose an e-commerce approach where a user
might assume multiple shopping roles depending on the specific needs.

• Privacy. User profiles are stored in databases which are owned by private organi-
zations. This fact yields to the issue of personal data privacy. For more details, see
for example [139].

• User effort. In general, user profiles are acquired by means of online forms or ques-
tionnaires. From the users’ point of view, many of these forms demand a considerable
user effort and time.

In many electronic catalogs, recommendations are made taking into account the criteria
in the user profile and the request the user expresses by means of a questionnaire. Then,
according to the user profile and the specific request, the system returns a list (usually
ranked) of the proposed items. If the user does not like any of the proposed products, he
has to enter a new request and start the process from scratch, i.e., no conversation exists
between the electronic catalog and the customer.

Stolze and Ströbel [234] describes a framework for adaptive interviewing the end-user
in order to build an utility-based decision tree to determine the set of products that match
the customer’s and seller’s requirements. This approach can be seen as a dialog to drive
the customer through the right products without static profile or questionaires, but a
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dynamicaly created dialog. At the end of the interview, the products optimized according
to the utility-based decision tree are proposed to the user.

General approaches to e-commerce buying processes have been described for example
in [216] and [104].

2.5 Summary

A mixed-initiative system for personalization applied to electronic commerce has been
described. Electronic catalogs following this mixed-initiative model can be seen as rec-
ommender systems6 based on attribute-based recommendations. Effectively, in our model
recommendations are made based on preferences that users express on syntactic attributes
or properties of the items they are looking for.

The approach is based on the traditional way of trading with complex products, i.e.,
through a conversation between the seller and the customer. This conversation is used as
a metaphor for our mixed-initiative system. The needed steps for simulating traditional
trading conversations in electronic commerce have been identified. The way users can
criticize the items proposed by the system has also been described.

Finally, related research work has been pointed out, and the major drawbacks of most
of the commercial electronic catalogs using user profiles have been outlined.

6See Section 1.2.5 for a brief introduction on recommender systems.
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Modeling Electronic Catalogs as

CSP

Constraint programming represents one of the closest approaches computer science has
yet made to the Holy Grail of programming: the user states the problem, the computer
solves it.

Eugene C. Freuder
Constraints International Journal, April 1997

3.1 Introduction

Constraint Satisfaction technology allows us to model a large set of problems in an elegant
way and solve them using intelligent backtracking-based algorithms. Basically, implement-
ing a constraint-based system consists of two main steps:

1. Modeling the problem into a Constraint Satisfaction Problem (CSP), and

2. Solving the CSP by using one of the well-known CSP algorithms1.

Simple catalogs can be modeled just as a list of possible products from which the user
has to select the preferred option. This is reasonable if the number of possible products
is small and the user has few of preferences about the product. In such situations, simple
filtering information methods suffice to support the user to find the best option. Consider,
for example, a catalog modeling the television stock of a web-based store. If the store
proposes a dozen television models, the catalog can be approached by just showing to
the user the list of offers. Moreover, by means of simple filtering mechanisms, the system
could rank the items according to some criteria (e.g., his preferences). User criteria can
be used as hard filtering constraints (not allowing optimization) or as soft constraints.
Stolze’s approach [231], called product scoring catalog (PSC), consists on considering
user’s preferences as soft constraints for scoring products accordingly.

1CSPs can also be solved with stochastic methods as genetic algorithm [99], simulated annealing [130, 29]

or tabu search [97, 98] which are not CSP dedicated algorithms.
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However, when the items of the catalog are configurable2 and a large set of possibilities
exists (complex catalogs), a more powerful encoding technique is needed. In this chapter,
the problem of modeling complex catalogs by using constraint satisfaction methods is
addressed.

• Simple catalogs → information filtering methods

• Complex catalogs → constraint satisfaction methods

Constraint satisfaction technology has been shown to be very efficient and suitable for
modeling configuration problems. Nevertheless, the classic concept of constraint satisfac-
tion is not powerful enough to express user’s preferences nor optimization constraints. For
this reason, our model is an extension of the classical concept of CSP.

In the following, we define the main notions of the constraint satisfaction technology
and describe how to model electronic catalogs with configuration rules, user’s preferences
and optimization criteria into CSPs. Solving strategies of constraint satisfaction for elec-
tronic catalogs are described in Chapter 4.

3.2 Constraint satisfaction problems (CSPs)

Constraint Satisfaction Problems (CSPs) [246, 134, 140, 175, 160] are ubiquitous in ap-
plications like configuration [204, 173, 111], planning [229, 183, 26, 142, 94], resource
allocation [209, 32], scheduling [71, 72, 6, 191], timetabling [165, 164] and many others. A
CSP is specified by a set of variables and a set of constraints among them. A solution to
a CSP is a set of value assignments to all variables such that all constraints are satisfied.
There can be either many, one or no solutions to a given problem. Basically, the main
advantages of constraint programming can be summarized as follows:

• it offers a general framework for stating many real world problems in a succinct,
elegant and compact way,

• the nature of the representation allows formal description of the problem as well as
a declarative description of search heuristics, and

• there are numerous methods for resolving conflicts, visualizing solutions, and char-
acterizing the solution space.

3.2.1 Notational conventions

Throughout this work, some notational conventions are assumed. The following notations
refer to concepts that will be defined during this chapter.

• Sets and vectors are noted by using calligraphic capital letters A ,B,C , . . .. The set of
variables of a problem is noted V , a subset of variables is noted W , a set of domains
is noted D and a set of constraints is noted C . The number of variables, |V |, is
written n.

2I.e., choices on options restrict other options by means of configuration rules.
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• Variables are noted with an upper case letter, usually V , and Vi indicates the i-th
variable of V .

• Values are noted with the lower case letter v, and vi indicates that vi ∈ Dj and it is
the i-th value in the domain Dj (domains are enumerated).

• An assignment of a value v to a variable V is written {V ← v}. Value tuples for
a subset of variables W = {Vs1 , . . . ,Vsi} ⊆ V are written 〈vt1 , . . . ,vti〉 and express a
collection of variable assignments {{Vs1 ← vt1}, . . . ,{Vsi ← vti}}.

• Domains are noted with the upper case letter D, and Di indicates the i-th domain of
D which is the domain of Vi.

• Constraints are noted with the upper case letter C, and Ci indicates the i-th constraint
of C .

• Soft constraints have an associated valuation function. A valuation function for a
constraint Ci is written ϕCi . An assignment (partial or total) is usually written A,
and a solution (partial or total) is written S. Valuation functions are also applied to
assignments and solutions, and they are written respectively, ϕ(A) and ϕ(S).

inconvinient

3.2.2 Classical CSPs definitions

In the following, the basic notions related to finite and discrete Constraint Satisfaction
Problems are described. In this section, constraints are all hard constraints (no prefer-
ences nor optimization criteria) as opposed to the discussion in Section 3.1. The concepts
are illustrated with an example of a toy problem (the crossword puzzle problem). This
section introduce the basis of our constrained-based model for electronic catalogs which is
explained in Section 3.5.

Definition 3.1 (Constraint Satisfaction Problem (CSP)) A CSP P is a tuple
(V ,D,C ), where:

• V = {V1, . . . ,Vn} is the set of variables involved in P ,

• D = {D1, . . . ,Dn} is the set of domains3 associated to variables, Vi has domain Di,
and

• C = {C1, . . . ,Cm} is the set of constraints which must be satisfied for any solution of
P . A constraint Ci involving a set of variables Wi = {Vi1 , . . . ,Vij} ⊆V is defined by a
tuple (scope,de f ):

3Domains are normally specified by a explicitly enumerated finite set of discrete values. However, in

some applications, domains can be very large and difficult to enumerate them. In theses cases, a function

next-value will be used to enumerate the domain.
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– the scope of a constraint, scope(Ci), is the set of variables Wi involved in the
constraint.

– de f (Ci) is a set of value tuples4 for the set of variables Wi = {Vi1 , . . . ,Vij},
de f (Ci) ⊆ Di1 ×·· ·×Dij . de f (Ci) is called the definition of the constraint and
denotes the value tuples that satisfy Ci.

The arity of a constraint C is the size of its scope. Unary constraints only affect one
variable, and the scope of binary constraints equals to 2. If the size of the scope of a
constraint is higher than 2, the constraint is generally called a n-ary constraint.

If the constraints of the CSP are binary and unary, the CSP is called binary (non-binary
or n-ary otherwise).

Definition 3.2 (Size of a CSP) The size of the CSP is the number of variables in the
problem, and it is usually denoted by n = |V |.

Indeed, modeling a problem into a CSP consists of identifying:

• the variables of the problem (problem choices) with their domains, and

• the constraints among variables. Constraints express what combinations of values
are valid to compose a correct solution to the problem.

A solution to a CSP is an assignment to all variables in the problem, such that all the
constraints are satisfied. In the following the definitions of partial and total assignment
are given:

Definition 3.3 (Assignment or Compound Label) An assignment or i-compound
label A on a set of variables WA = {VA1 , . . . ,VAi} ⊆ V is expressed by the tuple (var,val),
where var(A) is the set of variables WA, and val(A) is a value tuple 〈vt1 , . . . ,vti〉, vtk ∈ DAk .
The value vtk corresponding to the variable VAk in A is denoted by val(A,k). In a similar
way, the variable VAk , to which the value vtk is assigned, is denoted by var(A,k). A partial
assignment of a CSP is an i-compound label where i < n and a total assignment is a n-
compound label that includes all the variables of the problem. Note that an assignment
A over W can be expressed as a constraint C with scope(C) = W and de f (C) = {val(A)}.

An assignment can be projected over a subset of its variables:

Definition 3.4 (Projection of an assignment over a set of variables) Given two
sets of variables Wi = {Wi1 , . . . ,Wik}, W j = {Wj1 , . . . ,Wjm}, W j ⊆Wi ⊆V and an assignment
A over Wi with val(A) = 〈vt1 , . . . ,vtk〉, a projection of the assignment A over W j, written
A ↓Wi

W j
, is an assignment A′ with:

• var(A′) = Wi∩W j, and

• val(A′) = 〈vA′1 , . . . ,vA′m〉 where vA′r = vts if Wjr = Wis .

4A constraint Ci can also be stated in an implicit way, where a predicate P(vi1 , . . . ,vi j ), vik ∈ Dik will be

true if the values are allowed, false otherwise.
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Solution and partial solution (or consistent assignment) to a CSP are analog concepts
to total and partial assignments but satisfying all the constraints of the problem. The set
of all the solutions to the problem is called the solution space of the problem. Formally,
these concepts are defined as follows:

Definition 3.5 (Solution, Partial Solution and Solution Space) A solution or total
consistent assignment of a CSP is a total assignment (n-compound label) in such a way
that all the constraints of the problem are satisfied. In an analytical form, a solution
of a CSP is an assignment S with var(S) = V and val(S) = 〈v1, . . . ,vn〉 such that ∀c ∈
C , val(S ↓V

scope(c)) ∈ de f (c). A partial solution or partial consistent assignment of a CSP is
a partial assignment (k-compound label, where k < n) in such a way that all the constraints
of the problem are satisfied. The solution space of a CSP is the set of all the solutions to
the CSP.

A CSP is often graphically represented by a graph. This representation allows us to
easily take a look at the problem topology and it is called the constraint graph associated
to the problem.

Definition 3.6 (Constraint Graph) A constraint graph (also called constraint network)
is a graphical representation associated to a CSP. Nodes of the graph stand for the
variables of the problem, and constraints are represented by edges that link the implied
variables. The labels of the edges define the constraints and the labels of the nodes
represent the domain of the variables.

The search space of a CSP is all the possible n-compound labels in the CSP and the
associated search tree is its graphical representation. Both concepts can be defined as
follows:

Definition 3.7 (Search Space) The search space of a CSP P is the set of all the pos-
sible assignments to all variables, i.e., the cartesian product of all the variable domains.
Therefore, the size of the search space is the product of the size of each domain:

search space = {D1×·· ·×Dn}, |search space|= ∏
1≤i≤n

|Di|

Definition 3.8 (Search Tree) The search space associated to a CSP can be represented
as a search tree. A search tree for a CSP requires an order of the problem variables
Vi1 , . . . ,Vin . The root node stands for the empty assignment. The level k of the tree involves
the variable Vik . At the level k, the tree has one node per value in Dik . A path in the search
tree from the root to a node at the k level can be seen as the (partial) assignment implying
variables Vi1 , . . . ,Vik taking values represented by the nodes of the path. Paths from the
root to the leaves of the search tree are total assignments and represent the whole search
space.

In the following, the problem of a crossword puzzle is proposed to illustrate the basic
concepts related to classical CSPs.
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Figure 3.1: The crossword puzzle structure of Example 3.1 with a solution.

Example 3.1: A crossword puzzle.
The crossword puzzle problem is just a toy example to illustrate the formalization process
of a problem into a CSP. The problem consists of placing words of a dictionary in a given
puzzle satisfying certain constraints about the size of the words and the puzzle structure.
The structure of the crossword puzzle is a set of columns and rows with overlapping
positions. The rows and columns in the crossword puzzle are represented by the variables
of the problem. The domains of the variables are the words of the dictionary. Unary
constraints guarantee that words fit into the row or column. Binary constraints make
sure that the letters of the overlapping positions are the same. Let us imagine that
the dictionary is composed by v1 = fantastic, v2 = java, v3 = internet, v4 = hello,
v5 = constraint and v6 = insatisfiable; and the crossword puzzle structure is defined
by two rows and one column of size 4, 8, 9 respectively. Variable V1 represents the column
of size 9. Variables V2 and V3 represent the rows of size 4 and 8 respectively. Figure 3.1
shows the puzzle structure of the example. In order to express the constraints of the
problem we need some notations and functions:

• V = {V1,V2,V3}, and D1 = D2 = D3 = {v1,v2,v3,v4,v5,v6}.

• vi,k represents the value k in the domain for the variable Vi.

• size(vi,k) gives the size of the word represented by the value vi,k.

• pos(vi,k, p) indicates the letter in the position p of the word represented by the value
vi,k.

From the puzzle structure (Figure 3.1), the following constraints can be easily identi-
fied:

• Each variable has a unary constraint. In our example: size(v1,k) = 9, size(v2,l) = 4
and size(v3,m) = 8.
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pos(v1,k,2) = pos(v2,l,2) pos(v1,k,4) = pos(v3,m,3)
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Figure 3.2: The CSP graph representing the crossword puzzle of Example 3.1.
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Figure 3.3: The search tree associated to the search space of the Example 3.1. For simplic-
ity, only the branches containing a solution are expanded. The search tree of this example
has 216 (63) leaves. Leaves represent all the possible total assignments. The nodes being
part of the solution are displayed in bold.

• For each overlapping position in the crossword puzzle there is a binary constraint.
In our example: pos(v1,k,2) = pos(v2,l,2) and pos(v1,k,4) = pos(v3,m,3).

The words placed in the puzzle shown in Figure 3.1 compose the only solution to the
problem, i.e., all the other combinations violate some of the constraints.

Figure 3.2 illustrates the concept of a CSP graph. Figure 3.3 shows part of search tree
of the crossword puzzle example, where the leaves of the tree represent all the possible
n-compound labels of the problem.

Note that CSPs are useful to model combinatorial problems. For instance, our toy
example which is a very small problem has a search space of size 216. If we consider a
more serious crossword puzzle with 15 columns and 15 rows and a dictionary of 200 words,
the size of the search space will be 20015+15≈ 1068! Several techniques have been developed
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to efficiently solve combinatorial problems with a large search space. Appendix B reviews
the most relevant solving techniques for classical CSPs.

3.2.3 Extending classical CSPs

Often one needs more powerful frameworks to model real-life scenarios. Classical CSP
framework admits constraints which are hard and crisp. But, in many applications, con-
straints as defined in the classical CSP model are not enough. For example, consider
constraints modeling some cost functions where the goal is to minimize such costs. This
is the case when modeling user’s preferences where the associated constraints must be
satisfied as much as possible but they are not completely mandatory.

In the literature, different terminology is used to refer to different types of constraints.
In the following, the terminology that will be used in the rest of the work is stated.
Basically, one can classify the type of a constraint depending on two characteristics:

• Level of necessity:

– Hard constraints which must be satisfied. These constraints are mandatory,
they must be satisfied to form a solution. An assignment that violates a hard
constraint is an inconsistent assignment.

– Soft constraints which might be violated if necessary. When it is not possible
to satisfy all the soft constraints to form a solution, soft constraint violations
are admitted.

• Degree of satisfaction:

– Crisp constraints which can be either totally satisfied or totally violated. They
do not accept any degree of violation.

– Flexible5 constraints which can be satisfied (or violated) at a certain degree.

According to the above classification, three different types of constraints are identi-
fied6. An example of each type of constraint is given (for more examples of constraints
see Section 3.9).

Hard and Crisp constraints are classical constraints, formally defined in Section 3.2.2.
For example, modeling a catalog for a photo equipment with a camera body and
a lens, requires the consideration of brand compatibility between both components.
This requirement is an example of configuration constraint. If the brand of the cam-
era body is not compatible with the brand of the lenses, the configuration constraint
will be violated. If the brands of both components are compatible, the constraint
will be satisfied.

5Flexible constraints are also called fuzzy constraints.
6It makes no sense to consider hard and flexible constraints since a violated hard constraint makes an

assignment inconsistent, no matter the degree of its violation.
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Soft and Crisp constraints can be violated and only accept one degree of violation. For
instance, if the user prefers Nikon for the camera body, a Canon camera body com-
pletely violates the preference constraint. But, an assignment with the Canon camera
body is still admitted as a potential solution, since even if the user preference is not
respected at all, the assignment could make sense (e.g., in the case that no Nikon

camera body exist in the catalog, or the Canon camera body better satisfies other
user preferences).

Soft and Flexible constraints can be violated and accept several degrees of violation.
Usually, these constraints are modeled with a valuation function. Let us imagine
that the user states a maximum price for a camera body of 2,000 CHF (preference
constraint). A camera body that costs 2,100 CHF would be preferred than a camera
body that costs 3,000 CHF, even if both violate the preference constraint. For
instance, the first camera body would violate the constraint with a penalty of 100
and the second camera body would violate the constraint with a penalty of 1,000.
Of course, a camera body that costs less than 2,000 CHF would completely satisfy
the constraint, i.e., there would not be any penalty.

Several extensions to the classical CSP model have been developed in order to model
and solve problems that cannot be approached using standard CSPs:

Partial CSP [79] mainly deals with problems that are overconstrained, i.e., problems
that do not accept any solution. Another use of partial constraint satisfaction is
to solve problems where finding a solution that respects all the constraints is too
complex. In such cases, it is of interest to find solutions that satisfy the constraints as
much as possible. MAX-CSP or maximal CSP is a general framework for modeling
and solving partial CSPs. Larrosa describes algorithms for MAX-CSP and their
evaluations in [148]. MAX-CSPs deal with CSPs with soft and crisp constraints.

Soft CSP is the generic term for CSPs that deal with constraints that are not crisp nor
hard. Many different instances derive from soft CSPs:

• In Fuzzy CSPs [198, 55, 201] each tuple of values in the constraints has an
associated preference level (also called valuation) from 0 to 1, where 1 is the best
value and 0 the worst. A solution to a Fuzzy CSP is then a total assignment
that maximizes the minimum constraint valuation in the assignment. Thus,
a solution is a total assignment with the best (maximum) least (minimum)
preferred constraint violated.

• Weighted CSPs associate a weight, cost or penalty to value tuples in constraints.
A solution to a weighted CSP is then a total assignment that minimizes the
sum of the costs of constraints. Weighted CSPs can be seen as a generalization
of the MAX-CSP in the sense that a solution to a weighted CSPs minimizes
not only the number of violated constraints but the sum of their costs.

• In Probabilistic CSPs [62] (Prob-CSPs), each constraint has an associated prob-
ability p(c) to be part of the real problem. This formalism allows us to model
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problems which are not completely known. A solution to a Prob-CSP can be
defined in two different ways: a) a total assignment that maximizes the sum
of the probabilities of the constraints, or b) a total assignment that maximizes
the product of (1− p(c)) for each violated constraint.

• Possibilistic CSPs [212] associate to each constraint a possibilistic distribu-
tion among its value tuples. A solution to a possibilistic CSP is then a total
assignment which minimizes the maximum valuation among the constraints.
Possibilistic CSPs can be seen as the dual problem of fuzzy CSPs in the sense
that the first uses a min-max schema and the second uses a max-min schema.

• Lexicographic CSPs [63, 56] deal with the problem of generating solutions in
a too coarse way (drowning effect) in problems with min-max or max-min
schemas. The drowning effect comes from the fact that only the constraint
which is the most violated is taken into consideration. Thus, this approach can
be used either in fuzzy CSPs or possibilistic CSPs. It consists of discriminating
solutions with the same max/min constraint valuation by considering vectors
of valuations ordered in a lexicographic manner. Therefore, two solutions to
a fuzzy CSP (or possibilistic CSP) having the same minimum (or maximum)
constraint valuation, can be differentiated by considering the second minimum
(or maximum) constraint valuation. If the second most violated constraints are
also violated to the same extent, the third will be then taken into consideration,
and so on.

All these instances can be expressed by two general CSP frameworks, namely Valued
CSPs [215] and Semiring-based [17] CSPs.

Constraints hierarchies [23, 74, 200] were introduced to solve over-constrained prob-
lems by associating degrees of importance or strengths to constraints in a hierarchical
structure. The best solutions are those which satisfy all constraints up to a maximal
level in the hierarchy.

Appendix C reviews in more details the most important extensions to the classical
constraint satisfaction framework.

Our approach to model configurable catalogs is based on soft constraint satisfaction
problems, and more concretely on weighted CSPs. This framework allows us to easily
express in a uniform model all the constraints involved in configurable electronic catalogs
with preferences and optimization constraints.

3.3 Encoding configurable electronic catalogs as CSPs

As stated before, encoding a problem as a constraint satisfaction problem implies to iden-
tify the variables and the constraints among them. In the following, we describe the
variables and constraints for modeling any configurable catalog. At the end of the sec-
tion, the interpretation of solution spaces of constraint satisfaction problems that model
configurable catalogs are given.
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3.3.1 Variables and values

Variables in a CSP that models a configurable catalog represent the components of the
configurable product. Indeed, variables can also be called choices. For each choice there
are several options which are the values of the variable.

The first step to model a configurable catalog as a CSP is to decide which are the
variables. Then, the values of such variables can be identified easily. Values are the options
the user has for each component of the product. Next step in the modeling process is to
identify the constraints related to the catalog.

3.3.2 Constraints, preferences and optimization

By using classical CSPs, all the constraints involved in a product catalog can be modeled.
However, as pointed out above, crisp and hard constraints are not always powerful enough
to model real-life scenarios, and that is exactly the case when dealing with preferences
and optimization criteria. Three different types of constraints in configurable catalogs are
usually present: configuration constraints, user’s preferences and optimization constraints.

Configuration constraints are related to the configuration task and define the compat-
ibility among the different components that have to be composed to form a valid
product of the catalog. These constraints are needed in the case that products
can be only configured respecting certain compatibility rules. Configuration con-
straints cannot be violated, thus they are hard constraints. They are also crisp in
the sense that configuration rules do not usually accept different degrees of satis-
faction. Configuration constraints guarantee the feasibility and the correctness of a
product (solution) to a catalog (problem).

User’s preferences are used to take into consideration the user’s specific needs about the
product and are modeled by means of soft constraints. Tuples in these constraints
have an associated penalty or cost indicating the degree of violation. Moreover,
preferences can be stated by associating a fixed penalty or a function penalty. Pref-
erences with a fixed penalty are crisp in the sense that they can be violated with
the penalty or not violated at all. On the other hand, preferences with a function
penalty are violated at some degree.

Often it is also necessary to have a context for a preference in order to express that
the preference must only be applied in values where certain conditions applies. These
preferences are called conditional preferences or contextual preferences.

Optimization constraints allow us to express criteria that can be assumed valid for
every user regardless of his specific preferences. Optimization constraints determine
the quality or optimality of a solution. These criteria are usually defined with a
penalty function, the goal being to rank solutions that violate the user’s preferences
at the same level of satisfaction. Optimization constraints are clearly soft and can
be either crisp or fuzzy.
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Figure 3.4: The constraint’s hierarchy related to any electronic configurable catalog. Hard
(configuration) constraints are more important than soft constraints which are more im-
portant than optimization constraints. A constraint type dominates another constraint
type if constraints belonging to the first type have more important valuations than the
second type.

Typically, user’s preferences are always less important than constraints about the config-
uration task; and optimization constraints are less important than the preferences of the
user (see Figure 3.4). Configuration constraints are hard constraints and preferences and
optimization criteria are modeled with soft constraints.

It is worth to note that the distinction between preference or optimization constraints
and configuration constraints is that the latter are mandatory. On the other hand, con-
straints for preferences or optimization criteria are basically expressed by the same type
of constraints.

Example 3.2 is used to better explain the characteristics of the three types of constraints
involved in a configurable catalog.

Example 3.2: A flight ticket from Geneva to Barcelona.
Let us imagine a simple catalog modeling the problem of finding flights for a round trip
from Geneva (GVA) to Barcelona (BCN). Variable V1 models the flights from GVA to BCN
and variable V2 models the flights from BCN to GVA. Therefore, domain D1 associated
to V1 consists of all the possible flights from GVA to BCN and domain D2 associated to
V2 consists of all the possible flights from BCN to GVA. The following constraints can be
then stated:

• Configuration constraint: A binary constraint between V1 and V2 will make sure that
the flight of V1 arrives before the flight of V2 departs. Without this constraint, there
could be infeasible combinations of flights in a solution. This constraint guarantees
that the combination of flights makes really sense.

• User’s preference: For example, the user prefers flights departing before 10 a.m. Two
possibilities exist for modeling such preference:

– Fixed penalty for tuples in the constraint would be enough to discriminate
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against flights which do not satisfy the preference. However, the degree of
satisfaction of a flight departing at 10:10 a.m. would be the same as a flight
departing at 4 p.m., i.e., both flights completely violate the preference.

– Penalty functions for tuples allow us to have different degrees of satisfaction for
flights in respect to the preference. For example, given a flight f, a function
like:

penalty(f)→
{

0 if f.depTime≤ 10 a.m.

(f.depTime−10 a.m.) otherwise

would be much more convenient for modeling the preference because it discriminates
more accurately between the flights that violate the preference.

• Optimization criteria: For example, it can be assumed that, in general, people pre-
fer short flights. In that sense, an optimization constraint prioritizing flights with a
shorter flying time can be added to the CSP. Thus, there would be a unary optimiza-
tion constraint for each variable with, for example, a penalty function penalty(f)

= f.flyingTime.

Moreover, the preferences of a user are always ranked as being equally important.
Actually, people tend to rank their preferences with respect to their degrees of importance.
For example, consider a businessman planning to travel from Geneva to New York for
a meeting at 4 p.m. He must arrive in New York before 4 p.m. and he prefers Swiss

to any other airline. He could argue that his preference about the schedule is much
more important than his airline preference because the first is a requirement to arrive
on time for his meeting, and the second is more a personal preference. In a similar way,
it is also convenient to be able to model optimization criteria using different degrees of
priorities. In our model, degrees of importance for soft constraints, both user’s preferences
and optimization criteria, are defined by means of a constraint weight vector which is
formally defined in Definition 3.13, Section 4.2.

Formal definitions for modeling constraints related to catalogs are given in Section 3.5.

3.3.3 Solution space

The solution space of an electronic configurable catalog represents the set of products
satisfying the configuration constraints. In terms of constraint satisfaction, the solution
space is the subset of the search space where the n-compound labels do not violate any
hard constraint (i.e., the set of feasible solutions). If there is no solution satisfying all the
configuration constraints, it means that the catalog does not have a well-formed product
(overconstrained situation). In this case, we say that the catalog is neither correct nor
valid for the given problem.

3.3.4 An alternative CSP model

In the above encoding model, components of configurable products are modeled as vari-
ables of the CSP. Another CSP modeling approach would be to consider variables rep-
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resenting key attributes of the components of the products. Key attributes refer to the
those attributes that identify a concrete solution. Obviously, domains of variables would
be the set of different options for each attribute.

This model require, in general, more hard constraints than the previous approach. In
the above CSP model, configuration rules can be expressed by binary constraints among
the different components. In this model, configuration rules between components must be
encoded in regard of their attributes. On the other hand, preferences and optimization
constriants can be easily expressed, because in general they depend on specific attributes
of components.

The following example show how to model the problem illustrated in Example 3.2 using
the alternative CSP model described in this subsection:

Example 3.3: A flight ticket from Geneva to Barcelona, using an alternative
CSP model.
Let us imagine a simple catalog modeling the problem of finding flights for a round trip
from Geneva (GVA) to Barcelona (BCN). The first step consists of identyfing the variables
which are associated to key attributes of a solution, i.e., the attributes that uniquely
identify a product.

Locations do not need to be represented by variables because they are unique in this
example. In the case that the trip would contain different possible departure or arrival
locations, a variable representing departure or arrival location would be needed. In the
following, the key attributes are listed:

• depTime1 and arrTime1: identify departure and arrival times for the flight from GVA
to ZRH. Note that both times are needed since, the duration of different flights may
not be the same. Another possiblity would be to consider depTime1 and duration1.

• depTime2 and arrTime2: identify the same as the above variables but for the return
flight from BCN to GVA.

• depDate1 and depDate2: identify departure dates for the flight from GVA to ZRH
and from ZHR to GVA respectively.

• airline1 and airline2: identify the operating airline of the flight from GVA to
BCN and vice-versa.

• intermediate1 and intermediate2: identify the intermediate airports of flights
from GVA to BCN and vice-versa.

Note that some other attributes can also be modeled as variables, even if they are not
key attributes, for instance: aircraft1 and aricraft2 identifying the aircraft type of the
flight from GVA to BCN and vice-versa, or serviceClass identiffying the calss of service
(economy, business or first class). This variables may be usefull for modeling preference
on such attributes.
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Hard constraints among different variables must be then stated in order to ensure
the feaseability of the solutions. On the other hand, user preferences (and optimization
constraints) can be easily modeled as unary soft constraints on attributes.

The convinience of this model or the previous one strongly depends on the specific
problem.

3.4 Extended CSP frameworks for electronic catalogs

Section 3.2.3 summarized the most important extensions to the classical CSP framework.
Constraints which model user’s preferences need to support different degrees of importance
and at the same time different degrees of satisfaction. In the sequel, the extended CSP
models are analyzed regarding the three types of constraints for electronic catalogs.

MAX-CSPs cannot be used, mainly because they deal only with crisp constraints. If
configuration constraints and preference/optimization constraints are modeled in a crisp
schema, the MAX-CSP could give solutions that violate hard constraints, i.e., inconsistent
solutions.

Constraint hierarchies have the ability to separate soft and hard constraints, thus
they allow us to avoid the problem of having solutions that violate hard constraints.
Nevertheless, the solutions are less intuitive to users. We would, for example, prefer to
violate 10 times a constraint on the preferred airline rather than violate two different
preferences on departure times. Even if preferences on departure time are more important
than the preferred carrier, the result may not be intuitive at all to the user. Also, it is
difficult to establish an ordering of constraints which reflects the user’s preferences.

Instances derived from the general semiring-based CSP framework are the most promis-
ing ones, because they allow constraints to have different degrees of satisfaction:

• Fuzzy CSPs would find solutions with the best least preferred constraint. Basi-
cally, it takes into account only the worst unsatisfied criteria in each solution. The
main disadvantage of this model is that solutions are not evaluated according to all
constraints but only according to the less satisfied one.

• Lexicographic CSPs in the fuzzy framework are better suited than fuzzy CSPs for
modeling preference/optimization constraints because they avoid a too coarse so-
lution generation, however an even more general view of all constraints would be
needed.

• Possibilistic and probabilistic CSP frameworks are not appropriate at all because
preference/optimization constraints do not deal with probabilities nor possibilistic
distributions.

• The Weighted CSP framework is the most well-suited framework for modeling con-
figuration, preference and optimization constraints. In weighted CSPs, solutions are
complete assignments that minimize the sum of all constraint violations. The in-
convenience is that constraints are treated in the same way by summing up their
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Figure 3.5: Example of solutions in a CSP with two soft constraints. The two coordi-
nates show the values indicating the degrees to which criteria, horizontal and vertical,
are violated. Solutions of the problem strongly depend on the CSP framework. Possible
orderings of these solutions are presented in Table 3.1.

valuations without taking into consideration different degrees of importance among
them.

In Figure 3.5, an example of solutions violating, to a certain degree, two different soft
constraints is shown. Depending on the CSP framework, solving algorithms would give
the results shown in Table 3.1. In Table 3.1, not only the most optimal solution is shown,
but an ordered list of optimal solutions for each CSP framework.

CSP framework Ordering of solutions

Constraint hierarchies:
• if criterion 1 is more important than criterion 2 1, 2, 3, 4, 5, 6 and 7
• if criterion 2 is more important than criterion 1 6, 4, 7, 3, 5, 1 and 2
Fuzzy CSP 3, 4, 5, 1, 6, 2 and 7
Fuzzy CSP with lexicographic order 3, 4, 5, 1, 6, 2 and 7
Possibilistic CSP no sense
Probabilistic CSP no sense
Weighted CSP 4, 3, 1, 6, 5, 2 and 7

Table 3.1: Solving algorithms of different CSP frameworks may give different results for
the same problem. The solutions to the problem are displayed in Figure 3.5.
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3.5 Constraint satisfaction for configurable catalogs

Modeling electronic catalogs into CSPs implies to consider the three following types of
constraints: configuration constraints, user’s preferences and criteria optimization. In our
model, configuration constraints are modeled with classical hard constraints. User’s pref-
erences and optimization constraints are modeled with soft constraints (crisp or flexible)
that associate a cost or penalty to their tuples.

In the following definitions, our constraint satisfaction model is stated. Before defining
the CSP model itself, the definitions of soft and hard constraints are given. Hard con-
straints are defined in a similar way as those in the case of classical CSPs but they are
adapted in order to build a framework, where soft and hard constraints can be treated in
the same way.

Definition 3.9 (Hard constraint) A hard constraint Ci with scope(Ci) = {Vi1 , . . . ,Vij}
is a constraint where its definition de fCi is a valuation function (also called constraint
valuation):

ϕCi : Di1×·· ·×Dij →
{

0 if the tuple is allowed
∞ if the tuple is disallowed

∞ represents a value, called hard violation, that is used as a maximum violation for any
assignment. Given a collection of values for constraint valuations a1, . . . ,ak, the following
properties must hold:

1) a1 + · · ·+ak = ∞ ⇐⇒ ∃ i ∈ [1, . . . ,k], ai = ∞ and

2) a1 + · · ·+ak < ∞ ⇐⇒ ∀ i ∈ [1, . . . ,k], ai < ∞.

Note that the above properties are important in order to guarantee that a single violated
hard constraint is enough to decide that a solution is infeasible (property 1) and that just
a set of violated soft constraints never produces an infeasible solution (property 2).

Soft constraints are modeled as functions that map each solution into a numerical value
that indicates to what extent the criterion is violated, i.e., the lower the value, the better
the solution.

Definition 3.10 (Soft constraint or Criterion) A soft constraint Ci with scope(Ci) =
{Vi1 , . . . ,Vij} is a constraint where its definition de fCi is a valuation function ϕCi : Di1×·· ·×
Dij → IR+\{∞} that defines the degree to which value combinations violate the constraint;
a value of 0 means that the constraint is completely satisfied.

The problem of solving a constraint satisfaction problem with hard and soft constraints
is called Multi-criteria Constraint Optimization Problem (MCOP):

Definition 3.11 (Multi-criteria Constraint Optimization Problem (MCOP)) A
MCOP P is a tuple (V ,D,H C ,SC ), where:

• V = {V1, . . . ,Vn} is the set of variables involved in P ,
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• D = {D1, . . . ,Dn} is the set of domains associated to variables,

• H C = {HC1, . . . ,HCm} is the set of hard constraints.

• SC = {SC1, . . . ,SCl} is the set of soft constraints.

Hard and soft constraints are separated to ease the explanations of the rest of the
thesis, but they can be considered as the same type of constraints because both could be
defined over functions of the type ϕCi : Di1×·· ·×Dij → IR+.

Feasible solutions and partial feasible solutions for MCOPs are defined in the same
way as solutions for classical CSPs, thus:

Definition 3.12 (Feasible Solution and Partial Feasible Solution) A Feasible Solu-
tion7 S of a MCOP with n variables is a n-compound label in such a way that all the hard
constraints are satisfied. In an analytical form, a solution of a MCOP is an assignment
S with var(S) = V and val(S) = 〈v1, . . . ,vn〉 such that ∀c ∈ H C , ϕc(val(S ↓V

scope(c))) = 0. A
partial feasible solution8 S of a MCOP is a k-compound label (k < n) where all the hard
constraints are satisfied.

3.6 Optimal solutions to MCOPs

What the best solution to a MCOP is, depends strongly on the relative importance of
different criteria. This may vary depending on the user, the time, or the precise values
that the criteria can take. For example, in travel planning for some people price may be
more important than the schedule, while for others it is the other way around. People find
it very difficult to characterize the relative importance of their preferences by numerical
weights. On the other hand, it is not always easy to define valuation functions for soft
constraints in a way that they can be combined in a numerical way. Thus, two different
situations are identified:

• Quantitative approach: this approach deals with problems where a numerical
combination of the valuations for each constraint is feasible. This means that two
conditions hold:

1. the relative importance of the constraints (constraint weighting) is precisely
known, and

2. the valuation functions of the constraints are also known and comparable among
them.

In such a situation, the optimal solution to a MCOP is a total feasible assignment
that minimizes its valuation. The valuation of an assignment is the sum of the
violations of the solution for each constraint. This approach is described in detail
in Section 3.7.

7Sometimes, it will be just called solution.
8Sometimes, it will be just called partial solution.
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• Qualitative constraint combination approach: is an alternative approach when
the above conditions do not hold. In this situation, it is not possible to identify a
single best solution, but at least certain solutions can be classified as certainly not
optimal (Section 3.8).

Actually, in both approaches, one might be interested in getting a set of good9 solutions
to the problem. This is especially important in the case of electronic catalogs because the
user normally wants to evaluate a set of alternatives and choose the product that best fits
his needs. Interestingly, most decision aids already return not the single optimal solution,
but an ordered list of the top-ranked solutions. Thus, web search engines return hundreds
of documents deemed to be the best matches to a query, and electronic catalogs return
a list of possibilities that fit the criteria in decreasing degree. In general, these solutions
have been calculated assuming a certain weight distribution among constraints. It appears
that listing a multitude of nearly optimal solutions is intended to compensate for the fact
that these weights, and thus the optimization criterion, are usually not accurate for the
particular user.

We assume that the user is always interested in getting a set of good solutions and not
only the best. Electronic catalogs are designed to support the user decision process but
the user is likely to always make the final decision among several alternatives. People like
to evaluate a set of choices and be able to select the best one. In that sense, an electronic
catalog can be seen as a decision aid system for the purchase decision making process.
For this reason, we are interested in getting the k best solutions to a MCOP, and this is
valid for both approaches.

3.7 The quantitative approach

As explained above, it would be appropriate, therefore, to be able to express different
degrees of importance of soft constraints. This applies both to user’s preferences and
to optimization criteria. In the quantitative approach, these degrees of relevance are
numerically known and therefore can be defined by means of a vector called constraint
weight vector.

Definition 3.13 (Constraint Weight Vector) Given a set of soft constraints SC =
{SC1, . . . ,SCl}, an associated constraint weight vector CW = {w1, . . . ,wl}, wi ∈ IR defines
different degrees of importance for the constraints in SC . wi is a multiplicative factor for
the valuation function associated to SCi.

Assignments in the quantitative approach can be viewed in terms of costs or penalties.
In that sense, we define the valuation of an assignment by the sum of all the violations of
the constraints implied in the assignment:

Definition 3.14 (Valuation of an Assignment) Given an assignment A for a MCOP

9Here, the term good (and best) has two different meanings depending on the approach it refers to.
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with var(A) = W ⊆ V , ϕ(A) denotes its valuation and it is computed as follows:

ϕ(A) = ∑
∀c∈{HC∪SC}

ϕc(val(A ↓W
scope(c)))

An assignment A is a (partial) feasible solution if and only if ϕ(A) < ∞; otherwise A violates
some hard constraints. If a constraint weight vector CW = (w1, . . . ,wl) is available, then
the valuation of an assignment A is:

ϕ(A) = ∑
∀c∈HC

ϕc(val(A ↓W
scope(c)))+ ∑

∀ci∈SC

wi ·ϕci(val(A ↓W
scope(ci)))

In the quantitative approach, a MCOP problem can be mapped into an optimiza-
tion problem with a single criterion, called Weighted Constraint Optimization Problem
(WCOP):

Definition 3.15 (WCOP and Optimal Solution) A WCOP is a MCOP with an
associated weight vector CW = {w1, . . . ,wl}10. The optimal solution S to a WCOP is a
feasible solution that minimizes its valuation function ϕ(S). Note that there may be several
optimal solutions to a WCOP.

When all the criteria are equally important, the associated constraint weight vector
would be (1/k, . . . ,1/k) where k is the number of criteria. In such cases, the constraint
weight vector is not needed and the WCOP is equivalent to a Weighted CSP (see Sec-
tion 3.2.3) and therefore is also an instantiation of the semiring CSP framework. WCOP
can be solved by branch-and-bound search algorithms. These algorithms can be easily
adapted to return not only the best solution, but an ordered list of the k best solutions.
These algorithms are described in Chapter 4.

3.7.1 Order of feasible solutions

The relations better than and equally good as applied to feasible solutions allow us to have
a totally ordered set of the solution space.

Definition 3.16 (�, better than relation over the feasible solutions to a WCOP)
Given a WCOP with feasible solutions S , two solutions A,B ∈ S , and a valuation function
as described in Definition 3.14, we say that solution A is better than solution B, written
A≺ B, if and only if ϕ(A) < ϕ(B). Solution A is equally good as solution B, written A

.= B,
if and only if ϕ(A) = ϕ(B). Solution A is better than or equally good as solution B, written
A� B, if and only if ϕ(A)≤ ϕ(B).

Property 3.1: � totally orders the set of feasible solutions to a WCOP.
Given a WCOP with S feasible solutions, the following properties hold:

1. Reflexivity: A� A, ∀A ∈ S .

10In the case of having several different types of criteria, we could have one constraint weight vector for

each type of criteria.
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2. Weak antisymmetry: A,B ∈ S , A� B and B� A implies A
.= B.

3. Transitivity: A,B,C ∈ S , A� B and B�C implies A�C.

4. Comparability: For any A,B ∈ S , either A� B or B� A.

Proof. Each property is proved in the following:

1. Reflexivity:
A� A⇒ ϕ(A)≤ ϕ(A). Since ϕ(A) = ϕ(A), ϕ(A)≤ ϕ(A) always holds.

2. Weak antisymmetry:
A� B and B� A⇒ ϕ(A)≤ ϕ(B) and ϕ(B)≤ ϕ(A). Thus, ϕ(A) = ϕ(B) which implies
that A

.= B.

3. Transitivity:
A� B and B�C⇒ ϕ(A)≤ ϕ(B) and ϕ(B)≤ ϕ(C). Thus, ϕ(A)≤ ϕ(C) which implies
that A� B.

4. Comparability:
For any A,B ∈ (S), either ϕ(A) ≤ ϕ(B) or ϕ(B) ≤ ϕ(A) is true by the Trichotomy
Law11.

Since � totally orders the feasible solutions to a WCOP, the best k solutions to a
WCOP can be defined as follows:

Definition 3.17 (k Best Solutions to a WCOP) Given a WCOP with m feasible
solutions S = {S1, . . . ,Sm}, the best k (k ≤ m) solutions to a WCOP is a set of feasible
solutions S ′ = {S1, . . . ,Sk} ⊆ S such that:

Si � S j,∀i = 1, . . . ,k, j = k+1 and Sk � Sl, ∀l > k

As in the case of an optimal solution, the k best solutions to a WCOP may not be a unique
set.

3.7.2 User preferences and optimization criteria

In the quantitative approach, constraint valuations are combined in a linear combination
with a constraint weight vector. In our framework, electronic catalogs are modeled by two
kind of soft constraints: user’s preferences and optimization criteria. Thus, soft constraints
are combined together, and therefore to avoid over (or under) dominance of some of the
criteria, it is convenient that the following two properties hold:

11For arbitrary real numbers a and b, exactly one of the relations a < b, a = b, a > b holds (see [5], page

20).
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1) Soft constraints (both optimization criteria and user’s preferences) should be com-
parable among them. This property is necessary, since a solution to a WCOP is
a feasible assignment that minimizes the linear combination of the soft constraint
violations with their weight factors.

2) Optimization criteria should only differentiate solutions that have the same valuation
in regard to the user’s preferences. In other words, optimization constraints only
play a role among solutions that violate the user’s preferences at the same degree
(see Section 3.3.2).

The process of modifying the valuation functions of the soft constraints in order to
satisfy the above conditions is called respectively normalization and rescaling :

1) Normalization: Valuation functions of soft constraints should be transformed to
the same range. Originally, soft constraints are defined through valuation functions
of the form ϕ : D1×·· ·×Dn→ IR+\{∞}. To make these valuations comparable among
them, a transformation of valuation functions from ϕ : D1×·· ·×Dn → IR+\{∞} to
ϕ : D1× ·· ·×Dn → [0,max-val], max-val ∈ IR+\{∞} is needed. For the rest of the
document, we assume that max-val is equal to 1. After this transformation, a
valuation of max-val indicates that the soft constraint is totally violated, a valuation
of max-val/2 means that the soft constraint is half violated, and a valuation of
0 indicates that the soft constraint is completely satisfied. How to make such a
transformation depends strongly on the constraint itself (and its semantics), but in
general we can consider two kinds of valuation functions for soft constraints:

– Fixed degrees of violations. For instance, consider that a user prefers to fly
with Swiss Air Lines (LX). This preference can be expressed by three degrees of
violations:

penalty(f)→




0 if f.airline = LX

100 if f.airline ∈ alliance(LX)

500 otherwise

The normalized form to the range [0,1] of this valuation function could then
be:

normalized-penalty(f)→




0 if f.airline = LX

0.2 if f.airline ∈ alliance(LX)

1 otherwise

– Continuous degrees of violations. For example, the user prefers flights departing
before 10 a.m. As seen in Example 3.2, p42, this preference can be expressed
by a function like:

penalty(f)→
{

0 if f.depTime≤ 10 a.m.

(f.depTime−10 a.m.) otherwise
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In order to normalize such preference to the range [0,1], the maximum f.depTime

of all the possible flights must be known. If we call this maximum departure
time maxDepTime, then the normalized function could be stated as:

normalized-penalty(f)→
{

0 if f.depTime≤ 10 a.m.
f.depTime−10 a.m.
maxDepTime−10 a.m.

otherwise

2) Rescaling: The second step consists of transforming the valuation functions after
the step 1) in order to force a priority for user preferences over optimization criteria
(see Section 3.3.2), i.e., optimization criteria should only differentiate solutions that
violate the preferences at the same degree. This step must guarantee that even if
all the optimization constraints are violated at their maximum degree, a difference
in any of the violations in the preferences should be more important than all the
optimization criteria violations.

Let us assume that there are op optimization constraints with valuation functions to
the range [0,1]. Then, the sum of the optimization valuations is always at the range
[0,op ]. Valuation functions for preferences can be discretized in k values, and their
discrete form could then be:

ϕdiscrete =




0 ⇐⇒ 0≤ ϕ <
1

2 · k
op
2

+ i ·op ⇐⇒ 1
2 · k +

i
k
≤ ϕ <

1
2 · k +

i+1
k

, i = 0, . . . ,k−1

k ·op ⇐⇒ k−1
k

≤ ϕ

The parameter k heavily depends on the application domain. In general, as k in-
creases, the precision of the valuation functions for the preferences also increases. In
this way, variances on the violations for preferences are always more relevant than
any violations of the opitmization constraints.

Another option could be just to transform ϕ into

ϕrescaled = ϕ · k ·op

Figure 3.6 shows the process of transforming a normalized valuation function for a
criteria (Subfigure a) in its discrete (Subfigure b) and rescaled (Subfigure c) forms.
The advantage of using ϕrescaled instead of ϕdiscrete is that preferences do not loose
precision in their valuation functions. The disadvantage of using ϕrescaled instead of
ϕdiscrete is that in some cases, the optimization criteria can be more relevant than
some slight variance in the satisfaction of preferences (which contradicts the property
2 above described). Again, the choice between ϕrescaled and ϕdiscrete depends on
the application domain. In some applications it could even be convenient to have
some preferences modeled with discretized functions and some others modeled in
their rescaled form.
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Figure 3.6: Subfigure (a) is an example of a valuation function for a preference normalized
in the range [0,1]. If we assume that the problem has op optimization constraints, then
the valuation of all the optimization constraints lies within the range [0,op ]. Subfigure
(b) shows a possible way of transforming the preference valuation function in a discrete
function with k values. Subfigure (c) plots the valuation function for the same preference
rescaled to the range [0,k ·op ].

3.8 The qualitative constraint combination approach

When relative importance of criteria is unknown or the valuation functions for soft con-
straints can not be combined together, it is not possible to identify a single best solution.
But at least certain solutions can be classified as certainly not optimal. This is the case
when there is another solution which is as good as or better in all respects (i.e., in all
soft constraints). We say that a solution S1 dominates another solution S2 if for every soft
constraint, the violation cost in S1 is no greater than that in S2, and if for at least one



3.8. The qualitative constraint combination approach 55

constraint, S1 has a lower cost than S2. Solution dominance is defined formally as follows:

Definition 3.18 (Solution Dominance) Given a MCOP P with l soft constraints SC =
{SC1, . . . ,SCl} and two feasible solutions S1 and S2 of P:

S1 dominates S2 ⇐⇒

 ∀c ∈ SC , ϕc

(
val

(
S1 ↓V

scope(c)

))
≤ ϕc

(
val

(
S2 ↓V

scope(c)

))
, and

∃c ∈ SC , ϕc

(
val

(
S1 ↓V

scope(c)

))
< ϕc

(
val

(
S2 ↓V

scope(c)

))
The solution dominance defines a relation on the set of feasible solutions to a MCOP P.
The expression S1 dominates S2, written S1 ≺ S2, means that S1 is better than S2. When
solution S1 and solution S2 violate the constraints at the same degree, we say that the
solutions are equally good, written S1

.= S2:

S1
.= S2 ⇐⇒ ∀c ∈ SC , ϕc

(
val

(
S1 ↓V

scope(c)

))
= ϕc

(
val

(
S2 ↓V

scope(c)

))
Consequently, S1 � S2 means that solution S1 dominates S2 or S1 is equally good than

solution S2: S1 � S2 ⇐⇒ S1 ≺ S2 or S1
.= S2. Furthermore,

S1 � S2 ⇒∀c ∈ SC , ϕc

(
val

(
S1 ↓V

scope(c)

))
≤ ϕc

(
val

(
S2 ↓V

scope(c)

))
Please, note that ≺, � and .= have two different meanings, depending on the context

(quantitative or qualitative), however, their meaning should always be clear within the
context.

3.8.1 Order of feasible solutions

In the qualitative constraint combination approach, the feasible solutions to a MCOP can
be partially ordered by the solution dominance relation (see Definition 3.18).

Property 3.2: � partially orders the set of feasible solutions to a MCOP.
Given a MCOP with S feasible solutions, the following properties hold:

1. Reflexivity: A� A, ∀A ∈ S .

2. Weak antisymmetry: A,B ∈ S , A� B and B� A implies A
.= B.

3. Transitivity: A,B,C ∈ S , A� B and B�C implies A�C.

Proof. Each property is proved in the following:

1. Reflexivity: A� A⇒ A≺ A or A
.= A. It is clear that A

.= A (A is equally good than
A).

2. Weak antisymmetry: A � B and B � A ⇒ (A ≺ B or A
.= B) and (B ≺ A or B

.= A).
By Definition 3.18, the following expressions are contradictory:

– A≺ B and B≺ A.

– A≺ B and B
.= A.
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Thus, we have that A
.= B is true.

3. Transitivity: A� B and B�C⇒

∀c ∈ SC , ϕc

(
val

(
A ↓V

scope(c)

))
≤ ϕc

(
val

(
B ↓V

scope(c)

))
and

∀c ∈ SC , ϕc

(
val

(
B ↓V

scope(c)

))
≤ ϕc

(
val

(
C ↓V

scope(c)

))
that implies ∀c∈ SC , ϕc

(
val

(
A ↓V

scope(c)

))
≤ϕc

(
val

(
C ↓V

scope(c)

))
. Therefore, by Def-

inition 3.18, A�C.

3.8.2 Pareto optimality

The idea of Pareto12-optimality [184] is to consider all solutions which are not dominated
by another one as potentially optimal:

Definition 3.19 (Pareto-optimal Solution and Pareto-optimal Set) Given a MCOP
P with feasible solutions S , any feasible solution S ∈ S which is not dominated by another
is called Pareto-optimal Solution of P:

S is Pareto-optimal ⇐⇒ �S′ ∈ S , S′ ≺ S

The Pareto-optimal Set13 P O of a MCOP P with feasible solutions S is the set of solutions
which are not dominated by any other one: P O = {S ∈ S |�S′ ∈ S , S′ ≺ S}.

In Figure 3.7, the Pareto-optimal set is {1,3,4,6}, as solution 8 is dominated by solution
1, solution 7 is dominated by 4 and 6, 5 is dominated by 3 and 4, and 2 is dominated by
1.

Example 3.4: User profiles and optimality in the travel domain.
This example illustrates how different user profiles (constraint weight vectors) influence
the optimality of a solution for each individual user. Consider users willing to plan the
same itinerary. The users have exactly the same criteria:

1. leave after 17:00,

2. mileage with United Airlines,

3. no change in London Heathrow, and

4. as cheap as possible.

A first naive analisys could yield to the interpretation that all the users would prefer
the same solution, since they all have the same criteria for the same itinerary. Nevertheless,
criteria have different importance for individual users.

12Vilfredo Pareto, 1848-1923, Italian economist.
13also called the efficient frontier of P.
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Figure 3.7: Example of Pareto-optimal solutions in a MCOP with two preference criteria.
The two coordinates show the values indicating the degrees to which criteria, horizontal
and vertical, are violated. Each solution dominates solutions in a rectangle. The solutions
which are not dominated (1, 3, 4 and 6) are Pareto-optimal.

In Table 3.2, different solutions are shown. Each solution satisfies some of the criteria of
the users. A conscientious user, for example, would prefer to satisfy the preferences about
time and cost (criteria 1 and 4). In regard to selfish travelers, the airline and intermediate
airports preferences (criteria 2 and 3) have a higher degree of importance, whilst the cost
(criterion 4) or the departure time (criterion 1) are less important. Finally, for a bureaucrat
traveler, time and airline preferences (criteria 1 and 2) are the most important criteria.

On the other hand, the last solution is dominated by solutions 1, 3, and 4. Note that,
the only satisfied criteria for the dominated solution is the airline preference, all the other
criteria are unsatified. Solutions 1, 3, and 4 satisfy the airline preference and others at
the same time, thus they dominate solution 5. In a closer look at Table 3.2, one could
think solution 4 is also dominated by solution 1, since solution 1 satisfies the same criteria
than solution 4 plus criterion 4. However, the first criterion can accept different degrees
of satisfaction, and solution 4 better satisfies it than solution 1 (solution 4 has a later
departure time than solution 1).

The following two basic lemmas will be used in the rest of the chapter.

Lemma 3.1: At least there is one Pareto-optimal solution to a MCOP.
A MCOP P with S = {S1, . . . ,Sn}, n≥ 1, solutions has at least one Pareto-optimal solution.

Proof. Let us consider the sets of solutions

S1 = {S1}, S2 = {S1,S2}, S3 = {S1,S2,S3}, . . . , Sn = S = {S1,S2, . . . ,Sn}
and their corresponding sets of Pareto-optimal solutions P O1, . . . ,P On.

Proving that |P On| ≥ 1 by induction, implies to demonstrate that:



58 Chapter 3. Modeling Electronic Catalogs as CSP

criterion
user profile solution 1 2 3 4

selfish 1. United Airlines, 14:55 → 13:50, CHF 900 ✗ ✓ ✓ ✓

conscientious 2. British Airways, 18:50 → 18:15, CHF 789 ✓ ✗ ✗ ✓

bureaucrat 3. United Airlines, 17:30 → 18:15, CHF 2,300 ✓ ✓ ✗ ✗

selfish 4. United Airlines, 15:30 → 13:10, CHF 1,175 ✗ ✓ ✓ ✗

dominated 5. United Airlines, 12:35 → 12:25, CHF 1,500 ✗ ✓ ✗ ✗

Table 3.2: Individual users with the same criteria would choose different flights because
they give different weights to their criteria. The last solution is dominated, thus it would
never be rationally preferred for any user profile.

1. |P O1| ≥ 1 , and

2. |P Ok| ≥ 1⇒ |P Ok+1| ≥ 1, ∀k, 1≤ k ≤ n−1

Hence,

1. |P O1| ≥ 1 is obviously true. S1 is not dominated by any other solution in S1. There-
fore S1 is Pareto-optimal for S1.

2. There are the two following cases:

• ∃S ∈ P Ok |S≺ Sk+1. Consequently, P Ok = P Ok+1. Therefore, |P Ok+1| ≥ 1.

• �S ∈ P Ok |S ≺ Sk+1. That means that ∀S ∈ P Ok , Sk+1 ≺ S or Sk+1
.= S. In both

cases, Sk+1 ∈ P Ok+1. In consequence, |P Ok+1| ≥ 1.

Thus, by the induction principle, |P On| ≥ 1 is true.

As shown in Figure 3.7, solutions to a MCOP with k criteria can be mapped into points
in a k-dimensional space. Formally, these concepts are defined as follows:

Definition 3.20 (Criteria Space and Mapping Solutions to it) Given a MCOP
P with SC = {SC1, . . . ,SCk} soft constraints, its criteria space is a k-space IRk, where its
dimension i represents criterion SCi. A solution S to P can be then mapped to a point p
in the criteria space as follows:

point(S) = p =
(

ϕC1

(
val

(
S ↓V

scope(C1)

))
, . . . ,ϕCk

(
val

(
S ↓V

scope(Ck)

)))
The solutions that are mapped to a point p are denoted sol(p), and the point to where
a solution is mapped is called point(S). It is also useful to differentiate the mapping of a
solution S to different criteria spaces. For that, the mapping of a solution S to a k criteria
space will be noted pointk(S).

It is convenient to differentiate between Pareto-optimal solutions and points where
these Pareto-optimal solutions are mapped:
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Definition 3.21 (Set of Pareto-optimal Points of a MCOP) Given a MCOP P with
SC soft constraints and k Pareto-optimal solutions P O. The set of Pareto-optimal points
of P, denoted P OP , is the set of points where Pareto-optimal solutions are mapped in the
criteria space of P.

Note that a Pareto-optimal point can represent several Pareto-optimal solutions, thus
in general, |P OP | ≤ |P O|.

Lemma 3.2: Adding one criterion to a MCOP can only add more Pareto-optimal
points.
Given a MCOP P with SC = {SC1, . . . ,SCk} soft constraints, S solutions, P O Pareto-
optimal solutions and P OP Pareto-optimal points. Consider a MCOP P′ with SC ′ soft
constraints, equivalent to P but with one more criterion: SC ′ = SC ∪{SC}. Let P O ′ be
the set of Pareto-optimal solutions of P′ and let P OP ′ be the set of Pareto-optimal points
of P′. Then, P OP ⊆ P OP ′.

Proof. P OP ⊆ P OP ′ ⇔ ∀p ∈ P OP , ∃ p′ ∈ P OP ′ such that ∃S, S ∈ sol(p)∧S ∈ sol(p′). Let
p be any Pareto-optimal point of P OP . Let S be any solution in sol(p). Since point(S) ∈
P OP , S is Pareto-optimal, by Definition 3.21. By Definition 3.18 and Definition 3.19:
�Y ∈ S , such that :

∀c ∈ SC , ϕc

(
val

(
Y ↓V

scope(c)

))
≤ ϕc

(
val

(
S ↓V

scope(c)

))
and

∃c ∈ SC , ϕc

(
val

(
Y ↓V

scope(c)

))
< ϕc

(
val

(
S ↓V

scope(c)

))
which is equivalent to:
∀Y ∈ S ,

∃c ∈ SC , ϕc

(
val

(
Y ↓V

scope(c)

))
> ϕc

(
val

(
S ↓V

scope(c)

))
or (3.1)

∀c ∈ SC , ϕc

(
val

(
Y ↓V

scope(c)

))
= ϕc

(
val

(
S ↓V

scope(c)

))
(3.2)

Therefore, any solution Y ∈ S ,Y �= S falls in one of the following cases:

(3.1) in this case it is clear that adding one more criterion to the problem would not imply
in any case that solution Y dominates solution S. In consequence, pointk+1(S)∈P OP ′.

(3.2) this second case implies that Y
.= S. Adding one more criterion, SCk+1, to the

problem implies the following cases:

1. ϕSCk+1

(
val

(
Y ↓V

scope(c)

))
= ϕSCk+1

(
val

(
S ↓V

scope(c)

))
, or

2. ϕSCk+1

(
val

(
Y ↓V

scope(c)

))
< ϕSCk+1

(
val

(
S ↓V

scope(c)

))
, or

3. ϕSCk+1

(
val

(
Y ↓V

scope(c)

))
> ϕSCk+1

(
val

(
S ↓V

scope(c)

))
.

However, in all cases there will be always at least one Pareto-solution: S and Y
in the first case, Y in the second case and S in the third case. In consequence,
pointk+1(S) ∈ P OP ′.

Thereby, P OP ⊆ P OP ′.
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3.8.3 User’s preferences and optimization criteria

In the quantitative approach, user’s preferences and optimization criteria were treated in
the same way. Using Pareto-optimality over user’s preferences and optimization criteria
would lead to unexpected solutions. That is because we could get solutions that are
optimal in respect to optimization criteria but they are not optimal in respect to user’s
preferences. Hence, two different strategies can be considered:

• User’s preferences as the main set of criteria and optimization criteria as a second
set of criteria.

Pareto-optimality is only applied to user’s preferences. Optimization criteria can
be then used to rank Pareto-optimal solutions. In this way, solutions are firstly
selected by their Pareto-optimality in respect to user’s preferences, and secondly by
their optimality in respect to optimization criteria. A special case is when there are
no user’s preferences at all. In this situation, Pareto-optimality can be used over
optimization criteria.

• All optimization criteria as one more criterion.

By using this second strategy, the combination of all optimization criteria is one
single criterion for Pareto-optimality to be considered together with the user’s pref-
erences. The combination of the optimization criteria can be done in the same way
as in the quantitative approach, i.e., by summing up their valuations.

3.8.4 Pareto-optimal solutions on the convex hull

In Section 3.8, it has been explained that Pareto-optimal solutions dominate the rest of
the solutions, therefore Pareto-optimal solutions are always better for the user than the
dominated ones.

However, not all the Pareto-optimal solutions are equally optimal regarding different
user profiles. A user profile is here represented by a constraint weight vector as defined
in Definition 3.13. In other words, for the same user’s preferences two different users might
prefer different solutions because they have different constraint weights. In Figure 3.8, the
projections of each Pareto-optimal solution to the different user profile vectors indicate to
what extent the solution satisfies the criteria for the associated user. Therefore, in Fig-
ure 3.8, different users would prefer solutions in different orders: user 1 → 6, 4, 3 and 1;
user 2 → 4, 6, 3 and 1; user 3 → 4, 6, 1 and 3; user 4 → 1, 4, 3 and 6.

On the other hand, we pointed out that Pareto-optimal approach is used when the con-
straint weight vector is unknown. It is worth to remember that if the relative importance
of the constraints (i.e., the constraint weight vector) is precisely known, the quantitative
approach gives the optimal solutions and they can be totally ordered. However, even if
the constraint weight vector is unknown, some Pareto-optimal solutions can be removed
because they would never be optimal for any user profile. These Pareto-optimal solutions
are the ones that are not on the convex-hull (Definition 3.22) of the set of feasible solutions.
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Figure 3.8: The two coordinates show the values indicating the degrees to which criteria,
horizontal and vertical, are violated. Pareto-optimal solutions (1, 3, 4 and 6) are shown.
The constraint weight vector associated to 4 different users are depicted as vectors (user
1, user 2, user 3 and user 4). The projections of each Pareto-optimal solution to the
different user profile vectors indicate to what extent the solution satisfies the criteria for
the associated user.

Definition 3.22 (Convex-hull of a set of solutions to a MCOP) Given a MCOP
P with SC = {C1, . . . ,Cm} soft constraints (criteria) and with S = {S1, . . . ,Ss} solutions.
Consider each solution Si ∈ S as a point pi in the m-Space IRm:

pi =
(

ϕC1

(
val

(
Si ↓V

scope(C1)

))
, . . . ,ϕCm

(
val

(
Si ↓V

scope(Cm)

)))
The convex-hull of the set of solutions to a MCOP is the smallest convex set that contains
all the points pi representing a solution Si ∈ S , and it is noted conv(S)⊆ S .

For example, consider the Figure 3.9. Solution 3 is Pareto-optimal but it is not on the
convex-hull of the set of feasible solutions. It can be observed that for user profiles with
α > 90o Pareto-optimal solution 4 is always more preferred than Pareto-optimal solution
3; for user profiles with α < 90o Pareto-optimal solution 1 is always more preferred than
Pareto-optimal solution 3; and for user profiles with α = 90o both Pareto-optimal solutions
1 and 4 are always more preferred than Pareto-optimal solution 3. Pareto-optimal solution
3 is never the most preferred one for any profile, because it is not on the convex-hull.

It is worth noting that the above explanation is valid under the assumption that user
profiles are defined linear with respect to criteria.

3.8.5 What are the k best solutions?

In the quantitative approach it was possible to define the k best solutions to a prob-
lem because the feasible solutions can be totally ordered (see Property 3.1). But, when
using the Pareto-optimal concept, the solutions to a MCOP are only partially ordered
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Figure 3.9: The two coordinates show the values indicating the degrees to which criteria,
horizontal and vertical, are violated. Pareto-optimal solutions (1, 3, 4 and 6) are shown.
The solutions on the convex-hull are linked by a double line. Pareto-optimal solution 3 is
not optimal for any user profile because it is not on the convex-hull.

(see Property 3.2), i.e., the feasible solutions can be classified in Pareto-optimal solutions
and dominated solutions.

As stated in Section 3.6, we are concerned in getting the k best solutions to a MCOP.
A partial order on the solutions is not enough to decide what are the k best solutions
to the problem. One characteristic of the Pareto-optimal set is that it usually contains
many solutions; in fact, all solutions could be Pareto-optimal. Also, it could happen that
a problem has very few Pareto-optimal solutions, however there is always at least one
Pareto-optimal solution (see Lemma 3.1).

Ideally, the best solutions to the user for a MCOP are the Pareto-optimal solutions
on the convex hull (see Section 3.8.4), however, due to the complexity of computing the
solutions on the convex hull when having more than two criteria (O(n�n/2+1�), see [226]),
several alternatives are suggested.

Let us assume that we are looking for the k best solutions to a MCOP with p Pareto-
optimal solutions. Pareto-optimal solutions are, by definition, optimal in respect to any
other dominated solution. Therefore, Pareto-optimal solutions should always be preferred
over dominated ones.

When dealing with the problem of obtaining the k best solutions to a MCOP with
p Pareto-optimal solutions, two different situations are possible14, either there are p <

k Pareto-optimal solutions (too few Pareto-optimal solutions) or p > k Pareto-optimal
solutions (too many Pareto-optimal solutions). In the sequel, both situations are described,
and different strategies are proposed.

14The case where p = k is negligible because then the k best solutions are the solutions which are Pareto-

optimal.
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3.8.5.1 Too few Pareto-optimal solutions

A problem with few Pareto-optimal solutions is a problem where many solutions are dom-
inated by few ones. Thus, electronic catalogs with this situation are offering few optimal
choices to the user. In consequence, it would apparently be enough to support the user in
the buying process by only showing these few Pareto-optimal solutions. Nevertheless, in
many cases, it can be convenient to give more options to the user, even if some of these
options are dominated by others. This is mainly due to the fact that some preferences
involved in the user’s decision process can not always be expressed by formal constraints.
In the buying decision making process, there are usually emotional factors and feelings
about products that cannot be easily stated in a formal way. On the other hand, people
like to have several options to examine and then choose the one that best suits their needs.

In the case that there are less Pareto-optimal solutions than solutions to be shown to
the user, three alternatives are proposed:

1. The Pareto-optimal set is enlarged with dominated solutions that minimize the valu-
ation function (as defined in Definition 3.14) to form the set of solutions to be shown
to the user. This alternative could be considered as a mix between the quantitative
approach and the Pareto-optimal approach. The quantitative approach is used here
to totally order the dominated solutions and take the best p− k ones, in order to
complete the set of solutions to be shown to the user. If a constraint weight vector
is not available, the preferences of the user are considered equally relevant.

2. Let us assume that the problem has a set of feasible solutions S with a Pareto-optimal
set P O. Then, we could consider the Pareto-optimal solutions in respect to the set
S −P O to get a second set of Pareto-optimal solutions P O ′. The interpretation of
this alternative is that as it considers the Pareto-optimal solutions at several levels,
it could be seen as a hierarchy of Pareto-optimal sets. Imagine, for example, that
one solution dominates all the other ones. In such a case it would be convenient
to consider the Pareto-optimal set without taking into consideration this optimal
solution.

When removing a Pareto-optimal set P O, the next P O ′ may be too large, leading
to the case where there are too many solutions. In this case, one of the strategies
proposed in Section 3.8.5.2 can be considered.

3. Finally, another alternative is to ask the user to add more preferences to the system.
In Chapter 4, we show experimentally how by increasing the number of criteria,
the number of Pareto-optimal solutions also increases. Thus, if there are too few
Pareto-optimal solutions and the user adds some more preferences, it is likely that
the number of Pareto-optimal solutions will increase. Actually, when adding a new
criteria to a MCOP with p Pareto-optimal points, there will be at least p Pareto-
optimal points to the new problem (see Lemma 3.2).

Similarly, when adding more criteria, the problem can then have too many Pareto-
optimal solutions. In such a case, one of the strategies proposed in the following
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section can be adopted.

3.8.5.2 Too many Pareto-optimal solutions

When a catalog has too many Pareto-optimal solutions to be shown to the user, one could
say that the products have very balanced trade-offs in respect to the criteria. It means
that the user has a lot of optimal choices regarding his preferences. Ideally, it would
be convenient to show all the Pareto-optimal solutions and let the user choose. However,
most of the current graphical user interfaces cannot show, in an appropriate manner, more
than a certain number of products. Therefore, some strategies to select a subset of the
Pareto-optimal set are proposed:

1. One strategy is to filter out the k best solutions in the Pareto-optimal set in respect
to the valuation function defined in Definition 3.14. This alternative leads to a mixed
approach between the quantitative and the Pareto-optimal approach. This procedure
is similar to the one for enlarging the optimal solutions set in the case of too few
Pareto-optimal solutions.

2. The other alternative, is to compute a subset of the Pareto-optimal set that is rep-
resentative of the whole set. This alternative seems to be complex, especially if the
number of criteria is high.

3. Ideally, the system should only give the Pareto-optimal solutions that are on the
convex-hull (see Section 3.8.4). The drawback with this alternative is its computa-
tional complexity (see Chapter 4, Section 4.3.4).

3.8.5.3 Totally ordering for Pareto-optimal solutions

The ideal way of presenting Pareto-optimal solutions to the user is by showing them in
a graphical display, where the user can identify to what extent each criteria is satisfied.
However, this can be very difficult when the number of criteria is large. A special case
is when there are only 2 criteria, where a bidimensional plot (similar to the one shown
in Figure 3.7) is the most comprehensible display for people, because they can easily see
what solution is good for their specific criteria weighting.

When showing solutions to the user, very often it is convenient to rank and present
them in an ordered list. For that, a way of ranking the Pareto-optimal solutions is needed.
By using the valuation function of each solution, the Pareto-optimal solutions can be
totally ordered, as in the case of the quantitative approach.

3.9 An example: photo equipments

As an example to illustrate the modeling process described in this chapter we propose to
analyze a catalog for SLR (Single Lens Reflex) photo equipment. This example is complex
enough to argue that it cannot be solved by just presenting a list of all the possible
combinations to the user, therefore our model will fit well for this problem.
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A complete SLR equipment is composed of a set of camera bodies, a set of lenses and
a set of flashes. Simplifying, each component of a SLR system can be specified by the
following attributes (with their possible values):

camera body :
brand→{Nikon,Canon,Minolta,Sigma,Pentax}
model→ reference

max-shutter-speed→ num value

manual-automatic→{manual,auto}
autofocus→{yes,no}
price→ num value

lens :
brand→{Nikon,Canon,Minolta,Sigma,Tamron,Tokina,Pentax}
mount-type→{Nikon,Canon,Minolta,Sigma,Pentax}
max-aperture→ num value

min-aperture→ num value

min-zoom→ num value

max-zoom→ num value

price→ num value

flash :
brand→{Nikon,Canon,Minolta,Sigma,Metz}
brand-compatibility→{Nikon,Canon,Minolta,Sigma,Pentax}
guide-number→ num value

price→ num value

Each component of the equipment is a choice for the user, i.e., a variable in the
constraint satisfaction problem. Therefore, if the user is looking for an equipment with i
camera bodies, j lenses and k flashes, the problem is modeled with i+ j + k variables: i
body-var variables, j lens-var variables, and k flash-var variables.

The values for each variable are the available options for each choice. The domain sizes
for each type of variable are shown in Table 3.315.

The user may be interested in a complete equipment with several lenses, flashes, and
bodies16. Thus, the photo equipment catalog accepts different instances of the problem
depending on how many components the user is looking for. Table 3.4 shows the size
of search spaces corresponding to different instances of the catalog. Such instances are
derived by varying the number of components to be selected (the choices or variables).
Note that the search space for such problems quickly becomes very large, therefore simple
filtering methods are not enough to support users to find the right products in an efficient
manner.

Let us illustrate the concepts described in this chapter with a complete catalog for an
equipment with one camera body, two lenses and one flash. The associated variables for

15Real data taken from each brand’s web site on June 2002.
16Professional photographs are normally interested in several bodies with a set of lenses and flashes.



66 Chapter 3. Modeling Electronic Catalogs as CSP

Domain sizes
Brand body-var lens-var flash-var

Nikon 9 54 9
Canon 10 58 8
Minolta 8 53 8
Pentax 7 28 9
Sigma 2 51 4
Tamron - 31 -
Tokina - 63 -
Metz - - 22

Total 36 338 60

Table 3.3: Domain sizes for each type of variable in a CSP for modeling a photo equipment.

num. of b num. of l num. of f search space

1 1 1 36 ·338 ·60 = 7.3 ·105

1 2 1 36 ·3382 ·60 = 1.4 ·106

1 3 1 36 ·3383 ·60 = 4.9 ·108

1 3 2 36 ·3383 ·602 = 2.9 ·1010

2 2 1 362 ·3382 ·60 = 5.2 ·107

2 3 1 362 ·3383 ·60 = 1.7 ·1010

Table 3.4: num. of b, num. of l and num. of f indicate the number of bodies, lenses and
flashes respectively in the problem. The search space for different instances of the CSP
modeling photo equipments. Different instances correspond to different sets of components
to be selected in the catalog.

each component are called: body-var, lens-var-1, lens-var-2, and flash-var. Note
that more than one million of the possible combinations (see Table 3.4) of the components
exist without taking the hard constraints, i.e., configuration rules, into consideration.

The following configuration rules define the hard constraints involved in the example:

• A lens is compatible with a camera body if the brand of the camera body and the
mount-type of the lens are the same. This compatibility rule implies the following
binary hard constraints between each body-var variable and each lens-var variable:

ϕ(A) =

{
0 if body-var.brand= lens-var.mount-type

∞ otherwise

• In a similar way, a flash is compatible with a camera body if the brand of the camera
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body and the brand-compatibility of the flash are the same, thus:

ϕ(A) =

{
0 if body-var.brand= flash-var.brand-compatibility

∞ otherwise

There is no direct compatibility rule between a flash and a lens. Since flashes and lenses
are always plugged into a camera body, if they are compatible with the body, then they
are also compatible between themselves.

In general, the following optimization constraints can be assumed:

• It is supposed that equipments with all the components of the same brand are better
than equipments combining several different brands (even if the components are
compatible amongst themselves). This criterion implies an optimization constraint
involving all variables (n-ary constraint). This constraint can be defined over a
valuation function ϕ(A)→ [0,1] (A is a total assignment):

ϕ(A) =
num-brands(A)−1

n−1

where n is the number of components and num-brands(A) gives the number of brands
present in the assignment A. A total assignment that only combines one brand,
would have a valuation of 0, i.e., totally satisfies the optimization criteria. In our
example, with 4 components, a total assignment that combines 2 different brands
would have a valuation of 1−2/3 = 1/3. The worst case (valuation of 1) in regard
to this constraint is a total assignment that combines 4 different brands.

• The price of the whole product should always be minimized as much as possible17.
This criteria can be split in n unary-constraints, one for each component with a
price attribute. This criterion can be defined over a valuation function ϕ(A)→ [0,1]
(A is an assignment for one variable):

ϕ(A) =
val(A).price
max-var-price

where max-var-price gives the maximum price for any value in the domain of the
variable.

• One of the factors indicating the quality of a lens is the max-aperture: the lower
value, the better lens.

Typically, for this example, the above described constraints would remain for different
users. Hard constraints ensure the correctness of the products of the catalog whereas
optimization constraints rank solutions according to criteria that can be assumed valid for
any user.

User’s preference about the components are defined through binary constraints. Some
examples just to illustrate how to model user’s preferences are:

17Of course, this constraint is completely in the user’s interest. The seller could be interested in a

constraint for maximizing the total price, but this depends on the selling strategy and is out of the scope

of this thesis.
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• Preference about the zoom range of a lens. Normally, a user wants to specify a range
zoom [pref.min,pref.max] to be covered by the lens. Thus, the valuation function,
ϕ(A)→ [0,1] (A is an assignment for a variable lens-var), is based on a function
f that indicates which part of the range is covered by any value in the lens-var

variable:

f(A) =
min(val(A).max-zoom ,pref.max)−max(val(A).min-zoom ,pref.min)

pref.max−pref.min

and therefore, its valuation is:

ϕ(A) = 1−f(A)

• Valuation functions for preferences about brands can be simply stated as follows:

ϕ(A) =

{
0 if val(A).brand = preferred-brand

1 otherwise

where the preferred-brand is the preferred brand.

• Another example are preferences where the user specifies a maximum price pref.price
for a component with a price attribute:

ϕ(A) = max

(
0,

val(A).price−pref.price

max-var-price−pref.price

)
where max-var-price gives the maximum price for any value in the domain of the
variable.

3.10 Summary

Firstly, the main notions related to classical constraint satisfaction problems are presented.
Modeling electronic catalogs requires to express three types of constraints: configuration
constraints which are classical (hard and crisp), and user’s preferences and optimization
constraints which are soft and flexible. It has been argued that classical constraint satis-
faction models are not enough to model the constraints involved in electronic catalogs.

Multi-Criteria Optimization Problems for modeling electronic catalogs by using con-
straint satisfaction techniques are proposed. Two main different approaches have been
analyzed:

The quantitative approach assumes that the preferences can be combined numerically
and that the relative importance among them is precisely known. In such cases, the
feasible solutions to a catalog can be totally ordered, thus the k best solutions to the
problem can be easily identified.

The qualitative constraint combination approach deals with Pareto-optimality for
electronic catalogs. The feasible solutions to a catalog are then partially ordered in
Pareto-optimal solutions and dominated solutions. Several strategies to choose the
k best solutions to a catalog using this approach are proposed.
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Finally, an example of an electronic catalog for photo equipment has been used to
illustrate the main ideas presented in this chapter.

The solving strategies for the model described in this chapter, are presented in the
following chapter.





Chapter 4

Searching Methods for Electronic

Catalogs as CSP

4.1 Introduction

In this chapter we propose two different approaches for solving electronic catalogs modeled
with the framework provided in Chapter 3.

The first approach (quantitative approach) is based on the well-known branch and
bound algorithm. It finds feasible solutions (satisfying the configuration constraints) that
minimize the sum of the valuations for all the soft constraints implied in an electronic
catalog: user’s preferences and optimization criteria. This approach assumes that soft
constraints in the problem can be combined together. It implies that valuation functions
associated to soft constraints are normalized (and rescaled to differentiate preferences from
optimization constraints) and the constraint weight vector is numerically known. The main
algorithm together with its main variants are described. Basically, Section 4.2 reviews the
existing algorithms to solve partial constraint satisfaction problems and describes the nec-
essary modifications to adapt them in the framework described in Chapter 3, Section 3.7.

The second approach (qualitative constraint combination approach) is based on the
Pareto-optimality concept. Solving algorithms to find approximations of the Pareto-
optimal set are proposed. Unfortunately, exact algorithms to compute the Pareto-optimal
set of a multi optimization problem are too costly, in general, to be applied to interactive
electronic catalogs. It has been shown (Chapter 3, Section 3.8.4) that Pareto-optimal so-
lutions in the convex hull are always optimal for a specific constraint weight vector (user
profile). Again, the complexity of the existing algorithms to compute the convex hull of a
set of feasible solutions with more than 2 criteria, does not allow to apply these algorithms
for interactive applications such as electronic catalogs.

4.2 The quantitative approach

Depth First Branch and Bound is a well-known algorithm for solving NP-hard combina-
torial optimization problems. It can be seen as the analogous algorithm of the simple
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backtracking algorithm [101, 22] but applied to optimization problems. Freuder and Wal-
lace discuss in [79] the needed variations of the classical CSP methods (simple backtracking,
retrospective strategies, and prospective strategies) in order to apply them in the context of
partial constraint satisfaction. Partial constraint satisfaction is a classical CSP where the
goal is to find solutions that minimize the number of violated constraints. In [167], the
authors review the approaches for solving over-constrained problems. Both papers, [79]
and [167], together with Larrosa’s thesis [143] are guides to the algorithms described in
this section. Some variations and considerations are given to completely adapt the meth-
ods for partial constraint satisfaction problems to our framework described in Chapter 3,
Section 3.7.

The goal of the quantitative approach is to find feasible solutions to a WCOP (Defi-
nition 3.15, page 50 ) that minimize1 their valuation function (Definition 3.14, page 49 ).
The valuation function for an assignment A implying variables W is recalled in the follow-
ing expression:

ϕ(A) = ∑
∀c∈HC

ϕc

(
val

(
A ↓W

scope(c)

))
+ ∑
∀ci∈SC

wi ·ϕci

(
val

(
A ↓W

scope(ci)

))
= ϕHC(A)+ϕSC(A)

Note that the first term of ϕ(A), ϕHC(A), indicates if the assignment A is feasible,
i.e., if all hard constraints are satisfied. On the other hand, the second term of ϕ(A),
ϕSC(A), indicates how good is the assignment. Therefore, this solving approach must find
total assignments A with ϕHC(A) = 0 (feasible assignments) that minimize their valuation
function with respect to the soft constraints ϕSC(A).

It has been shown in Property 3.1 that feasible solutions to a WCOP can be totally
ordered by a better than relation. In the following, a complete algorithm to obtain the
best solution to a WCOP is described. Also, adaptations to this algorithm to find the k
best solutions are given. And finally, some improvements to the basic branch and bound
based algorithm are proposed.

Unary, binary and n-ary constraints The algorithms presented in the following
sections assume that WCOPs only have binary constraints. The reason for this assumption
is that algorithms are easier to understand for binary CSPs, and that any non-binary CSP
can be transformed into a binary CSP in polynomial time. Section 4.2.7 explains how
to deal with non-binary constraints. On the other hand, in electronic catalogs, user’s
preferences are usually modeled with unary soft constraints (Section 3.9). How to deal
with unary constraints is described in Section 4.2.6.

4.2.1 Depth First Branch and Bound (DFBB) algorithm

Depth First Branch and Bound [149, 196, 182, 8] (noted DFBB) explores the search tree
associated to the problem using a first-depth search schema. Each internal node repre-
sents a partial assignment whereas a leaf represents a total assignment (a solution). The
algorithm solves the WCOP by incrementally extending a partial assignment to a total

1The maximization case is symmetric and therefore can be easily adapted from the minimization case.
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assignment, starting from the empty assignment. At the level k of the associated search
tree, variable k is instantiated with its next value. At each node, if the current assignment
satisfies all the hard constraints (ϕHC(currentAssig) = 0), its valuation function with respect
to the soft constraints (ϕSC(currentAssig)) is computed. This valuation is called the Lower
Bound cost function (LB) in branch-and-bound terminology. LB is an underestimation of
the valuation function for all the nodes below the current node. It is relevant to note that
the lower bound cost function must be non-decreasing along a path of the search tree. This
is true in our case since the costs associated to soft constraints are always positive. The
Upper Bound cost function (UB) is the valuation of the best solution found so far (initially
set to ∞2). When the current assignment is not feasible or UB ≤ LB, the algorithm is
in a dead-end. A dead-end situation indicates that the current branch cannot lead to a
feasible solution or to a better solution than the best solution found so far. Therefore, in
a dead-end node, all the successors of that node are pruned and the algorithm backtracks
to the previous node in order to explore a new branch. When the algorithm reaches a
leaf of the search tree and UB > LB, the current assignment is the best solution found so
far. Then, the UB is updated with the valuation function of the solution found, and the
algorithm backtracks.

The basic DFBB algorithm for our framework is described in detail in Algorithm 1.
Assignments (and therefore also solutions) are expressed as sets of variable instantiations
which are noted {var← val}. PreviousVariable returns nil if there are no more previous
variables. When PreviousVariable returns nil and there are no more values to try for
the current variable, the whole search tree has been explored and the search terminates.

The conditional ifs before and after the line 3 of Algorithm 1 could be merged in
one single line. However, in some cases, it could make sense to check the feasibility of
the assignment currentAssig before computing its ϕSC (the lower bound). In this way,
if currentAssig is not a feasible assignment, the algorithm can already prune the branch
below currentAssig. In other cases, it can be more efficient to test LB < UB before testing
the feasibility of the assignment. Whether to compute one test before the other one or
vice-versa depends strongly on the topology of the problem. The goal for improving the
efficiency of branch and bound algorithms is always to detect dead-end nodes as soon
as possible. Therefore, if the problem is highly constrained with respect to the hard
constraints, it is preferable to make the feasibility test before. In the opposite case, the
order of the tests will be performed the other way around. In general, one could think about
a mixing order of the tests. At the beginning of the search, the UB is likely to be very high,
and as long as the search finds new best solutions, the UB becomes lower. In consequence,
it could be convenient to start the search applying the hard constraint checking before
the soft constraint checking, and swapping this order at some more advanced state of the
search process. The effectiveness, however, of such a technique depends strongly on the
concrete problem topology.

The computation of ϕHC(currentAssig) is done by only checking the constraints that

2In Section 4.2.5, other initial values for the UB cost function are suggested to improve the efficiency of

DFBB algorithms.
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imply the last assigned variable of the currentAssig with any of the previously instantiated
variables. Constraints implying previous instantiated variables but not the last instanti-
ated variable have already been checked, therefore it is not necessary to check them again.
If one of the hard constraints fails, then the computation returns ∞ without regarding any
further constraints. If all the hard constraints are satisfied it returns 0. Formally, given
a feasible assignment Ak with var(Ak) = {V1, . . . ,Vk}, the computation of ϕHC(Ak+1) for an
assignment Ak+1 with var(Ak+1) = {V1, . . . ,Vk,Vk+1} can be expressed as:

ϕHC(Ak+1)→




0 if ϕc

(
val

(
Ak+1 ↓var(Ak+1)

scope(c)

))
= 0, ∀c ∈H C such that

scope(c)⊆ var(Ak+1) and Vk+1 ∈ scope(c)
∞ otherwise

Similarly, the computation of ϕSC(currentAssig) is also done retrospectively. Only the
soft constraints involving the last instantiated variable and some of the previously instan-
tiated variables are evaluated. These new valuations are then added to the last LB, and
the result is the current LB. Formally, given an assignment Ak with var(Ak) = {V1, . . . ,Vk}
and LB(Ak), the updated LB for an assignment Ak+1 with var(Ak+1) = {V1, . . . ,Vk,Vk+1} is
computed as:

LB(Ak+1) = LB(Ak) + ∑wi ·ϕci

(
val

(
Ak+1 ↓var(Ak+1)

scope(ci)

))
,∀ci ∈ SC such that

scope(ci)⊆ var(Ak+1) and Vk+1 ∈ scope(ci)

Actually, the test LB < UB can be done during the computation of LB. In this way, if
at any moment of the LB computation, LB is already higher than UB, no more constraints
need to be checked, and the test returns false directly3.

Algorithm 1 can be easily adapted to return the k best4 solutions instead of only the
best one. For that, the first k feasible solutions are kept without computing LB nor
UB. When the first k feasible solutions are found, UB is set to the worst valuation (the
maximum) of all the k feasible solutions found so far. From that point on, LB is always
computed as in the original algorithm. When a new solution is found, the solution of
the k best solutions found with a worst valuation is replaced with the new solution and
UB is updated with the new worst valuation of the k best solutions. The modifications
of Algorithm 1 for computing the k best solutions are shown in Algorithm 2.

3Since the costs associated to soft constraints are always positive, the valuation function of an assignment

is non-decreasing along a path in the search tree.
4best in the sense of the relation better than defined in Chapter 3, Definition 3.16
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Algorithm 1: Depth First Branch and Bound (DFBB) algorithm to find the best
solution to a WCOP.

function DFBB

Input: WCOP P = (X ,D,HC,SC,W )
1 Output: bestSol: the best solution to P
2 bestSol ← /0

currentAssig ← /0
LB ← 0
UB ← ∞
var ← FirstVariable ()
val ← FirstValue (var)
end ← false

while ¬ end do
currentAssig← currentAssig∪{var← val}
if ϕHC(currentAssig) = 0 then

3 LB ← ϕSC(currentAssig)
if LB < UB then

if LastVariable?() then
4 bestSol ← currentAssig

5 UB ← LB

NewBranch (var, val)
else

var ← NextVariable ()
val ← NextValue (var)

else
NewBranch (var, val)

else
NewBranch (var, val)

6 return bestSol

procedure NewBranch (var,val)

while LastValue?(val) and ¬ end do
var ← PreviousVariable ()
if var �= nil then

val ← CurrentValue (var)
else

; the whole search space has been explored!
end ← true

if ¬ end then
val ← NextValue (var)
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Algorithm 2: Depth First Branch and Bound (DFBB) algorithm to find the k best
solutions to a WCOP.

function DFBB for the k best solutions

Input: WCOP P = (X ,D,HC,SC,W )
k : the number of best solutions to compute

1 Output: bestSolutions: the k best solutions to P
2 bestSolutions ← /0

worstSol ← /0 ; the worst solution of the bestSolutions
...
if |bestSolutions| ≥ k then

; LB is only computed if there are k solutions in bestSolutions

3 LB ← ϕSC(currentAssig)
...
if |bestSolutions| ≥ k then

worstSol ← WorstSolution (bestSolutions)
4 bestSolutions ← ReplaceSolution (worstSol, currentAssig)

worstSol ← WorstSolution (bestSolutions)
5 UB ← ϕSC(worstSol)

else
; the first k feasible solutions are always kept
bestSolutions ← bestSolutions + currentAssig

...
6 return bestSolutions

It is worth noting that there could be more feasible solutions with the same valuation
as the worst solution of the k best solutions found by Algorithm 2. Thus, if the goal is to
also keep all the feasible solutions with the same valuation than the worst solution of the
k best solutions found, some slight variations must be taken into consideration:

• the condition LB < UB just after the line 3, should be replaced by LB ≤ UB.

• the ReplaceSolution (worstSol, currentAssig) method in line 4 should be replaced
by the following code:

if LB = UB then
bestSolutions ← bestSolutions + currentAssig

else
; LB < UB

bestSolutions ← ReplaceSolution (worstSol, currentAssig)
if currentAssig is exactly the k best solution in bestSolutions then

remove all solutions S from bestSolutions such that ϕSC(S) > LB
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DFBB algorithm has an exponential worst case complexity because in the worst case
the algorithm visits all the nodes in the search tree and checks all the constraints involved
in the problem. Therefore, strategies to avoid achieving this bound have been proposed
in the literature. The following sections review the main techniques to improve the basic
DFBB and describes the needed adaptations to apply them to our framework.

4.2.2 Prospective strategies

Prospective strategies (also called local consistency, constraint propagation, or look-ahead)
enforce any assignment to be extensible to other variables. Freuder in [76] defines con-
sistency, in a general sense, as: i-consistency ensures that any consistent assignment
involving i−1 variables is extensible to include any additional variable resulting in a new
consistent5 assignment involving i variables. Different levels of consistency exist, for ex-
ample arc-consistency [158] or 2-consistency, path-consistency or 3-consistency and so on.
Moreover, i-strong consistency [77] ensures that a problem is k-consistent for all k ≤ i.

Prospective strategies can be applied as a preprocessing technique prior to search or
can be used in search algorithms (hybrid algorithms). The goal of these strategies is
always to prune values that do not meet local consistency. When prospective strategies
are applied prior to search, some values are likely to be removed from their domains leading
to a simpler but equivalent problem. On the other hand, prospective strategies embedded
within search algorithms allow to filter inconsistent values from the domains of future
variables and therefore backtrack in a more efficient way.

4.2.2.1 Partial Forward Checking

Forward Checking (FC) for classical CSPs [163, 109] performs constraint checks between
the current instantiated variable and future (unassigned) variables. When values from
future variables are inconsistent with the current assignment, they are removed because
they cannot lead to a solution along the current branch. When a node has no successor, it
means that FC cannot continue the search because there are no further consistent values
for the next variable, so it backtracks. The added cost of FC compared to simple BT is that
when FC backtracks it must restore the values that were previously removed. Actually,
FC can be viewed as the complement of simple backtracking: BT checks backward the
consistency of the current assignment, whereas FC checks consistency forward to ensure
that any value in future variables is consistent with the current assignment.

In [79], Freuder and Wallace adapt classical FC algorithm to the framework of partial
constraint satisfaction. The resulting algorithm is called Partial Forward Checking (PFC).
Mainly, the adaptation arises from the fact that the condition to detect a dead-end node in
partial CSPs is not the same as in the case of classical CSPs. PFC is very similar to FC in
the sense that: when a new node is visited, it checks all the constraints involving the current
variable with any unassigned variable. Moreover, in PFC, each value dynamically keeps

5A consistent assignment was defined in Chapter 3 as feasible assignment, i.e., an assignment that

satisfies all the hard constraints.
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track of the number of its inconsistencies that have been detected, called inconsistency
count (ic). The inconsistency count of values for future variables is used to:

• Prune values. A value b for a variable j with a ic jb is removed if LB+ ic jb ≥ UB

because it cannot lead to a solution improving the current UB. Larrosa comments
in his thesis [143] that the above expression given in [79] can be improved by simply
adding the sum of minimum inconsistency counts for each unassigned variable, thus:

LB+ ic jb + ∑
k∈F− j

minv(ickv)≥ UB

where F is the set of unassigned variables.

• Improve the lower bound. The computation of the lower bound cost function can
be improved by taking into consideration the ic of values for unassigned variables.
The improved lower bound, written LB′, is computed as follows:

LB′ = LB+ ∑
j∈F

minv(ic jv) (4.1)

In other words, LB′ is an underestimation of the cost that any total assignment that
extends the current assignment would have.

The efficiency of branch and bound algorithms strongly depends on the quality of its
bounds. Improvements on how to increase the lower bound cost function and how to
decrease the upper bound cost function will make the search more efficient by enabling
the prune condition LB ≥ UB early. Several improvements to the basic lower bound of
the PFC have been described in the literature. For example, Wallace suggests in [255] to
compute directed-arc consistency in a process prior to search in order to improve the lower
bound cost function. This preprocessing is used to compute directed arc-inconsistency
count (DAC) for each value of each variable. DAC for a value b of a variable j, dac jb,
is the number of variables which are arc-inconsistent with the value b of variable j and
appear after variable j in the variable ordering. This preprocessing requires a fixed order
of the variables that must be used in the search. Wallace proposes then to improve LB by
the following expression:

LB+ ∑
j∈F

min(ic jb +dac jb) (4.2)

where F is the set of unassigned variables. PFC using this dac counter is called PFC-DAC
and requires a static order of the variables.

In [252], another improvement is proposed, deriving in an algorithm called Russian Doll
Search (RDS). Other more complex improvements of the lower bound cost function are
out of the scope of this thesis, the reader is referred, for example, to Larrosa’s thesis [143].
A more recent review on improvements of lower and upper bounds for partial constraint
satisfaction is [167]. Other relevant papers about more sophisticated ways to improve
lower bounds for partial constraint satisfaction are [2], [12], [95], [145], [147], [146], [148]
and [213].
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Application to our framework Our model deals with hard and crisp constraints and
with soft and flexible constraints. Note that in partial constraint satisfaction (or MAX-
CSP) the goal is to find solutions that minimize the number of violated constraints. In
our framework, hard constraints cannot be violated (in order to form a feasible solution)
and soft constraints have a valuation function as a cost or penalty. The goal is to find fea-
sible solutions that minimize their valuation function with respect to the soft constraints.
Algorithm 3 shows the PFC applied to our framework.

The main difference between PFC for partial constraint satisfaction and PFC for our
framework is the computation of inconsistency counts. In partial constraint satisfaction,
ic jb is the number of inconsistencies for the value b of the variable j with respect to a
current assignment. In our framework, ic jb is computed as the extra cost of having the
value b of the variable j into the current assignment A regarding the set of soft constraints
in the problem. In a formal way:

ic′jb = ∑
ci

wi ·ϕci

(
val

(
{A+{ j← b}} ↓var(A)+ j

scope(ci)

))
, ∀ci ∈ SC such that

scope(ci)⊆ {var(A)+ j} and j ∈ scope(ci) (4.3)

The computation of ic′jb is done in a cumulative manner. At each propagation, the ic′

associated to values for future variables is updated. For a value b for a future variable
j, ic′jb is updated with the valuations of soft constraints involving the last instantiated
variable and j. Constraints involving previous variables and variable j have already been
considered. This guarantees that constraints are only checked once for any value tuple.

Propagation procedure in our framework takes into consideration hard and soft con-
straints, thus it can be split in two tasks:

• Soft propagation: updates ic′jb for any value b in all unassigned variables. A value b
for a future variable j is removed if

LB+ ic′jb + ∑
k∈F− j

minv(ic′kv)≥ UB

where F is the set of unassigned variables.

• Hard propagation: works as in the case of classical CSPs. The values for unassigned
variables which violate any hard constraint with respect to the last instantiation are
removed because they would make the assignment infeasible or inconsistent.

Another measure to improve the lower bound (and value prune conditions) for partial
constraint satisfaction is dac (Equation 4.2). To adapt dac to WCOPs, noted dac′, the
same considerations taken for adapting ic must be taken. In the case of WCOPs, unsup-
ported domains cannot be considered but the minimum cost carried by a variable can be
computed. As in the case of partial constraint satisfaction, these counts are computed
beforehand, prior to search, and it requires a static variable ordering that must be used
in the search process. Let us assume a fixed ordering of variables W = {V1, . . . ,Vn}. Then,
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dac′ for a value b of a variable Vk, dac′kb, can be computed as follows:

dac′kb = ∑
∀ l>k

minv

(
ϕSC

(
val

(
{{Vk ← b} ,{Vl ← v}} ↓{Vk,Vl}

scope(c)

)))
, ∀v ∈ dom(Vl)

(4.4)

The function UpdateLowerBound (in Algorithm 3) can be computed by using one of
the expressions proposed in the literature (for example, Equation 4.1 or 4.2), but replacing
ic jb by ic′jb as given in Equation 4.3, and replacing dac jb by dac′jb as given in Equation 4.4.

NewBranch is basically the same procedure as described in Algorithm 1: it backtracks
to the previous visited node and selects the next node to visit. NewBranch updates the
value end to finish the search when there are no more values to try for the current variable
and PreviousVariable returns nil, i.e., when the whole search space has been explored.
However, each time that PreviousVariable is called, the procedure needs to restore the
effects of the last propagation (UnPropagate). UnPropagate procedure consists in:

• restoring the values that were removed after the last propagation (coming either
from the soft propagation or from the hard propagation), and

• update LB by subtracting the constraint valuations produced by the constraints
involving the last assigned variable and all values of any future variables. The ic of
values for future variables must be restored accordingly, taking into consideration
the constraints that involved the last instantiated variable and the future ones.

A new best solution is found when the current assignment has been extended to a total
assignment. It has not to verify if the total assignment is feasible or if it is improving the
current best solution, because Propagation makes sure that any current assignment is
feasible and has a better lower bound than the best solution found so far.

The adaptation of Algorithm 3 to compute the k best solutions to a WCOP is very
similar than the needed variations of Algorithm 1 resulting in Algorithm 2. Basically, the
algorithm must update the bounds according to a set of solutions instead of one single
solution. That means:

• when a new solution is found, it must replace the worst solution among the k best
solutions found so far, and afterwards

• UB is updated with the valuation of the worst solution among the best k solutions.
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Algorithm 3: Partial Forward Checking (PFC) algorithm to find the best solution to
a WCOP.

function PFC

Input: WCOP P = (X ,D,HC,SC,W )
Output: bestSol: the best solution to P
bestSol ← /0 ; currentAssig ← /0
LB ← 0; UB ← ∞
var ← FirstVariable (); val ← FirstValue (var)
end ← false

while ¬ end do
currentAssig← currentAssig∪{var← val}
if LastVariable?() then

bestSol ← currentAssig

UB ← LB

NewBranch (var, val)
else

Propagation (UB)
LB ← UpdateLowerBound (LB)
var ← NextVariable () ; val ← NextValue (var)
if val = nil then

NewBranch (var, val)

return bestSol

procedure NewBranch (var,val)
...
UnPropagation ()
var ← PreviousVariable ()
...

procedure Propagation (UB)

updates ic′ for any value in all unassigned variables
removes future values which ic′ ≥ UB

removes future values which violates any hard constraint
procedure UnPropagation ()

restores the values that were removed during the last Propagation

4.2.2.2 Preprocessing look-ahead techniques

Preprocessing look-ahead techniques in constraint satisfaction are used prior to search in
order to produce an equivalent problem which is easier to solve. In classical CSPs, these
algorithms enforce some level of local consistency, typically arc-consistency. However,
in some cases, achieving local consistency may degrade the performance of the search
process [187, 203]. There is a trade-off between enforcing local consistency and the search
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itself [52, 109, 189].
Moreover, the adaptation of local consistency methods prior to search for partial con-

straint satisfaction problems is not easy. Values can not be removed from the problem
because before the search, there is no way to compute an upper bound cost function. How-
ever, Freuder and Wallace propose in [79] to keep, for each value, the number of domains
that would not be supporting the value, called arc consistency count. Then, during the
search the arc consistency counts can be used to improve the lower bound cost function.
The arc consistency method must be computed once before the search, and it has a time
complexity of O

(
cd 2

)
, where c is the number of constraints and d the maximum domain

size of the variables.

Application to our framework Regarding our framework, look-ahead techniques, as
processes prior to search, can be applied with respect to hard constraints. In this way,
some values may be removed and therefore the search space can be reduced.

On the other hand, it is not straightforward how to apply preprocessing look-ahead
techniques regarding soft constraints. It is not possible to compute the arc consistency
counts as in the case of partial constraint satisfaction. All values are supported by the
domains. Therefore, the concept of arc consistency counts must be adapted. For a value b
of variable j, the equivalent counter of ac, ac′jb, would be the sum, for each variable k �= j,
of the minimum cost produced by constraints among value b of variable j and any value
of variable k. Formally:

ac′jb = ∑
∀k �= j

minv

(
wi ·ϕci

(
val

(
{{ j← b},{k← u}} ↓{ j,k}

scope(ci)

)))
, ∀u ∈ dom(k), (4.5)

4.2.3 Search ordering heuristics

DFBB, as any branch and bound or backtracking algorithm, visits nodes in the order
specified by the heuristics to select variables and values. In the given description of the
algorithms, these methods are First/NextVariable and First/NextValue. Different
heuristics for such ordering methods may have an important effect in the efficiency of the
algorithms, as shown in [52].

4.2.3.1 Static and dynamic ordering

Ordering heuristics can be classified in two main groups:

• Static ordering: establishes an ordering for variables and values before the search.
Thus, the search tree structure is fixed prior to search and maintained along the
search process.

• Dynamic ordering: makes selection of variables and values during the search. Each
time a new node has to be visited, the heuristic chooses a variable and a value. By
using dynamic ordering, the search tree structure is not known before the search and
it changes during the search.
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Static and dynamic orderings can be combined to form more complex heuristics. Typically,
when using dynamic ordering, static ordering heuristics are used to break ties.

4.2.3.2 Variable ordering

The goal of variable ordering heuristics for partial constraint satisfaction is to increase the
lower bound as quick as possible along a path in the search tree. In this manner, dead-end
situations are detected early.

Static variable ordering Several static variable ordering heuristics have been reviewed
in [167] for partial constraint satisfaction problems:

• Decreasing backward degree (BD) [257] establishes an ordering with respect to the
number of constraints involving a variable with past variables. First selected vari-
ables will then be more constrained regarding past variables, therefore they will
have a high inconsistency count, thus a higher lower bound. The drawback for this
heuristic is the lack of information at the highest levels of the search tree.

• Decreasing forward degree (FD) [145] establishes the complementary ordering of BD:
instead of considering past variables it considers future variables. This heuristic tries
to propagate inconsistency counts to future variables. It has the opposite drawback
of BD: the lack of information at the deepest levels of the search tree.

• Decreasing degree (DG) [257] is a combination of BD and FD: at the highest levels of
the tree FD is used whereas BD is used at the deepest levels of the tree. Consequently,
it intends to avoid the disadvantages of BD and FD.

• Decreasing AC mean (AC) [257] heuristic considers first variables with a high ac.
These variables will likely have a high dac as well. Then, when using dac in the
lower bound cost function, it tends to increase the lower bound function quickly.

These heuristics and their combinations have been tested in [145] which concludes that
the best heuristic combination is FD as a first criterion and BD for breaking ties.

Dynamic variable ordering The most used heuristic for dynamically selecting vari-
ables is the minimum domain (DOM) which selects first variables with small domain sizes.
This heuristic is only used when the size of domains are different.

Application to our framework

• Static variable ordering: BD, FD and DG consider the number of constraints
implied in a variable (with past or future variables) as a measure for the ordering
heuristic. In our framework, two kind of constraints exist: hard and soft. Therefore,
BD, FD and DG can only consider hard constraints, soft constraints or both of
them. When considering soft constraints, it can be convenient to differentiate user’s
preferences and optimization criteria because they do not usually have the same
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valuation ranges. User’s preferences should count more than optimization criteria.
The same idea can be applied between hard and soft constraints. The efficiency of
these different measures depends on the specific topology of the problem.

AC heuristic can also be used in our framework by considering ac′ (Equation 4.5).

• Dynamic variable ordering: DOM heuristic for dynamic variable ordering can
be directly used in our framework since it does not depend on the constraints but
on the size of the domains.

4.2.3.3 Value ordering

Few literature exist about value ordering heuristics for partial constraint satisfaction. The
goal of value ordering heuristics for branch and bound based algorithms is to select first
values that can decrease the upper bound cost function as quick as possible. For that, the
most promising values must be selected first. Thus, values are ordered by its increasing
ic, ic+dac or ic+ac, depending on which counts are kept for values.

Application to our framework When applying value ordering heuristics to our frame-
work, only soft constraints must be taken into consideration. As in the case of partial con-
straint satisfaction, the goal of value ordering heuristics is to decrease the upper bound as
quick as possible. Hard constraints have no effect on the lower bound since upper bound is
always computed for feasible solutions that do not violate any hard constraint. Therefore,
the order of the values must be independent of hard constraints.

The existing value ordering heuristics for partial constraint satisfaction can be used in
our framework. Clearly, these heuristics must use the counters adapted to our framework:
ic′ (Equation 4.3), dac′ (Equation 4.4) and ac′ (Equation 4.5).

4.2.4 Retrospective strategies

In [79], Freuder and Wallace propose two retrospective algorithms which are adaptations
of the counterparts for classical constraint satisfaction problems: backjumping and back-
marking. The first allows us to backtrack in a more intelligent manner than chronological
backtracking whereas the second can avoid some redundant constraint checks.

4.2.4.1 Backjumping

In classical CSPs, backjumping (BJ) [87] keeps track of previous failures in the search
to behave more efficiently when backtracking occurs. Backjumping, as well as any other
backtracking based algorithm, backtracks when all the tried values for a variable were
inconsistent. The difference with respect to simple backtracking is that BJ jumps to the
deepest level of the tree that was causing an inconsistency with any of the tried values. The
analog BJ for DFBB must take into consideration that the condition to be in a dead-end
is different. In classical constraint satisfaction, backtracking occurs when all the values
for a variable violate some constraints. In partial constraint satisfaction, BJ backtracks
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to the deepest level, l, that causes any violation with the current assignment only if the
nodes below l do not cause any violation [79]. This is due to the fact that there could be
some assignments below the level l that add some constraint violations to the lower bound
cost function.

Application to our framework WCOPs have both classical hard constraints and soft
constraints. Therefore, DFBB algorithm applied to WCOPs backtracks when the current
assignment is too far from the best solution (or the k best solutions) found so far or when
the current assignment violates some hard classical constraints. Backjumping applied
to WCOPs means to consider both cases. In the previous described DFBB algorithms
(Algorithm 1 and Algorithm 2) there are two calls to the backtracking method NewBranch

(var,val). The BJ version would have two different NewBranch methods: one for the hard
constraint check (ϕHC(currentAssig) = 0) and the other one for the soft constraint check
(LB<UB).

4.2.4.2 Backmarking

Backmarking (BM) applied to classical CSPs [89], allows the backtracking algorithm to
avoid some redundant successful consistency checks, as well some redundant discoveries of
inconsistencies. For that, it uses a marking schema for avoiding consistency checks that
have been done. [79] describes this technique applied to partial constraint satisfaction
problems.

Application to our framework The needed modifications of this technique for solv-
ing WCOPs is similar to the one needed for adapting backjumping. The algorithm must
consider both type of constraints, hard and soft. Therefore two different marking schemas
would be needed: one for the classical constraint checks and another one for the compu-
tation of the lower bound cost function.

4.2.5 Improving initial upper bound

Initial upper bound can also improve the efficiency of branch and bound algorithm.
In [256], Wallace presents some experiments using local search techniques to compute
initial upper bound for partial constraint satisfaction problems. The methods were used
as anytime algorithms, i.e., after some amount execution time the algorithms are stopped.
The cost function of the best solution found by the local search method is taken as initial
value for the upper bound in the branch and bound search algorithm. The three tested
methods in [256] are:

• min-conflicts [171] consists in improving an initial complete assignment by searching
through the space of possible repairs. The search is guided by a value ordering
heuristic, the min-conflicts heuristic, that attempts to minimize, at each step, the
number of constraint violations.
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• break-out procedure [177] change the weight of constraints in order to escape from
local minima.

• weak commitment search [264] was proposed by Yokoo as a method that combines
the advantages of iterative methods and backtracking methods.

Another way of improving initial upper bound by using mean field annealing has been
pointed out by Cabon et al. in [27].

Application to our framework In our framework, local repair search methods can
be used to find a feasible solution and use its valuation as the initial upper bound value.
However, if the goal is to find the k best solutions to a WCOP, the local search methods
must find k solutions, and the upper bound would be then the worst valuation of these k
solutions found. The heuristics mentioned above must be adapted to consider the valuation
functions of the soft constraints and not only the number of violated constraints. On the
other hand, hard constraints must be taken into consideration in repair methods, since
only feasible assignments must be considered.

4.2.6 A note on unary constraints

Often, in electronic catalogs, user’s preferences can be naturally expressed using unary
constraints. These constraints model preferences of the user about a component of the
catalog. Several examples of this kind of preferences for a catalog of photo equipments are
described in Section 3.9, Chapter 3. Unary constraints, in electronic catalogs, are usually
soft. Actually, a hard unary constraint would just imply to remove the values that do not
satisfy it. Unary soft constraints can be checked prior to search. They can be used to
initialize the counts to be kept for each value (Equation 4.3, Equation 4.4, or Equation 4.5)
that are used to compute the lower bound of the current assignment.

4.2.7 A note on non-binary constraints

Bessière [14] briefly summarizes the state of the art in non-binary classical CSPs and
provides recent work in the domain. Larrosa and Dechter [144] present the theoretical
equivalence between binary and non-binary semiring-based CSPs. However, transforming
non-binary problems into binary problems is not always convenient, and nowadays the
interest of solving non-binary constraints directly is recognized [168].

A first approach to handle non-binary constraints of WCOPs in basic branch and
bound (Algorithm 1 and Algorithm 2) is to consider that a constraint can only be checked
if the current assignment contains all the variables implied in the constraint. For PFC
(Algorithm 3), one can consider the propagation of a k-arity constraint only when the
current assignment implies k−1 of the variables of the constraint. Then, the propagation
procedure updates the count 6 for each value of the future variable k which is implied in the
constraint. Obviously, the drawback of this approach is that consistency checks can only

6It can be any of the counts for PFC described in the previous sections.
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take place in assignments of k or k−1 variables for DFBB or PFC algorithms respectively.
This means, that the effect of non-binary constraints is only considered in deep nodes
of the search tree, and therefore dead-end situations are not likely to be detected early.
This approach is the simplest way of handling non-binary constraints because the same
algorithms for the binary case can be applied in the non-binary case, but its efficiency can
be improved.

In [168], Meseguer et al. present a deep study on how to handle non-binary constraints
for PFC algorithm in constraint optimization problems. They propose to propagate a
k-arity constraint at each node that implies just one variable of the constraint. But, the
propagation can not take place for every future variable implied in the constraint, because
then its effect would be considered more than one time in the lower bound computation.
Thus, the algorithm selects one of the future variables of the constraint in order to compute
its new count produced by the constraint [166].

4.2.8 DFBB as an anytime algorithm

An anytime algorithm is an algorithm that can provide a solution at any time, and can
provide a better solution with more computation [49]. It is easy to see that DFBB pro-
duces suboptimal solutions along its execution, and therefore DFBB can give a suboptimal
solution at any time of its execution [120]. In [268], Zhang compares DFBB as anytime
algorithm (called truncated DFBB) with other local search methods applied to the asym-
metric Traveling Salesman Problem (ATSP) [127]. Zhang concludes that truncated DFBB
can outperform local search methods for finding suboptimal solutions. In [268], it is also
claimed that this is not a particular and isolated observation only for ATSP. Similar
observations have been made for other problem domains, for instance, number partition-
ing [136], or random coding networks [128].

DFBB-based algorithms (simple DFBB and PFC) can be seen as anytime algorithms.
Electronic catalogs, designed as interactive applications, must compute solutions quickly.
In catalogs where the complete execution of branch and bound methods is not possible
due to the size of the associated search tree, the anytime versions of DFBB or PFC can
be considered. For that, a maximum execution time t has to be preset beforehand. Then,
when the running time of the search algorithm exceeds t, it stops and gives the suboptimal
solution found so far as a result.

4.2.9 Soundness, completeness and complexity

Soundness and completeness Clearly, DFBB and PFC are sound algorithms since
regions of the search tree that do not lead to optimal solutions are not considered. Note
that the anytime versions of these algorithms are not sound, i.e., they can find sub-optimal
solutions, but this is inherent to the nature of any anytime algorithm.

Branch and bound based algorithms are systematic because of the following proper-
ties [185]:
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• do not leave any stone unturned, and

• do not turn any stone more than once.

The first point is equivalent to the concept of completeness, i.e., the algorithm finds either
a solution7 or it concludes that the problem is unsolvable8. The described algorithms
(DFBB and PFC) are systematic because they explore the whole search space that is
potentially containing a solution to the problem. Some parts of the search tree can be
pruned if and only if they cannot contain any optimal solution. On the other hand, it is
clear that the algorithms do not visit the same node more than once.

Again, the anytime versions of DFBB and PFC are not complete for the same reasons
that they are not sound.

Time and space complexity Worst-case time complexity bound for DFBB algorithm
is exponential with respect to the number of variables (as simple backtracking algorithm)
as, in the worst case, the algorithm will try all the nodes of the search tree and will check
all the constraints involved in the problem. The worst-case time complexity for DFBB is
O (dn), where n is the number of variables in the problem and d is the maximum domain
size of the variables.

Space complexity for DFBB algorithm and its variants is linear with respect to the
number of variables: O (n). In other words, the space complexity is bounded by the length
from the root node of the search tree to any leaf. It has the same space complexity as any
other search algorithm based on a depth-first search schema.

4.3 The qualitative constraint combination approach

In the qualitative constraint combination approach (Section 3.8.2, Chapter 3), the solu-
tions to a MCOP are the feasible solutions which are Pareto-optimal with respect to the
soft constraints.

Pareto-optimal solutions are hard to compute because unless preference criteria involve
only a few of the variables, the dominance relation can not be evaluated on partial solu-
tions. Research on better algorithms for Pareto-optimality is still ongoing (see, for exam-
ple, Gavanelli [91]), but since it cannot escape this fundamental limitation, generating all
Pareto-optimal solutions is likely to always remain computationally very hard. Therefore,
Pareto-optimality has so far found little use in practice, despite the fact that it character-
izes optimality in a more realistic way. This is especially true when the Pareto-optimal set
must be computed very quickly, for example in interactive configuration applications (e.g.,
electronic catalogs). Due to the complexity of computing the whole set of Pareto-optimal
solutions [199, 230], methods for approximating the Pareto-optimal set are suggested in
the following.

7Here, a solution is the set of the k best solutions to a WCOP.
8In our framework, a WCOP is unsolvable if there is not any complete assignment satisfying all the

hard constraints.



4.3. The qualitative constraint combination approach 89

4.3.1 Methods for approximating pareto optimal solutions

To approximate the set of Pareto-optimal solutions, the simplest solution is to simply
map the MCOP into an optimization problem with a single criterion obtained by a fixed
weighting of the different criteria. In other words, the suggested approach consists in
building a WCOP, from the given MCOP, and solving it with any of the methods described
in the previous section. Actually, a WCOP is a MCOP with a constraint weight vector
(Definition 3.15).

In practice, it turns out that among the k best solutions to a WCOP, many are also
Pareto-optimal. Theorem 4.1 shows indeed that the optimal solution of a WCOP is always
Pareto-optimal, and that furthermore among the k best solutions all those which are not
dominated by another one are Pareto-optimal for the whole problem.

Theorem 4.1: Pareto-optimality of a MCOP from a WCOP.
Given a MCOP P with variables V , and l soft constraints SC . Let be P′ the WCOP
obtained from P with a constraint weight vector W = (w1, . . . ,wl), wi > 0. Let be P′k(W )
the set of the k best solutions of P′. If S∈P′k(W ) and S is not dominated by any X ∈P′k(W ),
then S is Pareto-optimal of P.

Proof. Assume that S is not Pareto-optimal of P′. Then, there is a solution Y �∈ Bk(W )
which dominates solution S, and by Definition 3.18:
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therefore Y must be better than S according to the weighted optimization function (i.e.,
according to the WCOP P′). But this contradicts the fact that Y �∈ P′k(W ) while S ∈ P′.

From Theorem 4.1, it is easy to see that the optimal (the best) solution to a WCOP
(with positive constraint weights) that was built from a MCOP, is a Pareto-optimal solu-
tion of the MCOP.

Corollary 4.1: The optimal solution to a WCOP is Pareto-optimal.
Given a MCOP P with variables V , and l soft constraints SC . Let be P′ the WCOP
obtained from P with a constraint weight vector W = (w1, . . . ,wl), wi > 0. Let be S the
best solution of P′. S is Pareto-optimal of P.

Proof. The same proof of Theorem 4.1 can be applied by considering k = 1.
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Corollary 4.2: Pareto-optimality of the optimal solutions to a WCOP.
Given a MCOP P with variables V , and l soft constraints SC . Let be P′ the WCOP
obtained from P with a constraint weight vector W = (w1, . . . ,wl), wi > 0. Let be S the
best solution of P′. Any other solution to the WCOP with the same valuation than S is
also Pareto-optimal of P.

Proof. The proof is similar to the proof for Theorem 4.1. Assume that a solution S′ with
the same valuation of S is not Pareto-optimal of P. Then, there is a solution Y which
dominates S′, and by Definition 3.18:
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therefore Y must be better than S according to the weighted optimization function (i.e.,
according to the WCOP P′). But this contradicts the fact that S′ has the same valuation
than the best solution of P′.

Theorem 4.1 and its corollaries justify the use of WCOPs to find not just one, but
a larger set of Pareto-optimal solutions. In particular, by filtering the k best solutions
returned by a WCOP algorithm (DFBB or PFC) to eliminate the ones which are dominated
by another one in the set, only solutions which are Pareto-optimal for the entire problem
are found. Thus, it is possible to bypass the costly step of providing non-dominance on
the entire solution space of the problem.

In the following, two main methods for approximating Pareto-optimal sets are pro-
posed: the simple method and the iterative method which is based on several runs of the
simple method.

4.3.1.1 Simple method

The first suggested algorithm (Algorithm 4) to approximate the Pareto-optimal set of a
MCOP consists in:

• modeling the MCOP with p criteria as a WCOP P with a constraint weight vector9

W = (w1, . . . ,wp),

• generating the k best solutions of P, and

• filtering them to retain only those which are not dominated.
9Usually the unit vector (1, . . . ,1). However, if the user is able to state some kind of degrees of importance

for each criteria, this information can be used in the constraint weight vector.
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Algorithm 4: Method for approximating the Pareto-optimal set of a MCOP by using
a single WCOP.

function SimpleMethod

Input: P: the MCOP to solve.
W = (w1, . . . ,wp): the constraint weight vector.
k: the maximal number of solutions to compute.

Output: P O : an approximation of the Pareto-optimal set of P.
S ← SolveWCOP (BuildWCOP (P, W ), k)
P O ← FilterDominated (S , /0)
return P O

function BuildWCOP (P, W )

transforms the MCOP P into a WCOP by considering the constraint weight
vector W

function SolveWCOP (P′, k)
finds the k best solutions to the WCOP P′ by any of the branch and bound
methods (DFBB or PFC)

The function BuildWCOP is very simple. Given a MCOP and a constraint weight vector
W = (w1, . . . ,wp), for each criteria ci, it transforms its valuation function ϕci into a new
valuation function ϕ′ci

= wi ·ϕci .
The function SolveWCOP uses one of the branch and bound based algorithms to find

the k best solutions to a WCOP.
The FilterDominated (described in detail in Algorithm 5) builds a Pareto-optimal set

taking into account two sets: S which is the set of potential new Pareto-optimal solutions,
and P O which is the set of Pareto-optimal solutions found so far. For the simple method,
FilterDominated is only called with S10. Initially, the Pareto-optimal set is composed
by the union of all the solutions in S that have the best valuations (line 1), and the
Pareto-optimal set P O. By Corollary 4.2, these solutions are Pareto-optimal for the entire
problem. After this initialization, the algorithm removes the Pareto-optimal solutions from
S (line 2), which is the set of solutions to be filtered. At that moment, the solutions in S
which are dominated by any of the solutions of P O (line 3) can also be eliminated from
S because they are not potential Pareto-optimal solutions. Afterwards, for each solution
s ∈ S , it checks if s dominates some other solutions in S (line 4). The solutions which
are dominated by s can be directly removed because they will not be Pareto-optimal. In
the case that, another solution in S dominates solution s (line 5), solution s is no more
considered as a potential Pareto-optimal solution, and the algorithm continues with the
next solution in S . When a solution s ∈ S is not dominated by any other solution in S
(line 6), solution s is Pareto-optimal.

FilterDomainated(S) uses a predicate called dominates. This predicate just checks
all the criteria valuation functions for two given feasible solutions. Given two solutions,

10In the iterative method, the function FilterDominated is called with the two parameters.
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X and Y , X dominates Y is true if and only if for all criteria X is better or equally good
than Y and for at least one criterion X is strictly better than Y .

Algorithm 5: Method for filtering a set of solutions to get a Pareto-optimal set.

function FilterDominated (S, P O)

1 P O ← P O ∪{s |s ∈ S and ∀y ∈ S , ϕSC(s)≤ ϕSC(y)}
2 S ← S\P O

foreach po ∈ P O do
foreach s ∈ S do

3 if po dominates s then
S ← S\{s}

foreach s ∈ S do
pareto-ok ← true

foreach y �= s ∈ S do
4 if s dominates y then

S ← S\{y}
5 else if y dominates s then

pareto-ok ← false

break

6 if pareto-ok then
P O ← P O ∪{s}
S ← S \{s}

return P O

4.3.1.2 Iterative method

The above method (Algorithm 4) has the weakness of generating solutions that are optimal
with respect to a certain constraint weight vector and thus likely to be very similar to
one another. The iterated weighted-sums approach, as described for example by Steuer
in [230], attempts to overcome this weakness by calling a WCOP method several times
with different constraint weight vectors. Each WCOP will give us a different subset of
Pareto-optimal solutions, and a good distribution of constraint weight vectors should give
us a good approximation of the Pareto-optimal set.

Basically, the proposed iterative method (Algorithm 6) consists in performing several
runs over WCOPs with different constraint weight vectors and one run over the unit
constraint weight vector (1, . . . ,1). The method has two parameters:

1. k, which is the maximal number of solutions to be found, and

2. W = {W1, . . . ,Wp}, which is the collection of constraint weight vectors.

Algorithm 6 performs p+ 1 iterations, one for each different WCOP with constraint
weight vector Wi, and one for a WCOP with the unit constraint weight vector (1, . . . ,1).
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At each iteration, it computes the best k/(p+ 1) solutions to the corresponding WCOP.
At the end of each iteration, dominated solutions are filtered out, so by Theorem 4.1, the
resulting set of solutions are Pareto-optimal.

Algorithm 6: Weighted-sums method for approximating the Pareto-optimal set of
a MCOP. The collection of p weight vectors W are generated to give an adequate
distribution of solutions.

function IterativeMethod

Input: P : MCOP.
k : the maximal number of solutions to compute.
W = {W1, . . . ,Wp}: Wi is a collection of weight vectors.

Output: P O: an approximation of the Pareto-optimal set.
S ← SolveWCOP (BuildWCOP (P, (1, . . . ,1)), k/(p+1))
P O ← FilterDominated (S , /0)
foreach Wi do

S ← SolveWCOP (BuildWCOP (P, Wi), k/(p+1))
P O ← FilterDominated (S \P O, P O)

return P O

Different distributions of constraint weights A key issue regarding the iterative
method for approximating the Pareto-optimal set of a MCOP is how to generate the ade-
quate distribution of constraint weights. In the following, some distributions are suggested:

• Random: m+1 iterations using m randomly generated weight vectors and the unit
vector (1, . . . ,1).

• One criterion left out: l +1 iterations, one for each criteria and one for the unit
vector. The iteration for the constraint Ci, is performed with the constraint weight
vector (w1, . . . ,wl), where wk=i = 1 and wk �=i = 100. The idea behind this variant is
to reduce the effect of one of the criteria at each iteration.

• Two criteria left out: l(l−1)
2 + 1 iterations, one for each couple of criteria and

one for the unit vector. The iteration for Ci and Cj, is performed with the weight
vector (w1, . . . ,wl), where wk=i = 1, wk= j = 1, and wk �=i,k �= j = 100. The idea behind
this variation is very similar to the one criteria left out but considering each couple
of criteria.

• One criterion and two criteria left out: l(l−1)
2 + l + 1 iterations, one for each

criterion, one for each couple of criteria, and one for the unit vector. This is the
mixed approach of the one criterion left out variant and two criteria left out variant.

4.3.2 Soundness, completeness and complexity

Soundness and completeness By Theorem 4.1, the simple and iterative algorithms
described in this section are obviously sound in the sense that solutions found are really
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Pareto-optimal solutions for the problem.

The simple method and the iterative method only approximate the set of Pareto-
optimal solutions of a MCOP, therefore both algorithms are not complete.

4.3.2.1 Complexity

The computational complexity of the dominates predicate (used in Algorithm 5) is linear
with respect to the number of criteria. Given two solutions S and Y to a MCOP P with
SC = {SC1, . . . ,SCm} criteria, the Y dominates S predicate must check (Definition 3.18) if
for all criteria Y is better or equally better than S and that for at least one criterion Y
is strictly better than S. In consequence, the time complexity in the worst case of the
dominate predicate is O(m).

Simple method Basically, the simple method performs the two following steps:

1. SolveWCOP amounts to solve a WCOP using one of the methods described in Sec-
tion 4.2. As it was argued in Section 4.2.9, the worst-case time complexity of this step
is O (dn), where n is the number of variables in the problem and d is the maximum
domain size of the variables.

2. FilterDominated executes the dominated predicate

|P O| · |S |+2 ·
|S |−2

∑
i=0

(|S |− i) · (|S |− i−1)

times in the worst case. Thus, the worst-case time complexity of FilterDominated
is11 O

(|S |2).
In consequence, the worst-case time complexity of the simple method is O

(
dn +m · |S |2),

where n is the number of variables in the problem, d is the maximum domain size of the
variables, m is the number of criteria in the problem and |S | = k is the number of the
best computed solutions. In general, n� 2, thus the worst-case time complexity can be
considered exponential with respect to the number of variables in the problem O (dn).

Iterative method The iterative method performs p+1 times the steps SolveWCOP and
FilterDominated. This indicates that the worst-case time complexity for the iterative
method is, in general, O ((p+1) ·dn), where n is the number of variables in the problem,
d is the maximum domain size of the variables, and p is the number of constraint weight
vectors.

11Observe that |P O| ≤ |S |, thus |P O| · |S | ≤ |S |2
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4.3.3 Evaluation

Different instances and variations of the described methods for approximating Pareto-
optimal sets of MCOPs have been tested for randomly generated MCOPs. Next section,
describes how the random problems were generated. Results of the tests are presented
afterwards.

4.3.3.1 Random MCOP generation

The topology of a random binary12 MCOP is defined by: 〈n,m,hc,ht,sc,st,maxV 〉, where:

• n is the number of variables in the problem,

• m is the size of variable domains,

• hc is the graph density in percentage for unary and binary hard constraints,

• ht is the tightness in percentage for disallowed tuples in unary and binary hard
constraints,

• sc is the graph density in percentage for unary and binary soft constraints,

• st is the tightness in percentage for unary and binary soft constraints,

• maxV indicates the maximum valuation for soft constraints. Therefore, soft con-
straint valuations can take values from 0 to maxV .

For simplicity, hard and soft constraints are separated and mixed constraints are not
considered, therefore hc+ sc ≤ 100. For building random MCOP instances, the variables
for each constraint are chosen following a uniform probabilistic distribution. In the same
way, we choose the tuples in constraints. Valuations for soft tuples are randomly gener-
ated between 0 and maxV and valuations for hard tuples are represented by a maximum
valuation (∞).

The algorithms have been tested with different set of problems of soft CSPs with 5
and 10 variables and 10 values for each variable. Hard unary/binary constraint density
hc has been varied from 20% to 80% in steps of 20, and the tightness for hard constraints
ht varies also from 20% to 80% in steps of 20. Soft unary/binary constraint density sc
has been varied from 20% to 80% in steps of 10, with tightness fixed at st = 100. In
the case of 5 variables, in total there could be 5+(5∗4)/2 = 15 soft constraints (5 unary
constraints and 10 binary constraints). In the case of 10 variables, in total there could be
10+(10∗9)/2 = 55 soft constraints (10 unary constraints and 45 binary soft constraints).
Observe that hard and soft constraint graph densities are varied according to the expression
hc+ sc≤ 100. Thus, for instance, when hc = 40%, sc varies from 20% to 60%.

For every different class of problems, 50 different instances were generated, and each
instance has been tested with the simple method (with the unit vector as a constraint
weight vector) and the iterative method. The iterative method has been evaluated with

12A binary MCOP is a MCOP with unary and binary constraints.
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Hard tightness Number of feasible solutions

20% 51,121
40% 21,792
60% 6,444
80% 778

Table 4.1: The number of of solutions in average for generated problems with 5 variables,
10 values per variable and 20% of hard unary/binary constraint density.

the different proposed distributions of the constraint weight vector (see Section 4.3.1.2).
The methods have been tested varying the number of total solutions to be computed from
30 to 530 in steps of 50, from 530 to 2,030 in steps of 100, from 2,030 to 10,030 in steps
of 1,000 and from 10,030 to 20,030 in steps of 10,000.

4.3.3.2 Results on random problems

Tests were performed on a PC Pentium III 600Mhz with 256 MB RAM, and the algorithms
were implemented in Java. The implemented search algorithm to find the best k solutions
to a WCOP is PFC. For the different problem topologies, the average of the results for
each problem topology are evaluated in the following section.

Firstly, it is of interest to know how many Pareto-optimal solutions there are in a
problem depending on the number of criteria (soft constraints). In Figure 4.1, it is shown
that the number of Pareto-optimal solutions clearly increases when the number of criteria
increases. The same phenomena applies for instances with 5 and 10 variables. Actually,
this result is in accordance with Lemma 3.2 provided in Section 3.8.2.

On the other hand, we have observed that even if the number of Pareto-optimal solu-
tions decreases when the problem gets more hard-constrained (less feasible solutions) the
percentage with respect to the total number of solutions increases (Figure 4.2). Thus, the
proportion of the Pareto-optimal solutions is clearly more important when the problem
gets more constrained.

Figure 4.3 shows the proportion in average of Pareto-optimal solutions found by the
different methods for problems with 6 soft constrains, 10 variables, 10 values per vari-
able, 40% of hard constraint density and 40% of hard constraint tightness. The different
evaluated methods are:

• the simple method with the unit constraint weight vector,

• the iterative method, with the following variations:

– with p = 2,4,6,10,14,18 randomly generated constraint weight vectors.

– one criteria left out (see Section 4.3.1.2),

– two criteria left out (see Section 4.3.1.2),

– one and two criteria left out (see Section 4.3.1.2),
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Figure 4.1: Number of Pareto-optimal solutions depending on the number of soft con-
straints for random generated problems with 5 variables, 10 values per domain and 20%
of hard unary/binary constraint density. The results, in average, are shown for problems
with hard tightness of 20%, 40%, 60% and 80%. The total number of solutions in average
for these problem topologies are presented in Table 4.1.

• the lexicographic fuzzy CSP model. The interest of evaluating lexicographic fuzzy
CSP model is that numerous properties and algorithms exist for such a CSP model [17].
Unfortunately, for approximating Pareto-optimal solutions, this model showed very
poor results compared to the other methods.

The evaluation of the methods are shown up to 530 solutions because in real applica-
tions it could not be feasible to compute a larger set of solutions. When computing up
to 20,030 solutions, the behavior of the different methods does not change significantly,
see Figure 4.4. The 50 randomly generated problems used for Figure 4.3 and Figure 4.4 had
in average 134,661 feasible solutions (satisfying hard constraints) and 991 Pareto-optimal
solutions. The iterative methods perform better than the simple search algorithm with
respect to the total number of solutions computed. It is worth to note that the iterative
methods find more Pareto-optimal solutions when the number of iterations increase.

Lexicographic Fuzzy method results in finding a very low percentage of Pareto-optimal
solutions (less than 2%). Note that, for the lexicographic fuzzy CSP, Theorem 4.1 does
not apply, thus the percentage shown of Pareto-optimal solutions is computed a posteriori
by filtering out the Pareto-optimal solutions that were not really Pareto-optimal for the
entire problem.

Another way of evaluating the different methods is to compare the number of Pareto-
optimal solutions found with respect to the computing time. Figure 4.5 shows the results
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Figure 4.2: Number of Pareto-optimal solutions in percentage of the total number of
solutions depending on the number of soft constraints for random generated problems
with 5 variables, 10 values per domain and 20% of hard unary/binary constraint density.
The results, in average, are shown for problems with hard tightness of 20%, 40%, 60% and
80%.

up to 5 seconds. Using this comparison, the simple method performs the best. The
performance of the variants of the iterative method decreases when the number of iterations
increases. This is due to the fact that the iterative methods must perform p search process
over the whole search tree.

In general, it can be observed that when the number of iterations of the methods
increases, the performance regarding the total number of computed solutions also increases
but the performance regarding the computing time decreases. This behavior is similar for
the other topologies of randomly generated MCOPs. This is due to the fact that the
computing time of finding the k best solutions with a branch and bound algorithm is not
linear with respect of finding the k best solutions with m iterations (k/m solutions per
iteration). For example, computing 1,030 solutions with one iteration took in average
for our problems 0.3114 seconds and computing 1,030 solutions with 7 iterations (of 147
solutions) took 1.049 seconds.

Even if the tests based on the iterative method takes more time than the simple method
for getting the same percentage of Pareto-optimal solutions, they are likely to produce a
more representative set of the Pareto-optimal set.

Using a brute force algorithm that computes all the feasible solutions and filter out
those which are dominated, took on average 12.23 seconds for the same problems as in
the above figures. This demonstrates the interest of using approximative methods for
computing Pareto-optimal solutions, especially for interactive configuration applications
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Figure 4.3: Pareto-optimal solutions found by the different proposed methods (in %).
Methods are applied to 50 randomly generated problems with 10 variables, 10 values per
domain, 40% of density of hard unary/binary constraints with 40% of hard tightness and 6
criteria (soft constraints). The number of total computed solutions for each method varies
from 30 to 530 in steps of 100.

(e.g., electronic catalogs).

4.3.4 Solutions on the convex hull

Ideally, the best solutions to a MCOP for the user are the Pareto-optimal solutions on the
convex hull (see Section 3.8.4). Unfortunately, due to the complexity of computing the
solutions on the convex hull when having more than two criteria (O(n�n/2+1�), see [226]),
computing the Pareto-optimal solutions which are on the convex hull is not feasible for
interactive applications. However, in some cases it could be feasible to compute the Pareto-
optimal solutions on the convex-hull, for example, in systems where the user states the
problem, expresses his preferences and checks the results after some time. This can be
done in non-interactive systems. In Section 4.5.2.5, the main existing algorithms to find
the convex-hull of a set of points are reviewed.

4.4 Converging to satisfactory solutions

As discussed in Chapter 2, Section 2.2.2, the goal of our mixed-initiative system is to
converge to a reduced set of satisfactory solutions as long as the user expresses his own
preferences. In Section 2.2.2, two different mechanisms for achieving that goal were pro-
posed, namely: by ranking and by reducing the set set of solutions to be shown to the
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Figure 4.4: Pareto-optimal solutions found by the different proposed methods (in %).
Methods are applied to 50 randomly generated problems with 10 variables, 10 values per
domain, 40% of density of hard unary/binary constraints with 40% of hard tightness and
6 criteria (soft constraints). The number of total computed solutions, for each method,
varies from 30 to 1,030 in steps of 1,000.

user. In the following the behavior of the quantitative and the Pareto-optimal approaches
is analyzed in order to see if when adding criteria, i.e., soft constraints, to a problem the
satisfactory set of solutions is reduced.

4.4.1 The quantitative approach

Experiments on randomly generated problems have been performed in order to find out
the distribution of the best solutions in terms of their optimality. The experiments were
done in problems with 10 variables, 10 values per variable and 40% of density of hard
unary/binary constraints with 40% of tightness. The number of criteria have been stated
to 3, 5, 7, 9, and 12. For each different topology, 20 randomly problems were solved
by branch and bound to find the best 1,000 solutions. The valuations of the 1,000 best
solutions were normalized on the range [0..1], in order to be able to compare the results.
The valuation of a solution s, ϕSC(s), was normalized by the following expression:

ϕ′SC(s) =
ϕSC(s)−ϕSC(bestSol)

ϕSC(worstSol)−ϕSC(bestSol)

where bestSol is the solution with the lowest valuation among the 1,000 best solutions,
and worstSol is the solution with the highest valuation. This normalization was necessary
to compute the average of the results obtained for each instance.
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and 6 criteria (soft constraints).

num. of criteria num. of acceptable solutions

3 255
5 150
7 105
9 87
12 60

Table 4.2: The number of of solutions, in average, under the 0.5 of the quality range of
the 1,000 best solutions for problems with different number of criteria.

Figure 4.6 clearly shows that solutions’ optimality degrades faster for problems with
more criteria. Figure 4.7 shows the same plot as in Figure 4.6 but for the 200 best solutions
to ease the analysis of the results.

In other words, when the number of criteria increases, the set of the most optimal
solutions is reduced. For example, let us fix a bound of acceptable solution quality at the
half of the quality of the 1,000 best solutions (0.5). With this quality bound, Table 4.2
gives the number of acceptable solutions, in average, for problems with different number of
criteria. Clearly, when the number of criteria increases, the number of acceptable solutions
decreases. This means that as long as the user expresses his criteria, satisfactory solutions
are reduced, thus the solutions converge to a small set of satisfactory solutions.
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solutions. The valuations are computed on average for 20 randomly generated problems
with 10 variables, 10 values per variable, 40% of density of hard unary/binary constraints
with 40% of hard tightness. The number of criteria have been stated to 3, 5, 7, 9, and 12.

4.4.2 The qualitative constraint combination approach

In regard to the qualitative constraint combination approach, the results are completely
different to those obtained for the quantitative approach. This behavior can be observed
in Figure 4.1: the number of Pareto-optimal solutions increases with the number of criteria
in the problem.

This behavior of the Pareto-optimality is a drawback for our general approach. It would
not be acceptable to show more and more solutions to the user as long as he expresses
his preferences. This conduct would definitely be very contraindicative with the user’s
intuition.

In the next subsection a mixed approach is suggested to overcome the aforementioned
drawback of the Pareto-optimality approach and, at the same time, benefit from its main
advantage.

4.4.3 A mixed approach

As it has been shown above, the main advantage of the quantitative approach is that best
solutions are decreasing when the number of criteria increases. This was a requirement
for the suggested mixed-initiative approach described in Chapter 2, Section 2.2.2. On the
other hand, the main advantage of the Pareto-optimality approach is that dominated
solutions are filtered out because they should never be rationally chosen by any user.
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Figure 4.7: The optimality (valuation normalized on the range [0..1]) of the best 1,000
solutions. The valuations are computed on average for 20 randomly generated problems
with 10 variables, 10 values per variable, 10% of density of hard unary/binary constraints
with 40% of hard tightness. The number of criteria have been stated to 3, 5, 7, 9, and 12.

Combining both approaches is straightforward: solutions are computed using the quan-
titative approach, and dominated solutions are filtered out. It is worth noting that in Chap-
ter 3, Section 3.8.5.2, this method was already mentioned.

4.5 Related work

4.5.1 The quantitative approach

The quantitative approach deals with finding the best k solutions to a WCOP. This ap-
proach is also known as a single objective optimization problem. The optimization func-
tion is usually stated as a scalar function that combines all the criteria (soft constraints).
Basically, the existing algorithms can be classified in:

4.5.1.1 Systematic search

The main systematic search techniques to solve a single objective optimization problem
(namely DFBB and PFC) and their variants have already been described in Section 4.2.

4.5.1.2 Local search

Greedy local search methods are incomplete, i.e., they find suboptimal solutions without
knowing how far the solution found is from the optimal one. However, they have been



104 Chapter 4. Searching Methods for Electronic Catalogs as CSP

successfully used due to their efficiency. Basically, local search algorithms start from a
initial solution and try to improve it by searching neighborhood solutions. Meseguer et
al. in [167] review the main local search methods as follows:

Min-Conflicts algorithms were initially proposed by Minton et al. in [170, 171]. Sev-
eral improvements of the initial algorithm have been proposed incorporating more
efficient search techniques [258, 256]. Min-conflicts algorithm explores the neigh-
borhood of the current assignment by choosing a promising value for any of the
variables which is in conflict with a constraint. The efficiency of local search algo-
rithms strongly depends on the size of the neighbors to be considered. To avoid
visiting some of the neighbors, Fast Local Search [247] has been proposed by Tsang
et al. . It basically tries to avoid neighbors which are unlikely to be promising by
guiding the search with heuristics. GENET is a connectionist approach [48] for solv-
ing CSPs, based on the Min-conflicts algorithm. By means of a constraint weighting
system, it escapes from local minima. The weights of the constraints which are vio-
lated in a local minima are increased allowing the algorithm to escape from the local
minima.

Genetic algorithms (GA) [99], based on the ideas from evolution [115]. The idea behind
GA algorithms is to evolve a population of solution candidates. Depending on a
metric (the objective function in optimization problems), the candidates have a
degree of chance to continue in the population. GA algorithms have been applied to
the context of constraint satisfaction (see [58, 202, 33]). In the case of constrained
optimization problems, the key issue is how to incorporate the information from
the constraints into the genetic metric function, in order to guide the search in an
appropriate way. In [38], the authors propose the usage of penalty functions.

Simulated Annealing (SA) [130] has also been applied to solve constrained optimization
problems. At the beginning of the search the moves to visit neighbors are all accepted
regardless of whether they are uphill or downhill. As long as the search advances,
the moves are more accepted uphill than downhill. In [152], Li proposes a variant of
the SA algorithm in which the search space is divided into disjoint subspaces. These
subspaces are then approached by localized SA algorithms. Different strategies have
been proposed. For example, Wha and Wang in [254] present a framework where
the SA algorithm is combined together with the Lagrange multipliers theory. This
last approach has been applied to both discrete and continuous problems.

Approximating methods In Section 4.2.8, the anytime interpretation of branch and
bound algorithms was presented. Cabon et al. , present in [12] three different adap-
tations of the systematic search algorithms to produce anytime lower bounds algo-
rithms, namely:

• Problem simplification: a lower bound is computed by solving a simplified prob-
lem systematically [95].
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• Objective simplification: a lower bound is computed by considering a simpler
objective.

• Search simplification: a lower bound is computed by performing a limited search
tree and exploiting subproblem lower bounds (see [12] for search simplification
algorithms).

4.5.2 The qualitative constraint combination approach

Our qualitative constraint combination approach can be seen as a more general and
well-studied topic called Multi-criteria combinatorial optimization problems13 (MOCO).
See [250, 156, 57] for complete reviews on this topic. A MOCO is defined in [57] as a
discrete optimization problem, with n variables xi, i = 1, . . . ,n, Q objectives14 z j, j = 1, . . . ,n
and a specific constraint structure defining the feasible set of solutions to be considered.
The complexity of MOCO problems has been shown to be NP, see [59, 219]. In our
framework, the constraint structure is defined by means of hard constraints (configuration
constraints), and the objectives are defined through user’s preferences and optimization
criteria. In the following, the main existing methods for solving MOCO problems are
reviewed. Basically, such algorithms can be classified depending on their solutions:

• The whole Pareto-optimal set. These methods find the whole Pareto-optimal
set, i.e., they are systematic algorithms.

• Supported Pareto-optimal solutions. These algorithms are able to find all the
supported Pareto-optimal solutions. A supported Pareto-optimal solution is a solu-
tion that is optimal for some weighted sums of the objectives15. These methods are
exact in the sense that they find solutions that are Pareto-optimal, but they are
incomplete in the sense that they do not find the whole Pareto-optimal set.

• An approximation of the Pareto-optimal set. These algorithms (which are
based on Metaheuristics16) find solutions that are likely to represent the Pareto-
optimal set but they are not necessarily Pareto-optimal. An interesting review on
such techniques is the dissertation of Hansen [108]. Basically, these algorithms are
based on local search algorithms and genetic algorithms. Local search methods
use one single Pareto-optimal solution candidate at anytime, while population based
methods derive a set of candidate solutions directly to an approximation of the
Pareto-optimal set.

As seen in Section 3.8.4, Pareto-optimal solutions on the convex-hull of the Pareto-
optimal set are very interesting because they are optimal for some user profiles (i.e., some

13Special solving methods exist for bicriteria problems, but they are not discussed in this section since

our interest is focused on problems with more than two criteria.
14Objectives are usually considered as linear functions.
15These solutions are those which are in a concave part of the efficient frontier in the case of minimization

(convex in the maximization case) [230].
16i.e., heuristic principles that are not problem specific but are applicable to a large range of problems.
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concrete criteria weighting). A review on the state of the art of methods for finding the
convex-hull of a set of points in the n-space is presented in Section 4.5.2.5.

4.5.2.1 Systematic search algorithms

The following methods find all Pareto-optimal solutions. Surprisingly, not much work
has been done to solve a MOCO using systematic search algorithms. To our knowledge,
Gavanelli has presented the first branch and bound based method for solving multi-criteria
combinatorial optimization problems.

Gavanelli’s algorithm Gavanelli addresses in [90, 92, 91] the problem of multi-criteria
optimization in constraint problems directly. His method is based in a branch and bound
schema where the Pareto dominance is checked against a set of previously found solutions
using Point Quad-Trees (see [66] for a description of Point Quad-Trees and [105] for an
explanation of how to use such data structure applied to the domination concept). Point
Quad-Trees are useful for efficiently bounding the search. However, the algorithm can be
very costly if the number of criteria or if the number of Pareto-optimal solutions are high.
Gavanelli’s method significantly improves the approach of Wassenhove-Geders [259]. The
Wassenhove-Geder’s method basically consists of performing several search processes, one
for each criteria. Each iteration takes the previous solution and tries to improve it by
optimizing another criteria. Using this method, each search produces one Pareto-optimal
solution, so many search processes must be done in order to approximate the Pareto-
optimal set.

The Normal-Boundary Intersection Method Das and Dennis [46] have identified
two main problems with parametric scalarizing methods (see Section 4.5.2.2), namely:

• they only produce Pareto-optimal solutions in convex17 Pareto-optimal frontiers, and

• there is no guarantee that the generated Pareto-optimal solutions are spread along
the Pareto-optimal frontier, even if the parameters are varied in a well distributed
manner.

Following the above two observations, Das and Dennis propose a new method called
Normal-Boundary Intersection (NBI) [47, 44, 43]. The authors argue that the NBI method
is able to produce an evenly distributed set of points in the Pareto set given an evenly
distributed set of parameters.

The NBI method has been successfully applied to large assembly systems [42] and to
error digital communications problems [45].

4.5.2.2 Methods for finding supported Pareto-optimal solutions

The following methods find supported Pareto-optimal solutions. Actually, these methods
can be solved several times by changing some parameters. At each execution, a new

17Convex for minimization functions, concave for maximization functions.
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Pareto-optimal solution is found.

Parametric scalarization methods The most commonly used approach for solving
a Multi-criteria Optimization Problem is to convert the problem into a single-criterion
optimization problem by means of a scalarizing function. In other words, solving a MCOP,
using a parametric scalarization method, amounts to transform the problem into a COPs18

which can be solved using standard single-criteria optimization techniques. Varying the
parameters of the scalarizing function, several COPs can be obtained from the original
MCOP. The optimal solution to each COP is then a Pareto-optimal solution of the MCOP.
Many researches have proposed different scalarizing functions and parameters. Steuer’s
book [230] gives a deep study on different ways to map a multi-objective optimization
problem into a single objective optimization problem. The drawback of these methods is
that some Pareto-optimal solutions cannot be found if the efficient frontier is not concave19.

Given any point z = (z1, . . . ,zp) ∈ IRp, an ideal (or reference) point z′ = (z′1, . . . ,z
′
p) ∈ IRp

(which is optional) and a vector of weights20 w = (w1, . . . ,wp), several parametric scalarizing
functions can be defined [167], namely:

• the weighted sum is the most popular scalarizing function:

g(z,w) =
P

∑
i=1

wi(zi− z′i)

• the weighted Chebychev scalarizing function:

g(z,w) = maxi{wi(zi− z′i)}

or the augmented weighted Chebychev scalarizing function:

g(z,w) = maxi{wi(zi− z′i)}+ ε
P

∑
i=1

wi(zi− z′i)

where ε is a small number greater than zero.

• the lp-norm function: given p≥ 1,

g(z,w) =

(
P

∑
i=1

wi
(
zi− z′i

)p

) 1
p

Note that when p = 1, this function is equivalent to the weighted sum scalarizing
function. When p /∈ {1,∞}, the resulting objectives become nonlinear.

18A Constraint Optimization Problem (COP) is a WCOP where the constraint weight vector is encoded

in the optimization functions.
19In the case that the optimization function is a minimization function, convex if the optimization

function is a maximization function.
20Usually, the vector of weights meet the following conditions: ∀iwi ≥ 0, ∑P

i=1 = 1 and is then called

normalized weight vector.
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• other scalarizing functions:

g(z,w) = (1−α) gc(z,w)+α/k gw(z,w)

where gc is the Chebychev function, and gw the weighted sum.

The methods that have been suggested in this chapter for the qualitative constraint
combination approach are basically based on this approach, more precisely the weighted
sum approach.

The Hierarchical method and Trade-off method consists in ranking the optimiza-
tion criteria in order of importance [230]. Hence, a single objective optimization problem
is carried out for the most important objective subject to additional constraints on the
other objectives. These additional constraints are stated as allowable values for each other
objective. Then, by changing the most important objective and the allowable values for
the other objectives, one can get several Pareto-optimal solutions. This method is also
called the ε-constraint method. The method is further explained in [180, 155, 28, 119].

The Global Criterion method tries to solve a MCOP as a COP where the criterion
to be optimized is a distance function to an ideal solution z′. The ideal solution is precom-
puted by optimizing each criteria independently. Then, a single objective optimization
problem can be solved by minimizing [180]:

g(z) =
P

∑
i=1

(
z′i− zi

z′i

)p

where p defines the type of distance. For instance, Boychuk and Ovchinnikov [24] have
suggested p = 1, and Salukvadze [206] has suggested p = 2.

Other distance functions can be used for this method which is further detailed in [266,
267].

Goal Programming approach amounts to defining the objective functions as goals21

with priorities or weights [230, 122]. Then, measure functions give information about how
much a goal has been achieved. The overall goal is to minimize the deviation from the
specified goals. For example, minimizing objective zi is transformed into two constraints:
zi−di = ti, di≥ 0, where ti is the goal to be achieved. In this way, the problem is transformed
in a problem in which all the di have to be minimized, and therefore it can be solved by
any of the previous methods. For more details on goal programming applied to MOCO
problems the reader is referred to [30, 151, 150, 121].

Interactive methods were first described in Steuer’s book [230]. The system interacts
with the user in order to find a satisfactory solution. Interactive methods are based on

21Usually, the decision maker specifies the goals.
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well-known interactive methods for the continuous case. Shin reviews the main interac-
tive methods for the continuous case in [223]. Such methods include objective articulation
throughout the solving process. The objectives are not stated at the beginning but defined
by the decision maker along the solving method. They are often called progressive meth-
ods. In [125], Jaszkiewicz lists the following interactive methods: Zionts method [269], Ko-
rhonen, Wallenius and Zionts method [138], Köksalan, Karwan and Zionts method [133],
Korhonen method [137], Malakooti method [162], Taner and Köksalan method [236], AIM
method [154], Light Beam Search-Discrete method [126] and Interquad method [235].

4.5.2.3 Local Search methods

The following methods find approximate Pareto-optimal solutions. The goal of local search
methods aims to find solutions which are optimal enough to solve the problem efficiently.
Such methods yield a good tradeoff between the quality of an approximation of the Pareto-
optimal set and computing requirements.

Simulated Annealing (SA) algorithms deal with probabilities for accepting a neighbor
solution. The main idea of SA algorithms applied to MOCO problems is to always accept a
neighbor solution if it dominates the current solution, and accept a neighbor solution with
a given probability if it is dominated by the current solution. Obviously, the key point
is how to deal with neighbor solutions which do not dominate the current one neither
are dominated by the current one. Sarafini [220, 221] suggests transition probabilities,
considering two rules: a) only dominating neighbors should be accepted with probability
one (strong rule), and b) only dominated neighbors should be accepted with probability
less than one (weak rule). Tests showed that the best approach is however to use a
composite of the two rules.

Ulungu in [248, 251, 249] proposed a SA based algorithm for MOCO problems called
MOSA (Multiple Objective Simulated Annealing). In this approach, the same probability
transitions as in the Sarafini’s approach is used, but the search is repeated with different
weights, in order to generate an approximation of the whole Pareto-optimal set. Experi-
ments for the knapsack and assignment problems only concerning two criteria have been
reported.

Another approach that uses SA, proposed by Czyzak and Jaszkiewicz in [39, 40], is
called PSA (Pareto Simulated Annealing). PSA consider a sample of solutions which
are moved to the Pareto-optimal frontier instead of just considering one single solution.
There is also a dispersion mechanism in which the solutions are moved away from the other
solutions by means of calculating different weights for each solution. This mechanism will
likely produce an approximation uniformally spread along the Pareto-optimal frontier.

Tabu Search (TS) [97, 98] is a local search method which repeatedly moves from a
current solution to the most promising neighbor solutions. TS escapes from local minima
by keeping a tabu-list of forbidden neighbors.
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The first approaches for solving MOCO problems with tabu search [41, 114] consist in
solving several single optimization problems and therefore, getting one supported solution
at each execution.

Gandibleux et al. state in [85] the basic principles of TS algorithms to be applied in
the context of approximating the Pareto-optimal set. This first adaptation of TS for solv-
ing MOCO problems is called MOTS (Multiple Objective Tabu Search) [86]. In MOTS,
neighbor solutions are chosen among the one with the highest value of a weighted scalar-
izing function. The weight vector is changed in such a way that the objectives which are
greatly improved are degraded. The tabu-list is used to prevent to visit already checked
neighbors and to change the weights of the scalarizing function. In [107], a version of the
MOTS algorithm considering a set of solutions is presented.

Hybrid local search algorithms Recently, simulated annealing and tabu search have
been combined by Alves and Climaco in [4], resulting in a new algorithm.

4.5.2.4 Genetic algorithms

Genetic algorithms (GA) are based on the theory of evolution. The pioneer GA based
method for multicriteria optimization was the VEGA (Vector Evaluated Genetic Algo-
rithm) approach presented in [211] by Schaffer. Mainly, GA algorithms, applied to the
MOCO problem, consists in maintaining a population of solutions via self adaptation and
cooperation. Self adaptation means that the individuals evolve independently while co-
operation implies an exchange of information among the candidate solutions. The idea is
simply to group those solutions in the population which are not dominated by any other,
into the rank 1. From the solutions which are not in rank 1, those which are not domi-
nated by any other are grouped into rank 2. This grouping process is done until all the
individuals (solutions) are assigned in one rank. A function based on the ranking (the
fitness function) can then be used in selection for reproduction.

Niching principles have been widely used in genetic algorithms to achieve solution
diversity [100]. The interpretation of the niching principle for MOCO problems is to
reproduce a set of well distributed solutions along the Pareto-optimal frontier instead of
just covering a small area of it. For a deep study on niching methods, please refer to the
PhD thesis of Mahfoud [161].

Many different variants of the GA algorithm for solving MOCO problems have been
proposed22, namely: Multiple Objective GA (MOGA) [67], Non-dominated sorting GA
(NSGA) [228], Niched Pareto GA (NPGA) [117], and GA based on a min-max strategy [35,
36].

In MOGA, the ranking concept is modified. Each solution is assigned to the rank
1 plus the number of solutions in the population that dominate it. For more details,
see [11, 178, 69, 70]. NSGA follows the suggestion of Goldberg and uses the niching
principle. NPGA is based on the binary tournament selection. It uses randomly generated

22At http://www.lania.mx/~ccoelo/EMOO, Coello lists more than 320 papers on genetic algorithms for

multiobjective optimization.
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comparison sets. The winner of the tournament is the individual that is not dominated by
any of the individuals in the comparison set. When there is no dominance in a tournament,
the niched principle is used as a tiebreak by choosing solutions which are far away in the
objective space.

For further information about GA algorithms applied to MOCO problems, please refer
to the surveys of Fonseca and Fleming [68] and Horn [116].

Hybrid local search and genetic algorithms Tabu search algorithm and genetic
algorithm have been combined in [1], resulting in a new algorithm for multicriteria op-
timization problems. The algorithm has been evaluated for knapsack problems. The
thesis of Knowles deals with local-search and hybrid evolutionary algorithms for Pareto
optimization [131].

4.5.2.5 Pareto-optimal solutions on the convex-hull

This problem, can be seen as a geometric problem in which the goal is to find the smallest
convex set covering the whole set of points in a p-space. Unfortunately, due to the com-
plexity of computing the solutions on the convex hull when having more than two criteria
(O(n�n/2+1�), see [226]), computing the Pareto-optimal solutions which are on the convex
hull is not feasible for interactive applications.

The problem of finding Pareto-optimal solutions in the convex-hull for a given MCOP
can be restated as finding the convex-hull of a set of points in the m-Space, where m is
the number of criteria of the MCOP. Consider each solution Si ∈ S as a point pi in the
m-Space IRm (Definition 3.22):

pi =
(

ϕC1

(
val

(
Si ↓V

scope(C1)

))
, . . . ,ϕCm

(
val

(
Si ↓V

scope(Cm)

)))
The convex-hull of the set of solutions to a MCOP is the smallest convex set that contains
all the points pi representing a solution Si ∈ S , and it is noted conv(S)⊆ S .

This problem is an open problem in the computational geometry field and has been
studied for many years. Among all the existing methods23, the Quickhull algorithm is the
most popular method (see for example [9]).

Incremental algorithms for the convex-hull problem have also been widely used. They
tread repeatedly a point in the set together with the already processed points. Of particular
interest is the Beneath-Beyond algorithm [103]. Another type of incremental methods is
called randomized incremental algorithms, firstly proposed by Clarkson and Shor in [34].

In [217], Seidel reviews the main existing solving methods for computing the convex-
hull of a set of n-dimensional points. Several implementations of the main methods24 for
for solving the convex-hull problem in two and three dimensions can be found on the web,
for example see http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html.

23Specialized methods for the bidimensional case have been developed, but are not applicable, in general,

to our framework.
24Incremental, gift wrap, divide and conquer, and Quickhull algorithms
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4.6 Summary

This chapter explores solving techniques for the two approaches presented in Chapter 3:

• Solving techniques for the quantitative approach assumes that all the soft
constraints involved in the problem can be numerically combined together in a single
scalar function. Relative importance of the different criteria to be optimized are
stated by means of a constraint weight vector. The main techniques for finding
the k best solutions to a WCOP have been described. Such techniques are based
on the well-known branch and bound algorithm, namely: the DFBB and the PFC.
Basically, the existing techniques have been reviewed and adapted to suit our model.

• Solving techniques for the qualitative constraint combination approach
deals with the concept of Pareto-optimality. Since computing directly the Pareto-
optimal set to a MCOP can be too costly for interactive applications (e.g., electronic
catalogs), methods for approximating the Pareto-optimal set to a MCOP are sug-
gested. Some evaluation has been done to validate the methods.

Finally, related work is presented.



Chapter 5

The SmartClient Architecture

5.1 Motivation

An important issue which has to be faced in information systems is scalability : the ability
to support large numbers of simultaneous users. Client-server computing allows such
scalability by distributing the computational load to the client computers. The concept of
thin clients has extended client-server computing to much larger systems, in particular the
Internet. Internet is the most widely used platform for electronic commerce, however more
local computer networks can be considered such as LANs1 and WANs2. Most of the current
electronic catalogs are server-centric, using customer’s computers for just rendering results
given by servers. In such standard models, the persistence layer, business logic layer and
most part of the presentation layer are implemented on the server side.

Since most problem-solving methods are either compute- or knowledge-intensive, pro-
viding such functionality poses severe scalability problems. In information systems that
have to serve thousands of users with small response times, the time that can be allotted
to each individual user is very small, however, the evolution of the distributed computing
technologies has been enlarging the potential use of client’s computers by:

• speeding up data (and programs) transmission between servers and clients, and

• enabling the execution of programs on the client side which are sent through the
web, e.g., via applets or plug-in programs for browsers. It is also worth noting that
personal computers and other personal devices (such as mobile phones and PDAs3)
are becoming quickly more and more powerful4 in respect of computing process and
memory capacities.

1LAN stands for Local Area Network.
2WAN stands for Wide Area Network.
3PDA stands for Personal Digital Assistant.
4http://www.intel.com/labs/eml: Expanding Moore’s Law. Gordon Moore predicted in 1965 that

transistors on a chip would double every year. In 1970 the Moore’s Law was revised, from 1 year to 2

years for doubling the transistor’s density. Lately, the Moore’s Law has been updated, and it is believed

that each 18 months the transistor’s density is doubled. Anyhow, the power of processors is increasing

exponentially while their production costs are decreasing.
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Traditional wisdom would say that in order to make a client intelligent, it will have to
include a lot of complex code and data, i.e., be a very fat client. The key point exploited in
SmartClient5 architecture is that by using constraint satisfaction techniques (as described
in Chapter 3 and Chapter 4), one is able to develop smart (intelligent) clients for electronic
catalogs that are also thin.

5.2 Software architectures

This section gives basic definitions related to software architectures, and identifies the
architectural topics which are of interest in this work.

5.2.1 Definitions

There is little agreement among researchers about what exactly should be included in the
definition of software architecture. In this section, the definitions given by Fielding in
his PhD dissertation [65] are recalled6. This terminology and definitions will be assumed
throughout the rest of the chapter.

Definition 5.1 (Software Architecture) A software architecture is defined by a config-
uration of architectural elements (components, connectors, and data) constrained in their
relationships in order to achieve a desired set of architectural properties.

Definition 5.2 (Component) A component is an abstract unit of software instructions
and internal state that provides a transformation of data via its interface.

Definition 5.3 (Connector) A connector is an abstract mechanism that mediates com-
munication, coordination, or cooperation among components.

Definition 5.4 (Data) A datum is an element of information that is transferred from a
component, or received by a component, via a connector.

Definition 5.5 (Configuration) A configuration is the structure of architectural rela-
tionships among components, connectors, and data during a period of system run-time.

Definition 5.6 (Architectural Properties) The properties of a software architecture
can be functional or non-functional:

• Functional properties are given by the system requirements. In other words,
functional properties of a software architecture indicate if the whole system achieves
the functionalities it was designed for.

• Non-functional properties are quality attributes of the architecture such as ease

5SmartClient architecture is US patent pending.
6See [65] for insight details, justifications and related research about these definitions.
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Figure 5.1: Basic client-server architecture. Clients simultaneously access services offered
by a server through a computer network.

of evolution, reusability of components, efficiency, portability, reliability, and scala-
bility.

5.2.2 Client-server architectures

Client-server architectures are commonly used in network-based applications. Users access
7 functionalities (a set of services) at the same time, from remotely located computers or
other devices, such as as mobile phones and PDAs, through a computer network, as shown
in Figure 5.1.

A client-server architecture can be briefly described as in [65]:

• A server component, offering a set of services, listens for requests upon those ser-
vices. A server is usually a non-terminating process and often provides service to
more than one client simultaneously.

• A client component, desiring a service to be performed, sends a request to the
server via a connector. The server either rejects or performs the request and sends
the response back to the client component.

5.2.3 Stateful vs stateless servers

In client-server architectures, the state, also called session state, of a server can be defined
as the information that it maintains about the status of ongoing interactions with every
specific client. Two different approaches must be considered: client-stateless-server and
client-stateful-server.

7Note that the term server will be referred throughout this chapter as an abstract component, but it

can be composed of a battery of physically different server computers.



116 Chapter 5. The SmartClient Architecture

Client-stateless-server architectures do not keep any information about the session
state on the server side. Therefore, each request from the client must contain all the
needed information to process the request. Session state is entirely kept on the client side.
The main disadvantages of such stateless-servers are:

• requests must be processed from scratch without considering the context of previous
client requests. This implies that services offered by the server must be context-
independent.

• network performance may be decreased, because of the repetitive data to be sent
within requests from clients. This is due to the fact that repetitive data along a
series of requests cannot be stored on the server side.

On the other hand, client-stateless-server architectures benefit from the following advan-
tages:

• facilitate the monitoring of the system without requiring to analyze beyond a re-
quest datum, since requests contain all the needed information to be understood.

• improve the reliability of the system, since requests that fail can be relaunched
without any other considerations such as context or previous requests.

• improve the scalability of the system, since no information is kept on the server
side, less memory requirements are needed for each request.

Client-stateful-server architectures keep the information about the session state on
the server side. Client-stateful-server architectures loose the advantages of having a state-
less server, i.e., these architectures are more difficult to monitor, less reliable and less
scalable. On the other hand, requests to the server component are usually smaller, since
they do not need to transfer the state information which is kept on the server. Another ad-
vantage is that business logic for processing requests can, in general, be more sophisticated
taking into account the information kept on the server session.

5.2.4 Layered architectures

A layered architecture is defined by Garlan and Shaw in [102] as an architecture which
is organized hierarchically, each layer providing service to the layer above it and serving
as a client to the layer below. In some layered systems inner layers are hidden from all
except the adjacent outer layer. In consequence of such architectural organization, several
desirable properties are reached, namely:

• to support design based on increasing levels of abstraction. This allows developers
to implement different parts of complex systems independently. Therefore, layers can
be implemented by different developer teams that only look at the interfaces of the
above and below layers, without considering the implementation details of the rest
of the system.
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• to ease enhancements of functional properties of the system. Since layers are only
directly connected to their adjacent layers, enhancing the functionality of one layer,
only affects at most the layers immediately below and above.

• to support reuse. Layer implementations can be interchanged without any major
consideration, but just ensuring that they provide the required functionality defined
by the interface of the layer with its adjacent layers.

Layered architectures cannot always be applied to all kinds of systems, because some
systems cannot be logically structured in different layers. The efficiency of layered ar-
chitectures directly depends on the number of its layers, i.e., on the different levels of
abstractions. Each couple of layers defines an interface and a communication mechanism,
thus having many layers can lead to inefficient architectures. As often happens in computer
science, when designing a software system, there is a trade-off between efficiency and the
desirable aforementioned properties. Note that the layered structure of the system is not
directly related to the distribution of the layers to client and server sides. One could have,
for example, a part of a layer in the client and another part of that layer in the server. In
information systems literature, two types of standard layered architectures exist: two-tier
and three-tier.

5.2.4.1 Two-tier architectures

Two-tier architectures emerged around 1980s to improve file server software architectures,
where files were stored in servers and could be accessed directly by remote clients. The
main improvement of two-tier architectures over file server architectures was to provide
a user-friendly interface on the client side to access the file information stored on the
server side, instead of directly accessing the files. The layer on the client side is called
presentation layer8, and the layer on the server side is called persistence layer9:

presentation ⇐⇒ persistence

5.2.4.2 Three-tier architectures

Three-tier architectures, also known as three layer architectures or multi-tier architectures,
emerged in the 1990s to overcome the limitations of two-tier architectures. In three-tier
architectures, a new layer between persistence and the presentation layers was introduced.
This intermediate layer is called business logic layer10 .

As any layered architecture, layers communicate with above and below layers. Thus,
in the case of a three-tier architecture, layer communication is as follows:

presentation ⇐⇒ business logic ⇐⇒ persistence

8Different terminology is used for the presentation layer, for instance, user interface layer.
9Different terminology is also used for the persistence layer, for instance, data management layer,

backend layer or data access layer.
10Different terminology exist for the business logic layer, such as middle layer, management services layer

and application server layer.
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5.2.5 Topics of interest

Software architecture, on its own, is a field of research in computer science. Nevertheless,
this thesis only attacks some of the issues related to software architecture applied to
electronic catalogs. Basically, this chapter deals with the issue of how to design software
architectures that enable to:

1. support the user by solving problems and not just providing information,

2. build mixed-initiative systems, such as the one described in Chapter 2, and

3. build scalable systems.

Specifically, the topics of interest about designing an architecture for electronic catalogs
include: server services, layer organization and client-server distribution.

In regard to the services offered by the server for electronic catalogs, only the service
of supporting the user in finding the right product will be faced. Services providing
functionality such as shopping baskets, purchase statistics or payment methods are out of
the scope of this thesis. Communication mechanisms between the different layers are also
out of the scope of this work, and thus they will not be discussed. In addition to these
issues, technology insights about implementation topics are also out of the scope of this
chapter.

5.3 Standard architectures for electronic catalogs

Most of the current implementations of electronic catalogs are based on standard lay-
ered client-server architectures, with persistence, business logic and presentation layers, as
shown in Figure 5.2:

• the server side implements the following layers:

– persistence layer which access the internal or external databases or other
information systems, such as web sites and legacy systems, taking into account
the request of the user.

– business logic layer which generates solutions from the data received in the
persistence layer.

– presentation layer which formats solutions in order to be rendered by the
client’s computer, e.g., in HTML11 pages. The component of this layer com-
municates with its counterpart in the client side. Formated solutions are sent
to the client side.

• the client side is only used to get requests from users and display the solutions
sent by the server. This component on the client side is considered as part of the
presentation layer of the whole system.

11HTML stands for HyperText Markup Language.
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Figure 5.2: The standard client-server architecture for electronic catalogs. Lines between
the client side and the server side show the interactions, i.e., data transfers through the
computer network. Almost all the processing is done on the server side, whilst the client
side is only used for rendering results.

5.3.1 Purchase decision making process

The support for the user in his purchase decision making process in standard architectures
for electronic catalogs is very low.

On one hand, in standard catalogs with non-configurable products, the system
basically shows a small set of products according to some initial set of user criteria. In
the case the user does not like any solution, a function like next solutions allows him to
receive another set of solutions. If the user wants to go back to the previously shown set
of solutions, he can use the previous solutions functionality.

On the other hand, in respect to catalogs with configurable products there are
mainly two ways of supporting the user to find the right product configurations:

• one-step configuration: the system proposes complete configured products accord-
ing to the user request and his preferences. This methodology can be used for simple
configurable products, i.e., products with few components or few options per com-
ponent. Non-configurable products can be seen as simple configurable products with
one single component.

• sequential configuration: the system supports the user in configuring his best prod-
uct, by selecting one choice for each component in a sequential order. Complex con-
figurable product catalogs are usually faced with sequential configuration processes.
See Section 1.3.1 for examples of such complex configurable products.
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Figure 5.3: One-step decision making process for configurable products in standard elec-
tronic catalog architectures. A loop implying the server side and the client side allow the
user to browse through product configurations until he finds the right product.

5.3.1.1 On-step configuration

Electronic catalogs with one-step configurators can be applied to products which are simple
to configure, i.e., without a huge combinatorial explosion. As shown in Figure 5.3, the
system consists of a loop where the user receives a set of complete product configurations.
If the user does not find the right product, more configurations are proposed, usually
through a next products mechanism. In the same way, the user can also go back to the
previous set of solutions. Clearly, this methodology can be applied to catalogs with atomic
products as well. Preferences can also be taken into account. This functionality is normally
embedded into a refine mechanism that proposes other solutions according to the user’s
criteria. Both functionalities, next products and refine, are depicted in Figure 5.3 as the
generate product configurations component on the server side.

5.3.1.2 Sequential configuration

In sequential configuration systems, the system suggests to the user to select each com-
ponent of the product sequentially. Each choice of the user restricts the choices for next
components. These restrictions are made according to the configuration rules in order to
produce valid product configurations12. Due to the sequentiality of the selection process
of the choices for the components of the product, the user realizes his mistakes once the
system proposes the choices for the next component. Therefore, when the user receives

12See Section 1.2.3 for more details on the configuration task.
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Figure 5.4: Sequential decision making process for configurable products with n compo-
nents, in standard electronic catalog architectures. A loop implying the server side and the
client side allows the user to configure the product step by step, i.e., at each step a com-
ponent of the product is selected. When the user realizes he made a mistake in selecting
a choice for component i, the server proposes again the choices for that component.

the choices for the component i and he realizes (actually he guesses) that a mistake on
the selection of another component j was done, the process must be restarted from the
wrong choice of component j. Usually, these configurators offer mechanisms to go back
to previous component ( j = i− 1) selection, therefore several back-steps may be needed.
At the end, the user hopefully gets a complete configuration of the product. Electronic
catalogs for configurable products using such a decision making process are, for instance,
Travelocity13 in the travel domain, and Audi CarConfigurator14 in the car industry.

As indicated before, the client side is only used for presenting the results to the user
without any relevant business logic process, which is located at the server side. In Fig-
ure 5.4, the aforementioned processes are depicted for configurable products, i.e., for com-
plex catalogs. Such decision making processes are sequential, at each step a choice for a
component of the product is selected. Since choices for different components are interre-
lated, by configuration rules, users are forced to go back and forth to different components.
In consequence, at each step of the configuration process, the generate solutions component
on the server side is requested.

13www.travelocitiy.com.
14www.audi.ch, in French, German or Italian.
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5.3.2 Stateless server vs stateful server

In Section 5.2.3, basic concepts about client-stateless-server and client-stateful-server ar-
chitectures were given. This section discusses the advantages and disadvantages of ar-
chitectures with stateless or stateful servers for electronic catalogs. As explained before,
there are mainly two kind of electronic catalogs in regard to the configuration process:
one-step and sequential processes. In the case of one step configuration, the data returned
by the server is a set of product configurations. In the case of sequential configuration,
the data returned is a set of choices for the requested component. Nevertheless, for the
following discussion, both type of processes are considered similar because they share the
same advantages and disadvantages.

5.3.2.1 Client-stateless-server

Client-stateless-server architectures for electronic catalogs imply the access to external or
internal databases, or other information systems, at each time the user is requesting more
product alternatives. In addition to that, the requests to the server side must contain the
information to know what solutions have already been shown (an index can be enough). In
the case that the user expresses preferences, information about such criteria must also be
included in each request to the server side. Clearly, the main disadvantage in such stateless
architectures is that, at each client request, the data sources must be accessed. In the
case that data is locally stored in the server’s computers, the response time for each user
interaction may be reasonable. But, if the data needed to process client requests is located
in remote systems (legacy systems, other information systems, or external databases),
stateless architectures often make the server response time unacceptable for interactive
electronic catalogs.

5.3.2.2 Client-stateful-server

The main advantage of stateful servers compared to stateless servers, is that the number
of accesses to information source systems can be reduced. All the product configurations
that fit the user’s request can be stored at the session in the server. In this manner,
only the main request of the user produces an access to the information data sources,
while next requests only access the information stored in the session state. This allows
to build electronic catalogs, with quick response times enabling the design of interactive
catalogs. The main drawback of such systems concerns scalability. Servers can easily
become overloaded by the necessity of keeping a session state for each individual user
accessing the catalog simultaneously. This is especially true if the sessions contain many
product configurations, or choices for each component, and hundreds or thousands of users
access the catalog simultaneously.

5.3.2.3 Trade-off between stateless-servers and stateful-servers

In Table 5.1, the main pros and cons for electronic catalogs in architectures with stateless
and stateful servers are summarized. Actually, the choice between stateful and stateless
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servers is a trade-off between scalability and efficiency, depending on the following factors:

• the number of users that may be accessing the catalog simultaneously.

• the complexity of the catalog in terms of number of choices for each component and
number of constraints relating components. There is a direct relation between the
complexity of the catalog and the complexity of the business logic to provide product
configurations satisfying the criteria of the users.

• response time of accessing data from information sources. The response time of
information sources strongly depends on where the information sources are located,
and the way they are connected to the system. Information sources located on the
server side can be accessed quicker than external information sources such as legacy
systems, information systems or external databases.

scalability efficiency
stateless server ✓ ✗

stateful server ✗ ✓

Table 5.1: Trade-off between efficiency and scalability regarding client-stateless-server and
client-stateful-server architectures for electronic catalogs.

5.4 The SmartClient architecture

SmartClient [238]15 architecture allows systems to have smart and thin clients, by marrying
the two following characteristics of constraint satisfaction techniques:

• Constraint satisfaction provides search algorithms which are both very simple and
compact to implement, and at the same time, implement complex behaviors with
reasonable efficiency, and

• Constraints allow representing complex information in a compact form.

As a result, basic SmartClient architecture configuration is based on two main novel-
ties [245]:

1. Constraint-based solving algorithms can easily be executed on the client side because
they implement complex behaviors while being compact.

2. Instead of transferring solutions (or choices) to the client side, SmartClient archi-
tecture sends entire problems to the client side. This implies to execute solving
algorithms on the client side.

15Republished in [239, 240].
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Several architecture configurations can derive from the SmartClient main concepts. In Sec-
tion 5.4.3, different architecture configurations following the SmartClient paradigm are
discussed. The basic SmartClient architecture configuration is explained in the following
subsections.

5.4.1 SmartClient main concepts

The basic SmartClient architecture configuration is shown in Figure 5.5. The client sends
a request containing the main user query to the server. The server accesses information
sources in order to generate the corresponding CSP taking into consideration the user
request. The CSP is then transfered to the client side. Before sending the CSP to the
client side, some preprocessing techniques for simplifying the CSP can be applied. Such
techniques are basically based on hard arc- and path-consistency algorithms for classical
CSPs (see Appendix B for details on preprocessing consistency algorithms for classical
CSPs). On the client side, compact solving constraint satisfaction algorithms are able
to solve the CSP and support the user in the purchase decision making process. In this
way, the user can browse through the different solutions by interacting with the client side
locally. The SmartClient architecture, in its basic configuration, can be summarized as
follows:

• Compiling CSPs on the server side: On the server side, the system compiles
all relevant data from information sources according to the user request into the
corresponding CSP. The way the server component compiles all the information into
a CSP, depends on how the catalog is modeled. Preprocessing constraint satisfaction
techniques can be applied in order to transform the CSP in a smaller and simpler
but equivalent problem. The CSP is then transferred to the client side.

• Solving CSPs on the client side: On the client side, the user is able to browse
through the solutions of the CSP, i.e., the products of the catalog. By means of
incremental constraint posting, as explained in Chapter 2, the user narrows down
the set of solutions according to his preferences.

5.4.2 Representing solution spaces

Compacting solution spaces is a key point for SmartClient technology where solutions
spaces are sent to the user’s computer. The issue of how CSPs can help compacting
solutions spaces is discussed in the following.

Combinatorial problems can have enormous number of solutions, arising though the
combinations of variable values. For a problem with n variables of uniform domain of size
d, there can be up to dn different solutions. A complete enumeration of all solutions would
require

n ·dn (5.1)
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Figure 5.5: Decision making process for configurable products in SmartClient architec-
tures. Most of the business logic is carried out on the client side, allowing the user to
benefit from having a mixed-interactive system as explained in Chapter 2.

units of storage. If variables are completely independent, the space can be represented as
a cross product of all their values. This representation would require only n · d units of
storage.

In most cases, however, the admissible combinations are restricted by constraints16.
In the worst case, a constraint can be stored as a list of all the admissible tuples. In such
a case, a k-ary constraint can require up to dk units of storage. In a CSP network with
n variables, the arity of its constraints are in the range [1, . . . ,n]. In other words, a CSP
with n variables can have constraints of arity 1,2, . . . ,n. There can be at most Cn

k k-arity
constraints, where Cn

k is the number of combinations without repetition of k elements out
of n. Thereby, there can be at most

Cn
k =

(
n
k

)
=

n!
(n− k)! · k! =

n · (n−1) · · ·(n− k+1)
k!

k-arity constraints in a problem with n variables. In consequence, storing the k-arity
16In our model, these constraints are the hard constraints, since soft constraints do not restrict the

admissible or feasible set of solutions. However, soft constraints must also be considered in regard to

storing requirements of a problem.
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constraints for a problem with n variables would require in the worst case

dk · n · (n−1) · · ·(n− k+1)
k!

units of memory. Since a problem with n variables can have constraints with arity 1,2, . . . ,n,
in the worst case storing a CSP with n variables would require:

n

∑
k=1

dk · n · (n−1) · · ·(n− k+1)
k!

(5.2)

units of storage. Clearly, Equation 5.2 can be bounded by the following expression:
n

∑
k=1

dk · n · (n−1) · · ·(n− k+1)
k!

≤
n

∑
k=1

dk · n
k

k!
≤ n ·dk · n

k

k!
=

dk ·nk+1

k!

If k is relatively small with respect to n, comparing Equation 5.2 and Equation 5.1 would
imply:

dk ·nk+1

k!
� n ·dn

Actually, if k is relatively small with respect to n, storing a CSP with n variables (Equa-
tion 5.2) is exponentially better than storing all admissible combinations (Equation 5.1).

Note that, on one hand, many problems can be formulated as binary CSPs, and on
the other hand, any non-binary CSPs can be theoretically transformed into binary CSPs
in polynomial time. In the case of a binary CSP (k = 2), with n variables (usually n� k),
storing the constraint graph instead of an enumeration of all solutions is dramatically
better:

d ·n+
d2(n2−n)

2
� n ·dn

5.4.3 SmartClient architecture configurations

Up to this point, the basic SmartClient architecture has been described, however, different
architecture configurations can be considered. SmartClient architecture configurations
depend on the type of the client present in the system:

• Stand-alone application clients: are implemented as stand-alone applications.
Stand-alone application clients receive problem-related data sent by the server through
a network. Examples of this type of client are any program that can be executed in
the client’s machine.

• Remote application clients: capable of executing transferred code. Remote ap-
plication client components are able to execute code which is sent by the server
through a network. The executable code is not stored locally in the client’s machine,
but sent through a network. For example, clients with java run-time environments,
where applets17 contain the code to be executed. Note that applets can be executed

17http://java.sun.com/applets: An applet is a program written in the Java programming language

that can be included in an HTML page. When using a Java technology-enabled browser to view a page

that contains an applet, the applet’s code is transferred to your system and executed by the browser’s Java

Virtual Machine (JVM).
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in several devices such as personal computers, java phones and PDAs. Other tech-
nologies that enable these kind of clients are browser plug-ins, or specific scripting
languages for browsers, such as ActiveX18, JavaScript19, or Windows Script20.

• Front-end clients: capable of displaying information. Front-end client components
are only capable of displaying information sent by the server through the computer
network. Example of such clients are typically WWW21 browsers in personal com-
puters, or WAP22 browsers in mobile devices such as mobile phones and PDAs.

Table 5.2 shows different configurations of the SmartClient. Basically, these configu-
rations derive from considering a specific type of client. Note that the configuration with
an application client is the configuration called basic through this chapter.

client type server transmission server type num., size requests

stand-alone problem data (CSP) stateless 1, medium
remote problem data (CSP) + code stateless 1, medium-large
front-end subset of solutions stateful/stateless n, small

Table 5.2: SmartClient architecture configurations derived from considering different types
of clients.

In the following subsections the aforementioned SmartClient architecture configura-
tions are analyzed by identifying their main usages, advantages and disadvantages.

5.4.3.1 Stand-alone application clients

The SmartClient architecture configuration with application clients is considered the basic
SmartClient configuration.

Usages: Users willing to access electronic catalogs implemented in SmartClient archi-
tectures with application clients, must install the application in their device, usually a
personal computer. Therefore, the usage of this SmartClient configuration is targeted to
users that need to access the catalog often. Sporadic users would not be interested in such
SmartClient architecture configuration.

Advantages: This configuration is the most scalable among the other possible configu-
rations because:

18http://msdn.microsoft.com: ActiveX is a set of technologies that enable software components to

interact with one another in a networked environment.
19http://wp.netscape.com: JavaScript is Netscape’s cross-platform, object-based scripting language for

client and server applications.
20http://msdn.microsoft.com: Windows Script provides two script engines, Visual Basic Scripting

Edition and Microsoft JScript, which can be embedded into Windows Applications.
21WWW stands for the World Wide Web.
22WAP stands for Wireless Application Protocol.
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• mostly all the business logic of the system is carried out by the client side, and

• the transmission between the server side and the client side is minimized.

In regard to the user, the main advantage is that the application client would only
access the server side only once for getting the CSP. Once the CSP is transferred onto the
client side, the user can interact with the application in an interactive process, without
any delay. If, however, the main request of the user is very vague, the response time of
the server can be long since it must collect all the information related to the user’s query.

Disadvantages: The main disadvantage of this approach is that users must install an
application. Therefore, sporadic users may dislike this architecture configuration.

Another inconvenience of this SmartClient architecture configuration is that sending
the CSP can be time and bandwidth consuming, depending on the CSP size. However,
this is the key for only accessing the server side once, as explained above.

5.4.3.2 Remote application clients

This SmartClient architecture configuration differs from the basic one (stand-alone ap-
plication clients) in the transmission between the server side and the client side. In this
configuration, the server side sends the CSP and the code to solve it. Therefore, this con-
figuration can be seen as a slightly adapted version of the basic SmartClient architecture
configuration.

Usages: SmartClient architectures with remote application clients are targeted to users
that require intelligent tools for supporting the purchase decision making process without
installing any software. Thus, it is a convenient SmartClient configuration for sporadic
users that still require to be supported in the selection decision making process.

Advantages: This configuration also benefits from the fact that mostly all the business
logic is processed on the client side. Nonetheless, the transmission between the server side
and the client side is more important than in stand-alone application clients, since the code
is also transmitted apart from the data of the problem. Therefore, this configuration is
also highly scalable, but not at the same level as the basic configuration (with application
clients).

Disadvantages: Within this configuration, users must have a device capable of execut-
ing the code sent by the server. Moreover, bearing in mind that,

1. Internet is a very general-purpose network, and

2. nearly all electronic catalogs are designed for being used on the Internet,

the requirement of having specific device capabilities can be a drawback for many users.
Obviously, a drawback of this configuration is that the code to be executed on the client

side is sent by the server side every time a user wants to access the electronic catalog.
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5.4.3.3 Front-end clients

SmartClient architecture with front-end clients can be considered as a compromise between
standard catalog architectures and the benefits of using constraint satisfaction techniques.
Within this configuration, all the business logic is located on the server side, while the
client side is only used to display the information provided by the server component.

Usages: SmartClient architectures with front-end clients are convenient for providing
intelligent tools without the requirements of the above configurations, namely:

• installing a stand-alone application (basic SmartClient configuration), and

• the client device must be able to execute the code sent by the server component.

This configuration is the most convenient for catalogs that must be accessed by many
users with minimal requirements, e.g., a standard web browser. This SmartClient variant
is also indicated for devices with low computing and memory capacities, such as mobile
phones or PDAs.

Advantages: The main advantage of such configuration with front-end clients is the
universality of the whole system, since it is similar to the standard existing architectures
for electronic catalogs. Thus, it does not demand any special requirements for users.

Disadvantages: As discussed in Section 5.3, executing complex business logic on the
server side directly affects the scalability of the whole system. In this configuration the
whole business logic is executed on the server side. Thus, when supporting hundreds
or thousands of users accessing the system simultaneously, the server component could
become overloaded decreasing its efficiency. However, since constraint-based solving is
only executed when users enter or modify a preference, the processing only happens in
small fractions of time. Most of the time, users are just evaluating the product proposed
by the system.

Stateless-servers vs stateful-servers: This configuration accepts stateless-servers and
stateful-servers. Basically, the advantages and disadvantages when analyzing both type
of servers for SmartClient architectures are the same as those explained in Section 5.3.2.
Nevertheless, some specific considerations must be made.

Stateless-servers imply to access the information sources and build the CSP each time
the user criticizes the solutions in order to narrow down the proposed set of solutions
according to his preferences. The required time to access the information, build the cor-
responding CSP, and solve it, may produce a system very tedious to use.

On the other hand, stateful-servers can keep the corresponding CSP for each user in
the session state. In that way, the interaction between the client side and the server side
can be dramatically improved. However, session states containing the whole CSP for each
user may produce a low scalable system.
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An important consideration about this SmartClient configuration in terms of scalability
must be done. Usually, scalability problems are due to memory usage on the server side,
and are not related to processing power limitations. Thus, it is worth to note that the
memory required by constraint satisfaction techniques is not very significant, and during
the CSP solving, the memroy requirement is bounded by the number of variables and the
number of solutions to be computed. Memory requirement for constraint-based solving is
only linear with respect to the number of variables in the problem.

5.5 The scalability of the SmartClient concept

The scalability of any client-server architecture strongly depends on two factors: a) the
number of transfers between the client and the server, and b) the size of such data trans-
fers. Let us consider an example in the travel domain to illustrate the scalability of the
SmartClient concept. As we stated several times in this document, our work basically
approaches complex problems such as travel planning. The travel problem to be considred
is the following:

I live in Bern, Switzerland, and would like to visit colleagues in Princeton (New
Jersey), and London. I would like to spend at least two days in each place,
and will need to travel in the first two weeks of February.

Since I live in Bern, I can leave from any of three Swiss airports (Zurich, Basel,
Geneva, abbreviated as ZRH, BSL, GVA). Also, for Princeton I can fly to two New York

airports (JFK, EWR) or to Philadelphia (PHL), and there are three airports in London

to consider (LGW, LHR, LCY). Finding the best plan for my trip involves checking all com-
binations of flights between these airports on the dates which are specified in the main
query. Thus, a system considering all the possibilities from the example described above
will access the flight information for the initial query as follows:

1. 1st leg from Bern to Princeton: flights from ZRH/BSL/GVA to JFK/EWR/PHL on the
dates from 1st to 10th February,

2. 2nd leg from Princeton to London: flights from JFK/EWR/PHL to LGW/LHR/LCY on the
dates from 4th to 12th February, and

3. 3rd leg from London to Bern: flights from LGW/LHR/LCY to ZRH/BSL/GVA on the dates
from 6st to 14th February.

Considering only direct flights, there are in fact more than 4 million solutions for this
problem arising from all the possible combinations of the flights for each leg.

Let us analyze these two questions in traditional flight information systems and in
a SmartClient system. In Table 5.3 we show the approximated answers to the example
described above using conventional approach versus the basic SmartClient configuration
architecture.
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Conventional approach SmartClient approach
Server access 447,039 1
Size of 1 transfer 60Kb 500 Kb
Size of total transfers 26.82 Gb 500 Kb

Table 5.3: Conventional approach vs. SmartClient approach. The data of the table is
calculated considering that the user is interested in all possible combinations of flights
that match the initial query of the example mentioned before.

5.5.1 Conventional approach

Let us consider planning such a trip using the systems currently available on the WWW.
One type of system, most commonly offered by airlines themselves, simply allows the user
to inspect flights or connections for one particular leg at a time. On a multi-leg trip such
as this one, this would require the customer to carefully note down all solutions for the
different legs and finally put together a solution by hand - not a very satisfactory way of
planning such a trip.

Fortunately, tools such as Travelocity23 allow us to configure multi-leg trips. Complete
itineraries are constructed on the server and returned to the customer for selection. In
an example as the one given above, we could in principle browse through all the 4 million
possible solutions, evaluating each manually as to whether it satisfies our constraints.
Considering that solutions are displayed in web pages with about 10 solutions at a time,
this would involve an enormous number of transfers. Each web page sent back has about
60 Kbytes, so in total we need to transfer (and look at) about 24 Gbytes (4∗106/10∗60
Kbytes) of information to see the complete solution space.

However, a smart user can save some time by exploiting regularities of the domain,
such as the fact that most flights operate daily and usually have space available. But this
means precisely that the tool is not very intelligent: it still requires the customer to do
most of the work.

5.5.2 Basic SmartClient configuration

SmartClient concept offers the possibility to support the customer’s decision-making pro-
cess with an intelligent scratchpad. In contrast to conventional tools, it can keep track
of all options and choices and avoid having to reload information which had already been
requested earlier.

First of all, the customer specifies initial constraints about the trip: the departure and
arrival airports, departure dates, and some general preferences. The SmartClient server
then collects information about all flights which could be part of a solution in one single
server access. Since the information is encoded as a CSP, it only needs to record the sum of
the information for each possible flight, not all their combinations. In this example, there
are 795 possible flights, each of which is encoded in a text line containing no more than 80

23http://www.travelocity.com
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bytes. Thus, the entire CSP takes up no more than 63 Kbytes (795∗80 bytes). Considering
that the size of an average response page from a conventional server such as Travelocity
is already 60 Kbytes, this is not a particularly large agent. It can be transmitted through
the Internet in less than 1 minute through a standard modem. However, the price to pay
is to solve the CSP on the client side. The CSP in the SmartClient implicitly contains all
4,470,396 possible solutions. Because it runs locally on the customer’s computer, the best
combinations can be searched using the techniques described in Chapter 4.

5.6 Summary

This chapter has briefly reviewed the main notions related to the design of software archi-
tectures.

Standard currently used architectures for implementing electronic catalogs have been
described. Two different methodologies for configuring products have been reviewed and
compared, namely: one-step and sequential configuration. From the architectural point
of view, client-stateless-server and client-stateful-server architectures have been described,
both for one-step and sequential configuration processes.

The basic SmartClient architecture configuration has been presented. It is primarily
based on two concepts:

• dealing with search spaces (problems) instead of individual solutions, and

• executing constraint satisfaction problems on the client side.

Finally, different SmartClient architecture configurations have been considered and
analyzed by identifying their typical usages, advantages and disadvantages.



Chapter 6

The Travel Planning Problem

Ab uno disce omnes. From one example, learn about all.

Virgil, Aeneid 2. 1-200, 70-19 B.C.

6.1 Motivation

Nowadays, travel planning is one of the most complex task that one can face by using
Internet-based electronic catalogs. In that sense, Bill Gates reportedly once said that
Microsoft started Expedia1 because no other industry was as complex as travel, with so
much constantly changing electronic information and consumers who wanted to become
personally involved in the reservation booking process.

In general, electronic catalogs for planning travels imply to plan a set of services
together such as flights, hotels and cars. Designing electronic catalogs for supporting the
user to find his best travel configuration implies to deal with:

• information provided by external information sources,

• configuration constraints, and

• complex user’s preferences and optimization constraints.

Thereby, catalogs for supporting users to plan travels, perfectly suit as an example for
illustrating this thesis work.

6.2 The traditional travel industry

According to the Travel Industry Association of America2, tourism generated over USD 580
billion in total expenditures in 2001. Every second in the United Sates, USD 18,500 is
spent by resident and international tourists on travel and tourism. These figures rank the
travel industry as the third-largest retail sales industry in the United States. Consequently,
travel industry has an enormous business potential in the area of electronic commerce.

1http://www.expedia.com.
2Travel Industry Association of America (TIA): http://www.tia.org.
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It is widely accepted by the travel industry itself, that a key factor that produced an
enormous growing of the travel business was the deregulation of the airline companies.
In the United States, deregulation of the airline business was pushed by Jimmy Carter
in 1978. In Europe, deregulation of the airline business was put into effect in 1993 by
the European Commission. Airline business deregulation has produced the liberalization
impact on the travel industry, producing a larger, more accessible and more affordable
industry.

6.2.1 Travel supply chain

The travel supply chain can be seen as a sequence where stakeholders take part in travel
product sales, namely:

Providers: companies offering travel products and services such as airlines, hotels, and
transportation companies in general.

Distributors: technology companies that consolidated supplier information, inventory
and pricing data, and provided a way to electronically search, book and issue tickets
and documents. These companies are called GDSs (Global Distribution Systems).

Travel agents: companies that intermediate between providers and customers, usually
through distributors. They support the user by providing shopping guidance and
personalized advice through the whole travel purchase process. They can offer their
services both to business and leisure consumers.

Credit card companies: make purchase activities more convenient and secure for cus-
tomers.

Travelers: are the end users of the whole travel supply chain, i.e., the travel customers.
They can be leisure travelers or business travelers, with different specific require-
ments.

Global Distribution Systems are a key factor when considering to build electronic cat-
alogs for planning travels, since the product information comes from such legacy systems.
In the following section, the history and main functionality of GDSs is briefly summarized
(see [110] for more details and significant references).

6.2.2 Global Distribution Systems (GDS)

The origin of the Global Distribution Systems (GDS) is located in 1964, when American
Airlines launched its Airline Reservation System (ARS), called Sabre3, with the ability of
keeping inventory data in real time, accessible to agents around the world. In 1964, Sabre
ran on two IBM 7010, and was able to process 84,000 telephone calls per day. For the first
time, agent travelers were able to call Sabre offices and get quick responses on availability

3Sabre: Semi-automated Business Research Environment, http://www.sabre.com.
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and prices. Prior to this, manual systems required centralized reservation offices, groups
of human beings in a room with physical cards in rotating trays with information about
seats on airplanes.

After launching Sabre, other airlines followed with their own proprietary ARS. Quickly,
a network concept involving several ARSs and travel agents emerged. The idea was to
place the reservation technology for all airlines to travel agents’ desktops. This is the
origin of the Centralized Reservation Systems (CRS). In 1976, United Airlines began
installing its own CRS, called Apollo4, in travel agencies, and American Airlines soon
followed this idea. Obviously, a first consequence for airlines following this strategy was
to save important costs, by reducing the needed resources in the direct sales call-centers.
The success of the ARS and CRS was evident. Within the next 10 years, European
and Asiatic airlines began developing their own CRSs. By the mid-to-late 1990s, the
major CRSs essentially became GDSs that travel agents used to check real-time flight
schedules, seat availability and pricing information, make bookings and issue tickets. GDSs
were incrementally incorporating other service providers such as cruise operators, hotels,
railway companies and car rental companies. On the other hand, GDSs functionalities have
became more reach, allowing for example to take into consideration special meal requests,
managing seat allocation and performing back-office accounting for travel agents. By the
mid-1990s, there were about a dozen major GDSs worldwide (the current ones). The airline
reservation technology evolution, from ARSs to GDSs, can be summarized as follows:

ARS, 1964 =⇒ CRS, 1976 =⇒ GDS, 1995

Table 6.1 shows the GDSs in late 1990s, by regions, with the corresponding implied air-
line companies and their market share. Currently, GDSs mainly provide four functional
components, namely:

1. Inventory management and display components collect inventory (flight seats,
hotel rooms, cars, and so forth) of providers, and display the requested information
to travel agents in specialized computers. Such special travel agents computers and
software are able to show ordered lists of products. Thus, the GDS algorithms that
provide these ordered lists have a great impact on the purchase decision of users. It
has been shown that 90% of flight bookings are made using flights that appear on
the first screen of flights. In consequence, GDSs display information algorithms have
a relevant impact on the travel business.

2. Pricing and fare search engines basically compute a fare upon an itinerary re-
quest taking into account sophisticated pricing rules. Such rules determine prices
depending on constraints on routings, stop-overs, advanced purchases, length of stay,
season periods, stays over a weekend and so on.

3. Ticketing generators components allow travel agencies to produce physical or
electronic tickets.

4Later, it became Galileo http://www.galileo.com.
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Region GDS
Market
Share

Owner Airlines

North America

Sabre
Worldspan
SystemOne
Gemini

22%
10%
N/A
N/A

American
Delta, Northwest, TWA
Continental
AirCanada, Canadian

North America
Europe

Galileo
International

22%

United, USAir, British Air-
ways, SwissAir, KLM, Ali-
talia, Olympic, Air Canada,
Aer Lingus, Austrian, Air Por-
tugal

Europe Amadeus 27%
AirFrance, Lufthansa, SAS,
Iberia

Asia-Pacific

Abacus

9%

Cathay Pacific, Singapore,
Malasya, Philipine, Royal
Brunei, China Airlines

Infiny All Nipon
Axes Japan Airlines
Topas Korean Airlines
Southern Cross Australian, Ansett Airlines
Fantasia Quantas Airlines

Table 6.1: GDS markets in late 1990s (from [110]). Market share numbers do not equal
100% because not all systems were evaluated.

4. Database reporting engines serve both travel agencies and airline companies in
several ways: reporting statistics on finances and accounting, facilitating trend anal-
ysis, or passenger searches.

In Figure 6.1, the travel industry supply chain is shown, from the distribution systems to
the end user. The user can interact with physical booking engines or with online booking
engines. Services offered by physical booking engines are either direct, e.g., airline ticket
office and phone booking, or assisted, e.g., travel agent and travel managers. On the
other hand, online booking services are either offered directly, e.g., provider’s website, or
assisted, e.g., travel agent electronic catalog.

6.3 The internet travel industry

Travel industry was one of the earliest to go online, mainly because its enormous business
potential and its maturity in technology systems for providing travel information to the
travel agents through electronic means. Electronic commerce for travel, also called e-travel
or Internet travel, emerged in 1996. From then, thousands of sites offering travel products
and services have arose. These travel web sites can be classified in two main types:

• Service providers: such as airlines, hotels and rental cars companies which develop
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Figure 6.1: The travel industry supply chain (from [110]). Users purchase travel products
offered by suppliers through the services managed by physical or online booking processes.
Distribution systems provide the required travel data to physical or online booking services.

and operate websites that sell directly their products to the end users, i.e., potential
customers. Almost every airline is currently offering such online services.

• Internet travel agencies: offer at least the same kind of services as traditional
travel agencies, i.e., travel booking assistance. On top of that, web-based travel
agencies are able to offer some additional services, such as real-time weather infor-
mation, online currency exchange, and so forth. Nevertheless, standard Internet
travel agencies often lack the quality of support provided by traditional travel agen-
cies. Some examples of the most successful and advanced Internet travel agencies
are: Expedia5, Travelocity6, and Orbitz7.

The goal of electronic catalogs for the travel industry is to provide similar services
as those offered by traditional travel agents, under electronic means. In other words,
electronic catalogs for travel would replace traditional travel agencies by offering similar
services under possibly better conditions. These better conditions are basically those that
one can find in any electronic commerce activity:

• 7/7, 24/24 available services,

• accessing the services from home or work,

• advantageous prices (less costs than traditional industries),

Internet travel agencies use the GDSs to acquire the travel product data, while service
providers usually access directly their own proprietary CRSs.

5http://www.expedia.com.
6http://www.travelocity.com.
7http://www.orbitz.com.
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6.3.1 Main GDS/CRS functionalities

Every GDS or CRS offer a set of requests with their own specificities, however, three main
requests are commonly implemented. In this section, brief descriptions of these main
GDS/CRS functionalities8, which are required for travel planning, are given together with
some illustrating examples. The examples are given in a very simplified form and all the
used codes are the official IATA9 codes. In the rest of the chapter, the three requests will
be considered uniform across the different GDS or CRS. Examples are retrieved from the
Functional Description of the services provided by Galileo International [83, 84].

6.3.1.1 AirAvailability request

Given a pair of locations A and B, and a date d, AirAvailability request returns a list
of sets of flights to go from A to B on date d. Note that a set of flights for going from A to
B can contain only one (direct) flight or several flights (including intermediate airports).
In Table 6.2, an AirAvailability request is shown from going from LON (London) to RIO

(Rio de Janeiro). In London, several airports exist (LHR, LGW, LCY), thus the GDS may
contain in its response any of these three airports in London. In this example IATA codes
returned by Galileo GDS are used10.

Dep Arr DepDate

LON RIO 19/10/2002

Table 6.2: GDS AirAvailability request example: from London to Rio de Janeiro on
the 19/10/2002.

In Table 6.3, only three sets of flights are shown. The first is a direct flight, while
the two others are combination of flights with intermediate airports in Amsterdam and
Frankfurt.

Note that in the example of Table 6.3, all the flights have 0 stops. An example of a
flight with one stop, would be a flight from Geneva to Sydney stopping at Melbourne.
Such a flight is a direct flight, however, it includes an (technical) stop to Melbourne.
These stops are not intermediate locations, because there is no change of aircraft, it is just
a technical stop.

Several attributes returned by AirAvailability request are omitted in Table 6.3 to
ease the explanation. Missing attributes are for instance, the flight number, operating
carrier (which can be different to the carrier of the flight), available booking classes for

8Other functionalities such as booking, statistic reporting or payment are not considered because they

are out of the scope of this thesis. Functionalities for supporting car rental and hotel bookings are also

offered by GDSs and CRSs.
9IATA (International Air Transportation Association) is an international association which monitors

and regulates many aspects of the airline industry including standards and industry cooperation.
10LHR → London Heathrow International Airport, LCY → London City Airport, LGW → London Gatwick

Airport, GIG → Antonio Carlos Jobim International Airport, AMS → Amsterdam Schiphol Airport, FRA →
Frankfurt Airport, RG → Varig Brasil Airline, KL → Royal Dutch Airlines.
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Dep Arr DepDate DepTime ArrTime Carrier Aircraft Stops Availability

LHR GIG 19/10/2002 22:00 06:30 RG M11 0 F,C,Y
· · ·

LHR AMS 19/10/2002 06:50 09:05 KL 737 0 C,Y
AMS GIG 19/10/2002 10:25 17:05 KL 74M 0 F,C,Y

· · ·
LGW FRA 19/10/2002 19:00 21:30 LH 310 0 C,Y
FRA GIG 19/10/2002 22:20 06:15 LH 340 0 F,C,Y

Table 6.3: GDS AirAvailability response example: from London to Rio de Janeiro on
the 19/10/2002.

each class of services (Y: economy, C: business , F: first), animal transportation allowed
flag, passenger nationality restrictions, special meals, smoking allowed flag, and so forth.

6.3.1.2 PriceItinerary request

The PriceItinerary request is specified by a sequence of flights and a booking class, and
returns an applicable fare accordingly. The response includes many information about
different prices for types of travelers (infants, military, adult, senior citizen), last date to
purchase the ticket, airport taxes, and so on.

6.3.1.3 BestBuy request

The BestBuy request is defined by a sequence of locations with departure dates, and
returns priced sequence of flights. Unfortunately, this request is very limited, i.e., it only
works for one-way and round-trips and economy class or special offers.

GDS requests may be really complex with many details. Since GDSs are legacy systems
primarily used by human travel agents, many of the electronic functionalities are not
really adapted for electronic commerce. Nonetheless, these last years, GDSs are making
considerable efforts to provide interfaces to their legacy systems which are becoming more
and more suitable for e-commerce.

6.3.2 Standard Internet travel planning systems

In general, one could say that standard electronic catalogs for planning travels are simply
implemented as interfaces to GDSs or CRSs. In regard to the mechanisms that GDSs
and CRSs offer (see Section 6.3.1) to plan a trip, in general, two different processes are
implemented:

1. Standard planning process is carried out with two basic GDS requests, namely:
AirAvailability and PriceItinerary.
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2. BestBuy11 planning process is carried out with the BestBuy GDS request.

It is worth noting that the aforementioned processes to configure a trip fit well into
the classification made in Chapter 5, Section 5.3.1, in the following manner:

Standard travel planning =⇒ sequential configuration
BestBuy travel planning =⇒ one-step configuration

Standard and BestBuy planning strategies share all the advantages and disadvantages
of sequential and one-step configuration process for electronic catalogs (see Section 5.3.1
for more details about these configuration process variants). In the following section,
one-step and sequential configurators for planning travel are briefly commented.

6.3.2.1 One-step configuration

In one-step configuration process, the user directly gets configured products. In travel
planning, this means that the traveler evaluates complete itinerary solutions. In standard
travel planners, this is achieved by using the BestBuy request. Unfortunately, BestBuy
request only gives few very simple itineraries with economy class and special offers. This
approach can only be taken for one-leg trips and round-trips.

6.3.2.2 Sequential configuration

Sequential configurators are also available in standard travel planning systems. This model
is more flexible allowing complex itineraries. The user has to select one option for each part
of the itinerary, i.e., for each leg. Options for a leg are given by means of AirAvailability
requests. Each time that the user selects an option, the system restricts the options for the
next leg according to configuration rules and optimization criteria which are implemented
by GDSs. At the end, once all the legs are selected with an option, the system is able to
price the itinerary with a PriceItinerary request.

Actually, using our approach it is possible to use AirAvailability and BestBuy requests
into a one-step configuration process. The model allowing to use both requests together
is discussed in Section 6.5.6.

As it has been shown in previous sections, standard processes to plan (configure) trips
on the web are not fully supporting the user in his purchase decision-making process. The
user has still to do almost all the work for analyzing the proposed flights, and selecting
the preferred options according to his personal criteria. Next sections illustrate how to
model the problem of planning travels within the framework described in Chapter 3. Such
problem modeling enables to apply the all the concepts described in previous chapters.

11BestBuy is the accepted terminology in the travel industry for this functionality.
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6.4 The problem of planning travels

The problem of configuring a trip can be roughly stated as finding a combination of
transport means to go to a collection of locations on certain dates. In the following, only
the air travel is considered as a mean of transport, however, other means of transports
such as rental cars, trains and buses could be considered in the same model without major
modifications. Hotel booking and other travel services may also be considered.

At a first glance, the problem of planning air travel for a given itinerary des not seem
to be a very complex problem. Nevertheless, the problem of finding flight combinations
for traveling to a collection of n locations has a combinatorial explosion, as roughly shown
in Figure 6.2. This combinatorial explosion comes from the possible flight combinations
to travel to the n locations. Suppose a user residing in Geneva wants to go to London,
New York, and then back. The sequence:

Geneva → London, on December 10th 2002
London → New York, on December 15th 2002
New York → Zürich, on December 19th 2002

is called an itinerary. Assuming that 20 different flights exist for each pair of locations, the
whole search space of the itinerary is 203 = 8,000. Actually, an AirAvailability GDS
request usually returns about 60 different flights for a pair of locations on a given date,
thus the whole search space of the above example would be then 603 = 216,000 potential
solutions. The combinatorial explosion of an flight planning problem becomes much more
important when considering several locations and several dates for each segment of the
trip, for example, the following itinerary

Geneva or Zürich → London, on December 10/11th 2002
London → New York, on December 15/16/17th 2002
New York → Geneva or Zürich, on December 19/20th 2002

defines a search space of (60∗4)∗(60∗3)∗(60∗4) = 10,368,000 possible flight combinations.

6.4.1 Statement and definitions

An itinerary defines a trip between a start location and an end location where some
intermediate locations are visited as well. A set of dates are associated to each pair of
consecutive locations, defining the dates where the user wants to travel. A location is either
an airport or a city. A city can include several airports, e.g., New York City includes three
airports: JFK12, LGA13, and EWR14.

An itinerary is composed of an ordered collection of legs, e.g., Geneva → London on
December 10th 2002. A leg is specified by a departure and arrival locations, and a set of

12IATA code for the John F. Kennedy International Airport.
13IATA code for the La Guardia Airport.
14IATA code for the Newark Liberty International Airport.
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Figure 6.2: Combinatorial explosion in travel planning.

dates. The departure location corresponds to the start or an intermediate location of the
itinerary, whereas the arrival location is an intermediate or end location. The set of dates
associated to a leg defines the possible dates where the leg can take place. Tow legs are
called consecutive if they directly follow each other, i.e., there is no other leg in between.
Note that two consecutive legs may not share a same intermediate location, that is, the
arrival location of a leg may not be the same as the departure location of the following
leg.

A leg is composed of one or several flights. If a leg is composed of several flights, the
traveler is forced to change planes at transit locations (airports). The number of transits
of a leg is the number of times the traveler must change flights on the leg, and corresponds
to the number of flights minus one.

A flight may include several stops between the departure and arrival location. During a
stop, the traveler does not need to change planes and generally stays in the plane (technical
stops).

These concepts can be formally defined as follows. Note that, locations (airports or
cities), carriers and aircraft types are specified by the standardized codes proposed by
IATA.

Definition 6.1 (Flight) A flight is defined by:

• depLoc is the departing location of the flight,

• arrLoc is the arriving location of the flight,

• depDate is the departure date of the flight,

• depTime is the departure time in depLoc local time of the flight,

• arrTime is the arrival time in arrLoc local time of the flight,

• numStops is the number of stops of the flight,
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• carrier is the carrier that operates the flight,

• flightNum is the flight number of the flight, and

• availability specifies what classes of services are available for the flight. There
are three classes of services: economy, business and first (not available for European
flights). Within each class of service, different booking classes exist depending on
fare conditions such as the possibility of rebooking, special offers, weekend rules and
so on. Actually, availability gives the available seats on each booking class.

Given a flight f, their attributes will be denoted as f.attribute. For example, f.arrTime
denotes the arrival time of the flight f.

Definition 6.2 (Flight Sequence) A flight sequence is an ordered collection of m flights
{f1, . . . ,fm} from a departure location departureLoc to an arrival location arrivalLoc

on a certain departure date departureDate, where:

• f1.depDate = departureDate,

• f1.depLoc = departureLocation,

• fm.arrLoc = arrivalLocation,

• fi.arrLoc = fi+1.depLoc, and

• (fi.arrDate = fi+1.depDate and fi.arrTime <b fi+1.depTime) or

(fi.arrDate <b fi+1.depDate).

The operator <b denotes the precedence of times and dates, i.e., t1 <b t2 means that t1
is before t2. The notation for the attributes of a flight sequence is similar to the one for
flights, for instance fs.departureLoc denotes the departure location of fs.

In other words, a flight sequence is a collection of consecutive flights going from a
location to another where the first flight departs on a specified date. Two consecutive
flights are linked by the same airport, i.e., a connection or transit airport.

Definition 6.3 (Itinerary Problem) An itinerary problem is specified by an ordered
collection of n legs {leg1, leg2, . . . , legn}. A legi is composed by:

• a set of departure locations DLi = {dl1, . . . ,dlk},

• a set of arrival locations ALi = {al1, . . . ,all},

• a set of departure dates DDi = {d1, . . . ,dm}, and

• a set of flight sequences flightSeqsi = {fsi,1, . . . ,fsi,p}, where ∀ j ,1≤ j ≤ p:

– fsi, j.departureLoc ∈ DLi,

– fsi, j.arrivalLoc ∈ ALi, and
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– fsi, j.departureDate ∈ DDi.

Note that since the legs of an itinerary are ordered, the following property must hold:

∀1≤ i < n,∀dk ∈ DDi, ∃dl ∈ DDi+1 such that dk ≤b dl

Two consecutive legs can depart on the same date, but the predecessor leg can never leave
after the departure date of the following leg.

Definition 6.4 (Itinerary Specification) An itinerary specification is an itinerary prob-
lem without the flight sequences, and it corresponds to the user request.

Definition 6.5 (Itinerary Solution) A solution to a given itinerary with n legs is a
collection of n flight sequences solFlightSeq {sol-fs1, . . . ,sol-fsn}, where sol-fsi ∈
flightSeqsi and

∀1≤ i < n, lastFlight(sol-fsi) <b firstFlight(sol-fsi+1)

where fi <b f j means that
(fi.arrDate = f j.depDate and fi.arrTime <b f j.depTime) or
(fi.arrDate <b f j.depDate)

Example 6.1 illustrates the above definitions with a concrete scenario.

Example 6.1: Itinerary and itinerary solution.
Considering the following itinerary specification:

Geneva or Zürich → London, on December 10/11th 2002
London → New York, on December 15/16/17th 2002
New York → Geneva or Zürich, on December 16/17th 2002

its itinerary problem definition includes 3 legs:

• leg1

– DLi = {GVA,ZRH},
– ALi = {LON},
– DDi = {12/10/2002,12/11/2002}
– flightSeqs1 = {fs1,1,fs1,2,fs1,3,fs1,4, . . .}, where

∗ fs1,1 = {[GVA,LGW,12/10/2002,07:10,07:55,BA,A320,0,{C,Y}]}
∗ fs1,2 = {[GVA,LCY,12/11/2002,11:05,11:45,LX,A320,0,{C,Y}]}
∗ fs1,3 = {[GVA,CDG,12/11/2002,09:00,09:45,AF,A320,0,{Y}],

[CDG,LHR,12/11/2002,10:00,12:15,AF,A320,0,{C,Y}]}
∗ fs1,4 = {[ZRH,BSL,12/10/2002,06:00,06:25,LX,A320,0,{Y,C}],

[BSL,LCY,12/10/2002,06:50,08:10,LX,A320,0,{C}]}
...
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• leg2

– DLi = {LON},
– ALi = {NYC},
– DDi = {12/15/2002,12/16/2002,12/17/2002},
– flightSeqs2 = {fs2,1,fs2,2,fs2,3, . . .}, where

∗ fs2,1 = {[LHR,EWR,12/16/2002,12:50,04:15,AA,A340,0,{F,C,Y}]}
∗ fs2,2 = {[LHR,JFK,12/15/2002,13:20,04:10,UA,A340,0,{F,C}]}
∗ fs2,3 = {[LHR,AMS,12/17/2002,06:25,07:25,DL,A320,0,{Y,C}],

[AMS,JFK,12/17/2002,07:50,13:15,DL,A320,0,{F,C}]}
...

• leg3

– DLi = {NYC},
– ALi = {GVA,ZRH},
– DDi = {12/16/2002,12/17/2002},
– flightSeqs3 = {fs3,1,fs3,2,fs3,3, . . .}, where

∗ fs3,1 = {[EWR,GVA,12/16/2002,21:25,14:10+1 day,BA,A340,0,{F,C,Y}]}
∗ fs3,2 = {[JFK,ZRH,12/17/2002,18:10,07:50+1 day,AA,A340,0,{C,Y}]}
∗ fs3,3 = {[JFK,LHR,12/17/2002,21:10,13:00+1 day,DL,A320,0,{Y,C}],

[LHR,ZRH,12/18/2002,13:30,14:10,DL,A320,0,{F,C}]}
...

A solution to this itinerary problem could be, for example {fs1,2,fs2,1,fs3,1}, but the set
{fs1,2,fs2,3,fs3,1} is not a solution to the problem since the flight sequences {fs2,3,fs3,1}
are not compatible: the last flight of fs2,3 arrives to NYC before the first flight of fs3,1

departs from NYC.

6.5 Modeling the travel problem as a CSP

As indicated in Section 3.3, modeling an electronic catalog for a concrete user request
implies to identify the variables with their domains, and the constraints among them.
In this section, the process of modeling the travel planning problem with the framework
proposed in Chapter 3 is detailed.

6.5.1 Variables and values

An itinerary specification (user request) determines the variables of the problem. Each
leg of the itinerary specification corresponds to one variable. The variable associated to
legi will be referred as to leg-variablei. The domain for a variable leg-variablei is
the set of flight sequences flightSeqsi of the itinerary problem. Thus, a value for a leg-

variable is a sequence of flights. The justification of this problem modeling approach
is strongly related to the way in which travel information can be accessed from GDSs.
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In Chapter 7, the process of building the CSP for travel planning from a user request is
explained. Basically, the user request (itinerary specification) defines the variables of the
problem, and GDSs give the domains for such variables according to the specification of
the itinerary.

Available class of services for a given flight are given by the AirAvailability request.
Thus, for each class of service a value for a leg variable is created. For example, if the
flights on a flight sequence are available in economy class and business class, two different
values are created, one for the economy class and the other for the business class.

6.5.2 Configuration rules

Configuration rules expressed as hard constraints guarantee the feasibility of the solutions,
i.e., that the solutions are valid. In travel planning, when using AirAvailability request,
hard constraints must guarantee that values for variables representing consecutive legs are
compatible (Definition 6.5). This constraint is binary implying each pair of consecutive
legs. The penalty associated to a tuple of values (values are flight sequences, a and b) of
two consecutive legs, fsi,a and fsi+1,b is computed as follows:

penalty(fsi,a,fsi+1,b)→
{

0 if isBefore(fsi,a,fsi+1,b)

hard-violation otherwise

The predicate isBefore(fsi,a,fsi+1,b) is true if the last flight of fsi,k arrives before the
first flight of fsi+1,l departs. Actually, one could consider a minimum slot of time between
two legs, for example 1 or 2 hours. Remember that legs are defined by the user’s request.
Thus, each location between legs is a destination for the user, and it makes sense to assume
that the minimum time slot for a destination is at least 1 or 2 hours.

The feasibility of flights within a flight sequence fs in terms of sequentiality, is guar-
anteed by the AirAvailability request of GDSs, i.e., the sequence of flights returned by
GDSs are always valid combinations.

6.5.3 User preferences

Soft constraints are used to model user preferences. Preferences about any aspect of an
itinerary are easily and naturally modeled using the constraint-based approach discussed
in Chapter 3. In this subsection, only some user preferences are illustrated as examples,
without giving an exhaustive list of all possible user preferences for the travel planning.

User preferences are modeled as crisp or flexible soft constraints (see Section 3.2.3 for
descriptions on these types of constraints), depending on the type of the preference.

6.5.3.1 Soft and crisp constraints

Crisp constraints are either totally satisfied or totally violated, without accept any degree
of violation. Examples of crisp preferences are:
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• Preference to specify a preferred carrier alliance. This preference implies unary
constraints over leg variables. The preference could be applied to the whole itinerary
(a unary constraint for all leg variables) or to a specific leg (a unary constraint for
the variable associated to the leg). The penalty function of this constraint for a legi

over a flight sequence fsi,a is defined as:

penalty(fsi,a)→
{

0 if isOperated(fsi,a,prefAlliance)

soft-violation otherwise

Note that this preference only considers if the whole flight sequence is operated by
prefAlliance. However, a better model for this preference can be implemented
within a flexible preference which counts the number of flights in the flight sequence
which are not operated by prefAlliance.

• Preference to specify a preferred aircraft type for a leg i. The penalty function of
such constraint for a legi over a flight sequence fsi,a is defined as:

penalty(fsi,a)→
{

0 if aircrafts(fsi,a) = prefAircraft

soft-violation otherwise

The same note as in the previous example applies for this preference. A better model
can consider the number of flights of the flight sequence with a different aircraft type
than the preferred one.

• Preference to specify a preferred intermediate location for a given leg. The penalty
function of this constraint for a legi over a flight sequence fsi,a is defined as:

penalty(fsi,a)→
{

0 if hasLocation(fsi,a,prefLocation)

soft-violation otherwise

From the above examples, it is easy to extend them to incorporate negative preferences,
i.e., instead of preferred features, they model disliked features.

6.5.3.2 Soft and flexible constraints

Flexible constraints are satisfied (or violated) at a certain degree, thus different degrees of
violation are considered. Examples of flexible preferences are:

• Preferences about preferred departure/arrival times. These preferences are naturally
expressed as flexible constraints because time is clearly a continuous parameter. For
example a preference for stating to depart from a location of a legi before 10 a.m.
are expressed by the following penalty function over a flight sequence fsi,a:

penalty(fsi,a)→
{

0 if f.depTime≤ 10 a.m.

(f.depTime−10 a.m.) otherwise

where f is firstFlight(fsi,a).
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• Preferences about preferred carriers take into consideration the carriers present in
the flight sequence which are not the same as the preferred one, and also the carriers
which are not preferred but are in the same alliance. Carriers which are not preferred
but are in the same alliance are better for the user than others.

As in the case of soft and crisp constraints, negative preferences can be similarly
modeled, i.e., instead of preferred features, they model disliked features.

6.5.3.3 Soft constraint weights

The user could also be interested in expressing weights for his preferences. In such a case,
the WCOP associated to the user problem includes a constraint weight. Even users find it
very difficult to numerically weight their preferences, some weight scales can be expressed.
In this way, for example, the user could state his preferences as low, medium or high
regarding their strength. From such classification, a constraint weight vector makes sense,
assigning, for example, a weight of 0.25, 0.5, and 1 for low, medium and high preferences
respectively.

6.5.3.4 Contextual soft constraints

This mechanism allows to naturally express the way of having preferences by humans.
Contextual constraints are of the form: condition → preference, where preference is
any constraint preference (as explained above). The condition of a contextual constraint
is a boolean predicate over some feature of the value/s of the variable/s implied in the
constraint. Examples of contextual preferences are:

• Departure/arrival time preferences with a context on the departure/arrival location.
These constraints express time preferences for different locations for the same leg.
For example, a user who lives in Bern, and can depart from Geneva after 10 a.m.,
but if he departs from Zürich then he can only depart after 11 a.m. because the
train to go to Zürich takes more time than going to Geneva.

• Preferred carrier depending on the destination. These constraints express carrier
preferences only for some destinations.

The function penalties of the above user preferences examples are not normalized nor
rescaled with respect to the optimization criteria, please refer to Section 3.7.2 to see why
and how penalty functions must be normalized and rescaled.

6.5.4 Optimization criteria

Optimization constraints are less strong than preferences, differentiating among solutions
which violate preferences to the same extent. They can be seen as a secondary criterion
to order solutions when solutions have the same penalty when only considering user pref-
erences. Optimization constraints model general optimization criteria that are valid in all
situations and by all users, and therefore they are built under common sense assumptions.
Some examples of optimization criteria are:
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• Minimize the number of transit locations within flight sequences. People do not like
to stop at transit locations and change planes.

• Minimize the flying time of the whole itinerary, users normally prefer to spend as
less as possible time traveling.

• Minimize the number of different carriers participating in an itinerary solution. It is
known that combining different carriers strongly increases the price of the itinerary.
Also, it is convenient to minimize the number of carriers participating in a solution
which belong to different carrier alliances.

• Push itinerary solutions where the arrival airport for legi and departure airport for
legi+1 are the same. Remember that one could have an itinerary solution where the
user arrives at LGA and departs from JFK. Both airports are in New York city, but
the user may find it more comfortable to arrive and depart from the same airport,
for example, if he would like to book an hotel near the airport.

• Minimize the number of different classes of service within the same itinerary solution.
Travelers do not usually want to change class of service during the same itinerary.
An exception must be taken into consideration for the first class, since it does not
exist in European flights.

Note that these criteria are assumptions that are done under the common sense, how-
ever, in some cases they could be contrary to the wishes of the traveler. Let us imagine
a person that would like to stop at a specific transit airport to do some shopping. But in
these cases, the user can always express such preference by a constraint which would can-
cel the optimization criterion counterpart, because of their different strength of valuation
functions.

6.5.5 Note on using fares

Up to this point, fares on itineraries were not discussed. Manifestly, the price of a whole
itinerary solution is of a high interest for the user. The easiest approach to price an
itinerary is to make use of the PriceItinerary request offered by GDSs. Nonetheless,
this is not convenient for the user, since he can not take into consideration the price in his
purchase-decision making process, i.e., he will only be aware of the price when he selects
a solution and is priced using the GDS access.

Another approach consists on accessing the fare descriptions of GDSs for a given
itinerary. This can be done by the FareQuote request which is available for most of
the GDSs. The FareQuote request just needs an itinerary specification. The difference
between such request and the PriceItinerary request, is that the latter prices a collec-
tion of concrete flights, and the former gives fares applicable to an itinerary specification.
A fare for a given itinerary specification mainly consists of a price (amount and currency),
and a list of fare rules. The rules of a fare are conditions that must be satisfied in order
to price the itinerary with such fare. These rules must be applied to flights. Examples
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of fare rules are, stay over weekend, Saturday night flag, routings (this conditions may
be sophisticated), and so forth. The main inconvenience of these rules is that they are
entered by human operators in pseudo language, i.e., natural language with some widely
accepted codes. Therefore, in order to use FareQuote request in electronic travel planners,
complex parsers must be available. Noteworthy, FareQuote request is mainly designed to
be read by human travel agents. They can easily interpret fare rules and price itineraries
with.

From a CSP point of view, fares for an itinerary would be a domain of a fare-variable.
Such variable would be then implied in binary constraints with leg variables in order to
guarantee the applicability of the fares rules. Some of the fare rules may imply several
legs, and thus k-ary constraints may be needed as well. Clearly, these constraints must be
hard, since if the fare rules do not apply to flights, the fare can not be applied.

6.5.6 Note on using BestBuy request

BestBuy request gives priced itinerary solutions for a given itinerary specification. Un-
fortunately, it only gives very few simple itineraries solutions within economy class and
some special offers. Nonetheless, this request could also be used and integrated in the
CSP model described up to here. For that, a new variable is introduced, as a fare-

variable. The domain for that variable is composed of all the fares given by the BestBuy
request. A special value for the fare-variable, called dummy-fare, is also considered.
On one hand, all the flight sequences (values for leg-variables) which were collected
from AirAvailability requests are linked with the dummy-fare of the fare-variable

by means of binary hard constraints. On the other hand, the flight sequences given by
the BestBuy request are added to the leg variables. Such values are then linked to the
values of the fare-variable by means of binary constraints. Since fares given by BestBuy

requests only match one combination of flight sequences, the correctness of final solutions
is guaranteed.

This model allows the user to evaluate within the same purchase decision-making
process priced solutions and unpriced solutions. Itinerary solutions which are not priced
are detected because they will have the dummy-fare assigned to their fare-variable.
The interface must take priced and unpriced solutions into consideration.

Using BestBuy as explained, allows the user to realize that there are some simple solu-
tions which are priced, and more complex solutions which are not priced. Leisure travelers
or low-budget travelers would be more interested in priced solutions, whilst business trav-
elers would prefer heterogeneous solutions (fitting their complex preferences) even if they
are not firstly priced. Before purchasing an itinerary solution which is not priced, the
system must price it with the standard PriceItinerary request.

6.6 An alternative CSP modeling approach

An alternative CSP modeling can be considered, similarly to the modeling approach de-
scribed in Section 3.3.4. In this case, variables are not associated to legs, but to features
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of the whole itinerary. An itinerary problem can be modeled with the following variables:

• For each leg of the itinerary:

– A depDate variable with all the possible departing dates.

– A depTime variable with all the possible departure times.

– An arrTime variable with all the possible arriving times.

– A depLoc variable with all the possible departure locations.

– An arrLoc variable with all the possible arrival locations.

– An intermediateLoc variable with all the possible intermediate locations.

• A aircraftType variable with all the possible aircraft types.

• A carrier variable with all the possible carriers.

...

The domains of variables come from the requests to GDSs according to the user request
(the itinerary specification). Within this approach, many more hard constraints are need
to guarantee the correctness of itinerary solutions. Actually each flight sequence given by
the AirAvailability request must be translated in a set of hard constraints. In order to
avoid having k-ary constraints (k > 2), a variable with the flight numbers (unique identifier
for a flight) may be needed. The advantage of such model is that preferences (unary
constraints) may produce much more propagation during the solving. Another advantage
is that preferences (unary constraints) can be modeled more explicitly, they directly affect
values of variables instead of attributes of values. However, the main drawback is that this
model undoes the flight sequences given by GDSs. In other words, GDSs give correct flight
sequences for each leg (correct sub-configurations), and this approach undoes this sub-
configurations and produces a configuration task with more components to be configured
by the solving algorithm.

This model was evaluated, in terms of solving efficiency, and performed worse than the
model where variables are associated to the legs of the itinerary, and therefore such model
was abandoned.

6.7 Related work

In [225], the authors propose a model-based travel planning framework. They offer a
formally-based models which are well-defined in precise mathematical terms. The goal of
this research is two-fold: on one hand to formalize the travel-related concepts mathemat-
ically, and on the other hand provide the basis for an engineering approach. Solving the
travel planning problem is faced with an incrementally travel plan strategy. At each step,
the travel plan is more and more concrete and complete, also closer to the user require-
ments. However, it is not clear how to build an electronic catalog for planning travels
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using currently available technology (GDSs), and they do not propose any user interaction
model nor an Internet-based architectural model.

Linden et al. in [153] propose a similar approach to the one described in this chapter,
also using constraint satisfaction technology. Nevertheless, they do not deal with the
travel information gathering aspect of the system. They consider the data available in
local databases. Also, they do not explicitly describe the constraint model and their
solving strategies.

Thompson et al. propose in [237] a conversational model where the solutions are shown
to the user only when the solution space is reduced. Therefore, in their model, the user
interacts with the systems without looking at solutions. Such a model would be difficult
to be applied to planning travel because attributes of the products (travel items) are too
complex to be asked without a criticizing process on proposed solutions.

Morris and Maes propose in [176] a framework for auctions and interactive negotiations
between the seller and the buyer. SARDINE system is a system to submit ticket bids
to airlines and for airlines to respond to each bid. However, they do not tackle the
configuration problem, thus they deal with the travel planning problem as a multi-attribute
atomic product.

In [31] the authors present a model for acquiring user prferences for product cus-
tomization. For that, they use Multi-attribute Utility Therory (MAUT). This model can
be considered close to ours but without considering hard constraints. The weakness of this
approach is that is hard to deal with the combinatorial explosion of the potential solutions
for a multi-leg trip.

6.8 Summary

This chapter firstly reviews the travel industry, and specially to the topics related to
electronic catalogs for planning travels.

Secondly, the problem of planning travels has been stated formally, giving the related def-
initions. An example of modeling the travel planning problem according to the framework
provided in Chapter 3 was explained. Basically, the modeling process applied to the travel
domain has been shown.

Finally, related work on modeling the travel planning problem has been reviewed.



Chapter 7

A Commercial Application for

Travel Planning: reality

In theory, there is no difference between theory and practice.
But, in practice, there is.

Jan L.A. van de Snepscheut, 1953-1994.

7.1 Context

reality is an application commercialized by i:FAO AG1 for business travel planning. How-
ever, the origin of reality is located at the Swiss Federal Institute of Technology in Lau-
sanne, in a joint research project with Swissair2 started in September 1997. From 1997 to
April 2000, a prototype for planning travels on the web, called SmartTravel, was developed
by Sebastian Gerlach and Marc Torrens, under the direction of Boi Faltings and Pearl Pu.
After realizing an increasing commercial interest by SwissAir about the prototype, Ico-
nomic Systems SA3 took off with the idea of commercializing SmartTravel. In Iconomic
Systems SA, SmartTravel became IsyTravel. Finally, Iconomic Systems SA was acquired
by i:FAO AG in May 2001. Since then, IsyTravel became reality. Many people4 have con-
tributed to the success of reality, and therefore this chapter only intends to illustrate some
of the key implementation points, and validates the contributions of this dissertation.

From this point on, the application will be called reality even if some interesting points
were only present in previous versions. In other words, some of the explained features are
no longer present in reality but were developed in previous versions.

1i:FAO AG, http://www.ifao.net.
2In 2002, Swissair became Swiss: http://www.swiss.com.
3A startup company founded by Boi Faltings, Pearl Pu, Christian Frei and Marc Torrens.
4My deepest gratitude to all people that contributed and still contributes to the development of reality.

See the acknowledgments at the beginning of this document for details about who contributed on what.
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Figure 7.1: reality architecture: a SmartClient architecture for travel planning.

7.2 Architecture

The architecture of reality is shown in Figure 7.1. The system works basically as follows.
The user enters his main request (it corresponds to an itinerary specification, see Defini-
tion 6.4). The request is then sent to the reality thin server where the gathering information
process is done. After that, the user is able to use the mixed-initiative system on the client
side, without accessing anymore the server side (except for booking a selected itinerary
solution). The communication between the client side and the server side is done through
HTTP5 protocol, and the CSP is transferred using a proprietary compact form.

The following subsections explain the process of gathering information and planning
travels in more detail.

7.2.1 Gathering information on the server side

The gathering travel information process is completely done on the server side. The reality
thin server receives user main requests. These itinerary specifications are transformed into
a set of queries to be sent to the open interface. The open interface component can be
seen as a server that takes queries in a proprietary language and transforms them in GDS
requests6. It is the bridge between reality thin server and GDSs. The reason of having a
separate server to access the GDS information is to bring the whole reality system more
independent from travel legacy systems. Actually, the open interface could be used by
other applications, since it is developed independently of the specific reality requirements.
The open interface processes the set of GDS requests in parallel.

Once the open interface returns the results back into proprietary data structures (sim-
pler than those used by GDSs), the reality thin server builds a CSP corresponding to the

5HTTP: HyperText Transfer Protocol.
6The mechanism of the open interface access the GDSs is out of the scope of this thesis.
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user requests with the GDS returned information. When the CSP is built, it is sent to the
reality application, i.e., to the client side.

Note that both server components, reality thin server and open interface process re-
quests in parallel. The client for the reality thin server is the reality application, and the
client of the open interface is the reality thin server.

7.2.2 Travel planning on the client side

One could consider that the travel planning starts once the reality application receives
the CSP from the reality thin server. At that moment, the CSP is solved for the first
time, and initial itinerary solutions are shown to the user. It is the first step of the mixed-
initiative model based on a conversation. The user then has the opportunity to criticize
any attribute of any of the proposed itinerary solutions. Such critiques are translated into
soft constraints as explained in Chapter 6.

Partial Forward Checking is used to solve the CSP corresponding to the itinerary
problem with user preferences and optimization criteria. See 4.2.2.1 more details on the
PFC algorithm. The quantitative approach for combining constraints is adopted, and at
each solving, the 30 best solutions are computed.

Value ordering is done according to the order of the flight sequences given by GDSs.
Actually, GDSs order the flight sequences according to predefined criteria such as flying
time, number of stops, and so on. Thus, this is a convenient order at the beginning when
the user has not expressed his preferences. For subsequent searches with user preferences,
the values are ordered according to the valuation of the unary constraints that express
the preferences of the user. In the case that a fare variable is present, its domain is
ordered by increasing the price of the fare values. Better values are tried first, as discussed
in Section 4.2.3.

Variable ordering is done in the case a fare-variable is present in the CSP. In such
a case, the variable modeling fares is selected first, since it produces many propagation
through the leg variables.

7.2.3 Some implementation facts

All the described components, both on the client side and on the server side, are im-
plemented in JAVA, using technologies like web services (weather forecast and currency
exchange), EJBs7, and servlets8.

7Enterprise Java Beans: http://java.sun.com/products/ejb:That’s because the EJB component

model simplifies the development of middleware applications by providing automatic support for services

such as transactions, security, database connectivity, and more.
8http://java.sun.com/products/servlet/: Servlet technology provides Web developers with a sim-

ple, consistent mechanism for extending the functionality of a Web server and for accessing existing business

systems. A servlet can almost be thought of as an applet that runs on the server side (without a GUI).
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The whole CSP solver (with data structures) is a JAR file of only 36 KB, showing
that CSP algorithms are really extreme in their compactness as argued as a key point for
SmartClient architecture (specially in its applet configuration).

The size of the transferred CSP is also a key point of the SmartClient architecture.
The stream data size for CSP of a round-trip (two legs) is never more than only 4 KB,
and less than 10 KB for a 5 legs. Noteworthy, the transferred CSP is compacted by a
proprietary compacter component that avoid repeated data, like airlines, airport codes,
aircraft types and so on. Thus, in our CSP data stream, the IATA codes are not repeated.
Moreover the CSP data stream is zipped to even reduce more the CSP data stream size.

From an efficient solving performance point of view, solving a round trip takes about
100 ms, a three-leg itinerary takes 200 ms, and a four-leg itinerary takes about 500 ms.
These solving times are approximative, and they depend on the specific problem and its
user preferences.

7.3 Mixed-initiative system

In this section, the mixed-initiative system in reality is briefly described by pointing out
some relevant points. Graphical user interfaces for the proposed mixed-initiative approach
pose some challenges regarding the usability of the system. This thesis does not focus
on this aspect, however, this section intends to explain some concepts that have been
developed in reality, the goal being to illustrate the conversation that takes place between
the user and the system. In Appendix A, a complete scenario using reality is discussed by
providing a complete series of screenshots of the application.

7.3.1 Posting, modifying and retracting preferences

Posting, modifying and retracting preferences can be done in several ways. One mechanism
could be the one shown in Figure 7.2, called parallel coordinates (inspired from [123]). In
such display, each line represents one itinerary solution. Along horizontal space of the
display, the relevant attributes of the itinerary specification are represented. For example,
departure location, departure date, departure time, arrival time, arrival date, and arrival
airport. The user can select one of the attributes for any criteria, for instance, a preferred
arrival airport (LHR in the example of Figure 7.2). For expressing preferences on times, the
user can select preferred time ranges by means of sliders (similarly to the diplay proposed
in [224]).

Another type of display, based on menus, to express preferences is shown in Figure 7.3.
In the solution display panel, on the bottom of the reality window, the attributes of the
current itinerary solution are displayed. The current itinerary solution can be changed
by means of next and previous buttons in the form of arrows. On each attribute, the
user can activate a menu which will shown the options for a preference on that attribute.
In Figure 7.3, the menu corresponds to a preference on the carrier. The two first options
of the menu can be used to set a context for another preference (resulting in a contextual
preference). Under the solution display, another display contains the entered preferences
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Figure 7.2: Parallel coordinates to express preferences.

in a textual mode. In this panel, the user can delete a preference, indicate to which leg the
preference is activated, and also express weights to state different degrees of importance
to preferences.

7.3.2 Showing violations

Showing the attributes of an itinerary solutions which are violated by some preference
is a way of supporting the user in his purchase decision-making process. In Figure 7.4,
a simple way of displaying attribute violations is shown. The attributes of the current
solution which are violated are displayed in red. Different degrees of red, from light red
to dark red, can be used to indicate different degrees of violation.

7.3.3 Solution displays

Apart from the standard way of displaying solutions, i.e., by a textual description of their
attributes, other sophisticated displays can be considered. For example, the parallel coor-
dinates (shown in Figure 7.2) or the starfield plots (shown in Figure 7.3 and Figure 7.4).
The starfield plot (similar to the one proposed in [3]) consists of a bidimensional plot where
each axes represents a criteria. In that manner, the itinerary solutions can be graphically
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Figure 7.3: Menus and other graphical widgets to express preferences.

displayed accordingly. Each point in the plot where a solution is mapped is drawn with a
flight tail with the airline logo of the solution (the empty tails represent an airline without
a logo in the reality database). If the solution is operated by several airlines, several logos
are displayed. The number on the bottom-left corner of the tail indicates the number of
solutions which are mapped in the same point. The user can browse through the solutions
on the same point by simply clicking on the flight tail.
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Figure 7.4: Showing violations on the attributes of an itinerary solution.





Chapter 8

Conclusions

Every problem becomes very childish once it is explained to you.

Sherlock Holmes, The Adventure of the Dancing Men.

8.1 Scope

Nowadays, Internet’s world is full of information systems which make huge quantities of
information available to people. This incredible amount of information is clearly over-
whelming Internet end-users. As a consequence, intelligent tools to identify worthwhile
information are needed, in order to fully assist people in finding the right information.
Moreover, most information systems are ultimately used, not just to provide information,
but also to solve problems.

Pushed by the growing popular success of the Internet and the enormous business
potential of electronic commerce, e-catalogs have been consolidated as one of the most
relevant types of information systems. Nearly all currently available electronic catalogs are
offering tools for extracting product information based on key-attribute filtering methods.
The most advanced electronic catalogs are implemented as recommender systems using
collaborative filtering techniques.

Nevertheless, current electronic catalogs for complex domains are not directly facing
the configuration problem with user’s preferences. In complex domains, such as travel
planning, interactive configuration tools are needed to fully support the user in the pur-
chase decision making process. The main challenge of considering such advanced electronic
catalogs is to incorporate sophisticated business logic while maintaining the scalability of
the whole system. Traditional wisdom would state that, in order to build intelligent tools,
complex code and data are unavoidable, consequently producing low scalable systems.

In this thesis, constraint satisfaction techniques applied to configurable electronic cata-
logs have been analyzed. Therefore, this thesis focuses on showing that constraint satisfac-
tion is well-suited to cope with the difficulty of building intelligent and scalable electronic
catalogs in complex domains. An electronic catalog for air travel planning has been de-
veloped to practically validate the techniques developed in this thesis work.
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8.2 Contributions

This section outlines the main results and contributions of this thesis work.

8.2.1 Mixed-initiative system for electronic catalogs

The proposed mixed-initiative approach for electronic catalogs is presented in Chapter 2.
A similar user interaction model was described by Linden et al. in [153] and a similar
approach was used by a computer configurator in the Dell’s web site. However, our
approach relies on a more flexible constraint satisfaction model based on optimization
techniques. Our conversational model is based on two observations of standard commercial
activities. Firstly, personal criteria are not stated up front, and secondly, personal criteria
are discovered by the customer by reacting to product examples during a dialog with the
seller.

Following the above two observations, a mixed-initiative approach has been proposed
for electronic catalogs. This mixed-initiative approach is based on a conversational model
where the user criticizes product proposals provided by the catalog, the goal being to
converge to a reduced set of satisfactory solutions. In networked environments, such as
Internet, and in complex domains, such as travel planning, this interaction model clearly
raises two challenges:

a) How can the system suggest the adequate products according to the critiques made
by the customer to product proposals ?

b) How can the system be scalable while providing intelligent support to the user ?

Both questions are handled within this thesis, resulting in the following contributions.

8.2.2 Modeling and searching strategies for electronic catalogs

A uniform framework for modeling electronic catalogs using constraint satisfaction prob-
lems has been proposed. Three types of constraints have been identified, namely: configu-
ration rules, user preferences and optimization criteria. In order to model these constraints,
the classical CSP model is not flexible enough. It has been shown that weighted constrained
optimization problems easily model all the constraints that a complex electronic catalog
may involve. Two different approaches are considered:

Quantitative approach where all constraints are numerically combined. Such quanti-
tative approach assumes that the user can precisely express the weights associated to the
different criteria numerically. This assumption is particularly strong, since the user does
not normally know the precise weights of his preferences, mainly because they dynamically
change during the dialog with the system. The advantage of this approach is that it can
be faced with very simple methods based on the well-known branch and bound algorithm.
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Qualitative constraint combination approach based on the Pareto-optimality con-
cept. This approach claims that only Pareto-optimal solutions are of interest to the
user, thus dominated solutions can be filtered out. Since computing the whole Pareto-
optimal set of solutions is computationally expensive, methods for approximating the
Pareto-optimal set for an e-catalog have been proposed and evaluated. Surprisingly, the
reported results show that branch and bound methods can be successfully used for finding
approximations of the whole Pareto-optimal set.

A mixed approach. On one hand, the quantitative approach makes the assumption
that constraint weights are numerically known, which could be considered too restrictive.
On the other hand, the approach based on Pareto-optimality has the limitation of only
providing a partial order. In addition to that, adding more criteria to a problem increases
the number of Pareto-optimal solutions, without allowing the user to narrow down the set
of solutions as desirable. A mixed approach based on the quantitative approach which
filters out dominated solutions overcomes the main drawbacks of the Pareto-optimality
based approach, while preventing to show dominated solutions.

8.2.3 SmartClient architecture

Scalability is a major problem in client-server architectures when handling complex busi-
ness logic for many users simultaneously. SmartClient architecture is an architectural
model that uses constraint satisfaction problems for representing solution spaces, instead
of traditional models which represent solution spaces by collections of single solutions. This
main idea is supported by the fact that constraint solvers are extreme in their compact-
ness and simplicity, while providing sophisticated business logic. Different SmartClient
architecture configurations are provided for different uses and architectural requirements.

8.2.4 Validation with a commercial application in the travel domain

The validation of the main contributions of this work has been done by applying them
to a concrete application domain. The chosen domain is travel planning because of its
complexity and relevance in the electronic commerce area. reality is a Internet-based
application for travel planning that uses all the ideas presented in this thesis. In the
travel domain, reality offers the purchase decision-making process that users need to solve
problems, instead of just presenting product information.

From an engineering point of view, modeling electronic catalogs with constraint satis-
faction techniques significantly simplify the maintenance of the business logic of the whole
system. For example, considering a new kind of preference only implies the addition of
a constraint in the model, the constraint solver remains exactly the same. The same
advantage takes place when adding new variables, values or other constraints. In more
standard programming paradigms, changing functional requirements would imply much
more cumbersome adaptations from the implementation point of view.
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8.3 Limitations

Limitations of the presented approach can be summarized in the following way:

Representative solution space generation: In the presented work, solution spaces
are generated according to configuration rules, user preferences and optimization con-
straints. Therefore, the user gets solutions according to his personal criteria, however, it
would be beneficial for the user, to get a representative set of the whole solution space as
well. This is especially interesting at the beginning of the conversation with the system,
when the user still does not know his preferences and would probably like to have an
overview of the catalog. In addition to the solution space according to preferences and
optimization constraints, it would be adequate to present extreme solutions, i.e., solutions
which are optimal for some set of predefined criteria. In this way, the user could evaluate
a more heterogeneous set of solutions and discover more preferences.

Filtering out Pareto-optimal solutions: It has been argued in this thesis that dom-
inated solutions should be filtered out because they would never be chosen rationally.
Nonetheless, hiding dominated solutions may imply to miss good solutions, which are
dominated merely because the user did not express all his criteria. Actually, such limita-
tion is in relation to the previous paragraph.

Analysis of trade-offs: In order to better support the user, trade-off analysis of the
proposed products would be useful. One could think about graphical displays helping
users to evaluate what criteria are not satisfied and to what extent. Moreover, in many
cases, satisfying one criteria implies the violation of another criteria, because they are
directly interrelated. Such analysis of trade-offs would certainly help users to understand
the available options of the catalog and select the best product. In reality a first approach
for trade-off analysis is implemented as bidimensional starfield plots. Each axis of the
plot represents one criteria which can be selected by the user. Points on the plot shows
where the products are situated in respect to their criteria violations. Pu and Lalanne
proposed in [194, 195, 141] methods for visualizing tradeoffs and to help the user to discover
conflicts among his preferences. Such techniques could be of great support for the user in
our framework.

Expressing complex preferences: Complex preferences naturally arise in complex
domains, such as travel. People are used to formulate preferences with many conditions
and relations among them. Constraint satisfaction can handle these kind of constraints,
however, it is not clear how to express such preferences in standard graphical user inter-
faces.

Handling too many criteria: Using reality, it has been observed that users tend to
express too many preferences. In these cases, the system becomes overconstrained and
criteria do not behave intuitively. This is mainly due to the fact that in overconstrained
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systems, criteria valuations tend to cancel each other out, producing unexpected results.
Therefore, overconstrained situations should be prevented, in order to avoid the user being
mislead.

Contradictory criteria: A mechanism to detect inconsistencies among personal criteria
would improve the whole approach. Rationally, a user would never express contradictory
criteria. Nevertheless, in cumbersome domains, users can easily be contradictory. Such
phenomena is automatically corrected by a human seller, thus it would make sense to
automatically detect these contradictions in electronic catalogs.

8.4 Further research

The above limitations indicate that more research can be undertaken to improve the
approach presented in this thesis. Also, new research directions for electronic catalogs are
pointed out. This section presents future research directions to improve and extend the
presented work.

Applicability to other complex domains: This thesis has been applied and evaluated
in the travel domain. Nonetheless, other complex domains must be deeply analyzed in
order to evaluate the applicability of the main contributions of this work to other domains.
Complex examples were enumerated in Section 1.3.1.

Multi-agent scheduling meetings: In this thesis, the air travel planning problem
has been tackled. However, a more general problem in the travel domain is to arrange
meetings for several participants taking into account constraints from personal agendas.
Some research on multi-agent scheduling meetings using constraint satisfaction has been
done [157, 73]. Since these research works already make use of CSP frameworks, it seems
convenient to benefit from some of the results of this thesis in the problem of scheduling
meetings using constraint satisfaction and multi-agent systems.

Collaborative filtering: Collaborative filtering reuse previous product selections to
suggest adequate products to users. A mixed approach of collaborative filtering and the
mixed-initiative model proposed in this thesis could be interesting. Especially at the
beginning of the conversation between the user and the system, collaborative techniques
could be used to propose initial sample of products. This would be beneficial at the
beginning, when the user still does not precisely know his preferences. Instead of proposing
products only based on optimization constraints, the system could propose products which
have already been selected by other similar users. This could yield to a quicker convergence
of the solution space.

Context-aware computing: A joint research project between i:FAO and the LIA at
the EPFL has started about how to use contextual information in reality when planning
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travels. Contextual information includes, for instance, weather information, statistics on
delays in certain airports, or international news. The idea is to benefit from contextual
information in order to suggest criteria to the user. For example, a user willing to travel
to San Francisco in winter would be interested in knowing that Chicago airport tends to
be a bad option because of terrible weather causing delays, so he could be alerted in order
to avoid such an intermediate airport.

Open constraint satisfaction problems: Faltings et al. [61] describe a framework
where OCSP addresses the issue of gathering information from different sources incremen-
tally building up an OCSP while maintaining a correct solution set. The goal of an such
approach is to avoid gathering information which could never be needed for a solution
set. In this thesis, information gathering and constraint solving are decoupled, thus much
accessed information could never be used in the solution set. OCSPs are especially in-
teresting in open-worlds where choices and constraints are to be discovered from different
servers in a network. Such approach could be analyzed together with our mixed-initiative
model in the framework of complex electronic catalogs, where minimizing the amount of
gathered information is an important issue for efficiency and scalability.

Constraint posting using natural language: Expressing complex preferences about
product examples is a challenge from a graphical user interface point of view. Standard
menus and graphical widgets are often not powerful enough. Natural language could be
used to state complex preferences. An initial project in this direction was undertaken
at the EPFL [80] with preliminary but successful results. However, deeper studies must
be made in order to really evaluate the feasibility of expressing complex preferences by
natural language in complex domains.

Abstractions and interchangeability: Abstractions and interchangeability in classi-
cal CSPs were deeply studied by Weigel in [260]. These concepts for soft CSPs have been
recently tackled by Bistarelli et al. in [16]. Basically, these concepts can be used to simplify
a CSP by identifying interchangeable values. In this way, a new solution can be produced
by simply replacing the interchangeable values in an already known solution. These tech-
niques could be used in our framework where values in domains present similarities and
regularities. For example, in the travel planning problem, some airlines operate the same
flight each day of the week.

Reuse of search tree: When the user adds or modifies a set of preferences, the search is
performed from scratch without taking into account previous search processes. Nonethe-
less, the existing explored search tree could be reused. The penalties for all intermediate
nodes and leaf nodes of the search tree need then to be updated. Solutions can then be
recomputed using this updated tree. Note that some previously skipped subtrees may be
explored in new searches. Reusing the work already done by previous searches could make
the search process more efficient.
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Representative solution generation: In our approach, solutions are generated ac-
cording to user preferences and optimization constraints. This approach seems to be
natural and logical, however, one inconvenience is that showing the solutions that best fit
user’s criteria may avoid to discover products that could also fit the user needs. In other
words, some products could be never shown if the user do not express all his preferences.
Since preferences are stated reacting to samples of products, it is of interest to show a
representative set of products of the catalog, even if some of them do not fit the crite-
ria expressed by the user. A representative solution generation would allow the user to
discover criteria that would be otherwise hidden.

Learn user preferences Users tend to have the same preferences for different purchase
situations. For example, a user that was interested once in terror movies, will be probably
interested in this kind of movies again. In complex domains, such as travel, it is not so clear
that preferences are similar for different itineraries and the same traveler, mainly because
they strongly depend on the itinerary itself. However, some preferences can be repeated
often by the same user, for example about certain airlines, or schedules. Techniques for
learning those preferences depending on the historical preferences of a user could be used
in complex electronic catalogs.

8.5 Conclusion

Currently, most of the electronic catalogs are designed merely to provide product infor-
mation to the user. Nevertheless, in complex domains such as travel planning, electronic
catalogs are not ultimately used just to provide product information but to solve prob-
lems, i.e., to help the user to find his best product. This thesis has contributed to the
challenge of designing electronic catalogs within complex domains that are able to really
support end-users in their purchase decision-making process. The contribution ranges
from a modeling framework to solving strategies, including software architectural aspects.

The presented concepts have been shown to be very effective in the framework of a commer-
cial application for planning air travels. This application, called reality, clearly improves
the functionalities provided by other available travel planning tools, while maintaining
scalability in a client-server architecture.





Appendix A

Using reality : a scenario

The best way of showing reality in detail from a user’s point of view, is by illustrating
the usage of the system through a concrete scenario. The initial idea of the scenario
and the associated screenshots have been provided by Patrick Hertzog1. The screenshots
illustrating the scenario are placed at the end of the chapter for improve the readability
of the text. More details about the implementation of reality can be found in [241].

A.1 The scenario using reality

Andy2 is a busy businessman living in Bern. He has a meeting in Palo Alto (Silicon Valley)
on January 13th and a conference about new emergent travel opportunities in New Orleans
on January 15th. Since New Orleans is the greatest city in the world for jazz lovers, and
Andy is a real jazz lover, he would like to take the opportunity to stay in New Orleans
until January 16th.

Since Bern is between Geneva airport (GVA) and Zürich airport (ZRH), Andy may depart
from either GVA or ZRH. He does not really know what is the nearest airport to Palo Alto, so
he uses the reality ’s world map to find out what are the right airports to go to (Figure A.1).
Our user decides to only consider San Francisco airport (SFO) and San Jose airport (SJC)
because he remembers now that in the Oakland’s airport the shopping offer is not so good.

The first leg of Andy’s itinerary, GVA or ZRH → SFO or SJC on January 12th, can be
now defined as illustrated in Figure A.2. Dates can be entered by clicking on the graphical
calendar or by typing them textually. In a similar way, Andy enters the data related to the
second and third legs of his itinerary (Figure A.3 and Figure A.4). At each leg definition, a
dotted line linking the airports of the current itinerary are displayed. Finally, the Andy’s
itinerary has been defined by a query with the following three legs:

1. GVA or ZRH → SFO or SJC on January 12th,

2. SFO or SJC → MSY on January 14th, and

1My deepest gratitude to him for his involvement in assisting me with the elaboration of this chapter.
2Any similarity between the contents of this chapter and real events are purely coincidental!
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3. MSY → GVA or ZRH on January 17th.

After sending the main request through the Search button, Andy receives the first
proposed itineraries (Figure A.5). At this initial stage, the main query defines a very huge
product space (3,141,855 different alternatives !). Hence, Andy can start the conversation
with the system by posting preferences, the goal being to reduce the solution space to a
small set of satisfactory products.

Andy is a member of the frequent traveler program of the following airlines: Swiss
(LX), American Airlines (AA), and United Airlines (UA). So, obviously, he prefers travel
with those companies. Since he is a really busy businessman, he would like to be able to
work in the plane, thus he prefers business class. In addition to that, he really does not
want to flight in economy restricted class because he must be able to change his reservation
if needed. All these preferences are entered by Andy, as shown in Figure A.6. Each time a
new constraint (preference) is posted in the system, Andy receives new proposals according
to the whole set of preferences.

The system now proposes an itinerary which is quite good for Andy, but since his
meeting on January 13th starts early in the morning, he does not want to land at SJC so
late. He thinks that it would be much better to arrive before 5 p.m. (Figure A.7). Now,
the first leg of the proposed itinerary really satisfies him, and he decides to keep it (check
box on the right, Figure A.7). By keeping a leg of an itinerary, the system will maintain it
invariant and only the other legs will be changed according to the new preferences along
the rest of the conversation with the system.

Now, Andy looks at the second proposed leg, and he realizes that he would fly with
a Boeing 737 and it is not his preferred aircraft. So, a constraint expressing that he
does not like Boeing 737 is entered (Figure A.8). The system now proposes to fly with
an Airbus 320 from SJC to Minneapolis MSP and with an Airbus 319 from MSP to New
Orleans MSY. Unfortunately, since the trip will take place in January, he does not want to
connect via Minneapolis because in winter, the weather in that city is awful, and therefore
the probability to be delayed is very high. Andy looks now at the possible connecting
alternative airports (Figure A.9) and connecting to Houston (IAH) seems to be a much
better idea. But now, the system suggests again to fly with a Boeing 737. At this
stage, Andy thinks that choosing between to fly with the Boeing 737 or to have a high
probability to be late at the meeting, the choice is quickly done: he prefers to be on
time. He understood that there was a trade-off to be done among these two inconvenient
situations, and often the perfect solution does not exist. Thus, he decides to keep this
second leg as illustrated in Figure A.9.

Looking at the third leg of the proposed itinerary, Andy realizes that the proposed
solution includes a flight operated by AirFrance (AF). He has already flown with AF and
had very bad meals, so he does not want to use it again. Such a preference posting
is illustrated in Figure A.10. The proposed third leg of the itinerary arrives at Geneva
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airport. Since Andy will leave from Zürich (first leg) and will go to the airport by car, he
needs to come back at Zürich. Andy expresses this requirement as shown in Figure A.11.

Finally, the last proposed solution (Figure A.11) satisfies him, and Andy continue with
the booking process. After selecting the right solution, Andy can now continue with
the Get Price button. The system shows now the fare and fare rules of the selected
itinerary, as shown in Figure A.12. Through the Book Selected button Andy can book
the itinerary. He can also put it in the My Choices panel, and search for more potential
better alternatives.

A.2 The scenario using a standard travel planning tool

In this section, the same scenario will be illustrated using cytric v7. cytric v7 is a travel
planning tool which is commercialized by i:FAO. The goal of showing the same scenario
with cytric v7 is to point out the advantages of using the concepts developed this thesis.
It is worth to note, that both tools, reality and cytric use the same technology base, i.e.,
the same access to GDSs. Actually, both applications use arctic which is an interface to
several GDSs developed by i:FAO.

In cytric v7, the only way Andy has to enter his preferences about airlines is by using
a user profile. Thus, in the following it is assumed that Andy has his preferred airlines
(LX, AA and UA) stated in his profile.

In cytric v7 the user is not able to enter multiple airports and dates. Thus, Andy
has to choose only one departure airport. Let us say that he decides to take off from
Geneva. If he wants to see if better solutions exist from Zürich, he has to start the
whole planning process from scratch. For the destination in Palo Alto, he only enters San
Francisco Figure A.13.

Once Andy is satisfied with the definition of his itinerary, the search is launched.
The results are displayed as shown in Figure A.14. The different flights for each leg are
displayed in a list format. In this scenario, 8 flights are proposed for the first segment,
8 for the second and 5 for the third. Therefore, Andy can evaluate and chose among
8∗8∗5 = 192 solutions in total. Of course, all the available flights are not showed in such
a first display: these are only the first ones ordered by their departure time and the user
can get the follosing ones by clicking on the appropriate button. Each time Andy requests
for the following flight combinations, a new request to the server is performed with the
consequent response time until the new results are displayed. By using reality, the user can
directly choose among all the possiblities, that means for that scenario, 3,141,855 different
flight combinations.

By browsing the flights proposed for the first leg, he selects the one that best fits his
needs, i.e., leaving not too early, arriving not too late and in business class. Afterwards,
Andy continues scrolling down to the proposed flights for the second segment, as shown
in Figure A.15. He does not want to fly with Frontier Airlines because only the economy
class is available and moreover hed dislikes the Boeing 737. Andy sees that there is a
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direct flight operated by United Airlines but there are only sears in the first class (anyway,
it is not possible to flight with business class for this leg). Andy is happy with this flight
and selects is. Andy continues scrolling down the list, and gets the flights for the last leg
as shwon in Figure A.16. for the last leg, he selects the Delta Air Lines flight and clicks
on the continue button to review his selections and get the price Figure A.17.

A.3 Comparison between reality and cytric v7

Clearly, reality outperforms cytric v7 (and other standard travel planning tools) in terms
of functionality. Table A.1 summarizes the functionalities provided by reality which are
missing in standard travel planning tools.

Missing functionality Reason

Multiple airports Combinatorial explosion: considering several airports per leg
exponentially increases the number of possible flight combi-
nations. Since flight combinations are displayed in lists, the
number of flight combinations to be considered is reduced.

Multiple dates Combinatorial explosion: idem as above.
Preference elicitation Considering preferences in combinatorial problems is not

feasible withouth using a poweful business logic. Standard
web-based systems are not able to implement easily powerful
business logic.

Conversational model In standard web-based systems, each user interaction implies
to send a request to the server side. The results of such
requests may take long time. Consequently, mixed-initiative
systems cannot be easily implemented using standard web-
based techniques, where all the business logic is located on
the server side.

Table A.1: Comparison of the functionality provided by reality which are missing in stan-
dard travel planning tools.
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Figure A.1: By using the graphical world map in reality, the user can decide what airports
are the most appropriate for his itinerary. On top of that, the user is also able to take a
look at the current weather in the airports.

Figure A.2: Defining the main query. The user enters the dates and locations of the first
leg of his trip.. Note that the My Choices panel contains previous booked itineraries.
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Figure A.3: Defining the main query. The user enters the dates and locations of the second
leg of his trip.

Figure A.4: Defining the main query. The user enters the dates and locations of the third
leg of his trip.
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Figure A.5: The user receives the first solutions proposed by the system according to the
main query. Since the initial query was very vague, it defines more than 3 million different
alternatives.

Figure A.6: After looking at the first solution, the user criticizes it by posting preferences.
Preferred airlines: AA, UA, and LX. Preferred class of service: business, and disliked class
of service: economy restricted.
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Figure A.7: The user prefers to arrive at the first destination before 5 p.m. Then, the first
leg of the itinerary proposed by the system satisfies him, and decides to keep it by clicking
on the check box on the right.

Figure A.8: The user does not like the aircraft of the second leg proposed by the system
(a Boeing 737), so he indicates this preference. Then, the user receives a proposal for the
second leg with an Airbus A320.
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Figure A.9: In the received itinerary, the second leg connects via Minneapolis. Since in
winter, Minneapolis is very cold and delays are frequent, the user decides to force the
system to propose flights connecting via Houston. The new proposed second leg connects
now via Houston, but contains flights with Boeing 737. However, the user thinks that it
is a good trade-off and decides to keep it as is.

Figure A.10: The user does not like to fly with AirFrance, so he posts a preference for
avoiding AirFrance.
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Figure A.11: Finally, the solution satisfies the user and decides to continue the process.

Figure A.12: The selected itinerary has been priced and fare rules are shown to the user.
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Figure A.13: Defining the itinerary of the scenario with cytric v7.
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Figure A.14: Results for the flights of the first leg of the itinerary with cytric v7.
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Figure A.15: Results for the flights of the second leg of the itinerary with cytric v7.
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Figure A.16: Results for the flights of the third leg of the itinerary with cytric v7.
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Figure A.17: The selected itinerary has been priced and details are shown with cytric v7.





Appendix B

Solving classical Constraint

Satisfaction Problems

Constraint Satisfaction Problems (CSP) have been a subject of research in Artificial In-
telligence for many years. Solving algorithms for classical CSPs deal with finding one
solution or all the solutions to the problem. In the following, a brief description of the
main solving algorithms for classical CSPs is given. For more detailed reviews about the
main solving strategies, the reader is referred to [246, 140, 134, 81, 51, 10]. In the PhD
dissertations of Christian Frei [75] and Javier Larrosa [143], recent complete reviews on
solving algorithms for classical CSPs can also be found. This appendix is mainly based on
the aforementioned reviews in Frei’s and Larrosa’s thesis [75, 143]. The International Con-
ference on Principles and Practice of Constraint Programming and the journal Constraints
give further specialized research papers on solving techniques for classical CSPs.

B.1 Systematic search algorithms

Systematic search methods completely explore the search space of the CSP. The basic
systematic search algorithm that systematically explores the whole search space is called
Generate and Test algorithm. Although it is a very trivial and inefficient algorithm, it
makes the foundation of more advanced and efficient algorithms.

B.1.1 Generate and Test

The most trivial method is the Generate and Test(GT) algorithm. It systematically gen-
erates a complete assignment and check if it satisfies all the constraints. If the assignment
does not satisfy all the constraints, it generates another assignment. The algorithm ends
when it finds one solution. If the goal is to find all the solutions, all the complete assign-
ments are generated. The algorithm is sound (solutions found are really solutions to the
CSP) and complete (it can find all the solutions).

Systematic search algorithms for CSPs can be naturally described as search algorithms
over their search tree (Definition 3.8). Basically, there are two different ways of systemat-
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ically exploring a tree without visiting a node twice: depth-first and breath-first search.
For solving CSPs depth-first strategy is more adequate because its memory requirement
is always bounded by one complete assignment.

B.1.2 Chronological Backtracking

Chronological Backtracking (BT) [101, 22] is the simplest backtracking algorithm for solv-
ing a CSP. It explores the search tree using a first-depth search schema. Each node
represents a partial assignment. The algorithm solves the CSP by incrementally extend-
ing a partial assignment to a complete assignment, starting from the empty assignment to
a solution of the problem. At the node k, variable k is instantiated with its next value. The
algorithm is in a dead-end when all the nodes below the current node produce some incon-
sistency with the current assignment. When a dead-end is found, the algorithm backtracks
to the previous node and the next value is tried. The algorithm ends when a solution has
been encountered or when all the search tree has been explored in the case one wants to
find all the solutions. The major advantage of BT is that it eliminates parts of the search
tree when a dead-end is found. Consequently, BT is more efficient than GT and it is also
sound and complete. BT algorithm has mainly the three following drawbacks:

1. Trashing: the same constraint inconsistencies are rediscovered repeatedly [158].

2. Redundant work: constraint inconsistencies are not remembered, thus redundant
work is done.

3. Late detection: the detection of a dead-end situation is done when it occurs, but
it can be done before really occurs.

The first two drawbacks can be solved by look-back propagation algorithms (Sec-
tion B.3) and the third drawback can be solved by look-ahead propagation algorithms
(Section B.4).

Consistency techniques (Section B.2) can be used stand-alone, as preprocessing algo-
rithms, to simplify a CSP before really solving it. Consistency techniques can be also
used in combination with look-ahead propagation algorithms in order to improve search
efficiency.

Variable and value ordering heuristics (Section B.5) also improve the efficiency of search
algorithms.

B.2 Local consistency techniques

The most trivial consistency technique is referred to as node-consistency (NC). It simply
removes values from variables which are not consistent with unary constraints on the
respective variable.

In general, local consistency techniques (also called consistency enforcement, or con-
straint propagation) make partial consistent assignments extensible to other future vari-
ables [76, 158, 175].
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The most widely used local consistency technique is called arc-consistency (AC). It
removes values of variables which are not consistent with any of the values of other vari-
ables. Path-consistency (PC) ensures that a consistent assignment of two variables can
be extended by a third variable consistently. Freuder in [76] defines consistency, in a
more general sense, as: i-consistency ensures that any consistent assignment involving
i−1 variables is extensible to include any additional variable resulting in a new consistent
assignment. A problem is said strongly k-consistent [76] if it is j-consistent for all j ≤ k.
Following previous definition, NC is equivalent to strong 1-consistency, AC is equivalent
to strong 2-consistency and PC is equivalent to strong 3-consistency. Note that a problem
with n variables which is strongly n-consistent does not need any costly search to be solved,
i.e., it can be solved in a backtrack-free manner. A CSP with n variables which is strongly
n-consistent is called globally consistent. Other variants of consistency techniques exist,
for relevant literature on this variants see [77, 53, 54].

Consistency techniques can be applied as a preprocessing technique before the search
and/or during the search process. The benefits of applying consistency techniques are the
following [143]:

• Problem simplification: The transformed problem has additional explicit informa-
tion. Typically, a search algorithm takes advantage of it, and improves its efficiency.
However, in some cases achieving local consistency may degrade the performance of
the search process [187, 203].

• Unsolvability detection: during their execution, local consistency algorithms may
detect a problem is unsolvable.

The complexity of enforcing k-consistency is exponential in i [37]. Due to this high com-
plexity, a trade-off between the effort spent in preprocessing local consistency algorithms
and the efficient gain of solving algorithms must be considered. Theoretical and practical
research on this trade-off have been presented in [52, 109, 189, 203]. In practice, only
arc-consistency algorithms are used, either as preprocessing algorithm or in combination
with a search method.

Different AC algorithms have been presented with an increasing level of sophistication:
AC1, AC2, AC3 [158, 159]; AC4 [174]; AC5 [181]; AC6 [13] and AC7 [14].

B.3 Look-back strategies

Look-back strategies improve the BT algorithm by enhancing the backtracking phase of
the algorithm. They basically use consistency checks among already instantiated variables
(past variables). Actually, BT can be considered as the simplest look-back strategy. The
following algorithms avoid the drawbacks of trashing and redundant work of BT.

B.3.1 Backjumping

Backjumping (BJ) [87, 88] avoids the trashing effect of BT. The only difference with respect
to BT is on the backtracking point. When BT is in a dead-end situation it backtracks
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chronologically (to the previous instantiated variable), while BJ backtracks directly to the
conflicting variable. In a dead-end node, BJ computes for each value vi j of the current
variable Vi its culprit variable Vc j. A culprit variable Vc j for a value vi j of the current
variable Vi is computed as the highest variable, i.e., the past variable which was allocated
first, conflicting with the value vi j. BJ then backjumps to the most recent instantiated
variable among all culprit variables.

Conflict-Directed Backjumping and Graph-Based Backjumping are algorithms based
on BJ with a more sophisticated backjumping behavior than simple BJ. The overhead
costs of these algorithms are greater than BJ, since it is necessary to manage additional
data structures. However, in some problems they can be more efficient than BJ.

B.3.2 Graph-based Backjumping

Graph-Based Backjumping (GBJ) [50], as CBJ, is an extension of the BJ algorithm, and it
uses the knowledge about the CSP graph. This algorithm backjumps to the highest vari-
able connected to the current one, i.e., it jumps to the highest variable which is connected
by a non trivial constraint1. This algorithm is useful only in the case that the associated
constraint graph is sparse, if the graph is almost complete then the algorithm behaves as
BT. The overhead of maintaining specific data structures is however small.

B.3.3 Conflict-directed Backjumping

Conflict-Directed Backjumping (CBJ) [189] is an extension of BJ and GBJ, and it uses
the information about the conflicts between the current instantiation and future variables.
Every variable has its own conflict set that contains the past variables which failed consis-
tency checks with its current instantiation. And thus the CBJ backjumps to the highest
variable in this conflict set. CBJ has the ability to perform multiple backjumps, that is,
after the initial backjump from a dead-end it can continue backjumping across conflicts,
which may potentially result in significant savings. This comes at the price of maintaining
additional data structures, with higher overhead compared to BJ and GBJ.

B.3.4 Backmarking

Backmarking (BM) [89, 109] is able to reduce the number of consistency checks (redundant
work) that BT algorithm inevitably performs.

The marking scheme is based on the following two observations:

1. If at the most recent node where a given instantiation was checked, the instantiation
failed against some past instantiation that has not yet changed, then it will fail
against it again. Therefore, all consistency checks involving this instantiation may
be avoided.

1A trivial constraint is a constraint that does not restrict the combinations of values between the

involved variables.
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2. If, at the most recent node where a given instantiation was checked, the instantiation
succeeded against all past instantiations that have not yet changed, then it will
succeed against them again. Therefore we need to check the instantiation only
against the more recent past instantiations which have changed.

BM was originally designed only for static variable ordering, however Prosser [188] and
Bacchus and van Run [7] present variations of BM for dynamic variable ordering.

There are two algorithms that include the possibility of backjumping in the BM algo-
rithm. They are called Backmarking and Backjumping (BM-BJ) and Backmarking and
Conflict-Directed Backjumping (BM-CBJ). These algorithms are very similar to the BM
algorithm, but they incorporate the backmarking information to decide which is the best
variable to backtrack.

B.4 Look-ahead strategies

While look-back strategies use consistency checks among already instantiated variables
(past variables), look-ahead strategies use consistency checks among uninstantiated vari-
ables (future variables).

Look-ahead strategies performs some level of local consistency at each instantiation of
the search tree. Therefore, look-ahead strategies maintain an invariance during the search:
for every future variable exists at least one value which is consistent with the past and
current instantiations.

B.4.1 Forward Checking

Forward Checking (FC) [163, 109] differs from all algorithms described before because
it performs the consistency checks forward. All back-look strategies do the consistency
checks backward, i.e., they do the consistency checks between the current variable and
the past variables. In FC, at each level in the search tree, the domains of the future
variables are filtered in such a way that all values inconsistent with the current instan-
tiation are removed. In other words, at each variable instantiation a very limited form
of arc-consistency is enforced. When a domain of a future variable becomes empty, the
algorithm is in a dead-end situation, therefore the subtree below the empty variable can
be skipped. In such situation, next value for the current variable is tried. When all the
values for a variable failed, i.e., some domain of a future variable becomes empty, the
algorithm backtrack to the previous instantiation. When the instantiation that produced
a value removal is undone, the removed values due to that instantiation must be restored
accordingly. This produces an overhead with respect to simple BT. FC can be very effi-
cient because of its ability to discover inconsistencies early, and therefore, reduce the size
of the backtrack tree. However, FC can perform more consistency checks than backward
algorithms, due to the local consistency enforcement.

Forward Checking hybrid algorithms combine backjumping with FC. There are mainly
three FC hybrid algorithms, namely: Forward Checking and Backmarking (FC-BM), For-
ward Checking and Conflict-Directed Backjumping (FC-CBJ) and Forward Checking and
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Graph-Based Backjumping (FC-GBJ). To determine the backtrack point these algorithms
use the information about the variables that caused the current inconsistency. They differ
in the way of computing the backtrack point.

B.4.2 Maintaining Arc Consistency

Maintaining Arc Consistency (MAC) [203] algorithm performs arc-consistency at each
instantiation during the search. Experimental evaluations [203, 15] showed that MAC
can outperform FC in hard problems, even the fact that MAC needs more processing for
enforcing arc-consistency. Therefore, MAC algorithm is, in general, only more effective
than FC for hard problems. MAC was combined with CBJ by Prosser in [190].

B.5 Variable and value ordering heuristics

In all the described algorithms, which are based on a first-depth search schema, the order
in which variables and values are selected is not specified. Dechter and Meiri showed
in [52] that variable and value orderings have an enormous impact on the efficient of
solving algorithms. Ordering heuristics can be classified in:

• Static orderings: establish a selection order before the search process. Thus, the
search tree is fixed beforehand, and it is maintained through the whole search process.

• Dynamic orderings: make selections during the search process, taking into consid-
eration the current search state. Therefore, the search tree is built as long as the
search process advances. During the search, at each level of the search three, there
can be different selected variables, and for the same variable different value orderings
can be established.

Dynamic and static ordering heuristics can be also combined together. Usually, static
ordering heuristics are used to tie breaks of dynamic ordering heuristics.

B.5.1 Variable ordering

B.5.1.1 Static Variable Ordering

Static Variable Ordering (SVO) heuristics establish an order in which variables will be
instantiated during the search. The following SVO heuristics have been suggested:

• Maximum degree heuristic orders the variables taking into account their constraint
graph degree, i.e., the number of the constraints involved in. The variables which
are more constrained, i.e., with a higher constraint graph degree, are selected first.
The idea behind this heuristic is to first attempt to assign the variables which are
likely to be the most difficult. As a consequence, inconsistencies are more likely to be
discovered at high nodes of the search tree, and thus saving fruitless computations.
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• Minimal bandwidth heuristic [265] gives a variable ordering under which the con-
straint graph bandwidth2 is the lowest. The idea behind this heuristic is to order
directly constrained variables closely in order to minimize the computational efforts
when backtracking. However, finding such a variable ordering is computationally
expensive.

• Maximum cardinality heuristic [52] selects an arbitrary variable, and in succes-
sive steps it selects variables which are connected to a maximal set of previously
selected variables. When all the variables have been selected, a variable ordering
can be established. The idea is similar to the minimal bandwidth heuristic, i.e., di-
rectly constrained variables are closely ordered. However, it is less computationally
expensive than the minimal bandwidth ordering heuristic.

• Minimal width heuristic [77] is similar to the maximum cardinality heuristic, but
it establish the variable ordering from the last to the first. It starts selecting the
last variable, and it successively selects variables which are less connected to already
selected variables.

In the experiments reported in [52], no conclusion about the superiority of some of
the heuristics could be done. Heuristic’s benefits strongly depends on the topology of the
problem.

B.5.1.2 Dynamic Variable Ordering

Dynamic Variable Ordering (DVO) heuristics are believed to be more effective than SVO
heuristics. DVO heuristics are usually applied to look-ahead algorithms, since the infor-
mation on future variables change along the search, thus such information can be used by
the heuristics.

DVO heuristics are all based on the same principle proposed by Haralick and El-
liot [109]: To succeed, try first where you are most likely to fail. The idea behind this
principle is to try to discover fruitless search paths (and prune them) as early as possible.
The principle can also be stated as3: Deal with hard cases first: they can only get more
difficult if you put them off.

Minimum domain heuristic (MD) [109] orders the variables by their decreasing number
of remaining values in their domains. In other words, variables with smaller domains are
tried first.

Often, the minimum domain heuristic is combined with some information about the
constraint graph topology in order to discriminate variables with same domain size. For
example, graph degree [82], or domain cardinality divided by degree [15].

2The bandwidth of a graph is the maximum bandwidth among its nodes. The bandwidth of a node under

an ordering is the maximum distance between the node and any other adjacent node.
3Extracted from On-line guide to Constraint Programming by Roman Barták: http://kti.ms.mff.

cuni.cz/~bartak/constraints/
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B.5.2 Value ordering

Once the decision to instantiate a variable is made, it may have several values available.
Again, the order in which these values are considered can have substantial impact to find
the first solution. However, if the goal is to find all solutions, or there are no solutions,
then the value ordering is indifferent because all values will be tried once.

Value ordering heuristics follow the succeed-first principle proposed by Haralick and
Elliot in [109]. This is the opposite principle applied for dynamic variable ordering. The
goal of this principle is to find a solution as quick as possible, thus it seems adequate to
try the most promising values first.

Dechter and Pearl [53] developed this idea proposing advised backtracking which esti-
mates the goodness of a value based on a tree-relaxation of the problem. In the context of
look-ahead strategies, another approach has been studied in [129, 93, 82]. In this approach,
values are ordered by the pruning effect that they have on future domains.

B.6 Stochastic and heuristic algorithms

All the algorithms described above are complete, i.e., they explore the whole solution
space. These algorithms may be too costly in some applications, where finding a good
enough solution may be enough. Stochastic and heuristic algorithms, also called greedy
local search algorithms, use a repair or hill-climbing schema to move towards satisfactory
solutions. The main problem of these algorithms is that they can be stuck at some local
minimum. To escape from local minima, heuristics are proposed. Clearly, these algorithms
loose the property of being complete provided by systematic search methods. Stochastic
and heuristic algorithms can be seen as anytime algorithms, because they keep track of
the best solutions found so far during the execution.

B.6.1 Basic local search schema: Hill-climbing

Hill-climbing is a basic form of local search. It starts from a randomly generated as-
signment of all variables, and iteratively, changes a value of some variable in such a way
that the resulting complete assignment satisfies more constraints. Hill-climbing algorithm
requires:

• an objective function that gives a numerical value for any given solution.

• a neighborhood function that maps every candidate solution s (called state) to a set
of other candidate solutions (called neighbors of s).

In classical CSPs, the objective function for a solution s is a minimization function of
the number of violated constraints by solution s. Hill-climbing starts from a candidate
solution (initial state) which can be randomly or heuristically generated. The algorithm
continues with a neighbor solution which is better according to the objective function. The
search terminates when no better neighbor solution can be found. If the resulting solution
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is not enough satisfactory, the whole search process can be restarted from different initial
states.

Hill-climbing search is in a local minima when all the neighbors are worst than the
current state which is not necessarily the best possible solution. To overcome this draw-
back different methods have been proposed (Random Walk, Tabu Search and Simulated
Annealing). Another drawback of hill-climbing algorithms is that they have to evaluate
all neighbors of the current state to decide which neighbor is the best to move to. Min-
conflicts heuristic and Fast Local Search overcome this second drawback of hill-climbing
basic schema. Methods build upon hill-climbing are often referred to as meta-heuristics.

B.6.2 Min-conflicts

Min-conflicts heuristic for hill-climbing was firstly proposed in [171]. This heuristic chooses
randomly any conflicting variable, i.e., variables that is involved in any unsatisfied con-
straint, and then picks a value which minimizes the number of violated constraints. Tie
breaks are solved randomly. If no such value exists, it picks randomly one value that does
not increase the number of violated constraints. This heuristics avoids to evaluate all the
neighbors of the current state, however, it does not prevent from getting stuck in local
minima. Next heuristics intend to escape from local minima.

B.6.3 Random walk

Random walk strategy [218] is combined with the min-conflicts heuristic to escape from
local minima. For a given conflicting variable, the random walk strategy picks randomly
a value with a probability p, and then apply the min-conflicts heuristic with probability
1− p. The value of the parameter p has an important influence on the performance of the
method (few experimental work reported that the feasible range for p is 0.02≤ p≤ 0.1).

B.6.4 Connectionist approach

GENET [48] is a connectionist approach to solve CSPs. Problems are represented as
neural networks, where nodes in the network represent values which are linked following
connections defined by constraints. Links of the network are associated to weights, which
are subject to changes though reinforcement learning. The goal is that the network con-
verges to states that represent solutions of the CSP. In order to escape from local minima,
the weights of the constraints which are violated in a local minimum are augmented. This
produces an increased objective function and allows the network to escape to other states.
The algorithm starts with a random configuration of the network and recomputes the
state of nodes (that can be activated or deactivated) repeatedly taking into account the
neighbor states and the weights of connections to these nodes.

B.6.5 Guided Local Search and Fast Local Search

Guided Local Search (GDS) is a meta-heuristic algorithm for optimization problems in
general. Considering the optimization function as the minimization function on the number
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of unsatisfied constraints, GDS can be applied to classical CSPs. The idea is to escape
from local minima by weighting the objective function with penalties.

Fast Local Search (FSL) [253, 247], which is combined with Guided Local Search
(GDS), intends to overcome the cost of evaluating all the neighbors of the current state.
This evaluation can be very costly because the number of the neighbors and the computa-
tional cost of the objective function. The intention of FLS is to ignore neighbors that are
unlikely to lead to fruitful hill-climbs in order to improve the efficiency of the search pro-
cess. Each neighbor move is associated with an activation bit (initially set to on). Only
those neighbors whose bits are switched on will be considered. If a neighbor has been
evaluated without leading to a better solution, its bit is switched off. The search is guided
through sates where their number of active (switched on) sub-neighbors is maximized. To
escape from local minima FLS uses the same idea than GDS. GDS and FSL approaches
derive from the GENET model.

B.6.6 Tabu search

Tabu Search (TS) [97, 98] was firstly proposed by [96] and, independently, by [106]. TS
builds a tabu list of states that have already been visited. This prevents the algorithm
to visit nodes which have already been visited. Aspiration criteria are a set of conditions
which if satisfied overrule the tabu restrictions. The most aspiration criterion is to accept
a state which is in the tabu list if the state generates a solution better than any previously
seen.

B.6.7 Simulated Annealing

Simulated Annealing (SA) [130], based on the ideas presented in [169], is based on a
randomized schema which reduces the risk of getting stuck in local minima by allowing
moves to inferior solutions. A move from a solution s to solution s′ is only accepted if:

• s′ is better than s (as minimum-conflict method), or

• s′ is worse than s but e
−(g(s)−g(s′))

T > R

where g(s) is the objective function, T is a control parameter called temperature and
R ∈ [0,1] is a uniform random number. The temperature parameter T is initially set to a
high value, allowing many non-improving moves to be accepted and it is gradually reduced
to a value where nearly all non-improving moves are rejected.

B.6.8 Genetic Algorithms

Genetic Algorithms (GA) [99] borrow their ideas from natural evolution theory [115]. The
GA starts with an initial population of solutions (can be randomly generated) and evolves
the population to a set of (sub) optimal solutions. The objective function (e.g., the number
of satisfied constraints in a maximization case) gives a fitness measurement for candidates
to their chances to be selected. Genetic operators such as crossover and mutation are
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applied to build a next generation of candidate solutions. Genetic algorithms have been
applied to constraint satisfaction problems (see [58, 202, 33]).





Appendix C

Extended Constraint Satisfaction

Problems

Classical constraints define the notion of allowed/disallowed combinations of values. Such
concept is very convenient for problems that imply knowledge which is crisp or boolean.
Unfortunately, this is not the case in many real-life problems. Very often, when facing
real-life scenarios is necessary to extend the paradigm of classical discrete constraint satis-
faction techniques. For example, extending the classical CSP paradigm is unavoidable for
modeling user’s preferences since people normally give different degrees of importance to
their preferences. In Chapter 3, the main extensions to the classical CSP framework were
briefly described. In this chapter, a review on the existing literature about the different
extensions to the classical constraint satisfaction framework is given.

C.1 Constraint hierarchies

The theory of constraints hierarchies handles constraints with different priorities and was
described in detail by Alan Borning et al. in [23]. In this theory, the authors define a
hierarchy of constraints as a set of constraints classified by different strengths. In some
problems like configuration with preferences, it is needed to define constraints that are
required, i.e., hard, and others that are preferential, i.e., soft. The constraint hierarchy
theory makes also possible to define several degrees of constraints in a hierarchy.

A solution to a constraint hierarchy is an assignment of values to all variables such that
all the required constraints are satisfied and the preferential constraints are also satisfied
as much as possible, according to their relative strengths. A solution has an evaluation
with respect to a comparator that has to be irreflexive and transitive.

In [23] the authors describe a collection of algorithms for solving constraint hierarchies.
Two of the most representative algorithms are outlined as follows:

• Blue and DeltaBlue algorithms for acyclic hierarchies based on local propagation,
and

• Orange algorithms that solve sets of linear programming problems: each level of
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constraints is reformulated as a separate problem.

Last algorithmic advances on solving constraint hierarchies are presented in the PhD
dissertation of Rudovà [200].

C.2 Partial constraint satisfaction problems

Partial constraint satisfaction problems, introduced by Freuder and Wallace in [79], are of
interest in one of the following situations:

1. when the CSP is overconstrained, i.e., there is no solution satisfying all the con-
straints of the problem, or

2. when solving a CSP is too complex to solve it in a reasonable computing time, e.g.,
in interactive and real-time applications.

In both situations, it is of interest to search for“good enough” solutions. This is referred to
as partial constraint satisfaction. Maximal constraint satisfaction problems (MAX-CSP)
can be seen as an instance of partial constraint satisfaction, where the goal is to maximize
the number of satisfied constraints. MAX-CSPs have been deeply studied in Larrosa’s
thesis [143]. MAX-CSPs are specific instances of weighted CSPs (see Section C.3.4).

C.3 Soft constraint satisfaction problems

Soft constraint satisfaction problems arise from the requirement of adapting the classical
concept of constraint to real problems. Thus, different soft constraint satisfaction problems
can be defined through the following notions [200]:

• Constraint: defines some extension of the classical constraint concept.

• Problem: is defined according to the notion of constraint.

• Satisfaction degree: defines at what extent assignments satisfy the constraints in
the problem. Satisfaction degree enables to compare different assignments.

• Solution: is defined through the optimality of assignments according to their satis-
faction degree.

C.3.1 Fuzzy CSPs (FCSP)

Fuzzy CSPs [198, 55, 201] are able to model constraints which are not crisp. The tuples of
values defining a constraint have an associated preference level. In this way, it is possible
to model tuples that are more preferred to be satisfied than others. Usually, the associated
preference level is between 0 and 1. Tuples which are associated with a preference level of
1 are indicating the best combination of values, while tuples with a level of 0 are indicating
that the combination of values is not allowed (hard constraint).
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Any assignment of a set of variables, has a degree of satisfaction that indicates how well
the implied constraints are satisfied jointly. There are several ways of defining such degree
of satisfaction based on: conjunctive combination, productive combination, cumulative
combination and average combination. Among these different ways of computing degrees
of satisfaction, the most commonly used is the conjunctive combination. Thus, the degree
of satisfaction of a given assignment of variables is just the minimum preference level of
all the implied tuples for all constraints. Therefore, a solution to a FCSP is an assignment
to all variables such that its degree of satisfaction is maximized. The idea behind this
min-max method relies on the concept of maximizing the satisfaction of the worst tuple
in the solution.

In a more formal way, a FCSP is just a classical CSP with fuzzy constraints. A fuzzy
constraint c is defined by a function level lc(a)→ [0,1], for all tuples a in the constraint.
Thus, a solution to a FCSP is an assignment to all variables such that min(lc(a)) is maxi-
mized for all the constraints in the problem and all tuples implied in the solution.

C.3.2 Probabilistic CSPs

Probabilistic CSPs [62] model problems where some part of the knowledge is uncertain.
Constraints in probabilistic CSPs have associated a probability p(c) which is independent
from the other constraints. Such a probability does not refer to the constraint itself but to
the probability that the constraint take place in the real problem. Sometimes, it could be
useful to express a constraint that has some probability to occur in the real-life problem.

A solution to a probabilistic CSP has also a probability that it is really a solution in
the real problem. For any assignment of a set of variables a, the probability that a is an
assignment in the real problem can be defined by P(a) = ∏(1− p(c)) | c is violated by a.
Moreover, a solution to a probabilistic CSP is an assignment a to all variables such that
P(a) is maximized.

C.3.3 Possibilistic CSPs

In [215], Thomas Schiex defines the concept of possibilistic CSPs. Similarly to the previ-
ous extensions to classical CSPs, a possibilistic CSP is a classical CSP with possibilistic
constraints. Possibilistic constraints specify a possibilistic distribution among their tuples.

For any assignment of a set of variables a there is an associated valuation which cor-
responds to the maximum valuation among the violated constraints. Furthermore, a solu-
tion to a possibilistic CSP is a complete assignment a such that its valuation is minimized.
Actually, possibilistic CSPs (min-max) can be seen as the dual problem of fuzzy CSPs
(max-min).

One of the major problems with possibilistic CSPs is that when a tuple of a constraint is
violated with valuation of α, all the tuples with valuations β, α > β are completely ignored,
i.e. such tuple-constraints will no have any impact on the valuation of the solution. This
effect is called the “drowning effect” and it is due to the idempotency of the max operator.
In order to avoid such limitation, the notion of lexicographic CSP has been proposed
in [63].
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C.3.4 Weighted CSPs (WCSP)

Tuples in constraints of a Weighted CSP have an associated cost. Thus, weighted CSPs
are very useful for modeling optimization problems where the goal is to minimize the
total cost. The valuation (cost function) for any assignment a of a set of variables is the
arithmetic sum of the constraints implied in the assignment. Moreover, a solution to a
weighted CSP is an assignment a to all the variables such that its cost is minimized.

In a more formal way, a constraint c of a WCSP is defined by a cost function Cc(a)→
[0,∞], for all tuples a in the constraint. Thus, a solution to a WCSP is an assignment to
all variables such that ∑Cc(a) is minimized for all the constraints in the problem and all
tuples implied in the solution.

C.3.5 Lexicographic CSPs

In order to avoid the “drowning effect” of the possibilistic CSPs and fuzzy CSPs, the
notion of lexicographic CSPs was introduced by Fargier and Lang in [63]. Valuations in
lexicographic CSPs do not only takes into account the levels of priorities but also the
number of violated constraints at each level of priority.

C.4 Semiring-based constraint satisfaction problems (SCSP)

This section is a synopsis of a part of [17], taking explanations from [200]. Semiring-based
CSP [19, 21, 17, 20] is meta-framework for soft CSPs where all their instances can be cast.
Therefore, the properties of semiring-based CSPs can be inferred to other more specific
soft CSP models.

Semiring-based CSPs are based on c-semirings which are a type of semirings:

Definition C.1 (semiring) A semiring is a tuple (E,+,×,0,1) such that:

• E is a set and 0,1 ∈ E ;

• +, called the additive operation, is closed, commutative and associative. Its unit
element is 0 ;

• ×, called the multiplicative operation which is closed and associative. Its unit ele-
ment is 1 and its absorbing element is 0 ; and

• × distributes over +, i.e. a× (b+ c) = (a×b)+(a× c).

Definition C.2 (c-semiring) A c-semiring is a semiring such that + is idempotent
(a ∈ E implies a+a = a), × is commutative, and 1 is the absorbing element of +.

Let us consider the relation ≤S over E such that a ≤S b if and only if a + b = b. This
relation defines a partial ordering over the set E, which will enable to compare different
elements of the semiring. Intuitively, a≤S b means that a is better than b. Such a relation
will be used to choose the best solution of a SCSP.
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Semiring-based CSP framework is based on a c-semiring structure, where the set of
semiring specifies the values to be associated with each tuple of values, and the two semiring
operations (+,×) model constraint projection and combination respectively.

The definition of the semiring-based CSP framework is as follows:

Definition C.3 (Semiring-based Constraint System) A semiring-based constraint
system is a tuple CS = 〈S,D,V 〉, where S is a c-semiring, D is a finite set (the domain of
the variables), and V is an ordered set of variables.

Definition C.4 (Semiring-based Constraint) Given a semiring S = (E,+,×,0,1) and
a constraint system CS = 〈S,D,V 〉, a semiring-based constraint is a pair 〈de f ,con〉
where con ⊆ V and it is called the type of the constraint, and de f : Dk → E (where k is
the size of con, that is, the number of variables in it), and it is called the value of the
constraint.

Definition C.5 (Semiring-based CSP (SCSP)) A Semiring-based CSP P is a pair
P = 〈C,con〉 over a constraint system CS = 〈S,D,V 〉, where con ⊆ V and C is a set of
constraints.

Note that con is the set of variables of interest for the set of constraints C, which
however may concern also variables not in con. In many approaches, all the variables are
of interest, i.e., all the variables are implied in the solutions of the problem.

In order to define the notion of solution for the SCSP framework, the concepts of
constraint combination and constraint projection must be defined:

Definition C.6 (Semiring-based Constraint Combination) Given two constraints
c1 = 〈de f1,con1〉 and c2 = 〈de f2,con2〉, their combination, noted c1⊗c2, is the constraint
〈de f ,con〉, where:

• con = con1∪ con2, and

• de f (t) = de f1(t ↓con
con1

)×de f2(t ↓con
con2

)

In an informal manner: combining two constraints means to build a new constraint
involving all the variables of the original ones, and associating to each value tuple over such
variables a semiring element, which is obtained by multiplying the elements associated
by the original constraints on the appropriate sub-tuples. Due to commutativity and
associativity of the multiplicative operation, combination of multiple constraints can be
noted as:

c1⊗·· ·⊗ cn =
⊗n

i=1
ci =

⊗
C for C = {c1, . . . ,cn}

Definition C.7 (Semiring-based Constraint Projection) Given a constraint c =
〈de f ,con〉 and a subset W of V , the projection of c over I, noted c ⇓I, is the constraint
〈de f ′,con′〉, where:

• con′ = con∩ I, and
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• de f ′(t ′) = ∑t | t↓con
con′=t ′ de f (t)

Informally, projecting a constraint over a subset of variables means to eliminate some
variables of the constraint. This is done by associating to each tuple over the remaining
variables a semiring element which is the sum of the elements associated by the original
constraint to all the extensions of this tuple over the eliminated variables.

Constraint combination is performed via the multiplicative operation, while constraint
projection is performed via the additive operation.

Finally, the notion of semiring-based solution and its degree of satisfaction can be
defined as follows:

Definition C.8 (Semiring-based Satisfaction Degree and Solution) The solution
of a SCSP P = 〈C,con〉 is the constraint:

Sol(P) =
(⊗

C
)
⇓con

Thus, a solution to a SCSP is a constraint resulting from the combination of all the
constraints of the problem, and then projected over the variables in con (usually all the
variables of the problem). Such solution constraint provides, for each tuple of values of D
(the search space of the problem), an associated element of the semiring. This constraint
distributes by its de f function an evaluation on each tuple, thus it can be seen as the
satisfaction degree.

Informally, maximal, with respect to ≤S, semiring value of tuples in solution Sol(P)
corresponds to the best level of consistency. The tuples with such a best level of consistency
are the set of optimal assignments, i.e., the optimal solutions to a SCSP.

C.5 Valued constraint satisfaction problems (VCSP)

Valued Constraint Satisfaction Problem (VCSP) [215, 17, 18, 214] is a CSP meta-framework
defined over valuations over constraints. VCSPs are specified by a general structure based
on totally ordered monoid over valuations.
The definition of a valuation structure is given as follows:

Definition C.9 (Valuation Structure) A valuation structure is defined by
(E,�,�,�,⊥), where:

• E is a set whose elements are called valuations,

• � is a total ordering over E,

• � and ⊥ are maximum and minimum elements of E given by �,

• � is a commutative, associative binary operation on E that satisfies:

– identity: ∀a ∈ E : a�⊥= a, and

– monotonicity: ∀a,a′,b ∈ E : (a" a′)⇒ ((a�b)" (a′�b))
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From these axioms, it may be also inferred that the element � is an absorbing element,
i.e., ∀a ∈ E : (a��) =�.

The ordered set E allows to express different levels of violations. Commutativity and
associativity guarantee that the valuation of an assignment only depends on the set of
valuation of the violated constraints, and not on the way they are combined. Monotonicity
guarantees that the valuation of an assignment that satisfies a set C of constraints will
always be as good as the valuation of any assignment which satisfies a subset of C′.

Definition C.10 (Valued Constraint) A valued constraint is a tuple (c,ϕ(c)), where
c is a classical constraint and ϕ is a function from a set of constraints C to a set of valuations
E. ϕ is called valuation function.

According to the valued constraint definition, a valued CSP can be defined as follows:

Definition C.11 (Valued CSP (VCSP)) A valued CSP (VCSP) is defined by a
classical CSP (V,D,C), a valuation structure S = (E,�,�,�,⊥), and by a valuation of all
constraints ϕ. Each assignment will be valuated by combining the valuations of all violated
constraints using the operator �.

Definition C.12 (Valued Satisfaction Degree) Given a valued CSP P = (V,D,C,S,ϕ)
and an assignment t of a subset of variables X ⊆V , the valuation of assignment (or its
satisfaction degree) t is defined by: �c∈C ϕ(c).

Definition C.13 (Valued Consistency Degree and Solution) A solution of valued
CSP P = (V,D,C,S,ϕ) is an assignment to all variables having a minimal valuation with
respect to the ordering �. This minimal valuation will be called consistency degree of
the problem P.

Note that since solutions are assignments with minimal valuation computed by com-
bining violated constraints with �, the element � corresponds to unacceptable violation
and is used to express hard constraints, while ⊥ element corresponds to the concept of
complete satisfaction.

C.6 Valuations for constraints and tuples

In all the CSP models described in this chapter, one can consider to associate valuations
to constraints (as in the case of VCSPs) or to associate valuations to the tuples in the
constraints (as in the case of SCSPs). Actually, both approaches are equivalent (for finite
variable domains).

Valuations associated to each constraint can be noted: (c,w), where c is a classical
constraint and w its valuation. On the other hand, valuations associated to tuples for each
constraint can be noted by a valuation function: c : D1×·· ·×Dk →W .

The transformation from valued-constraints (c,w) to valued-tuples is straight forward:
the valuation w is assigned to all tuples which satisfy the constraint c, while the remaining
tuples are associated with the complement valuation of w.
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Transformation from valued-tuples c : D1×·· ·×Dk →W to valued-constraints can be
done by replacing the constraint c by a set of constraints c1, . . . ,ck, where k is the cardinality
of the product domain of the variables implied in c:

k = card{w ∈W |∃t ∈ D1×·· ·×Dk : c(t) = w}

C.7 Main properties of SCSP and VCSP

The most relevant properties of the two CSP meta-frameworks (SCSP and VCSP) can be
summarized in the following way:

1. Orderings: SCSPs deal with partial orders whereas VCSP represent totally ordered
sets of valuations.

2. Equivalence: SCSPs and VCSP are equivalent from the expressiveness point of
view, under the total order assumption on the valuation set. Semiring and valuation
structure are related together through replacement of additive semiring operation
by min operation which is applied in valued CSP to compare valuations on different
assignments. SCSP with partial ordered set as valuation set is suitable to express
multi-objective cominatorial problems, and therefore SCSP is a more general model
than VCSP.

3. Valued constraints vs valued tuples: while SCSPs associate valuations to tuples,
VCSPs associate valuations to constraints. However, both approaches are theoret-
ically equivalent (see Section C.6), but with different ease of use depending on the
semantics of problem.

4. SCSP main properties [167]:

• Local and global consistency: best level of consistency of a subproblem is higher
than the best level of consistency of the whole problem.

• Equivalence: after appying local consistency to a problem, it is euivalent to the
original problem if × is idempotent.

• Termination: a local consistenc procedure terminates in a finite number of
steps, if the values of E used in the problem constraints form a finite set I, and
operations + and × are closed in I.

• Order independence: two different applications of local consistency procedures
to the same problem produce equal results if × is idempotent.

5. VCSP main properties [167]:

• If ⊗ is idempotent, i.e., a⊗a = a, ∀a∈ E, local consistency mehtods make sense.
The only idempotent operator is max, used in classical CSP (logical and ∧ can
be considered as a max operator) and FCSP models, for which local consistency
enforcing algorithms can be defined. For the other models, local consistency
can be enforced by mehtods not involving constraint propagation.
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See [18] for more details and justifications of the aforementioned properties.

C.8 Casting CSP frameworks into CSP meta-frameworks

The interesting point of meta-frameworks (SCSP and VCSP) of constraint satisfaction
problems is that they accept many different instances of CSPs. Therefore, properties
and theories of such meta-frameworks can be directly applied to specific instances of such
meta-frameworks.

Table C.1 and Table C.2 show how to map classical CSPs and soft CSPs into SCSPs
and VCSPs respectively.

CSP framework E + × 0 1

classical CSP {0,1} ∨ ∧ 0 1
MAX-CSP {0,1} min + +∞ 0
weighted CSP IR+ min + +∞ 0
probabilistic CSP [0,1] max × 0 1
possibilistic CSP [0,1] min max 0 1
fuzzy CSP [0,1] max min 0 1
lexicographic CSP IN〈0,1〉 ∪{⊥} maxlex ∧ 0 1

Table C.1: Specifications (E,+,×,0,1) of SCSP for different soft CSPs frameworks.

CSP framework E � � � ⊥
classical CSP {0,1} < ∧ 0 1
MAX-CSP {0,1} > + +∞ 0
weighted CSP IN∪{+∞} > + +∞ 0
probabilistic CSP [0,1] < × 0 1
possibilistic CSP [0,1] > max 1 0
fuzzy CSP [0,1] > max 1 0

Table C.2: Specifications (E,�,�,�,⊥) of VCSP for different soft CSPs frameworks.
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Java Constraint Library

Man is a tool-using animal. Without tools he is nothing, with tools he is all.

Thomas Carlyle, 1795-1881.

This chapter describes the Java Constraint Library1 (JCL) which has been imple-
mented at the Artificial Intelligence Lab.2 of the Swiss Federal Institute of Technology.
JCL allows us to package constraint satisfaction problems and their solvers in compact
autonomous agents suitable for transmission on the Internet. On the other hand, the
Choice Constraint Language3 (CCL) is an agent content language designed to explicitly
support agent communication about CSPs.

JCL combined with CCL are suitable for building agent-based information systems on the
web, designed to solve problems and to not just provide information to the user. Such
systems would assist the user who is often faced to the problem of being overloaded with
the available information on the Web, specially in complex domains (as the ones described
in Section 1.3.1).

D.0.1 Historical background of the JCL

The evolution of the JCL can be described as follows:

• Initial idea (1996). The initial idea was developed during a semester project
of Erik Bruchez under the supervision of Rainer Weigel and Boi Faltings. Erik
Bruchez, during his semester project, implemented a graphical user interface for
solving discrete and binary constraint satisfaction problems by a simple backtracking
algorithm.

• First version (1997-2000). Within the diploma project of Marc Torrens, again
under the supervision of Rainer Weigel and Boi Faltings, the first version of the JCL
came out. This version contained about 15 different constraint solving algorithms

1http://liawww.epfl.ch/JCL.
2http://liawww.epfl.ch.
3http://liawww.epfl.ch/CCL/.
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and a more complete GUI. On top of that, an application for scheduling meetings
was implemented in order to show the applicability of the JCL to solve problems
through the Web. The JCL was, for the first time, freely available to download from
its homepage.

• Second version (2000-present). JCL was extended with methods for dealing
with exclusion constraints (unary constraints) and with binary relations in order to
support agent communication about CSP by using CCL (see Section D.2). Several
people contributed directly to this achievement: Rajat Bhattacharjee and Santiago
Macho. JCL 2.1 is currently distributed as an open source software under the terms
of the LGPL4. Santiago Macho is currently the lead of the JCL project.

• Next version would include the use of soft constraint satisfaction problems. Clearly,
this improvement will allow the development of more real applications using the JCL.
Santiago Macho and Nicoleta Neagu are currently working on that.

The JCL has been downloaded by thousands of users world-wide during these last 5
years. It has mainly been used for educational purposes, to show the power and insights
of constraint satisfaction reasoning.

D.1 Java Constraint Library

Basically, the JCL [242, 243, 244] provides services for:

• creating and managing discrete and binary CSPs, and

• applying preprocessing and search algorithms to CSPs.

The JCL can be used either in a stand-alone Java application or in an applet5. The
purpose of the JCL is to provide a framework for easily building agents that solve CSPs
on the Web. The JCL allows the development of portable applications and applets using
constraint satisfaction techniques. The JCL package is divided into two parts, namely: a
constraint library and a shell with a graphical user interface built on the top of the library
(as shown in Figure D.1).

D.1.1 The constraint library

The constraint library provides methods for building CSPs from scratch and solving them.
The user only has to model the problem she/he wants to solve and then use the methods
from the JCL to build the corresponding CSP. Once the CSP is built, any of the solving
algorithms implemented in the JCL can be used for solving the problem. These algorithms
can search one, all or n solutions depending on one parameter that the user can set. Once
the solving algorithm finishes, the JCL reports an enumeration of the solutions found and

4GNU Lesser General Public License (LGPL) Version 2.1.
5An applet is an application designed to be transmitted over the Internet and executed by a Java-

compatible Web browser.
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building methods and solving algorithms
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JCL components

Javascript
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Figure D.1: The components of the JCL environment. The JCL is composed by two main
elements: the constraint library and the graphical user interface. Java applications can
directly use the constraint library or the GUI provided by the JCL Shell. Users can also
directly build, save, and solve CSPs through a web browser using the JCL Shell.

some statistics on the search. These statistics include the number of backtracks, the num-
ber of consistency checks, the number of instantiations, and so forth. The library provides
both search and preprocessing algorithms. Search algorithms allow us to find solutions of
a CSP, while preprocessing algorithms are used to simplify a CSP by eliminating values
and compound labels that cannot be part of any solutions.

The solving methods implemented in the JCL are:

• Chronological Backtracking (BT)

• Backjumping (BJ)

– Constraint-directed Backjumping

– Graph-based Backjumping

• Backmarking (BM)

– Backmarking with Backjumping

– Backmarking with constraint-directed Backjumping

– Backmarking with graph-based Backjumping

• Forward Checking (FC)

– Forward Checking with Backmarking
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– Forward Checking with constraint-directed Backjumping

– Forward Checking with graph-based Backjumping

– Forward Checking using arc consistency (MAC)

For more details on the combination of the above algorithms, the reader is referred
to [189]. Some of these algorithms are also implemented in the Peter van Beek’s CSPLib6

and were just adapted in the JCL. Two preprocessing algorithms are also implemented in
the JCL: Arc-consistency (AC) and Path-consistency (PC) (see [158] for details of these
consistency algorithms).

Methods for building classical random problems such as the n-queens problem, the
confused n-queens problem, and the graph coloring problem have been provided within
JCL. A random generator of constraint satisfaction problems is included as well in the
JCL package.

D.1.2 The graphical user interface

The Graphical User Interface (GUI) has been implemented for facilitating the integration
of the constraint library into Java applications and applets where the results of the algo-
rithms must be displayed graphically. A java application and an applet for editing and
solving CSPs in a user-friendly interface have also been implemented.

D.2 Choice Constraint Language (CCL)

This section is based on the text in the CCL homepage provided by Steve Willmott.
The CCL is an agent content language designed to explicitly support agent communi-

cation about CSPs [261, 262]. It has been developed at the Artificial Intelligence Lab.õf
the Swiss Federal Institute of Technology since 1998. The contributors of the CCL are
Steve Willmott, Monique Calisti, Boi Faltings, Santiago Macho, Omar Belakdhar and
Marc Torrens. CCL is designed to be used directly with the FIPA7 standard Agent Com-
munication Language (ACL), and it has been incorporated in the FIPA 1999 standard as
content language FIPA-CCL.

CCL uses CSP formalism as an underlying model for choice problems. In this way,
CCL addresses a large class of choice problems with explicit support for notions such as
choices, options for choices and relationships among choices.

The CSP model which underlies FIPA CCL has three restrictions imposed which have
been made to make the model minimal and more suitable for a communication language:

1. Binary Constraints. All constraints expressed must be binary. This restriction is
often made in the CSP field, since most powerful solving techniques only apply to
CSPs with arity 2 constraints. Furthermore, for discrete CSPs, any CSP represented

6CSPLib: routines for solving binary constraint satisfaction problems by Peter van Beek. It can be

freely downloaded at ftp://ftp.cs.ualberta.ca:/pub/ai/csp.
7FIPA, Federation for Intelligent Physical Agents, http://www.fipa.org.
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Figure D.2: JCL and CCL provide the needed tools to build multi-agent applications for
solving choice problems. In this example, only 4 agents are considered.

in a form using n-ary constraints can be transformed into an equivalent CSP using
only binary (2-ary) constraints. The language therefore looses none of its expressive
power with this restriction.

2. Discrete Variable Domains. In practice, CSPs requiring continuous values can
often be formulated by discretizing the continuous domain (so that discrete CSP
solving techniques can be applied, see [207]).

3. Intensional Relations. There are two main ways of representing constraints for
CSPs, as extensional relations (consisting of a list of the valid combinations of values
for a pair or tuple of variables) and as intensional relations (consisting of relations
such as equals, greater-than etc̃. which do not rely on an explicit list). FIPA CCL
excludes the use of extensional relations because this makes CSPs expressed in FIPA
CCL much easier to compose (merge) when fusing information from several sources.

There are also several implicit constraints which arise out of the fact that that CSPs
represented in FIPA CCL must be contained in a single message. Concretely, the number
of variables and the number of constraints of a CSP expressed in FIPA CCL must be finite.

D.3 JCL with CCL

Currently, many applications of agents involve to reason and communicate about multiple
interrelated choices. In that sense, JCL provides the reasoning engines based on constraint
satisfaction problems, and CCL provides a communication language about constraints, as
shown in Figure D.2. Therefore, the combination of JCL and CCL can support agent-based
applications which deal with problems with constrained choices, for instance electronic
catalogs.
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[233] Markus Stolze and Michael Ströbel. The Shopping Gate - Enabling Role- and
Preference-Specific e-Commerce Shopping Experiences. Web Intelligence: Research
and Development, 2198:549–561, 2001.
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