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Abstract

Optimization methods play an indispensable role in today’s competitive environment

and there are plenty of practical examples where such methods have been used to

identify better performing designs (Boeing 787 Dreamliner and NASA ST5 antenna).

Increasing complexity of the problems have also led to the development of sophisti-

cated mathematical models that can only be solved using computationally expensive

numerical simulations such as finite element methods (FEM), computational fluids

dynamics (CFD), computational electromagnetics (CEM), etc. Repeated use of such

numerical simulations is necessary in the context of optimization, i.e., to identify

optimum products and processes with outstanding performance features. In reality,

such problems often involve a large number of constraints and often demand multiple

performance considerations.

Over the decades, population based metaheuristics have proven to be efficient, robust

and versatile methods for numerical optimization as they are more amenable to deal

with such black-box problems. The major downside of any of these population based

metaheuristics is their extremely long run time. Therefore, it is no surprise that the

development of fast and efficient metaheuristics is an actively pursued research area.

In this thesis, an effort is made to address three key challenges facing the adoption of

population based metaheuristics for practical design optimization. The first challenge

relates to the development of an efficient and reliable optimization algorithm capable

of dealing with constrained optimization problems. In particular, two novel constraint

handling mechanisms are introduced i.e., one with the concept of partial evaluation

using constraint sequencing and the other involving adaptive constraint handling. The

study is motivated by the fundamental question should one evaluate all constraints

of a solution even if it has violated one constraint? and what is the difference in

the underlying search process if multiple constraint sequences are used?. The second

contribution reported in this thesis relates to the development of an algorithm to

tackle optimization problems involving more than four objectives, i.e., many objective

optimizations. In this context, an algorithm based on decomposition is introduced

which extends the capability of the well-known MOEA/D to deal with many objective

optimization problems. The algorithm incorporates a systematic sampling scheme and
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the balance between convergence and diversity during the course of search is maintained

via a simple preemptive distance comparison scheme. The third contribution made in

this thesis is in the area of robust design optimization where the effects of various

formulations are studied in the framework of six-sigma quality. Four different problem

formulations of robust design and methods to solve them have been proposed.

The performance of these algorithms/schemes is rigorously assessed using well es-

tablished benchmark functions and a suite of engineering design optimization problems.

The results assessed using various measures clearly indicate that the proposed develop-

ments offer competitive advantages over existing schemes.

Finally, a summary of the findings of the work is presented. In addition, future

issues and directions which could be pursued with the aim of making the algorithms

more efficient for handling various types of optimization problems are identified.
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Chapter 1

Overview of the Dissertation

1.1 Introduction

Many real-life problems can be modeled as an optimization problem. Optimization

generally means to seek for an optimum design/solution (or a set of designs/solutions).

Metaphorically, the optimum design refers to a design which is either “maximized” or

“minimized” in terms of its performance (or objective) (i.e., a function of various design

variables). In an optimization problem, the aim is to discover the best combination

of values of such design variables which contributes towards the optimum. Some

typical examples from the domain of engineering design include minimization of the

cost of a welded beam, minimization of the weight of a tension/compression spring,

minimization of the total weight of the speed reducer etc. It is important to highlight

that most of these optimization problems involve a large number of (inequality and

equality constraints) while some involve more than four objectives. These problems

still pose significant challenges to any optimizer and there has been an active interest

to develop efficient algorithms to solve such problems.

There are many methods to deal with these optimization problems. In particular,

the work reported in this dissertation aims to introduce novel methods of constraint

handling/constraint sequencing, efficient optimization algorithms based on differential

evolution, novel methods to deal with many objective optimization problems and finally

1
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an approach to identify robust solutions.

The following sections provide the background of various optimization problems,

solution schemes and means of performance assessment. The gaps are listed clearly to

lay the foundations of this research. The contributions are presented in the following

chapters.

1.2 Optimization problem

An optimization problem can mathematically be formulated as follows.

Minimize
(x)

fi(x), i = 1, 2, ..........M

Subject to

gj(x) ≥ 0, j = 1, 2, .......p

hk(x) = 0, k = 1, 2, .......q

(1.1)

x(L) ≤ x ≤ x(U)

(1.2)

where fi is a objective function and M is the number of objectives. The number of

inequality and equality constraints are denoted by p and q respectively. Depending upon

the number of objectives the optimization problem is divided into three categories i.e.,

single objective problem (M = 1), multi-objective problem (M ≥ 2), many-objective

problem (M ≥ 4). These problems are briefly discussed below. The notion of mini-

mization is used throughout this dissertation.

1.2.1 Single-objective problem

Single-objective optimization refers to problems with only one objective. The aim is to

find all solutions x ⊂ S such that f(x) assumes the minimum value f ∗. The solution x

to such a problem can be either a unique solution, or there may be multiple values of
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x for which the objective value is f ∗.

1.2.2 Multi-/Many-objective problem

Multi-objective optimization refers to problems with (M ≥ 2). In the event (M ≥ 4),

the optimization problem is referred as a many-objective optimization problem. In the

absence of any preference information among the objectives, the aim is to identify the

set of non-dominated solutions.

Definition 1. For any two solutions x1, x2 ∈ R, x1 is said to be non-dominated with

x2, if and only if fi(x1) ≤ fi(x2) ∀i = 1....M with strict inequality for at least one i.

Definition 2. For x∗ ∈ Ω, Ω = {x ∈ R} is said to be a Pareto optimal solution if there

exists no other feasible solution x ∈ Ω such that fi(x) ≤ fi(x
∗), ∀i = 1....M with strict

inequality for at least one i.

In Figure 1.1, four solutions, A, B, C and D are shown in the objective space. Among

these solutions, C and D dominate B because they are better in both objectives, i.e.,

f1,C < f1,B and f2,C < f2,B; same relation can be drawn for solutions D and B. On the

other hand, A and C are non-dominated with respect to each other, since A is better in

f2, whereas C is better in f1, i.e., f1,A > f1,C and f2,A < f2,C. For the same reason,

pairs A and C, C and D and D and A are non-dominated with respect to each other.

A

B

C

D

f_1

f_2

Non-dominated Front
Dominated solution

Figure 1.1: Dominance relationships for multi-objective optimization (C, D dominate B; A, C
and D form a non-dominated set)
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Among these four solutions, A, C and D form a non-dominated set since they are

not dominated by any solution.

1.3 Optimization methods

While a plethora of optimization methods have been developed over the years, pop-

ulation based stochastic optimization methods are commonly used to solve complex

problems involving multiple objectives and constraints. Such methods are typically

attractive as they can deal with multimodal functions and do not require assumptions

on functional continuity. Furthermore, such methods are also capable of delivering the

nondominated set in a single run. A simple classification is presented in Figure 1.2 with

the salient scope of population based methods.

Optimization methods

Non-population based Population based

Optimization with 

uncertainty

Optimization with

 certainty

Gradient/Non-gradient

 methods

Robust optimization Non-robust optimization

Single-objective Multi/Many-objective

Non-dominance based Decomposition based

Figure 1.2: A simple classification of optimization methods

The basic concept of a population based method is to improve a set of solutions

through the process of evolution [2]. Clearly, their advantages can be summarized as
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follows:

• They can be used to deal with combinatorial, continuous, or mixed problems with

no or minimal customization. Since they do not require the objective function to

be continuous or smooth or to possess any specific properties such as linearity,

they can be applied to any black-box optimization problem.

• They are capable of identifying the global optimum as they do not rely on a single

solution or gradients.

• Since such algorithms operate with a population of solutions, they can deliver the

set of non-dominated solutions in a single run.

• Since they are inherently parallel in nature, such algorithms can be easily paral-

lelized to reduce the time taken for an optimization exercise.

• In the event, the problem involves only continuous variables, the efficiency of

such algorithms can be further improved using hybridization i.e., coupling a local

search (i.e., gradient based) to expedite convergence.

While a population based scheme is attractive, there are a number of key issues to

be resolved prior to an application. The challenges are summarized below.

• The major disadvantage of any population based method is its computational

complexity (i.e., the need to evaluate numerous solutions prior to convergence).

In the event, such evaluations involve iterative solvers ( as in computational fluid

dynamics, finite element analysis etc.), the computational time required for an

optimization exercise could easily be prohibitive. Thus the underlying efficiency

of the optimizer is of key importance.

• Since most real life problems involve constraints, efficient handling of constraints

is necessary. In the event such constraints are evaluated using computationally

expensive iterative solvers, decisions concerning the cost-benefits of evaluating of

an infeasible solution needs to be carefully considered.
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• In presence of more than four objectives, alternatives to non-dominance based

schemes have to be deployed to enforce adequate selection pressure to drive the

population of solutions towards convergence.

• Real life application demands identification of robust solutions i.e., solutions which

are insensitive/less sensitive to variations in the variable values. Development of

algorithms to solve robust optimization problems are far more challenging as it

requires evaluation of numerous additional solutions.

This dissertation will try to address the above listed research questions i.e., how

can existing population based methods be enhanced to deal with the challenges? To

begin with, firstly, the major roadblocks are identified, and thereafter, mechanisms for

countering them are proposed and documented in detail.

In this study, the enhancements are made to a canonical population based method,

i.e., a basic differential evolution (DE) algorithm. The performance of the modified

algorithms are studied using a number of single, multi-/many-objective optimization

problems. The enhancements are fairly generic and can be implemented within other

population based optimization algorithms.

1.3.1 Differential evolution algorithm

Differential Evolution (DE) is a subset of evolutionary algorithms and can be considered

as a generic population-based meta-heuristic. DE imitates the natural evolutionary

process of the species, as it goes through the biological evolution, such as reproduction,

mutation, recombination, and selection. Candidate solution is generated through the

consummation of multiple randomly selected parent individuals. This solution is then

evaluated for fitness. Out of the parents and the offspring solution, one with the best

performance survives. This process continues until the convergence condition is met.

A basic DE framework is shown in Algorithm 1.1.
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Algorithm 1.1 Basic Differential Evolution algorithm

SET: Maximum number of generations GENmax.

1: Initialize a population
2: while gen ≤ GENmax do
3: Select three random parents s.t., p1 6= p2 6= p3

4: Perform the mutation
5: Perform the recombination
6: Perform the selection
7: end while

Initialization

The search starts with a set of randomly generated solutions i.e., xi,gen, i = 1, 2, 3, ....N ,

where N is the number of individuals in a population. A uniform sampling is commonly

used for the design variables between its lower and upper bounds.

Mutation

Offspring is generated from the mating of three parent solutions. These parent solutions

are randomly selected from the population, such that, they are mutually different from

each other. These parent solutions are individually called the donor vector. To generate

the offspring a trial vector (vi,gen) i.e., vi,gen = xr1,gen +F (xr2,gen−xr3,gen), r1 6= r2 6= r3

is generated in the mutation process, where F is called the mutation factor/scaling

factor.

Recombination

In the recombination process, the offspring is generated by observing each of the

variables either from the donor vector or the trial vector. The target vector (ui,gen)

is generated as follows.

ui,j,gen =











vi,j,gen, if rand[0, 1) ≤ CR or j = jrand,

xi,j,gen, otherwise
(1.3)
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where j = 1, ..D is the number of variables and CR is called the recombination

factor/crossover rate.

Selection

The generated offspring is selected over any parent solution if the fitness of i-th solution

is less than the r-th parent solution i.e., f(ui,gen) < f(ur,gen), assuming that the aim is

to minimize the fitness.

1.3.2 Non-dominance based method

Non-dominance based methods are commonly used for multi-objective problems. In

this case, the final output is not a single solution but rather a set of solutions.

1.3.3 Decomposition based method

Decomposition based methods are normally used for the problems where the number of

objectives is more than one. There are many decomposition approaches reported in the

literature. Three most common decomposition approaches are briefly described below.

Weighted Sum Approach

The weighted sum approach is a straightforward decomposition method. It assigns the

weighting factor for each objective and calculates the weighted sum of the objectives [3].

Thus, the objective vector is transformed into a single objective scalar value as follows:

min
x∈X

φws(x) =
M

∑

i=1

wifi(x) (1.4)

where w is the weight vector with wi ≥ 0,∀i = 1, 2, ...,M . The major drawback of this

method is the choice of weight directions; improper set of weight direction misleads the

search to a premature convergence and it is unable to solve problems with a concave

Pareto front.
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Tchebycheff Approach

In this approach, the search is directed with respect to a reference point, which is known

as ideal point (z∗) or uptopian point (u∗). An ideal point is a hypothetical point with

the following property i.e., z∗ = [min(fj,1(x)), min(fj,2(x)), ...., min(fN,M(x))], where N

is the size of population and M is the number of objectives. In addition, the uptopian

point is referred as u∗ = z∗ − ǫ (ǫ is a very small quantity s.t., ǫ > 0). The objective

vector is transformed into a single objective scalar value as follows:

min
x∈X

φte(x) =
M

max
i=1

wi|(fi(x) − u∗
i )| (1.5)

where w is the weight vector for M number of objectives. One of the drawbacks of this

method is that the search continues to direct through the reference point i.e., ideal point,

the improper scaling of the objectives often increases/decreases the selection pressure.

Normal Boundary Intersection Method

Normal boundary intersection method (NBI) [4] is yet another approach used in de-

composition. The mathematical formulation of the method is derived as follows:

max s

subject to constraint (1.6)

Ψwi + sn̄ = fi(x) − f ∗
i

s ∈ ℜ, x ∈ Ω

where w is the weight vector i.e.,
∑M

i=1
wi = 1, f ∗

i denotes the ideal point and Ψ ∈ ℜm×m

is a matrix with the columns fi(x) − f ∗
i for i = 1, 2, .....m. The i-th column of this

matrix (fi(x)− f ∗
i ) is referred as the pay-off matrix. Here, n̄ refers to the quasi normal

which calculated as n̄ = −φe, where e is the column vector of all ones. One of the

drawbacks of this method is that the method has to deal with the equality constraint.
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As illustrated in Figure 1.3, the constraint has to ensure that f(x) is always in L, the

line with direction w and passing through f ∗.

L

f*w

d

f(x)

0
Pareto front

Attainable objective set

Figure 1.3: Illustration of normal boundary intersection method.

Variants of NBI use a penalty factor to deal with the constraint. Mathematically,

the scalar optimization subproblem can be presented as follows

min
x∈X

φBIP (x) = d1 + Kd2

subject to constraint (1.7)

d1 =
||(f ∗ − f(x))T w||

||w||

and d2 = ||f(x) − (f ∗ − d1w)||

As shown in Figure 1.4, d1 is the distance between f ∗ and p; d2 is the distance between

f(x) and L. To match with the previous formulation of Equation 1.6, the penalty factor

K for Equation 1.7 is needed.
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L

f*w

d_1

f(x)

0
Pareto front

Attainable objective set

d_2

p

Figure 1.4: Illustration of boundary intersection approach using penalty factor.

1.3.4 Robust optimization method

Robust design optimization aims to find a solution (or a set of solutions) that is/are

competent and reliable under given uncertainties. It can be seen from Figure 1.5 that,

a deterministic optimal solution can be found at solution A using any conventional

optimization algorithm assuming the minimization of the performance, which render

the optimum solution prone to fail to maintain the desired performance with a slight

variation in its variable values.

On the other hand, the solution B obtained from a robust optimization is moderately

good in terms of optimality and also good in terms of robustness. It is clear that in

order to solve a robust optimization problem, one needs to evaluate the neighborhood

performance of the solution. Some of the early techniques relied on adding a safety

factor to constraints/variables to come up with robust (“conservative”) designs [5].

Recently, more involved research has focused on development of approaches to identify

robust optimal solutions. The studies can be broadly classified into the areas that deal

with (a) formulation of a robust optimization problem (b) quantification of robustness

and (c) means to deal with such problems with affordable computing resources i.e., the

search algorithms. A detailed description of each of these areas appears in Chapter 4.
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..
Sol. B

Sol. A

Robust
Optimal

Optimal

Acceptable
deviation

f

x

Figure 1.5: Comparison between conventional optimization and robust optimization (in
minimization problem).

1.4 Performance assessment

The performance of any optimization problem can be evaluated by assessing the opti-

mality of the solution (or set of solutions) achieved at the end of evolutionary process.

1.4.1 Performance assessment: Single objective optimization

In the context of single objective optimization, the problem of performance assessment is

straightforward as the comparison only depends on a single performance criterion. Since

the algorithm is stochastic in nature, it is necessary to report the results of multiple

runs. In this thesis, multiple independent runs are carried out and the statistics are

reported and compared across multiple algorithms.

1.4.2 Multi-/Many-objective optimization

The quality of solutions obtained from multi-objective optimization is often difficult to

assess. Two measures are commonly used e.g., the spread of the solutions across the

Pareto-optimal front and the ability to attain the Pareto-optimal front. Several metrics

are available in the literature to compute the value of convergence and diversity of a set
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of solutions. In this study two common metrics have been used i.e., (a) hypervolume [6]

(b) Inverted generational distance (IGD) [7, 8, 9].

• Diversity: assesses the spread across the Pareto-optimal front.

• Convergence: assesses convergence of the solutions i.e., closeness to the Pareto-

optimal front.

Hypervolume

S-metric or Hypervolume (HV) was introduced by Zitzler and Theiele and then de-

scribed by Coello Coello, Veldhuizen and Lamont [10]. It is the Lebesgue measure ∧

of the union of hypercubes ci for the non-dominated set mi with respect to a reference

point fref :

S(M) = ∧(
⋃

i

ci|mi ∈ M) = ∧(
⋃

m∈M

f |m ≺ f ≺ fref ) (1.8)

An example is shown in Figure 1.6 with a non-dominated set of solutions (i.e., A,

B, C, D). The hyperarea refers to the union of all the individual areas of A, B, C

and D. Hypervolume is used to capture the convergence and the diversity of a set of

f_ref

A

B

C

D

f_1

f_2HV=A+B+C+D

Figure 1.6: Calculation of hypervolume (both objectives are being minimized).

solutions. For a problem where minimization of the solutions is concerned, the large
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value of hypervolume demonstrates better convergence and also indicates the solutions

are diverse.

IGD

Inverted generational distance (IGD) was introduced in [7, 11, 12] to measure the

convergence and the spread of a set of solutions. The mathematical formulation is

given below.

IGD =
1

|P |
∑

p∈P

min
q∈Q

d(p, q) (1.9)

where P is the reference set (or known Pareto front), Q is the Pareto front produced

by any optimization algorithm and minq∈Q d(p, q) is the minimum Euclidean distance

between a point from the reference set to all the points found in the given Pareto

front. The average value of this distance is the indication of IGD of that Pareto front.

Figure 1.7 shows a Pareto front Q with a reference set of solutions.

.
.
.

.
.

.
.

.
.

.
.

.
.

.
P

Q
d(p,q)

P

Q .
.

Figure 1.7: Calculation of IGD (P ≡ Pareto front, Q ≡ non-dominated set).
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1.5 Scope of Research

In this thesis, efforts are made to address the challenges faced by existing optimization

approaches. In particular, they include the presence of constraints, high numbers of

objectives, and development of efficient means to identify solutions with desired levels

of robustness. Although these strategies have been implemented in DE, it can be easily

extended to other metaheuristic paradigms.

The purpose of the work presented in this thesis is not to invent an optimization al-

gorithm, but rather to identify the potential areas where the algorithm can be enhanced

and improved to deal with real world optimization problems (i.e., computational time,

convergence, robustness). The working of the proposed methods is claimed through

rigorous testing on mathematical benchmarks. The performance of the developed

approaches has been compared with contemporary algorithms to objectively illustrate

the benefits.

The primary focus of this thesis is to explore the efficiency and effectiveness of the

approaches in solving engineering optimization problems. Although the emphasis of

this work is on engineering design optimization, the methods developed are suitable

as generic optimizers and can be applied to problems in other disciplines such as

scheduling, finance and statistics. Dynamic problems, in which the objectives change

with time, are not studied in this thesis.

1.6 Contributions of Thesis

The following contributions are made in this thesis:

1. The first contribution of this thesis relates to the development of an efficient and

reliable optimization algorithm capable of dealing with constrained optimization

problems. Towards this development, three different approaches are presented.

The first proposal is to adaptively select the control parameters which hold the
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key to performance of the algorithm. Secondly, a constraint handling method

is introduced for inequality constraints. Finally, a general adaptive constraint

handling method is proposed. These improvements are assessed by implementing

the methods in the DE framework. Following is the outline of these algorithms.

(a) Adaptive hybrid DE algorithm: The proposed algorithm incorporates an

adaptive crossover rate control mechanism, a combination of crossover types

and a local search strategy. Binomial and exponential crossover mechanisms

have been used in various stages of evolution to exploit their strengths in

exploration and exploitation.

(b) DE with constraint sequencing : A novel constraint handling scheme has

been introduced within the framework of differential evolution utilizing the

concepts of partial evaluation and constraint sequencing. The utility of using

multiple constraint sequences is highlighted using three illustrative examples.

The approach is likely to provide significant computational benefits for prob-

lems involving computationally expensive constraints. Furthermore, since

DE-CS attempts to reach the feasible space from different search directions,

it is less likely to be trapped in local optima. Since the efficiency of the

algorithm stems from handling constraints, the approach is likely to be less

useful for problems with high feasibility ratio. While the approach presented

in this thesis inherently assumes that the constraints can be evaluated inde-

pendently, the method can be extended further to deal with blocks or sets of

constraints as encountered in more realistic multidisciplinary optimization

problems.

(c) Adaptive constraint handling method : An adaptive constraint handling ap-

proach has been presented. The constraint handling approach is embedded

within the framework of multi-objective evolutionary algorithm based on

decomposition (MOEA/D) to equip it to deal with constrained optimization

problems. Since the constraint handling scheme is generic, it can be used in
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other forms of population based stochastic algorithms.

2. The second contribution is in the area of multi-/many-objective optimization

problems. As reported in the previous studies, Pareto-dominance based methods

are insufficient for dealing with the problems with high number of objectives. More

often, these problems are tackled through the decomposition based methods when

the convergence criterion is stricter. However, this method needs a careful con-

sideration to balance between the convergence and diversity. This study proposes

a decomposition based evolutionary algorithm. Its performance is demonstrated

using unconstrained and constrained many objective optimization problems. The

approach utilizes reference directions to guide the search, wherein the reference

directions are generated using a systematic sampling. The algorithm is designed

using a steady state form. In an attempt to alleviate the problems associated with

decomposition (commonly encountered in the context of reference direction based

methods), the balance between diversity and convergence is maintained using a

simple preemptive distance comparison scheme.

3. The third contribution is in the area of optimization problems with uncertain

variables (robust design optimization) for multi-/many-objective problems. Three

relevant directions are pursued:

(a) Robust optimization problem formulation: A very important step in a robust

optimization exercise is to formulate a problem. Depending upon the robust

formulation different optimization methods can be applied in order to get

the robust solutions. A number of different approaches have been proposed

in the literature, wherein additional objective(s) and/or constraint(s) have

been added to the original formulation. In this thesis, a generic model of

the robust design optimization problem is formulated which can easily be

coupled with any evolutionary based optimization algorithm.

(b) Quantification of robustness : The solution achieved by the robust optimiza-
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tion exercise needs to be quantified. Most of the approaches reported in

the literature utilizes the expected value and variance of the solution. The

major downside lies with the mechanism for estimating the expected fitness

as it requires a large number of samples to compute the expected value with

good accuracy. This study utilizes a six sigma based robust quantification

with Latin hypercube sampling to approximate the expected value and the

variance.

(c) Search algorithms: While the issues concerning the formulation of the prob-

lem and the measures of robustness have been addressed, the outcome of

a robust optimization exercise is also dependent on the efficiency of the

underlying search strategy. A simple decomposition based search algorithm

is proposed to deal with the many-objective formulation of the robust opti-

mization problem.

4. Finally, a number of numerical experiments are conducted on several benchmark

test problems and engineering applications using the above mentioned algorithms.

Comparison with previously reported studies is included in order to highlight the

benefits.

1.7 Organization of Thesis

Following this introduction, this thesis is divided into five further chapters. While

Chapter 1 lays some of the groundwork for the research, Chapters 2–4 present the

principal technical contributions and describes the numerical experiments in detail.

Chapter 5 provides a summary and a few future directions of the presented work.

Since the thesis explores diverse disciplines within optimization, the relevant literature

is included in each chapter instead of as one large unit. Individual contents of the

chapters are outlined as follows.

• Chapter 1, provides an introduction to optimization with a brief and simple
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classification of various optimization techniques. Population based techniques,

which form the center of optimization methods developed in this thesis, are

particularly discussed in detail. Thereafter, various areas in which this thesis

seeks to make improvements in existing approaches are highlighted. These include

constraint handling, many-objective and the robust optimization problems. The

detailed contributions in each of these areas are presented individually in further

chapters.

• In Chapter 2, three new algorithms for dealing with constrained optimization

problems are proposed. One of them, Adaptive Hybrid DE algorithm, is an

improved DE that adaptively selects the control parameters and also incorporates

the local search for further benefits. The other algorithm, DE with Constraint

Sequencing (DE-CS), extends the conventional constraint handling techniques by

introducing constraint sequencing schemes to improve the rate of convergence.

Finally, in MOEA/D-ACH, an adaptive constraint handling method is presented

in the framework of MOEA/D for multi-objective problems.

• In Chapter 3, a decomposition based evolutionary algorithm (DBEA) is proposed

to deal with the many-objective problems (i.e., problems with four or more ob-

jectives). The benefits of using DBEA are highlighted with several real-world

engineering benchmark problems.

• In Chapter 4, a robust optimization algorithm is introduced wherein a six sigma

based robust measure is used to quantify the robustness. The underlying opti-

mization problem is solved using the decomposition based evolutionary algorithm

developed earlier.

• In Chapter 5, a summary of the findings of the work is presented. In addition,

future issues and directions which could be pursued with the aim of making the

algorithms more efficient for handling various types of optimization problems are

identified.
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Chapter Overview

This chapter introduces an adaptive parameter control strategy for DE and two con-

straint handling methods. These strategies are implemented in DE, however, the ideas

can be extended to other similar frameworks. Comparisons with other published state-of-

the-art algorithms on various benchmark problems are included in order to highlight the

benefits.

2.1 Introduction

Over the years, a large number of real world optimization problems have been suc-

cessfully solved using various forms of population based stochastic optimization al-

gorithms. Many of these algorithms belong to the class of DE. The winning entries

of CEC-2006 [13] and CEC-2010 [14] competitions relied on DE based algorithms.

Although the performance of DE based algorithms has improved consistently, their

performance is known to be largely dependent on the choice of its parameters i.e.,

mutation factor (F), crossover rate (CR). For constrained optimization problems, the

underlying schemes for constraint handling play a major role in the efficiency of the op-

timization algorithm. The following discussion provides a brief background on existing

approaches to deal with these.

• Mutation factor: The mutation factor is perhaps the first parameter which has

been identified to affect the performance of DE. Earlier forms of DEs used a fixed

value of F = 0.5, while there are reports of F ranging between 0.1 and 1.0 [15],

use of Gaussian with mean of 0.5 and a standard deviation of 0.3 [16] or the use

of a Cauchy distribution with a mean of 0.5 and a standard deviation of 0.1 [17].

• Crossover rate: The crossover rate (CR) is yet another parameter which has

also been identified to affect the performance of DE. Numerical experiments have

indicated that a linearly separable problem can be efficiently solved using low CR
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values, while higher CR values are preferred for non-separable and multi-modal

problems [18, 19]. Various CR values have been used in past studies ranging from

fixed values of 0.9 for solving linear, non-linear and multi-modal functions [20, 21,

22, 23], 0.7 for solving cubic, polynomial and quadratic functions [24] and 0.3 for

noisy optimization problems [25, 26].

• Mutation strategy: There are also a number of mutation strategies that have

been proposed over the years. Commonly adopted mutation strategies include

DE/best/1, DE/rand/1, DE/current-to-best/1 and DE/rand/2 [27, 28]. Variants

have also emerged in recent years, such as DE/rand/1/-Either -Or-Algorithm

etc [29]. Observations have indicated that DE/rand/1 performs well for linearly

separable, unimodal or non-separable and noisy functions [30, 25]. Experiments

also indicate that DE/current-to-best/1 and DE/rand/2 are effective for solving

multi-modal and non-separable functions [27].

• Crossover strategy: In terms of crossover strategy, two most promising ones

include the binomial crossover and the exponential crossover. Studies in [30] in-

dicate that the binomial crossover undergoing a binomial gene-wise crossover [31]

is less greedy and has the ability to solve linearly separable and multi-modal

problems [27]. The exponential crossover undergoing sequential participation of

multiple genes [32] exploit more and tend to be useful for solving non-linear

functions [21]. Two other forms i.e., trigonometric mutation and arithmetic

recombination have also been proposed in recent years.

• Parent selection: While in a native DE, three random parents are chosen for

mutation [20, 33], a number of recent algorithms have modified this basic parent

selection scheme. In the works of [21], two parents were randomly selected from an

active population while the third was selected randomly from an archive. Instead

of random selection of parents, a selection probability inversely proportional to

its distance from the mutated individual was used for selecting multiple parents
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in [34] for the solution of unconstrained optimization problems. In an effort

to further enhance the performance of DE variants, local search strategies have

also been incorporated such as in the works of hybrid DE [35, 36, 37]. In

such approaches, local searches are conducted sparingly and periodically from

promising solutions.

• Constraint-handling: In addition to the parameters discussed above, the per-

formance of the optimization algorithm is affected by the underlying mechanism of

constraint handling. Constraint handling methods can be broadly categorized into

six different types [38, 39] use of penalty functions, repair schemes, feasibility-first,

ǫ-constrained method, dominance based method, adaptive method and ensembles.

The discussion below provides a brief of each approach.

– Use of penalty functions: Penalty function based methods are one of the

most commonly adopted approaches. These methods penalize the infeasible

solution with predefined penalty factor(s) and aggregate into a scalar value.

In the context of minimization, the primary aim is to decrease the fitness

of infeasible solutions in order to favor the selection of feasible solutions.

Variants of the penalty function based approach include static penalties [40],

dynamic penalties [41], annealing penalties [42], adaptive penalties [43, 44],

death penalty method [40], superiority of feasible points [45], faster adap-

tive method [46]. While some of these methods have reported competitive

performance, choice of an appropriate penalty factor(s) is non trivial.

– Repair schemes: Evolutionary algorithms perform well for unconstrained

or simple constrained optimization problems e.g., box constraints but are

known to face difficulties in solving highly constrained problems. This is

because the traditional search operators (i.e., crossover and mutation) are

blind to constraints [47]. A number of repair schemes have been introduced

in [48, 39, 49] wherein an infeasible solution is repaired to a feasible solution.

Development of repair schemes are often problem dependent and may also
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involve additional computational cost.

– Feasibility-first: Feasibility-first scheme is yet another form of constraint

handling where a feasible solution is always preferred over an infeasible

solution. The common form of preference rules are governed by the following:

(a) any feasible solution is preferred over an infeasible solution (b) among two

feasible solutions, the one with better objective is preferred (c) among two

infeasible solutions, the one with lowest constraint violation is preferred [50].

While these feasibility-rules were originally developed in the context of evo-

lutionary algorithms, they were introduced in DE algorithm [51, 52].

– ǫ-constrained method: One of the most recent constraint-handling tech-

niques reported in the specialized literature is that of ǫ-constraint proposed

in [53]. The method essentially designates a selected set of infeasible solutions

as feasible i.e., by accepting a certain level of constraint violation. This

acceptance level of constraint violation (vǫ) is referred as the ǫ-level which is

calculated for each generation (G) as follows:

vǫ(G) =











vǫ0(1 − G
Gc

)R, 0 < G < Gc

0, G ≥ Gc

(2.1)

where Gc is a control generation up to which the ǫ-level is considered. The

parameter R is changed according to the Equation 2.3. The ǫ level is adjusted

to be a small value ǫλ = 10−5 at the generation Gλ = 0.95Gc.

ǫ(Gλ) = vǫ0(1 − Gλ/Gc)
R = ǫλ (2.2)

R = (log ǫλ − log vǫ0)/ log(1 − Gλ/Gc)

= (−5 − log vǫ0)/ log 0.05
(2.3)

To avoid a too small value of R, a predefined value of Rmin = 3 is assigned.
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The value of R and scaling factor (F ) are controlled as follows:

R = 0.3R + 0.7Rmin (2.4)

F = 0.3F0 + 0.7 (2.5)

The method delivered highly competitive results on a set of constraint op-

timization problems of CEC-2010 [14]. Motivated by its performance, the

approach has been successfully adopted in the works such as in [54, 55, 56].

Although the method performed well on the benchmark suite, the prescribed

values of the parameters could potentially affect the performance for an

unknown problem.

– Dominance based method: In spite of the fact that dominance based

methods face great difficulties with an increase of number of objectives,

there are some competitive constraint handling methods which rely on such

concepts. Infeasibility Driven Evolutionary Algorithm (IDEA) [57] utilizes

constraint violation as an additional objective and preserves a set of infeasible

solutions throughout the search. Notable concepts in this direction include

the works reported in [58, 59, 60, 61]. Others include spherical-pruning

multi-objective optimization differential evolution (sp-MODE) [62], Hybrid

Constrained EA (HCOEA) [63], steady state EA [64], adaptive trade-off

model (ATM) evolution strategy (ATMES) [65], ǫ-dominance concept [66],

Adaptive Bacterial Foraging Algorithm (ABFA) [67].

– Ensemble and other methods: In the backdrop of No-Free-Lunch (NFL)

theorem [68], ensemble of constraint handling schemes have also been intro-

duced [24, 69, 70, 71]. Such schemes still require a number of user defined

parameters.

In order to eliminate the need of user defined parameter(s)/penalty factors,

a number of adaptive strategies have been proposed in the literature. They



2.2. ADAPTIVE HYBRID DE ALGORITHM 27

include adaptive penalty technique [72], parameter less penalty function [73],

a self-adaptive fitness formulation [74], stochastic ranking [75] etc.

In this chapter, one adaptive hybrid parameter control strategy implemented as an

Adaptive Hybrid DE Algorithm and two key ideas for dealing with constrained opti-

mization problems are introduced. The two constraint-handling methods are described

using the framework of DE i.e., DE with Constraint Sequencing (DE-CS) and MOEA/D

with Adaptive Constraint Handling (MOEA/D-ACH).

2.2 Adaptive Hybrid DE algorithm

Adaptive Hybrid DE algorithm (AH-DEa) inherits the benefits of various proven strate-

gies from the literature. The proposed algorithm has the following features.

- The first feature is its use of adaptive crossover rates from a given set of discrete

values spanning a range from 0.1 to 1.0.

- The mutation factor is also adapted, following the scheme proposed by [21] and

as for the diversity, two parents are selected from the active population and the

third from the archive.

- The basic mutation strategy is employed e.g., DE/rand/1 with a combination

of binomial and exponential crossover depending upon the search strategy in

different stages of evolution.

- A local search is used at the end of the DE process in an attempt to further

improve the best solution obtained through DE evolution [36].

- A restart mechanism is introduced during the local search phase, wherein the

population is reinitialized if no improvement to the best solution is achieved during

the course of local search.

The pseudo code for the proposed algorithm is presented in the following.
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Algorithm 2.1 Pseudocode of an adaptive hybrid DE algorithm (AH-DEa)

Input: Scale factor F0, Crossover rate CRk = {1/NCR, 2/NCR, ....k/NCR}, where
NCR = 10 is the number of discrete crossover rates, k = {1, 2....NCR}, Size of archive
population is M , Size of active population is N , Number of max generation Maxgen,
Number of max function evaluation Maxfevel.

1: Set the generation count G = 0 and function evaluation fevel = 0.
2: Initialize xj,i = xj,min + randj[0, 1).(xj,max − xj,min), j = 1, 2, .....D.
3: Assign M individuals xj,i to Archive Pop.
4: Assign PRk = {k/NPR}, k = {1, 2, 3........NPR}.
5: Evaluate the Archive Pop and sort the members using constraint violation.
6: Assign the top N individuals to Active Pop from Archive Pop.
7: while (G ≤ Maxgen) & (fevel ≤ Maxfevel) do
8: Select the crossover rate CR using roulette wheel selection from the pool of

crossover rates CRk, where k = {1, 2....NCR}.
9: for i=1:N do

10: Select three parents as described in Subsection 2.2.2 and generate the donor
vector, vi,G using DE/rand/1 mutation strategy.

11: Generate the trial vector, uj,i,G = DE/rand/1/bin if i ≤ 0.2 ∗ Maxgen,
otherwise DE/rand/1/Exp.

12: Evaluate the trial vector, uj,i,G.
13: if ξ(ui,G) ≤ ξ(Active Popi) then
14: Active Popi = ui,G

15: else
16: Archive Popl = ui,G; l = rand[N,M ].
17: end if
18: Function evaluation, fevel = fevel + 1.
19: end for
20: Generation count, G = G + 1.
21: Update the PRk by calculating the success ratio described using Equation 2.6.
22: Invoke local search if fevel >= 90%Maxfevel.
23: end while

Algorithm description:

The algorithm starts off with a predefined set of crossover rates (NCR = 10 values

selected in the study) with equal probability and the corresponding probability of the

crossover rate is controlled based on the success ratio of each individual. In an attempt

to maintain diversity, two parents are selected from the active population of size N

randomly, while the third parent is selected from the archive of size M . The active

population is the top N individuals which are initially copied from the archive. The

fitness (ξ) of ith solution consist the objective function value fi(x), x ∈ ℜD and the
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value of constraints ci, where ci is the constraint violation measure based on the equality

and inequality constraints and D represents the number of variables. Offspring solution

is compared with the ith individual in the active population for a possible replacement.

If the offspring is unable to make it into the active population, it replaces a random

solution in the archive. A local search is invoked with the best individual for the last

10% of the function evaluations. The replacement scheme is analogous to steady state

models of evolutionary computation. The pseudocode of the algorithm is presented in

Algorithm 2.1, while its components are described in sub-sections.

2.2.1 Adaptive CR strategy

The choice of crossover rate in a conventional DE is user defined. However, some

predefined values have been suggested in the literature which varies across the range

of problems. To alleviate this difficulty, few approaches have been developed over

the last few years. In this proposed algorithm (AH-DEa), a roulette wheel based CR

selection scheme has been used. Initially, the crossover rates are mapped to contiguous

segments between 1/NCR to k/NCR where, NCR is the number of CRs in the set and

k = {1, 2, ...NCR}. From this set, a CR value is selected based on their selection values

(PR). These selection values represent a set PRk = {k/NPR}, k = {1, 2, 3........NPR}.

These PRk values are updated based on success or failure of the offspring generated.

Success refers to a situation when an offspring replaces an individual. The success ratio

is calculated and used to update each CR selection value PRk as follows:

PRk =
SRk

∑NCR

i=1 SRi

, (2.6)

where k = {1, 2, 3....NCR} is the number of crossover rates and SRk is the success

ratio of kth crossover rate. The success ratio SRk is calculated as follows:

SRk =

∑N
i=1 nsfevel

∑N
i=1 nsfevel +

∑N
i=1 nffevel

(2.7)
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where, N is the size of active population, nsfevel is the number of successes and

nffevel is the number of failures. A value of 0.05 is used if the success ratio SRk for kth

crossover rate becomes zero.

2.2.2 Parent selection strategy

The performance of DE is highly dependent on the underlying mechanism of parent

selection. The earlier section provides a brief discussion on various parent selection

schemes. In this algorithm, the population is logically divided into two sets, an ac-

tive population and an archive population. Two parents are selected from the active

population and one parent is selected form the archive population.

2.2.3 Analysis of mutation strategy

There are a number of alternative mutation strategies. The performance of the mutation

strategies is dependent on the participating parents [27, 76]. For solving unimodal,

separable and non-separable functions, DE/rand/1 has been used widely [29] while

DE/rand/1 was found to perform well for multi-modal problems [34]. In this algorithm,

DE/rand/1 has been used for the mutation process and the scaling factor (F ) is

controlled using the strategy proposed in [21].

2.2.4 Analysis of crossover strategy

In DE, two crossover strategies have been commonly used i.e., binomial and exponential.

Depending upon the control parameter selection scheme, the behaviour of this crossover

process can vary. As discussed earlier, DE/rand/1/Bin is better for exploration while

DE/rand/1/Exp is known to be better for exploitation. Therefore, in this algorithm

both strategies have been used in different stages of the search process. At the beginning

of a search, a binomial crossover is used for offspring generation while in later stages

exploitation is achieved through an exponential crossover. In this study, this transition

point is defined as 80% of function evaluation budget.
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1. Binomial crossover (DE/rand/1/Bin): The binomial crossover has consis-

tently performed well on several benchmarks and are known to be explorative [27,

20]. In this algorithm, a binomial crossover is used for exploration. The binomial

crossover is defined as follows:

ui,j,G =











vi,j,G, if rand[0, 1) ≤ CR or j = jrand,

xi,j,G, otherwise
(2.8)

In Equation 2.8 vi,j,G is referred as the trial vector. If a randomly generated

number is less than or equal to the control parameter (CR), then the trial vector

is copied to the target vector (ui,j,G ), otherwise, the variable remains unchanged.

In binomial crossover this process is repeated for every variable.

2. Exponential crossover (DE/rand/1/Exp): The exponential crossover is yet

another form which has been successful in exploitation [32, 21]. The exponential

crossover is defined as follows:

uj,i,G =











vj,i,G, if j = 〈n〉D, 〈n + 1〉D, .., 〈n + L − 1〉D
xj,i,G, otherwise

(2.9)

In Equation 2.9 the acute brackets 〈〉D denote a modulo function with modulus

D. The integer n is a random number and L is also an integer drawn from [1, D].

Hence, picking a random starting point, the target vector is generated by copying

the trial vector from L = 0 to D, if the random number randj[0, 1) less than or

equal to crossover rate (CR). The remaining parameters are copied to the target

vector.

2.2.5 Gradient local search

Gradient based search used in this study utilizes sequential quadratic programming

(SQP). In the proposed algorithm, a local search is invoked from the best individual

and a budget of 10% of the total function evaluation is allocated. In the event, such a
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search fails to locate any better solution using D function evaluations, a local search is

initiated from the next best solution and the process continues till the function budget

is exhausted.

2.2.6 Constraint-handling

In this proposed algorithm, both equality and inequality constraints have been consid-

ered. The equality constraints are transformed into inequality constraints by subtract-

ing a tolerance value ǫ = 1e−04 suggested in [14]. The violation can be measured by

sum of all constraint violations. The violation is calculated as follows:

v =

p
∑

i=1

max(gi, 0) +

q
∑

i=1

max(|hi − ǫ|, 0) (2.10)

Where, p and q are the number of inequality and equality constraints. An epsilon level

comparison proposed in [21] is used to order the individuals according to their fitness.

2.2.7 Numerical experiments

In order to access the performance of the proposed strategies, 40 recent scalable bench-

mark problems were used. The results obtained using the proposed algorithm (worst,

best, mean, median and standard deviation) are compared against top algorithms on

the selected benchmark problems. Problems C01-C18 belong to the suite of CEC-2010

benchmark [14] while problems G01-G24 belong to the suite of CEC-2006 benchmark

problems [13]. Features of the problems C01-C18 and G01-G24 are listed in Table 2.2

and Table 2.3. Table 2.1 shows the parameter settings require for AH-DEa and its

variants.

To evaluate the performance of the proposed algorithm, a benchmarking is con-

ducted using the results of 4 other algorithms. The comparison is made with the

best, mean and standard deviation for all the problems. To evaluate the statistical

significance among the results, a Wilcoxon signed-rank test at α=0.05 in every cases
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Table 2.1: Parameter settings

Control Parameter Actual values

Archive size (M) if (D > 40) M=2D else M=100D
Active Population size (N) if (D > 40) M=1D else M=4D
Scaling factor (F0) 0.5
Crossover rate (CR) {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}

Adaptive

Table 2.2: Summary of test problems for C01-C18

Problem D Search Range f type

C01 10/30 [0, 10]D Non Separable

C02 10/30 [−5.12, 5.12]D Separable

C03 10/30 [−1000, 1000]D Non Separable

C04 10/30 [−50, 50]D Separable

C05 10/30 [−600, 600]D Separable

C06 10/30 [−600, 600]D Non Separable

C07 10/30 [−140, 140]D Non Separable

C08 10/30 [−140, 140]D Non Separable

C09 10/30 [−500, 500]D Non Separable

C10 10/30 [−500, 500]D Non Separable

C11 10/30 [−100, 100]D Rotated

C12 10/30 [−1000, 1000]D Separable

C13 10/30 [−500, 500]D Separable

C14 10/30 [−1000, 1000]D Non Separable

C15 10/30 [−1000, 1000]D Non Separable

C16 10/30 [−10, 10]D Non Separable

C17 10/30 [−10, 10]D Non Separable

C18 10/30 [−50, 50]D Non Separable

(i.e., for best, mean and Std) is used. Using a Wilcoxon rank sum test, the sampling

distribution of the difference between two samples is symmetric with zero median. At

the default 5% significance level, the test fails to reject to a null hypothesis of zero

median in the difference. A “ + ” is indicated to mark the cases when a null hypothesis

is rejected at the 5% significance level, if the result is superior. A mark of “ − ”

is used when a null hypothesis is rejected at the 5% significance level, if the results
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Table 2.3: Summary of test problems for G01-G24

Problem D Search Range f type

G01 13 [0, 1]9[0, 100]4[0, 1](D−13) quadratic

G02 20 [0, 10]D nonlinear

G03 10 [0, 1]D polynomial
G04 5 [78, 102][33, 45][27, 45](D−2) quadratic
G05 4 [0, 1200]2[−0.55, 0.55](D−2) cubic
G06 2 [13, 100][0, 100] cubic
G07 10 [−10, 10]D quadratic
G08 2 [0, 10]10 nonlinear

G09 7 [−10, 10]D polynomial
G10 8 − linear
G11 2 [−1, 1]D quadratic
G12 3 [0, 10]D quadratic
G13 5 [−2.3, 2.3]2[−3.2, 3.2](D−2) nonlinear

G14 10 [0, 10]D nonlinear

G15 3 [0, 10]D quadratic
G16 5 − nonlinear
G17 6 − nonlinear
G18 9 [−10, 10]8[0, 20](D−8) quadratic

G19 15 [0, 10]D nonlinear
G21 7 − linear
G23 9 − linear
G24 2 [0, 3][0, 4] linear

*The search range of some functions is marked as ’−’ for brevity, reader
should find in [13]

exhibit inferior performance and with “ = ”, when the performance is not statistically

significant (i.e., fails to reject a null hypothesis at the 5% significance level).

1. Statistical comparison on CEC-2010 test problems (C01-C18): Here,

the results of the proposed algorithm are compared with other forms. In this

comparison, the selected algorithms have all performed well.

• The performance of (AH-DEa) is compared with SAMO-GA [77], which is a

self-adaptive multi-operator genetic algorithm. SAMO-GA is an algorithm where

population is divided into four sub-populations with individual crossover and

mutation rates. The algorithm uses Gaussian numbers to adaptively select F and

CR. In the algorithm, the population is logically divided into two sub-populations
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Table 2.4: Comparison of AH-DEa with SAMO-GA, SMOA-DE, e-DEag and IEMA for
CEC-2010 in 10 dimension.

Criterion AH-DEa SAMO-GA SMOA-DE e-DEag IEMA

Better
B 3 0 0 0 0
M 5 1 4 3 1
S 6 1 3 5 2

Equal
B 14 11 15 13 3
M 6 0 4 6 0
S 3 0 0 4 0

Worst
B 1 7 3 4 14
M 6 17 10 9 17
S 9 17 15 9 16

Table 2.5: Comparison of AH-DEa with SAMO-GA, SMOA-DE, e-DEag and IEMA for
CEC-2010 in 30 dimension.

Criterion AH-DEa SAMO-GA SMOA-DE e-DEag IEMA

Better
B 8 1 2 0 0
M 10 0 4 3 0
S 12 0 4 3 0

Equal
B 6 2 7 2 2
M 2 0 2 0 0
S 0 0 0 1 0

Worst
B 4 15 9 16 12
M 6 18 12 15 14
S 6 18 14 14 14
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and CR and F values are selected adaptively. The results of 10D problems (i.e.,

benchmark problems of CEC-2010) are presented in Table 2.4 (details are provided

in Tables A.1- A.6). Using best value as the measure, AH-DEa obtained 3 better,

14 equal and 1 worst solutions, henceforth represented as a score of 3/14/1. The

corresponding score of SAMO-GA based on the best value is 0/11/7. Based on

mean value measure, AH-DEa has the score of 5/6/6 (i.e., 5 better, 6 equal and

6 worst solutions), whereas, SAMO-GA has the corresponding score of 1/0/17.

For standard deviation, AH-DEa has the score of 6/3/9, whereas, SAMO-GA has

the corresponding score of 1/0/17. In 30D problems (i.e., benchmark problems

of CEC-2010), again AH-DEa has the score of 8/6/4 on best value, 10/2/6 on

mean value and 12/0/6 on standard deviation value, whereas, SAMO-GA has the

corresponding score of 1/2/15, 0/0/18 and 0/0/18 (Table 2.5).

• The performance of AH-DEa is compared with SAMO-DE [77], a self-adaptive al-

gorithm with multi-operator strategy. In this algorithm, DE variant rand-to-best

and current/2/best is used for mutation and Gaussian numbers have been used

to find the values of F and CR. The results of 10D problems (i.e., benchmark

problems of CEC-2010) are presented in Table 2.4. In 10D problems, AH-DEa

has the score of 3/14/1 on best value, 5/6/6 on mean value and 6/3/9 on stan-

dard deviation value, whereas, SAMO-DE has the corresponding score of 0/15/3,

4/4/10 and 3/0/15 (Table 2.4). In 30D problems, again AH-DEa has the score

of 8/6/4 on best value, 10/2/6 on mean value and 12/0/6 on standard deviation

value, whereas, SAMO-DE has the corresponding score of 2/7/9, 4/2/12 and

4/0/14 (Table 2.5).

• The performance of the algorithm is further compared with e-DEag [78], an

algorithm with sub-populations and efficient constraint handling. The results of

10D problems (i.e., benchmark problems of CEC-2010) are presented in Table 2.4.

In 10D problems, AH-DEa has the score of 3/14/1 on best value, 5/6/6 on

mean value and 6/3/9 on standard deviation value, whereas, e-DEag has the
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corresponding score of 0/13/4, 3/6/9 and 5/4/9 (Table 2.4). In 30D problems,

again AH-DEa has the score of 8/6/4 on best value, 10/2/6 on mean value and

12/0/6 on standard deviation value, whereas, e-DEag has the corresponding score

of 0/2/16, 3/0/15 and 3/1/14 (Table 2.5).

• Lastly, the results are compared with IEMA [79], which is infeasible empowered

memetic algorithm without any adaptive strategy. In 10D problems, AH-DEa has

the score of 3/14/1 on best value, 5/6/6 on mean value and 6/3/9 on standard

deviation value, whereas, IEMA has the corresponding score of 0/3/14, 1/0/17

and 2/0/16 (Table 2.4). In 30D problems, again AH-DEa has the score of

8/6/4 on best value, 10/2/6 on mean value and 12/0/6 on standard deviation

value, whereas, IEMA has the corresponding score of 0/2/12, 0/0/14 and 0/0/14

(Table 2.5).

The Wilcoxon statistical analysis has been made to find the significance between

two samples by checking the normality distribution. This test is associated with

a p-value measurement, which represents the dissimilarity between two samples

with respect to normal shape. Tables 2.6 and 2.7 show the outcome of a statistical

analysis among AH-DEa with other algorithms.

Table 2.6: The Wilcoxon sign rank test results for AH-DEa with SAMO-GA, SMOA-DE,
e-DEag and IEMA for CEC-2010 in 10 dimension.

Algorithm W− W+ Decision

A
H
-D

Ea

SAMO-GA
Best 121 79 =
Mean 131 52 +

SMOA-DE
Best 48 67 =
Mean 77 90 =

e-DEag
Best 101 54 +
Mean 87 64 =

IEMA
Best 126.5 46.5 +
Mean 142 39 +

The statistical comparison for 10D problems of CEC-2010 benchmark shows equal

for best results and better for mean results. For all the results, the negative rank
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Table 2.7: The Wilcoxon sign rank test results for AH-DEa with SAMO-GA, SMOA-DE,
e-DEag and IEMA for CEC-2010 in 30 dimension.

Algorithm W− W+ Decision

A
H
-D

Ea

SAMO-GA
Best 143 33 +
Mean 128 34 +

SMOA-DE
Best 100 70 =
Mean 107 64 +

e-DEag
Best 158 15 +
Mean 141 37 =

IEMA
Best 134 46 +
Mean 152 19 +

is higher than the positive for AH-DEa. Performance of SAMO-DE is the same as

AH-DEa, whereas AH-DEa is better than e-DEag based on best and better than

IEMA based on both mean and std. In 30D problems of CEC-2010 benchmark,

AH-DEa shows better in best and mean over SAMO-GA. The mean results of

AH-DEa are also better when compared with SAMO-DE and IEMA. Comparing

the best results, performance of AH-DEa is the same as SAMO-DE and way better

than e-DEag and IEMA.

Among all these algorithms, the t-test analysis reassert that AH-DEa ranks 1st

(42/108, 42 better out of 108), SAMO-DE ranks 2nd, (17/ 108), e-DEag ranks

3rd (14/ 108), SAMO-GA ranks 4th (3/108) and IEMA ranks the last (3/108,

all solutions are not available) based on best, mean and std marked as ’+’ from

Table A.1-Table A.2.

2. Comparison on CEC-2006 test problems (G01-G24): The results of AH-DEa

are presented in Table A.7-Table A.9 based on 240,000 FEs (same as used in other

algorithms to find the optimal solutions). The tables show the known optimal

solutions for each problem with the statistics of best, mean, and std obtained

from 30 runs. The problems are categorized into different classes as indicated in

Table 2.12. Among those problems, G02 is multi-modal, which contain many local

optima near the global optimum [21]. For most of the problems, AH-DEa was
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able to find the optimal solution in around 100,000 FEs. For problems G01, G12,

G13 and G24, the optimal solution is found in all 30 runs with the same global

optima. In other problems, G02-G11 and G14-G23, the optimal results were found

consistently in all runs with a very little variation. The results from AH-DEa are

highlighted in boldface, which are better for problems G02, G07, G09, G010,

G013, G14 and G18. The results obtained using AH-DEa are significantly better

for problems G02, G10, G14 (in three decimal points) and marginally better for

problems G07, G09, G13 and G18 or at least comparative in all the test problems.

2.2.8 Investigation of CR choice in the adaptive strategy

In this proposed algorithm, an adaptive strategy is incorporated to determine a suitable

crossover rate at different stages of the evolution process. In order to investigate the

behavior of adaptive strategy used in AH-DEa, the evolution of CR values is plotted

for the selected functions in Figure 2.1. In this experiment, 10 different crossover rates

(CRs) are used. The figure also indicates the evolution counts (i.e., generations up

to 90 has been shown in the figure) in X-axis. According to the results shown in

Figures 2.1(a)- 2.1(f), one can see that CR selection value changes in different stages

of evolution.

For example, in the 10D C01 function (non-separable), the CR selection value

initially set to 0.1 quickly moves up for CR = 0.8 within a few generations. However,

for 30D C01, the CR selection value shoots up for 0.7. For 10D and 30D C02 function

(non-separable), one can observe that CR selection values of 0.3 and 0.4 are still present

as illustrated in Figures 2.1(b) and 2.1(e). C01 is a non-separable function and the best

result is achieved in CR = 0.8, which can be adaptively selected by this strategy in

Figure 2.1(a). The CR selection probability is low for non-separable functions and high

for separable functions. Function C02 is a separable function and once again one can

notice the presence of CR = 0.3 or CR = 0.4. This clearly highlights the efficiency of

the adaptive strategy to select appropriate crossover rates for various problem classes.
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(a) C01 (D = 10)
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(b) C01 (D = 30)
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(c) C02 (D = 10)
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(d) C02 (D = 30)
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(e) C10 (D = 10)
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(f) C10 (D = 30)

Figure 2.1: Adaptive characteristics of CR on the selected functions (a) function, C01 (D =
10) (b) function, C01 (D = 30) (c) function, C02 (D = 10) (d) function, C02

(D = 30) (e) function, C10 (D = 10) (f) function, C10(D = 30).
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2.3 DE with Constraint Sequencing

In real life, optimization problems involve a number of constraints arising out of user

requirements, physical laws, statutory requirements, resource limitations etc. Such

constraints are often evaluated using computationally expensive analysis i.e., solvers

relying on finite element methods, computational fluid dynamics, computational elec-

tro magnetics etc. Existing optimization approaches spend a lot of computational

effort to find a feasible solution i.e., all the constraints corresponding to a solution

are evaluated throughout the course of search. An important question is, why do

we spend computational resources to evaluate constraints of a solution, when it has

already violated a constraint?. Assuming that one is only interested in a feasible

solution (preferably optimum) at the end of the search process, it is important to

investigate the worth of evaluating infeasible solutions i.e., the cost of evaluation versus

the knowledge gained to steer the search. Other followup questions include what is the

best sequence to evaluate the constraints? and is there a benefit in using different

sequence of constraints?. This algorithm attempts to understand the cost-benefits

of partial evaluation policy i.e., aborting evaluation of constraints if the solution has

already violated one constraint. Above discussion becomes more relevant in the context

of optimization problems involving computationally expensive constraint evaluations.

This study assumes that the constraints can be evaluated independently of one another.

The proposed algorithm, DE-CS, is aimed to improve the computational efficiency

based on a partial evaluation policy at the same time offers the potential to reach

different regions of the search space. The pseudo code for the proposed algorithm is

presented in the following.

Algorithm description:

A population of N individuals and an archive of 2N are initialized. For each individual

in the population the parameters regarding the crossover rate (CR) and mutation factor
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Algorithm 2.2 DE-CS

SET: Total number of constraints and objective function evaluation NTmax, Size of
elite archive M , Size of population N , FeasibleSet = {}, Evalcount = 0

1: Pop = initialize(); Archive = initialize()
2: Assign a random CR and F values from [0, 1] for all the individuals
3: Distribute individuals to (p + q + 1) Subpops
4: Assign constraint sequences to Subpops
5: Evaluate solutions in the Subpops; Update(Evalcount)
6: Rank solutions in each Subpop using sequence sort
7: Migrate feasible solutions from all the Subpops to FeasibleSet
8: while Evalcount ≤ NTmax do
9: for i=1:p+q+1 do

10: if !isempty(Subpopi) then
11: for j=1:size(Subpopi) do
12: p1 = i, p2 = rand(M), p3 = rand(N), p1 6= p2 6= p3

13: O = DEevolve(p1, p2, p3)
14: Evaluate(O); Update(Evalcount)
15: Temp = Merge(O,Subpopij)
16: Rank = SequenceSort(Temp)
17: Select best individual from Temp and replace Subpopij

18: end for
19: end if
20: end for
21: Migrate feasible solutions from all the Subpops to FeasibleSet
22: end while

*Evalcount denotes the sum of objective and all individual constraint evaluations

(F ) are assigned randomly bounded between [0,1]. The population is divided into (p+q)

subpopulations with a prescribed constraint sequence for each subpopulation. In each

subpopulation the solutions are ranked using a sequence sort (see Example 1). In order

to create a new candidate solution, first parent is selected from the subpopulation itself,

the second parent is selected from the entire population and the third parent is selected

from the archive.

In the DE evolve process, a binomial crossover [80] has been used with the crossover

and mutation parameters (i.e., CR and F ) from the first parent (i.e., base parent).

The new candidate solution is then evaluated and compared with the base parent via

sequence sort. If the candidate solution replaces the parent solution, the crossover and

mutation parameters of the base parent are retained by the candidate solution else new
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parameters are randomly assigned to the base parent and candidate solution is moved to

archive. In the event a feasible solution is uncovered in any subpopulation, it migrates

to the feasible subpopulation. In the event all the infeasible subpopulations are empty,

three parents are chosen from the feasible subpopulation.

2.3.1 Illustrative examples

• Example 1: To demonstrate the proposed constraint handling method, a simple

two variable optimization problem (T1) involving three constraints is presented

below. The problem has a feasible region bounded by three linear constraints.

Since the focus is on handling constraints, it is interesting to present the trajectory

of solutions in different subpopulations.

Minimize f1(~x) = x2
1 + x2

2 + 2x1x2

Subject to

g1(~x) ≡ x1 + 2x2 ≥ 0,

g2(~x) ≡ 10x1 − 8x2 − 15 ≥ 0,

g3(~x) ≡ −10x1 + 2x2 − 2 ≥ 0,

(2.11)

In the proposed approach, three constraint sequences have been considered each

of which is assigned to a subpopulation i.e., constraints (g1, g2, g3), (g2, g3, g1)

and (g3, g1, g2) are the prescribed sequences for subpopulation, 1, 2 and 3. As

an example, let us consider subpopulation 1, containing 4 solutions (S1, S2, S3,

S4). The constraint violation matrix would assume a form illustrated in Table 2.8.

Since the prescribed sequence for this subpopulation is (g1, g2, g3), the solutions

are sequentially sorted to yield (S3, S2, S4, S1) where S3 is deemed the best and

S1 the worst.

A small population size of 30 is used to illustrate the behavior. Presented in

Figure 2.2 is the trajectory followed by the infeasible solutions, if a CV based
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Table 2.8: An example of sequence sorting

Initial order Final order

g1 g2 g3 g1 g2 g3

S1 5 − − 0 0 1 S3
S2 0 3 − 0 3 − S2
S3 0 0 1 2 − − S4
S4 2 − − 5 − − S1

scheme is employed. A CV based scheme is often used for population based

stochastic algorithms. It is interesting to observe that the solutions tend to be

located in a small region of the space satisfying g2 and g3 constraints. With such

infeasible solutions, the CV based approach will be effective if the optimal feasible

solution is close to such infeasible solutions and will be ineffective if the feasible

solution is away from such regions. Presented in Figure 2.3, is the same trajectory

of the solutions in subpopulations 1, 2 and 3. One can clearly observe that the

infeasible solutions in subpopulations clearly are in different regions of the search

space and solutions in each subpopulation tend to approach the feasible region

from different directions.
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Figure 2.2: Progress plots for test problem T1 using DE algorithm with constraint
violation (DE-CV) at generation 5, 10 and 20

Such an approach is thus likely to locate optimal solutions as they attempt to

enter the feasible search space from different directions.
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Figure 2.3: Progress plots for test problem T1 of multiple subpopulations using DE
algorithm with constraint sequencing (DE-CS) at generation 5, 10 and 20

2.3.2 Improvements in DE-CS

The DE-CS discussed above still has the following limitations.

– A predefined set of constraint sequences are used and no new constraint

sequence can emerge.

– The search often lost diversity when encountered with constraints that are

difficult to satisfy.

In the modified formulation of DE-CS, these limitations have been eliminated.

The pseudo code for the modified algorithm is presented below.
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Algorithm 2.3 Modified DE-CS

SET: Total number of function evaluation NTmax, Size of population N , Crossover
rate CR, A Mutation scale factor F , Evalcount = 0

1: Initialize the population of individuals and assign a random constraint sequence to
each individual;

2: Evaluate the solutions following the above assigned sequence of constraints;
Update(Evalcount);

3: while Evalcount ≤ NTmax do
4: for i=1:N do
5: Select p1 = i i.e., the ith parent and two other parents p2 and p3 randomly s.t.

p1 6= p2 6= p3;
6: Generate an offspring using recombination;
7: Evaluate the offspring using the sequence of p1; Update(Evalcount);
8: The offspring is compared with solutions in the population for replacement

based on fitness;
9: end for

10: end while

*Evalcount denotes the sum of objective and all individual constraint evaluations

Algorithm description:

A population of N individuals is initialized. The variables of ith individual are

initialized as follows:

xj,i = xj,min + randi,j[0, 1).(xj,max − xj,min) (2.12)

where j = 1, 2, ....D is the number of variables; xj,max and xj,min are the upper

and the lower bounds of jth variable. For a problem with m constraints, each

individual is assigned a random sequence of constraints for evaluation.

Each individual of the population is evaluated using its prescribed constraint

sequence. Whenever a constraint is violated, the evaluation is aborted. The term

number of function evaluations referred here is the sum of the number of evaluated

constraints and objective function evaluations. An objective function evaluation

is only undertaken if the solution is found feasible i.e., all constraints have been

satisfied. In order to generate an offspring solution, the first parent is selected
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sequentially, the second and third parents are selected randomly from the entire

population. In the recombination process, a binomial crossover [16] has been used

to generate the offspring solution.

2.3.3 Constraint sequencing

The fitness (ξ) of ith solution consist the objective function value fi(x), x ∈ ℜD

and the value of constraints ci, where ci is the constraint violation measure

based on the equality and inequality constraints and D represents the number

of variables. The equality constraints are transformed into a set of inequalities

as |hk(x) − δ| ≤ 0 (assuming δ is small positive quantity). For every solution

in the population, one can compute the number of satisfied constraints (NS)

and the amount of violation (V ). With the number of constraints satisfied

taking precedence over the violation value, a sorting would yield the ranks of

the individual solutions.

For example assume a population, containing 4 solutions (S1, S2, S3, S4). The

constraint violation matrix would assume a form illustrated in Table 2.9 with S3

identified as the best and S1 the worst.

Table 2.9: Ranking of 4 individuals in the population in presence of 3 constraints

Initial order NS V Final order

S1 (g1, g2, g3) 5 − − 0 5 S3
S2 (g2, g3, g1) 0 3 − 1 3 S2
S3 (g1, g3, g2) 0 0 1 2 1 S4
S4 (g2, g1, g3) 2 − − 0 2 S1

• Example 1: While the details of the algorithm and its components are described

in the above section, it is important to identify if there are significant differences

in the underlying search process. To observe the underlying search behavior, two

example problems have been constructed with 3 constraints. In the first problem,
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the feasible space of the problem is the feasible space dictated by constraint g3

while in the next example the feasible space of the problem is the intersection of

the feasible spaces of the individual constraints i.e., (g1 ∩ g2 ∩ g3) . For the first

example, the constraints and the feasible spaces corresponding to each constraint

is depicted in Figure 2.4 with the optimum located at x∗={0.65, 0.70}. The

mathematical formulation of the problem (Example1) is presented below:

Minimize f1(x) = (x1 − 0.65)2 + (x2 − 0.7)2

Subject to

g1(x) ≡ (x1/2.6)2 + (x2/2.6)2 − 1 ≤ 0,

g2(x) ≡ x2
1/2.6 + x2

2/2.6 − 1 ≤ 0,

g3(x) ≡ x2
1 + x2

2 − 1 ≤ 0,

(2.13)

To understand the differences in the dynamics of the search between two strate-

gies, ( i.e., constraint sequencing adopting a partial evaluation policy (CS) and

constraint violation (CV) adopting a full evaluation policy), both the strategies

have been implemented within the same DE based optimization framework. A

population size of 50 individuals were allowed to evolve using a crossover rate

of 0.9 and mutation scale factor of 0.5 with the maximum number of function

evaluations (i.e., the sum of constraints and objective function) capped at 30000.

It is important to highlight that a same starting population has been used for

both the strategies for a consistent comparison.

One can see from Figure 2.4, that DE-CS identifies the feasible region of the

problem earlier than DE-CV in around 1849-1981 function evaluations. With

the known optimum for this example, the feasibility ratio (Equation 2.14 ) and

the distance (Equation 2.15) from the known optimum is plotted against total

number of function evaluations in Figure 2.5. One can clearly observe that DE-CS

identifies solutions close to the optimum better than DE-CV and at the same

time offers a better feasibility ratio. The above plots are based on the median run
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Figure 2.4: Progress plots of test problem Example1 using CS and CV in various stages
of evolution

among 50 independent runs.

feasibility ratio =
Number of feasible solutions

Total number of solutions evaluated
(2.14)

distance = ||xb − x∗|| (2.15)

where ||.|| is the Euclidean distance between the best solution found so far xb and

the optimum x∗.

• Example 2: In the second example, the feasible space for the problem lies at the

intersection of the feasible spaces of the individual constraints i.e., g1 ∩ g2 ∩ g3.

The mathematical formulation of the problem (Example2) is presented below:
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Figure 2.5: Progress plots (a) distance of a best feasible solution from the optimum
(b) feasibility of the solutions

Minimize f1(x) = (x1 − 2.35)2 + (x2 + 0.05)2

Subject to

g1(x) ≡ (x1/2.6 − 0.96)2 + (x2/2.6 − 0.96)2

− 1 ≤ 0,

g2(x) ≡ (x1/2.4)2 + (x2/2.4)2 − 1 ≤ 0,

g3(x) ≡ (x1 − 3.1)2 + (x2 + 0.6)2 − 1 ≤ 0,

(2.16)

The problem has a small feasible region with the optimum solution of x∗ =

{2.35,−0.05}. The same set of parameters as listed above has been used for this

example. One can observe from Figure 2.6, that DE-CS once again identifies more

solutions close the optimum over DE-CV with a better distance and feasibility

ratio. It is important to highlight that using multiple sequences DE-CS is able to

reach different regions of the feasible space as opposed to DE-CV which tend to

have limited diversity of solutions spanning the feasible space. The same behavior

of DE-CS can also be observed in this example as depicted in Figure 2.7.

Since the primary contribution of the proposed scheme is to identify feasible solu-

tions faster i.e., with less computational effort, the number of function evaluations

required to obtain the first feasible solution and the distance of the first feasible

solution from the optima is presented in Table 2.10 and Table 2.11. The results
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Figure 2.6: Progress plots of test problem Example2 using CS and CV in various stages
of evolution
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Figure 2.7: The progress of best solution and the feasibility of the solutions (a) distance
of a best feasible solution from the optimum (b) feasibility of the solutions

clearly indicate the superiority of DE-CS over DE-CV.

In both the examples, g3 is the most difficult constraint to satisfy i.e., one which

has the smallest feasible area. Since the solutions are ranked using the precedence

of number of satisfied constraints, individuals attempting to use the sequence i.e.,

(g3,g2,g1) or (g3,g1,g2) tend to be less successful. The dominant sequences across
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Table 2.10: Comparison of the number of function evaluations required to achieve the
first feasible solution using DE-CS and DE-CV

Problem Strategy Mean (NFEs)

Example1

DE-CS 661
DE-CV 1770

Example2

DE-CS 2226
DE-CV 4148

Table 2.11: Distance of the first feasible solution from the optimum for DE-CS and
DE-CV

Problem Strategy Mean (Distance)

Example1

DE-CS 0.9805
DE-CV 0.9837

Example2

DE-CS 0.0592
DE-CV 0.0600
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Figure 2.8: The dominant constraint sequences across 50 runs for (a) Example1 and
(b) Example2

50 runs are shown in Figure 2.8.

2.3.4 Numerical experiments

The above section illustrated the principles of constraint sequencing and partial eval-

uation. In this section the performance of the algorithm is objectively analysed using
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11 test problems from CEC-2006 [13] and CEC-2010 [14] benchmarks involving only

inequality constraints. The selected test problems as listed in (Table 2.12) involve

quadratic, nonlinear, cubic, polynomial, separable and non-separable objective func-

tions with a number of inequality constraints. The results obtained by using stochastic

ranking (SR) [81], self-adaptive penalty (SP) [82], superiority of feasibility (SF) [50] and

epsilon constraint (EC) [78] schemes are presented using the same framework based on

DE. Results based on performance profiles are included for a more objective comparison.

Table 2.12: Summary of test problems

Prob. D f type No. of
Ineq.

Feasibility
(ρ)

C
EC

-2
00

6

G01 13 quadratic 9 0.0111%
G02 20 nonlinear 2 99.9710%
G04 5 quadratic 6 52.1230%
G06 2 cubic 2 0.0066%
G07 10 quadratic 8 0.0003%
G08 2 nonlinear 2 0.8560%
G09 7 polynomial 4 0.5121%
G10 8 linear 6 0.0010%
G12 3 quadratic 1 4.7713%
G18 9 quadratic 13 0.0000%
G24 2 linear 2 79.6556%

C
EC

-2
01

0
C01 10/30 Non Separable 2 99.7689%
C08 10/30 Non Separable 1 37.9512%
C13 10/30 Separable 3 0.0000%
C14 10/30 Non Separable 3 0.3112 %
C15 10/30 Non Separable 3 0.3210 %

A population size of 50 is used for all the problems and the results are computed

based on 30 independent runs. A fixed value of CR = 0.9 and F = 0.5 [16] have been

set for all the cases (i.e., SR [81], SF [50], SP [82], EC [78]) and the maximum number

of generations is set to 4800 resulting the number of function evolutions (i.e., NFEs) of

4800∗(N ∗m), where N is the size of the population and m is the number of constraints.

• Comparison with other constraint handling methods: In this experiment,

one can observe how quickly a feasible solution appears in the population and

how close is it to the known optimum solution.
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1. Comparison on function evaluations: The average number of function eval-

uations (NFEs) required to identify the first feasible solution and the distance of

the same from the known optimum is tabulated in Table B.1. One can observe

that in 8 out of 11 problems, the average number of function evaluations (NFEs)

required by DE-CS is lower than others. A performance profile is computed for a

more objective comparison between the strategies in Figure 2.9.
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Figure 2.9: Performance profiles of DE-CS and others

The NFEs required to achieve a feasible solution is computed for all the methods.

The results are then normalized by the minimum values of NFEs as follows

rp,s =
NFEsp,s

min{NFEsp,s : s ∈ S} (2.17)

where p is the number of problems and s is the number of solvers. The performance

of solver s on any given problem is calculated as follows [83]

ρs(τ) =
1

np

size{p ∈ P : rp,s ≤ τ} (2.18)

The results clearly indicate the superiority of DE-CS over other strategies in terms

of obtaining the first feasible solution.
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2. Comparison on the distance measures from the optimum: The above

section clearly highlighted the benefits of DE-CS i.e., its ability to obtain feasible

solutions faster. While obtaining a feasible solution first does not guarantee that

it would be close to optimum, such solutions are useful when one is interested in

finding a feasible solution of a problem. Tables 2.13 and 2.14 present the distance

measure of the first feasible solution from the optimum value as obtained using

different constraint handling schemes. In terms of the best result, DE-CS is better

in 7 problems out of 11 and 8 out of 11 based on the mean result. It is important

to highlight that in some examples, DE-CV delivers the first feasible solution close

to optimum.

3. Comparison on time complexity: The computational complexities of the

strategies are analysed next. In this comparison, performance of 5 solvers is

studied using 11 problems. Computational time is used as the performance

measure. For each problem p and solver s, tp,s = average computing time required

to reach a feasible solution is computed. Table B.2 shows the value of tp,s for all

the solvers. Matlab R2011b was used to implement the algorithms with the system

configuration as follows: Intel(R) Core(TM)2 Duo 3.00 GHZ, 3.49 GB of RAM,

Windows XP Professional Version 2002.

The performance on problem p by solver s is defined by the performance ratio

calculated as follows:

rp,s =
tp,s

min{tp,s : s ∈ S} (2.19)

Figure 2.10 shows the value of ρ(τ) for rp,s ≤ τ of the normalized performance

ratio. One can observe from the figure that DE-CS outperforms other strategies.

4. Comparison with other state-of-the-art algorithms on CEC-2006 :

The results from the proposed algorithm is further investigated on the selected

benchmark problems and compared against other state-of-the-art algorithms. The

best entries in CEC-2006 competition are selected here for a comparison. Each
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Table 2.13: Distance of the first feasible solution from the optimum

Prob. Algorithms Best Mean Std

G01

DE-CS 2.999 4.283 0.590
DE-SF 4.759 5.435 0.242
DE-SP 4.581 5.408 0.322
DE-SR 4.888 5.554 0.202
DE-EC 4.962 5.506 0.201

G02

DE-CS 0.043 0.050 0.020
DE-SF 0.051 0.055 0.012
DE-SP 0.044 0.056 0.012
DE-SR 0.057 0.058 0.011

DE-EC 0.051 0.052 0.012

G04

DE-CS 5.543 5.543 0.000

DE-SF 6.994 14.592 4.109
DE-SP 5.770 12.706 5.338
DE-SR 6.282 14.147 4.232
DE-EC 4.324 13.760 5.254

G06

DE-CS 1.430 4.365 1.241

DE-SF 0.801 4.563 2.235
DE-SP 0.451 3.790 1.712
DE-SR 0.291 7.119 5.764
DE-EC 0.066 4.005 3.490

G07

DE-CS 4.039 5.613 0.108

DE-SF 9.465 16.508 3.892
DE-SP 7.532 12.968 3.204
DE-SR 4.508 8.672 2.601
DE-EC 4.127 9.756 2.538

G08

DE-CS 0.037 0.317 0.184

DE-SF 0.042 0.453 0.230
DE-SP 0.116 5.352 6.500
DE-SR 0.039 0.359 0.255
DE-EC 0.102 0.506 0.225

of these algorithms is specialized in different components of an optimization

algorithm. Some algorithms are specialized in constraint-handling strategy such

as ǫ-DE [78] and DMS-PSO [84], some are in mutation strategy such as MDE [51],

PCX [85] and some are in adaptive strategy such as jDE [54], SaDE [80], and

GDE [86]. Since one is interested to observe the performance of constraint-handling

schemes and adaptive strategies in terms of TotalFEs, the results of DE-CS

are compared against the results of those algorithms in CEC-2006 benchmark

problems with the known optimum.
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Table 2.14: Distance of the first feasible solution from the optimum

Prob. Algorithms Best Mean Std

G09

DE-CS 3.667 5.514 0.413

DE-SF 6.644 12.533 2.580
DE-SP 6.063 11.248 2.236
DE-SR 5.143 10.530 2.064
DE-EC 6.946 11.759 2.583

G10

DE-CS 5.633 5.633 0.000

DE-SF 5.977 6.213 2.587
DE-SP 6.123 6.542 1.900
DE-SR 5.926 6.123 1.440
DE-EC 5.868 5.988 1.920

G12

DE-CS 0.532 0.548 0.012
DE-SF 0.592 0.551 0.019
DE-SP 0.595 0.611 0.112
DE-SR 0.575 0.599 0.011

DE-EC 0.543 0.562 0.013

G18

DE-CS 0.963 1.367 0.224
DE-SF 0.777 2.131 0.479
DE-SP 0.809 1.991 0.505
DE-SR 1.177 2.117 0.513
DE-EC 0.206 0.878 0.437

G24

DE-CS 0.181 1.420 0.445
DE-SF 0.018 0.676 0.433
DE-SP 0.313 0.821 0.297

DE-SR 0.206 0.878 0.437
DE-EC 0.189 0.710 0.394
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Figure 2.10: Performance profiles based on computational time
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Tables B.3 and B.4 show the results achieved by each algorithm. Among 7 other

algorithms, DE-CS shows better in 8 problems out of 11 problems when comparing

with the best results. In median results, DE-CS shows better in 5 problems out of

11. The success performance of DE-CS shows significantly better in 4 problems.

Figure 2.11, the performance profile of success performance is shown for all

problems. One can see from the figure that DE-CS requires less number of total

function evaluations to solve the problems.

Figure 2.12 presents the success rate of performance profile. One can see from the

figure that DE-CS is marginally better with ǫ−DE and way better than others.
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Figure 2.11: Performance profiles comparing DE-CS with other state-of-the-art
algorithms in CEC-2006 benchmarks

5. Performance on CEC-2010 problems: The selected CEC-2010 test problems

are mostly non-separable with a single exception. These problems contain a small

number of constraints unlike the CEC-2006 test problems. The non-separability

of the problem poses difficulty for the optimizer. In these problems, DE-CS is

able to show competitive results with other recent algorithms.



2.4. MOEA/D WITH ACH 59

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 R
at

e

e−DE jDESaDE DMS−
PSO

MDE GDE PCXDE−CS

Figure 2.12: Success rate performance profiles (normalized) comparing other
state-of-the-arts algorithms

2.4 MOEA/D with ACH

It is evident from a number of previous studies [72, 73, 74, 75] that, there is always a need

for adaptive constraint handling method as its performance is largely dependent on its

parameters. Here, an adaptive constraint handling approach is introduced that can be

used within the class of evolutionary multi-objective optimization (EMO) algorithms.

The proposed constraint handling approach is presented within the framework of one

of the most successful algorithms i.e., multi-objective evolutionary algorithm based on

decomposition (MOEA/D) [9]. The constraint handling mechanism adaptively decides

on the violation threshold for comparison. The violation threshold is based on the

type of constraints, size of the feasible space and the search outcome. Such a process

intrinsically treats constraint violation and objective function values separately and

adds a selection pressure, wherein infeasible solutions with violations less than the

identified threshold are considered at par with feasible solutions. The pseudo code for

the proposed algorithm is presented in the following.
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Algorithm 2.4 MOEA/D-ACH

Input: Genmax maximum number of generations, λ uniformly distributed weight
vectors

1: Generate the uniform weight vectors and identify the neighborhood B(i) of T ( see
Table 2.15 ) closest subproblems

2: Evaluate the initial population and update the ideal reference point z∗i i.e., z∗i =
min{fi(x)|x ∈ ℜn}.

3: while (gen ≤ Genmax) do
4: for i=1:λ do
5: Create a mating pool P of two parents by selecting the parents from the

neighborhood B(i) with a probability of δ; otherwise, from a randomly shuffled
population list with the probability of (1 − δ).

6: Select three parents for the recombination, one from the randomly shuffled
population list and two from the mating pool P and generate offspring y with
a DE operator along with a polynomial mutation with the probability of ρm.

7: Evaluate the offspring and calculate the CV using equation 2.22 and use local
search with a probability of γ.

8: Update the ideal reference point z∗.
9: Update the current individual with the generated offspring if it satisfies

equation 2.28.
10: end for
11: end while

Algorithm description:

MOEA/D with Adaptive Constraint Handling (ACH) method utilizes a decomposi-

tion approach to deal with subproblems and employs a neighborhood mating strategy

to accelerate the rate of search. Uniformly distributed weight vectors (λ) are used;

where, each subproblem is associated with a weight vector λi. The Euclidean distance

among the weight vectors are used to constitute the neighborhood B(i) where, i =

{i1, i2, i3.....iT} is the set of T closest subproblems. For the recombination process,

the mating pool P is selected either of the two ways i.e., (a) one parent is selected

from a randomly shuffled population list and two parents from the neighborhood B(i)

and (b) all three parents are selected from the randomly shuffled population list. The

probability of selecting the former one is δ and the other one is (1−δ). The pseudocode

of the modified MOEA/D to deal with constraints is presented in Algorithm 2.4.

The DE operator used in step 6 integrates two strategies i.e., a binomial crossover
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and a polynomial mutation for the recombination process [9]. The offspring (y) is

generated with a binomial crossover as follows:

yk =











xp1 + F × (xp2 − xp3) if rand[0, 1) ≤ CR,

xp1 , otherwise
(2.20)

where CR is the crossover rate between 0.1 to 1.0 [87]. While a single value of CR

is commonly used in previous studies, a set of CRs (see table 2.15) is used in this study

where the choice of the particular CR is decided based on the success ratio [88].

The generated offspring from the recombination process is then evaluated and the

constraint violation (CV
′
) is calculated by Equation 2.22. To repair the infeasible

solution having the constraint violation greater than zero, a local search is used with

a probability of γ (see Table 2.15). The newly generated offspring replaces the current

individual of the population list, if it satisfies the Equation 2.28.

2.4.1 Adaptive Constraint Handling (ACH)

The proposed constraint handling and modified selection process have been incorpo-

rated within MOEA/D. The details of the proposed schemes are discussed below:

• Constraint Violation (CV) measure: Constraint violation (CV) is a scalar

value derived through the summation of total violations of the inequality and

equality constraints. A CV of 0 indicates the solution is feasible. Mathematically,

CV is expressed as:

CV =

p
∑

i=1

max(gi, 0) +

q
∑

i=1

max(|hi − ǫ|, 0) (2.21)

where gi and hi are the inequality and equality constraints. In this study, apart

from the violation value, the number of violated constraints is also considered.

The modified formulation of the constraint violation measure is given below:
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CV
′

= m1 ∗
p

∑

i=1

max(gi, 0) + m2 ∗
q

∑

i=1

max(|hi − ǫ|, 0) (2.22)

where m1 and m2 are the number of inequality and equality constraints actively

present in the solution.

To demonstrate the working of the procedure, a two variable bi-objective con-

strained optimization problem with three inequality and one equality constraint

is designed (Equation 2.23).

Minimize [f1(~x), f2(~x)]

Subject to

g1(~x) ≡ x1 − 3.x2 − 2 ≤ 0,

g2(~x) ≡ x1 + x2 − 6 ≤ 0,

g3(~x) ≡ x2 − x1 + 2 ≤ 0,

Where,

f1(~x) = −(25.(x1 − 2)2 + (x2 − 2)2),

f2(~x) = x2
1 + x2

2

(2.23)

A graphical representation of the feasible region and the constraint boundary

for the problem (Equation 2.23) is shown in Figure 2.13. Because of a small

feasible region and the presence of an equality constraint, the solutions in the

initial population originated in the infeasible region with a constraint violation

value greater than zero. A progressive plot of the population is presented in

Figure 2.14 which indicates a decrease in the number of infeasible solutions over

the generations. A comparison of such a progress plot for 30 independent runs

for both the constraint violation measures (i.e., Equation 2.21 and Equation 2.22)

are presented in Figure 2.14. One can observe from Figure 2.15 (median run)

that using the modified measure of constraint violation, the individuals in the

population identifies feasible solutions faster.
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Feasible region
x-3.y-2<=0

x-2.y-2=0
y-x+2<=0

x+y-6<=0

Figure 2.13: A graphical representation of the formulated problem.
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Figure 2.14: Progressive decrease of number of infeasible solutions over the generations
using Equation 2.21 and 2.22 for 30 independent runs.

• Feasibility ratio: The feasibility ratio of a population refers to the ratio of

the number of feasible solutions in the population to the number of solutions in

the population. The mathematical expression of Feasibility Ratio (FR) is stated

earlier in Equation 2.14.

• Violation threshold: The violation threshold is an allowable violation level.

The infeasible solutions with violations less than the violation threshold are

considered at par with feasible solutions and are compared based on objective
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Figure 2.15: Progressive decrease of number of infeasible solutions over the generations
using Equation 2.21 and 2.22 in a median run.

function value. The violation threshold is an adaptive measure and is computed

as follows:

CV
′

mean =
1

M

M
∑

j=1

(CV
′

j ) (2.24)

Allowable violation(τ) = CV
′

mean ∗ FR (2.25)

where M refers the size of the population .

• Modified selection procedure: The fitness of a solution is represented as

follows:

fitness(ξ) =











ϕte(x), x ∈ ℜn

CV
′
,

(2.26)

where ϕte is the objective value and CV
′
is the constraint violation.

Infeasible solutions with violations less than the violation threshold are compared

based on their objective function values. Feasible solutions are compared against
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each other based on objective function value while infeasible solutions with vio-

lations more than the violation threshold are compared based on their constraint

violation values. The objective function value is calculated using the weighted

Tchebycheff approach [9], which is formulated as follows:

ϕte(x|λ, z∗) = maxm
i=1{λi|fi(x) − z∗i |} (2.27)

where λi is the uniform weight vector and z∗i is a ideal reference point i.e., z∗i =

min{fi(x)|x ∈ ℜn} for a minimization problem [9]. A lexicographic ordering is

used as a measure to compare solutions {ϕte
1 , CV

′

1} and {ϕte
2 , CV

′

2} as follows:

(ϕ1, CV
′

1 )<τ (ϕ2, CV
′

2 ) ⇔

8

>

>

>

<

>

>

>

:

ϕ1<ϕ2, if CV
′

1 , CV
′

2 < τ

ϕ1<ϕ2, if CV
′

1 = CV
′

2

CV
′

1 <CV
′

2 , otherwise

(2.28)

2.4.2 Gradient local search

To further accelerate the rate of convergence, a gradient based local search is used

to repair the infeasible solutions periodically. The probability of invoking the repair

method is set to 5% as adopted in [89].

2.4.3 Performance evaluation

The performance of the algorithm is evaluated using 10 widely used benchmark prob-

lems and a real-world constrained optimization problem. The parameters of the al-

gorithm are listed in Table 2.15. Features of the selected test problems are listed in

Table 2.16. The experiments are conducted using a population size of 200 for all the

problems.

The problems (SRN, OSY, CTP6, Toysub) have continuous Pareto-front while the

remaining ones (CTP2-CTP5, CTP7, CTP8 and TNK) have disjoint Pareto-front. The

feasibility ratio for all these problems indicates the level of difficulty to achieve the
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Table 2.15: Parameter settings

Population size (M) 200
Neighborhood size(T ) 0.1M
Crossover rate(CR) {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1.0}
Mutation rate (F ) 0.5
Probability of selecting the parents from the neighborhood(δ) 0.95
Polynomial mutation rate(ρm) 1/D
Probability of using the local search(γ) 0.05
FEmax 40000

Table 2.16: Summary of test problems

Prob. Obj./ D Search Range FR Constraints
Ineq. Eq.

CTP2 2/2 [0, 1]D 78.65% 1 0

CTP3 2/2 [0, 1]D 76.85% 1 0

CTP4 2/2 [0, 1]D 58.17% 1 0

CTP5 2/2 [0, 1]D 77.54% 1 0

CTP6 2/2 [0, 1]D 0.40% 1 0

CTP7 2/2 [0, 1]D 36.68% 1 0

CTP8 2/2 [0, 1]D 17.83% 1 0

SRN 2/2 [−20, 20]D 16.18% 2 0

TNK 2/2 [0, π]D 5.09% 2 0
OSY 2/6 [0, 10]2[1,5][0,6]

[1,5][0,10]
3.25% 6 0

Toysub 2/8 [0, 300]4[35,50]
[80,150][1.5,3][45,100]

0.0003% 3 0

Pareto-front. This feasibility ratio has been determined experimentally by calculating

the percentage of feasible solutions among 1000000 randomly generated individuals [90].

• Comparative study for the problems (CTP2-CTP8, SRN, TNK, and

OSY ): In this study, inverse generational distance (IGD)[8] is used to compute

the performance of the proposed algorithm with NSGA-II [91] using feasibility

first [50] constraint handling mechanism. The true Pareto-front for all the se-

lected test problems have been determined by running the well-known algorithm

NSGA-II up to 1000 generations. For a fair comparison, same parameter setup has

been used for both the algorithms. The convergence metric indicate the quality

of the solutions achieved after a certain generation. Thus, a lower value indicates

a better performance.

The results of all the problems are shown in Table 2.17. For problems CTP2-CTP8

the mean and standard deviation for MOEA/D-ACH is better than NSGA-II.
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Table 2.17: Comparison on Convergence metric

Problem MOEA/D-ACH NSGA-II

Mean Std Mean Std
CTP2 0.0035 0.0007 0.0948 0.1071
CTP3 0.0178 0.0052 0.1647 0.1217
CTP4 0.0995 0.0304 0.3063 0.2583
CTP5 0.0178 0.0046 0.2044 0.1864
CTP6 0.0062 0.0012 0.3033 0.2616
CTP7 0.0180 0.0952 0.2705 0.2169
CTP8 0.0180 0.0129 1.4573 0.9874
SRN 0.4876 0.0109 0.5546 0.0136
TNK 0.1683 0.3750 4.0592 0.5827
OSY 0.6705 0.9355 0.0025 0.0002

The Box plots indicate consistent performance across 30 independent runs (Fig-

ure 2.16).
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Figure 2.16: Box plots of convergence metric using 30 independent runs.

In Figures 2.17 and 2.18 for problems CTP2-CTP8, it can be seen that the

Pareto-front achieved by NSGA-II is partial in 200 generations whereas MOEA/D-ACH

is able to achieve the complete Pareto-front.

The algorithm is then used to solve SRN, TNK and OSY test problems (Fig-

ure 2.18). The proposed MOEA/D-ACH performs better than NSGA-II on SRN,

TNK and has shown competitive performance for OSY.

The algorithm has also been used to solve a real-world constraint optimization
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Figure 2.17: Final non-dominated fronts plots for the problems CTP2-CTP7 from
MOEA/D-ACH and NSGA-II of median run.

problem referred as the toy submarine design problem [92] by formulating a

bi-objective problem targeted to minimize the drag and maximize the lever arm.

The problem has described in the following subsection.

• Toy submarine design problem (Toysub): The toy submarine design is a

eight-variable constrained optimization problem, the single objective version of
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Figure 2.18: Final non-dominated fronts for the problems CTP8, SRN, TNK and OSY
from MOEA/D-ACH and NSGA-II of median run.

which is presented by Alam et al. [92]. A bi-objective formulation of the problem

has been studied in the present work which seeks to minimize the drag (D) and

maximize one of the lever arms (LA) subject to the constraints on length (L)

and weight (W ) of the vehicle, and centre of gravity (CG) and centre of buoyancy

(CB) separation. The first (LA1) and second (LA2) lever arms are the longitudinal

distances of the propellers from the centre of buoyancy respectively. The higher

value of lever arm produces higher pitching and turning moments that lead to

better diving and heading changes. The lower the value of CG/CB separation

(S), the closer the position of the CG and CB that leads to better stability of the

vehicle. Constraints on overall length and weight of the vehicle are also important

to meet the basic design requirements. Minimization of drag is important because

minimum drag leads to least power consumption for propulsion, and corresponding
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savings in the operating costs.

The design variables of the problem as illustrated in Figure 2.19 are: the position

of the internal components along the Z axis, such as position of the controller

(ZC), position of the propeller unit for pitch (ZV ) and yaw (ZL) movements,

position of the battery compartment (ZB), smaller diameter (dt) and length (lt)

of the tail and shape variation coefficient (nn) and length (ln) of the nose. The

optimization problem is stated in Equation 2.30.

Figure 2.19: Illumination of the constraints and design variables for problem formulation
of the toy submarine design problem

Minimize:

f (1) = D

f (2) = −LA; where LA = min(LA1, LA2)

Subject to:

g (1) = L ≤ 400 mm; g (2) = W ≤ 450 g

g (3) = S ≤ 4 mm

(2.29)

Variable bounds:

0 ≤ ZC ≤ 300 mm; 0 ≤ ZV ≤ 300 mm

0 ≤ ZB ≤ 300 mm; 0 ≤ ZL ≤ 300 mm

35 ≤ dt ≤ 50 mm; 80 ≤ lt ≤ 150 mm

1.5 ≤ nn ≤ 3; 45 ≤ ln ≤ 100 mm

(2.30)

To maximize one of the lever arms as formulated in Equation 2.30, a negative sign

is placed, thereby formulating both the objectives as a minimization problem.
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• Multi-objective optimization results: A population size of 200 solutions

was allowed to evolve over 300 generations. The same parameters were used

for NSGA-II. Figure 2.20 shows the final Pareto-front obtained in the median

run. The comparison is based on hypervolume [93] which measures the volume

(or area) dominated by the given set of solutions given a reference point. Larger

this dominated area, better is the set of solutions.
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Figure 2.20: Final non-dominated fronts for median run of the toy submarine design problem
using MOEA/D-ACH and NSGA-II

In this study, a reference point of [0.1319, -0.3242] is used, which is calculated by

taking the maximum value of each objective across all the runs. It is seen from the

results reported in Table 2.18 that MOEA/D-ACH is able to achieve marginally

higher (nearly same) values of hypervolume as compared to NSGA-II.

Table 2.18: Comparison on hypervolume metric

Prob. MOEA/D-ACH NSGA-II

Best Mean Std Best Mean Std

Toysub 4.6812 1.8878 0.8931 4.6641 1.8679 1.0774
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• Results of optimum toy submarine design: Three solutions (i.e., considering

the lowest drag value, lowest lever arm and the intermediate solution considering

both) obtained from the best run of MOEA/D-ACH and NSGA-II are presented.

Figure 2.21 shows the results obtained from the best runs.
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Figure 2.21: Final non-dominated fronts for best run of the toy submarine design problem
using MOEA/D-ACH and NSGA-II

Presented in Table 2.19 is the comparison of the resulting performance criteria

of the optimized toy submarines using both MOEA/D-ACH and NSGA-II. The

results are comparable indicating that MOEA/D-ACH is capable of solving con-

strained optimization problems as good as NSGA-II, even when the feasibility

ratio is extremely low. Shown in Figures 2.22 and 2.23 are the internal config-

urations of the chosen intermediate solutions for MOEA/D-ACH and NSGA-II

respectively.

The constraint handling approach is embedded within the framework of multi-objective

evolutionary algorithm based on decomposition (MOEA/D) [9] to equip it to

deal with constrained optimization problems. To assess the performance of pro-

posed approach, 10 well known benchmark multiobjective constrained optimiza-

tion problems and a real-world toy submarine design problem were solved. The
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Table 2.19: Performance criteria of the optimized toy submarines using MOEA/D-ACH
and NSGA-II for solution-1 (considering the lowest drag), solution-2 (the

intermediate solution), solution-3 (considering the maximum lever arm)
MOEA/D-ACH NSGA-II

Vehicle particulars Solution-1 Solution-2 Solution-3 Solution-1 Solution-2 Solution-3
Nose length 45 mm 45 mm 45 mm 45 mm 45 mm 45 mm
Parallel middle body
length

250 mm 261 mm 275 mm 252 mm 263 mm 275 mm

Tail length 80 mm 80 mm 80 mm 80 mm 80 mm 80 mm
Length overall 375 mm 386 mm 399 mm 377 mm 388 mm 399 mm
Maximum diameter 58 mm 58 mm 58 mm 58 mm 58 mm 58 mm
Length to diameter ra-
tio

6.5 6.7 6.9 6.5 6.7 6.9

Maximum dimension
of the inner square

38 mm 38 mm 38 mm 38 mm 38 mm 38 mm

Wetted surface area 0.086410 m2 0.088848 m2 0.092030 m2 0.086727 m2 0.089279 m2 0.092086 m2

Displacement volume 0.000456 m3 0.000473 m3 0.000494 m3 0.000458 m3 0.000476 m3 0.000495 m3

Mass of the displaced
water

456 g 473 g 494 g 458 g 476 g 495 g

Total mass of the vehi-
cle

436.219 g 441.854 g 449.201 g 436.954 g 442.848 g 449.328 g

Length of the first lever
arm

99.3352 mm 103.519 mm 108.981 mm 99.8721 mm 104.258 mm 109.071 mm

Length of the second
lever arm

84.4732 mm 90.8139 mm 99.0644 mm 85.3094 mm 91.9321 mm 99.200 mm

X-coordinate of CG -0.962819 mm -0.95054 mm -0.934993 mm -0.961200 mm -0.948407 mm -0.934729 mm
Y-coordinate of CG -0.206318 mm -0.203687 mm -0.200356 mm -0.205971 mm -0.20323 mm -0.200299 mm
Z-coordinate of CG 182.41 mm 186.5 mm 196.042 mm 183.306 mm 189.029 mm 195.206 mm
X-coordinate of CB 0 0 0 0 0 0
Y-coordinate of CB 0 0 0 0 0 0
Z-coordinate of CB 178.473 mm 184.814 mm 193.066 mm 179.309 mm 185.932 mm 193.2 mm
Longitudinal distance
between CB and CG

3.937 mm 1.686 mm 2.976 mm 3.997 mm 3.097 mm 2.006 mm

Nominal speed 0.5 m/s 0.5 m/s 0.5 m/s 0.5 m/s 0.5 m/s 0.5 m/s
Drag (VT method) 0.0814820 N 0.0830058 N 0.0849836 N 0.0816812 N 0.0832745 N 0.0850195 N
Drag (G&J method) 0.0822890 N 0.0837647 N 0.0856861 N 0.0824815 N 0.0840254 N 0.0857211 N
Drag (MIT method) 0.0843982 N 0.0857070 N 0.0874267 N 0.0845684 N 0.0859393 N 0.0874587 N
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Figure 2.22: Configuration of the resulting optimized toy submarine concerning drag
and lever arms simultaneously obtained from MOEA/D-ACH.
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Figure 2.23: Configuration of the resulting optimized toy submarine concerning drag
and lever arms simultaneously obtained from NSGA-II.

results are compared with those obtained using NSGA-II. The preliminary results

of this study indicate that the constraint handling approach is effective and

MOEA/D-ACH is able to deal with constrained optimization problems better

or at par with NSGA-II. Since the constraint handling scheme is generic, it can

be used in other forms of population based stochastic algorithms.

2.5 Summary

In this chapter, three key contributions are made related to the enhancement of a DE

algorithm for the solution of single and multi-objective optimization problems. The

benefits are summarized below.

• AH-DEa: The proposed algorithm incorporates an adaptive crossover rate control

mechanism, a combination of crossover types and a local search strategy. Bino-

mial and exponential crossover mechanisms have been used in various stages of

evolution to exploit their strengths in exploration and exploitation.
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• DE-CS: A novel constraint handling scheme has been introduced within the

framework of differential evolution utilizing the concepts of partial evaluation

and constraint sequencing. The utility of using multiple constraint sequences is

highlighted using three illustrative examples. The approach is likely to provide sig-

nificant computational benefits for problems involving computationally expensive

constraints. Furthermore, since DE-CS attempts to reach the feasible space from

different search directions, it is less likely to be trapped in local optima. Since the

efficiency of the algorithm stems from handling constraints, the approach is likely

to be less useful for problems with high feasibility ratio (such as G02 and G24).

While the approach presented in the paper inherently assumes that the constraints

can be evaluated independently, the method can be extended further to deal with

blocks or sets of constraints as encountered in more realistic multidisciplinary

optimization problems.

• MOEA/D-ACH: An adaptive constraint handling approach has been presented.

The constraint handling approach is embedded within the framework of multi-

objective evolutionary algorithm based on decomposition (MOEA/D) to equip it

to deal with constrained optimization problems. Since the constraint handling

scheme is generic, it can be used in other forms of population based stochastic

algorithms.

The performance of these algorithms is rigorously assessed using different benchmark

functions. The results assessed using various measures clearly indicate that the proposed

developments offer competitive advantages over existing schemes.
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Chapter Overview

This chapter introduces a decomposition based evolutionary algorithm (DBEA) for many-

objective optimization. There are three key components of the algorithm i.e., uniformly

distributed reference points are generated via systematic sampling, balance between con-
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vergence and diversity is maintained using two independent distance measures and a

simple preemptive distance comparison scheme is used for the association of solutions

to the reference directions. Comparisons with other published state-of-the-art algorithms

on various real-world benchmark problems as well as the problems involving redundant

objectives and disconnected Pareto fronts are included in order to illustrate the perfor-

mance of the algorithm.

3.1 Literature Review

Many-objective optimization relate to optimization problems where the number of

objectives is large, in general greater than four [94]. There is significant amount of

literature discussing the challenges involved in solving them and interested readers

may refer to [94] for further details. The main difficulty arises from the inability of

the non-dominance-based schemes to generate sufficient selection pressure to drive the

solutions to the Pareto front. Therefore, the commonly used dominance based methods

for multi-objective optimization, such as NSGA-II [91], SPEA2 [95] do not offer satisfac-

tory results. There has been a number of attempts to modify the underlying selection

pressure through the use of secondary metrics such as substitute distance measures

[96][97], average rank domination [98], fuzzy dominance [99], ǫ-dominance [100][101],

adaptive ǫ-ranking [102] etc. without great success. In all the above approaches, while

the diversity and the convergence of the population improved during the course of

evolution, there is no guarantee that the final non-dominated set spans the entire Pareto

surface uniformly.

There are also radically different approaches to deal with many-objective optimiza-

tion, such as attempts to identify the reduced set of objectives [103] or corners of the

Pareto front [104] and subsequently solving the problem using these reduced set of ob-

jectives. Other attempts include interactive use of decision makers preferences [105], use

of reference points [106][107] or solution of the problem as a hypervolume maximization

problem [93]. While some progress has been made along these lines, the limiting factors
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include the inability to obtain solutions close to Pareto set for an accurate identification

of redundant objectives, decision making burden associated with preference elicitation

and the computational complexity of hypervolume computation.

Decomposition based evolutionary algorithms are yet another class of algorithms

originally introduced as MOEA/D [9], wherein the multi-objective optimization prob-

lem is decomposed into a series of scalar optimization problems. MOEA/D has been

quite successful in solving optimization problems involving two and three objectives

and there is significant interest in developing it further to deal with many-objective

optimization problems. Notable works in the area include the development of surface

evolutionary algorithm (SEA) [108], many-objective evolutionary algorithm based on

generalized decomposition (MAEA-gD) [109], approximation model guided selection

(AMS) [110], M-NSGA-II [111] and recent works of the authors in decomposition based

EAs [112] and quantum inspired many- objective algorithm [113].

Fundamentally, in all such approaches one needs to generate a set of uniformly

distributed reference directions and adopt a method of scalarization. In the context of

many- objective optimization, the first issue relates to the design of a computationally

efficient scheme to generate W uniform reference directions for a M objective optimiza-

tion problem, where M is typically more than four and W is often chosen to be the

same as the population size. The second issue relates to scalarization, which essentially

assigns the fittest individual to each reference direction. The notion of fittest is

essentially derived using a trade-off between convergence and diversity measured with

respect to any given reference direction. One of the early attempts to generate uniformly

distributed reference directions appear in the works of Hughes [107] . The method

was not computationally efficient for problems with more than six objectives and

often resulted in a large number of reference directions that in turn required a huge

population size. More recently, computationally efficient and scalable sampling schemes

have been used in the context of many-objective optimization. A systematic sampling

[4] scheme was used in M-NSGA-II [111] while an uniform sampling scheme was used
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in MOEA/D [114].

The second issue related to scalarization has been addressed via two fundamental

means i.e., through a systematic association and niche preservation mechanism as

in M-NSGA-II [111] or through the use of a penalty function (i.e., an aggregation

of the projected distance along a reference direction and the perpendicular distance

from a point to a given reference direction) within the framework of MOEA/D. The

performance of the penalty function based approach is dependent on the penalty pa-

rameter, while the association and the niche preservation process require a careful

implementation to address a number of possibilities.

This chapter presents a decomposition based evolutionary algorithm for many-objective

optimization. The reference directions are generated using systematic sampling, wherein

the points are systematically generated on a hyperplane with unit intercepts in each

objective axis. The process of reference point generation is the same as adopted in

M-NSGA-II [111]. The association of solutions to reference directions are based on

two independent distance measures. The distance along the reference direction controls

convergence while the perpendicular distance from the solution to the reference direction

controls the diversity. The proposed algorithm utilizes a simple prioritized distance

comparison to maintain this balance and control association. In order to improve the

efficiency of the algorithm, a steady state form is adopted in contrast to a generational

model used in M-NSGA-II [111] . Furthermore, to deal with constraints, an adaptive

epsilon level based scheme is adopted which had outstanding performance on recent

constrained optimization benchmarks [115, 116].

The rest of the chapter is organized as follows. The details of the proposed algorithm

are presented in Section 3.2. The performance of the proposed algorithm on benchmark

problems (DTLZ1-DTLZ4 for 3, 5, 8, 10 and 15 objectives) and (WFG1-WFG9 for 3,

5, 10 and 15 ) are presented and compared with MOEA/D-PBI and M-NSGA-II in

Section 3.3. The performance on degenerate problems DTLZ5 and WFG3 are also

presented in Section 3.3. In addition to the above set of mathematical benchmarks,
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the performance of the algorithm is also presented and compared using a number of

engineering design problems (car side impact, water resource management and the

constrained ten-objective general aviation aircraft (GAA) design). Another variant

of decomposition based method is presented with quantum genetic algorithm and its

performance and benefits are presented in the subsequent sections. The final section

summarizes the contributions and future directions for further improvement.

3.2 Proposed Decomposition Based Evolutionary Al-

gorithm

A many-objective optimization problem can be defined as follows:

min. [f1(x), f2(x), f3(x), .....fM (x)],x ∈ Ω

S.t. gj(x) ≤ 0, j = 1, 2, .......p (3.1)

hk(x) = 0, k = 1, 2, .......q

where f1(x), f2(x), f3(x), ......fM(x) are the M objective functions, p is the number

of inequalities and q is the number of equalities.

The proposed improved decomposition based evolutionary algorithm (I-DBEA) pre-

sented in this chapter is an extension of the authors previous work on DBEA-Eps [112].

While DBEA-Eps [112] was successful in solving a range of many-objective optimization

problems, the performance was dependent on the choice of a number of parameters

and several adaptive rules. This extension is clearly focused on elimination of such

parameters and adaptive rules. The differences are summarized below for a greater

clarity.

• In DBEA-Eps, the original concept of neighborhood as in MOEA/D was used to

select parents for recombination with a given probability τ . In the proposed

algorithm, both these parameters have been eliminated through the use of a
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random parent selection scheme with a first encounter replacement strategy.

• Every solution in DBEA-Eps, had two distance measures associated with it i.e.,

distance along a reference direction d1 and distance perpendicular to the reference

direction d2. Comparisons between solutions were based on an adaptive epsilon

level of d2. In the proposed algorithm, a simple precedence rule is used, where d2

has precedence over d1.

• Scaling is an important aspect in any decomposition based scheme. In DBEA-Eps,

a hyperplane was constructed using M extreme non-dominated solutions which in

turn provided the axis intercept lengths. In the proposed algorithm, such solutions

are identified using corner sort [104].

The algorithm is presented below and the individual components related to (a) gen-

eration of reference points (b) normalization and computation of distances (c) method of

recombination (d) selection/replacement (e) means of constraint handling are discussed

in subsequent subsections.

3.2.1 Generation of reference points

A structured set of reference points γ is generated spanning a hyperplane with unit

intercepts in each objective axis using normal boundary intersection method (NBI) [4].

The approach generates W points on the hyperplane with a uniform spacing of δ = 1/s

for any number of objectives M and there are s sampling locations along each objective

axis. The process of generation of the reference points is illustrated using a 3-objective

optimization problem (M = 3) with an assumed spacing of δ = 0.2 (s = 5) in Figure 3.1.

The process results in the generation of 21 reference points.

W = (M+s−1)Cs (3.2)

The distribution of the reference points are presented in Figure 3.2. The reference

directions are formed by constructing a straight line from the origin to each of these
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Algorithm 3.1 I-DBEA

Input: Genmax maximum number of generations, W the number of reference points

1: Generate the reference points using NBI
2: Initialize the population P; |P | = W and assign each individual of P to an unique

reference direction randomly.
3: Evaluate the initial population and compute the ideal point z̄j =

(fmin
1 , fmin

2 , ....., fmin
M ), identify the corners and compute intercepts aj’s for j = 1 to

M
4: Scale the individuals of the population
5: Assign the 2M corner solutions to a corner set S.
6: while (gen ≤ Genmax) do
7: for i=1:W do
8: Select Pi as the base parent
9: I=Select its partner randomly from W

10: Create a child via recombination as Ci

11: Evaluate Ci and compute the distances (d1 and d2) using all reference directions

12: Update the corner solution set S using corner-sort
13: Replace the parent Pl with Ci using single-first encounter strategy, where l

denotes the index of the first parent satisfying the condition of replacement
14: Update the ideal point (z̄), the intercepts and re-scale the population
15: end for
16: end while

(a) (b)

Figure 3.1: (a) the reference points are generated computing γs recursively (b) the table shows
the combination of all γs in each column

reference points. The population size of the algorithm is set to the number of reference

points. The initial population consists of W individuals generated randomly within the
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Figure 3.2: A set of reference points in a normalized hyperplane for number of objectives,
M = 3 and p = 5.

variable bounds. Such solutions are thereafter assigned randomly to reference directions

during the phase of initialization.

3.2.2 Normalization and computation of distances

Decomposition based algorithms rely heavily on d1 and d2 distances and normalization is

necessary in the event the objectives are in different orders of magnitude. In DBEA-Eps

and M-NSGA-II, the normalization is based on intercepts calculated using M extreme

points of the non-dominated set. In I-DBEA, M solutions are identified using a

corner-sort ranking [104] procedure. In corner sort, the top M solutions are the

minimum in each objective, while the following M solutions are the minimum based on

L2 norm of all but one objectives. From the set of 2M solutions, the maximum in each

objective is identified and corresponding solutions which have led to the maximum value

is selected and referred as extreme points ze. Such extreme points are used to create

the hyperplane and compute the intercepts. In the event the number of such extreme

points are less than M , the maximum value of the objective is used as the intercept

value (aj’s). The ideal point of a population is denoted by zj = (fmin
1 , fmin

2 , ....., fmin
M ).

The intercepts of the hyperplane along the objective axes are denoted by a1, a2, ...., aM .

The generic equation of a plane through these points can be represented using the

following equation
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C1f1 + C2f2 + ..... + CMfM = 1 (3.3)

where, C1, C2,....,CM are the unit normal of the plane. The intercepts of the plane with

the axis are given by a1 = 1/C1, a2 = 1/C2,....., and aM = 1/CM .

In the event, the number of such solutions are less than M or any of the aj’s are

negative, aj’s are set to fmax
j . Every solution in the population is subsequently scaled

as follows:

f ′
j(x) =

fj(x) − zj

aj − zj

, ∀j = 1, 2, ...M (3.4)

For any given reference direction, the performance of a solution can be judged using

two measures d1 and d2 as depicted in Equations 3.5 and 3.6. The first measure d1

is the Euclidean distance between origin and the foot of the normal drawn from the

solution to the reference direction, while the second measure d2 is the length of the

normal. Mathematically, d1 and d2 are computed as follows:

d1 = wT f ′
j(x) (3.5)

d2 = ‖f ′
j(x) − wT f ′

j(x)w‖ (3.6)

where w is a unit vector along any given reference direction. It is clear that a value of

d2 = 0 ensures the solutions are perfectly aligned along the required reference direction

ensuring perfect diversity, while a smaller value of d1 indicates superior convergence.

These two measures are subsequently used to control diversity and convergence of the

algorithm.
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3.2.3 Method of recombination

In the recombination process, two child solutions are generated using simulated binary

crossover (SBX) operator [117] and polynomial mutation. The first child is considered

as an individual attempting to replace any parent in the population.

3.2.4 Selection/replacement

In the steady state form, if a child solution is non-dominated with respect to the

individuals in the population, it attempts to enter the population via a replacement.

The child solution competes with all solutions in the population in a random order until

it makes a successful replacement or has competed with all individuals. If {d1r , d2r}

denotes the distances for the rth solution in the population and {d1c , d2c} denotes the

distances for the child solution along rth reference direction, a child is considered winner

if d2c is less than d2r . In the event the d2c is equal to d2r , the child is considered a winner

if d1c is less than d1r . The simple precedence of d2 over d1 eliminates the need for a

complex epsilon based scheme.

3.2.5 Constraint Handling

The constraint handling approach used in this work is based on epsilon level comparison

and has been reported earlier in [115]. The feasibility ratio (FR) of a population refers

to the ratio of the number of feasible solutions in the population to the number of

solutions (W ). The allowable violation is calculated as follows:

CV =

p
∑

i=1

max(gi, 0) +

q
∑

i=1

max(|hi − ǫ|, 0) (3.7)

CVmean =
1

W

W
∑

j=1

(CVj) (3.8)

Allowable violation(ǫCV ) = CVmean ∗ FR (3.9)
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An epsilon level comparison using this allowable violation measure is used to com-

pare two solutions. If two solutions have their constraint violation value less than this

epsilon level, the solutions are compared based on their objective values i.e., via d1 and

d2 measures. Such a constraint handling scheme has performed better than feasibility

first schemes on recent constrained optimization benchmarks [115].

3.3 Experimental Results

In this section, the results of improved decomposition based evolutionary algorithm

(I-DBEA) are presented and compared with DBEA-Eps [112], M-NSGA-II and MOEA/D

-PBI [118] for problems DTLZ1-DTLZ4 with 3, 5, 8, 10 and 15 objectives, WFG with

3, 5, 10 and 15 objectives and three other constrained engineering design problems.

The population sizes used in this study are the same as those adopted in [118]. The

reference points are generated following Equation 3.2. For M=3, s is chosen as 12

resulting in 91 reference points, while for M=5, s is set to 6 resulting in 210 reference

points (Table 3.1). For M greater than 8, the reference points are generated via a

two-layer sampling scheme with two values of s i.e., one for each layer as outlined

in [118] (Table 3.1). These settings have been used to make consistent comparisons

between I-DBEA and the recently proposed reference direction based NSGA-III [118].

Table 3.1: Number of reference points/directions/population used in the study.

No. of Obj. (M) Sampling size (s) in each axis Popsize/Ref. dirn. (W )

3 s=12 91
5 s=6 210
8 s=3, s=2 156
10 s=3, s=2 275
15 s=2, s=1 135

It is important to highlight that the two-layer sampling scheme [118] results in

redundant extreme points (i.e., along each objective axis). While such a scheme may

provide benefit to NSGA-III, it is not required for I-DBEA as it intrinsically identifies
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extreme points via corner-sort.

Parameters for I-DBEA include a probability of crossover is set to 1 and the prob-

ability of mutation is set to pm = 1/D, where D is the dimensionality of the problem.

Parameters for DBEA-Eps include a neighborhood size of 20 and the probability of

selecting a parent from its neighborhood (T ) is set to 0.9. The distribution index of

crossover is set to ηc=30 and the distribution index of mutation is set to ηm=20 as

in [118]. Parameters for MOEA/D-PBI include a neighborhood size of 20, probability

of selecting a parent from its neighborhood (T ) is set to 0.9, the distribution index of

crossover is set to ηc=20, the distribution index of mutation is set to ηm=20, maximum

number of solutions replaced by a child solution ηr = T , and a penalty parameter θ = 5

as in [118]. The performance of MOEA/D-PBI could have been affected by the choice

of the above parameters.

To assess the performance, we have selected Inverted generational distance (IGD) [8][9]

and Hypervolume (HV) [6] as the performance metric. The IGD metric is calculated

with respect to the given reference directions normalized with the theoretical ideal and

nadir points for the DTLZ problems. For other problems (i.e., WFG), the targeted

Pareto-optimal points are generated from the non-dominated solutions obtained from

all runs of the algorithms. The exact hypervolume is computed for 3 to 8 objective

problems while an approximated hypervolume is computed for 10 to 15 objective

problems.

3.3.1 Performance on Unconstrained DTLZ Problems

In this comparison, the best, median and worst IGD results obtained using 30 indepen-

dent runs for DTLZ1-DTLZ4 are presented. The test instances of DTLZ problems are

briefly discussed in below:
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• DTLZ1

Minimize

f1(x) =
1

2
x1x2..................xM−1(1 + g(xM))

f2(x) =
1

2
x1x2.........(1 − xM−1)(1 + g(xM))

...

fM−1(x) =
1

2
x1(1 − x2)(1 + g(xM))

fM(x) =
1

2
(1 − x1)(1 + g(xM)) (3.10)

where, g(xM) = 100(|K| +
∑M+K−1

i=M
(xi − 0.5)2 − cos(20π(xi − 0.5))) and x =

(x1, x2, ...., xn)T ∈ [0, 1]M+K−1.

The Pareto-optimal solution corresponds to x∗
i =0.5 (x∗

i ∈ xM) and the objective func-

tion values lie on the linear hyperplane:
∑M

i=1
f ∗

i =0.5. A value of K = 5 is used in this

study.

• DTLZ2 - DTLZ4

Minimize

f1(x) = cos(
xα

1π

2
)...cos(

xα
M−1π

2
)(1 + g(xM))

f2(x) = cos(
xα

1π

2
)...sin(

xα
M−1π

2
)(1 + g(xM))

...

fM(x) = sin(
xα

1π

2
)(1 + g(xM)) (3.11)

where,

g(xM) =
∑M+K−1

i=1
(xi − 0.5)2

and x = (x1, x2, ...., xn)T ∈ [0, 1]M+K−1.
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The Pareto-optimal solution corresponds to x∗
i =0.5 (x∗

i ∈ xM) and the objective func-

tion values lie on the linear hyperplane:
∑M

i=1
(f ∗

i )2=1. A value of K = 10 and α = 1

are suggested for DTLZ2, DTLZ3 and α = 100 is suggested for DTLZ4 test problem.

In the above problem, the total number of variables is n = M + K − 1.

The results of I-DBEA, DBEA-Eps, M-NSGA-II and MOEA/D-PBI are presented

in Tables 3.2 and 3.3. In Figure 3.3 and Figure 3.4, the final Pareto front is shown for

three-objective DTLZ1 and DTLZ2 problems using I-DBEA and DBEA-Eps. While

schematically the results look similar, one can notice that I-DBEA obtained the best

IGD values in 15 instances out of 20 (see Tables 3.2 and 3.3).
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Figure 3.3: Obtained solutions by (a) DBEA-Eps (b) I-DBEA for DTLZ1.

(a) (b)

Figure 3.4: Obtained solutions by (a) DBEA-Eps (b) I-DBEA for DTLZ2.

In order to observe the process of evolution, the average performance of the popu-

lation is computed i.e., average of the d1 and d2 values of the individuals for DTLZ1 (3
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Table 3.2: Best, Median and worst IGD values obtained for I-DBEA and DBEA-Eps on
M-objective DTLZ1 and DTLZ2 problems. Best performance is shown in bold.

Test
Prob.

Obj. MaxGen I-DBEA DBEA-Eps M-NSGA-II MOEA/D-PBI

D
TLZ

1

3 400
1.075e-3 8.771e-5 4.880e-4 4.095e-4
1.043e-2 9.521e-3 1.308e-3 1.495e-3
6.502e-1 5.854e-1 4.880e-3 4.743e-3

5 600
9.433e-4 1.771e-5 5.116e-4 3.179e-4
5.993e-4 5.116e-4 9.799e-4 6.372e-4
5.481e-1 5.854e-1 1.979e-3 1.635e-3

8 750
8.570e-4 4.387e-5 2.044e-3 3.914e-3
2.421e-4 3.581e-4 3.979e-3 6.106e-3
1.864e-3 1.981e-3 8.721e-3 8.537e-3

10 1000
3.510e-4 7.691e-4 2.215e-3 3.872e-3
5.178e-3 1.504e-3 3.462e-3 5.073e-3
1.112e-2 2.700e-3 6.869e-3 6.130e-3

15 1500
1.325e-3 1.696e-3 2.649e-3 1.236e-2
2.329e-3 2.606e-3 5.063e-3 1.431e-2
3.356e-3 2.686e-3 1.123e-2 1.692e-2

D
TLZ

2

3 400
6.372e-4 2.040e-2 1.262e-3 5.432e-4
1.243e-3 4.138e-2 1.357e-3 6.406e-4
8.402e-3 6.417e-2 2.114e-3 8.008e-4

5 600
1.118e-3 1.199e-3 4.254e-3 1.219e-3
2.097e-3 3.024e-3 4.982e-3 1.437e-3
6.165e-3 2.272e-2 5.862e-3 1.727e-3

8 750
2.218e-3 1.172e-3 1.371e-2 3.097e-3
3.185e-3 2.899e-3 1.571e-2 3.763e-3
9.694e-3 6.915e-3 1.811e-2 5.198e-3

10 1000
2.173e-3 3.656e-3 1.350e-2 2.474e-3
3.025e-3 3.657e-3 1.528e-2 2.778e-3
3.122e-3 3.657e-3 1.697e-2 3.235e-3

15 1500
4.238e-3 5.160e-3 1.360e-2 5.254e-3
4.251e-3 5.960e-3 1.726e-2 6.005e-3
4.267e-3 5.960e-3 2.114e-2 9.409e-3

objectives). One can observe from Figure 3.5, that the average d2 converges to near zero

(i.e., near perfect alignment to the reference directions), while the average d1 measure

stabilizes at around 0.5 indicating convergence to the Pareto front.

The association mechanism (i.e., association of the solutions to each reference di-

rection) for a 3-objective DTLZ1 problem is presented in Figure 3.6. The figure shows
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Table 3.3: Best, Median and worst IGD values obtained for I-DBEA and DBEA-Eps on
M-objective DTLZ3 and DTLZ4 problems. Best performance is shown in bold.

Test
Prob.

Obj. MaxGen I-DBEA DBEA-Eps M-NSGA-II MOEA/D-PBI

D
TLZ

3

3 400
1.420e-4 4.171e-4 9.751e-4 9.773e-4
5.701e-4 4.278e-4 4.007e-3 3.426e-3
3.590e-2 4.753e-1 6.665e-3 9.113e-3

5 600
4.984e-4 1.102e-3 3.086e-3 1.129e-3
4.076e-3 9.171e-2 5.960e-3 2.213e-3
1.075e-1 5.713e-1 1.196e-2 6.147e-3

8 750
1.126e-3 5.523e-2 1.244e-2 6.459e-3
2.666e-3 7.821e-2 2.375e-2 1.948e-2
6.983e-2 5.951e-1 9.649e-2 11.23e-1

10 1000
4.438e-3 5.773e-3 8.849e-3 2.791e-3
5.320e-3 4.137e-3 1.188e-2 4.319e-3
5.396e-3 7.853e-1 2.083e-2 10.10e-1

15 1500
8.612e-3 8.785e-3 1.401e-2 4.360e-3
8.681e-3 9.135e-3 2.145e-2 1.664e-2
8.724e-3 5.137e-1 4.195e-2 12.60e-1

D
TLZ

4

3 400
9.858e-5 2.175e-4 2.915e-4 2.929e-1
2.300e-4 3.578e-3 5.970e-4 4.280e-1
8.700e-1 9.154e-1 4.286e-1 5.234e-1

5 600
1.354e-4 2.753e-4 9.849e-4 1.080e-1
2.857e-4 2.121e-3 1.255e-3 5.787e-1
9.894e-3 5.157e-1 1.721e-3 7.348e-1

8 750
1.761e-4 3.771e-3 5.079e-3 5.298e-1
3.319e-4 9.155e-3 7.054e-3 8.816e-1
1.764e-2 5.951e-1 6.051e-1 9.723e-1

10 1000
1.716e-4 3.771e-3 5.694e-3 3.966e-1
1.716e-4 4.125e-3 6.337e-3 9.203e-1
1.716e-4 5.754e-1 1.076e-1 10.77e-1

15 1500
1.716e-4 6.173e-3 7.110e-3 5.890e-1
1.716e-4 7.323e-3 3.431e-1 11.33e-1
2.796e-4 5.753e-1 10.73e-1 12.49e-1

the associations in generation 1, 500 and 1000 using 15 reference points. One can

observe that although initially the association is random, the solutions automatically

get associated to the closest reference directions during the course of evolution via the

pressure induced by d2. This alleviates the need of an extensive niching and association

operation as encountered in M-NSGA-II [111].



3.3. EXPERIMENTAL RESULTS 93

0

100
200

300

0
50

100
150

200

0

100

200

300

400

500

f
2f

1

f
3

(a)

0
0.2

0.4
0.6

0
0.2

0.4
0.6

0

0.2

0.4

0.6

f
3

f
1

f
2

(b)

0 200 400 600 800 1000
0

50

100

150

200

Generations

D
is

ta
nc

e 
m

ea
su

re
s

 

 

200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5

 

 

d
1

d
2

(c)

Figure 3.5: (a) the initial population of DTLZ1 test problem for number of objectives 3 (b)
the final Pareto-front of DTLZ1 test problem for number of objectives 3 (c) the

convergence of distance measure over the generations

3.3.2 Performance on Unconstrained WFG Problems

Next, the WFG test problems are considered which involve non-separable variables.

These problems have different features i.e., disconnected, convex, concave, degenerate

and linear Pareto-optimal front. The first test problem named WFG1 has a mixed

Pareto-optimal front. For WFG2, the Pareto-optimal front is convex and disconnected

and for WFG3 the Pareto front is linear and degenerate. The rest of the problems

WFG4-WFG9 have concave Pareto front. In this study, the toolkit [6] was used to

observe the performance of the algorithm. Similar to the DTLZ problem, the number

of decision variables is set to 24 and other problem details are listed in Table 3.4.

Tables 3.5 and 3.6 show the best and average hypervolume measure for all numbers

of objectives. For WFG1, 3, 5, 10 and 15, I-DBEA outperforms MOEA/D-PBI. For



94 3. DECOMPOSITION BASED MANY-OBJECTIVE OPTIMIZATION

0
100

200
300

0
50

100
150

200

0

100

200

300

400

f
2f

1

f
3

(a)

0
1

2
3

0
1

2
3

0

0.5

1

1.5

2

2.5

f
2f

1

f
3

(b)

0
0.2

0.4
0.6

0
0.2

0.4
0.6

0

0.2

0.4

0.6

f
3

f
1

f
2

(c)

Figure 3.6: (a) the initial population of DTLZ1 test problem for number of objectives 3 with
15 reference points (b) at generation 500 (c) at final generation 1000

Table 3.4: Number of distance parameters and the position parameters used to combine the
decision variables in the WFG test functions depending on the number of objectives.

Number of Objectives
3 5 10 15

Distance Parameter 20 20 17 6
Position Parameters 4 4 7 18
Decision variables 24 24 24 24

WFG2 MOEA/D-PBI is better than I-DBEA for 3 and 5 objectives. For objectives

10 and 15, I-DBEA has the highest hypervolume. For the remaining 6 test problems,

I-DBEA reaches the best performance with best and mean results for objectives 3, 5,

10 and 15.

Figures 3.7, 3.8 and 3.9 show the final non-dominated solutions obtained from both

the algorithms. On WFG1, both I-DBEA and MOEA/D-PBI exhibit poor convergence
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Table 3.5: Best and mean hypervolume statistics for problems WFG1-WFG4 using 30
independent runs

Test Problem Obj. MaxGen I-DBEA MOEA/D-PBI

WFG1

3 5000
4.392e+01 3.963e+01
4.325e+01 3.711e+01

5 5500
2.473e+03 2.373e+03
2.441e+03 2.128e+03

10 6000
7.199e-01 2.091e-01
7.019e-01 1.923e-01

15 6500
9.982e-01 9.904e-01
9.203e-01 9.028e-01

WFG2

3 5000
4.331e+01 4.342e+01
4.190e+01 4.180e+01

5 5500
3.604e+03 3.617e+03
3.149e+03 3.151e+03

10 6000
9.969e-01 9.931e-01
9.921e-01 9.231e-01

15 6500
9.982e-01 9.904e-01
9.203e-01 9.028e-01

WFG4

3 2000
1.953e+01 1.673e+01
1.934e+01 1.660e+01

5 3000
2.556e+03 2.167e+03
2.539e+03 2.152e+03

10 4000
8.251e-01 7.581e-01
8.125e-01 7.438e-01

15 4500
9.616e-01 9.606e-01
8.329e-01 8.201e-01

WFG5

3 2000
1.984e+01 1.932e+01
1.976e+01 1.917e+01

5 3000
2.576e+03 2.449e+03
2.569e+03 2.422e+03

10 4000
8.875e-01 8.136e-01
8.521e-01 7.943e-01

15 4500
8.871e-01 8.842e-01
8.177e-01 8.015e-01

due to the flat polynomial bias. However, the hypervolume measure using I-DBEA

confirm a slight improvement than the result found using MOEA/D-PBI. For WFG2,

the convergence has marginally improved, although the Pareto front is convex. It can

be seen that both algorithms have the same difficulty to maintain the diversity as the
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Table 3.6: Beast and mean hypervolume statistics for problems WFG6-WFG9 using 30
independent runs

Test Problem Obj. MaxGen I-DBEA MOEA/D-PBI

WFG6

3 2000
1.948e+01 1.935e+01
1.861e+01 1.724e+01

5 3000
2.568e+03 2.418e+03
2.540e+03 2.280e+03

10 4000
8.011e-01 7.621e-01
8.001e-01 7.596e-01

15 4500
8.832e-01 8.393e-01
9.236e-01 8.587e-01

WFG7

3 2000
1.949e+01 1.936e+01
1.935e+01 1.933e+01

5 3000
2.565e+03 2.569e+03
2.559e+03 2.568e+03

10 4000
7.913e-01 7.432e-01
7.821e-01 7.273e-01

15 4500
9.617e-01 9.604e-01
9.283e-01 9.176e-01

WFG8

3 2000
1.969e+01 1.988e+01
1.920e+01 1.921e+01

5 3000
2.728e+03 2.774e+03
2.707e+03 2.079e+03

10 4000
8.175e-01 6.950e-01
7.713e-01 6.657e-01

15 4500
8.301e-01 7.857e-01
7.206e-01 6.662e-01

WFG9

3 2000
1.849e+01 1.557e+01
1.750e+01 1.556e+01

5 3000
2.709e+03 2.526e+03
2.651e+03 2.477e+03

10 4000
8.102e-01 7.100e-01
7.027e-01 6.927e-01

15 4500
9.244e-01 8.543e-01
6.664e-01 5.889e-01

Pareto front is disconnected. By inspecting the hypervolume values of WFG2 problems

(Table 3.5), one can observe that I-DBEA tend to perform well for problems with higher

number of objectives.
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Figure 3.7: Obtained solutions by (a) I-DBEA (b) MOEA/D-PBI for WFG1.
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Figure 3.8: Obtained solutions by (a) I-DBEA (b) MOEA/D-PBI for WFG2.
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Figure 3.9: Obtained solutions by (a) I-DBEA (b) MOEA/D-PBI for WFG4.
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3.3.3 Performance on degenerate problems

DTLZ5-(I, M)

After demonstrating the performance of the proposed I-DBEA on commonly studied

benchmark problems, its performance is investigated on degenerate test functions. For

these problems the dimensionality of the Pareto front is less than the original number of

objectives [17]. These test problems are referred as DTLZ5-(I, M) problems, where the

problem can be formulated with different combinations of I and M . Here, I denotes

the actual dimensionality of the Pareto front and M denotes the original number of

objectives for the problem.

In this study, the dimensionality analysis is carried out using the final population

obtained by I-DBEA along the lines suggested in [104]. If an objective is redundant,

its omission from the reference set (FR) should not result in a significant change in

the number of non-dominated solutions. For quantifying the change in the num-

ber of non-dominated solutions, a parameter R is defined as a ratio of number of

non-dominated solutions in the reference set FR to the number of non-dominated

solutions in FR after discarding objective fm (i.e., (FR \ fm)). The high value of R

represents the omitted objective is redundant, whereas the low value of R represents

the objective is relevant.

Here, the test problems DTLZ-(2, M) are attempted with various values of M. In

the first case, DTLZ-(2, 3) is solved and the results are listed in Table 3.7.

Table 3.7: Dimensionality Reduction Analysis for DTLZ5-(2, 3) Problem

fm Objectives considered (FR \ fm) R Discard fm

f1 f2, f3 1.0 Yes
f2 f3 0.1240 No
f3 f2 0.0202 No

From the table, one can see that omitting f1 does not affect the number of non-dominated
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solutions, implying redundancy of the objective. Therefore, f1 is removed from the set

of relevant objectives. In the remaining set of objectives (f2 and f3), it is observed that

removing either objective effects the number of non-dominated solutions significantly,

implying that both of them are non-redundant. Hence, the set of relevant objectives is

identified as f2, f3 (see Figure 3.10).
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Figure 3.10: Approximation of the Pareto front obtained for DTLZ5 using all objectives,
compared with the approximations obtained using two relevant objectives

The dimensionality analysis for another case, DTLZ-(2, 5) is shown in Table 3.8.

Table 3.8: Dimensionality Reduction Analysis for DTLZ5-(2, 5) Problem

fm Objectives considered (FR \ fm) R Discard fm

f1 f2, f3, f4, f5 1.0 Yes
f2 f3, f4, f5 0.9909 Yes
f3 f4, f5 0.9636 Yes
f4 f5 0.6727 No
f5 f4 0.3727 No

One can see that omitting the objectives does not substantially affect the number

of non-dominated solutions until all the redundant objectives are dropped, which is

reflected in high R value for these objectives. However, reducing the objective set any

further results in a substantial decrease in the number of non-dominated solutions, as

seen from the low value of R for these cases f4, f5. Hence, the reduced objective set

is identified as (f4, f5). The results for the rest of the test problems are summarized

in Table 3.9. Similar to the DTLZ5-(2, 3) and DTLZ5-(2, 5) test problems, it is seen
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that the algorithm is able to identify the reduced set of objectives consistently across

multiple runs. The success rate mentioned in the last column indicates the number of

times the algorithm was able to identify these objectives out of 30 runs.

Table 3.9: Results obtained for DTLZ-(I, M) test problems

Test problem Reduced set of objectives Success rate

DTLZ5-(2,3) f2, f3 30/30
DTLZ5-(2,5) f4, f5 30/30
DTLZ5-(2,8) f7, f8 30/30
DTLZ5-(2,10) f9, f10 30/30
DTLZ5-(2,15) f14, f15 30/30
DTLZ5-(3,3) f1, f2, f3 30/30
DTLZ5-(3,5) f3, f4, f5 30/30
DTLZ5-(3,8) f6, f7, f8 30/30
DTLZ5-(3,10) f8, f9, f10 30/30
DTLZ5-(3,15) f13, f14, f15 30/30

One can see from Figure 3.11 that the algorithm successfully identified the reduced

set of objectives for DTLZ5-(3, 5) problem and converged to the Pareto front.

Figure 3.11: Approximation of the Pareto front obtained for DTLZ5-(3,5) using three relevant
objectives

For a problem involving redundant objectives, the number of unique solutions in

the corner set is less than M . In DBEA-Eps, the extreme solutions of the Pareto front

could be lost due to distance comparisons which in turn would affect the normalization

process as fmax
j ’s would change. In I-DBEA, the extreme solutions are preserved in

the corner set. A typical benefit of such an approach is presented for DTLZ5-(2, 3) in
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Figures 3.12(a) and 3.12(b). One can observe from 3.12(a), that I-DBEA maintains

the extreme solutions unlike DBEA-Eps.
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Figure 3.12: Approximation of the Pareto front using the proposed algorithm (a) with corner
set i.e., I-DBEA (b) without corner set as in DBEA-eps for DTLZ5-(2,3)

WFG3

The performance of the proposed approach has also been studied with a modified version

of a degenerate problem, WFG3. This problem is similar in formulation as problem

WFG3 defined in [6], but instead of a linear shape function, a convex shape function

has been used (hm=1:M = convexm). In addition, the value of A1 = 1 and A2 = 0 have

been used, resulting in a degenerate Pareto front (dimensionality reduced by 1). For

convenience, this problem have been referred to as WFG3conv. The Pareto front for

this problem, is shown in Figure 3.13. For details on construction of problems using

the toolkit, the readers are referred to [6].

The final population (of size 91, evolved over 2000 generations) for WFG3conv

obtained using I-DBEA is shown in Figure 3.13. The dimensionality analysis of the

obtained solutions is shown in Table 3.10.

As mentioned before, the choice of parameters A1 = 1 and A2 = 0 makes the

Pareto front of the problem degenerate. In this problem only two (f2 and f3) out of

the three objectives are identified as relevant. With a different sequence, f1 and f3

can be identified as relevant. To verify the dimensionality analysis, the results using
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Figure 3.13: Approximation of the Pareto front obtained for WFG3conv using all objectives,
compared with the approximations obtained using two relevant objectives

Table 3.10: Dimensionality Reduction Analysis for WFG3conv Problem

fm Objectives considered (FR \ fm) R Discard fm

f1 f2, f3 0.98 Yes
f2 f3 0.1010 No
f3 f2 0.0244 No

the original and the reduced set of objectives are shown in Figure 3.13. For better

visualization, a small population size (91) is used. Since the population size is small,

the algorithm is run for larger number of generations (2000) to get to the Pareto front.

The value of R used in this case has been set to 0.9. The choice of threshold with a

higher value (say 0.9) can successfully identify the redundant objectives.

3.3.4 Constrained Engineering Design Problems

Since the performance of the proposed algorithm was competitive on unconstrained test

problems,its performance was further investigated using three constrained engineering

design optimization problems i.e., the three-objective car-side-impact problem [119]

with ten inequality constraints, five-objective water resource management problem [120]

with seven inequality constraints and finally the ten objective general aviation aircraft

(GAA) design problem [101] having a single inequality constraint.
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Car side impact problem

The problem aims to minimize the weight of a car, the pubic force experienced by a

passenger and the average velocity of the V-Pillar responsible for bearing the impact

load subject to the constraints involving limiting values of abdomen load, pubic force,

velocity of V-Pillar, rib deflection etc [119].

The problem is solved using I-DBEA and DBEA-Eps. The algorithms are run for 500

generations and the final non-dominated front is shown in Figure 3.14. It is important

to note that the results of I-DBEA are derived with the same setup. One can see from

Figure 3.14 that I-DBEA has achieved better alignment than DBEA-Eps.
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Figure 3.14: Solutions obtained using (a) I-DBEA (b) DBEA-Eps on three-objective car side
impact problem

We have computed the IGD using the targeted reference set of 11900 non-dominated

solutions found from all the runs considering all the algorithms and HV is computed by

normalizing the solutions using the ideal point of (i.e.,[23.586, 3.5852, 10.611]) and the

extreme point of (i.e.,[ 42.768, 4, 12.453]) the reference set. I-DBEA also outperforms

DBEA-Eps on both IGD and HV metrics based on all three aspects i.e., best, median

and worst (Table 3.11).
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Table 3.11: IGD and HV (Best, Median and worst) values obtained using I-DBEA and
DBEA-Eps for the car side impact problem

Algo. FE IGD

I-DBEA
45500

(1.493e-01, 1.501e-01, 5.732e-01)
DBEA-Eps (1.529e-01, 1.805e-01, 5.956e-01)

Algo. FE Hypervolume

I-DBEA
45500

(7.091e+00, 6.781e+00, 3.573e+00)
DBEA-Eps (7.014e+00, 6.780e+00, 2.013e+00)

Water resource management problem

This is a five objective problem having seven constraints taken from the literature [120].

The parallel coordinate plot generated using the proposed algorithm (I-DBEA) is pre-

sented in Figure 3.15. The best IGD value of I-DBEA across 30 runs is 3.312e− 2 and

the best IGD computed using the algorithm DBEA-Eps is 3.291e−2 with the reference

set of 2429 solutions [121]. A population of 210 solutions has been used for both the

algorithms and evolved over 1000 generations.

In Figure 3.15, both the results from I-DBEA and DBEA-Eps have been presented

using parallel coordinate plots. The result from I-DBEA is shown in the left most plot.
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Figure 3.15: Solutions obtained using (a) I-DBEA (b) DBEA-Eps on five-objective water
resource management problem

While the results appear similar, I-DBEA obtained a better distribution for objec-

tives 1, 2 and 3. The IGD and HV metrics obtained from both the algorithms are given
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in Table 3.12. One can see in terms of IGD, DBEA-Eps has a better result based on

best only, while I-DBEA outperforms DBEA-Eps in all other measures (IGD and HV).

Table 3.12: IGD and HV (Best, Median and worst) values obtained using I-DBEA and
DBEA-Eps for the water resource management problem

Algo. FE IGD

I-DBEA
210000

(3.312e-02, 3.339e-02, 1.123e-01)
DBEA-Eps (3.291e-02, 3.375e-02, 1.986e-01)

Algo. FE Hypervolume

I-DBEA
210000

(2.554e-01, 2.467e-01, 1.962e-02)
DBEA-Eps (2.513e-01, 2.397e-01, 1.678e-02)

General aviation aircraft (GAA) design problem

This problem was first introduced by Simpson et al. [122] and has been recently solved

using an evolutionary algorithm [101]. The problem involves 9 design variables i.e.,

cruise speed, aspect ratio, sweep angle, propeller diameter, wing loading, engine activity

factor, seat width, tail length/ diameter ratio and taper ratio and the aim is to minimize

the takeoff noise, empty weight, direct operating cost, ride roughness, fuel weight,

purchase price, product family dissimilarity and maximize the flight range, lift/ drag

ratio and cruise speed. Previous studies encountered difficulties in obtaining feasible

solutions due to tight constraints [122].

In this example, 100 reference points were used and the population was allowed to

evolve over 5000 generations. A reference set of 412 non-dominated solutions obtained

from ǫ-MOEA and Borg-MOEA is used to compute the IGD metric. The results of the

proposed algorithm are compared with five other algorithms i.e., DBEA-Eps, ǫ-MOEA,

Borg-MOEA, MOEA/D and ǫ-NSGA-II [101]. The hypervolume was computed using

the ideal point of (i.e., [73.251, 1881.5, 59.114, 1.7977, 359.92, 41879, -2580.2, -16.823,

-204.02, 0.26847]) and the extreme point of (i.e., [74.036, 2011.5, 79.993, 2, 483.13,

44590, -2000, -14.408, -189.3, 1.9844]) obtained from the reference set. The performance

of the algorithms are compared using the hypervolume in Table 3.13 and IGD in
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Table 3.14. One can observe that the proposed algorithm performs marginally better

than others for this problem.

Table 3.13: Performance metric value of product family design problem using 50 independent
runs

Algorithm FE
Hypervolume

Best Mean Worst Std

I-DBEA

50,000

0.02995 0.01726 0.00699 0.05121
DBEA-Eps 0.02899 0.01715 0.00689 0.04561
ǫ-MOEA 0.02032 0.01032 0.00259 0.04125

Borg-MOEA 0.02245 0.01013 0.00424 0.02327
MOEA/D 0.00092 0.00087 0.00045 0.00145
ǫ-NSGA-II 0.01636 0.01005 0.00236 0.05232

Table 3.14: Performance metric value of product family design problem using 50 independent
runs

Algorithm FE
IGD

Best Mean Worst Std

I-DBEA

50,000

0.63150 0.80217 0.83101 0.09613
DBEA-Eps 0.62070 0.80123 0.82430 0.09210
ǫ-MOEA 0.98312 0.99123 0.99678 0.10312

Borg-MOEA 0.98211 0.99113 0.99337 0.02321
MOEA/D 0.99117 0.99587 0.99723 0.02145
ǫ-NSGA-II 0.98571 0.98872 0.99131 0.72123

Figure 3.16 shows the parallel coordinate plot. The figure clearly shows that I-DBEA

is able to find a widely distributed set of non-dominated points for 10-objective GAA

design problem.
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Figure 3.16: Parallel coordinate plot of the approximation of Pareto set produced by I-DBEA.

3.4 Decomposition Based Quantum Genetic Algo-

rithm

While conventional decomposition based EAs have been applied to different many

-objective optimization problems, their performance is largely dependent on the size

of population. In most of the EAs, the size of the population is the same as the number

of reference directions. Since the number of reference directions grows rapidly with

increase in the number of objectives (assuming even a constant spacing), it becomes

computationally impractical to evolve a large population of solutions. Although main-

taining a large external archive and a small active population is a possibility, one needs

to resolve two fundamental problems – (a) how to select parents and where to select

them from, and (b) what recombination operators to use such that solutions can be

created spanning the entire Pareto set.

In an attempt to resolve the aforementioned problems, a quantum representation

of solutions is used. Quantum inspired genetic/evolutionary algorithms have long been

in existence and have been applied for the solution of single and bi-objective discrete

optimization problems [123, 124]. Unlike GAs or EAs, where a solution is represented

using binary or real variables, solutions in quantum inspired models are represented

using a string of Q-bits. A Q-bit is defined by a pair of variables α, β where α2 denotes

the probability of the bit to be found in state “1” and β2 denotes the probability of



108 3. DECOMPOSITION BASED MANY-OBJECTIVE OPTIMIZATION

the bit in its state of “0”. Since a Q-bit individual represents the linear superposition

of all possible states probabilistically, diverse individuals can be generated during the

evolutionary process [125, 126]. A variation operator is commonly used to update α

and β values of the Q-bits and solutions are generated via observations of these Q-bits.

In the context of many-objective optimization, to the best of knowledge there are no

reports on the use of quantum models to deliver solutions spanning the entire Pareto

front. In [125], a quantum inspired algorithm was used to solve many-objective DTLZ

test problems via preference articulation, wherein solutions along a preferred direction

were identified. There is significant difference in the hypervolume values obtained for

the DTLZ problems using the quantum approach [125] and theoretical values (computed

using continuous variables).

3.4.1 Proposed Decomposition based Quantum Genetic Algo-

rithm

The pseudo code for quantum GA is presented in Algorithm 3.2 and the components

of the algorithm are discussed in the subsequent subsections except the generation

of reference directions which has been described earlier in 3.2.1. The rest of the

components i.e., quantum representation of solutions, diversity and convergence control

via distance measures, variation operator, and adaptive epsilon scheme to deal with the

constraints of the problem are described next.

3.4.2 Quantum representation of solutions

A solution is represented using a string of Q-bits. Each Q-bit is represented as follows.

|Ψ〉 = α|0〉 + β|1〉 (3.12)

where α and β are complex numbers. |α|2 and |β|2 are the probabilities of the Q-bit

found in the state of “1” and “0” respectively. The jth individual of the population
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Algorithm 3.2 DQGA

Require: Genmax: maximum number of generations
W : number of reference points
P : the number of Q-bit individuals

1: Generate W reference points and W reference directions.
2: Initialize the quantum population

Pj =

[

α1 α2 · · · αNQB

β1 β2 · · · βNQB

]

NQB represents the number of Q-bits (chromosome length) for j = 1, 2, . . . , P
individuals

3: Observe P individuals resulting in P solutions that become the members of the
initial population.

4: Evaluate these initial solutions, compute the ideal point z = (fmin
1 , fmin

2 , . . . , fmin
M ),

intercepts ai for i = 1 to M and scale the individuals of the population.
5: Assign P individuals to the first W reference directions as members of the reference

set.
6: while gen ≤ Genmax do
7: for i = 1 : P do
8: Generate a random order of W solutions.
9: Observe ith quantum individual resulting in a child solution.

10: Check if the child solution is non-dominated with respect to the reference set.
11: Identify if this child solution can replace a solution in the generated order of

reference directions using d1 and d2 measures.
12: If the above replacement is successful, update the Q-bits of the ith solution

using the variation operator.
13: Update the ideal point (z), intercepts and re-scale the individuals of the

reference set.
14: end for
15: end while

represented using Q-bits will assume a form:

Qj =







α1 α2 · · · αNQB

β1 β2 · · · βNQB






(3.13)

where |αi|2 + |βi|2 = 1, i = 1, 2, . . . , NQB. NQB denotes the total number of Q-bits

required to represent the solution.

The above Q-bit representation can represent 2NQB discrete solutions in the search

space. The process of observing a quantum solution results in a binary solution. During

the process of observation, a uniform random number (ri) lying between 0 and 1 is

generated for every Q-bit. If (ri) ¡ |αi|2, the corresponding binary bit is set to 1, else
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it is set to 0. For a variable represented using m bits, the corresponding binary bits of

the variable are decoded to a discrete value using the quantum levels.

qli = 0.5i (3.14)

Qli =
qli

∑

qli
(3.15)

where i = 1, 2, . . . ,m. The decoded discrete variable is calculated as follows

x = bTQl (3.16)

where b denotes the vector of binary bits representing the variable. The same procedure

is repeated for all other variables.

A child solution is created by observing the Q-bits of the parent solution (i.e.,

an individual in the population). In the steady state form, if a child solution is

non-dominated with respect to the reference set, it enters the reference set via a

replacement. The child solution competes with all solutions in the reference set in

a random order until it makes a successful replacement or have competed with all

individuals in the reference set. If the distances of the rth solution are denoted as

{d1r , d2r} and {d1c , d2c} denotes the distances for the child solution along rth reference

direction, the replacement rule is as follows:

Algorithm 3.3 Comparison of two solutions

1: if d2c = d2r then
2: if d1c < d1r then
3: Child solution wins
4: end if
5: else
6: if d2c < d2r then
7: Child solution wins
8: end if
9: end if

The above replacement scheme does not need explicit assignment/association oper-
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ations or neighborhood parameters.

3.4.3 Epsilon level comparison

The constraint handling approach used in this work is based on epsilon level comparison.

An epsilon level comparison is conducted using the allowable violation measure. If two

solutions have their constraint violation value less than this epsilon level, the solutions

are compared based on their objective values. Such a constraint handling scheme has

been demonstrated to be more efficient than feasibility first schemes.

3.4.4 Variation operator

The variation operator [123] is used to update α and β values of the Q-bits of the

individuals in the population P . Individuals in the population are selected in order and

observed. The process of observing a quantum individual results in a child solution (C)

represented using a binary vector of size NQB. The child solution (C) is compared

with individuals in the reference set for possible replacement dictated by the distance

measures d1 and d2. If the child replaces a solution (S) in the reference set, the Q-bits

of the individual solution (i.e., the individual in the population that resulted in this

child solution via observation) undergoes an update via the rotation gate.







α′

β′






=







cos(∆θ) −sin(∆θ)

sin(∆θ) cos(∆θ)













α

β






(3.17)

The value of ∆θ is based on the following lookup table. In the table, SBrj
denote

the jth binary bit of the rth solution in the reference set and CBrj
denotes jth binary bit

of a child solution being evaluated along rth reference direction. The objective function

f(C) and f(S) refer to the value (either of d1 or d2 distances) which has led to the child

winning the competition over the existing solution along the rth reference direction.

In this study θ1 = 0, θ2 = 0, θ3 = 0.01π, θ4 = 0, θ5 = −0.01π, θ6 = 0, θ7 = 0, θ8 = 0

have been used.
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Table 3.15: Lookup table

SBrj
CBrj

f(S) < f(C) ∆θi

0 0 false θ1

0 0 true θ2

0 1 false θ3

0 1 true θ4

1 0 false θ5

1 0 true θ6

1 1 false θ7

1 1 true θ8

3.5 Experimental Results

In this section, the results of proposed decomposition based quantum genetic algorithm

is presented for discrete formulations of the DTLZ2 [127] problem with 2, 3, 5 and 8

objectives and number of variables set to 10. The reference directions were computed

using s values of 20, 12, 5 and 4 resulting in 21, 91, 126 and 330 reference directions

for the 2, 3, 5 and 8 objective formulations of the problem respectively. The α

and β of the Q-bits were initialized to 1/
√

2. In order to investigate the effects of

fidelity on the performance, the problems were solved using 7 and 14-bit quantum

representation. The effect of population size is also studied using a fixed number of

function evaluations. Two population sizes have been used in the study i.e., one with

5 individuals and the other with W individuals (where W is the number of reference

directions) for all the problems. The results are based on 30 independent runs and the

hypervolume metric [128] is used as a measure of performance. The theoretical values

of hypervolumes (based on real valued DTLZ2 test problems) are listed to aid a more

objective comparison.

3.5.1 Performance on Unconstrained DTLZ2 Problem

The best, median and worst hypervolume measures using 7-bit and 14-bit representation

is presented in Tables 3.16 and 3.17. A population of 5 individuals was evolved and the
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maximum number of function evaluations were set to 5000, 15000, 20000 and 25000 for

2, 3, 5 and 8 objective formulations respectively.

Table 3.16: Hypervolume statistics for DTLZ2 problem using 7-bit representation by DQGA

Objectives Genmax Popsize Best Median Worst

2 1000 5 0.1928 0.1925 0.1915
3 3000 5 0.3865 0.3763 0.3614
5 4000 5 0.5474 0.5353 0.5121
8 5000 5 0.6573 0.6456 0.6136

Table 3.17: Hypervolume statistics for DTLZ2 problem using 14-bit representation by DQGA

Objectives Genmax Popsize Best Median Worst

2 1000 5 0.1900 0.1883 0.1835
3 3000 5 0.3883 0.3789 0.3732
5 4000 5 0.5617 0.5470 0.5345
8 5000 5 0.6728 0.6525 0.6247

The theoretical hypervolumes for the continuous valued DTLZ2 problems with 2,

3, 5 and 8 objectives are 0.2146, 0.4764 and 0.8355 and 0.9841 respectively. There is

marginal improvement using 14-bit representation over the 7-bit representation for the

problems with larger number of objectives.

The same set of experiments were repeated with the population size of W i.e., same

as the number of reference directions. The maximum number of function evaluations

were held constant at 5000, 15000, 20000 and 25000 for the 2, 3, 5 and 8 objective for-

mulations respectively. The results for the 7-bit and 14-bit representation is presented

in Table 3.18 and Table 3.19. One can observe that there is no significant difference in

the performance i.e., the small population of 5 individuals is able to deliver well spread

and well converged set of solutions spanning the hyper surface.

The association mechanism (i.e., solutions to each reference direction) for a 3-objective

DTLZ2 problem is presented in Figure 3.17. The figure shows the associations of the
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Table 3.18: volume statistics for DTLZ2 problem using 7-bit representation by DQGA

Objectives Genmax Popsize Best Median Worst

2 238 21 0.1901 0.1876 0.1766
3 165 91 0.3821 0.3758 0.3626
5 159 126 0.5640 0.5472 0.5335
8 76 330 0.6728 0.6525 0.6247

Table 3.19: Hypervolume statistics for DTLZ2 problem using 14-bit representation by DQGA

Objectives Genmax Popsize Best Median Worst

2 238 21 0.1901 0.1876 0.1766
3 165 91 0.3821 0.3758 0.3626
5 159 126 0.5640 0.5472 0.5335
8 76 330 0.6676 0.6524 0.6302

solutions in generation 1, 1500 and 3000 using 91 reference points with a population

size of 5. One can observe that although initially the association is random (assigned to

first 5 reference directions), the solutions automatically get associated with appropriate

reference directions through the pressure induced by d2.

In order to observe the process of evolution, the average performance of the popu-

lation is computed i.e., average of the d1 and d2 values for the individuals for DTLZ2

(3 objectives). One can observe from Figure 3.18, that the average d2 converges to

near zero (i.e., near perfect alignment to the reference directions) while the average d1

measure stabilizes at around 1 indicating convergence to the theoretical Pareto front.

3.5.2 Constrained engineering design problems

Since the performance of the proposed algorithm was reasonably good on unconstrained

test problems for a small population size, its performance was further investigated

using four constrained engineering design optimization problems i.e., welded beam

problem [129] with four inequality constraints, speed reducer problem [130] with eleven

inequality constraints, three-objective car side impact problem [119] with ten inequality
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Figure 3.17: (a) the initial population of DTLZ2 test problem for number of objectives 3
normalized by ideal and intercepts (b) normalized solutions at generation 1500 (c)

normalized solutions at final generation 3000 (d) final non-dominated solutions
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Figure 3.18: (a) the convergence of distance measure over the generations of DTLZ2 test
problem for number of objectives 3

constraints and finally a five-objective water resource management problem [120] with

seven inequality constraints.
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Welded beam problem

The welded beam design optimization problem was originally formulated in [129]. The

problem is to design a welded beam for minimum cost subject to a set of constraints.

The beam is designed to support a force F = 6000 lbf and the objectives are to find the

design with the minimum fabrication cost and minimum end deflection on the beam,

considering four design variables i.e., thickness of the weld (x1), length of the weld (x2),

thickness of the beam (x3), and width of the beam (x4) with the measurement unit in

inches. These variables are represented using 9, 9, 10 and 10 quantum bits.

A small population size of 5 individuals were allowed to evolve with an aim to get

solutions along 21 reference directions. The algorithms are run for 500 generations and

the final non-dominated front is shown in Figure 3.19 with an approximated Pareto-front

found from the earlier studies. Although the solutions of the problem are continuous the

final non-dominated solutions obtain using QGA are almost close to the approximated

Pareto-front with only 2500 function evaluations.
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Figure 3.19: Solutions obtained using QGA on two-objective welded beam problem

Speed reducer problem

The speed reducer problem was first described in [130]. The problem involves 7 variables

i.e., the face width x1, module of teeth x2, number of teeth on pinion x3, length of the

first shaft between bearings x4, length of the second shaft between bearings x5, diameter
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of the first shaft x6, and diameter of the first shaft x7 (all variables are continuous except

for the integer values of variable x3). The objectives of the problem are to minimize

the total weight of the speed reducer as well as the normal stress on the first gear

shaft. Since the speed reducer is to be made of the same material throughout, the

first objective is the same as minimizing the total volume. The design variables are

represented using 7, 4, 11, 7, 7, 7 and 6 quantum bits.

A small population size of 5 individuals were allowed to evolve with an aim to get

solutions along 21 reference directions. The algorithms are run for 1500 generations and

the final non-dominated front is shown in Figure 3.20 with an approximated Pareto-front

found from the earlier studies. Since a fewer bits are used in the representation,

the nondominated front is marginally inferior to the Pareto-front obtained using a

continuous variable formulation.
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Figure 3.20: Solutions obtained using QGA on two-objective speed reducer problem

Car side impact problem

The problem involves minimization of the weight of a car, the pubic force experienced

by a passenger and the average velocity of the V-Pillar responsible for bearing the

impact load subject to the constraints involving limiting values of abdomen load, pubic

force, velocity of V-Pillar, rib deflection etc [119]. The design variables for this problem

are represented with 7, 7, 7, 7, 8, 7 and 7 quantum bits.

A small population size of 5 individuals were allowed to evolve with an aim to get
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solutions along 50 reference directions. The algorithms was run for 4500 generations and

the final non-dominated front is shown in Figure 3.21 with an approximated Pareto-front

found from the earlier studies. One can see the final non-dominated solutions are on the

approximated Pareto-front. Since fewer bits were used, the solutions lie on a segment

of the original front.

202530354045

3.5 3.6 3.7 3.8 3.9 4

10.5

11

11.5

12

12.5

13

 

 

Approx. Pareto−front
QGA

f
2f

1

f
3

Figure 3.21: Solutions obtained using QGA on three-objective car side impact problem

Water resource management problem

This is a five objective problem having seven constraints taken from the literature [131].

The parallel coordinate plot generated using the proposed algorithm is presented in Fig-

ure 3.22. The best hypervolume value across 30 runs is 4.382e− 2. The objectives have

been normalized using a reference point of [75373, 1350, 2.8535e+006, 1.2627e+007,

3.5192e+005]. A small population size of 5 individuals were allowed to evolve with

an aim to solutions along 126 reference directions. Figure 3.23 shows a parallel plot

with a set of known reference solutions of 2429 [121] which produce the hypervolume

of 5.108e-2 after normalizing the same reference point.

3.6 Summery of Overall Performance

In this chapter, the challenges involved in dealing with many-objective problems are

highlighted and, to enhance existing methods, two different approaches have been
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Figure 3.22: Parallel plot of the solutions obtained using DQGA

Figure 3.23: Parallel plot of the known reference set of 2429 solutions.

introduced. The first is the development of a novel decomposition based method

using preemptive distance comparison while the second relates to the development of a

quantum genetic algorithm for many-objective optimization. The major contributions

of the chapter are summarized below.

Decomposition Based Evolutionary Algorithm

Firstly, the superior performance of decomposition based approaches over non-dominance

based schemes is highlighted. The performance of I-DBEA is compared with non-

dominated sorting based scheme NSGA-II for DTLZ1 problems with 3, 5, 8, 10 and 15

objectives. The mean value of g (i.e., a multi-modal function ) as shown in Figure 3.24

clearly highlights the ability of decomposition based algorithms to deal with problem

with 5 or more objectives.

Secondly, the performance of I-DBEA is compared with various state of the art ap-

proaches using seven widely studied benchmark problems [DTLZ1-DTLZ4, DTLZ5-(I,

M), WFG, WFG3conv], and three engineering design problems (car side impact, water

resource and General aviation aircraft (GAA) design problem). The results clearly

indicate the superiority of the proposed algorithm over existing forms. Among the 20

test instances of four DTLZ problems, I-DBEA obtained better results in 15 instances
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Figure 3.24: Convergence to the problem of DTLZ1 using (a) decomposition based algorithm
(e.g. I-DBEA) (b) non-dominated based algorithm (e.g. NSGA2)

while DBEA-Eps was better in only 3 instances. In the context of WFG problems, once

again the performance of I-DBEA is clearly better than MOEA/D-PBI. The ability to

deal with concave, convex, mixed and degenerate problems with up to 15 objectives

is showcased using the examples. Since the solutions obtained using I-DBEA is often

of better quality, identification of redundant objectives is likely to more accurate as

demonstrated using DTLZ5-(I, M) problems.

The success of the epsilon based constraint handling scheme is highlighted using

the GAA problem which is known to pose problems to existing algorithms due to tight

constraints.

I-DBEA attempts to identify solutions along a set of uniformly distributed reference

directions. In the context of disconnected Pareto fronts, there may not be a solution

along a reference direction. The behavior of the approach is illustrated using a modified

bi-objective ZDT3 [9] problem. The original problem has the limits of the Pareto front

with f1 between 0 and 0.852 and f2 between -0.773 and 1. The problem is modified as

below to ensure positive limits of f2.
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• ZDT3

Minimize

f1(x) = x1

f2 = g(x)

[

1 −
√

f1(x)

g(x)
− f1(x)

g(x)
sin(10πx1)

]

+ 1

(3.18)

where, g(x) = 1 +
9(

Pn
i=2 xi)

(n−1)
and x = (x1, x2, ...., xm)T ∈ [0, 1]. Its PF is discon-

nected and the value of n is 10.

The performance of I-DBEA and MOEA/D-PBI is computed using 30 independent

runs. A population size of 21 is evolved over 1500 generations. The performance is

measured by computing the non-dominated (ND) solutions obtained by the individual

algorithms. Table 3.20 shows the number of ND solutions obtained by I-DBEA and

MOEA/D-PBI.

Table 3.20: Performance metric : Number of non-dominated (ND) solutions (Std)

Algorithm Population size ND solutions (Std)

I-DBEA 21 19 (3.6056)

MOEA/D-PBI 21 17 (4.1032)

Figure 3.25 shows the alignment of the solutions to the reference directions. It

is clear that some of the solutions have d2 values significantly greater zero indicating

presence of disconnected front. Figure 3.26 shows the final non-dominated solutions

achieved by both the algorithms.

Decomposition based Quantum Genetic Algorithm

In this chapter, a novel steady state decomposition based quantum genetic algorithm is

proposed for the solution of unconstrained and constrained many-objective optimization
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Figure 3.25: (a) final solutions associated with the reference directions in the normalized plane
and (b) the convergence to the problem of ZDT3
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Figure 3.26: Non-dominated solutions obtained for ZDT3 using (a) I-DBEA and (b)
MOEA/D-PBI

problems. While there are different approaches to solve many-objective optimization

problems, the goal here is to develop a method that delivers well converged and well

spread set of solutions spanning the entire Pareto surface.

In the context of the above goal, decomposition based approaches have been leading

the race. Such approaches use an underlying sampling scheme to generate a set of

uniformly distributed reference directions and thereafter evolve a population of so-

lutions. Each individual in the population attempts to traverse along a particular

reference direction. The number of such reference directions increase rapidly with

increasing number of objectives which in turn requires larger population sizes. In

order to alleviate this problem, a quantum representation of solutions is adopted. The

solutions represented as strings of Q-bits offers the potential to represent multiple
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solutions during the course of observation. It is clear from the examples studied in

this chapter, that evolution of a population of 5 quantum solutions result in the same

performance (based on hypervolume) as the evolution of a population of W quantum

solutions, where W is the number of reference directions. This offers now the possibility

to solve many objective optimization problems with a small population size that does

not scale up with increasing number of objectives.

The Q-bits of a quantum population are updated using Q-gates. The Q-bits of the

solutions are updated based on the success of the child solution generated through the

process of observation. While a simple rotation operator has been used in this study,

other Q-gates and update rules could have been used. Furthermore, no attempts have

been made to tune the ∆θi’s. While a single observation is used to update the Q-bits

in the present study, more complex multi-observation updates can be designed.

Whenever a child solution is created via observation, it attempts to replace an

existing solution in the reference set. An opportunity is offered to the child solution to

replace a solution in the reference set. Multiple replacements are prohibited to ensure

adequate diversity of the reference set.

The other important feature of this algorithm is its ability to automatically align

solutions to the reference directions. The alignment pressure is induced via d1 and d2

measures the scheme does not involve any additional parameter or complex association

or niching operation as in M-NSGA-II [111]. The course of evolution of the reference

set for the DTLZ2-3 i.e., 3 objective optimization problem clearly illustrates this.

The effects of representing a solution using 7 and 14 bits have been studied in the

context of DTLZ2 problems. There is marginal benefit in using 14-bit representation

over 7-bit representation for the above problems. It is important to highlight that the

hypervolumes are close to theoretical values although the gap marginally increases with

increasing number of objectives. The theoretical hypervolumes are based on continuous

variable representation. The choice of the number of bits essentially dictates by the

number of states of the variable which in turn is dependent on the range and the step
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size of the variable.

The preliminary results indicate that there are advantages of quantum representa-

tion that can be exploited to alleviate some of the existing problems associated with

the state of the art many-objective optimization algorithms.



Chapter 4

Robust Many-objective

Optimization

Part of this work has previously appeared in Asafuddoula, M., Ray, T. and Sarker,

R.,“A decomposition based evolutionary algorithm for many-objective optimization

with systematic sampling and adaptive epsilon control”, in Proceedings of the Seventh

International Conference on Evolutionary Multi-Criterion Optimization, vol. 7811

Lecture Notes in Computer Science, pp. 417-427, Springer, 2013.

Asafuddoula, M., Singh, H.K., and Ray, T., “Six-sigma robust design optimization

using a many-objective decomposition based evolutionary algorithm”, IEEE Transac-

tions on Evolutionary Computation. (Under review).

Chapter Overview

This chapter addresses three key challenges facing robust design optimization i.e., cor-

rect formulation of the problem, accurate estimation of the ‘robustness’ measure and

efficient means to identify such solutions with an affordable number of function evalua-

tions. The proposed formulations consider robustness from two perspectives - reliability

against failure and reliability against performance deterioration. The problem is posed as

a many-objective optimization problem and a decomposition based evolutionary approach

125
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is used for solving it. The performance of the proposed approach and effects of various

formulations are illustrated using two numerical examples and five engineering problems.

4.1 Literature Review

The notion of uncertainty is omnipresent in any real-world problem. In the context

of design optimization, such uncertainties emerge from varying loading conditions, ma-

terial imperfections, inaccuracies in analyses/simulations, imprecise geometries, manu-

facturing precision or even actual product usage. For practical implementation, designs

need to be robust, i.e., less sensitive in the presence of uncertainties. While there

could be different sources of uncertainties in a problem (environmental factors, design

variables, performance estimates etc.), this work focuses on solving problems with

uncertainties in design variables. This class of problems is frequently encountered in

various engineering applications as reported in the past [132, 133, 134, 135, 136, 137,

138, 139, 140, 141].

It is evident that optimization based solely on the maximization of performance

(i.e., ignoring the landscape of the objective/constraint functions in the vicinity of a

solution) is incapable of identifying robust solutions. Firstly, global optimal solution(s)

of a performance maximization problem may lie on a constraint boundary. With

marginal deviation in the variable values, such solutions could easily violate one or more

constraints. Secondly, such global optimal solutions may lie on a very narrow peak of

the performance function, wherein a slight variation in the value of the variables could

result in significant deterioration in performance.

The first aspect relates to feasibility robustness and is commonly dealt with using

additional constraints [142, 143, 144, 145], wherein a set of solutions satisfying a

prescribed level of feasibility robustness is identified. The second aspect relates to

performance robustness, i.e., robustness in terms of performance deterioration. It is

either modeled using additional constraints [146] or incorporated as an objective via

variance measures [147, 142, 143, 145]. There is also a differentiation in the notion
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of performance used in the robust formulations. Some studies use the performance

function at the given (mean) value [146, 147] while others use the expected value of the

performance function [146, 142, 143, 144, 145]. The latter form of performance measure

seems to be more practical and widely adopted.

In this chapter, robustness with respect to constraints (feasibility robustness) and

objectives (performance robustness) are studied using four different formulations. The

key differences between the formulations are discussed using two test problems. Since

the proposed formulations use additional objectives to deal with feasibility robustness

and performance robustness, a many-objective optimization algorithm is used to solve

the problem. Unlike previous approaches which can identify a set of tradeoff solutions

satisfying a prescribed feasibility robustness criteria, the proposed approach offers the

complete set of tradeoff solutions i.e., solutions spanning various levels of feasibility

robustness and performance robustness simultaneously in a single run. Such a set of

tradeoff solutions is of practical value as one can clearly observe the performance/cost

implications of delivering solutions at various robustness levels.

Identification of robust solutions have always been a problem of practical inter-

est. In the past, conservative designs were generated by adding a factor of safety

to constraints/variables [5]. In recent years, more involved research has focused on

development of approaches to quantify and identify robust optimal solutions. The

studies can be broadly classified into three areas which deal with (1) formulation of a

robust optimization problem, (2) quantification of robustness and (3) means to deal

with such problems with affordable computing resources, i.e., the search algorithms.

Throughout this discussion, minimization of the objective function(s) is assumed for

consistency.

Robust optimization problem formulation

In the context of problem formulation, a number of different approaches have been

proposed in the literature to deal with the aspects of feasibility robustness and perfor-
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mance robustness. Features of various robust formulations reported in literature are

summarized in Table 4.1.

Constraint modification is one of the simplest forms to deal with feasibility robust-

ness [142, 143, 148]. A constraint g < 0, is translated to µg + nσg < 0, where n defines

the level of robustness in six-sigma terminology (discussed later in 4.2). The inclusion

of the term nσ, essentially translates the constraint boundary inwards (i.e., reduces the

feasible space), thereby ensuring that the solutions do not violate the (mean) constraint

boundaries of the problem. Apart from modifying the original constraints, some other

studies have suggested use of additional constraints, e.g. probability of violation of

the constraints [149, 150] or reliability index [151, 145, 152, 153]. Sequential reliability

assessment combined with deterministic optimization has also been reported [154]. It

is important to highlight that all the aforementioned techniques deliver solutions for a

prescribed level of feasibility robustness.

To deal with performance robustness, the approaches either use aggregation or

include additional objectives or constraints in the formulation. For example, in [155,

156, 148], a simple aggregate function i.e., µf + σf (or µf + kσf ) was used. A weighted

composite function was also used in [143, 157] of the form λµ2
f + (1 − λ)σ2

f (or λµf +

(1 − λ)σf ), where the factors could be varied to emphasize/deemphasize the effects

of the mean and the standard deviation terms. Another different formulation was

presented in [158, 159] of the form α
µf

µf∗
+ (1 − α)

σf

σf∗
. Alternate propositions of

including robustness as a separate objective also appears in [160, 161, 162, 147, 163,

164, 155, 165, 142, 144] wherein a robustness measure/index was used as an additional

objective during the course of search. Often to ensure performance robustness, expected

performance measures are used in lieu of the original performance function [146, 144].

Another method of enforcing performance robustness appears in the works of [166,

167, 146], wherein a constraint of the form ||fp(x)−f(x)||
||f(x)||

< η was added to the original

problem, where fP denotes the effective value i.e., the worst function value among

chosen neighborhood solutions and η is a user defined parameter.
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It can be observed from Table 4.1 that while some of the works in the past have

considered performance robustness as objective, none of the works have included both

feasibility and performance robustness as objectives so as to achieve solutions with

varying levels of robustness in a single run.

Quantification of robustness

Most of the approaches for robustness quantification reported in the literature utilize

the expected value and/or variance of the performance function [156]. When the ana-

lytical function is known, the expected function value can be calculated as the integral
∫

f(x)w(x)dx, and certain analytical techniques [157, 170, 171, 172, 173, 144, 174, 175,

176] could be used to quantify the robustness. However, for most optimization problems,

such expressions may not be available, and stochastic sampling based approaches have

to be used instead for the estimates [177, 178, 179, 180, 137, 138, 181, 182]. The major

downside lies with the mechanism for estimating the expected fitness as it requires a

large number of samples to compute the expected value with good accuracy. For a

finite number of samples, explicit averaging [183, 184, 138, 185, 137, 186] or implicit

averaging [187, 188, 189] may be used for estimates. To save on function evaluations,

some studies used metamodels [162, 190] for calculating the expected values instead of

the original function.

In the context of reliability against failure (feasibility robustness), probabilistic

models have been proposed, wherein the constraints of the problem are transformed

to chance constraints as follows:

P (gj(d,x) ≥ 0) ≥ Rj, j = 1, 2, ......, J (4.1)

where Rj is the desired probability of constraint satisfaction of the jth constraint. Often
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Table 4.1: Common formulations to identify robust solutions∗

Reference
Work

Robust formulation Type of robust-
ness

Robust-
ness as
an ad-
ditional
objec-
tive

Quantifi-
cation of
Robust-
ness

Ability to
generate
tradeoff
feasible
robust
solutions
in a single
run

Optimization
Method

Single-/
Multi-
objec-
tive

K.
Deb, H.
Gupta [166]

Min [f1, f2..., fM ]
Subject to
||fp(x)−f(x)||

||f(x)||
≤ η

Or
Min [feff

1 , feff
2 ..., feff

M ]

Robustness in
performance
(as additional
constraint)

No Expected
measure

No Real
Parameter
GA

(MO,
C)

Y. Jin
and B.
Send-
hoff [147]

Min [f1 = f, f2 =
σf ] Subject to gj ≤ 0

Robustness in
performance
(as additional
objective)

Yes Variance
measure

Yes, w.r.t.
perfor-
mance

Evolutionary
Multi-objective
approach

(SO, C)

W.
Chen
et.
al. [142]

Min [(µf , σ2
f )]

Subject to
E[gj(x, z)] + nσgj

≤ 0

Feasibility and
performance
robustness

Yes Expected
and
variance
measures

Yes, w.r.t
perfor-
mance

Compromise
DSP

(MO,
C)

G.
Sun et.
al. [143]

Min [(µf1
, σf1

),
(µf2

, σf2
), ....,

(µfM
, σfM

)]
Subject to

µgj
+ nσgj

≤ 0

Feasibility and
performance
robustness

Yes Sigma
level based
measure

Yes, w.r.t
perfor-
mance

PSO (MO,
C)

S. Sun-
daresan
et.
al. [144]

Min E[f ]
Subject to

E[gj ] ≤ 0, E[hj ] = 0

Feasibility ro-
bustness

No Expected
measure

No Mathematical
program-
ming

(SO, C)

Z.
Wang
et.
al. [148]

Min [µf + kσf ]
Subject to

µgj
+ nσgj

≤ 0

Feasibility and
performance
robustness

No Aggregation
of
expected
and
variance
measure

No Mathematical
program-
ming

(SO, C)

Z. P.
Moure-
latos
and J.
Liang [168]

Min [(µf , ∆Rσ =
σR2 − σR1)]
Subject to

Prob{gj ≤ 0} ≥
αi, i = 1, 2, ..., M

Feasibility and
performance
robustness

Yes Expected
and
variance
measures

Yes, w.r.t
perfor-
mance

Mathematical
program-
ming

(MO,
C)

B. D.
Youn
et.
al. [169]

Min [( µH−ht

µH0
−ht

)2 +

( σH

σH0

)2] or [(sgn(µH))

( µH

µH0

)2 + ( σH

σH0

)2]

or [(sgn(µH))

(
µ1/H
µ1/H0

)2 + (
σ1/H
σ2/H0

)2]

Subject to
Prob{gj ≤ 0} ≥
αi, i = 1, 2, ..., M

Feasibility and
performance
robustness

No Expected
and
variance
measures

No Mathematical
program-
ming

(MO,
C)

*SO: single objective; MO: multi-objective; C: constrained. For complete details on the
robust formulations, please refer to the cited publications.
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such probabilistic constraints are substituted with deterministic constraints as follows:

1 − rj

N
≥ Rj, j = 1, 2, ......, J (4.2)

where N is the sample size and rj is the number of failures among N samples.

Although the method is simple, the appropriate sample size required to estimate the

quantity rj often becomes computationally prohibitive. Some studies have focused

on reducing the sample size via Latin hypercube sampling [191, 192], importance

sampling [193], directional sampling [194], Taylor series expansion [195, 196] and poly-

nomial chaos [197, 179]. While the above discussed methods rely on some form of

sampling, there are also reports of sensitivity analysis based on the gradient informa-

tion [160, 168]. Other works include computation of sensitivity via non-gradient forms,

wherein, additional constraints are imposed [160] leading to the notion of Acceptable

Performance Variation Region (AVPR). For such formulations, it is also necessary to

compute the Sensitive Region (SR) before a solution violates AVPR. Since the sensitive

region (SR) could be asymmetric, i.e., a solution could be more sensitive in one direction

of variation in a variable ∆x, but less sensitive in others, a Worst Case Sensitive Region

(WCSR) model is often required. The process of identifying WCSR is itself a complex

optimization problem. While the above methods discussed so far have their origins

rooted in the field of robust optimization, there are methods in the domain of reliability

optimization, where the reliability of a solution is computed by determining its distance

from the closest constraint boundary. The approach is commonly known as “most

probable point” (MPP) of failure [198]. MPP is known to be computationally expensive

as it requires several loops of optimization. A number of variants have been proposed in

recent years to reduce the computational expense involved, viz., Performance measure

approach (PMA), fast performance measure approach (FastPMA), reliability index

approach (RIA), fast reliability index approach (FastRIA) [149]. MPP based methods

generally include the first order reliability method (FORM) and second order reliability

method (SORM) [198, 199, 165]. The sensitivity analysis is achieved by simplifying the
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limit state function with the first order or second order Taylor expansion at the MPP

or SORM. The SORM method is more accurate than FORM which requires a second

order Taylor series approximation around the MPP of the limit state function.

Search algorithms

While the issues concerning the formulation of the problem and the measures of ro-

bustness have been discussed above, the outcome of a robust optimization exercise is

also dependent on the efficiency of the underlying search strategy. In most of the works

discussed in previous sub-section, population based stochastic techniques (e.g., [91])

have been used for optimization. When additional objectives are introduced in the

formulation, the number of objectives could often be more than four. It is well reported

in literature that such problems (with four or more objectives) cannot be efficiently

solved using non-dominance based multi-objective optimization algorithms. Hence,

popular multiobjective approaches such as NSGA-II [91], SPEA2 [95] etc. cannot

be efficiently used if the formulation results in a many-objective problem. Modi-

fying the selection pressure through the use of secondary metrics (e.g., substitute

distance measures [96][97], average rank domination [98], fuzzy dominance [99, 200],

ǫ-dominance [100] [101], adaptive ǫ-ranking [102] etc.) has so far exhibited only partial

success in solving such problems. In all the above approaches relying on secondary

measures, there is no guarantee that the final non-dominated set of solutions would

span the entire Pareto surface uniformly.

The aim of this chapter is to seek enhancements in all three aspects presented above.

To this effect, the following studies are presented:

1. Formulation: As clear from Table 4.1, some of the formulations used in the past

to solve robust optimization problems deliver solutions for a prescribed level of

robustness. Some others provide solutions with varying levels of robustness in

a single run, but with respect to performance only. This chapter intends to

formulate the problem so as to deliver solutions with varying levels of robustness
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in a single run, both with respect to feasibility and performance. Four different

formulations have been presented in order to cover some of the past formulations

as well as the new one which delivers the aforementioned tradeoff set.

2. Quantification of robustness: While the concept of 6σ is well recognized as quan-

tification of robustness for feasibility robustness, the same has been introduced

for the objectives in order to quantify performance robustness. The user can

prescribe the acceptable deviation from the average performance specification

of a design, which is then used to calculate the sigma level in terms of per-

formance robustness. This way of quantifying robustness helps comparing the

robustness of solution with respect to each objective/constraint on a common

scale (even though their raw values and standard deviations values may be of

different orders). While a single value of upper specification limit(USL) can be

used for single objective six-sigma robust formulations, a common USL measure

cannot be used for problems involving multiple performance measures. For the

case of multiple constraints and/or multiple objectives, minimum sigma level for

a solution is considered as its overall sigma level, which helps in assuring this

minimum level of feasibility/performance robustness on the solutions w.r.t. all

objectives/constraints. The robustness measures are treated as additional criteria

in the problem formulation.

3. Search algorithm: The addition of robustness criteria in order to formulate the

robust optimization problem results in an increase in number of objectives, and

often the resulting problem could have four or more objectives. In order to solve

them efficiently, the use of many-objective algorithms is introduced. A steady

state, decomposition based many-objective evolutionary algorithm, referred to as

DBEA-r, is proposed to achieve this. The reference directions for the algorithm

are generated using systematic sampling, and association of the solutions to these

reference directions are based on two independent distance measures, one for

convergence and the other for alignment/diversity. Constraints of the formulation
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are handled using an adaptive epsilon level based scheme [115, 116].

4.2 Problem definition and robustness measure

A generic multi-objective optimization problem can be defined as follows:

Minimize
(d,x)

fi(d,x), i = 1, 2, ......M

Subject to

gj(d,x) ≥ 0, j = 1, 2, .........................p

hj(d) = 0, j = p + 1, p + 2, .........p + q

x(L) ≤ x ≤ x(U)

d(L) ≤ d ≤ d(U)

(4.3)

where f1(d,x), f2(d,x), f3(d,x), ......fM(d,x) are the M objective functions. The

functions involve a set of deterministic variables d and a set of uncertain variables x.

The number of inequality and equality constraints are denoted by p and q respectively.

In practice, most engineering design optimization problems involve one or more variables

of uncertain nature that is often represented using a probability distribution. In this

chapter, the distribution of uncertain variables is assumed Gaussian, which reflects the

behavior of majority of the variables in the context of engineering design. The variables

are represented using their mean and standard deviation as N(µx, σx).

To convert an optimization problem to a robust optimization problem, one needs

to adopt a robustness measure. In this work, the notion of six-sigma quality measure

commonly used in the industry is adopted. This measure is discussed next, followed by

the problem formulations.
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4.2.1 Six-sigma quality measures

The notion of six-sigma refers a unit of six standard deviations between the process

mean/expected value and the nearest specification limit as shown in Figure 4.1. It

is assumed that when the ratio of expected value and the standard deviation is six,

practically no items (2 defects per million) will fail to meet the specifications [155].

 

 

Upper Spec
     Limit

Lower Spec
     Limit

Shift 

−6σ −5σ −3σ −2σ −1σ µ−4σ +1σ +2σ +3σ +4σ +5σ +6σ

Figure 4.1: Normal distribution, 3-σ design

Table 4.2 shows the sigma level and the corresponding confidence interval that the

performance of the solution will lie between the process mean and the specification

limit.

Table 4.2: Sigma level on percent variation and defects per-million

Sigma Level Confidence Interval (CI) Defects per million

±1σ 68.26 691462
±2σ 95.46 308538
±3σ 99.73 66807
±4σ 99.9937 6210
±5σ 99.999943 233
±6σ 99.9999998 2

4.2.2 Problem formulation and robustness quantification

In this chapter, four different formulations for robust optimization are presented, cov-

ering aspects of both feasibility and performance robustness. Two different cases

are studied, one using performance other using expected performance quantification
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measures. The formulations (Form-1 to Form-4 ) are listed in Table 4.3. Form-1

and Form-3 consider feasibility robustness only, while Form-2 and Form-4 consider

both feasibility and performance robustness. Performance value is directly used as an

objective in Form-1 and Form-2 which, given the Gaussian variation in design variables,

is equivalent to using the performance at the mean design point (f(µx)). Expected values

of the performance functions are used as objectives in Form-3 and Form-4, which have

been estimated by averaging over samples (µf ) in the vicinity of design point with given

uncertainties. Two robustness measures, namely sigmag and sigmaf are introduced to

quantify feasibility and performance robustness respectively.

• The term sigmag refers to the ratio of expected constraint value (µg) and standard

deviation (σg) of constraint g. Since the constraints have been formulated as

g > 0, the ratio sigmag = µg/σg is nothing but (µg −0)/σg, which is a measure of

how many standard deviations can be fit between the constraint boundary(0) and

the given solution (see Figure 4.1). This quantity is positive for feasible solutions,

and needs to be maximized for achieving high robustness.

• The term sigmaf refers to the ratio of a user defined acceptable deviation σf0 and

the standard deviation (σf ) of objective f . For σf , unlike σg, the boundary is not

zero but the (user prescribed) specification limit on how much deviation in the

objective value is acceptable from the mean. Hence, the ratio sigmaf = σf0/σf

denotes the number of standard deviations of the objective function that can be

fit within the specification limit. Again, sigmaf is intended to be maximized.

To ensure feasibility robustness, the quantity sigmag has to be positive and solutions

with larger sigmag are more robust. If the value of sigmag is greater than a given

value Rc, the value is truncated to Rc. It essentially means, the user is satisfied with

the feasibility robustness level Rc and solutions having any higher robustness has the

same preference as the one with Rc. A similar truncation strategy has been applied

to sigmaf (using Rf ) to ensure performance robustness in Form-2 and Form-4. In a
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problem involving multiple constraints, the minimum sigmag across all constraints is

considered to represent the overall sigmag of the solution. This translates to measuring

the sigma-level of constraint that is most likely to be violated; which is different from

traditionally used six-sigma formulation where defects caused using all constraints

together are considered. Same strategy has been adopted for sigmaf for the case of

multiple objectives. This way of quantifying robustness helps comparing the robustness

of solution with respect to each objective/constraint on a common scale (even though

their raw values and standard deviations may be of different orders), and at the same

time assuring this minimum level of feasibility/performance robustness on the solutions

with respect to each objective/constraint. For a six-sigma design considered in this

chapter, both Rc and Rf are set to 6. Form-1 and Form-2 formulations are similar to

those presented in [149], where objective value at mean point (f(µx)) is considered as

objective rather than the mean of the function (µf(x)). These formulations have been

included for completeness. However, in realistic situations, with given uncertainty in

the variables, expected/average objective values for a design are more reflective of field

performance compared to objective values at most likely point. It is clear from Table 4.3,

that Form-4 is the most comprehensive formulation that is capable of delivering the set

of tradeoff solutions spanning the entire range of feasibility robustness and performance

robustness.

4.3 DBEA for Robust optimization

Robust formulations presented above require solution of optimization problems involv-

ing additional objectives. The total number of such objectives can easily be more

than four and hence a many-objective optimization algorithm is used in this study.

The underlying algorithm is a decomposition based evolutionary algorithm (DBEA)

described earlier in this dissertation.
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Table 4.3: Different forms of robust formulation∗

Robust
form

Formulation
Type

Robust formulation Robust
measure

TR∗

Form-1 Original objective
function(s)
with feasibility
robustness

Minimize
(d,x)

fi(d,x), i = 1, 2, ......M

maximize
(d,x)

fM+1(d,x) = Min(sigmag , Rc)

Subject to

sigmag ≡ Min(µgj(d,x)/σgj(d,x)) ≥ 0

x(L) ≤ x ≤ x(U),d(L) ≤ d ≤ d(U)

(4.4) Sigma level
based
measure
(sigmag)

Yes

Form-2 Original objective
function(s)
with feasibility
and performance
robustness

Minimize
(d,x)

fi(d,x), i = 1, 2, ......M

maximize
(d,x)

fM+1(d,x) = Min(sigmag , Rc)

maximize
(d,x)

fM+2(d,x) = Min(sigmaf , Rf )

Subject to

sigmag ≡ Min(µgj(d,x)/σgj(d,x)) ≥ 0

Where

sigmaf ≡ Min(σf0,i(d,x)/σfi(d,x))

x(L) ≤ x ≤ x(U),d(L) ≤ d ≤ d(U)

(4.5) Sigma level
based
measure
(sigmag ,
sigmaf )

Yes

Form-3 Expected objective
function(s)
with feasibility
robustness

Minimize
(d,x)

µfi(d,x), i = 1, 2, ......M

maximize
(d,x)

fM+1(d,x) = Min(sigmag , Rc)

Subject to

sigmag ≡ Min(µgj(d,x)/σgj(d,x)) ≥ 0

x(L) ≤ x ≤ x(U),d(L) ≤ d ≤ d(U)

(4.6) Sigma level
based
measure
(sigmag)

Yes

Form-4 Expected objective
function(s)
with feasibility
and performance
robustness

Minimize
(d,x)

µfi(d,x), i = 1, 2, ......M

maximize
(d,x)

fM+1(d,x) = Min(sigmag , Rc)

maximize
(d,x)

fM+2(d,x) = Min(sigmaf , Rf )

Subject to

sigmag ≡ Min(µgj(d,x)/σgj(d,x)) ≥ 0

x(L) ≤ x ≤ x(U),d(L) ≤ d ≤ d(U)

Where

sigmaf ≡ Min(σf0,i(d,x)/σfi(d,x))

x(L) ≤ x ≤ x(U),d(L) ≤ d ≤ d(U)

(4.7) Sigma level
based
measure
(sigmag ,
sigmaf )

Yes

*SO: single objective; MO: multi-objective; MaO: many-objective; C: constrained; the value
of Rc and Rf is considered 6 to meet the six sigma quality; TR: is the ability to generate
tradeoff feasible robust solutions in a single run.
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4.4 Numerical examples

In this section, the key differences among Form-1, Form-2, Form-3 and Form-4 robust

formulations are discussed with respect to the final set of solutions. Two simple

numerical test problems are used for illustration, and subsequently the performance

of the approach is further assessed using two single-objective, one multi-objective and

a many-objective optimization problem.

Population sizes of 50, 91, 220, 330, 462, 462 have been used for 2, 3, 4, 5, 6

and 7 objective (including original(f)/expected(µf ) and robustness (sigmag, sigmaf )

objectives) optimization problems respectively. The size of the population is set to

be the same as the number of reference directions which are identified using Normal

Boundary Intersection (NBI) [4]. The probability of crossover is set to 1 and the

probability of mutation is set to pm = 1/D, where D is the dimensionality of the

problem. The distribution index of crossover and mutation are set to ηc = 30 and

ηm = 20 as in [118]. The population is evolved over 100 generations. A sample size

of 100 is used to compute the expected value and the standard deviation for given

solution. Latin-hypercube Sampling with Gaussian distribution (LHS-Gaussian) is used

to generate the samples around the solution in all studies.

4.4.1 Example-1 (robust single objective optimization)

Test Function

Function f is a one variable problem with five unequal peaks in the range 0 ≤ x ≤ 1.

It is defined as

f =











e−2ln2(x−0.1
0.8

)2|sin(5πx)|0.5 : 0.4 < x ≤ 0.6

e−2ln2(x−0.1
0.8

)2sin6(5πx) : otherwise.
(4.8)

The problem is to minimize objective f subject to a constraint (x−0.1) ≥ 0. It can

be seen from Figure 4.2 that the problem has four sharp local optima and one relatively
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robust optimum. The global optimum is located at x = 0.1 with the function value of

−1.0. If the uncertain variable x is assumed to follow a Gaussian distribution with a

σ2
x = 5× 10−4, the robust minimum is be located at x = 0.486 with a function value of

−0.715.

Figure 4.2 shows the solutions obtained using Form-1 robust formulation. One

can clearly observe solutions with varying levels of feasibility robustness, i.e., different

values of sigmag. For example, the solutions marked as A, B and C have sigmag’s of

0.0012, 0.4720, 6.0 respectively. One can observe that there are no solutions between

sigmag = 0.4720 and 6 since solutions in this range have been dominated by solution

C (which has sigmag = 6, and whose objective value is only inferior to the solutions

between A and B). As performance robustness has not been considered in the Form-1

robust formulation, the values of sigmaf lie within a small band i.e., between 0.3622

and 0.4309. The above listed sigmaf ’s were computed using a user defined objective

limit σf0,1 = 0.101 and 100 neighboring solutions using LHS-Gaussian sampling.

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

x

B

A

C

f

Feasible region

Figure 4.2: Solutions obtained using Form-1 robust formulation. The solutions are labeled as
(x, f , Sigmag, Sigmaf ) i.e., A = (0.1000, -1.0000, 0.0012, 0.3952), B = (0.1104,

-0.9220, 0.4720, 0.3622), C = (0.2994, -0.9172, 6, 0.4309).

For Form-2 robust formulation, the tradeoff solutions are presented in Figure 4.3.

Since sigmaf is considered as an additional objective, two new solutions i.e., D and E

emerge with sigmaf = 3.3308 and 6 respectively. One can notice the increased range

of sigmaf using this formulation when compared to the earlier form. Solutions C, D

and E are feasibility robust solutions with sigmag = 6.

In the next two formulations i.e., Form-3 and Form-4, the expected value (µf ) of

performance function is used as objective. Once again Form-3 considers feasibility
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Figure 4.3: Solutions obtained using Form-2 robust formulation. The solutions are labeled as
(x, f , sigmag, sigmaf ) i.e., A = (0.1000, -1.000, 0.0012, 0.3952), B = (0.1106,
-0.9187, 0.4834, 0.3625), C = (0.2994, -0.9172, 6, 0.4309), D = (0.4885, -0.7152,

6, 3.3308), E = (0.9832, -5.89e-5, 6, 6).

robustness only while Form-4 considers both feasibility and performance robustness.

As seen from Figure 4.4, the profile of the function differs from that of the expected

function. The second minimum of the expected value function is located near the

third minimum of the original function. The solution C” is now located near the third

minimum of the original function since its expected value is lower than solutions around

C in earlier plots (i.e., near the second minimum of the original function). Solutions

around the second and the third minimum of the original function have sigmag = 6.

Use of Form-3 formulation results in a set of tradeoff solutions with feasibility

robustness sigmag between 0.0021 (Solution A) and 6.000 (Solution C”). Once again,

their corresponding sigmaf ’s can be computed, which span between 0.3899 and 3.190.

When the performance robustness is considered in addition to feasibility robust-

ness (Form-4 ), two new solutions D and E are identified as shown in Figure 4.5.

Solution E has sigmaf = 6 while solution D has a marginally lower sigmaf . One can

observe that the use of Form-4 allows identification of solutions spanning a large range

of feasibility robustness (sigmag’s between 0.0012 and 6) and performance robustness

(sigmaf ’s between 0.3952 and 6).

The sigmaf vs. sigmag plots for the solutions obtained from the four formulations

are presented in Figure 4.6. One can clearly observe that the solutions obtained from

formulation Form-4 have a larger spread in sigmaf and sigmag when compared with

the solutions obtained from Form-3 . The line plots on the right convey the same
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Figure 4.4: Solutions obtains using Form-3 robust formulation. The solutions are labeled as
(x, f , sigmag, sigmaf ) i.e., A = (0.1000, -1.0000, 0.0021, 0.3952), B = (0.1138,

-0.8668, 0.0191, 0.3899), C” = (0.4888, -0.7152, 6, 3.190).
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Figure 4.5: Solutions obtains using Form-4 robust formulation. The solutions are labeled as
(x, f , sigmag, sigmaf ) i.e., A = (0.1000, -1.000, 0.0012, 0.3952 ), B = (0.1136,
-0.8715, 0.3948, 0.3937), C” = (0.4892, -0.7151, 6, 3.3624 ), D = (0.8169, -1.057e-4,

6, 5.4359), E = (0.9832, -5.89e-5, 6, 6).

information and have been included for consistency with respect to the results presented

later involving multiple constraints and/or objectives.
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Figure 4.6: Obtained solutions for Example-1

The results obtained using the presented formulations can be summarized as follows:
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1. Formulations Form-1 and Form-3 consider feasibility robustness only. Therefore

the tradeoff set of solutions obtained using these formulations span feasibility

robustness range, but they may be concentrated in very small range in terms of

performance robustness.

2. Formulations Form-2 and Form-4 consider both feasibility and performance ro-

bustness. The tradeoff set of solutions obtained using such formulations span

the complete possible range of feasibility robustness and performance/expected

performance robustness.

3. In the event the landscape of the performance function and expected performance

function is the same (or very close to each other), there would be no difference in

the outcome if one chooses to use Form-1 instead of Form-3 or Form-2 instead of

Form-4. Since such an assertion cannot be made in general (and was the case in

above example), especially for black-box functions, use of Form-4 is recommended

overall. If only feasibility robustness is required, Form-3 can be used. For

the objective functions where it is a priori known that function and expected

function values are very close under given uncertainties, Form-1 or Form-2 (as

required) should be used instead, as it will save the computational effort required

in calculating the expected values at each design point.

4.4.2 Example-2 (robust multi-objective optimization)

The second example is a multi-objective optimization problem [149] defined below:

Minimize
(x,y)

f1(x,y) = x

minimize
(x,y)

f2(x,y) =
1 + y

x

Subject to

y + 9x − 6 ≥ 0,

(4.9)
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− y + 9x − 1 ≥ 0,

0.1 ≤ x ≤ 1, 0 ≤ y ≤ 5 (4.10)

The problem has two variables both of which have Gaussian uncertainty with σ2
x =

5 × 10−3 and σ2
y = 5 × 10−3. Considering a generic case where the landscape of the

objective function and the expected value of the objective function may not be the

same, Form-3 and Form-4 formulations have been used to identify robust solutions.

The solutions obtained from Form-3 robust formulation have distinct non-dominated

fronts corresponding to different values of sigmag. In Figure 4.7(a), the non-dominated

fronts (in expected objective function space) corresponding to sigmag = 0, 1, 3 and 6

are presented along with the constraint boundaries (g1 and g2).
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Figure 4.7: Obtained (a) the tradeoff frontiers of µf1 and µf2 for different values of sigmag

(b) the performance of the robust solutions with the robust measures sigmaf and
sigmag for a run using Form-3.

It can be seen that for sigmag = 0, the solutions lie near the active constraint

boundary. The solutions progressively move away from the front as sigmag increases.

The robust measures of the solutions are presented in Figure 4.7(b). A user defined limit
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Figure 4.8: Obtained (a) the tradeoff frontiers of µf1 and µf2 for different values of sigmag

(b) the performance of the robust solutions with the robust measures sigmaf and
sigmag using a run using Form-4.

of σf0,1 = 0.1012 and σf0,2 = 1.6959 have been used for performance robustness. Since

performance robustness is not considered in Form-3, all the solutions have sigmaf ’s of

around 3.0. However, since both feasibility and performance robustness are considered

in Form-4, the tradeoff set as presented in Figure 4.8 contains solutions with sigmaf

ranging from 3 to 4 and sigmag ranging from 0 to 6. One can also notice that, apart

from the overall performance and/or feasibility robustness, the sigma levels of each

constraint/objective (i.e., sigmag1 and sigmag2) in the figures also allow us to identify

the constraint (or objective) that is most prone to be violated. For example, constraint

g1 has lower sigmag values and hence a larger probability of being violated compared

to constraint g2, for which sigmag values for all the solutions are close to 6.

4.5 Robust Engineering Design Problems

In this section, the results of DBEA-r on two single objective, one multi-objective and

a many-objective robust engineering design problem have been presented. The problem
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descriptions are provided in Table 4.4, while the results are shown in Table 4.5 and 4.6

.

The results obtained for welded beam design problem using Form-3 and Form-4 are

presented in Figures 4.9 and 4.10. One can observe that Form-3 is capable of delivering

feasibility robust solutions. However, such solutions do not have a greater diversity with

respect to performance robustness (notice the small spread in sigmaf). Form-4 on the

other hand offers the tradeoff solutions spanning the complete range of feasibility and

performance robustness.
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Figure 4.9: Line plot with the value of sigmafi and sigmagj for the solutions obtained from
Form-3 for welded beam design problem.
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Figure 4.10: Line plot with the value of sigmafi and sigmagj for the solutions obtained from
Form-4 for welded beam design problem.

To illustrate the benefits of proposed approach in improving robustness/providing

additional solutions, a comparison is made using Form-4 with two other experiments

reported for the problem [1]. They use two formulations to solve the problem, i.e., DF-

MOSS and DFSS, which are as follows : (a) DFSS: Min [wµµf +wσσ
2
f ] Subject to µf +

nσf ≤ 3 (b) DFMOSS: Min [µf , σf ]. The uncertainty of all the variables follow a

Gaussian distribution with its standard deviation (σx) of 0.01 and the acceptable
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Table 4.4: Problem descriptions

Problem Problem description σx σf Number of
Objectives

Design of
a welded
beam (SO-1)

The welded beam design optimization
problem was originally formulated
in [129]. The problem is to design a
welded beam for minimum cost subject
to a set of constraints. The beam is
designed to support a force F = 6000
lbf and the objective is to find the
design with the minimum fabrication
cost, considering four design variables
i.e., thickness of the weld (x1), length
of the weld (x2), thickness of the beam
(x3), and width of the beam (x4) with
the measurement unit in inches.

The uncertainty of the
variables x1, x2, x3,
and x4 follow a Gaus-
sian distribution with
σ2

x1
= 8.33 × 10−4,

σ2
x2

= 8.33 × 10−4,

σ2
x3

= 4.2 × 10−3 and

σ2
x4

= 4.2 × 10−3.

The user defined limit
on the variation on
the objective function
is prescribed as σf0,1

=
1.701.

1

Design of
a com-
pression
spring (SO-2)

The problem is to minimize the weight
of a tension/compression spring, sub-
ject to constraints of minimum de-
flection, shear stress, surge frequency,
and limits on outside diameter [201,
202]. The problem has three design
variables: the wire diameter x1, the
mean coil diameter x2, and the number
of active coils x3.

The uncertainty in the
variables x1, x2 and x3

follow a Gaussian dis-
tribution with σ2

x1
=

1.67 × 10−5, σ2
x2

=

1.67 × 10−5 and σ2
x3

=

1.67 × 10−3.

The allowable
functional variation
limit set by the user is
prescribed as σf0,1

=
0.0101.

1

Car Side
Impact
prob-
lem (MO-3)

The problem aims to minimize the
weight of a car and the average
of three rib deflections constraints
i.e., g5(x), g6(x) and g7(x) subject
to the constraints of abdomen load,
pubic force, velocity of V-Pillar, rib
deflection etc [119]. The problem has
eleven design variables: the thickness
of V-pillar inner x1, thickness of
V-pillar reinforcement x2, thickness
of floor side inner x3, thickness of
cross members x4, thickness of door
beam x5, thickness of door belt-line
reinforcement x6, thickness of roof
rail x7, material of V-pillar inner x8,
material of floor side inner x9, barrier
height x10, barrier hitting position x11.

The uncertainty in the
variables x1 to x7 fol-
low Gaussian distribu-
tion with given stan-
dard deviations:σ2

x1
=

5 × 10−4, σ2
x2

= 5 ×

10−4, σ2
x3

= 5 × 10−4,

σ2
x4

= 5 × 10−4, σ2
x5

=

8.33× 10−4, σ2
x6

= 5×

10−4 and σ2
x7

= 5 ×

10−4.

The allowable
functional variations
are set as σf0,1

= 1.080
and σf0,2

= 0.901.

2

Water
resource
manage-
ment (MaO-4)

The water resource management prob-
lem was first described in [131] . The
problem has three design variables:
local detention storage capacity x1,
maximum treatment rate x2 and
the maximum allowable overflow rate
x3. The objective functions to be
minimized are f1 = drainage network
cost, f2 = storage facility cost, f3 =
treatment facility cost, f4 = expected
flood damage cost, and f5 = expected
economic loss due to flood.

Three of the variables,
local detention storage
capacity x1, maximum
treatment rate x2

and the maximum
allowable overflow rate
x3, are considered
to vary as Gaussian
distribution with
(σ2

x1
, σ2

x2
, σ2

x3
) =

(3.33 × 10−4, 1.67 ×
10−4, 1.67 × 10−4).

The acceptable func-
tional variations are
prescribed as σf0,1

=
3000, σf0,2

= 10, σf0,3

= 35961, σf0,4
= 59292

and σf0,5
= 27457.

5
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performance deviation σf0 = 0.4045. As reported in [1], this study uses NSGA-II [91]

as a multi-objective evolutionary algorithm for DFMOSS and DFSS; while DBEA-r

is used for Form-4 to generate the results. For the robust optimization exercise,

population size, sample size and maximum number of generations are set as 100,

100 and 400 respectively. In the DFSS optimization (which provides one solution

in one run), seven optimization runs were performed with different weighing factors

(wµ : wσ=1000:1,100:1,10:1,1:1,1:10,1:100,1:1000) and n = 6. Figures 4.11 and 4.12

show the results obtained from all the three robust formulations.
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Figure 4.11: Comparison with other robust formulations DFMOSS and DFSS [1] and the
solutions obtained from Form-4 for welded beam design problem.
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Figure 4.12: Line plot with the value of sigmafi and sigmagj for the solutions obtained from
DFMOSS, DFSS and Form-4 for welded beam design problem.

It can be seen from Figure 4.11 that all three robust formulations delivered robust

solutions with sigmaf level of 6; however among these solutions (with sigmaf = 6),

the expected performance of the robust solution using DBEA-r is better. Additionally,

the proposed approach also provides solutions which are close to six-sigma robust in

both performance and feasibility, as observed from Figure 4.12 which shows the line

plots of sigmaf and sigmag from all three formulations. It is noticeable that the
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robust solutions achieved from DBEA-r are much more diverse. Similar benefits can

be anticipated for other engineering problems that follow, and comparison with past

approaches is omitted for the sake of brevity.

The results obtained for compression design problem using Form-3 and Form-4

are presented in Figures 4.13 and 4.14. One can again observe that Form-4 delivers

solutions spanning a range of sigmaf .
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Figure 4.13: Line plot with the value of sigmafi and sigmagj for the solutions obtained from
Form-3 for compression spring design problem.
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Figure 4.14: Line plot with the value of sigmafi and sigmagj for the solutions obtained from
Form-4 for compression spring design problem.

The next problem considered is a multiobjective (car side impact) optimization

problem. The robust non-dominated solutions (in expected performance function space)

achieved for the problem using Form-3 and Form-4 are shown in Figures 4.15 and

4.16. The fronts corresponding to various levels of sigmag using Form-3 are shown in

Figure 4.15(a), while fronts corresponding to various levels of sigmag and sigmaf is

presented in Figure 4.16(a). Corresponding values of sigmag and sigmaf are plotted in

Figure 4.15(b) and Figure 4.16(b). Feasibility robustness of sigmag =6 is achieved by

solutions identified using both the formulations. In the event the user requires solutions
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with sigmag =4 and sigmaf =4 (i.e., both feasibility and performance robust solutions),

the expected performance would be worse than solutions requiring only sigmag to be

greater than 4 (i.e., only feasibility robustness).
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Figure 4.15: Obtained (a) non-dominated robust solutions (b) line plot with the value of
sigmafi and sigmagj for the solutions obtained using Form-3 for car side impact

problem.

The performance of the approach is further analyzed using a many-objective (water

resource management) optimization problem. The parallel coordinate plots presented

in Figure 4.17 and Figure 4.18 are normalized expected objective function values with

the upper limits [ 76191, 573.15, 2762800, 1342600 7972] and lower limits [63831

295.51, 282680, 245010, 920]. These limits are computed using the non-dominated

solutions obtained from the robust formulations. Figures 4.17 and 4.18 show the robust

non-dominated solutions obtained using Form-3 and Form-4 robust formulations and

their corresponding robust measures. It can be seen that solutions identified using

Form-3 robust formulation have a larger spread. But for Form-4 robust formulation,

which demands both feasibility and performance robustness, several solutions disappear.

One can also note that the solutions from Form-4 formulation have a higher range of

sigmaf ’s. While solutions with sigmag=6 is achievable via both Form-3 and Form-4
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Figure 4.16: Obtained (a) non-dominated robust solutions (b) line plot with the value of
sigmafi and sigmagj for the solutions obtained using Form-4 for car side impact

problem.

formulation, sigmaf limits the overall robustness of the solution. Such information

assists in the identification of critical constraints/performance functions i.e., which

constraints or performance function variations should be targeted to improve the overall

robustness of the solution.

While the above study highlighted the effects of various formulations and the ability

of DBEA-r to solve them, the next study compares the performance of DBEA-r with

other many-objective optimization algorithms, SMS-EMOA [203] and MOEA/D [9].

These algorithms have been chosen for comparison as they are frequently used in the

context of many-objective optimization. While these algorithms in their original form

can only deal with unconstrained problems, a feasibility first constraint handling scheme

in both algorithms has been included to deal with the constrained optimization problems

studied in this chapter. Table 4.5 and 4.6 present the comparison of the results obtained

using DBEA-r, SMS-EMOA, and MOEA/D on all the robust formulations for all the

engineering design problems. DBEA-r offers competitive performance as compared to

others based on the hypervolume measure. Three hypervolume measures have been
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Figure 4.17: (a) Parallel coordinate plot of the approximation of Pareto set obtained using
Form-3 (b) corresponding line plot with the values of sigmaf , sigmag for water

resource management problem.
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Figure 4.18: (a) Parallel coordinate plot of the approximation of Pareto set obtained using
Form-4 (b) corresponding line plot with the value of sigmaf , sigmag for water

resource management problem.
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considered here: HV
′
, which refers to the hypervolume for non-dominated solutions in

original function space (f); HV ∗ which refers to the hypervolume in expected objec-

tive function space (µf ), and HV which refers to hypervolume considering expected

objective values (µf ) as well as robustness measures (sigmaf , sigmag). Nadir point

obtained from accumulation of all solutions across all runs has been used as a reference

point for the calculation of hypervolumes. The performance of DBEA-r, wherever

superior to other algorithms, is shown in bold. From the Table, it can be observed that

DBEA-r provides the best solution in terms of HV for most of the cases (9 out of 16).

In most of the other cases, it is second only to SMS-EMOA. However, SMS-EMOA

uses hypervolume-based measure during evolution, the computation time for which

increases exponentially with number of objectives. Consequently, DBEA-r still has some

advantage in terms of exhibiting much faster run-times compared to SMS-EMOA. The

results highlight the effectiveness of DBEA-r in solving many-objective problems and

the resulting advantage in solving robust optimization problems. The values for HV ∗

obtained using DBEA-r are lower than other two algorithms, which indicates that the

solutions obtained using SMS-EMOA and MOEA/D were good in expected objective

space, but may not be relatively as good in terms of robustness measures. In terms of

HV
′
, DBEA-r is again better than the other two for half of the cases, but the main

takeaway from these HV
′
values is that the algorithm ranking is very different for HV

′

compared to HV ∗, emphasizing that original and expected objective space landscapes

could be, in general, quite different, and therefore wherever possible, the algorithms

should be compared in expected space (as done in Form-3,4 ).

4.6 Summary and Future Development

Practical solutions of real life problems need to be robust. This chapter presented and

analyzed four formulations of robust optimization problems involving uncertain variable

values. Robustness is quantified using six-sigma measures, wherein the uncertainties

associated with the variables are assumed to follow a Gaussian distribution. Robustness
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Table 4.5: Comparison with other algorithms for single objective problems 1, 2 and
multi-objective problems 3, 4.∗

Prob. Algorithm Robust
Form

HV
′

HV ∗ HV

SO-1

DBEA-r
1

- - 5.7089
MOEA/D - - 5.4787
SMS-EMOA - - 5.2627

DBEA-r
2

- - 23.3325
MOEA/D - - 16.0554
SMS-EMOA - - 25.5567

DBEA-r
3

- - 3.7232
MOEA/D - - 5.4829
SMS-EMOA - - 5.8139

DBEA-r
4

- - 38.0861
MOEA/D - - 32.6947
SMS-EMOA - - 37.8455

SO-2

DBEA-r
1

- - 0.2105
MOEA/D - - 0.1742
SMS-EMOA - - 0.1923

DBEA-r
2

- - 0.2149
MOEA/D - - 0.1978
SMS-EMOA - - 0.2078

DBEA-r
3

- - 0.2823
MOEA/D - - 0.2713
SMS-EMOA - - 0.2745

DBEA-r
4

- - 0.1997
MOEA/D - - 0.1829
SMS-EMOA - - 0.1895

*HV
′
refers the hypervolume on deterministic non-dominated objectives and

HV ∗ refers the hypervolume on robust original function space, whereas HV

refers the hypervolume on the objectives considering robustness.
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Table 4.6: Comparison with other algorithms for single objective problems 1, 2 and
multi-objective problems 3, 4.∗

Prob. Algorithm Robust
Form

HV
′

HV ∗ HV

MO-3

DBEA-r
1

69.5953 31.0741 231.8068
MOEA/D 66.7295 32.9402 225.6509
SMS-EMOA 67.1285 32.9354 247.7618

DBEA-r
2

95.6037 45.9086 135.2737
MOEA/D 102.270 47.9154 109.9465
SMS-EMOA 104.1910 48.4418 145.1832

DBEA-r
3

72.5755 46.4866 290.3055
MOEA/D 79.6860 47.6692 259.2064
SMS-EMOA 82.1860 48.2275 289.9788

DBEA-r
4

91.9530 52.8294 153.2759
MOEA/D 96.1942 53.6699 133.0404
SMS-EMOA 98.8940 55.9082 166.1503

MaO-4

DBEA-r
1

0.9412 0.0146 0.0531
MOEA/D 0.9373 0.0168 0.0476
SMS-EMOA 0.9539 0.0123 0.0635

DBEA-r
2

1.2340 0.0241 0.0781
MOEA/D 1.1354 0.0253 0.0690
SMS-EMOA 1.2015 0.0263 0.0655

DBEA-r
3

0.9923 0.0173 0.0463
MOEA/D 0.9813 0.0182 0.0428
SMS-EMOA 0.9827 0.0178 0.0624

DBEA-r
4

1.2856 0.0262 0.0720
MOEA/D 1.2527 0.0266 0.0560
SMS-EMOA 1.2766 0.0278 0.0556

*HV
′
refers the hypervolume on deterministic non-dominated objectives and

HV ∗ refers the hypervolume on robust original function space, whereas HV

refers the hypervolume on the objectives considering robustness.
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has been studied from two perspectives, (a) feasibility robustness, i.e., robustness of

solutions in terms of failure (violation of any constraint) and (b) performance robust-

ness, i.e., robustness assuring good performance. The difference between setting the

objective as performance function v/s expected value of the performance function has

been discussed. The problems are formulated as many objective optimization problems

and a decomposition based evolutionary algorithm has been used for the solution.

The contributions of the presented work can be summarized as follows:

• Four different robust formulations are presented and analyzed. The differences

between the formulations and their capabilities are highlighted from two angles

i.e., feasibility robustness and performance robustness. Form-1 and Form-3 for-

mulations are capable of identifying feasibility robust solutions only, while Form-2

and Form-4 are both capable of identifying solutions that span the range of

feasibility and performance robustness. Form-4 is recommended over Form-2

(and overall) as it considers expected performance. Treating the robustness mea-

sures as additional objectives instead of constraints delivers a set of solutions

corresponding to different levels of robustness in a single run.

• Robustness measures have been quantified using sigmag and sigmaf values for

feasibility and performance respectively. This way of quantifying robustness helps

comparing the robustness of solution with respect to each objective/constraint on

a common scale. Furthermore, for multiple constraints/objectives case, mini-

mum values of the feasibility and performance robustness (among all the con-

straints/objectives), are considered as the measures for overall robustness, which

is equivalent to promising this minimum level of robustness w.r.t. all constraints

and objectives. This also helps in identifying the critical constraint(s)/objective(s)

that limit the overall robustness of the solution.

• A decomposition based many-objective algorithm (DBEA-r) is used to solve the

robust optimization problem. To the authors’ knowledge, many-objective algo-

rithms have not been previously used to deal with robust optimization problems.
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The performance of DBEA-r is compared to two other widely used algorithms,

SMS-EMOA and MOEA/D. DBEA-r is able to deliver best results for most

cases, and competitive results for others; thus highlighting its potential to solve

single/multi/many-objective robust optimization problems.

The efficiency of the approach can be further improved through the use of more

efficient sampling schemes. In our approach, the expected value of every solution was

estimated using explicit mean of the neighboring sample points generated using Latin

Hypercube Sampling (LHS) with Gaussian distribution. Such an approach requires

evaluation of numerous solutions and could easily be computationally prohibitive. Use

of Polynomial chaos (PC) [197, 179] based estimation is particularly attractive as it is

able to estimate the fitness using far fewer points as compared to sampling only (even

with efficient schemes like LHS). The results of Form-3 robust formulation of the

multi-objective problem discussed in Example 2 is presented in Table 4.7. For this

illustration, a sample of 15 LHS points with explicit mean is compared with PC based

estimate using 6 neighborhood samples. While both the approaches achieve nearly same

level of hypervolume in original performance(objective) space ( 3.7046 and 3.7039) and

expected performance function(objective) space ( 510.148 and 510.011), the PC based

approach uses less than half the number of function evaluations (39,600 vs. 99,000).

Table 4.7: Performance of LHS and PC

Sampling Estimated fitness Sample
points

Num. of FEs HV ∗ HV

LHS Sample Mean 15 99,000 3.7046 510.148

LHS Polynomial chaos 6 39,600 3.7039 510.011

*HV ∗ refers the hypervolume on expected objective func-
tion space, whereas HV refers to hypervolume considering
expected objectives as well as robustness (sigmag).

In the current form, the population size is set to be the same as the number of

reference directions. For problems with a large number of reference directions, evolving
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a large population may not be efficient and there is a potential to develop archive based

schemes.



Chapter 5

Conclusions

5.1 Research and outcomes

Optimization is an integral facet of any real-world problem solving scheme. Among

the optimization methods, metaheuristics such as EAs and their variants are often

preferred as they are easy to use and can be used to solve single and multiobjective

optimization problems without any underlying assumptions on the nature of objec-

tive and constraint functions. However, in their native form, such methods require

evaluation of numerous candidate solutions prior to convergence. The computational

budget available to conduct an optimization exercise becomes even more stretched

in the event the objectives and constraints require evaluation via computationally

expensive numerical simulations such as finite element methods (FEM), computational

fluid dynamics (CFD) etc. Therefore, development of efficient optimization strategies

to deal with such problems is an important area of research. In particular, the work

presented in this thesis is directed towards this overall goal and the key contributions

are summarized below.

Efficient DE: Firstly, an efficient algorithm based on differential evolution (DE)

is introduced. The proposed algorithm incorporates an adaptive crossover rate con-

trol mechanism, a combination of crossover types and a local search strategy to offer

improved rate of convergence. Binomial and exponential crossover mechanisms have

159
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been used in various stages of evolution to exploit their strengths in exploration and

exploitation. The performance of the approach has been compared with other state of

the art approaches to illustrate the benefits.

Constraint Handling: Constraints are an integral element of any real life problem

and efficient handling of such constraints is necessary. Such constraints often emerge

from user requirements, physical laws, statutory requirements, resource limitations

etc. Often they are evaluated using computationally expensive analysis i.e., solvers

relying on finite element methods, computational fluid dynamics, computational electro

magnetics etc. Existing optimization approaches adopt a full evaluation policy, i.e. all

constraints of a candidate solution are evaluated even through the first constraint might

have been violated by the solution. The study is motivated by the fundamental ques-

tions i.e., why do we spend computational resources to evaluate constraints of a solution,

when it has already violated a constraint?, and is there any better way?. In this work, a

novel constraint handling scheme has been introduced within the framework of differ-

ential evolution utilizing the concepts of partial evaluation and constraint sequencing.

The utility of using multiple constraint sequences is highlighted using three illustrative

examples. For the engineering problems studied, the proposed approach saves around

10% to 40% of the computational time. Furthermore, an adaptive constraint handling

approach has been developed and embedded within the framework of multi-objective

evolutionary algorithm based on decomposition (MOEA/D) to equip it to deal with

constrained optimization problems. Since the constraint handling scheme is generic, it

can be used in other forms of population based stochastic algorithms.

Many Objective Optimization: The third area studied in this thesis relates to

development of algorithms to deal with many-objective optimization i.e. (problems with

number of objectives greater or equal to four). While there are different approaches

to solve many objective optimization problems, the goal here is to develop a method

that delivers well converged and well spread set of solutions spanning the entire Pareto

surface. In the context of the above goal, decomposition based approaches have been
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leading the race. In this work an algorithm based on decomposition is introduced

which extends the capability of the well-known MOEA/D to deal with many objective

optimization problems. The algorithm incorporates a systematic sampling scheme and

the balance between convergence and diversity during the course of search is maintained

via a simple preemptive distance comparison scheme. It is important to highlight that

the number reference directions will increase with increasing number of objectives and

in turn require use of larger population sizes. In order to alleviate this problem, a

quantum representation of solutions is adopted leading to the development of a novel

steady state decomposition based quantum genetic algorithm. The benefits of quantum

representation is illustrated using a number of well studied benchmarks.

Robust Optimization: Solutions to practical problems need to be robust. In this

work, four formulations have been presented to deal with robust optimization problems

involving imprecise variable values. Robustness is quantified using the well-established

six-sigma measures, wherein the uncertainty associated with the variables is assumed

to follow a Gaussian distribution. The first two formulations consider the original

objectives, while the remaining two consider the expected objective values in addition

to the additional objectives arising out of robustness measures. Two goals for design

have been discussed i.e., (a) feasibility robustness, i.e., robustness of solutions in terms

of failure (violation of any constraint) and (b) objective robustness, i.e., solutions which

limit variation in performance. The approach was able to deliver solutions with varying

degrees of robustness in terms of objectives and constraints simultaneously.

5.2 Achievements

In summary, the contributions of this thesis can be grouped into three broad areas:

1. Constraint handling: Three algorithms are proposed to effectively deal with

constrained optimization problems. Numerical experiments conducted on a num-

ber of constrained benchmark and engineering problems demonstrate significant

improvements over conventional EA. These are as follows.
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(a) Adaptive Hybrid Differential Evolution algorithm (AH-DEa): an adaptive

algorithm incorporating crossover rate control mechanism, a combination

of crossover types and a local search strategy. Binomial and exponential

crossover mechanisms have been used in various stages of evolution to exploit

their strengths in exploration and exploitation.

(b) Differential Evolution with Constraint Sequencing (DE-CS): a novel con-

straint handling scheme has been introduced within the framework of dif-

ferential evolution utilizing the concepts of partial evaluation and constraint

sequencing.

(c) MOEA/D with Adaptive Constraint Handling (MOEA/D-ACH): an adap-

tive constraint handling approach has been developed and embedded within

the framework of multi-objective evolutionary algorithm based on decompo-

sition (MOEA/D) to equip it to deal with constrained optimization problems.

2. Many Objective Optimization: Two improvements are proposed for handling

problems with large numbers of objectives, as follows.

(a) Decomposition Based Evolutionary Algorithm (DBEA): an algorithm based

on decomposition is introduced which extends the capability of the well-known

MOEA/D to deal with many-objective optimization problems. The algo-

rithm incorporates a systematic sampling scheme and the balance between

convergence and diversity during the course of search is maintained via a

simple preemptive distance comparison scheme.

(b) Decomposition based Quantum Genetic Algorithm (DQGA): a novel steady

state decomposition based quantum genetic algorithm is proposed for the

solution of unconstrained and constrained many objective optimization prob-

lems.

3. Robust Many Objective Optimization: Three relevant directions in the areas

of robust design optimization are pursued:
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(a) Robust optimization problem formulation: A very important step in a robust

optimization exercise is to formulate a problem. Depending upon the robust

formulation different optimization methods can be applied in order to get

the robust solutions. In this thesis, a generic model of the robust design

optimization problem is formulated which can easily be coupled with any

evolutionary based optimization algorithm.

(b) Quantification of robustness: a six sigma based robust quantification with

Latin hypercube sampling to approximate the expected value and the vari-

ance is introduced.

(c) Search algorithms: a simple decomposition based search algorithm is pro-

posed to deal with the many-objective formulation of the robust optimization

problem.

All the above algorithms and strategies are coded in Matlab. The list of the

publications based on the research presented in this thesis is given at the beginning

of the thesis. The algorithms developed herein are also currently being used by the

Multi-disciplinary Design Optimization (MDO) group at the University of New South

Wales at Australian Defence Force Academy (UNSW@ADFA) for various applications.

5.3 Future work

Although the work presented in this thesis has shown significantly better performance

for some problems in the areas of constrained optimization, many-objective optimiza-

tion, and robust design optimization, there are some directions (of many) that need

further investigation.

In the context of many objective optimization problems, the algorithms introduced

in this thesis retain all reference directions throughout the course of search. In the event,

the Pareto front is disconnected, one or more reference directions may be redundant

and there is a possibility of re-distributing reference directions. Such a scheme could
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improve resolution in regions of importance.

In particular, recent studies have demonstrated the efficacy of decomposition based

approach with a very small number of quantum population by using quantum repre-

sentation of the solutions. It is observed from some of the examples that evolution

of a population of 5 quantum solutions result in the same performance (based on

hypervolume) as the evolution of a population of W quantum solutions, where W

is the number of reference directions. There is a need to study this further to ascess

the utility of quantum representation to deal with problems involving large number of

variables.

In the context of robust optimization, there is a serious need to use more efficient

sampling schemes. In this work, the value of every solution was estimated using explicit

mean of the neighboring sample points generated using Latin Hypercube Sampling

(LHS) with Gaussian distribution. Use of Polynomial chaos based estimation is a

potential alternative as it requires fewer samples as compared with LHS based schemes

for the same level of accuracy.

Lastly, while all the above contributions are implemented in either the DE or EA

paradigm, they can be extended to other metaheuristics.
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of the Fifth Annual Conference on Evolutionary Programming (EP’96), San Diego,
California, The MIT Press (February 1996) 289–294

[41] Joines, J., Houck, C.: On the use of non-stationary penalty functions to solve nonlinear
constrained optimization problems with GAs. In Fogel, D., ed.: Proceedings of the first
IEEE Conference on Evolutionary Computation, Orlando, Florida, IEEE Press (1994)
579–584



168 REFERENCES

[42] Kirkpatrick, S., Gelatt, J.C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science, 220 (1983) 671–689

[43] Bean, J.C., Hadj-Alouane, A.B.: A Dual Genetic Algorithm for Bounded Integer
Programs. Technical Report TR 92-53, Department of Industrial and Operations
Engineering, The University of Michigan (1992) To appear in R.A.I.R.O.-R.O. (invited
submission to special issue on GAs and OR).

[44] Hadj-Alouane, A.B., Bean, J.C.: A Genetic Algorithm for the Multiple-Choice Integer
Program. Operations Research 45 (1997) 92–101

[45] Powell, D., Skolnick, M.M.: Using genetic algorithms in engineering design optimization
with non-linear constraints. In Forrest, S., ed.: Proceedings of the Fifth International
Conference on Genetic Algorithms (ICGA-93), San Mateo, California, University of
Illinois at Urbana-Champaign, Morgan Kaufmann Publishers (July 1993) 424–431

[46] Sarker, R., Runarsson, T.P., Newton, C.: Genetic Algorithms for Solving a Class
of Constrained Nonlinear Integer Programs. International Transaction in Operational
Research 8(2) (2001) 121–138

[47] Chootinan, P., Chen, A.: Constraint Handling In Genetic Algorithms Using A
Gradient-Based Repair Method. Computers and Operations Reseach 33(8) (August
2006) 2263–2281

[48] Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and
constrained parameter optimization. Evolutionary Computation 7(1) (1999) 19–44

[49] Takahama, T., Sakai, S.: Constrained Optimization by the ǫ Constrained Differential
Evolution with Gradient-Based Mutation and Feasible Elites. In: 2006 IEEE Congress
on Evolutionary Computation (CEC’2006), Vancouver, BC, Canada, IEEE (July 2006)
308–315

[50] Deb, K.: An efficient constraint handling Method for genetic algorithms. Computer
Methods in Applied Mechanics and Engineering 186(2/4) (2000) 311–338

[51] Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C.: Modified Differential
Evolution for Constrained Optimization. In: 2006 IEEE Congress on Evolutionary
Computation (CEC’2006), Vancouver, BC, Canada, IEEE (July 2006) 332–339

[52] Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C.: Promising Infeasibility and
Multiple Offspring Incorporated to Differential Evolution for Constrained Optimization.
In Beyer, H.G., O’Reilly, U.M., Arnold, D., Banzhaf, W., Blum, C., Bonabeau, E.,
Cant Paz, E., Dasgupta, D., Deb, K., Foste r, J., de Jong, E., Lipson, H., Llora,
X., Mancoridis, S., Pelikan, M., Raidl, G., Soule, T., Tyrrell, A., Watson, J.P.,
Zitzler, E., eds.: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’2005). Volume 1., New York, Washington DC, USA, ACM Press (June 2005)
225–232 ISBN 1-59593-010-8.

[53] Takahama, T., Sakai, S., Iwane, N.: Constrained optimization by the epsilon constrained
hybrid algorithm of particle swarm optimization and genetic algorithm. In: AI 2005:
Advances in Artificial Intelligence, Springer-Verlag (2005) 389–400 Lecture Notes in
Artificial Intelligence Vol. 3809.



REFERENCES 169

[54] Brest, J., Zumer, V., Maucec, M.S.: Self-Adaptative Differential Evolution Algorithm
in Constrained Real-Parameter Optimization. In: 2006 IEEE Congress on Evolutionary
Computation (CEC’2006), Vancouver, BC, Canada, IEEE (July 2006) 919–926

[55] Zeng, S., Shi, H., Li, H., Chen, G., Ding, L., Kang, L.: A Lower-dimensional-Search
Evolutionary Algorithm and Its Application in Constrained Optimization Problem. In:
2007 IEEE Congress on Evolutionary Computation (CEC’2007), Singapore, IEEE Press
(September 2007) 1255–1260

[56] Zhang, Q., Zeng, S., Wang, R., Shi, H., Chen, G., Ding, L., Kang, L.: Constrained
Optimization by the Evolutionary Algorithm with Lower Dimensional Crossover
and Gradient-Based Mutation. In: 2008 Congress on Evolutionary Computation
(CEC’2008), Hong Kong, IEEE Service Center (June 2008) 273–279

[57] Ray, T., Singh, H.K., Isaacs, A., Smith, W.: Infeasibility Driven Evolutionary Algorithm
for Constrained Optimization. In Mezura-Montes, E., ed.: Constraint-Handling in
Evolutionary Computation. Springer. Studies in Computational Intelligence, Volume
198, Berlin (2009) 145–165 ISBN 978-3-642-00618-0.

[58] Barbosa, H.J., Lemonge, A.C.: An adaptive penalty scheme in genetic algorithms for
constrained optimization problems. In Langdon, W., E.Cantú-Paz, Mathias, K., Roy,
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Table A.1: Results of the t-test for CEC-2010 in 10 dimension.

Prob. AH-DEa SAMO-GA SMOA-DE e-DEag IEMA

C01
B = = = = =
M − − + + −
S − − − + −

C02
B = = = = =
M − − − − +
S − − − − +

C03
B = − = = −
M + − + = −
S + − − = −

C04
B = = = − −
M = − = − −
S + − − − −

C05
B = = = = =
M = − = = −
S + − − − −

C06
B = = = = =
M = − = − −
S + − − − −

C07
B = = = = −
M = − − = −
S = − − = −

C08
B = = = −
M − − + − −
S − − + − −

C09
B = = = = −
M = − − = −
S = − − = −

C10
B = = = = −
M = − − = −
S = − − = −

C11
B + − − − −
M + − − − −
S − − − + −

C12
B + − − − −
M + − − − −
S − − − − +

C13
B − − = = −
M − − = = −
S − − + + −

C14
B = − = = −
M − − − + −
S − − − + −

C15
B = − = = −
M + − − − −
S + − − − −

C16
B = = = = −
M − + − − −
S − + − − −

C17
B = = = = −
M − − + + −
S − − + + −

C18
B + − − − −
M + − − − −
S + − − − −
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Table A.2: Results of the t-test for CEC-2010 in 30 dimension.

Prob. AH-DEa SAMO-GA SMOA-DE e-DEag IEMA

C01
B = − = − =
M − − − + −
S − − − + −

C02
B − − + − −
M − − + − −
S − − + − −

C03
B + − − − N/A
M + − − − N/A
S + − − − N/A

C04
B + − − − N/A
M + − − − N/A
S + − − − N/A

C05
B = − = − −
M = − = − −
S + − − − −

C06
B = − = − −
M − − + − −
S − − + − −

C07
B + − − − −
M + − − − −
S + − − − −

C08
+ − − − −
M + − − − −
S + − − − −

C09
B + − − − −
M + − − − −
S + − − = −

C10
B − − + − −
M + − − − −
S + − − − −

C11
B = − = − N/A
M + − − − N/A
S + − − − N/A

C12
B − + − − N/A
M = − = − N/A
S + − − − N/A

C13
B = − = − =
M − − + − −
S − − + − −

C14
B + − − − −
M − − − + −
S − − − + −

C15
B + − − − −
M + − − − −
S + − − − −

C16
B = = = = −
M + − − − −
S + − − − −

C17
B − = = = −
M − − + + −
S − − + + −

C18
B + − − − −
M + − − − −
S + − − − −
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Table A.3: The Results of CEC-2010 10D problems averaged over 25 runs using AH-DEa and
Best reported results in FEs = 2e5.

Prob. Alg. 10D

Best Mean S.D

C01

SAMO-GA -7.4731E-01 -7.4702E-01 1.3477E-03
SMOA-DE -7.4731E-01 7.4704E-01 1.3506E-03
e-DEag -7.4731E-01 -7.4704E-01 1.3234E-03

IEMA 7.4731E-01 -7.4319E-01 4.3301E-03
AH-DEa -7.4731E-01 -7.4700E-01 3.2955E-03

C02

SAMO-GA -2.2775E+00 -2.7260E+00 2.2678E-03
SMOA-DE -2.7771E+00 -2.2768E+00 1.1550E-03
e-DEag -2.2777E+00 -2.2695E+00 2.3898E-02
IEMA -2.2777E+00 -2.2777E+00 1.8228E-07

AH-DEa -2.2777E+00 -2.2640E+00 1.3334E-02

C03

SAMO-GA 6.4927E-22 1.1907E-10 2.0740E-10
SMOA-DE 0.0000E+00 4.1730E-23 1.6405E-22
e-DEag 0.0000E+00 0.0000E+00 0.0000E+00

IEMA 1.4667E-16 6.2345E-07 1.4023E-06
AH-DEa 0.0000E+00 0.0000E+00 0.0000E+00

C04

SAMO-GA -1.0000E-05 -9.9343E-06 5.1183E-08
SMOA-DE -1.0000E-05 -1.0000E-05 1.4461E-11
e-DEag -9.9923E-06 -9.9185E-06 1.5467E-07
IEMA -9.9861E-06 9.9114E-06 1.4023E-06
AH-DEa -1.0000E-05 -1.0000E-05 1.1545E-15

C05

SAMO-GA -4.8361E+02 -4.0170E+02 1.1126E+02
SMOA-DE -4.8361E+02 -4.8361E+02 4.1443E-06
e-DEag -4.8361E+02 -4.8361E+02 3.8904E-13
IEMA -4.8361E+02 -3.7916E+02 1.7942E+02
AH-DEa -4.8361E+02 -4.8361E+02 3.4106E-13

C06

SAMO-GA -5.7866E+02 -5.7774E+02 3.2605E+00
SMOA-DE -5.7866E+02 -5.7866E+02 9.3522E-03
e-DEag -5.7866E+02 -5.7865E+02 3.6272E-03
IEMA -5.7866E+02 -5.5147E+02 7.3582E-01
AH-DEa -5.7866E+02 -5.7866E+02 3.4502E-09

C07

SAMO-GA 0.0000E+00 7.8566E-23 1.2081E-22
SMOA-DE 0.0000E+00 7.7628E-23 3.8808E-22
e-DEag 0.0000E+00 0.0000E+00 0.0000E+00

IEMA 1.7473E-10 3.2569E-09 3.3872E-07
AH-DEa 0.0000E+00 0.0000E+00 0.0000E+00

C08

SAMO-GA 3.6543E-25 3.6487E-23 5.6932E-23
SMOA-DE 0.0000E+00 2.5201E-25 1.2600E-24

e-DEag 0.0000E+00 6.7275E+00 5.5606E+00
IEMA 1.0075E-10 4.0702E+00 6.3829E+00
AH-DEa 0.0000E+00 1.1162E+00 1.7900E+00

C09

SAMO-GA 1.8980E-22 2.7315E+03 4.6297E+03
SMOA-DE 0.0000E+00 5.0898E+00 2.4108E+01
e-DEag 0.0000E+00 0.0000E+00 0.0000E+00

IEMA 1.2022E-09 1.9511E+12 5.4014E+12
AH-DEa 0.0000E+00 0.0000E+00 0.0000E+00
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Table A.4: The Results of CEC-2010 30D problems averaged over 25 runs using AH-DEa and
Best reported results in FEs = 6e5.

Prob. Alg. 30D

Best Mean S.D

C01

SAMO-GA -8.2178E-01 -8.1152E-01 7.2479E-01
SMOA-DE -8.2188E-01 -8.1437E-01 4.7660E-03
e-DEag -8.2186E-01

-8.2868E-01 7.1030E-04

IEMA -8.2188E-01 -8.1777E-01 4.7885E-03
AH-DEa -8.2188E-01 -8.1804E-01 4.1176E-03

C02

SAMO-GA -2.2651E+00 -2.2522E+00 5.7473E-03
SMOA-DE -2.2809E+00

-2.2761E+00

3.7060E-03

e-DEag -2.1692E+00 -2.1514E+00 1.1975E-02
IEMA -2.2809E+00 -1.5044E+00 2.1406E+00
AH-DEa -2.2751E+00 -2.2453E+00 1.3150E-02

C03

SAMO-GA 5.4810E-19 2.2551E-07 8.1540E-07
SMOA-DE 4.5996E-24 4.8265E-22 1.1460E-21
e-DEag 2.8673E+01 2.8837E+01 8.0472E-01
IEMA - - -
AH-DEa 0.0000E+00 0.0000E+00 0.0000E+00

C04

SAMO-GA -2.6443E-06 1.4709E-03 7.3594E-03
SMOA-DE -3.2480E-06 -2.4113E-06 4.4923E-07
e-DEag -4.6981E-03 -8.1629E-03 3.0678E-03
IEMA - - -
AH-DEa -3.3333E-06 -3.3333E-06 7.0055E-12

C05

SAMO-GA -4.7848E+02 -4.7164E+02 3.7832E+00
SMOA-DE -4.8361E+02 -4.8361E+02 5.3899E-06
e-DEag -4.5313E+02 -4.4955E+02 2.8991E+00
IEMA -2.8668E+02 -2.7093E+02 1.4117E+01
AH-DEa -4.8361E+02 -4.8361E+02 2.2509E-13

C06

SAMO-GA -5.2496E+02 -5.2081E+02 3.1696E+00
SMOA-DE -5.3064E+02 -5.3062E+02

1.2885E-02

e-DEag -5.2858E+02 -5.2791E+02 4.7483E-01
IEMA -5.2959E+02 -1.3288E+02 5.6104E+02
AH-DEa -5.3064E+02 -5.3042E+02 4.7525E-01

C07

SAMO-GA 3.2368E-28 3.2368E-28 4.5766E-44
SMOA-DE 9.4952E-23 1.7828E-13 3.6280E-13
e-DEag 1.1471E-15 2.6036E-15 1.2334E-15
IEMA 4.8157E-10 8.4861E-10 4.8429E-10
AH-DEa 0.0000E+00 0.0000E+00 0.0000E+00

C08

SAMO-GA 3.2367E-28 1.5948E-24 6.7765E-24
SMOA-DE 6.4258E-21 1.0329E-09 2.3733E-09
e-DEag 2.5187E-14 7.8314E-14 4.8552E-14
IEMA 1.1201E-09 1.7703E+01 4.0803E+01
AH-DEa 0.0000E+00 5.4322E-28 2.6612E-27

C09

SAMO-GA 3.5363E+02 1.5259E+04 1.8081E+04
SMOA-DE 1.1862E-20 6.0796E+00 1.4326E+01
e-DEag 2.7707E-16 1.0721E+01 2.8219E+01
IEMA 7.3142E+03 2.9879E+07 4.5001E+07
AH-DEa 0.0000E+00 0.0000E+00 0.0000E+00
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Table A.5: The Results of CEC-2010 10D problems averaged over 25 runs using AH-DEa and
Best reported results in FEs = 2e5.

Prob. Alg. 10D

Best Mean S.D

C10

SAMO-GA 1.1240E-19 1.7321E+02 2.6369E+02
SMOA-DE 0.0000E+00 4.4677E-01 1.5463E+00
e-DEag 0.0000E+00 0.0000E+00 0.0000E+00

IEMA 5.4012E-09 2.5613E+12 3.9679E+12
AH-DEa 0.0000E+00 3.8497E-01 1.3055E+00

C11

SAMO-GA -6.2050E-04 -5.2620E-04 4.9043E-05
SMOA-DE -1.5227E-03 -1.5227E-03 3.6676E-09
e-DEag -1.5227E-03 -1.5227E-03 6.3410E-11

IEMA -1.5227E-03 -1.5227E-03 2.7313E-08
AH-DEa -8.7342E-02 -8.3882E-02 2.3282E-02

C12

SAMO-GA -5.6974E+02 -5.5884E+01 1.3518E+02
SMOA-DE -5.7009E+02 -1.1661E+02 1.8300E+02
e-DEag -5.7009E+02 -3.3673E+02 1.7822E+02
IEMA -1.0974E+01 -6.4817E-01 2.1993E+00
AH-DEa -8.8705E+02 -8.3580E+02 1.3893E+02

C13

SAMO-GA -6.8428E+01 -6.8377E+01 1.5585E-01
SMOA-DE -6.8429E+01 -6.8429E+01 1.5429E-07

e-DEag -6.8429E+01 -6.8429E+01 1.0260E-06
IEMA -6.8429E+01 -6.8018E+01 1.4007E+00
AH-DEa -6.3518E+01 -5.2651E+01 7.5558E+00

C14

SAMO-GA 1.8760E-22 3.8726E+02 1.2448E+03
SMOA-DE 0.0000E+00 1.2064E-21 2.4359E-21
e-DEag 0.0000E+00 0.0000E+00 0.0000E+00

IEMA 8.0306E-10 5.6308E+01 1.8287E+02
AH-DEa 0.0000E+00 3.7140E+01 1.8103E+02

C15

SAMO-GA 2.8250E-20 8.5745E+02 1.7926E+03
SMOA-DE 0.0000E+00 7.0538E-04 2.4414E-03
e-DEag 0.0000E+00 1.7990E-01 8.8132E-01
IEMA 9.3541E-10 2.6172E+01 1.5753E+08
AH-DEa 0.0000E+00 0.0000E+00 0.0000E+00

C16

SAMO-GA 0.0000E+00 1.4034E-03 4.8800E-03

SMOA-DE 0.0000E+00 6.4696E-03 1.0870E-02
e-DEag 0.0000E+00 3.7021E-01 3.7105E-01
IEMA 4.4409E-16 3.3030E-02 2.2601E-02
AH-DEa 0.0000E+00 2.3407E-01 1.8262E-01

C17

SAMO-GA 0.0000E+00 1.2707E-02 1.3310E-02
SMOA-DE 0.0000E+00 1.2655E-23

3.2180E-23

e-DEag 1.4632E-17 1.2496E-01 1.9372E-01
IEMA 9.4797E-15 3.1509E-03 1.5755E-02
AH-DEa 0.0000E+00 1.8239E-01 1.9294E-01

C18

SAMO-GA 4.3590E-17 1.0531E-02 1.5401E-02
SMOA-DE 1.1740E-23 4.4480E-19 6.6367E-19
e-DEag 3.7314E-20 9.6788E-19 1.8112E-18
IEMA 2.2366E-15 1.6179E-14 3.8203E-14
AH-DEa 0.0000E+00 0.0000E+00 0.0000E+00
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Table A.6: The Results of CEC-2010 30D problems averaged over 25 runs using AH-DEa and
Best reported results in FEs=6e5.

Test problem Alg. 30D

Best Mean S.D

C10

SAMO-GA 4.1644E+01 6.0316E+03 7.1774E+03
SMOA-DE 9.7690E-21 1.9608E+01 2.2137E+01

e-DEag 3.2520E+01 3.3262E+01 4.5456E-01
IEMA 2.7682E+04 1.5834E+07 1.6836E+07

AH-DEa 3.1133E-08 1.7989E-07 1.1938E-07

C11

SAMO-GA -1.3600E-04 -1.2600E-04 4.8870E-06
SMOA-DE -3.9230E-04 -3.8690E-04 6.1497E-06

e-DEag 3.2684E-04 -2.8638E-04 2.7076E-05
IEMA N/A N/A N/A

AH-DEa -3.9234E-04 -3.9234E-04 1.4307E-09

C12

SAMO-GA -8.5360E+01 -3.4932E+00 1.7056E+01
SMOA-DE -1.9926E-01 -1.9926E-01 1.3219E-06

e-DEag -1.9915E-01 -3.5623E+02 2.8893E+02
IEMA N/A N/A N/A

AH-DEa -1.9926E-01 -1.9926E-01 2.5882E-08

C13

SAMO-GA -6.6377E+01 -6.3098E+01 1.2860E+001
SMOA-DE -6.8429E+01 -6.8192E+01 3.8916E-01

e-DEag -6.6424E+01 -6.5353E+01 5.7330E-01
IEMA -6.8429E+01 -6.7487E+01 9.8366E-01

AH-DEa -6.8429E+01 -6.8181E+01 5.7303E-01

C14

SAMO-GA 4.1452E+00 1.7629E+03 5.4650E+03
SMOA-DE 1.7470E-22 1.1969E-08 2.5694E-08

e-DEag 5.0158E-14 3.0894E-13 5.6084E-13
IEMA 3.2883E-09 6.1524E-02 3.0736E-01

AH-DEa 0.0000E+00 9.7393E-09 4.7713E-08

C15

SAMO-GA 8.3844E-01 1.7496E+04 3.4114E+04
SMOA-DE 5.8424E-18 2.1128E+00 4.5106E+00

e-DEag 2.1603E+01 2.1604E+01 1.1048E-04
IEMA 3.1187E+04 2.2949E+08 4.6404E+08

AH-DEa 0.0000E+00 3.3720E-01 1.1435E+00

C16

SAMO-GA 0.0000E+00 3.7370E-03 6.2840E-03
SMOA-DE 0.0000E+00 4.1607E-03 7.6779E-03

e-DEag 0.0000E+00 2.1684E-21 1.6230E-20
IEMA 6.1567E-12 1.6329E-03 8.1647E-03

AH-DEa 0.0000E+00 0.0000E+00 0.0000E+00

C17

SAMO-GA 0.0000E+00 1.3436E-02 1.6162E-02
SMOA-DE 0.0000E+00 1.0226E-10 1.4552E-10

e-DEag 2.1657E-01 6.3265E+00 4.9866E+00
IEMA 9.2766E-10 8.8397E-02 1.5109E-01

AH-DEa 1.8574E-03 7.8242E-01 1.2896E+00

C18

SAMO-GA 2.8182E-01 7.5357E+00 1.0517E+01
SMOA-DE 9.1928E-18 2.5681E-09 6.9848E-09

e-DEag 1.2260E+00 8.7545E+01 1.6647E+02
IEMA 1.3753E-14 4.7384E-14 6.5735E-14

AH-DEa 0.0000E+00 1.4426E-29 3.2263E-29
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Table A.7: Comparison of statistical results among AH-DEa, SAMO-GA, SAMO-DE,
APF-GA, ATMES, and SMES.

Prob.& Opt. Alg. Best Mean Std.

G01 -15.0000

AH-DEa -1.500E+01 -1.500E+01 0.000E+00
SAMO-GA -1.500E+01 -1.500E+01 0.000E+00
SAMO-DE -1.500E+01 -1.500E+01 0.000E+00
APF-GA -1.500E+01 -1.500E+01 0.000E+00
ATMES -1.500E+01 -1.500E+01 1.600E-14
SMES -1.500E+01 -1.500E+01 0.000E+00

G02 -0.803619

AH-DEa -8.036E-01 -8.007E-01 3.912E-03
SAMO-GA -8.036E-01 -7.960E-01 5.803E-03
SAMO-DE -8.036E-01 -7.987E-01 8.801E-03
APF-GA -8.036E-01 -8.035E-01 1.000E-04
ATMES -8.033E-01 -7.901E-01 1.300E-02
SMES -8.036E-01 -7.852E-01 1.670E-02

G03 -1.0005

AH-DEa -1.001E+00 -1.001E+00 0.000E+00
SAMO-GA -1.001E+00 -1.001E+00 0.000E+00
SAMO-DE -1.001E+00 -1.001E+00 0.000E+00
APF-GA -1.001E+00 -1.001E+00 0.000E+00
ATMES -1.000E+00 -1.000E+00 5.900E-05
SMES -1.000E+00 -1.000E+00 2.090E-05

G04 -30665.5386

AH-DEa -3.067E+04 -3.067E+04 0.000E+00
SAMO-GA -3.067E+04 -3.067E+04 0.000E+00
SAMO-DE -3.067E+04 -3.067E+04 0.000E+00
APF-GA -3.067E+04 -3.067E+04 1.000E-04
ATMES -3.067E+04 -3.067E+04 7.400E-12
SMES -3.067E+04 -3.067E+04 0.000E+00

G05 5126.497

AH-DEa 5.126E+03 5.126E+03 0.000E+00
SAMO-GA 5.126E+03 5.128E+03 1.117E+00
SAMO-DE 5.126E+03 5.126E+03 0.000E+00
APF-GA 5.126E+03 5.128E+03 1.432E+00
ATMES 5.126E+03 5.128E+03 1.800E+00
SMES 5.127E+03 5.174E+03 5.174E+03

G06 -6961.813875

AH-DEa -6.962E+03 -6.962E+03 0.000E+00
SAMO-GA -6.962E+03 -6.962E+03 0.000E+00
SAMO-DE -6.962E+03 -6.962E+03 0.000E+00
APF-GA -6.962E+03 -6.962E+03 0.000E+00
ATMES -6.962E+03 -6.962E+03 4.600E-12
SMES -6.962E+03 -6.961E+03 1.850E+00

G07 24.306209

AH-DEa 2.431E+01 2.431E+01 0.000E+00

SAMO-GA 2.431E+01 2.441E+01 4.591E-02
SAMO-DE 2.431E+01 2.431E+01 1.589E-03
APF-GA 2.431E+01 2.431E+01 0.000E+00
ATMES 2.431E+01 2.432E+01 1.100E-02
SMES 2.433E+01 2.448E+01 1.320E-01
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Table A.8: Comparison of statistical results among AH-DEa, SAMO-GA, SAMO-DE,
APF-GA, ATMES, and SMES.

Prob.& Opt. Alg. Best Mean Std.

G08 -0.095825

AH-DEa -9.583E-02 -9.583E-02 0.000E+00
SAMO-GA -9.583E-02 -9.583E-02 0.000E+00
SAMO-DE -9.583E-02 -9.583E-02 0.000E+00
APF-GA -9.583E-02 -9.583E-02 0.000E+00
ATMES -9.583E-02 -9.583E-02 2.800E-17
SMES -9.583E-02 -9.583E-02 0.000E+00

G09 680.63006

AH-DEa 6.806E+02 6.806E+02 0.000E+00

SAMO-GA 6.806E+02 6.806E+02 1.457E-03
SAMO-DE 6.806E+02 6.806E+02 1.157E-05
APF-GA 6.806E+02 6.806E+02 0.000E+00
ATMES 6.806E+02 6.806E+02 1.000E-02
SMES 6.806E+02 6.806E+02 1.550E-02

G10 7049.2481

AH-DEa 7.049E+03 7.049E+03 1.688E-09

SAMO-GA 7.049E+03 7.144E+03 6.786E+01
SAMO-DE 7.049E+03 7.060E+03 7.856E+00
APF-GA 7.049E+03 7.078E+03 5.124E+01
ATMES 7.052E+03 7.250E+03 1.200E+02
SMES 7.052E+03 7.253E+03 1.360E+02

G11 0.7499

AH-DEa 7.499E-01 7.499E-01 0.000E+00
SAMO-GA 7.499E-01 7.499E-01 0.000E+00
SAMO-DE 7.499E-01 7.499E-01 0.000E+00
APF-GA 7.499E-01 7.499E-01 0.000E+00
ATMES 7.500E-01 7.500E-01 3.400E+04
SMES 7.500E-01 7.500E-01 1.520E-04

G12 -1.0000

AH-DEa -1.000E+00 -1.000E+00 0.000E+00
SAMO-GA -1.000E+00 -1.000E+00 0.000E+00
SAMO-DE -1.000E+00 -1.000E+00 0.000E+00
APF-GA -1.000E+00 -1.000E+00 0.000E+00
ATMES -1.000E+00 -1.000E+00 1.000E-03
SMES -1.000E+00 -1.000E+00 0.000E+00

G13 0.0539415

AH-DEa 5.394E-02 5.394E-02 0.000E+00

SAMO-GA 5.394E-02 5.403E-02 5.941E-05
SAMO-DE 5.394E-02 5.394E-02 1.754E-08
APF-GA 5.394E-02 5.394E-02 0.000E+00
ATMES 5.395E-02 5.396E-02 1.300E-05
SMES 5.399E-02 1.664E-01 1.770E-01

G14 -47.76488

AH-DEa -4.776E+01 -4.776E+01 3.894E-05

SAMO-GA -4.719E+01 -4.647E+01 3.159E-01
SAMO-DE -4.776E+01 -4.768E+01 4.043E-02
APF-GA -4.776E+01 -4.776E+01 1.000E-04
ATMES N/A N/A N/A
SMES N/A N/A N/A
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Table A.9: Comparison of statistical results among AH-DEa, SAMO-GA, SAMO-DE,
APF-GA, ATMES, and SMES.

Prob.& Opt. Alg. Best Mean Std.

G15 961.71502

AH-DEa 9.617E+02 9.617E+02 0.000E+00
SAMO-GA 9.617E+02 9.617E+02 5.524E-05
SAMO-DE 9.617E+02 9.617E+02 0.000E+00
APF-GA 9.617E+02 9.617E+02 0.000E+00
ATMES N/A N/A N/A
SMES N/A N/A N/A

G16 -1.905155

AH-DEa -1.905E+00 -1.905E+00 0.000E+00
SAMO-GA -1.905E+00 -1.905E+00 6.952E-07
SAMO-DE -1.905E+00 -1.905E+00 0.000E+00
APF-GA -1.905E+00 -1.905E+00 0.000E+00
ATMES N/A N/A N/A
SMES N/A N/A N/A

G17 8853.5397

AH-DEa 8.854E+03 8.858E+03 1.847E+01
SAMO-GA 8.854E+03 8.854E+03 1.740E-01
SAMO-DE 8.854E+03 8.854E+03 1.150E-05
APF-GA 8.854E+03 8.888E+03 2.903E+01
ATMES N/A N/A N/A
SMES N/A N/A N/A

G18 -0.866025

AH-DEa -8.660E-01 -8.660E-01 0.000E+00
SAMO-GA -8.660E-01 -8.655E-01 4.080E-04
SAMO-DE -8.660E-01 -8.660E-01 7.044E-07
APF-GA -8.660E-01 -8.659E-01 0.000E+00
ATMES N/A N/A N/A
SMES N/A N/A N/A

G19 32.65559

AH-DEa 3.266E+01 3.457E+01 2.524E+00
SAMO-GA 3.266E+01 3.643E+01 1.037E+00
SAMO-DE 3.266E+01 3.276E+01 6.145E-02
APF-GA 3.266E+01 3.266E+01 0.000E+00
ATMES N/A N/A N/A
SMES N/A N/A N/A

G21 193.72451

AH-DEa 1.937E+02 1.939E+02 6.977E-01
SAMO-GA 1.937E+02 2.461E+02 1.492E+01
SAMO-DE 1.937E+02 1.938E+02 1.964E-02
APF-GA 1.966E+02 1.995E+02 3.866E+00
ATMES N/A N/A N/A
SMES N/A N/A N/A

G23 -400.0551

AH-DEa -4.001E+02 -3.444E+02 7.782E+01
SAMO-GA -3.557E+02 -1.948E+02 5.328E+01
SAMO-DE -3.962E+02 -3.608E+02 1.962E+01
APF-GA -3.998E+02 -3.948E+02 3.866E+00
ATMES N/A N/A N/A
SMES N/A N/A N/A

G24 -5.508013

AH-DEa -5.508E+00 -5.508E+00 0.000E+00
SAMO-GA -5.508E+00 -5.508E+00 0.000E+00
SAMO-DE -5.508E+00 -5.508E+00 0.000E+00
APF-GA -5.508E+00 -5.508E+00 0.000E+00
ATMES N/A N/A N/A
SMES N/A N/A N/A
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Table B.1: The number of function evaluations required to achieve the first feasible solution
: DE-CS and others

Algorithms
G01 G02 G04

Mean(Std) Mean(Std) Mean(Std)

DE-CS 629 (3.162E+02) 285 (2.256E+01) 475 (9.724E+01)
DE-SF 4451 (2.064E+03) 195 (2.013E+00) 520 (2.407E+01)
DE-SP 4874 (2.809E+03) 250 (0.000E+00) 650 (0.000E+00)
DE-SR 3216 (2.118E+03) 241 (1.384E+01) 520 (1.235E+00)
DE-EC 3650 (1.723E+03) 250 (0.000E+00) 650 (0.000E+00)

Algorithms
G06 G07 G08

Mean(Std) Mean(Std) Mean(Std)

DE-CS 1343 (1.083E+03) 9148 (4.978E+03) 180 (1.047E+01)
DE-SF 2742 (8.180E+02) 21963 (5.153E+03) 429 (2.746E+02)
DE-SP 3090 (8.165E+02) 23922 (6.340E+03) 8730 (1.989E+05)
DE-SR 2142 (2.591E+02) 20510 (7.892E+03) 351 (1.526E+01)
DE-EC 19986 (1.010E+04) 37778 (1.703E+04) 498 (2.960E+02)

Algorithms
G09 G10 G12

Mean(Std) Mean(Std) Mean(Std)

DE-CS 316 (1.893E+02) 3450 (4.442E+03) 157 (2.537E+01)
DE-SF 1527 (1.008E+03) 14924 (3.930E+03) 51 (1.826E-01)
DE-SP 1298 (8.893E+02) 15770 (4.236E+03) 150 (0.000E+00)
DE-SR 1175 (9.242E+02) 11051 (3.165E+03) 159 (3.500E+01)
DE-EC 1378 (8.696E+02) 142780 (4.320E+04) 150 (0.000E+00)

Algorithms
G18 G24

Mean(Std) Mean(Std) Score

DE-CS 25150 (1.230E+04) 262 (1.466E+01) 8/11
DE-SF 108590 (1.259E+04) 207 (6.025E+00) 3/11
DE-SP 103890 (1.215E+04) 250 (0.000E+00) 1/11
DE-SR 101761 (8.557E+03) 245 (0.000E+00) 0/11
DE-EC 917650 (7.436E+04) 250 (0.000E+00) 1/11
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Table B.2: Average computational time across strategies

Algorithms G01 G02 G04 G06

DE-CS 0.00411 0.00508 0.001050.00530
DE-SF 0.00577 0.00555 0.00121 0.01071
DE-SP 0.00445 0.00460 0.00127 0.01185
DE-SR 0.00576 0.00454 0.00117 0.00563
DE-EC 0.00418 0.00462 0.00124 0.04245

Algorithms G07 G08 G09 G10

DE-CS 0.014440.001960.001380.01482
DE-SF 0.01703 0.00248 0.01248 0.01540
DE-SP 0.01895 0.14924 0.00486 0.01805
DE-SR 0.04253 0.00361 0.00480 0.77168
DE-EC 0.02614 0.00256 0.00280 0.14436

Algorithms G12 G18 G24 Score

DE-CS 0.00205 0.16782 0.00196 8/11
DE-SF 0.00195 0.19780 0.00193 2/11
DE-SP 0.00221 0.16989 0.00217 0/11
DE-SR 0.00216 7.06680 0.00202 1/11
DE-EC 0.00201 1.30910 0.00200 0/11
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Table B.3: Comparison of function evaluations is used by the proposed method, DE-CS with
other best known algorithms with an accuracy level of (f(~x) − f∗(~x)) ≤ 0.0001 and
feasible solution, the lowest evaluation in total of function and constraints are in bold

face

Prob. Algo.
Best Median Worst

ρ γ β
#func. #const. #func. #const. #func. #const.

G01
DE-CS 8219 11076 90542 98837 117460 119660 1.00 1.00 189379
ǫ−DE 57122 57122 59308 59308 61712 61712 1.00 1.00 118616
SaDE 25115 25115 25115 25115 25115 25115 1.00 1.00 50230

jDE 46559 46559 50386 50386 56968 56968 1.00 1.00 100772
DMS-PSO 22844 22844 47816 47816 33333 33333 1.00 1.00 95632
MDE 63300 63300 75373 75373 90900 90900 1.00 1.00 150746
GDE 38076 38076 40519 40519 43838 43838 1.00 1.00 81038
PCX 32420 32420 55204 55204 62026 62026 1.00 1.00 110409

G02
DE-CS 93759 106880 108980 114490 118260 119130 1.00 0.95 223470
ǫ−DE 126152 126152 149825 149825 175206 175206 1.00 1.00 299650
SaDE 76915 76915 188990 188990 - - 1.00 0.84 377980
jDE 101201 101201 123490 123490 173964 173964 1.00 0.92 246980
DMS-PSO 53379 53379 175130 175130 500000 500000 1.00 0.84 350260
MDE 53250 53250 96222 96222 245550 245550 1.00 0.16 192444
GDE 93550 93550 107684 107684 124386 124386 1.00 0.72 215368
PCX 52900 52900 87900 87900 500000 500000 1.00 0.64 175800

G04
DE-CS 4011 5950 8952 11712 98434 105100 1.00 1.00 20664

ǫ−DE 24800 24800 26216 26216 28206 28206 1.00 1.00 52432
SaDE 25107 25107 25107 25107 25113 25113 1.00 1.00 50214
jDE 38288 38288 40728 40728 42880 42880 1.00 1.00 81456
DMS-PSO 24974 24974 25404 25404 25777 25777 1.00 1.00 50808
MDE 33900 33900 41562 41562 61950 61950 1.00 1.00 83124
GDE 13679 13679 15281 15281 17692 17692 1.00 1.00 30562
PCX 25310 25310 30989 30989 40140 40140 1.00 1.00 61978

G06
DE-CS 3474 6180 3724 7455 5973 8451 1.00 1.00 11179
ǫ−DE 6499 6499 7381 7381 8382 8382 1.00 1.00 14762
SaDE 12546 12546 14394 14394 18347 18347 1.00 1.00 28788
jDE 26830 26830 29488 29488 31299 31299 1.00 1.00 58976
DMS-PSO 26656 26656 27636 27636 28287 28287 1.00 1.00 55272
MDE 4650 4650 5202 5202 5250 5250 1.00 1.00 10404

GDE 6101 6101 6503 6503 7160 7160 1.00 1.00 13006
PCX 32560 32560 33821 33821 36180 36180 1.00 1.00 67642

G07
DE-CS 79267 104730 82602 106460 85685 117880 1.00 1.00 189062
ǫ−DE 69506 69506 74303 74303 78963 78963 1.00 1.00 148606
SaDE 25195 25195 143090 143090 422860 422860 1.00 1.00 286180
jDE 114899 114899 127740 127740 141847 141847 1.00 1.00 255480
DMS-PSO 25574 25574 26578 26578 27416 27416 1.00 1.00 53156

MDE 124650 124650 194202 194202 380400 380400 1.00 1.00 388404
GDE 87437 87437 123996 123996 412908 412908 1.00 1.00 247992
PCX 72920 72920 117121 117121 258840 258840 1.00 1.00 234242

G08
DE-CS 42 403 2918 4305 13590 19990 1.00 1.00 7223
ǫ−DE 327 327 1139 1139 1334 1334 1.00 1.00 2278
SaDE 782 782 1268 1268 1775 1775 1.00 1.00 2536
jDE 1567 1567 3236 3236 4485 4485 1.00 1.00 6473
DMS-PSO 1621 1621 4124 4124 7990 7990 1.00 1.00 8249
MDE 900 900 918 918 1350 1350 1.00 1.00 1836

GDE 1178 1178 1469 1469 1822 1822 1.00 1.00 2938
PCX 1710 1710 2826 2826 3510 3510 1.00 1.00 5652
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Table B.4: Comparison of function evaluations is used by the proposed method, DE-CS with
other best known algorithms with an accuracy level of (f(~x) − f∗(~x)) ≤ 0.0001 and
feasible solution, the lowest evaluation in total of function and constraints are in bold

face

Prob. Algo.
Best Median Worst

ρ γ β
#func. #const. #func. #const. #func. #const.

G09
DE-CS 5982 6153 9940 11519 19642 20612 1.00 1.00 21459

ǫ−DE 19530 19530 23121 23121 24790 24790 1.00 1.00 46242
SaDE 12960 12960 18560 18560 33166 33166 1.00 1.00 37120
jDE 49118 49118 54919 54919 58230 58230 1.00 1.00 109838
DMS-PSO 29272 29272 29782 29782 29456 29456 1.00 1.00 59564
MDE 14850 14850 16152 16152 19200 19200 1.00 1.00 32304
GDE 25743 25743 30230 30230 33140 33140 1.00 1.00 60460
PCX 32100 32100 46527 46527 58700 58700 1.00 1.00 93054

G10
DE-CS 50194 80692 72943 104150 76887 117600 1.00 1.00 177093
ǫ−DE 93743 93743 105234 105234 122387 122387 1.00 1.00 210468
SaDE 26000 26000 58760 58760 153000 153000 1.00 1.00 117520
jDE 139095 139095 146150 146150 165498 165498 1.00 1.00 292300
DMS-PSO 24500 24500 25520 25520 26500 26500 1.00 1.00 51040

MDE 152400 152400 164160 164160 179850 179850 1.00 1.00 328320
GDE 67344 67344 82604 82604 101487 101487 1.00 1.00 165208
PCX 57770 57770 89028 89028 109970 109970 1.00 1.00 178056

G12
DE-CS 350 356 1219 1315 2162 3639 1.00 1.00 2534

ǫ−DE 1645 1645 4124 4124 5540 5540 1.00 1.00 8248
SaDE 463 463 1611 1611 2576 2576 1.00 1.00 3222
jDE 1820 1820 6356 6356 9693 9693 1.00 1.00 12711
DMS-PSO 812 812 5409 5409 9192 9192 1.00 1.00 10818
MDE 1200 1200 1308 1308 1650 1650 1.00 1.00 2616
GDE 2419 2419 3149 3149 4422 4422 1.00 1.00 6298
PCX 3710 3710 8960 8960 11940 11940 1.00 1.00 17920

G18
DE-CS 4994 11375 6601 14285 12573 22756 1.00 1.00 20886

ǫ−DE 51035 51035 59153 59153 72112 72112 1.00 1.00 118306
SaDE 26000 26000 65400 65400 - - 1.00 1.00 130800
jDE 91049 91049 104460 104460 142674 142674 1.00 1.00 208920
DMS-PSO 27500 27500 33180 33180 90500 90500 1.00 1.00 66360
MDE 54000 54000 103482 103482 133800 133800 1.00 1.00 206964
GDE 169424 169424 364861 364861 499909 499909 0.84 0.76 729722
PCX 48350 48350 70027 70027 96180 96180 1.00 1.00 140054

G24
DE-CS 1036 1345 2267 3273 5019 8836 1.00 1.00 5540
ǫ−DE 2661 2661 2952 2952 3474 3474 1.00 1.00 5904
SaDE 4280 4280 4847 4847 5657 5657 1.00 1.00 9694
jDE 7587 7587 10196 10196 11550 11550 1.00 1.00 20392
DMS-PSO 13721 13721 19376 19376 26096 26096 1.00 1.00 38752
MDE 1650 1650 1794 1794 1950 1950 1.00 1.00 3588

GDE 2656 2656 3059 3059 3408 3408 1.00 1.00 6118
PCX 4800 4800 11646 11646 13690 13690 1.00 1.00 23292
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Table B.5: The Results of C01-C11 10D and 30D problems averaged over 25 runs.

Prob. Alg. 10D 30D
Best Mean S.D Best Mean S.D

C01

e-DEag -7.4731E-01 -7.4704E-01 1.3233E-03 -8.2186E-01 -8.2868E-01 7.1030E-04

ECHT -7.4730E-01 -7.4700E-01 1.4000E-03 -8.2170E-01 -7.9940E-01 1.7900E-02
DCDE -7.4731E-01 -6.2082E-01 1.0256E-01 -8.0979E-01 -6.0201E-01 1.2123E-01

JDEsoco -7.4731E-01 -7.3836E-01 1.6006E-02 -8.2188E-01 -8.1238E-01 1.3187E-02
DE-CS -7.4731E-01 -7.22096E-01 4.6006E-02 -7.9289E-01 -6.92065E-01 7.3187E-02

C08

e-DEag 0.0000E+00 6.7275E+00 5.5606E+00 2.5187E-14 7.8314E-14 4.8552E-14

ECHT 0.0000E+00 6.1566E+00 6.4527E+00 0.0000E+00 3.3585E+01 1.1072E+02
DCDE 1.9700E-26 2.3345E+01 6.3160E+01 1.8800E-26 8.7627E+00 3.0233E+01

JDEsoco 0.0000E+00 3.7421E+00 1.0330E+01 7.2311E-26 8.2585E+01 2.4395E+02
DE-CS 0.0000E+00 1.1162E+00 1.7900E+00 0.0000E+00 2.4322E+01 4.6702E+02

C13

e-DEag -6.8429E+01 -6.8429E+01 1.0260E-06 -6.6424E+01 -6.5353E+01 5.7330E-01
ECHT -6.8429E+01 -6.5121E+01 2.3750E+00 -6.8429E+01 -6.4583E+01 1.6690E+00
DCDE -6.3525E+01 -5.6169E+01 6.5330E+00 -6.7654E+01 -6.3613E+01 3.1226E+00

JDEsoco -6.8429E+01 -6.8315E+01 5.7018E-01 -6.8429E+01 -6.7537E+01 5.0553E-01

DE-CS -6.8429E+01 -6.4129E+01 7.5558E+00 -6.8429E+01 -6.1181E+01 1.9203E+01

C14

e-DEag 0.0000E+00 0.0000E+00 0.0000E+00 5.0158E-14 3.0894E-13 5.6084E-13

ECHT 0.0000E+00 7.0242E+05 3.1937E+06 0.0000E+00 1.2368E+05 6.7736E+05
DCDE 0.0000E+00 1.5946E-01 7.9732E-01 0.0000E+00 6.3786E-01 1.4917E+00

JDEsoco 0.0000E+00 9.1221E-01 2.4538E+00 5.7102E-26 1.5946E-01 7.9732E-01
DE-CS 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.7393E-09 4.7713E-08

C15

e-DEag 0.0000E+00 1.7990E-01 8.8132E-01 2.1603E+01 2.1604E+01 1.1048E-04

ECHT 0.0000E+00 2.3392E+13 5.2988E+13 1.9922E+09 1.9409E+11 4.3524E+11
DCDE 0.0000E+00 2.5700E-24 1.2900E-23 0.0000E+00 5.0580E-01 1.3980E+00

JDEsoco 2.0258E-26 1.2452E+09 3.8127E+09 9.6993E-16 1.5357E+09 1.6045E+09
DE-CS 0.0000E+00 1.8883E+013 2.7863E+013 0.0000E+00 8.6399e+013 7.9073e+013
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Table C.1: Reference point used for hyper-volume calculation of WFG problems

Test Problem Obj. Reference point

WFG1

3 [2.6765 , 4.6893 , 6.7021]
5 [2.5659 , 4.4052 , 6.4816 , 8.5614 , 8.7174]
10 [2.6955, 4.6709, 4.5965, 6.2138, 7.6552, 9.7142, 12.6239, 15.2759, 18.6304, 20.8089]
15 [2.7322, 4.6650, 2.0958, 8.5328, 10.6251, 12.1879, 14.4389, 16.7062, 18.6898, 20.7244, 22.7111, 24.7145, 26.7299, 28.7244, 30.7421]

WFG2

3 [2.0002 , 3.9953 , 5.9927]
5 [1.9747 , 3.9441 , 5.9695 , 7.8723 , 9.9405]
10 [1.6819, 3.4599, 4.7745, 6.9021, 8.2840, 8.5491, 11.6828, 12.9936, 14.3702, 19.5332]
15 [1.4033, 1.011, 5.9989, 7.9998, 9.9894, 12,13.797, 15.946, 18.001, 19.981, 21.982, 23.969, 25.998, 28, 29.999]

WFG4

3 [2.0033 , 4.0030 , 6.0052]
5 [2.0182 , 4.0172 , 6.0099 , 8.0152 , 10.018]
10 [2.1136, 4.0950, 6.0876, 8.1385, 10.1373, 12.1196, 14.1150, 16.1095, 18.1099, 20.0927]
15 [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]

WFG5

3 [ 2.0500 , 4.0502 , 6.0501]
5 [2.0508 , 4.0509 , 6.0509 , 8.0509 , 10.051]
10 [2.3387, 4.1593, 6.0954, 8.0870, 10.1113, 12.0202, 14.0653, 16.0654, 18.0691, 20.0500]
15 [2.05, 4.05, 6.05, 8.05, 10.05, 12.05, 14.05, 16.05, 18.05, 20.05, 22.05, 24.05, 26.05, 28.05, 30.05]

WFG6

3 [2.0274 , 4.0274 , 6.0273]
5 [2.0235 , 4.0246 , 6.0219 , 8.0222 , 10.022]
10 [2.1250, 4.1250, 6.1250, 8.1250, 10.1250, 12.1250, 14.1250, 16.1250, 18.0300, 20.1250]
15 [2.0363, 4.0495, 6.0495, 8.0388, 10.05, 12.01, 14.005, 16.004, 18.004, 20.002, 22.002, 24.007, 26.001, 28, 30.002]

WFG7

3 [2.0017, 4.0018, 6.0016]
5 [2.0035 , 4.0034 , 6.0037 , 8.0036 , 10.003]
10 [2.1222, 4.0978, 6.1236, 8.1505, 10.1239, 12.1146, 14.1325, 16.1385, 18.0839, 20.0747]
15 [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]

WFG8

3 [2.2070 , 4.0114 , 6.0130]
5 [2.204 , 4.1084 , 6.0227 , 8.0217 , 10.023]
10 [2.4587, 4.3840, 6.4188, 8.2408, 10.1233, 12.0873, 14.0761, 16.0573, 18.0470, 20.0399]
15 [2.8006, 4.8003, 6.801, 8.7923, 10.602, 12.4, 14.201, 16.001, 18, 20, 22, 24, 26, 28, 30]

WFG9

3 [2.0107 , 4.0072 , 6.0085]
5 [2.1136 , 4.0936 , 6.1016 , 8.0977 , 10.071]
10 [2.1762, 4.1437, 6.1694, 8.1460, 10.1525, 12.1521, 14.1659, 16.1448, 18.1400, 20.1421]
15 [2.0604, 4.0911, 6.0555, 8.0515, 10.049, 12.051, 14.042, 16.009, 18.044, 20.01, 22.013, 24.012, 26.009, 28.009, 30.005]
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