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I ABSTRACT 

The vast majority of contemporary evolutionary multiobjective optimisation research 

is grounded in the ideals of generality — that is, the capacity to perform well 

irrespective of the number of objectives that exist in a given task.  Despite this 

resolute focus, the fact remains that a large portion of the reported real-world 

applications and existing algorithmic studies are exclusively two-dimensional.  By 

remaining fixated on generality, research has failed to explore the unique properties 

of these bi-objective tasks and, in so doing, has sacrificed potential performance 

gains in lieu of an often-unnecessary level of flexibility.  As a response, this work 

focuses on the bi-objective domain, endeavouring to elucidate and then harness the 

special characteristics of non-dominated bi-objective sets to produce powerful and 

efficient specialist techniques. 

Central to this work is the bi-objective specialisation of the powerful elite archiving 

mechanism.  Where conventional modern systems limit the size of their archives to 

curb the inefficiencies of naive list constructs (despite the potential for degradation in 

both the quality of archival members and crowding estimates caused by such 

artificial thresholding), this thesis describes a new construct (the Mak_Tree) that 

releases artificial size bounds while maintaining high levels of efficiency.  Indeed, 

both theoretical and empirical results illustrate that the Mak_Tree performs better 

than other generalist unbounded methodologies and is often more efficient than, or at 

least competitive with, tightly bound truncated techniques. 

Moreover, this thesis indicates that the use of unbounded archives imparts a real 

practical performance benefit to the optimisation of bi-objective problems.  The 

extension of modern evolutionary optimisers to incorporate the efficient unbounded 

Mak_Tree construct — be it in a passive, active or hybridised manner — results in 

significant performance improvements across a host of disparate test functions.  The 

creation of novel algorithms designed to capitalise on the properties of the Mak_Tree 

further emphasises the power of specialisation, with significant improvements again 

noted when results are compared against those produced by the contemporary 

bounded approaches.     
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Outside of the improvement of optimiser efficacy, efficient access to unbounded elite 

sets also offers potential for the development of enhanced meta-processes.  

Specifically, this thesis proposes and then explores amongst the first fully-realised, 

intuitive, autonomous and reliable termination systems available to the field — a 

system that is simply infeasible with access only to bounded archival sets.  

Additionally, the work examines a new end-of-run presentation system that distills 

complete unbounded archives into well-distributed collections that are suitable for 

decision-maker analysis.  Empirical results suggest that the proposed system 

produces significantly better distributions than pre-existing techniques and offers 

guarantees of solution quality that simply cannot be made when using bounded 

stores.  
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1 INTRODUCTION 
There is something to be said about there being truth in clichés.  Increasingly, the 

notion that “most real-world problems are multiobjective in nature” [1] has become a 

clichéd introduction into the power of multiobjective optimisation (see [2-10] for 

variations on the theme), not just because it is an impressive catch phrase — the 

notion that a field of study is directly applicable to real problems that affect real 

people is appealing indeed — but also because the research has borne out the truth of 

the sentiment.  Consider the comprehensive study of Coello, Veldhuizen and Lamont 

[11]: they note over four hundred practical applications that were published prior to 

2002.  An investigation of more recent literature illustrates that the practical benefits 

of multiobjective optimisation are being realised in fields as diverse as airfoil design 

[12-18], water management [19-22], robotics [23-25], image processing [26-28], 

neural network optimisation [29-33], development of combinatorial and integrated 

circuits [34-36], cancer research [37, 38] and bicycle design [39]. 

As multiobjective optimisation has become a more powerful player in real-world 

design and optimisation tasks, the need for specialisation has come to the fore.  In 

particular, outside of the crisply defined and controllable ivory tower of theoretical 

research, the need to address dynamic problem spaces, noisy function 

approximations and constrained domains has led to a host of specialist techniques.  

Such approaches endeavour to augment the core ideas of contemporary 

multiobjective research to better match the demands of the job which they are 

required to do (see, for instance, [10, 40-50]).  

Interestingly however, despite the presence of single objective optimisation as a 

clearly delineated field and the fact that the “overwhelming majority” of studies 

focus on the bi-objective domain [51] (see [12, 13, 15, 18, 20, 21, 30, 47, 52-74] for 

contemporary examples), work relating to the specialisation of multiobjective 

research based on the number of objectives has been reasonably slim.  This is 

particularly surprising given that recent results have shown that there is a marked 

variation in performance between low- and high-dimensional objective spaces [75-

78].   
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There is therefore a valuable research question that has thus far been ignored.  Given 

the prevalence of bi-objective optimisation in practical applications, the centrality of 

real-world problem solving to the field as a whole and the notion that the number of 

objectives strongly influences the performance of existing optimisers, does 

specialisation into the bi-objective domain represent a potential avenue for 

improving performance?  Specifically, are there special properties that exist in the bi-

objective domain that may be exploited and, if so, are such properties sufficiently 

powerful to make specialisation worthwhile? 

Given the emergence of elite archiving as the common defining component of 

contemporary optimisers (as evidenced by their use in [79-91]) and the power that 

such elitism imparts [92-94], the exploitation of bi-objective properties to improve 

the efficiency and efficacy of such archiving offers an interesting way to assess the 

value of bi-objective specialisation.  In particular, the naïve list-based techniques that 

are the implied standard for conventional elite archiving [95] and the generalist 

extensions that have been proposed as alternatives [95-97] are both insufficiently 

efficient to facilitate unbounded archives in practice, while the artificial binding of 

archive sizes can have severe ramifications with respect to decreasing quality in 

archival members [97, 98].  If bi-objective specialisation can facilitate efficient 

unbounded archiving and capitalise upon this to produce significantly better results 

than their bounded alternatives, then such work is surely a valuable endeavour.  It is 

the investigation of this issue that will form the centrepiece of this thesis.     

1.1 RESEARCH QUESTIONS 
The primary research questions that this thesis seeks to address are: 

• Is it feasible to create unbounded bi-objective archives? 

• Does such archiving offer tangible performance improvements in the 

optimisation of bi-objective problems? 

• Does access to an accurate and unbounded elite set impart benefits outside of the 

optimisation process itself? 
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1.2 KEY CONTRIBUTIONS 
This work offers the following key contributions to the field of multiobjective 

optimisation: 

• The development and detailed analysis of a rich suite of test functions that 

explore a wide-range of important multiobjective problem characteristics.  

Each function is deliberately narrow in focus, concentrating on a particular 

problem feature (Chapter 5). 

• Elucidation of unique properties in the special bi-objective domain, 

particularly relating to the characteristics of non-dominated sets (Chapter 6). 

• Exploitation of the bi-objective properties to produce an efficient unbounded 

archiving strategy known as the Mak_Tree.  This includes a thorough 

description, theoretical analysis and empirical investigation of the 

methodology and comparisons with both common and contemporary 

bounded and unbounded alternatives (Chapter 6). 

• Empirical investigation into the limitations of truncated archiving, 

specifically with respect to the quality of the stored solutions and the 

accuracy of diversity estimates (Chapter 6).  

• The development of guidelines for autonomous and intuitive stopping criteria 

and the use of the basic Mak_Tree in the creation of such criteria.  Includes 

empirical analysis of the performance of the newly proposed 

Mak_Terminator system (Chapter 7). 

• The creation of presentational algorithms that are tasked with sampling the 

unbounded archive and creating small, evenly-distributed, sets that are 

appropriate for decision-maker analysis.  Features empirical investigations of 

the new Mak_Presentation technique and the more common bounded and 

unbounded clustering methodologies (Chapter 7). 

• The extension of the basic Mak_Tree to incorporate efficient diversity 

estimation, selection and the storage of cells.  This includes an analysis of the 
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performance of the extended Mak_Trees and comparison with the behaviour 

of contemporary tightly-bound archival systems (Chapter 8). 

• The integration of unbounded Mak_Tree archives into existing contemporary 

optimisation algorithms and a thorough analysis of performance across a 

range of test functions.  Extended algorithms include the contemporary 

PAES, PESA, NSGA-II and SPEA2 systems, with active, hybrid and 

referential integration methodologies described (Chapter 9). 

• A comprehensive, and statistically rigorous, analysis of a rich set of 

contemporary optimisers operating in a diverse set of well-defined bi-

objective domains.  Results suggest a general hierarchy of performance and 

indicate characteristics that maximise performance on individual problem 

features (Chapter 10). 

• The development and investigation of novel unbounded bi-objective 

optimisation algorithms, each designed to address the limitations and 

weaknesses of existing techniques.  This features rich analysis against 

existing contemporary truncated approaches and the newly developed 

unbounded extensions (Chapter 11 and Chapter 12). 

1.3 OUTLINE OF THE THESIS 
The thesis is structured as follows:  

• Chapter Two introduces multiobjective optimisation via description, example and 

strict mathematical definition, with a view to establishing the central concepts, 

motivations and ideas of the field.  

• Chapter Three explores the problem characteristics that a real-valued 

multiobjective optimiser may encounter during a given run.   

• Chapter Four develops a test suite (the AP collection) that effectively captures 

each of these characteristics and offers an in-depth analysis of both objective and 

decision spaces.   

• Chapter Five defines the special properties of the bi-objective domain, examines 

the limitations of traditional truncated archiving and offers a new specialist 
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unbounded approach (the Mak_Tree) that leverages the attributes of bi-objective 

non-dominated sets.  The chapter also features comprehensive theoretical and 

empirical analyses of both unbounded and bounded techniques across many of 

the AP functions proposed in Chapter Four.   

• Chapter Six capitalises on the attributes of the basic Mak_Tree for the 

development of effective stopping criteria and set presentation mechanisms.   

• Chapter Seven extends the basic Mak_Tree to include efficient diversity 

estimation and selection procedures, with thorough timing analyses indicating the 

costs associated with such extension.   

• Chapter Eight integrates the extended Mak_Tree into a host of contemporary 

truncated systems, with differentiation in performance elucidated by the use of 

Pareto compliant indicators and visualisation tools.   

• Chapter Nine offers a thorough analysis of contemporary truncated approaches in 

static real-valued bi-objective domains with a view to establishing which 

algorithmic characteristics are best suited to particular domain types.   

• Chapter Ten addresses the limitations of existing techniques by developing novel 

unbounded algorithms and explores their performance against truncated 

contemporaries.   

• Chapter Eleven draws together the results of the preceding three chapters to 

establish the best general performer of the examined optimisers.   

• Chapter Twelve emphasises the key conclusions of this thesis and offers a 

summary of the many avenues of future work that exist for those interested in bi-

objective optimisation.   
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“Compromise, if not the 
spice of life, is its solidity.  It 
is what makes nations great 
and marriages happy.” 

Phyllis McGinley — Author 

“All government, indeed 
every human benefit and 
enjoyment, every virtue, and 
every prudent act is founded 
on compromise…” 

Edmund Burke — British 
Statesmen 

“If you limit your choices 
only to what seems possible 
or reasonable, you 
disconnect yourself from 
what you truly want, and all 
that is left is a compromise.”

Robert Fritz — Composer, 
Film Maker and Author 

“Compromise is the Devil.” 

Anonymous 
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2 WHAT IS MULTIOBJECTIVE OPTIMISATION? 
At its core, multiobjective optimisation is fundamentally about compromise.  Where 

single objective approaches such as traditional Genetic Algorithms (GAs) are 

charged with finding the single best available solution, multiobjective optimisers 

strive to develop well-distributed sets of ideas that represent the best possible trade-

offs.  Indeed, in a multiobjective context, finding only one solution, even if it is 

considered optimal, is viewed as a failure1 — the driving concern lies not just with 

utility, but also with the breadth of choice.  Such principles are an indelible side 

effect of addressing conflicting goals where, as in life, it is rarely the case that a 

single approach can be viewed as ideal when considered from multiple perspectives.  

It is also for this reason that multiobjective optimisation has been drawing increasing 

attention from designers and engineers (see [11] for an impressive survey) — they 

deal in multi-faceted real-world problems that, in all likelihood, lack a grand 

unifying solution.  Of more value to such work is the creation of a rich palette of 

ideas that represent a more accurate picture of the best choices available, upon which 

an understanding of the problem at hand can be developed. 

Thus, compromise can be considered as the key distinguishing and driving factor of 

multiobjective optimisation — but what does compromise mean from a theoretical 

standpoint?  Based on practical knowledge of the word, compromise infers a 

balancing of distinct objectives — typically with the goal of finding points where all 

parties involved are satisfied (at least to some extent).  In multiobjective optimisation 

however, the concern is not just with balanced compromises such as these, but with 

finding a full range of trade-offs, incorporating those that give rise to mutual 

satisfaction, those that are heavily biased and most-everything in-between.  As an 

example, consider Figure 1.  Figure 1a represents the type of biased, extrema 

solutions that could be expected from performing two single-objective runs — they 

describe little about the interaction between objectives, but offer some insight into 

the optimal performance for each case.  Figure 1b offers only balanced-compromise 

solutions — they speak volumes about how objectives can be integrated for mutual 

 

 
                                                 
1  Assuming the objectives are in conflict and non-degenerative (Section 2.2.4 and Section 4.2.8). 
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(a) Extrema Solutions 
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(b) Mutually Beneficial Solutions 
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(c) A Rich Set of Compromises 

Figure 1 — Different Compromise Solutions 
(a) Extrema solutions — typical of two distinct single-objective runs.  (b) Mutually beneficial compromise 

solutions.  (c) Well-distributed compromise solutions, typical of an effective multiobjective optimisation run. 

 

gain, but fail to elucidate more general properties about the interaction between the 

problems, particularly where one objective is given greater priority than another.  

Figure 1c is representative of the set of compromises that multiobjective optimisation 

ultimately strives for — it is rich in the sense that the solutions provided are not only 

diverse, but illustrate more about the nature of the problem at hand than the extrema 

or balanced solutions alone could ever hope to.   

Of course, having a well-distributed and wide-ranging set of compromises means 

little if the solutions are not considered to be good compromises.  It may be argued 

that removing the landing-gear from an aeroplane is a good way to compromise 

between construction costs and safety (with a business-minded preference for cost), 

but it is likely that there exist better alternatives — ones which result in craft that are 

both less costly and safer.  As such, it is important that distinctions can be drawn 



Escaping the Bounds of Generality — Unbounded Bi-Objective Optimisation 

- 10 - 

between those solutions that are clearly better or worse than one another, lest the 

optimisation process be driven by diversity alone.  Fortunately, the utility of 

compromises can be deduced via the principal of Pareto optimality. 

2.1 INTRODUCING PARETO OPTIMALITY 
While the intricacies of Pareto optimality will be given a more formal treatment later 

(see Section 2.2), this section will introduce some of the key terms and concepts 

central to the field of multiobjective optimisation without recourse to strict 

mathematical definition.  It is important to first gain an understanding of the 

motivation for the ideas, structures and dependencies inherent in Pareto optimality 

prior to elucidating the finer points of putting those ideas into practice. 

Pareto optimality2 [99] is predicated on the notion of Pareto dominance, whereby two 

solutions can be differentiated according to apparent worth.  In this case, a solution is 

said to strongly (strictly) dominate another solution if it is better in all objectives of 

the problem, while weak dominance relaxes the condition to allow equality in those 

objectives where a solution is not strictly better, so long as it is better in at least one 

objective (see Figure 2 for examples).  Using these simple definitions alone, it is now 

possible to distinguish between a poor compromise solution and an improved one.  

Returning to the wheelless aeroplane example, it can now be said that any alternative 

solution that offers both a less-expensive and safer option is fundamentally a better 

choice, since it will be strongly dominant with respect to our poorly designed craft 

(see solutions a and c in Figure 2a). 

 

While the dominance relation provides a fundamentally important step towards 

measuring optimality in a multiobjective environment, it alone is not enough.  

Consider an alternative to the rough-landing aeroplane that features improved safety, 

but only at a significantly increased cost (see Figure 2b).  In this case, neither 

solution dominates the other and it is not necessarily clear which alternative is 

preferable.  These solutions are incomparable — they each form distinct trade-offs 

 

                                                 
2  Vilfredo Pareto (1848-1923) was an Italian economist, engineer and sociologist.  In time, Pareto 

optimality became synonymous in economics with a societal equilibrium where no single person 
or entity can be made more wealthy without sacrificing the well-being of another.  More recently, 
the term has gained popularity in game theory, operations research and multiobjective 
optimisation. 
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(a) Dominance Relations 
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(b) Incomparability 

Figure 2 — Dominance and Incomparability 
 (a) Solution a weakly dominates solution b and strongly (strictly) dominates solution c; solution b weakly 

dominates solution c.  (b) Solutions a and b are incomparable with each other.  All graphs assume objectives are 
to be minimised. 
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Figure 3 — Pareto Fronts 

The black circles represent the best compromise proposals in the population — they are members of the best 
estimate of the Pareto front.  If the black circles represent the best possible solutions, then they are members of 
the true Pareto optimal front.  The shaded region represents space that is dominated by the front — proposals 

residing in this region are considered sub-optimal. 

 

which satisfy a different balance of the objectives being addressed.  Given that 

multiobjective optimisation is tasked with finding good, well-distributed, 

compromises, it seems beneficial to view non-dominated incomparable solutions as 

useful in a multiobjective context. 

Thus, using only the dominance and incomparability relations, it is possible to take a 

population of solutions and extract the best compromises — those that (at least) 

weakly dominate, or are incomparable with, every other member of the population 

(see Figure 3).  In multiobjective literature, this set of solutions is generally referred 

to as the non-dominated front and is considered optimal with respect to the 
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population of solutions from which the set is extracted.  If the population includes 

every possible solution, then the extracted set is considered globally optimal and 

forms the Pareto optimal front — notionally the goal of all multiobjective 

optimisers.  In practice, however, where most optimal sets are very large (tending 

towards infinity for continuous problems), such a goal is often infeasible [100].  

Thus, the practical target for all multiobjective optimisers is the formation of a good 

approximation of the Pareto optimal set — one that satisfies the need for a rich 

population of solutions that lie near to the optimal front, but are also well distributed 

along that front [101-104]. 

2.2 FORMALLY DEFINING SOME KEY TERMS IN 
MULTIOBJECTIVE OPTIMISATION 

Thus far, the corner stones of multiobjective optimisation have been addressed with a 

degree of abstraction.  With the context and motivation for the central ideas 

established, it is now appropriate to move from the abstract to the concrete via a 

more formal discussion. 

2.2.1 DEFINITION OF A MULTIOBJECTIVE SOLUTION AND SOLUTION-
SPACE 

A solution (decision vector, compromise or proposal) to a multiobjective problem is 

taken to be a list of values (parameters or decision variables) that, when applied to 

an objective in the problem, give rise to a single score representing performance on 

that objective.  In general, a solution x has m decision variables: 

1 2( , ,..., )x= mx x x  (1) 

Though each decision variable may take on any alphabet, this work will focus on 

constrained real-valued domains: 

( ) ( )( ): {1, 2,..., }∈ ≤ ≤ ∧ −∞ < ∞ ∀ ∈i i i i i ix Min x Max Min Max i m  (2) 

where Min and Max settings define the range of values for decision variables. 

The resultant decision (solution or search) space Y represents the m dimensional area 

of search available for a given multiobjective problem and is the set of all possible 

solution vectors: 
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{ }1 2 1..( , ,..., ) :== ∀ ∈ ≤ ≤m i m i i iY x x x x Min x Max  (3) 
 

2.2.2 DEFINITION OF A MULTIOBJECTIVE PROBLEM 
A multiobjective problem is any problem that consists of two or more optimisation 

objectives that are subject to some form of constraint.  In particular, all 

multiobjective problems can be given as:   

1..Minimise ( ) subject to ( , )β ∀ ∈ ∈i i if x x Cx x  (4) 

where β is the number of objectives being optimised; x is a multi-variable solution; 

and Ci is the constraint set of allowable values for the ith solution variable.  Note that 

all optimisation objectives are arbitrarily categorised as minimisation functions — 

this results in no loss of generality, as all maximisation problems can be presented as 

minimisation functions via simple negation [105]: 

( )Minimise ( ) Maximise ( ( ))=− −i if fx x  (5) 

2.2.3 DEFINITION OF OBJECTIVE-SPACE 
The fitness (objective) space F of a problem is the mapping of all possible solutions 

in Y to the β dimensional set of results formed by applying each solution to each of 

the β objectives: 

( ){ }1 2( ), ( ),..., ( ) ,β= ∀ ∈F f f f Yy y y y  (6) 

It is important to note here that there is not necessarily a strict correspondence 

between trends seen in the solution-space and those seen in the fitness space — 

indeed, it is possible for entirely continuous search spaces to give rise to 

discontinuous objective-spaces, while solutions which are closely mapped in fitness 

space, may be well separated in the solution-space.  Such a property has profound 

ramifications when it comes to searching for optimal solutions, as shall be seen later 

(Chapter 4). 

2.2.4 DEFINITION OF A CONFLICTING MULTIOBJECTIVE PROBLEM 

For the purposes of this work, the primary focus is on the subset of multiobjective 

problems that feature conflict — that is to say, those problems where there exists at 
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least some portion of fitness space where progress towards the optimal of one 

objective leads to movement away from the optimal of another objective: 

( ) ( )( ), ; , {1,2,..., }: ( ) ( ) ( ) ( )β∃ ∈ ∈ < ∧ >i i j jY i j f f f fa b a b a b  (7) 

Those problems that fail to meet these criteria can be more readily solved using 

single objective optimisation via simple reduction of objectives (since all solutions 

will tend to have approximately mutual utility across objectives) or through the 

merging of objectives. 

2.2.5 DEFINITION OF PARETO DOMINANCE 
Recalling that a multiobjective problem can always be defined in terms of a 

minimisation function, solution a is said to strongly (strictly) dominate solution b if 

and only if: 

( ) ( ) {1,2,..., }β< ∀ ∈i if f ia b  (8) 

This condition can be relaxed to allow for weak dominance, whereby solution a is 

said to weakly dominate solution b if and only if: 

( ) ( )( ) ( ) {1, 2,..., } {1, 2,..., }: ( ) ( )β β≤ ∀ ∈ ∧ ∃ ∈ <i i j jf f i j f fa b a b  (9) 

If solution a strongly dominates solution b, then it is written as: 

≺a b  (10) 

If the relation between solutions is weak dominance then the correspondence is 

expressed as: 

≺a b  (11) 

It is worth noting that, in the strictest sense, Pareto relationships do not exist between 

solutions, they exist between the objective-space projections of those solutions.  For 

brevity, when this work speaks of dominance, incomparability or equality between 

solutions, unless explicitly stated otherwise, it is their position in objective-space that 

is being addressed.   
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2.2.6 DEFINITION OF EQUALITY 
Any two solutions a and b are equal (in objective-space) if and only if: 

( ) ( ) {1,2,..., }β= ∀ ∈i if f ia b  (12) 

For brevity, such equality between a and b is written as: 

=a b  (13) 

2.2.7 DEFINITION OF INCOMPARABILITY 
Any two solutions a and b are considered incomparable if and only if: 

( ) ( ){1, 2,..., }: ( ) ( ) {1, 2,... }: ( ) ( )β β∃ ∈ < ∧ ∃ ∈ >i i j ji f f j f fa b a b  (14) 

Or, alternatively, any solution a that is not weakly dominant or weakly dominated 

with respect to solution b, must be incomparable with b if they are not equal.  Since 

the relation is transitive, b must also be incomparable with a. 

In general, if solution a is incomparable with solution b, then it is written as: 

∼a b  (15) 

2.2.8 DEFINITION OF PARETO FRONTS AND PARETO OPTIMALITY 
A Pareto estimate front (Pestimate) is composed of those members of a solution set S 

that are non-dominated with respect to all constituents of S: 

( ) ( ) ( )( ): ,⊆ ⊆ ∀ ∈ ∨ ∨ = ∀ ∈≺ ∼estimate estimateP S Y P Sp p s p s p s s  (16) 

If S enumerates the complete decision-space Y, then the estimate is the true 

(complete) Pareto optimal set and is defined as Pfront: 

( ) ( ) iff  = =estimate frontP P S Y  (17) 

If S represents all solutions produced thus far, then Pestimate represents the collection 

of non-dominated proposals discovered throughout the optimisation process and is 

referred to as the local optimal set (Plocal). 
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2.3 AN ILLUSTRATIVE EXAMPLE 
While the particulars of multiobjective optimisation are detailed through the 

theoretical definitions provided in the previous section, the utility of these ideas are 

best demonstrated through an illustrative example.  As such, this section will 

consider a complex, though approximated, real-world design problem that 

multiobjective optimisation is ideally suited to. 

2.3.1 FORMULA ONE FRONT WING DESIGN 
The design of a Formula One (F1) car is an inherently difficult proposition (as 

indicated by research and development costs that were remarkably estimated at over 

$250,000,000 for the 2006 season [106]).  This complexity is largely contingent on 

the interconnectedness of the various modules that must be constructed for any car 

— particularly with respect to aerodynamic performance, which can be 

fundamentally affected even with relatively minor changes to body shape.  As such, 

the design of a Formula One front wing (see Figure 4) — which is charged with 

controlling airflow around and under the car — is of paramount importance to the 

success of the vehicle. 

In general, the front wing is used to channel air in such a way as to generate negative 

lift and thus provide traction for the car as it races around the circuit.  Such is the 

extent of the aerodynamic grip generated by contemporary open-wheel vehicles that 

they can race inverted on the ceiling of a tunnel and can pull manhole covers from  

 

 

Figure 4 — An Illustration of the Front Quarter of the Sauber BMW F107 
The highlighted yellow construct (attached to the nose cone of the vehicle) is the front wing.  The 
sketch is produced and provided by Craig Scarborough, Technical Writer, Autosport.com [107]. 
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the road3.  The front wing — together with the rear wing — is responsible for 

producing much of this impressive downforce, without which high-speed cornering 

would be practically impossible. 

However, there are seldom free lunches provided in engineering design and 

aerodynamic grip comes with a price befitting its utility.  In general, greater 

downforce infers higher aerodynamic drag, which can severely inhibit the overall 

speed of a car — particularly on straights, where high maximum speeds are of 

pivotal importance.   

Thus, the design of an effective front wing for a Formula One car is almost always a 

compromise between the cornering ability provided by impressive grip and the raw 

speed enabled by a low-drag configuration.  More problematic still is the fact that 

there exists no single compromise that is ideally suited to all tracks — Monaco may 

be laden with tight corners and demand high downforce at all costs, but the same 

cannot be said of the gentle curves of Montreal.  As such, multiobjective 

optimisation seems ideally suited.  A comprehensive set of diverse compromise 

solutions can be provided for the team that can then be filtered according to the 

unique priorities of each race.  

2.3.2 DEFINING THE MULTIOBJECTIVE PROBLEM AND SOLUTION 
STRUCTURE 

For simplicity, the design of a Formula One wing can be specified as a conflicting bi-

objective task where the aim is to minimise the loss of aerodynamic grip and the 

amount of aerodynamic friction (drag).  In reality, the performance of each objective 

would be measured either through the application of complex aerodynamic formulas 

and models or the practical testing of proposed solutions in a wind-tunnel.  For now 

though, it is enough to assume that there exists some way of mapping a solution into 

results that represent performance on each of the objectives. 

While the construction of a front wing is actually the product of a vast number of 

subtle variables, this approximation will limit the design to three key performance 

factors — namely, the position, angle of incidence and width of the front wing.  

These parameters are constrained by the technical regulations of the sport (see 
                                                 
3  Somewhat humorously, race stewards must weld down the man-hole covers on street circuits prior 

to proceedings to guard against just such a predicament. 



Escaping the Bounds of Generality — Unbounded Bi-Objective Optimisation 

- 18 - 

[108]).  With respect to the 2006 season, the width of the wing may be no more than 

1400mm in diameter (regulation 3.4.1), while the position of the wing (regulation 

3.7.1) may be no lower than 150mm below the reference plane (the agreed centre 

plane of the car) and no higher than 350mm above it.  For practicality, the angle of 

incidence must lie between zero and ninety degrees (relative to the reference plane).  

2.3.3 EXAMINING SOLUTION AND FITNESS SPACES 
With the extent of each variable established, it is possible to define the search space 

from which the set of compromise solutions will ultimately come.  Recalling that 

real-valued solutions give rise to a continuous decision-space and that the 

dimensionality of that space corresponds to the number of variables being optimised, 

Figure 5 illustrates every possible solution to the front-wing problem.   

With the solution-space fully specified, it is now theoretically possible to define the 

two-dimensional objective-space by mapping every possible solution to each 

objective (see Figure 6).  Note that, in practice, such a brute-force examination is 

typically infeasible due to the costs associated with each function evaluation and the 

size of the solution set (which is infinite if any variable is real-valued).  Indeed, given 

the extreme expense of wind-tunnel testing, the slow production of results via 

aerodynamic models and the real-valued nature of the decision variables, a complete 

realisation of the front-wing objective-space is practically impossible.  Thus, the aim  
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Figure 5 — Decision-space for a Simplified F1 Wing 

 The shaded region represents the continuous space that houses every feasible configuration of an F1 
wing.  The boundaries of the space are formed by the minimum and maximum values for each 

variable.  Points a and b correspond to points a and b in the objective-space (see Figure 6). 
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Figure 6 — Hypothetical Fitness Space for a Simplified Formula 1 Wing 

 The collection of points represents the location of all possible results for the bi-objective problem, 
found by mapping every feasible solution to the functions for drag and downforce.  The dashed line 

represents the continuous Pareto optimal front.  Points a and b correspond to solutions a and b in 
Figure 5. 

 

of multiobjective optimisation (both in general and with respect to this example) is 

not to fully represent the objective-space, but to move as rapidly as possible through 

the space and towards a set of the best compromise solutions — be it through the 

application of heuristics or artificial intelligence principles.   

2.3.4 MOVING TOWARDS THE PARETO OPTIMAL FRONT 
While the machinations of multiobjective search will be discussed at length in later 

sections (see Chapter 3 and Chapters 9–12), it is sufficient to assume that most of the 

power for progressing through the objective-space rapidly is grounded in the 

principles of Pareto optimality.  Indeed, the most obvious way to form an impressive 

estimate of a Pareto front is to bias the search around well-spread non-dominated 

solutions in the belief that they will continue to lead to ever better compromises.  

This basic tenet still lies at the heart of almost all contemporary multiobjective search 

algorithms. 

In the case of the wing design example, using the principles of Pareto optimality will 

discourage search around areas of poor downforce and high drag configurations 

(since these are easily dominated) and push exploration towards settings that result in 

lower drag and better downforce (since these are more likely to dominate other 

proposals).  However, there is a danger in over-simplifying things here.  The notion 

that picking continually better solutions will inevitably result in a well-distributed 

and accurate estimate of the Pareto optimal front is predicated on a certain 
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predictability in the objective- and search-spaces.  Unfortunately, there is no 

guarantee that proximity in objective-space has any correlation with proximity in 

search-space (or vice-versa).  As such, locating a highly dominant solution may be 

beneficial, but it may also represent an evolutionary dead-end: a single isolated 

solution that shares no commonality with any other optimal solution.   

Such a poor accord between fitness- and solution-spaces certainly exists in front 

wing design and is best illustrated with an example pit stop.  Consider a driver that 

has a well performing front wing, but believes that a subtle modification will result in 

the extra traction required to instigate a passing manoeuvre under braking.  During 

the stop, the pit crew are instructed to make a minor adjustment to the wing’s angle 

of incidence (a change from a to b in Figure 5), believing that such a small variation 

will potentially make some positive difference, but at worst should cause little 

damage to overall performance.  On exit the car vibrates wildly, loses traction and 

spins off the track.  The pit crew, in this case, failed to recognise that a small change 

in solution-space positioning need not necessarily incur a small change in objective-

performance (note the difference in optimality between a and b in the objective-

space represented by Figure 6).   

If a multiobjective problem is overwhelmingly composed of these types of 

discontinuities between decision- and objective-spaces, then it becomes practically 

impossible to successfully apply any intelligent search algorithm.  Picking one 

solution over another is arbitrary, because neither is more likely to aid in the location 

of the optimal front.  Thus, in such circumstances, a random exploration is likely to 

perform as well as a carefully refined dominance-based approach. 

Fortunately for multiobjective researchers then, most real-world problems are not 

such thorny propositions.  While there may be elements of the decision-spaces that 

behave in an apparently erratic manner, it is very rarely the case for the entirety of a 

space.  As such, a multiobjective optimiser must be able to capitalise on the power of 

dominance-guided search in regions of space where such exploration is beneficial, 

but must also be robust enough to move beyond problematic areas where an 

intelligent search may otherwise degenerate. 
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2.3.5 TERMINATION AND PRESENTATION 
Given that the optimisation of the front wing is a real-valued problem and is one 

which carries expensive time and cost overheads, it is unreasonable to anticipate the 

output of the complete Pareto optimal front.  It is therefore necessary to agree upon 

some set of stopping criteria that resolves the trade-off between solution quality and 

the expense of proposal evaluation.  As will be explored later (Section 6.2.1.4 and 

Section 7.1), the definition of such termination marks is non-trivial, but for now it is 

enough to assume that the assigned criteria resulted in the search terminating after it 

discovered the population of solutions described in Figure 7a.  Assuming that the 

designer is interested only in the best trade-offs discovered (which seems likely), the  

 

0

0.5

1

0 0.5 1

Loss of Downforce

D
ra

g

M inimal Complete

Low

High

 
(a) The Complete Collection of 

Discovered Solutions 

0

0.5

1

0 0.5 1

Loss of Downforce

D
ra

g

M inimal Complete

Low

High

a

b

 
(b) The Non-dominated Portion of the 

Complete Collection (Plocal) 

0

0.5

1

0 0.5 1

Loss of Downforce

D
ra

g

M inimal Complete

Low

High

 
(c) The Reduced Presentational Set Derived from  

the Non-dominated Portion of the Complete Collection 

Figure 7 — End-of-Run Sets 
The complete population of solutions in (a) is reduced to the non-dominated set in (b).  The largely 

unbiased presentational set in (c) is distilled from (b).  
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solution set serves a more practical purpose if it is reduced to contain only the non-

dominated members (Plocal — as illustrated in Figure 7b).     

While having access to the complete non-dominated set at the completion of a run 

may be beneficial, in practice a reduced presentational set is generally preferred.  In 

the case of front wing design this is particularly true — the expense and complexity 

of transforming models into full-scale mock-ups for more comprehensive on-car 

testing precludes the use of a large number of solutions (even if each option is Pareto 

optimal).  The key then is to distil the terminated frontal set into an evenly 

distributed collection that expresses the range of available optimal trade-offs between 

downforce and aerodynamic friction.  Again, the formation of appropriate 

presentation sets is not as straightforward as it may appear, and will be discussed at 

length in coming sections (see Section 7.2), but it is enough for now to assume that 

Figure 7c represents a suitable distillation of the complete non-dominated set 

exemplified in Figure 7a.  This minimised collection is sufficiently rich to provide 

scope for improving performance under varying track conditions without favouring 

particular regions of the objective-space biased by the search (such as a and b in 

Figure 7b). 

2.3.6 CONCLUDING REMARKS ON THE ILLUSTRATIVE EXAMPLE 
The application of multiobjective optimisation to the area of wing design in Formula 

One cars is an interesting hypothetical scenario.  While the presented example is both 

simplified and largely contrived, it is representative of a host of real-world studies 

that illustrate the value of multiobjective optimisation in practical engineering tasks 

(see [12, 13, 34, 55, 59, 65, 74, 109-116] for a small sampling) and draws into focus 

some of the more central issues in multiobjective research.   

For this particular study, the aim is to develop a concise set of promising trade-offs 

that provide the design engineer with not only a range of options tailored to a host of 

race scenarios, but an insight into the relationship between the decision variables and 

the nature of the objective-space.  To achieve this goal, the use of intelligent Pareto-

guided search procedures that capitalise on the implied accord between decision- and 

objective-spaces is appropriate.  Such a procedure is likely to be considerably more 

efficient than enumeration or random search of the solution-space, while the use of 

presentational algorithms ensures that regions of the non-dominated objective-space 
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are clearly delineated.  Given the monetary and time costs associated with wing 

design, the potential improvements offered by multiobjective optimisation with 

respect to efficacy and efficiency appear significant (particularly if appropriate 

stopping criteria can be formed).   

2.4 MULTIOBJECTIVE AND SINGLE-OBJECTIVE 
OPTIMISATION 

Thus far, comparison between multiobjective search and its single objective 

forbearer has been relatively superficial, with the assertion that complex problems 

are better addressed from a multiobjective viewpoint since the resulting solutions 

will provide a rich understanding of the problem at hand.  But is such a diverse 

solution set actually beneficial for the majority of problems?  Can the more efficient 

and focussed single objective procedure give rise to solutions that are of greater 

utility to the designer? 

2.4.1 THE ARGUMENT FOR SINGLE-OBJECTIVE OPTIMISATION 
Before the popularisation of multiobjective optimisation, problems with multiple 

goals were typically simplified through reduction (scalarisation) [4] — applying 

domain knowledge and preference information to combine objectives into a single 

aim (through objective-weighting, distance functions, min-max techniques, 

constraint methods or goal programming, for instance — see [4, 5, 117, 118] for 

summaries).  To a surprising extent, this procedure remains popular [10], even when 

confronting potentially complex problems (see, for instance, [119-123]).  While it 

could be argued that the proliferation of single-objective techniques in these areas 

can be attributed to the relative youth of the multiobjective field, it is more likely that 

scalarisation carries some benefit into these situations.  In particular, searching for an 

optimal single-objective solution is an inherently less complex proposition than 

locating a well-distributed approximation of the Pareto optimal front and leads to a 

considerable increase in search-time efficiency.  Moreover, many designers have 

very specific expectations of a system and are more concerned with achieving 

solutions that match their particular needs than examining a range of interesting 

alternatives.  In this case, the additional overhead of a multiobjective system seems 

superfluous.   
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2.4.2 REJECTING THE ARGUMENT FOR SINGLE-OBJECTIVE 
OPTIMISATION 

While the potential benefits inherent in scalarisation are alluring, it is ultimately too 

restrictive in comparison to the power and flexibility of multiobjective search. 

2.4.2.1 A PRIORI REQUIREMENTS 
While in principle the notion of reducing objectives according to pre-defined domain 

knowledge sounds straight-forward, the reality is that a priori requirements impose 

severe restrictions on the type of problems applicable for single objective reduction.  

In order to merge objectives, the domain expert must be both acutely aware of the 

preferences afforded to each objective (which is often impossible [124] and at least 

non-trivial [125]), how such preferences are to be modelled and how each objective 

functions (which is typically “a very expensive process” [5]).  Moreover, since 

single-objective search will generally only produce a single optimal solution, minor 

errors in preference articulation or modelling can lead to results that fail to correctly 

map to the needs of the user.  Worse still, since the single optimal solution lacks the 

context that is provided by a rich Pareto front estimation, such variations are difficult 

to identify and may lead to the acceptance of sub-optimal solutions.  

While the cost of human error in a priori objective filtering is high, there exist more 

subtle ramifications in relying on hard preferences prior to a search.  By biasing the 

process according to pre-conceived ideas about the nature of useful solutions and the 

properties of the decision-space, the search process is fundamentally constricted.  

Although the resultant solution may be optimal according to the expectations of the 

user, there is no potential for branching out beyond those expectations.  Consider a 

design where great priority is placed on production cost and very low priority is 

placed on environmental impact — in this case, potentially fantastic ideas that result 

in minimal environmental damage at only a slight increase in monetary cost may be 

rejected due to sub-optimality.  Since multiobjective optimisation illustrates a host of 

wide ranging solutions, it offers the scope to question previously held expectations 

and capture unexpected, but potentially useful, outcomes.      

The need for a priori information also severely inhibits the use of single-objective 

scalarisation in exploratory design, where the aim is to develop an understanding of 

the problem at hand.  Since express knowledge of the domain is typically minimal in 
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these circumstances, multiobjective optimisation, which requires very little a priori 

problem analysis (aside from that which is required to formulate the objectives), is 

ultimately better suited. 

2.4.2.2 A POSTERIORI ISSUES 
While scalarisation is inherently contingent upon sufficient a priori information, 

multiobjective search is similarly bound by the need for a posteriori solution 

filtering.  Given that the extraction of a final solution from the set of compromises is 

essentially based on preference information (the end-user selects the solution they 

most prefer from the non-dominated set), it seems reasonable to assume that many of 

the criticisms levelled against preference articulation in single-objective search can 

be equally applied to the multiobjective case.   

The key difference is context.  The articulation of preferences in multiobjective 

optimisation is no longer based on the relatively abstract notions of objectives, but 

rather on a finite list of actual solutions.  Consider purchasing a new home — in the 

a priori case it may be necessary to rank the relative importance of size, outlook, 

interior design and number of bedrooms; in the a posteriori case the buyer can make 

a selection based on visiting each property.  It is also important to note that any error 

made in the a posteriori articulation of preferences simply requires rearticulation — 

in the a priori case, this can require both a complete re-structuring of the problem 

and a new search.       

2.4.2.3 UNSTABLE USER NEEDS 
As illustrated in the Formula One wing design example (see Section 2.3), the utility 

of a multiobjective optimiser is particularly useful in an environment where the 

needs of a designer are dynamic — ever changing according to the situation at hand.  

Unlike a scalarised single objective search, a diverse set of compromises allows for 

the preferences of a designer to change without the need for a new search of the 

solution-space or a re-specification of the problem.  Such disparity is particularly 

significant in time-sensitive systems where additional optimisation runs may be 

infeasible or undesired. 
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2.4.2.4 DESCRIPTIVENESS 
Single-objective search is ultimately a mechanism that focuses on the development 

of a singular optimal idea — it does little to elucidate the relationships that exist 

between objectives, offer depth in a solution set or illustrate the context of a 

proposal.  While such focus allows for rapid movement through the search-space, it 

lacks the descriptive value of multiobjective search, which is particularly powerful in 

detailing the interaction between objectives.  Since most solutions produced by an 

optimiser will be adjusted, modified or experimented with in some way after the 

completion of a run, the additional information provided by multiobjective 

optimisation can guide this development process and potentially save both time and 

expense. 

2.5 CONCLUSIONS 
This chapter has explored the central concepts and motivations behind contemporary 

multiobjective optimisation theory and application.  In particular, it described and 

detailed the importance of the Pareto relations and how these may be harnessed to 

partially order the objective-space.  When used in conjunction with incomparability, 

Pareto dominance provide the means for defining both locally optimal trade-offs, the 

ideal target set and a mechanism for building intelligent search algorithms.  Most 

importantly of all, the Pareto relations offer a way of defining solution preferability 

without an explicit need for a priori information and the resultant non-dominated 

sets provide a range of contextualised, descriptive and flexible compromise 

proposals.   
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3 HOW TO PERFORM MULTIOBJECTIVE 
OPTIMISATION 

Preceding sections have been deliberately vague in the analysis of how 

multiobjective optimisation functions — it has been enough to assert that search 

techniques, harnessing the power of Pareto dominance, exist and that they provide 

mechanisms for moving through the objective-space towards apparently optimal 

regions.  With the foundations and motivations of multiobjective theory now well 

established through overview, formalisation and illustrative examples, a more 

detailed, though still introductory, exploration of multiobjective optimisation is 

appropriate. 

3.1.1 DEFINING A BASIC INTELLIGENT ITERATIVE SEARCH 
ALGORITHM 

For the purposes of this work, a basic search algorithm is charged with the 

progressive exploration of high-utility regions of the decision-space.  Consider a 

population of solutions P: a basic search algorithm assesses the utility of each 

constituent (p) of that population and selects b (1 ≤ b ≤ |P|) members (the bag4 S) 

around which the search will be centred.  Progression through the space is achieved 

by varying constituents of S (via the vary() operator – see Section 3.1.4) to produce 

c (c ≥ 1) new members.  The resulting bag is added to e (0 ≤ e ≤ |P|) solutions from P 

to form the population for the next iteration of the search.  As outlined in Algorithm 

1, a complete basic search is simply a repetition of this procedure, with provisions 

made for the generation of the initial bag and termination5.  

 

Algorithm 1 — A Basic Search Algorithm 

1: : generateInitialPopulation()=P  Specify the starting point of the search. 

2: while(terminateSearch() true)≠  Continue searching until termination conditions met 

3:  , : utility( )∀ ∈ =utilityp P p p  Calculate and record the utility of each solution. 

4:  : select( , )=S P b  Select b members of P for variation. 

5:  : vary( , )′ =P S c  The population for the next iteration is the c solutions 
7:  : truncate( , )=Archive P e  created from the selection set and the members of 
8:  : ′= ∪P P Archive  the Archive (which features at most e proposals). 

                                                 
4  Note that S is a bag and not a set.  The select() operator may extract the same solution from P 

multiple times and there is therefore no guarantee that the constituents of S are unique. 
5  See the work of Laumanns et al. [126] for an alternative, though equally valid, generic search 

model.  
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It is important to note that the b, c and e parameters need not necessarily be fixed 

constants, they can vary over the course of the run (perhaps according to the 

changing properties of the population P).  For the most part though, this flexibility is 

not capitalised upon by contemporary optimisation algorithms.  

3.1.2 ANALYSING THE BASIC SEARCH ALGORITHM 
It is important to note that the analysis of the simple algorithm described in Section 

3.1.1 is subject to a number of reasonable assumptions.  Specifically, it is assumed 

that:  

• The select() operator biases high-utility solutions and it is always possible 

to select b members from P;  

• The vary() operator produces new solutions that are derived from, though 

typically unique to, the members of S; and 

• The truncate() operator disposes of the ( )−P e  lowest utility solutions  

in P. 

If these assumptions hold true, variation in the b, c and e parameters dictates much of 

the behaviour of the algorithm.  The b setting reflects the trade-off between 

exploration and exploitation — as b
P

 tends towards zero, more selective pressure is 

applied and only the most promising solutions (according to the selection operator) 

are pursued; as b
P

 tends towards one, the search becomes more random (due to a 

decrease in selection pressure).  The e parameter indicates the level of elitism 

employed, where e
P

 is the fraction of the population carried over from previous 

iterations.  When 1=e
P

, no solutions are ever lost and the selection operation 

operates on an unbounded population set; when 0=e
P

, selection considers only 

those solutions produced during the previous iteration.  The c parameter suggests 



Escaping the Bounds of Generality — Unbounded Bi-Objective Optimisation 

 

-30- 

how aggressively the search is focussed around the b selected members (the higher 

the value of c
b

, the more thorough the search around S becomes). 

Complementing the exploitation/exploration trade-off suggested by the b parameter 

setting is the selection operation.  Though, the procedure should be charged with 

biasing high-utility solutions, it may incorporate noise to encourage the increased 

diversity offered by the inclusion of weaker proposals.  While a host of differing 

approaches exist, at their core, most contemporary search algorithms make use of 

truncation, tournament or roulette-wheel selection methods (see [127] for summaries 

of popular methods).  Truncation is the simplest of the available approaches and 

simply requires the selection of the b best proposals.  In the tournament 

methodology, participating solutions are randomly selected and the winner is the 

entrant featuring highest utility, with the bag S produced by performing this 

procedure b times.  In roulette-wheel, selection is probabilistic, with the likelihood of 

a solution being selected proportional to its normalised utility score.  The inclusion 

of restrictions in these basic operations can give rise to the types of selection 

procedures encountered in Tabu Search [128, 129] (filter prospective members with 

a tabu list) and Simulated Annealing [130, 131] (select weaker solutions according to 

a cooling scheme).    

3.1.3 CONSTRUCTING EXAMPLE GENERIC SEARCH ALGORITHMS 
With the basic algorithm and parameter definitions in place, it is possible to construct 

a number of common search strategies by simply adjusting the key parameters of the 

generic procedure (see Table 1 for a summary).  Note that the strengths and 

weakness of these approaches in a multiobjective context will be examined later (see 

Chapter 6, Chapter 8 and Chapters 9–12, in particular) — this section is principally 

devoted to their core definitions. 

3.1.3.1 RANDOM SEARCH 
The simplest basic search technique, random search, disregards the utility of 

solutions and moves randomly throughout the decision-space.  Clearly, any effective 

intelligent search should outperform such a rudimentary system, though it is may be 

used as a base-line technique (see, for instance, Zitzler, Deb and Thiele’s study [92]) 

and is included here for the sake of completeness. 
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Table 1 — Various Basic Search Procedures using Algorithm 1 

generate 
initial 
population() 

Produce exactly one solution. 

select() Arbitrary 
truncate() Remove all members from P. 

Single Point 
Random 

Walk 
b c e 1 1 0 

generate 
initial 
population() 

Arbitrary. 

select() Return all members of P. 
truncate() Remove all members from P. 

Population 
Based 

Random 
Search 

b c e v > 1 
(a user-defined constant) v 0 

generate 
initial 
population() 

Produce exactly one solution. 

select() Return highest-utility solution from P. 
truncate() Remove lowest-utility solution from P. 

Greedy Hill 
Climbing 

b c e 1 1 1 
generate 
initial 
population() 

Produce n solutions (where n is a user specified number; n ≥ 1). 

select() Biases retrieval of high-utility solutions from P. 
truncate() Remove all members from P. 

Non-Elitist
Population 

Based  
Search 

b c e v > 1 
(a user-defined constant) n 0 

generate 
initial 
population() 

Produce n solutions (where n is a user specified number; n ≥ s). 

select() Biases retrieval of high-utility solutions from P. 
truncate() Biases removal of low-utility solutions from P. 

Bounded 
Elitist 

Population 
Based  
Search b c e v > 1  

(a user-defined constant) 
q – s 

(q is a user-defined 
constant; q ≥ s) 

s ≥ 1 
(a user-defined constant) 

generate 
initial 
population() 

Produce n solutions (where n is a user-specified number; n ≥ 1). 

select() Biases retrieval of high-utility solutions from P. 
truncate() No solution is removed from P. 

Unbounded 
Elitist 

Population 
Based  
Search b c e 

x 
(user-defined constant 

or proportion of P) 

y 
(user-defined constant 

or proportion of P) 
|P| 

   

When the generateInitialPopulation() operator produces a single random 

solution and parameter values of b = 1, c = 1 and e = 0 are employed, Algorithm 1 

instigates a random walk about the solution-space.  A population-based random 

search can be achieved by setting e = 0, b and c to some user defined constant and 

using a select() operator that returns all members of P6. 

                                                 
6  Note that since selection does not bias high-utility solutions in either the random walk or 

population-based approaches, the analysis provided in Section 3.1.2 does not hold for either search 
procedure. 
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3.1.3.2 GREEDY HILL-CLIMBING SEARCH 
Amongst the simplest of the intelligent search strategies, greedy hill-climbing 

algorithms actively pursue the single most promising proposal and operate on only 

two solutions — typically referred to as the parent and child.  At any time t, the 

selection bag S is composed only of the best solution found thus far (the parent), with 

replacement only occurring when a variant of this solution (the child) is of superior 

utility7.   

The random walk technique offered in the preceding section is transformed into a 

hill-climbing system by setting e = 1 (thus allowing comparison between parent and 

child) and using a selection mechanism that always chooses the highest utility 

member of P.   

3.1.3.3 NON-ELITIST POPULATION-BASED SEARCH 
Where the hill-climbing search was tasked with the optimisation of a single solution, 

a population-based search endeavours to improve multiple proposals simultaneously.  

In a non-elitist form of population-based searches, solutions remain in the set P for 

exactly one iteration — irrespective of how impressive they are with respect to 

utility.  As such, there can be no guarantee that the current population contains the 

best set of proposals discovered thus far or even the single best solution found. 

A non-elitist population-based search can be formed by using a selection mechanism 

that biases high-utility solutions and setting e = 0, c to any user-defined population 

size and b to any user-defined constant greater than zero.  It is worth noting that b 

can be any positive integer since selection can extract the same solution multiple 

times. 

3.1.3.4 ELITIST POPULATION-BASED SEARCH 
If a less temporal store of valuable solutions is required, the population-based search 

can be amended to include historical data via the incorporation of elitism.  A 

common technique is to include a truncated form of the complete history of the 

search that is bounded in size by some user-defined parameter s (1 ≤ s < |P|).  The 

                                                 
7  A common variation is to allow replacement when the solutions are of equivalent worth, with 

heuristics often used to determine which solution better aids the search. 
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truncated elite search requires e = s, b > 0, c > s and a 

generateInitialPopulation()operator that produces more than s solutions. 

By bounding the number of solutions that may be maintained across iterations 

however, potentially useful proposals may be lost.  An unbounded approach 

guarantees that this cannot occur and can be formed by ensuring no truncation ever 

occurs (e = |P|).  In this case, settings for b and c are flexible (not necessarily fixed) 

and dependent on the user.    

3.1.4 SOLUTION VARIATION 
The basic search techniques all assume the existence of some variation operator that 

is responsible for the transformation of solutions.  Though the mechanisms employed 

vary (particularly with the type of alphabet used and the form of problem 

encountered) most techniques are built on the same general principle — that is, to 

offer variants of selected solutions that represent similar, though distinct, portions of 

the decision-space.   

Amongst the most popular of the variation mechanisms in contemporary research, 

and the type that will be used for all optimisers explored in this thesis, are the genetic 

operators.  Derived from biological inspirations, their use with the basic search 

procedure outlined in Section 3.1.1 gives rise to what is commonly known as the 

genetic algorithm [132, 133] (a specialisation of the more general evolutionary 

algorithm). 

3.1.4.1 GENETIC OPERATORS AND GENETIC ALGORITHMS 
The genetic algorithm is little more than an analogy used to clarify the generic search 

technique when variation is performed via genetic operators.  By recasting the core 

components of the basic search procedure into a biological framework, the process 

takes on the characteristics of a simplified Darwinian system.  If solutions are 

chromosomes made up of genes and the utility of a chromosome is its fitness against 

a given problem, progressive improvement based on reproduction (variation) 

according to fitness implies an evolution of the chromosome; as in nature, the fit 

survive to propagate their genetic traits.         

The genetic operators (acting under the banner of reproduction) vary an incoming set 

of solutions via rudimentary approximations of crossover and/or mutation.  
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Crossover mimics sexual reproduction by splicing together two solutions 

(chromosomes), while mutation perturbs selected decision variables (gene values or 

alleles).  The specifics of how these procedures are achieved vary dramatically (see 

[134, 135] for a review), though single-point and two-point crossover are both 

popular approaches (see Figure 8 for illustrations), while mutation is typically 

achieved by shifting the original gene value according to some random Gaussian.  

Users must also specify the rates at which crossover and mutation are applied for any 

given variation — with common settings fluctuating across the field8. 

3.1.5 DEFINING SOLUTION UTILITY 
Defining solution utility (or fitness, in the parlance of evolutionary algorithms) for 

single-objective optimisation is trivial — the better a solution performs on the given 

problem, the better its utility.  If a multiobjective problem is scalarised, the 

performance of a solution is similarly straight-forward — the operation proceeds 

precisely as it would in the context of a single-objective domain.  However, 

scalarisation is an inherently flawed notion (as outlined in Section 2.4.2 and 

discussed, to a lesser extent, in Section 4.1) and the majority of contemporary 

evolutionary researchers prefer the performance of solutions to remain in its original  
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(a) Single-Point Crossover 

0.2 0.3 0.1 0.5 0.5

0.8 0.6 0.4 0.9 0.6

0.2 0.3 0.4 0.9 0.5

0.8 0.6 0.1 0.5 0.6

 Parent 1

 Parent 2

 Child 1

 Child 2

 
(b) Two-Point Crossover 

Figure 8 — Sexual Crossover 
The dashed line represents the crossover point/s.  Shaded genes represent those portions of a child 

inherited from the first parent; unshaded regions indicate genes provided by the second parent. 
 
                                                 
8  Dumitrescu et al. [134] note that traditionally the probability of gene-mutation lies between 0.001 

and 0.01 (with contemporary studies using a lower bound of 1/m), while crossover rates generally 
fall between 0.2 and 0.95.  In contemporary genetic algorithm-based multiobjective optimisation 
research, it is far more common for crossover to occur between 60% and 100% of the time (see, 
for instance, [82, 91, 92, 136-138]). 
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vector form, with Pareto dominance guiding the search [95]9.  As implied in Section 

2.1 however, Pareto domination alone imparts only a partial order on solutions and is 

thus insufficient for a complete fitness function — it is ambiguous as to where 

incomparable solutions should be ranked.  Given the explicit goal of most 

multiobjective optimisers is to develop an accurate, well spread and evenly 

distributed front [139], it appears that a reasonable resolution of the issue can be found 

if the dominance performance of a solution can be effectively merged with its 

capacity to improve the extent and distribution of the set in which it resides.  

Assuming such a combination infers a complete, unambiguous, order amongst any 

set of solutions, not only has an applicable fitness function been defined, but one 

which also drives the search according to the core needs of multiobjective 

optimisation.   

It is perhaps unsurprising then that the vast majority of contemporary multiobjective 

evolutionary algorithms feature utility functions that, at their core, are predicated on 

these principles (as illustrated in Section 3.1.6).  Though the specifics are a key point 

of differentiation between algorithms (again, see Section 3.1.6), the same general 

methodologies typically apply — a measure of solution dominance is augmented by 

an estimation of crowding that infers how valuable it is to the distribution and extent 

of the front.  Under this procedure, non-dominated uncrowded solutions are the elite 

of the current population and it is these types of solution that the search is actively 

pursuing.   

3.1.6 EXISTING EVOLUTIONARY MULTIOBJECTIVE OPTIMISERS 
Though it is beyond the scope of this work to offer a review of all existing 

evolutionary multiobjective optimisers (see [125] for an excellent, though 

increasingly dated, summary) and later sections will explore a host of leading 

techniques in finer detail (see Chapters 9–12), it is important to examine how 

existing approaches combine the properties of a basic search technique with unique 

definitions of solution utility to form a cohesive whole.  As such, Table 2 and Table 

3 offer a constructive summary of some of the most popular Pareto-based 

multiobjective evolutionary algorithms in the field.   

                                                 
9  A study of all multiobjective evolutionary algorithms up until 2001 [125] offers further support to 

such a claim – with approximately twice as many papers on Pareto-based techniques than on 
scalarisation methods.  
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Table 2 — Traditional Pareto-Based Approaches to Evolutionary Multiobjective Optimisation 
r is the user-defined crossover probability.  For convenience, this table always assumes that the 

desired size of P is directly related to the size of the initial population.  This is typically the case, but 
need not necessarily be true. 

generate 
initial 
population() 

Produce n solutions (where n is a user specified number; n ≥ 1). 

utility() Number of solutions dominated and fitness sharing. 
select() Tournament. 
truncate() Remove all members from P. 

MOGA 
(1993) 
[140] 

b c e c * (1+r) n 0 
generate 
initial 
population() 

Produce n solutions (where n is a user specified number; n ≥ 1). 

utility() 
Examine Pareto dominance in a subset of P (size defined by 
end-user); if precisely one solution is non-dominated, it wins, 
otherwise perform fitness sharing. 

select() Tournament. 
truncate() Remove all members from P. 

NPGA 
(1993) 

[141, 142] 

b c e c * (1+r) n 0 
generate 
initial 
population() 

Produce n solutions (where n is a user specified number; n ≥ 1). 

utility() 
The population is split into distinct ordered fronts.  In any front 
of rank l, all members must be incomparable and non-dominated 
by any constituent of a front greater than l.  Performance is 
based on the frontal ranking of a solution and fitness sharing. 

select() Roulette wheel. 
truncate() Remove all members from P. 

NSGA 
(1994) 

[2] 

b c e c * (1+r) n 0 
 

 

It is interesting to note that there is a striking paradigm-shift between the traditional 

and contemporary techniques.  The pioneers of the field concentrated principally on 

non-elitist procedures that capitalised on rudimentary fitness sharing techniques — 

where the utility of a solution is modified according to the number of solutions that 

share a particular objective- or decision-space niche of pre-defined size.  In contrast, 

the more contemporary techniques introduce complex density estimation procedures 

for utility augmentation and illustrate an increased reliance on elitism (that is, the 

maintenance of apparently useful solutions across generations).   
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Table 3 — Contemporary Approaches to Pareto-Based Evolutionary Multiobjective 
Evolutionary Algorithms 

r is the user-defined crossover probability; a is a user-defined archive size; a' is a user-defined archive 
size or the cardinality of the non-dominated set in P (whichever is smaller); x is a user-defined value 
for the number of solutions produced through variation.  For convenience, this table always assumes 
that the desired size of P is directly related to the size of the initial population.  This is typically the 

case, but need not necessarily be true. 

gen. initial 
population() Produce n solutions (where n is a user specified number; n ≥ 1). 

utility() 
Fitness of archival members is proportional to the number of 
proposals that they dominate in P.  Utility of remaining 
members is related to the sum of the fitness scores of the non-
dominated proposals that dominate them.   

select() Binary tournament. 

truncate() Retain only non-dominated proposals from P.  If necessary, 
truncate according to clustering. 

SPEA 
(1998) 

[80, 137] 

b c e c * (1+r) n - a' a' 
gen. initial 
population() Produce exactly one solution. 

utility() 
Divides the objective-space into a series of cells.  The variant 
(child) is selected only if it dominates the selected solution or is 
otherwise non-dominated by an external archive of good 
proposals and resides in a less crowded objective-space cell.  

select() Single competition. 
truncate() Remove the loser of the competition from P. 

PAES 
(1999) 
[143] 

 
More details 
provided in 

Section 9.2.1.1. 

b c e 1 1 1 
gen. initial 
population() Produce n solutions (where n is a user specified number; n ≥ 1). 

utility() As per NSGA, though with cuboid nearest-neighbour estimates 
replacing fitness sharing. 

select() Binary tournament with members of Archive. 
truncate() Worst according to utility. 

NSGA-II 
(2000) 
[144] 

 
More details 
provided in 

Section 9.2.3.1. b c e c * (1+r) n/2 n/2 
gen. initial 
population() Produce n solutions (where n is a user specified number; n ≥ 1). 

utility() Number of solutions sharing objective-space cell with solution. 
select() Binary tournament of randomly extracted archival members. 

truncate() Retain non-dominated proposals, reduce according to cell-based 
crowding. 

PESA 
(2000) 
[83] 

 
More details 
provided in 

Section 9.2.2.1. b c e c * (1+r) n – a' a' 
gen. initial 
population() Produce n solutions (where n is a user specified number; n ≥ 1). 

utility() Strength of all solutions dominating the member (where strength 
is the total number of proposals in P that a solution dominates). 

select() Binary tournament of archival members. 

truncate() 
Retain non-dominated proposals.  If resultant Archive is too 
large (>a) reduce according to κth nearest-neighbour crowding; if 
Archive is too small (< a), increase by including highest utility 
dominated proposals. 

SPEA2 
2001 

[81, 145] 
 

More details 
provided in 

Section 9.2.4.1. 

b c e c * (1+r) n - a a 
gen. initial 
population() Produce n solutions (where n is a user specified number; n ≥ 1). 

utility() Based on Pareto-compliant performance indicators. 
select() Binary tournament of archival members. 
truncate() Remove lowest utility solutions. 

IBEA 
(2004) 
[91] 

 
More details 
provided in 

Section 10.2. b c e c * (1+r) n-a a 
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3.2 CONCLUSIONS 
This section has offered an insight into how the principles of Pareto optimality may 

be effectively merged into a standard search procedure to produce a range of distinct 

evolutionary multiobjective optimisers.  At their core, all of the examined 

multiobjective techniques approximate the utility of a solution according to some 

combination of Pareto dominance and crowding (even if this is done implicitly, as in 

IBEA), with contemporary optimisers sharply differentiating themselves from the 

first-generation of techniques through the use of truncated elite archives that reduce 

the loss of valuable solutions.  Subsequent sections (see Section 6.2.1, Section 8.1.1 

and Chapters 9–12, in particular) will explore in finer detail this difference, the 

motivations that inspired such a dramatic sea-change in the field and some of the key 

algorithms that belong to the second generation of techniques.  For now though, a 

more pressing concern is discovering precisely what it is about multiobjective 

problems that has presented such a challenge for algorithm designers and has 

inspired such a rich tapestry of research in the field. 
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4 REAL-VALUED MULTIOBJECTIVE PROBLEM 
CHARACTERISTICS 

As evidenced in the Formula One wing design example (see Section 2.3), 

multiobjective problems can contain seemingly subtle issues that fundamentally 

inhibit the search process.  While adapting improved designs for the front wing was 

complicated by the disparity between solution- and objective-space proximity 

(Section 2.3.4), this illustrates just one of a host of complex problem features that 

appear in real-world multiobjective tasks.  Thus, the overall performance of a 

multiobjective optimiser is contingent upon its robustness in light of these 

characteristics.   

4.1 SHAPE OF THE PARETO OPTIMAL FRONT 
Multiobjective problems give rise to Pareto optimal fronts (or, more generally, trade-

off surfaces) that feature convex, concave or linear regions — with no guarantee that 

all regions will be of the same shape or size (see Figure 9).  The separation between 

each region represents discontinuities in fitness space (see Figure 9), where fronts 

consisting of minimal region size and high discontinuity lack any discernible shape 

and are better expressed as a collection of independent points. 

While the difficulties caused by the various surface shapes will be addressed in more 

detail later (see Chapters 9–12, in particular), concave regions are generally 

recognised as the most problematic.  For the wide range of search techniques that are 

reliant on implicit or explicit linear function approximation (such as the Vector 

Evaluated Genetic Algorithm [146] and the weighted-sum-based techniques 

reviewed in [5]), suitable approximations of concave optimal regions simply cannot 

be found [5, 147].  Instead, these searches strongly bias solutions of maximal reward 

in each objective — failing to adequately address intermediate or mutually beneficial 

solutions. 

Although the community generally recognises objective-space convexity as a 

significantly less difficult problem feature than concavity (of all problem features 

examined in Zitzler, Deb and Thiele’s study [92], they note that convexity appears to  
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Figure 9 — Example Pareto Optimal Fronts 
(a) Convex.  (b) Concave.  (c) Linear.  (d) Mixed.  (e) Discontinuous mixed. 

 

“cause the least amount of difficulty”), certain forms of Pareto dominance-guided 

search will infer a bias around mutually beneficial solutions [148].  The effect of 

such biasing is that algorithms may face difficulties in locating the extreme solutions 

0

0.5

1

0 0.25 0.5 0.75 1

Objective One

O
bj

ec
tiv

e 
Tw

o

 
(a) 

0

0.5

1

0 0.25 0.5 0.75 1

Objective One

O
bj

ec
tiv

e 
Tw

o

 
(b) 

0

0.5

1

0 0.25 0.5 0.75 1

Objective One

O
bj

ec
tiv

e 
Tw

o

 
(c) 

0

0.5

1

0 0.25 0.5 0.75 1

Objective One

O
bj

ec
tiv

e 
Tw

o

 
(d) 

0

0.5

1

0 0.25 0.5 0.75 1

Objective One

O
bj

ec
tiv

e 
Tw

o

 
(e) 



Escaping the Bounds of Generality — Bi-Objective Optimisation 

-42- 

that define the boundaries of the Pareto optimal front.  Such boundaries are 

significant in placing compromises in context and, consequently, their absence will 

inevitably cost the end-user some understanding of the nature of the objectives being 

addressed.   

Finally, discontinuous surfaces can lead search algorithms to inappropriately bias 

isolated sub-regions [148], particularly if a given portion of space is more densely 

populated than other areas.  The danger associated with such partially represented 

Pareto optimal fronts is that they can provide a misleading, or otherwise incomplete, 

representation of the relationships that exist between objectives and the extent of the 

fitness space.  Moreover, an incomplete front fails to provide the rich palette of 

compromise solutions expected from a multiobjective optimisation run.   

Given that concave, convex and discontinuous surfaces can each adversely affect the 

quality of the final output produced by a search, the analysis of multiobjective 

optimisers under the presence of differing frontal shapes has been a key point of 

investigation in many studies (see [92, 149-151], for instance).  Still, the shape of the 

optimal trade-off surface will typically affect the search only near the completion of 

the process, where the optimiser is tasked with distributing the solutions along the 

discovered optimal front.  Progression towards that front is more strongly influenced 

by the characteristics of the objective- and decision-spaces as a whole. 

4.2 THE NATURE OF THE OBJECTIVE-SPACE 

4.2.1 BIAS 
The uniformity of the objective-space for any real-world multiobjective problem is 

generally not well known in advance, but it is likely that at least some regions will be 

more densely populated than others.  Since search processes tend to bias areas of 

high occupation [148], it follows that the performance of a multiobjective optimiser 

may be influenced by the placement of solutions in fitness space.  In particular, if 

solutions are densely populated in a region of objective-space that is far removed 

from the Pareto optimal front (see Figure 10a), convergence onto the front is likely to 

be slow.  Similarly, a high density of solutions focused around a specific segment of 

the Pareto optimal front (see Figure 10b) may result in overtly biased approximations 

or slower development of a more evenly distributed set. 
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Figure 10 — Example Biased Fitness Spaces 
(a) Biased away from Pareto optimal region.  (b) Biased around a small region of the Pareto  

optimal front.  (c) Highlighted points are isolated from much of the fitness space.  Darker shading 
represents a higher density of points. 

 

Given the propensity for most search algorithms to favour areas of high solution 

density, it is not particularly surprising to note that isolated points (as illustrated in 

Figure 10c) are often particularly difficult to locate (assuming a reasonable accord 

between solution- and objective-space proximity).  Since such solutions will provide 

little gradient information in fitness-space to encourage a search, isolated optimal 

regions represent amongst the most difficult of the multiobjective problem 

characteristics.   
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Figure 11 — An Example Deceptive Fitness Space 
Objective-space is biased towards a locally impressive, but ultimately poor, region.  Darker shading 

represents a higher density of points. 

 

4.2.2 DECEPTION 
When an objective-space is biased in such a way as to mislead a search towards 

locally optimal, but globally sub-optimal, solutions, it is classed as deceptive.  

Typically, a deceptive problem requires both a high density of solutions near the sub-

optimal region, but also some form of positive utility-gradient that a search can 

erroneously follow (see Figure 11, for instance).  It is possible, given a suitably 

strong set of attractors that are well removed from other, more beneficial, portions of 

objective-space, that a search can become stranded in locally optimal space — much 

like a crayfish lured into a craypot.  To escape the region, a search must be capable 

of retracing its steps (in spite of negative reward) or otherwise jumping to a different 

section of search space (typically through some form of stochastic variation).          

4.2.3 MULTIPLE FRONTS 
Any region in objective-space that consists of well-distributed locally10 non-

dominated solutions can be classed as a sub-optimal front (see Figure 12 for an 

illustration).  In most multiobjective works, the existence of such fronts is referred to 

as multi-modality (as suggested by Deb [148]), though Veldhuizen [152] and Coello  

 

                                                 
10  In general, the concept of local space is ill-defined, and used to indicate an area near to the current 

region examined.    Even the definition provided by Deb [148] fails to provide a fixed term for the 
extent of space covered.    
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Figure 12 — An Example Multi-Frontal Fitness Space 
The included fitness space features two isolated fronts — a sub-optimal, local front and the globally 

Pareto optimal front. 

 

et al. [51] correctly note that the name is potentially misleading given its alternative 

use in single-objective optimisation (they prefer the term, multi-frontal).  Irrespective 

of name, moving through sub-optimal fronts is difficult for most algorithms, 

particularly if the region is largely removed from better solutions.  As with singly 

isolated solutions, isolated fronts provide little Pareto dominance-based gradient 

information upon which to move a search forward, and many optimisers will stall — 

endeavouring instead to distribute solutions along the front.  

4.2.4 NOISE 
For real-world problems, particularly those that require some form of practical 

testing or imprecise modelling, there is no guarantee that a particular solution will 

consistently give rise to an identical point in objective-space [10, 153] (see Figure 13 

for an example noisy solution) — it may be subject to inaccurate measurement, flaws 

in construction or variable test conditions.  In the pathological case, such poor 

fidelity can lead to the rejection of good compromises in exchange for bad solutions 

— but even in systems of relatively low noise, potentially useful search ideas may be 

rejected.  If multiobjective optimisation is to find successful application in real-world 

problems, search algorithms should be able to adequately circumvent the effects of 

such noise. 
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Figure 13 — An Example Noisy Solution 
The utility of the solution changes depending on when it is observed. 

 

4.2.5 COLLATERAL NOISE 
A more subtle problem exists in the shape of collateral noise [148], where the utility 

of a solution is poor due to a small subset of the decision variables.  If the remaining 

elements of the solution are beneficial to the search process, the poor performance is, 

at least partially, misleading, and may result in the loss of useful ideas.  It is akin to 

building a magnificent house and destroying it because of a single unappealing brick. 

Since, the potential for such disruptive noise is generally not well known in advance, 

it is difficult to address without a thorough understanding of the relationships that 

exist between parameters in the solution-space or a robust search algorithm that can 

perform well in spite of its presence. 

4.2.6 DYNAMIC OBJECTIVE-SPACES 
While the shifting fitness landscapes of a noisy system are a by-product of inaccurate 

performance measurements, dynamic objective-space is a reflection of the problem 

itself.  Specifically, a dynamic problem is one whose goals are not fixed — they will 

vary with time due to some property of the system being modelled (see Figure 14).  

For instance, a public power distribution system will have differing requirements 

depending on the demands of the population at any given time.  Thus, where a search 

algorithm addressing a noisy function is fundamentally charged with finding the true  
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Figure 14 — An Example Dynamic Fitness Space 
(a) The initial state of the illustrative space.  (b) and (c) The fitness space after subsequent time steps 

— note that the Pareto optimal front, and the space in general, vary over time in this example. 

 

optimal points that are concealed by noise, the goal in a dynamic problem domain is 

instead to locate and subsequently track the moving optima [154].  Consequently, 

dynamic problems and noisy functions represent conflicting requirements in an 

optimiser — a noisy function needs robustness and rigidity in the face of subtle 

change, while adaptability is paramount in dynamic problem sets.  

4.2.7 DIMENSIONALITY AND EXTENT 
Perhaps unsurprisingly, the extent and dimensionality of the objective-space play a 

large part in determining how efficiently and effectively a Pareto optimal front 

approximation can be formed.  In particular, with a larger number of objectives, it 

becomes considerably more difficult to establish Pareto dominance [155] — a greater 
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majority of solutions will be incomparable, and thus any Pareto guided search must 

develop a way of identifying which of these solutions is more valuable.  Such are the 

difficulties associated with high-dimensional problems that Bellman and Dreyfus  

([156] citing [157]) grimly describe these effects as a consequence of the 

“dimensionality curse”.  

Generally less significant is the extent of the objective-space under consideration.  In 

particular, growth in continuous spaces will tend only to slow the overall search 

process (since, fairly obviously, there is a greater area to explore).  Still, if there are 

disparities between the extent of differing objectives, there does exist the potential 

for biasing — searches may focus greater exploratory pressure on the larger 

dimension, for instance. 

More problematic are undefined spatial boundaries — where a lack of a priori 

domain knowledge prohibits a precise definition of the extent of particular 

dimensions.  Since the range of potential values cannot be provided in advance, those 

algorithms reliant on objective-normalisation will be severely inhibited.  In such 

cases, initial exploratory runs or localised normalisations (based on a subset of the 

solutions found thus far) are likely to be necessary. 

4.2.8 DEGENERATIVE FRONTS 
There is no guarantee that the Pareto optimal front of a given problem will be 

expressed in every dimension of the objective-space.  For instance, the optimal 

region of a three-dimensional objective-space may be fully expressed as a two-

dimensional concave trade-off surface, or a bi-objective problem may degenerate 

towards a single optimal solution (as in Figure 15).  While practical applications of 

multiobjective optimisation illustrate that such degenerative fronts are atypical11 and 

though the characteristic has only recently drawn any attention from the field (see the 

impressive work of Huband et al. [158]), it rests as an interesting test of the 

robustness of a search under changing conditions. 

 

                                                 
11  The author of this thesis is unaware of any contemporary practical multiobjective study that 

describes the presence of a completely degenerative front. 
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Figure 15 — An Example Degenerative Problem 
The multiobjective problem degenerates towards a single ideal solution, rather than a set of trade-offs. 

 

4.3 THE NATURE OF THE SEARCH SPACE 

4.3.1 DIMENSIONALITY AND EXTENT 
While the dimensionality of the search space is generally less pivotal than the 

dimensionality of the objective-space, it will still affect the performance of a 

multiobjective optimiser.  In particular, the greater the number of decision variables, 

the more likely it is that collateral noise will influence the search process.  Moreover, 

higher dimensional spaces will generally take longer to search — if only because of 

the exponential growth of the decision-space under increasing dimensions. 

As in the objective-space (see Section 4.2.7), the extent of each decision-space 

dimension will affect search efficiency and potentially increase search space bias.  In 

general, the potential for ill-defined spatial boundaries is less likely, though still 

possible, for decision-spaces, since this information is typically known a priori.    

4.3.2 SEPARABILITY 
Many real-world problems feature solutions whose utility is contingent on decision 

variable dependencies [158] (see Figure 16).  In these circumstances, decision 

variables should not be considered independently, as the relationships that exist 

between them are significant.  Consider the construction of an ideal dinner party — 

inviting the ten most charismatic people you know means little if each of those 

people hate each other.  The interaction between variables dictates the success of the 

solution as a whole. 
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Figure 16 — An Example Non-Separable Solution 
a is dependent on b and is therefore implicitly dependent on the value of d; b is dependent on d; c and 

f are dependent upon each other; and e is completely independent of all other variables. 

 

In general, such non-separable problems are more difficult than tasks featuring 

variable independence [158] since they are subject to potentially high levels of 

collateral noise.  Alter one decision variable — swap one person from a seat — and 

the fitness of all related variables will inevitably change.  As such, optimisers that 

face high levels of non-separability require strong building-block linkages, where the 

search must somehow incorporate dependencies into the variation process.      

4.3.3 REDUNDANCIES 
For problems where domain knowledge is low, the inclusion of high redundancy 

variables is always a possibility — that is, decision parameters that have little-to-no 

affect on the overall efficacy of the solution.  By including such variables, the search 

space takes on greater dimensionality than required and will subsequently incur a 

reduction in search efficiency.   

4.3.4 OPTIMA LOCALITY 
It is not particularly surprising to note that the position of optima in solution-space 

will affect the performance of multiobjective optimisers.  In particular, extreme or 

medial decision variables (see Figure 17) will be preferred by particular forms of 

search according to the type of solution variation used (as will be discussed in 

Section 5.1.1.1).   

While it is unlikely that purely extreme or medial optima will exist in real-world 

problems, thus limiting the effect of any search bias, it can occur in test problems (as 

in the ZDT suite proposed by Zitzler et al. [92]) and is therefore important to 

identify.    

 

a b c d e f
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Figure 17 — Example Extreme and Medial Optimal Values in Solution-space 
(a) The optimal values for variable two are at an extreme of 1.  (b) The optimal values for variable two 

are medial, centred on 0.5. 

 

4.3.5 ZERO UTILITY-GRADIENTS 
If a large region of decision-space maps to a single point in objective-space, the 

search algorithm is provided with no utility-gradient information upon which to 

determine a useful direction for investigation.  Consider a solution that is surrounded 

in decision-space by variations that are all considered equally good compromises (as 

illustrated in Figure 18) — in this case, there is no obvious way of deciphering  

 

Figure 18 — An Example Zero-Utility Gradient Space 
The highlighted portion of solution-space (a) is mapped to a single point in fitness space (b). 
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which, if any, of the surrounding options provide the best chance of moving towards 

an optimal point.  It is like being lost in a forest composed only of identical trees —  

there are no landmarks for orientation.  It is possible for algorithms to become 

inexorably stranded in such featureless regions, particularly if neighbouring areas are 

of lower utility.  Even stochastic approaches with high variation in solution values 

will tend to oscillate around the centre of sufficiently large zero-gradient regions.  

Indeed, Deb [148] claims that if most of the search space lacks gradient information, 

then there exists “no optimisation algorithm [that] will perform better than an 

exhaustive search method”.   

4.3.6 GRANULARITY 
If a small region of decision-space maps to a wide variety of points in objective-

space (as exemplified in Figure 19a and Figure 19b), utility-gradient information 

may be available to a search, but very fine exploration granularity is required to 

establish the best available choices.  Since minor solution variations may lead to 

large movements through objective-space, it is possible for a search to over-step 

useful regions, potentially discouraging exploration of high-reward areas.   

In contrast, if the granularity of a search space is coarse — that is, if large portions of 

the decision-space map to a small region of the objective-space (with the extreme 

leading to a zero utility-gradient surface) — then small step sizes will invariably 

slow the process with little in the way of reward (see Figure 19c and Figure 19d).  

Thus, a successful search algorithm must balance the efficiency afforded by large 

step sizes and the efficacy of more precise movement.  In general, this accord is 

tailored to the problem at hand, often through the application of parameter tuning 

(where step sizes are adjusted according to previous performance) or domain 

knowledge (where exploration granularity is dictated by presumptions about the 

nature of the problem).      

4.4 CONSTRAINTS 
In many real-world design and engineering problems, there are regions of the search- 

or objective-space that are infeasible to realise in practice [159] — be it because of 

the complexities associated with construction, budgetary limitations or some more  
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Figure 19 — Example Search-Space Granularities 
A small region of the search space in (a) is mapped to a very large region of fitness space in (b), thus 

requiring a small step size to successfully navigate this region.  In contrast, a large area of the 
decision-space in (c) is mapped to a relatively small segment in (d) — consequently, it is best served 

by large step sizes.  Darker shading represents a higher density of points. 

 

subtle reason that a domain expert may be aware of.  In these cases, the hard 

constraints must be included in the formulation of the multiobjective problem, lest 

valuable search time be wasted locating solutions that are of no practical value.  The 

inclusion of such side-constraints12 can complicate the decision or objective-spaces 

— with the introduction of infeasible regions potentially introducing new 

discontinuities (see, for instance, Figure 20).  As such, side-constraints can introduce 

similar isolation and frontality issues to those seen in non-uniform objective-spaces  

 

                                                 
12  In multiobjective literature, the term side-constraints is generally used to reflect a constraint that 

affects more than just the boundaries of a search space. 
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Figure 20 — Example Constrained Spaces 
Example (a) illustrates a constrained solution-space, while (b) demonstrates the effects of the 

constraints in objective-space.  Note that, in this example, the feasible space in both illustrations is 
now discontiguous and a portion of the Pareto optimal front is completely obscured by infeasibilities. 

 

(see Section 4.2).  Furthermore, the search process must develop a successful 

strategy for handling infeasibility.  While it may seem obvious that a search can 

simply reject progress into infeasible spaces, prohibiting such exploration may 

severely hamper progress towards optimal feasible regions (again, see Figure 20).          

It is important to note that for some problems, portions of the space are better 

described as undesirable rather than infeasible.  In these cases, soft constraints may 

be applied to indicate a bias towards preferable parts of the decision or objective-

spaces.  While both hard and soft constraints are conceptually similar, they “must be 

uniquely processed” [51], since the exploration of infeasible space is more rigorously 

opposed than in undesirable regions. 

4.5 SUMMARY 
As explored in this section, a multiobjective task is subject to a host of complex 

problem characteristics that affect not only the appearance of the final Pareto optimal 

front, but also the structures and relationships in both search- and objective-spaces.  

While the No Free Lunch (NFL) theorems [160, 161] state that no amount of testing 

on these problem features will elucidate a clearly dominant general multiobjective 

search algorithm (since one cannot exist) — successful test functions will indicate 

the applicability of algorithms to particular types of domain.  As such, a 
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comprehensive suite of test problems that examine a rich set of features will do much 

to suggest the performance of algorithms on a wide ranging collection of domains, 

while illustrating the particular characteristics of a given search strategy. 
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5 A NEW MULTIOBJECTIVE TEST SUITE 
Since the pioneering work of Veldhuizen and Lamont [162], the number of test suites 

available to the multiobjective community has grown markedly.  Moving away from 

the ad-hoc and limited test functions that are indicative of a fledgling field, 

contemporary multiobjective optimisation researchers have developed a host of 

problems that stretch the capabilities of search algorithms across a range of features 

[92, 148, 154, 158, 162-166].  Still, despite the impressive array of options available 

for the comparison of multiobjective optimisation approaches, the claim that any 

single suite, in toto, will address all of the key characteristics of a real-valued 

multiobjective problem, is largely untrue. 

Indeed, there exists no single general-purpose test suite that investigates all of the 

key characteristics discussed in Chapter 4.  Though existing works are by no means 

unsatisfactory, they are typically limited in scope and each fails to explore important 

domain properties.  Moreover, the multi-faceted nature of most contemporary 

multiobjective test problems makes elucidating the cause of algorithmic 

improvement or decline difficult — by mixing domain characteristics, test functions 

may achieve greater kinship with practical systems but they can also muddy the 

waters of investigative studies.  As such, this thesis endeavours to offer a 

comprehensive suite of problems that each examine a core, largely isolated, 

multiobjective characteristic.  The resulting collection — featuring thorough problem 

descriptions — should act as a valuable repository for researchers, particularly those 

who are interested in examining the effects of each domain property on optimiser 

behaviour.  

5.1 EXPLORING EXISTING TEST SUITES 
Since the new composite test suite includes existing and modified functions adapted 

from the literature, an exploration of the works from which they are derived is 

valuable.  Such an analysis should draw into focus the strengths and weaknesses of 

the originating functions and provide an insight into the diversity of approaches that 

exist within the field.   
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5.1.1 ZDT FUNCTIONS 
The test suite provided by Zitzler, Deb and Thiele [92] (the ZDT collection) builds on 

the impressively simple structures developed by Deb [148], to produce a range of 

functions that each focus on a specific problem characteristic.  By examining a 

reasonably isolated feature in each task, the test suite provides insight into the 

behaviour of algorithms on particular classes of problem and suggests the overall 

value of that algorithm to the representative domain.  While limited in scope (the five 

real-valued functions are clearly insufficient to explore all multiobjective problem 

characteristics), the test suite has seen frequent application in the community and has 

been used as the basis for performance testing in a range of studies (see, for instance, 

[44, 149-151, 167, 168]).   

5.1.1.1 ANALYSING THE ZDT SUITE 
The real-valued ZDT test functions are static unconstrained bi-objective problems 

defined by Equation (18): 

( )

1 2

1 1 1

2 2 1 1 2

1 2

Minimise ( ), ( )
( ) ( )
( ) ( ,..., ) ( ), ( ,..., )

where ( , ,..., ) 

=
= ×
=

m m

m

f f
f f x
f g x x h f x g x x

x x x

x x
x
x

x

 (18) 

where f1 and f2 are the conflicting objectives of the problem; g is a single-objective 

function that controls the complexity of the objective-space (particularly with respect 

to modality and uniformity); and h is a function that dictates the shape and continuity 

of the Pareto optimal front (with f1 affecting the density of points along that front) 

[148].  A Pareto optimal point is formed by using any legal value for x1 and setting 

all remaining decision variables to zero. 

It is this last point that has drawn criticism from the field.  It has been argued that 

there is a disproportionate amount of selective pressure on the first objective and that 

the search algorithm is principally tasked with minimising f2 [97].  Moreover, by 

making the final m–1 decision variables optimal at the value of zero, there exists an 

intrinsic bias towards the extreme portions of the decision-space.  The consequence 

is that algorithms with variation procedures which tend towards boundary solutions 

will be granted an unfair advantage that is unlikely to prevail in typical domains.  

Non-pathological examples exist where performance results were fundamentally 
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affected by such a property — including a work by this author where the promise of 

a new algorithm was overstated due to a subtle bias in the variation procedure 

[169]13. 

Still, the impact of this problem can be effectively nullified if the practitioner is 

careful to ensure that all examined algorithms feature variation techniques that are 

fixed and of known type.  In this case, the comparison will at least occur on even 

footing.  This thesis provides further precautions by modifying most of the selected 

ZDT functions such that the optimal values for many of the decision variables are 

displaced (see Section 5.3). 

The simple nature of the Pareto optimal set in solution-space also leads to an 

interesting side-effect rarely noted in the literature.  The requirement for identical 

values across a large number of dimensions means that a search will face 

considerable levels of collateral noise, where a single incorrect decision variable can 

affect the perceived utility of an otherwise useful solution.  Consider the two 

solutions proposed in Figure 21 as applied to the ZDT1 function.  The first approach 

features nine of the ten decision variable values required to form a single point on the 

Pareto optimal front, while solution b includes only one (which will invariably occur 

for any generated solution for a ZDT problem).  Moreover, while the second proposal 

lacks any decision variable settings that will feature in the entire Pareto optimal 

front, solution a features eight.  Still, despite the high utility of the vast majority of 

variables in solution a, the collateral noise caused by the poor tenth variable means 

that it is dominated by the generally weaker second solution.  The presence of such 

noise in the ZDT function suite affects not only the ability of an optimiser to locate a 

single Pareto optimal point, but also to develop the entire Pareto optimal set. 

 

 0.5 0 0 0 0 0 0 0 0 0.5 
 

0.5 0.04 0.06 0.05 0.05 0.05 0.05 0.04 0.05 0.05 

a 

b 
 

Figure 21 — Illustrating Collateral Noise in ZDT1 
a is inferior to b, despite featuring nine of the ten parameter values required for a Pareto optimal 

solution (b includes only one parameter common to a Pareto optimal solution). 
 
                                                 
13  A full exploration of this issue will be the topic of a future study and is beyond the scope of this 

thesis. 
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5.1.2 CTP FUNCTIONS 
The Constraint Test Problem (CTP) test suite [164] describes a flexible collection of 

constrained problems.  Unlike other constraint-based suites (such as the generalised 

adaptation of Tanaka et al.’s [170] constrained problem — see [171] for details), the 

CTP collection allows for problems of high search-space dimensionality and 

facilitates complexities both near-to and beyond the Pareto optimal region — with 

potential for partially or fully obscured fronts and infeasibility holes (discontinuities 

caused by infeasible spaces).  The flexibility and power of the suite should enable 

thorough testing of multiobjective search algorithms in the presence of various 

constraint types.  

5.1.2.1 ANALYSING THE CTP SUITE 
While the overall nature of each constraint problem is ultimately distinct, there exist 

some commonalities in problem construction.  All tests feature low-dimensional 

objective-spaces with an at least partially infeasible convex Pareto optimal front, 

obscured by the existence of constraints.  The search spaces similarly include 

discontinuities emergent from the inclusion of constraints. 

The CTP functions used in this composite suite are of the generic form: 
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Importantly, a solution x is considered feasible only if Equation (20) holds true for 

selected real-valued parameters, a, b, c, d, e and θ: 
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where a dictates the distance from the true Pareto optimal front that constraint-

induced discontinuities begin to occur; b controls the number of disconnected 

infeasible regions; c specifies the distribution of discrete Pareto optimal regions in 

objective-space (c=1 infers no bias; c>1 favours objective one; c<1 favours 

objective two); d defines the width of feasible regions; e shifts the location of the 

constraints up or down in objective-space; and θ influences the slope of the Pareto 

optimal front.  

The g and h functions are identical in motivation to those provided in the ZDT suite 

— namely, they control the shape and complexity of the fitness space.  While both 

functions — and thus the true nature of the CTP problems — remain unspecified in 

the original work by Deb et al. [164], graphical illustrations infer convex spaces that 

are similar, if not identical, to those suggested here in  

Equation (19).    

As should be reasonably obvious from the sheer number of parameters required in 

the definition of a CTP function, the flexibility of the approach is impressive.  Such 

malleability allows for the definition of functions that test the power and adaptability 

of optimisers in a wide-array of constrained domains.  In particular, the suite contains 

functions where the exploration of infeasible regions is of minimal value — where 

the vast majority of infeasible space represents a fools-errand, seldom leading to 

anything of value to the user.  In contrast, other problems benefit from the aggressive 

exploration of infeasible areas, since optimal regions lie isolated beyond these 

spaces.  How a search algorithm balances these conflicting demands is ultimately at 

the heart of constraint-based research and performance on these problems reflects not 

only the suitability of algorithms in general, but also any search bias that may exist 

— be it an inclination towards fearless intrusion into infeasible space or a more 

conservative approach.   

5.1.3 FDA FUNCTIONS 
An extension of the static problems illustrated in the works of Zitzler et al. [92] (see 

Section 5.1.1) and Deb [148], the FDA test suite (produced by Farina, Deb and 

Amato [41, 172]) provides a range of functions that exemplify the utility of 

multiobjective search algorithms in dynamic environments.  Given the number of 

ways that a problem may vary over time (a subset of which is discussed by Jin and 
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Sendhoff [154]), the FDA suite is inevitably incomplete, but none-the-less illustrates 

a range of interesting dynamic properties that test the ability of a search algorithm in 

shifting objective- and decision-spaces.  Thus, search algorithms that perform well 

on the functions merit further examination in dynamic domains.   

5.1.3.1 ANALYSING THE FDA SUITE 
The form of an FDA problem is expressed in a similar manner to the ZDT problems, 

tailored to facilitate the time-dependencies necessary in a dynamic problem.  

Specifically, Equation (24) illustrates the generic construction of an FDA problem, 

with tc specifying the current time counter; tt representing the total number of timer-

increments required for an increase in time-step t; and nt indicating the number of 

unique states (steps) available to a problem. 
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Though Farina et al. [41] readily admit that their suite fails to examine less common 

dynamic features (including changes in the number of objectives) the real-valued 

functions are impressive in their diversity and offer an important window into the 

performance of algorithms in variable domains.  In particular, the suite includes 

functions with fixed and moving optimal regions in both decision- and objective-

spaces, while providing mechanisms for variation in solution density along the 

optimal front.  Furthermore, while not explicitly explored by Farina et al. [41], 

empirical analyses (see Section 5.3.6) illustrate that the spaces in which the optimal 

regions reside are also subject to change over time.       

5.1.4 WFG FUNCTIONS 
At the time of writing, the most contemporary, and amongst the most interesting, of 

the available test suites is the Walking Fish Group (WFG) collection produced by 

Huband et al. [158].  Covering the most diverse set of unconstrained problem 

characteristics of any available test bed, the suite brings non-separability and 

degenerative fronts, in particular, to the fore.         
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5.1.4.1 ANALYSING THE WFG SUITE 
The production of a WFG problem is achieved by combining pre-defined shape and 

transformation functions housed in a flexible and powerful toolkit.  Use of the toolkit 

facilitates the construction of static unconstrained test functions with linear, concave, 

convex, disconnected or mixed frontal shapes, and objective-spaces with flat-regions, 

deception, bias, multi-frontality and degeneration.  When coupled with the capacity 

for non-separability, the toolkit is sufficient for the production of an impressive array 

of challenging functions — a subset of which is the WFG benchmark suite and the 

illustrative I functions. 

While successful in modelling a rich set of problem characteristics, the provided 

functions could be criticised for a failure to focus on isolated domain features.  As 

such, the proposed problems are useful approximations of real-world systems — 

where interaction between distinct domain characteristics is likely — but are 

generally less helpful in elucidating the behaviour of a given search strategy on a 

particular class of problem. 

5.2 DESCRIBING TEST FUNCTIONS 
Given that performance on test problems forms the corner-stone of search algorithm 

analysis and comparison, it is surprising that the problems themselves are rarely 

discussed in any great detail outside of the work in which they were originally 

presented.  Moreover, literature investigating the nature of multiobjective problems 

is traditionally focussed upon the properties of the objective-space, with solution-

space characteristics seldom considered beyond the Pareto set (see, for instance, [92, 

172]).   

While the analysis of objective-spaces alone can provide insight, the mapping from 

solution-space into objective-space is equally significant.  An objective-space may 

appear to be multi-frontal, biased and constrained, but that says nothing of the 

complexity of the problem if an obvious and simple search gradient exists in 

solution-space.  Indeed, there can be no guarantee that, in general, any property 

viewed in objective-space need necessarily reflect an equivalent quality in the 

decision-space; thus an analysis of one space alone is likely insufficient.  Since the 

goal of all test problems is, at the very least, to reflect the likely behaviour of 

algorithms in similar real-world environments, painting such an incomplete picture is 
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dangerous indeed.  Improvement or decline in optimiser performance may be due to 

an objective-space property, it may be the consequence of a hidden search-space 

characteristic or it may be some interaction between hidden and known problem 

attributes.   

Without a full understanding of the problem at hand, it is difficult to speak with 

certainty about which domains are suited to the tested optimiser or the behavioural 

trends and adaptability of the search algorithm.  As such, this work provides an 

investigation both into the objective-space and its Pareto-optimal characteristics, and 

the mapping that exists from solution-space to the objective-space.   

To ensure a suitably thorough exploration, functions should be examined through 

visualisations, textual descriptions and mathematical formulae.  Note that when 

considered independently, each of the chosen descriptive approaches is largely 

insufficient: visualisations can be misleading and are subject to interpretation; textual 

overviews are frequently imprecise; and mathematical formulae are often 

inaccessible.  However, when viewed in toto, the devices can offer a rich, multi-

faceted, summation. 

5.2.1 VISUALISATIONS 
This work offers a thorough set of visualisations designed to explore the properties of 

both the objective-space and solution-space.  In both cases, there is a heavy emphasis 

on the use of spectral frequency graphs — a technique that is being used in this 

context for the first time. 

The two-dimensional spectral frequency graphs employed here are simple grids, 

where the value of each cell is encoded as a particular colour.  If the colours are 

mapped such that they follow a gradient from low values to high, the resultant grid 

offers a clear and concise summary of the values contained within it.  As an example, 

consider Figure 22a:  it is clear that the minimum occurs when x1 = x2 ≈ 0, that the 

maximum occurs when x1 = x2 ≈ 1 and that there exists an obvious gradient that 

moves from the upper-right to the lower-left.  If x1 and x2 are unique decision 

variables and each cell represents the average objective-performance for the range of  

solution-values represented by that cell, then the spectral frequency graph indicates 
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Figure 22 — Example Spectral Frequency Graphs 
 

the utility-gradient that exists between the two variables for the selected objective.  

Importantly, the use of such graphs can emphasise the existence of multi-frontality, 

deception, bias and discontinuities.  

The spectral graphs may also be used to explore the properties of the objective-space.  

If a and b in Figure 22b are distinct objectives and each cell contains the frequency 

with which that region is produced from an even sampling of the solution-space, then 

(assuming a suitably fine sampling) the graph illustrates the shape of the feasible 

objective-space and the influence of bias, isolation, discontinuities and deception.  

Thus, Figure 22b illustrates a concave objective-space with a bias away from the 

concave Pareto optimal front. 

For the purposes of this work, each solution-space grid contains 40,000 evenly 

distributed cells, with values obtained by examining the objective-performance of at 

least 1,000,000 unique, evenly distributed, decision-variable pairs.  The objective-

space grids contain 20,000 cells, with frequencies obtained by sampling at least 

8,000,000 unique points in solution-space.  Since it is often infeasible to sample all 

solution-variables with suitable accuracy, the objective-space frequency grids 

typically examine only a subset of all possible variable combinations.  As such, the 

objective-space graphs are indicative, rather than definitive, though care has been 

 0      0.2    0.4    0.6   0.8    1     0    0.2   0.4    0.6    0.8    1    
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taken to ensure that they display features consistent with a more complete 

investigation.  For all spectral frequency graphs in this chapter, cell values are 

normalised and mapped to the colour-key provided in Figure 22b. 

5.2.2 TEXTUAL DESCRIPTIONS 
Perhaps the most common, and accessible, of all available descriptive tools, textual 

overviews are useful in both emphasising key points and identifying smaller 

properties that may not be initially apparent in mathematical or visual 

characterisations.  As such, the textual descriptions offer a useful reference, but 

generally lack the depth required for a full understanding of the problem at hand.  In 

particular, an overview may point to bias in the problem — but the true extent of 

such bias and its position in space is only adequately addressed in a visual or 

mathematical framework.   

5.2.3 MATHEMATICAL FORMULAE 
The inclusion of full mathematical formulae is important for two reasons: it provides 

a complete, though potentially complex, view of the problem that neither textual 

descriptions nor visualisations can ever hope to offer; and it facilitates the use of the 

suite by other members of the community, which is particularly important given the 

modifications made to existing problems in this work.   

5.3 THE NEW ALTERNATIVE PROBLEM SUITE 
Having defined how the suite will be analysed, it is necessary to now identify and 

explore each function in the newly developed AP (Alternative Problem) suite.  In the 

interests of clarity, this section principally offers mathematical equations and 

succinct textual descriptions that outline key problem characteristics.  For a complete 

analysis, the reader is strongly encouraged to examine the rich set of additional 

resources provided in Appendix 0 (including spectral graphs for each problem and 

further mathematical definitions). 

5.3.1 FRONTAL SHAPE PROBLEMS — AP-1, AP-2 AND AP-3 
By offering shape as the principle point of differentiation in a grouping of simple and 

consistent problems, any variations in algorithmic performance can be directly 

attributed to the concavity or convexity of the leading front.  AP-1, AP-2 and AP-3 

provides such a crisply defined collection (derived largely from ZDT1, ZDT2 and 
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ZDT3 [92]).  As illustrated in Figure A1, Figure A2 and Figure A3 (see Appendix 

A.1), each decision-space features obvious and non-deceptive search gradients that 

encourage the exploration of optimal regions, while the density of points in 

objective-space suggest a bias away from the ideal front (with the intensity of the 

bias tending to increase as the number of decision variables grow).   

To ensure that optimal values do not simply exist at extreme points (as they do in 

ZDT1, ZDT2 and ZDT3) the s_linear function suggested by Huband et al. [158] is 

integrated into the original ZDT problems to shift the location of the optimal solution 

values for objective-two (see Appendix A.23.1 for definitions and descriptions of 

s_linear).  Specifically (as described in Appendix A.1, Appendix A.2 and Appendix 

A.3), a non-extreme (and non-medial) value of 0.35 for x2..m will map the solution 

onto the Pareto optimal front, while variation in x1 dictates position on that front. 

5.3.1.1 AP-1 — CONVEX PARETO OPTIMAL FRONT 
Based on ZDT1 from Zitzler et al. [92], AP-1 (Equation (22)) features a convex 

Pareto optimal front embedded in a convex objective-space (see Figure A1).  Given 

the fact that convexity is generally recognised as the least challenging of the frontal 

shapes (see Section 4.1), and since it lacks other domineering problem features, AP-1 

is considered the least difficult of all the provided test functions.  Regardless, the 

problem will examine the ability of search algorithms, particularly those based on 

Pareto optimality, to find a well-distributed and accurate front that adequately 

includes extrema points in objective-space. 

[ ]

( )

1 2

1 1

2

1 2 1..

2

1

Minimise ( ), ( )
( )
( ) ( ) ( )

where:
( , ,..., ) : 0,1 , 30

9( ) 1 linear_s( ,0.35)
1

1 ( ) / ( )
=

=
= ×

= ∈ =

= + ×
−

= −

∑
m m

m

i
i

f f
f x
f g h

x x x x m

g x
m

h f g

x x
x
x x x

x

x

x x x

 
(22) 

5.3.1.2 AP-2 — CONCAVE PARETO OPTIMAL FRONT 
As per ZDT2, AP-2 (Equation (23)) includes a purely concave Pareto optimal front 

situated in a concave objective-space (see Figure A2).  While the problem itself is 
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considered simple in light of advances made in contemporary multiobjective 

research, it exposes weaknesses in linear function approximators and acts as a 

counter-point to the convex case — where the difficulty now comes in finding 

mutually beneficial, not extreme, compromises. 
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5.3.1.3 AP-3 — DISCONNECTED CONVEX OPTIMAL FRONT 
While the resultant Pareto optimal front for AP-3 (Equation (24), derived from 

ZDT3) is disconnected and convex, it is embedded within a mixed-shaped objective-

space (see Figure A3).  It is important to note that the discontinuity does not occur 

due to holes in the objective-space (as is possible in constraint based problems — see 

Section 5.3.5), nor is it a consequence of a discontinuous decision-space.  Instead, it 

is the existence of poor-utility concave regions between each distinct convex Pareto-

optimal segment (as evidenced in the decision and objective-spaces illustrated in 

Figure A3).  Consequently, an effective search must avoid spending too much energy 

investigating sub-optimal concave areas, while also maintaining a solution set that is 

diverse enough to avoid convergence onto a subset of the total available optimal 

regions. 
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5.3.2 A MULTI-MODAL PROBLEM — AP-4 
The AP-4 function (Equation (25), derived from ZDT4) contains multiple convex 

pseudo-optimal fronts in a convex objective-space (see Figure A4).  The multi-

frontality of the problem is most evident in the mapping of solution-space into the 

second objective (see Figure A4b), with the search gradient interrupted by many 

dense regions of low utility.  While Zitzler et al. [92] claim that such interruptions 

produce a remarkable 219 local fronts, that figure is open to debate and subject to the 

definition of locality used.  Indeed, given that many of the fronts are 

indistinguishable in objective-space [92], it seems that a more logical definition of 

multi-frontality — that is, one which considers only spatially distinct and reasonably 

isolated fronts — would lead to a significantly smaller number.  Still, irrespective of 

the degree of frontality exhibited by AP-4, it has proven to be amongst the most 

difficult of the ZDT functions (see [92, 139, 173-175]) and adequately tests the 

performance of algorithms in the presence of many (if not billions of) false fronts. 

As in the frontal shape problems (Section 4.3), the original ZDT4 is augmented by 

the s_linear function (see Section A.23.1) to ensure a reduction in the number of 

extreme optimal solutions.  Again, the Pareto optimal front is formed by setting x2..m 

to 0.35 and varying x1. 
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5.3.3 BIASED PROBLEM — AP-5 
Derived from ZDT6, the AP-5 function (Equation (26)) features a highly biased non-

convex objective-space.  The function is an interesting one and exhibits features that 

are largely divergent from the remainder of the ZDT suite — specifically, the 

complexity of the problem is principally attributable to difficulties in optimising the 

first objective and tuning the first decision variable.  Indeed, the objective-space is 

heavily biased away from minimal values for the first objective, while the decision-
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space features a largely isolated and narrow optimal objective one region with little 

gradient information to inform the search (see Figure A5).  The objective-space 

implies that optimisation of the second objective may be equally difficult, given the 

density of points away from the optimal front.  However, an examination of the 

decision-space mappings (refer to Figure A5), which feature a crisply defined and 

simple search gradient, suggest that this is at most a secondary issue.  Thus, a 

successful optimiser must be able to address the biases in the first objective and 

capitalise on the obvious search gradient in the second objective to produce a well-

distributed and accurate set of solutions. 

As with the preceding portions of the AP suite, the ZDT6 problem is adapted to 

include an s_linear function (see Appendix A.23.1) designed to shift extreme values.  

Since much of the complexity for AP-5 is derived from optimising objective-one, 

unlike previous problems, only the optimal location for x1 is relocated to 0.35, all 

other variables remain optimal at zero (in part to ensure a particularly simple search-

gradient for objective-two and thus promote greater disparity between the first and 

second objectives).  Still, it is important that researchers note that a large portion of 

the search-space is optimal at extreme values and care should therefore be taken to 

ensure that any algorithms under analysis on this problem share matching variation 

procedures.   
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5.3.4 NOISY PROBLEMS — AP-6 AND AP-7 
Bui, Abbass and Essam [44], Buche et al. [10] and Babbar et al. [43] (amongst 

others) integrate noise into simple pre-existing functions, where the problem 

characteristics are, to a large extent, already known.  Inspired by these works, AP-6 
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and AP-7 are explicitly simple functions built around the well-described AP-2 

problem.  Though it is likely that analysis on these problems alone is insufficient to 

fully elucidate behaviour in a noisy domain (false outliers and multiplicative noise, 

for instance, is not examined), they should draw out behavioural characteristics of 

optimisers in uncertain environments and suggest avenues for future investigation.  

Moreover, the simple techniques described for AP-6 and AP-7 can be applied to any 

of the remaining AP test functions to examine the effects of noise under the presence 

of more complex problem characteristics, while noise intensity and location can be 

varied by simple manipulation of the gaussian and random functions. 

5.3.4.1 AP-6 — A GAUSSIAN-BASED NOISY FUNCTION    
AP-6 (Equation (27)) exhibits a noisy concave Pareto optimal front embedded in a 

noisy concave objective-space (see Figure A6 and Figure A7).  The true performance 

of a solution on each objective is obscured by a Gaussian perturbation, with each 

objective-score shifted by a randomly chosen factor taken from a Gaussian 

distribution with a mean of zero and standard deviation of 0.5.  Since the noise is 

derived from a narrow Gaussian function, the true utility of each solution is likely to 

lie relatively near to the apparent value, making AP-6 the least challenging of the two 

noisy problems proposed in this test suite. 
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5.3.4.2 AP-7 — A NON-GAUSSIAN-BASED NOISY FUNCTION    
AP-7 (Equation (28)) is as per AP-6, though rather than defining noise through a 

Gaussian function, the factor by which the objectives are shifted is instead derived 

from an evenly distributed set of random values, with a minimum of –1 and 

maximum of 1 (see Figure A8 and Figure A9).  Since this form of variation offers a 
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less powerful bias around the true utility of a given solution, the apparent 

performance of a proposal in AP-7 is considerably less reliable than in AP-6.     
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5.3.5 PROBLEMS WITH SIDE-CONSTRAINTS — AP-8, AP-9 AND AP-10 
In order to properly test the general performance of a multiobjective optimiser in a 

constrained domain, it is necessary to gauge system response against a range of 

differing constraint-based properties.  In particular, the position, number and 

orientation of infeasible regions will each affect the behaviour and desirable 

properties of an optimiser and a suitable collection of tests must therefore vary each 

of these characteristics.  The succinct set of AP-8, AP-9 and AP-10 functions 

(derived from the CTP suite) seek to emphasise such variation with a view to 

elucidating the performance of algorithms in general constrained domains14. 

5.3.5.1 AP-8 
Drawing on the CTP2 problem, AP-8 (Equation (19) with settings as per  

Equation (29)) represents a convex objective-space with a large infeasible region that 

fully obscures the true convex Pareto optimal front (see Figure A10).  The resultant 

feasible optimal front is linear and, due to peaks of infeasibility, discontinuous in 

objective-space.  An analysis of the decision-space mappings (again, refer to Figure 

A10) illustrates that the majority of the search area is infeasible, with discontinuities 

making the pursuit of search gradients difficult — particularly with respect to 

objective-two, where infeasibilities obscure much of the optimal region.  Such 

complexity is somewhat offset by the objective-space bias towards the feasible 

                                                 
14  It is worth noting here that AP-8, AP-9 and AP-10 may represent the use of hard or soft constraints 

– it is the analysis of performance that will change, rather than the formation of each function. 
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optimal front and the fact that the constraints ultimately affect only regions 

surrounding that front. 

0.2, 10, 1, 6, 1, 0.2a b c d e θ π= = = = = =−  (29) 

5.3.5.2 AP-9 
While the true convex Pareto optimal front is fully obscured by infeasibilities in both 

AP-8 and AP-9 (Equation (19) with settings as per Equation (30)), the latter is 

differentiated by a continuous linear feasible optimal front that is isolated by a series 

of infeasible regions (see Figure A11).  Each of these areas form discontinuities in 

both the decision- and objective-spaces, particularly impacting the search gradient 

that exists for objective-two (as exemplified in Figure A11b).  The effect is akin to 

that seen in multi-frontal problems, with potential for search algorithms to become 

stranded in the narrow bands of sub-optimal feasible space.  Again, the complexity of 

the problem is somewhat offset by an increased objective-space bias around the 

optimal feasible front. 

It is interesting to note that AP-8 and AP-9 offer a sharp contrast and likely favour 

differing types of search strategy.  For instance, to penetrate the discontinuities in the 

search gradient, an algorithm that features aggressive exploration of infeasible space 

is likely to perform well in AP-9.  However, such disregard for constraints is unlikely 

to yield positive returns in AP-8, since the vast majority of infeasible space leads to 

an evolutionary dead-end.  Thus, performance on these two problems should indicate 

the types of search bias (implicit or otherwise) that exist in constraint-based 

optimisers.  

40, 0.5, 1, 2, 2, 0.1a b c d e θ π= = = = =− =  (30) 

5.3.5.3 AP-10 
AP-10 (Equation (19) with settings defined in Equation (31)) is the only one of the 

constrained problems that features a partially obscured true convex Pareto optimal 

front (see Figure A12).  Moreover, the function features frequent narrow bands of 

infeasibility throughout the entirety of the objective- and decision-spaces, causing 

particular difficulties in the optimisation of the first objective (see Figure A12(a)) 

and inducing a large number of false fronts.  Clearly this represents the most 

complex of the provided constraint-based problems and should indicate the 
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performance of algorithms in domains where the constraints have a great impact on 

the entirety of the objective-space.  

40, 20, 1, 6, 0, 0.05θ π= = = = = =−a b c d e  (31) 

5.3.6 DYNAMIC PROBLEMS — AP-11, AP-12 AND AP-13 
The range of potential characteristics that may be exhibited by a dynamic problem 

are many and it is not the goal of AP-11, AP-12 and AP-13 to offer a complete 

representation of those characteristics.  Instead, these problems are selected to draw 

out the core properties of dynamic domains such that the fundamental strengths and 

weaknesses of multiobjective optimisers in shifting landscapes may be elucidated.  

Specifically, the functions offer an illustration of performance in domains with 

moving Pareto optimal fronts, variable objective-spaces and changing solution-

spaces.  Moreover, the rich analysis of each problem provided herein offers a 

considerably more thorough insight into the nature of dynamic functions than 

presently exists in the literature, which should further aid researchers in qualifying 

algorithmic performance. 

5.3.6.1 AP-11 
Though the Pareto optimal front for AP-11 (Equation (32), derived from FDA1) is a 

convex surface fixed in objective-space, the optimal portion of solution-space shifts 

over the course of a run.  Indeed, the optimal x2..m values vary sinusoidally with time 

according to Figure A14, while the search gradient for the second objective 

transforms dramatically (see Figure A13).  Moreover, while the problem features a 

statically defined convex Pareto optimal front in objective-space, it is embedded in a 

varying convex space — with spatial extent oscillating between the minimum at t=0 

and the maximum at t=1 (refer to Figure A13 and Figure A14).  Also note that the 

position of the objective-space bias, which is always removed from the optimal front, 

oscillates at the same frequency– further augmenting the complexity of the problem 

over time. 
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5.3.6.2 AP-12 
A newly defined function (Equation (33), inspired partially by FDA2), AP-12 is 

designed to offer a varying Pareto optimal front in objective-space, with a static 

optimal solution set (see Figure A15 and Figure A16).  Specifically, the projection of 

the optimal front changes sinusoidally according to Figure A16e, moving through 

linear, concave and convex surface shapes.  In contrast, the decision-space mappings 

(refer to see Figure A15) remain largely unaffected by the variations in objective-

space (though there are subtle shifts in bias for objective-two).  The problem will test 

the capacity of an optimiser to pursue relatively stable search-gradients under a 

shifting objective-space landscape. 

It is worth noting that another member of the FDA suite could be used directly in-

place of this function, though it is not advised.  All of the proposed real-valued FDA 

problems (and indeed, those problems also proposed by Jin and Sendhoff [154]) 

feature time-dependent optimal solution sets in decision-space — to properly test the 

performance of optimisers under distinct forms of dynamism, it is necessary to also 

examine dynamic problems that lack this feature, lest the comparison favour 

optimisers with a bias towards shifting decision-spaces.   
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5.3.6.3 AP-13 
The most difficult of the dynamic AP problems, AP-13 — a newly designed function 

inspired by FDA3 — features variation in both the solution- and objective-spaces 

(see Equation (34)).   Specifically, the Pareto optimal front varies sinusoidally 

through linear, concave and convex shapes in objective-space as per AP-12, while 

the space itself has a shifting bias defined by the G function (Figure A17, Figure A18 

and Figure A19).  Though the ideal solution set is fixed for objective-two, the 

optimal values for the first objective move according to the cosine F function (as per 

Figure A19c), with constantly shifting search gradients.  Thus, the problem as a 

whole features dynamism both near-to and away-from the Pareto optimal front in 

objective-space and in the properties of the decision-space — challenging an 

optimiser throughout the entirety of the search process.      

It is worth noting that the FDA3 function could have been used directly in this 

circumstance, though it lacks variability in the shape of the optimal front and features 

particularly aggressive levels of bias.  While the function is interesting, such extreme 

bias is likely to test the performance of an optimiser in prejudiced domains as much 

as it is likely to provide insight into the behaviour of an algorithm under shifting 

search and objective landscapes.  Additionally, the newly formed AP-13 function 

allows for the investigation of algorithm performance when problem characteristics 

are varying at differing rates (see Figure A19c).   
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5.3.6.4 NON-SEPARABLE PROBLEMS — AP-14 AND AP-15 
A non-separable problem infers the existence of dependencies between the decision 

variables of proposed solutions.  The effect of non-separability on algorithmic 

performance is likely tied to the degree to which such dependencies occur15 — 

increasing the number of links from a single variable to other variables makes 

optimisation of that parameter increasingly difficult, while expanding the total 

number of links that exist across the solution as a whole is likely to disrupt the tuning 

of the entire proposal.  With this in mind, AP-14 and AP-15 are offered to explore 

performance under simple, low-dependency, non-separable problems and complex, 

highly interconnected, domains.    

5.3.6.5 AP-14 
Derived from the first, and easiest, of the non-separable WFG [158] functions 

(WFG2), AP-14 (Equation (35)) features simple bi-directional (mutual) dependencies 

between pairs of neighbouring decision variables in the last l parameter positions 

(see Figure A21 for illustrations and descriptions, and Appendix A.23.3 for an 

insight into the behavioural characteristics of the pivotal interdepend function).  In 

order for an optimiser to perform efficiently, any search process should maintain 

these dependencies when varying or generating new solutions, lest the effects of 

                                                 
15  Though this is yet to be explored thoroughly in the literature and is an interesting avenue of work, 

particularly given the claim that many real-world problems are non-separable. 
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collateral noise slow the process.  However, since the number and complexity of the 

dependencies will generally be low (for all but very high values of l), even a search 

process with limited relationship maintenance should still be able to converge to the 

mixed-shape Pareto optimal front with only minor efficiency losses.   

The objective-space includes biased regions that are removed from the Pareto 

optimal front (see Figure A20), though the lack of a heavily affected search gradient 

(again, see Figure A20) suggests that the impact of such uneven density is likely to 

be minimal16.  
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5.3.6.6 AP-15 
Unlike AP-14, where dependencies were strictly localised and existed only directly 

between pairs of variables in a subset of the entire solution, AP-15 (Equation (36), 

inspired by WFG6) features linkages throughout the entire proposal and numerous 

types of non-separability via the new nonsep_special function (see Appendix 

A.23.5).  In particular, mutual, non-mutual, direct and indirect dependencies are 

present, with the first k decision variables affected by other members of x1..k, and the 

final l parameters dependant on constituents of x1..m-k (see Figure A22 for illustrations 

                                                 
16  Even with minimal impact, it may be beneficial to reduce the objective-space bias to further 

narrow the focus onto the non-separable domain.  A similar goal may also be sought for AP-15.  
This is left as future work.  
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and more exacting descriptions).  Collateral noise is extremely high in this case: 

where a poor decision variable in AP-14 can disrupt the apparent utility of at most 

one other variable, a similarly poor choice may mask the efficacy of a large segment 

of the entire solution in AP-15. 

In terms of objective-space features, AP-15 is a slightly biased concave space with a 

continuous Pareto optimal front (see Figure A22).  As with AP-14, the search-space 

is simple when excluding the impact of non-separability, with uni-modality and a 

lack of deception or bias17.  As such, the principle characteristic affecting 

performance is the scope and intricacy of the dependencies between variables.   
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5.3.7 A PROBLEM WITH ZERO-UTILITY GRADIENTS — AP-16 
AP-16 (Equation (37)) elucidates the performance of optimisation algorithms in 

domains with portions of space that provide very little search information.  Though 

inspired by WFG1 (and its use of the b_flat function described in Appendix A.23.2), 

AP-16 features a greater focus on flat fitness-spaces due to the exclusion of explicit 

biasing in the first k parameters and an increase in the presence of zero-utility 

gradients.  Specifically, values in the final l decision variables are now recast 

according to Figure A24a such that, for a great majority of the space (over 70% of all 

values are mapped to one of two objective-space points), perturbation leads to no 

tangible change in solution quality.   
                                                 
17  Note that the complex inter-relationships between variables make a concise analysis of the 

solution-space mappings via spectral performance graphs (as used throughout this section) 
infeasible. 
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The problem also examines the balance of an algorithm when addressing a problem 

with mixed search granularity requirements — clearly, a more coarse search better 

enables escape from the zero-utility portions of the search-space, but the small 

optimal region (see Figure A23d, in particular) may cause difficulties for end-of-run 

convergence under such a configuration.  In contrast, a more fine-grained search 

better enables the location of optimal-space in the final l decision parameters, but can 

lead to considerably more laborious movement through the flat regions of space.  

Thus, an analysis of algorithmic performance during early and late portions of a run 

may draw-out the search-granularity characteristics of differing optimisation 

approaches. 

As should be expected with most-any zero-utility gradient problem, the objective-

space is biased18 — in this case, away from the most promising regions in continuous 

bands that echo the mixed-shape Pareto optimal front.  This work notes that any 

optimiser that is endeavouring to efficiently address a search-space with zero-utility 

gradients must also be resistant to such bias in the objective-space.  
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5.3.8 A DECEPTIVE PROBLEM — AP-17 
The WFG5 function — represented here as AP-17 (Equation (38)) — is an extremely 

deceptive problem (due to its use of the s_decept transformation described in 

Appendix A.23.4), with search-spaces offering gradients that tend to encourage the 

                                                 
18  Note that the reverse is not true: biased objective-spaces need not come from problems that feature 

zero-utility gradients.   
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exploration of areas well-removed from the optimal point (see Figure A25).  Indeed, 

objective-two is biased away from optimal space in all bar the final l decision 

variables, while objective-one is deceptive in every parameter.  Moreover, the 

deception is not just prevalent, but strong — the optimal point (0.35 for normalised 

variables) is fully obscured by very low-utility regions in Figure A25a, Figure A25b 

and Figure A25c (due to the coarse quantisation) and is suggested by only an 

incredibly narrow localised gradient (as seen in Figure A26a).  Should an algorithm 

pursue the more obvious gradient — it is likely to form globally inferior (though 

locally impressive) fronts using xk+1..m = 0 or xk+1..m = 1.   

1 2

1
1 2

1
2 2

1 2 1 1..

1.. 1..

Minimise ( ), ( )

( ) 2sin
2

( ) 4cos
2

where:
( , ,..., , ,..., ) : 60, 10, 50, [0,2 ]
( ) : s_decept( / 2 ,0.35,0.001,0.05)

π

π

+ =

=

 ′′′′= +   
 ′′′′= +   

= = = = ∈
′ ′ ′= =

k k m i m

m i m i

f f

xf x

xf x

x x x x x m k l x i
x x x i

x x

x

x

x
x

1 2 1 2
1 1

( , ) : / , /
= = +

′′ ′′ ′′ ′′ ′′= = =∑ ∑
k m

i i
i i k

x x x x k x x lx

 (38) 

5.3.9 PROBLEMS WITH NUMEROUS OBJECTIVES — AP-18 AND AP-19 
To examine the effects of the dimensionality curse (Section 4.2.7) on multiobjective 

optimisers it is necessary to examine performance degradation under an increasing 

number of objectives.  With this in mind, AP-18 and AP-19 offer simple functions, 

where the key point of differentiation is in the dimensionality of the objective-space 

— specifically, AP-18 is a three-objective problem, while AP-19 features five 

dimensions.  As such, any loss in performance from AP-18 to AP-19 is directly 

attributable to the dimensionality of the objective-space and should emphasise an 

algorithm’s resistance to the dimensionality curse. 

Note that since both functions are simply specialisations of Huband et al.’s I1 

problem [158], the interested reader may examine any number of dimensions — the 

choice of three and five objectives is largely arbitrary and used here primarily for 

illustrative purposes.     



Escaping the Bounds of Generality — Bi-Objective Optimisation 

 

- 82 - 

5.3.9.1 AP-18 
As described in Figure A27 and Figure A28, AP-18 (see Equation (39)) features a 

simple three-dimensional concave Pareto optimal front embedded in a slightly biased 

three-dimensional objective-space.  The solution-space is relatively straight-forward 

— lacking bias, dependencies and multi-frontality, while offering simple search-

gradients.     
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(39) 

 

5.3.9.2 AP-19 
Though it is difficult to visualise a problem consisting of five objectives, the 

decision- and objective-spaces (Figure A29, Figure A30, Figure A31 and Figure 

A32) illustrate that AP-19 (Equation (40)) features the same general properties as in 

AP-18 (particularly with respect to the type of search gradients encountered and the 

form of objective-space biasing found).  It is again worth emphasising that, as in AP-

18, the function features decision variables that are separable, without bias and uni-

modal. 
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5.3.10 A DEGENERATIVE PROBLEM — AP-20 
As illustrated in Figure A33 and Figure A34, the AP-20 problem (Equation (41), an 

adaptation of I1 from the WFG suite) represents a degenerative two-dimensional 

objective-space, with the extent of the leading front diminishing until arrival at a 

single point.  The consequence is that the import of the first k decision variables 

degrades the nearer the solution is to optimal space and so, in-turn, does the value of 

maintaining a diverse front.  Thus, the optimiser must be able to adapt to shifting 

needs in diversification and an increasing bias in the utility of the final l parameters. 

It is worth noting that the original degenerative function provided by Huband et al. 

(WFG3 in [158]) is impressive, but is restricted to at least three-dimensions and is 

non-separable.  Such inclusions make for a more complex problem, but it has the 

potential to confuse the issue at hand — that is, the effect of degrading fronts on 

optimiser performance.  Poor results for an optimiser on WFG3 may be attributable 

to the increase in dimensionality, the dependencies between decision variables or 
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degeneration — by muddying the waters with additional problem features, clarity in 

analysis is ultimately lost19.  Thus, the AP-20 function offers a more distilled focus. 
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5.3.11 A MULTI-FACETED PROBLEM — AP-21 
Thus far, the AP suite has endeavoured to distil the core characteristics of 

multiobjective problems into a number of distinct, narrow-focus, functions.  Such 

isolation of domain features allows the preceding functions to offer a unique insight 

into the effect of each characteristic on optimiser performance.  The interlacing of 

distinct domain characteristics into a single function cannot offer such clarity of 

analysis, but it can indicate performance under particularly complex search- and 

objective-spaces, and suggest how specific properties interact.  AP-21 (Equation 

(42), an adapted form of WFG9 that replaces the original non-separable reduction 

with the more complex nonsep_special function) represents such a problem.  

Featuring multi-frontality (see Appendix A.23.6 and Figure A34), deception (see 

Appendix A.23.4 and Figure A33), dependencies between all decision variables (see 

Appendix A.23.7, Appendix A.23.5 and Figure A33) and a particularly biased 

objective-space20 (see Figure A36), the problem is extremely challenging. 

Though both complex and interesting, AP-21 offers only a very small window into 

understanding the interaction of properties in multi-faceted domains.  The problem, 

                                                 
19  This is not intended as a criticism of the WFG suite, since it appears that its primary goal is to 

offer challenging problems akin to those that may be encountered in the real-world.  This is a valid 
approach that simply runs counter to the central goals of this suite. 

20  The solution-space to objective-space mappings familiar to previous descriptions are excluded 
here as the complex inter-relationships between variables make it impossible to provide a succinct 
set. 
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of course, is that there are so many unique multiobjective characteristics, and so 

many ways in which those characteristics may be combined, that defining a suitably 

rich set of functions that offers a more complete insight is prohibitively complex (and 

the resulting suite is likely to be excessive in size).  Since this thesis maintains that 

the most important step in understanding optimiser performance lies in focussed 

analysis on delineated domains, investigation on problems like AP-21 is valuable, but 

ultimately of a secondary concern.  Those users wishing to explore particular 

characteristic combinations (as may be appropriate when an algorithm is designed for 

a specific sub-set of domains) are encouraged to use and expand upon the WFG 

toolkit provided by Huband et al. [158] (an alternative to AP-21 using this toolkit is 

provided in Appendix A.23) and to make the resultant problems available to the 

greater research community.   
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5.4 CONCLUSIONS 
Existing real-valued multiobjective optimisation test suites have offered either 

complex multi-faceted problems that fail to provide a clear insight into performance 

on specific domain features or small collections of functions that lack scope or 

sufficiently detailed descriptions.  The new AP test suite is an amalgamation of both 

suitable existing problems and new functions that are each designed to capture 

specific core multiobjective problem characteristics in a largely isolated  manner.  By 

offering a rich set of distilled, narrow-focus, problems (see Table 4 for a summary), 

the AP suite is intended as a resource for researchers looking to explore algorithmic 

performance — elucidating characteristics that most strongly affect the behaviour of 

an optimiser.   

 

Table 4 — Summarising the New AP Test Suite 
 

Problem Key Domain Features Explored 

AP-1 Continuous convex. 
AP-2 Continuous concave. 
AP-3 

Shape of Pareto 
optimal front in 
objective-space Discontinuous convex. 

AP-4 Multi-frontality 
AP-5 Bias 
AP-6 Gaussian noise. 
AP-7 Noise Evenly-distributed noise. 

AP-8 
True Pareto optimal front: fully obscured. 
Feasible optimal front: discontinuous due to infeasibility holes. 
Objective-space beyond front: continuous. 

AP-9 
True Pareto optimal front: fully obscured. 
Feasible optimal front: continuous. 
Objective-space beyond front: features infeasibility holes. 

AP-10 

Constraints   

True Pareto optimal front: partially obscured. 
Feasible optimal front: discontinuous due to holes. 
Objective-space beyond front: features numerous fine-grained holes. 

AP-11 Objective-space: fixed Pareto optimal front. 
Decision-space: variable Pareto optimal set and search-gradient. 

AP-12 Objective-space: variable Pareto optimal front. 
Decision-space: fixed Pareto optimal set. 

AP-13 

Dynamism 

Objective-space: variable Pareto optimal front and variable bias. 
Decision-space: variable Pareto optimal set. 

AP-14 Direct pair-wise mutually dependent relationships in part of the 
solution. 

AP-15 

Non-
Separability Non-separability throughout the entire solution, including direct, 

indirect, mutual and non-mutual dependencies. 
AP-16 Zero-Utility Gradient. 
AP-17 Deception. 
AP-18 Three-dimensional objective-space. 
AP-19 

Higher 
Dimensionality Five-dimensional objective-space. 

AP-20 Degeneration. 
AP-21 Multi-faceted problem. 



Chapter 5 — A New Multiobjective Test Suite 

- 87 - 

Though it is both extensive and well-described, the AP suite is not intended to be a 

static resource — it should grow and change as the community’s knowledge of 

multiobjective optimisation in general, and problem characteristics in particular, 

improve.  As such, researchers are encouraged to develop further narrow-focus 

problems, with a view to emphasising new or differing characteristics to those 

already presented in the AP collection.  Moreover, as this is the first step towards 

creating a comprehensive suite of characteristic-specific problems, it is likely that 

further refinements may be made that improve both the balance and function of the 

proposed problems — thus, analysis and critiquing of the suite is an important area 

of future work. 

With a thorough understanding now of the mechanics of multiobjective optimisation 

and the domain features that are of significant interest (explored both from general 

and problem-centric views), the remainder of this work will narrow its focus to bi-

objective specialisation.  In particular, the unique properties that set bi-objective 

optimisation apart from generic multiobjective search will be explored, with the 

intention of harnessing such properties for impressive performance gains. 
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6 BI-OBJECTIVE OPTIMISATION AND THE MAK_TREE 
It should be obvious that single-objective problems represent a specialisation of the 

multiobjective class — that is, the notions of dominance, and Pareto relationships in 

general, take on a number of special characteristics under the constraints of a single 

objective.  The differentiation is such that single objective optimisation and 

multiobjective optimisation exist as two distinct, well delineated, fields — each with 

their own unique, though often related, techniques, heuristics and methodologies.  

The implication is that while generic multiobjective techniques may be applicable to 

single objective optimisation, the host of specialist approaches available are typically 

better suited and better performing21. 

Given the status granted to single-objective optimisation as a special subset of the 

generic multiobjective domain, and the benefits that such differentiation imparts, it is 

surprising that little research has been conducted into elucidating other special cases.  

The most striking omission is bi-objective domains, which have long been a 

centrepiece of multiobjective research, both in theoretical testing and practical 

applications.  Indeed, Coello, Veldhuizen and Lamont’s [51] definitive work on 

multiobjective optimisation up until the completion of 2001 cites that “the 

overwhelming majority” of published studies are focussed on the bi-objective 

domain and suggests that “most real-world [multiobjective problems] are effectively 

solved using only two or three” objectives.  Since 2001, the trend has continued, with 

[12, 13, 20, 21, 30, 52-74] illustrating just a fraction of the contemporary studies that 

examine exclusively bi-objective domains.   

Moreover recent studies [75-78] suggest that there is a lack of correlation between 

the performance of Pareto-based algorithms in domains featuring two or three 

objectives and those with higher dimensionality — the implication being that the 

requirements of an optimiser differ depending on the number of objectives under 

consideration.  Cast under the shadow of generality, it is easy to view such findings 

negatively — it suggests that the pursuit of a single unifying algorithm that will 

function well for any number of objectives is a false one and that the hard focus on 

bi-objective domains was not the way to make strides towards such an ideal anyway.  
                                                 
21  Though recent studies have shown that increasing the objective-space dimensionality of purely 

single-objective problems may yield benefits for particular problem classes – see the works of 
[176-180], for instance. 
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But that is to take a pessimists point of view; taken from a different perspective, the 

results are exciting — they suggest that there may exist unique characteristics in the 

lower-dimensional domains that can be exploited for performance gain.  As such, 

rather than seeking out an ideal generalist algorithm, perhaps it is better to form more 

robust and powerful specialist techniques.  Given the prevalence of bi-objective 

optimisation in real-world practical applications, the investigation and development 

of specialist strategies for this sub-class of multiobjective optimisation seems to be 

an ideal place to start.  

While a number of unique bi-objective properties are held as common knowledge in 

the field (as will be discussed in Section 6.1.2), very few techniques capitalise on this 

knowledge and a number of more subtle, though no-less-powerful, properties have 

not been identified at all.  As such, the following section offers a complete set of the 

unique characteristics of bi-objective domains and then builds upon these to create a 

number of powerful specialist techniques. 

6.1 PROPERTIES OF BI-OBJECTIVE PROBLEMS 
For the purposes of this work, a bi-objective task is considered to be any conflicting 

multiobjective problem (as described in Section 2.2) where β=2.  This simple 

constraint alone is enough to generate a host of interesting, and unique, properties 

that differentiate bi-objective optimisation from the more generic multiobjective 

case.  Note that all properties assume, without loss of generality, that both objectives 

are to be minimised. 

6.1.1 DEFINING AN ORDERED NON-DOMINATED BI-OBJECTIVE LIST 
Before examining each specific property, it is useful to define an ordered non-

dominated bi-objective list.  As will be demonstrated in the following sections, this 

simple construct is the key to developing many of the unique characteristics inherent 

in bi-objective optimisation. 

With no loss in generality, a list R of solutions is ordered in the context of this work 

if and only if: 

( )1 1, ( ) ( ) iff index( ) index( )∀ ∈ ≤ ≤R f fa,b a b a b  (43) 

where index(x) returns the position of solution x in the list.  
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Figure 23 - Example Ordered Non-dominated Lists 

Both lists (a) and (b) are arbitrarily ordered by solution performance on the first objective. 

  

That is, the order of the list is entirely governed by performance on the first 

objective, with increasing indices indicating decreasing performance.  An ordered 

non-dominated bi-objective list L is achieved by ensuring R is strictly non-dominated 

and includes only solutions to bi-objective problems (see Figure 23).  For 

convenience, properties may assume that a single dominating or dominated solution 

may be temporarily inserted into L to enable sensible discussions about its list 

predecessors and successors, so long as L is composed only of mutually non-

dominating proposals prior to such an insertion.  

6.1.2 PROPERTY ONE: ORDERING 
If solutions in a non-dominated bi-objective list L are ordered according to their 

ascending value (decreasing performance) on the first objective, then it is always the 

case that the same order represents descending value (increasing performance) on 

the second objective22.   

If the in-order successor of solution a in the ordered non-dominated bi-objective list 

is denoted as a  and the in-order predecessor is a  then the ordering property states 

that:  

                                                 
22  Without loss of generality, this type of ordering is assumed for all ordered bi-objective lists 

discussed herein. 
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( ) ( )( ) ( )1 1 2 2( ) ( ) ( ) ( )< ∧ > ∨ = ∀ ∈f f f f La a a a a a a,a  (44) 

This can be verified by considering any two solutions in a non-dominated bi-

objective list: if solution a outperforms solution b on objective one, it follows that for 

b to be non-dominated it must outperform a on objective two: 

( ) ( ) ( )1 1 2 2( ) ( ) ( ) ( )< ∧ ⇒ <∼f f f fa b a b b a  (45) 

Interestingly, this property means that the extent of any bi-objective non-dominated 

front can be found by simply retrieving the front and end of the ordered list (consider 

the examples illustrated in Figure 23). 

Such ordering also leads to the somewhat less intuitive conclusion that the nearest 

neighbour of a solution in objective-space will always be the successor or 

predecessor of that solution in the ordered list.  To verify this notion, recall that the 

ordering property ensures that for any ordered non-dominated list, the following 

must hold: 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1 1 1 1 1

2 2 2 2 2

... ...

... ...

 < < < < < <      ∧    > > > > > >  

f f f f f

f f f f f

a a a a a

a a a a a

 (46) 

and it should be obvious that a is numerically closest to a  or a  for both objective 

one and objective two.  Thus, for any sensible objective-space distance metric δ, it is 

always the case that: 

( ) ( ) ( )

( ) ( ) ( )

δ , δ , δ , ...

δ , δ , δ , ...

    < < <        ∧      < < <     

a a a a a a

a a a a a a

 (47) 

and the list-predecessor or list-successor must contain the nearest objective-space 

neighbour for any given solution.  By simple extension, it must also hold that the κ 

nearest-neighbours of any solution must come from the κ list-successors and the κ 

list-predecessors of that solution.  Similarly, the furthest objective-space neighbour 

of a given solution must be located at the front or end of the list, and the κ furthest 
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neighbours must come from the κ list-predecessors of the end and the κ list-

successors of the front.  

Thus by simply ordering the non-dominated front on an arbitrarily chosen objective, 

crowding and extent-based information about members of the non-dominated front 

becomes instantly more accessible in the special two-dimensional case.  Consider a 

simple data structure that contains the constituent solutions of the prevailing non-

dominated front.  In the generic multiobjective case, where the ordering property 

does not hold, locating a single nearest neighbour of any solution will take at least 

O(Pestimate) time — since all other stored solutions must be checked against.  

Similarly, to determine the extent of the front an O(Pestimate) search is required.  

Assuming an appropriately ordered list, locating the nearest neighbour of a solution 

in objective-space and finding the extent of a non-dominated front are constant time 

operations when the special properties of the bi-objective subset are capitalised upon 

— a marked improvement over the generic approach. 

As further evidence of the advantages gained via leverage of this property, consider 

an algorithm that requires nearest neighbour scores for every stored solution — a 

reasonable technique for approximating the distribution of the current front.  Sorting 

the population will require, at worst, O(Pestimate log Pestimate) operations given an 

appropriately chosen data structure (such as a self-balancing binary search tree).  

Using the special ordering property, subsequent calculation of all nearest neighbours 

will require O(Pestimate) further comparisons, thus incurring a total complexity 

(dominated by the sorting procedure) of O(Pestimate log Pestimate).  In contrast, applying 

techniques appropriate to the generic multiobjective case requires a search across 

every stored solution — costing a far more expensive O((Pestimate
 )2).  As will be seen 

later (see Section 6.3) such time complexity advantages are particularly prevalent 

when the properties of the non-dominated bi-objective list are integrated into an 

appropriately powerful data structure. 

6.1.3 PROPERTY TWO: OBJECTIVE-RESULT VARIANCE 
Any two solutions sharing an objective score in a non-dominated list will also share 

an identical point in objective-space.  No horizontal or vertical line through a two-

dimensional, non-dominated, objective-space will ever intersect more than one point.  
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That is, no two solutions may share exactly one objective score in L — they may be 

completely equal, with respect to their position in objective-space, or they may be 

completely incomparable.  The notion is easily verified by considering the converse 

case, where a solution (a) shares exactly one objective score with another solution (b): 

( ) ( )( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )a b a b a b a b

a  b a  b

= ∧ ≠ ⇒ < ∨ >

⇒ ∨ ≺
i i j j j j j jf f f f f f f f

 (48) 

with i and j representing distinct objectives.  Since Equation (48) implies that one of 

the solutions must dominate the other, and such an arrangement is impossible in a 

non-dominated list, the case must be disqualified. 

While conceptually this property seems decidedly uninteresting, it takes on great 

significance when considering the storage of solutions in tree-like structures.  For 

example, consider the simple, yet powerful, binary search tree: to maintain order, a 

binary search tree requires completely unique addresses (identifiers or labels) across 

all nodes.  Assuming that each node in the tree houses solutions that represent a 

single point in objective-space, the performance on a given objective provides unique 

labels for all nodes.  In the generic multiobjective case this property does not hold 

(since two solutions may share an objective score and still remain incomparable — 

for instance (3,3,1) and (3,1,3)), thus rendering simple binary search trees unsuitable.  

Therefore, the objective-result variance property permits use of a simple, accessible 

and efficient data structure that is otherwise unavailable in the generic multiobjective 

case.  The importance of this result will be clearly illustrated in Section 6.3. 

6.1.4 PROPERTY THREE: DOMINATED SETS 
Consider a non-dominated list of solutions ordered on the performance of an 

arbitrarily chosen objective: if solutions at index i and j (where i ≤ j) are both 

dominated by some incoming proposal, then all solutions with an index between i 

and j (inclusive) are also dominated (referred to here as a dominated set).  If i is the 

lowest dominated index and j is the highest, then the dominated set represents every 

dominated solution in the list and is the complete dominated set. 

That is, for an incoming dominating solution a the following holds: 

( ) ( ) ( ) [ : ]ϕ ϕ∧ ⇒ ∀ ∈≺ ≺ ≺i jL L L i ja  a  a   (49) 
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where both i and j are indexes into the ordered non-dominated list L (i ≤  j). 

The complete dominated set is bounded by terminals at indices i and j such that: 

( ) ( ) ( ) ( )1 1− +∧ ∧ ∧≺ ≺ ∼ ∼i j i jL L L La  a  a a  (50) 

As an example, consider Figure 24.  If it is known that the incoming solution g 

dominates b and d, then it is always the case that g will also dominate any solution 

lying between b and d in the ordered list (in this case, c).  Since b and d also 

represent the lowest and highest indexed solutions that are dominated by g, the 

resulting dominated set is complete and solutions b and d are referred to as 

dominated set terminals (or the i_terminal and j_terminal respectively).  

To verify this property, first let d be a solution that dominates list members at 

indexes i and j respectively such that: 

( ) ( )∧≺ ≺i jL Ld  d   (51) 

and consider a simplified form of the property where the ordered list is guaranteed to 
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 (b) 
Figure 24 - Illustrating Dominated Sets 

(a) The initial non-dominated ordered list.  The shaded region is dominated by the incoming solution 
g.  Solution b and solution d are the terminals of the complete dominated set.  (b) The resulting non-

dominated ordered list.  
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contain solutions producing unique objective scores (that is, no two objective results 

may be the same).  By Property One (see Section 6.1.2), it is always the case that: 

( ) ( )1 1 1 2 2 2( ) ( ) ( ) ( ) ( ) ( )≤ < ∧ ≤ <i j j if f L f L f f L f Ld d  (52) 

and it will also be true that all solutions with index w>i will be worse on objective 

one than d: 

( ) { }1 1 1( ) ( ) ( ) 1,..,> ≥ ∀ ∈ +w if L f L f w i Ld  (53) 

while solutions with index w<j must be worse on objective two: 

( ) { }2 2 2( ) ( ) ( ) 1,.., 1> ≥ ∀ ∈ −w jf L f L f w jd  (54) 

Thus, solutions with indexes in the range (i, j) must also be dominated by d : 

( ) ( )( ) { }1 1 1 2 2 2( ) ( ) ( ) ( ) ( ) ( ) 1,.., 1> ≥ ∧ > ≥ ∀ ∈ + −w i w jf L f L f f L f L f w i jd d  (55) 
 

However, this proof assumes that no two solutions will ever share objective scores.  

An extension to the more general case, where such duplication is permitted, is 

rudimentary.  Since the non-dominated list is ordered, all solutions producing 

duplicate objective scores will occupy a continuous block of list-nodes (see Figure 

25).  Each block will have a single unique value and, as a consequence, the proofs 

provided in Equations (51)–(55) are analogous.  Given that this proof guarantees that 

all solutions between the first member of the ith block and last member of the jth 

block will be dominated, the dominated set property must hold, even under the 

storage of duplicate objective-result values. 
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Figure 25 — An Example of Dominated Sets With Duplicates 

The shaded region represents the complete dominated set when a solution with objective scores of 
(0.3,0.25) is to be inserted into the non-dominated list.  Each of the identified blocks contains 

solutions that generate duplicate objective scores.  Obviously, if any member of a block is dominated, 
then all members of that block must also be dominated. 
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The benefits inherent in the dominated set property should be immediately apparent.  

If it is possible to efficiently locate the i and j terminal nodes for the complete 

dominated set, a potentially large number of redundant dominance comparisons can 

be avoided.  An excellent example of this, and the performance advantages induced 

by the application of such properties, is detailed in Section 6.3. 

6.1.5 PROPERTY FOUR: NON-DOMINANCE 
Consider a non-dominated list ordered by performance on some arbitrarily chosen 

objective: any incoming solution a will be non-dominated with respect to the entire 

ordered list if it is non-dominated by its list-predecessor.  If a has no predecessor, 

then the solution is the head of the ordered list and represents an extreme point in 

objective-space — it too will be non-dominated with respect to the members of the 

list.    

( ) ( ) ( )nulla  a a b  a b/ /∨ = ⇒ ∀ ∈≺ ≺ L  (56) 

Verification of the property is straight-forward.  By the ordering property, it is 

always the case that a cannot be dominated by any list-successor since a will always 

outperform a successor on the first objective (assuming the ordering specified in 

Section 6.1.2 holds) or otherwise share an identical position in objective-space.  If a  

does not dominate a then, by Property One, the following is true: 

( ) ( ) ( )( ) ( )2 2 2 ...< ≤ ≤ ∨ =f f fa a a a b  (57) 

and a cannot be dominated by any preceding element in the list.  Thus, a must be 

non-dominated with respect to the entire list.  

Again, the implications of this property are most important in efficiency concerns.  

Assuming that it is possible to rapidly identify the list-predecessor of any incoming 

proposal, the non-dominance of a given solution (and thus membership of the 

prevailing front) can be determined with only a single dominance comparison.  In 

contrast, the naïve list stores most commonly used in generic multiobjective front 

storage (see Section 6.2.1) will require a comparison with every stored solution to 

arrive at the same conclusion.      
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6.1.6 PROPERTY FIVE: DOMINANCE 
If an incoming solution a dominates any member of an ordered non-dominated list of 

solutions, then it must dominate its first (non-equivalent) successor a  in that list. 

if :  then ∈ ≺ ≺Lb a  b a  a  (58) 

This is a simple extension of Property Four that features a suitably simple proof.  

Consider some solution b that is dominated by a.  It is obvious that the following 

holds from first principles: 

( ) ( )( ) ( ) ( )( )1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )≤ ∧ < ∨ < ∧ ≤f f f f f f f fa b a b a b a b  (59) 

and, by the ordering property, it is also true that: 

( ) ( )( ) ( )( )1 1 2 1( )< ∧ ≤f f f fa a b a  (60) 

Consequently, a  must be dominated by the incoming solution. 

With this property in place, it is possible to determine whether a solution is strictly 

non-dominating by examining only the in-order successor of that solution.  

Moreover, the dominance property indicates the location of the i-terminal node of the 

dominated set — it will always be the immediate unique successor of the incoming 

dominating solution.   

6.1.7 SUMMARISING THE KEY BI-OBJECTIVE PROPERTIES 
Table 5 outlines the key properties that distinguish the special bi-objective subset 

from the generic multiobjective domain.  As evidenced in the table (and in preceding 

sections), the advantages that bi-objective specialisation imparts are numerous and 

have a profound impact on the efficiency of storing and updating non-dominated 

sets. 

6.2 ASSESSING LIMITATIONS OF CONTEMPORARY GENERIC 
MULTIOBJECTIVE OPTIMISATION 

Before developing data structures and algorithms that can capitalise on the unique 

properties of bi-objective sets, it is useful to first assess some of the limitations 

inherent in contemporary generic multiobjective optimisation.  If bi-objective  
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Table 5 — Special Properties of Ordered Non-dominated Bi-Objective Lists 

 Name Property Characteristics Advantages 

Property 
One Ordering 

Increasing objective-one scores 
lead to decreasing objective-two 
scores (and vice-versa). 

Front-extent calculated from front 
and end of list.  Nearest objective-
space neighbour is always the in-
order predecessor or successor of a 
solution. 

Property 
Two Variance No two solutions may share 

precisely one objective result. 

Solutions may be completely 
ordered by performance on a single 
objective — critical in data storage. 

Property 
Three 

Dominated 
Sets 

If solutions at index i and j are 
dominated by an incoming 
proposal, all solutions with an 
index between i and j are also 
dominated (and form the 
dominated set). 

If i and j are known, no further 
comparisons are required to 
determine all dominated points in 
the list. 

Property 
Four 

Non-
Dominance 

If an incoming solution is not 
dominated by its in-order 
predecessor, it will not be 
dominated by any solution in the 
list. 

To verify that a solution is non-
dominated, only the predecessor 
must be compared against. 

Property 
Five Dominance 

If an incoming solution 
dominates any member of the 
list, it must dominate at least its 
list-successor. 

To verify that a solution is non-
dominating, only the successor must 
be compared against.  The first 
unique successor of the dominating 
solution is the i-terminal node. 

 

specialisations can free algorithms of such limitations then the argument that bi-

objective domains represent a usefully differentiable subset of the generic 

multiobjective case can only be strengthened.   

6.2.1 ELITE ARCHIVING 
Contemporary multiobjective optimisation research holds that the use of an elite 

archive of impressive solutions can fundamentally increase the performance of a 

given algorithm [92-94].  It is for this reason that the second generation of 

evolutionary optimisation techniques — that is, those that have followed the 

pioneering works of Schaffer [146], Srinivas and Deb [2], Fonesca and Flemming 

[181], Horn, Nafpliotis and Goldberg [142], and others — are typically reliant on an 

active store of apparently good solutions.  Most notable amongst this burgeoning 

array of methodologies are the Pareto Archived Evolution Strategy (PAES [79]), the 

Strength Pareto Evolutionary Algorithm (SPEA [80]) and its sequel (SPEA2 [81]), 

the elitist Non-dominated Sorting Genetic Algorithm (NSGA-II [82]) and the Pareto 

Envelope Selection Algorithm (PESA [83]): all of which are reliant on archive-based 
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elitism to drive solutions towards ever-better approximations of the Pareto optimal 

front. 

Since these approaches implicitly (and often explicitly, see [79]) use a naïve list 

representation for members of the archive [95], the cost of searching and maintaining 

large or unbounded stores is prohibitive and must therefore be avoided.  Indeed, the 

worst case complexity while using a list data structure is O(βn) per archival insertion, 

where β is the number of objectives and n is the size of the archive.  Given such 

inefficiency, efforts to reduce the size of n are hardly surprising. 

Unfortunately, the artificial truncation of elite stores can lead to a variety of 

problems that result in performance degradation.  Chief amongst these issues is the 

potential for fronts to oscillate or recede due to the removal of members from the 

archive.  As will be seen in the following sections, such frontal degradation can lead 

to inaccurate crowding estimation and inhibit the use of dynamic stopping 

conditions.  Additionally, truncation operations may limit the applicability of 

contemporary multiobjective optimisation techniques in particularly complex 

objective-spaces, where the loss of an expensive region due to set limitation may 

severely inhibit the efficiency and efficacy of the search.  

6.2.1.1 FRONTAL DEGRADATION 
Given that a local optimal front will be composed of solutions that are strictly non-

dominated by any other previously generated proposal, it is reasonable to expect all 

members of an elite archive to meet the same requirements (even if they form only a 

subset of the true front).  However, the truncation operation means that the quality of 

the archive may degrade over time — invalidating the optimality requirement by 

allowing weak solutions into the archive.   

The potential for decreasing archive quality is best exemplified via a diagram.  

Consider the extremely simple three-member elite archive illustrated in Figure 26a: if 

solution b is removed due to a truncation operation, the map of dominated space 

becomes inaccurate — the highlighted region in Figure 26b should be included, but 

is not.  The effect is that a poor solution which was dominated by b, but is otherwise 

incomparable with the remaining members of the archive (such as the incoming e 

solution), will be incorrectly accepted as an elite member. 
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The effect of degrading fronts can be extremely detrimental to the performance of 

any given algorithm.  In the extreme case, frequent truncation of archives may lead 

to a retreating front — where the archive becomes a progressively worse 

approximation of the Pareto optimal set.  The more likely case however is frontal 

oscillation — where good solutions are truncated from the archive and then 

rediscovered as part of the algorithm’s search procedure.  Obviously, the time spent 

rediscovering good ideas is better spent investigating less populated areas of the front 

and is costly to both the efficiency and efficacy of the search process. 

It is important to note that the potential for frontal degradation is more than a 

theoretical concern that exists only in pathological cases.  Indeed, Fieldsend et al. 

[97] demonstrate the capacity for oscillation in a simple ES(1+1) multiobjective 

optimiser (with an elite archive size of twenty) on the original ZDT1 function, while 

Laumanns et al. [98] briefly address the tendency for NSGA-II [175] and SPEA 

[137] to degrade on a basic knapsack problem.  While these empirical investigations 

into frontal degradation are significant, they are limited in scope and, in the case of 

Laumanns et al. [98], largely superficial.  It could be argued that performance on a 

singular test function says little about the behaviour of truncated archives in general; 

that the archive of Fieldsend et al. [97] is unrealistically small and based on an 
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Figure 26 — Frontal Degradation in Objective-space 
x-axis is objective one; y-axis is objective two.  The loss of solution b from the archive means that the 

highlighted region is incorrectly labelled as non-dominated in the resultant truncated archive.  As a 
result, the weak e solution would be accepted as an elite member in (b). 
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overly basic algorithm; and that the conclusions of Laumanns et al. [98] are based on 

assumptions and conjecture.   

This section presents new results extracted from runs using the contemporary and 

powerful NSGA-II algorithm with differing archival thresholds across a diverse 

range of problems (including AP-1, AP-2, AP-3 and the multi-faceted P1 problem 

defined in Appendix A.22).  The specific settings for the NSGA-II algorithm are 

provided in Appendix B.1.1 — and are consistent with those commonly seen in the 

literature.  Results indicate the average percentage of dominated solutions that have 

been incorrectly labelled as non-dominated (and are therefore erroneously included 

as part of the leading front in the parent population) across twenty distinct runs.  

As evidenced in Table 6 and Figure 27, the proportion of archival members that have 

been incorrectly labelled is large — even at relatively high population thresholds 

(where a smaller number of archival members are truncated per iteration — as 

illustrated in Figure 28).  These findings are particularly noteworthy given the 

degradation visible in runs with thresholds of 50 and 100, since these are common 

levels used throughout the literature in performance analyses of NSGA-II (see, for 

instance, [21, 74, 81, 82, 92, 182-185]).  Consider the performance of the 50 member 

NSGA-II system: looking at the final 20,000 evaluations of the AP-1 test, and 
 

Table 6 — Incorrectly Labelled Non-dominated Solutions 
Results indicate the average percentage of dominated (weak) solutions that are incorrectly labelled as 
non-dominated in the truncated elite set.  Averages are derived from twenty distinct NSGA-II runs per 

problem per population level.   

 Evaluations AP-1 AP-2 AP-3 P1 
0k — 10k 18.84 15.04 23.38 25.54 
10k — 20k 38.66 35.45 46.07 37.45 Population 

Size = 10 
20k — 30k 46.37 40.55 52.76 44.84 
0k — 10k 4.15 1.43 4.35 17.04 
10k — 20k 19.48 13.42 17.12 42.90 Population 

Size = 50 
20k — 30k 26.85 19.75 23.19 55.68 
0k — 10k 0.16 0.00 0.43 5.76 
10k — 20k 7.46 3.03 7.86 25.56 Population 

Size = 100 
20k — 30k 15.02 10.10 13.95 39.80 
0k — 10k 0.00 0.00 0.00 0.19 
10k — 20k 0.12 0.00 0.31 7.08 Population 

Size = 200 
20k — 30k 4.05 0.91 4.75 17.87 
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(d) P1 

Figure 27 — The Percentage of Weak Solutions in NSGA-II Archives that are Incorrectly 
Labelled as Non-dominated 

For all graphs, the x-axis represents the number of evaluations that the NSGA-II algorithm has 
performed and the y-axis specifies the percentage of weak solutions in the supposedly non-dominated 

leading front stored in the NSGA-II archive.  p represents the archival size threshold used. 

assuming an approximately even distribution of points along the apparently non-

dominated front, approximately 20% of all solutions produced are derived from some 

weak, dominated, proposal.  Thus, given the prevalence of inferior solutions in the 

elite sets studied, there exists a very real danger that the efficiency of the search 

process will be fundamentally affected, particularly with respect to end-of-run 

convergence — where poor elite set fidelity is typically at its highest.  If the central 

notion of multiobjective evolutionary optimisation techniques is to build on ever 

better approximations of the Pareto optimal front then it stands to reason that the type 

of frontal degradation seen in these tests renders truncated elite approaches at a 

severe disadvantage. 
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(d) P1 

Figure 28 — Number of Solutions Truncated from the Elite (F1) Portion of the NSGA-II Archive 
For all graphs, the x-axis represents the number of evaluations that the NSGA-II algorithm has 

performed and the y-axis specifies the number of solutions truncated from the supposedly elite leading 
front (given as a percentage of the corresponding archive size threshold p). 

 

6.2.1.2 LOSS OF EXPENSIVE REGIONS 
Under the presence of discontinuous fronts, isolated regions, constraints, deception, 

and bias, certain solutions can reasonably be thought of as being more valuable to the 

search process than others.  Consider Figure 29: the loss of the highly valuable 

solution c, which resides isolated in a disconnected and sparsely populated portion of 

objective-space, would severely inhibit the capacity of the algorithm to search the 

region in which it resides.  Indeed, the effect is even more pronounced than 

oscillation, as simply rediscovering the lost solution may be extremely difficult. 

The principle here is an important one — the more complex the objective-space 

becomes, the more important the size of the archive.  Specifically, archival size acts  
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Figure 29 - Losing a Valuable Region 
Darker shading represents a higher density of points in objective-space.  If solution c is truncated from 
the archive, rediscovering the expensive (isolated and sparsely populated) region of space in which it 

resides may be difficult. 
 

as an artificially enforced threshold on the number of distinct regions that can be 

explored simultaneously by a search algorithm.  Should the number of distinct 

regions in objective-space surpass the size of the archive, the algorithm will either be 

confined to a subset of the objective-space or, more likely, suffer significant 

performance degradation as the archive consistently cycles between available zones 

— repetitively discarding solutions that may have been invaluable to a balanced 

search. 

6.2.1.3 INACCURATE CROWDING ESTIMATION 
Given that one of the explicit aims in developing a good approximation of the Pareto 

optimal front is achieving an evenly distributed set of solutions in objective-space, 

crowding estimation is very important in directing the search towards areas of low 

result-density.  Unfortunately, truncation of archives can form misleading density 

approximations, as crowding measures will be based on an incomplete set of the true 

local optimal front.  In Figure 30a it is obvious that solutions a, b and c occupy the 

most densely explored region of objective-space, but the truncation of point b from 

the archive leads to a uniform spacing of points that de-emphasises the isolation of d 

(as illustrated in Figure 30b).  The danger that exists here is that solutions may be 

added and subsequently truncated from the crowded region — worsening the true 

distribution of points with little effect on the apparent archive-based crowding of the 

same area. 
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Figure 30 — Misleading Objective-Space Crowding Information 
x-axis is objective one; y-axis is objective two.  (a) The unbounded archive is concentrated about 
solution b.  (b) The truncation of solution b results in a misleading even distribution of points in 

objective-space. 

Empirical evidence of the propensity for localised crowding approaches to 

incorrectly estimate the true distribution of solutions in objective-space can be 

illustrated by examining leading (F1) fronts produced during standard NSGA-II runs 

(see Appendix B.1.1 for parameter settings).  With each front it is possible to assess 

which solutions are deemed to be in the least-crowded portions of space with respect 

to both the locally stored (truncated) solutions and the complete non-dominated set.  

If there is a poor correlation between the locally and globally derived estimations 

(assuming that both approaches use an otherwise identical crowding metric), then 

algorithms capitalising on a truncated solution set may not be driving the search 

adequately towards areas of low frontal exploration.  To assess whether a poor 

correlation exists, the ten least-crowded solutions are selected from a given front 

according to the simple cuboid method described by Deb23 [175] — with potential 

nearest-neighbours limited to the truncated set in one case and expanded to include 

any member of the complete non-dominated set in the other.  The average observed 

correlation between both approaches (given as a percentage) across 20 distinct runs 

is illustrated in Table 7 and Figure 31.     

                                                 
23  The approach suggested by Deb is modified slightly here such that solutions sharing a point in 

objective-space are treated as a single node in the non-dominated list.  They therefore share an 
identical, non-zero, cuboid score. 
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Table 7 — Crowding Inaccuracies in Truncated Elite Sets 
Results indicate the average shared membership percentage between least-crowded sets produced with 
local and unbounded non-dominated lists.  Averages are derived from twenty distinct NSGA-II runs 
per problem per population level, with least-crowded sets containing the ten least-crowded solutions 
of the non-dominated members in the supposedly elite leading front (referred to as F1 in NSGA-II).  

 Evaluations AP-1 AP-2 AP-3 P1
0k — 10k 69.52 90.00 91.17 48.68
10k — 20k 34.87 37.89 81.58 34.61Population 

Size = 50 
20k — 30k 34.33 34.07 78.03 36.63
0k — 10k 95.01 100.00 98.44 69.77
10k — 20k 36.89 68.27 90.47 31.42Population 

Size = 100 
20k — 30k 31.63 33.09 81.04 31.94
0k — 10k 100.00 100.00 100.00 98.25
10k — 20k 93.72 100.00 98.91 63.55Population 

Size = 200 
20k — 30k 41.49 87.42 92.00 44.24 
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(d) P1 

Figure 31 — Crowding Inaccuracies in Truncated Elite Sets 
For all graphs, the x-axis represents the number of evaluations that the NSGA-II algorithm has 

performed, while the y-axis indicates the percentage of solutions that are shared between two sets: the 
ten least-crowded members of the F1 front derived purely from local archival members, and the 
equivalent set produced when crowding calculations include the complete non-dominated front. 
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The results here are clear.  Even for relatively high truncation thresholds, there is 

poor equivalency between the observed and actual distributions of the frontal 

solutions in objective-space, particularly as the optimisation process moves from a 

focus on frontal progression (earlier evaluations) towards frontal exploration (later 

evaluations).  Better correlations are seen in the AP-3 problem, but this is primarily 

due to the disjoint nature of the optimal front — the cuboid function will strongly 

bias the extreme members of any disconnected region and therefore, quite correctly, 

include these in the uncrowded set.  It is the correct analysis of frontal distribution in 

the interior of continuous regions that is most problematic for the cuboid approach to 

crowding in truncated sets — the resolution of the continuous area is simply too 

coarse to correctly estimate those areas that have been poorly explored over the 

length of a run. 

Thus, the claim is that the incomplete nature of truncated elite archives may lead to 

inaccurate frontal density information since the crowding measures are only ever 

operating on an incomplete picture of the objective-space.  This notion is particularly 

significant given the regularity with which elite archives are truncated according to 

localised crowding information — most notably, in contemporary optimisation 

approaches such as SPEA2, PAES and NSGA-II.   

It seems reasonable then, to apply crowding measures that consider all non-

dominated solutions encountered throughout the run, rather than just those stored 

locally in the archive.  However, such an approach is also open to problems.  

Consider Figure 32: if truncation is to be applied according to some global crowding 

measure, the archive will lose solution a and become overly concentrated around 

solution b.  Such degeneration into locally crowded arrangements not only 

diminishes the likelihood of finding a richly distributed front efficiently (since the 

search will become focused around a single area of objective-space), but it also 

permits increased frontal oscillation 

Crowding estimation in a truncated environment is therefore a complex problem.  If 

the non-dominated set is too small to provide an accurate picture of the explored 

objective-space, it is also likely too small to capitalise on globally derived objective- 
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space information.  Moreover, even if these issues are diluted via increasing 

truncation thresholds, there still exists a range of serious limitations in contemporary 

crowding metrics that may not be so easily dispelled (see Section 8.1). 

6.2.1.4 STOPPING CONDITIONS 
Although the development of robust stopping criteria has long been held as an 

important area of future development in multiobjective optimisation, surprisingly 

little work has been focussed around the notion [97] (Dorn and Ranjithan [21], 

Hansen and Jaszkiewicz [186], and Jaszkiewicz [187] are amongst the only to offer 

even a preliminary investigation).  Consider the most influential evolutionary 

algorithms that have been developed since Coello’s appeal for stopping conditions in 

1999 [5] — of the papers introducing NSGA-II [175], SPEA2 [81], IBEA (the 

Indicator Based Evolutionary Algorithm) [91] and PESA [136], not one proposes the 

use of an alternative termination condition beyond an arbitrary evaluation threshold.   

The failure to produce satisfactory end-of-run conditions may not rest as a 

particularly large problem for proof-of-concept and theoretical testing work — where 

hard evaluation thresholds are necessary to produce consistent conditions — but it is 

a substantial problem for real-world practitioners.  If an arbitrary evaluation-

threshold is used in practical studies, there is a real danger that the front may not 

have converged onto — or even near — a good approximation of the Pareto optimal 
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Figure 32 — Dangers of Global Crowding Measures in a Truncated Environment 
x-axis is objective one; y-axis is objective two.  (a) With respect to all non-dominated solutions, a 
represents a (globally) crowded region.  With respect to the truncated front, it is both isolated and 
uncrowded.  (b) Truncation of a due to global crowding results in a poorly distributed truncated 

archive. 
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front.  Conversely, if the front converges prematurely, then a large number of 

potentially costly evaluations will have been ill-used.  Moreover, alternative 

methods, such as repetitive front interpretation (where a user must examine output, 

and the leading front specifically, at selected intervals), require intensive input from 

expert decision makers and are therefore expensive and permit the integration of 

human performance expectations into the system. 

It seems obvious then that the construction of better termination conditions should be 

at the forefront of the continuing expansion of the multiobjective optimisation field.  

However, progress in this area is not as straight-forward as may be expected.  The 

likely reason for the use of basic termination techniques in both traditional and 

contemporary works is that determining the rate of progression and expansion of the 

prevailing optimal front is fundamentally difficult in a truncated environment.  An 

evolutionary algorithm may appear to be generating new members of some elite 

archive, but since a truncated elite set is subject to frontal degradation, the 

acceptance of new members says little about the true progression of a front.  

Similarly, recall the inaccuracies of crowd estimation in a truncated environment (see 

Section 6.2.1.3) — given such potentially poor approximations, gauging when a 

suitable end-of-run distribution has been achieved is also difficult.  Thus, it seems 

probable that any stopping criterion formed around a truncated set is unlikely to yield 

suitable termination points. 

As an illustration of the problems at hand, consider a convergence indicator that 

simply records the average percentage of non-beneficial solutions that are produced 

over a given time.  If the indicator approaches a score of 100%, the vast majority of 

new solutions produced are superfluous — they offer no practical improvement to 

the corresponding non-dominated front.  To determine whether a solution is 

beneficial, the objective-space is simply divided into identically sized squares (with a 

length of 0.001); any solution that resides in an unoccupied non-dominated square is 

deemed to be useful to the front — it is either moving it forward or otherwise 

investigating apparently unexplored regions.  Table 8 and Figure 33 illustrate the 

average convergence indicator scores (the percentage of beneficial solutions  
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Table 8 — Stopping Condition Performance in Truncated Sets 
Results indicate the average front performance indicator scores for truncated and unbounded archives.  

Averages are derived from twenty distinct NSGA-II runs per problem per population level. 

  Truncated Unbounded 
  0k – 10k 10k – 20k 20k – 30k 0k – 10k 10k – 20k 20k – 30k

P=10 80.40 88.98 88.83 83.87 98.83 99.72
P=50 81.57 92.83 93.38 81.69 97.52 99.52AP-1 
P=100 83.15 94.67 96.47 82.10 96.17 99.10
P=10 86.26 91.35 91.35 88.66 98.65 99.64
P=50 88.58 93.58 94.30 88.48 96.89 99.37AP-2 
P=100 90.92 94.69 96.58 90.54 95.31 98.62
P=10 81.38 90.05 89.99 86.52 99.51 99.89
P=50 84.46 95.71 96.14 85.21 98.88 99.82AP-3 
P=100 85.93 97.57 98.28 85.44 98.49 99.61
P=10 70.63 76.60 76.98 71.68 90.75 96.88
P=50 70.61 76.74 76.55 72.18 91.64 96.63P1 
P=100 73.41 81.35 81.90 72.29 90.61 95.89
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(d) P1 

Figure 33 — Stopping Condition Performance in Truncated Sets 
For all graphs, the x-axis represents the number of evaluations that the NSGA-II algorithm has 
performed, while the y-axis is the average front convergence indicator score.  p is the truncated 

population size from which the results were obtained (note that unbounded archives obviously have no 
lower-size threshold; the population simply indicates the runs from which the indicators are derived). 
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generated over the preceding 500 evaluations) produced across twenty distinct 

NSGA-II runs (see Appendix B.1.1) per problem.  

It is clear that the unbounded archives achieve consistently higher indicator scores 

than those generated from the limited sets (though the margin is dictated by the 

resolution of the truncated archive24).  As expected, the frontal degradation inherent 

in truncated approaches means that solutions residing in dominated or pre-explored 

regions of objective-space are mistakenly accepted as beneficial, leading to 

inaccurate convergence estimates.  Consider also the behavioural characteristics that 

may be extracted from the convergence graphs seen in Figure 33d — results for the 

truncated system indicate that the leading front is improving at a near-constant rate of 

approximately 23%.  The reality, though, is that front progression is decelerating 

rapidly and, by the end of the run, is achieving a less than a 4% improvement rate; 

the fidelity between observed and actual convergence is poor.  Such disparity is more 

than a theoretical concern — in practice there is little reason why a decision maker 

would voluntarily terminate a run that is apparently improving at both a high and 

constant rate, leading to an inappropriately excessive number of redundant 

evaluations.   

Given these results, the development of termination conditions based on 

unconstrained elite archives is an important avenue of work.  As will be explored in 

Chapter 7, elaboration and expansion of the convergence indicator outlined here 

represents one such piece of work — providing both concise and accurate frontal-

behaviour information that leads to flexible and powerful termination conditions.  

6.2.1.5 SUMMARISING DEFICIENCIES IN GENERIC ELITE ARCHIVING 
The cost of maintaining unbounded archives in simple list structures has resulted in 

the majority of contemporary multiobjective optimisation algorithms (such as 

NSGA-II [82], PAES [143], PESA [136], SPEA2 [81] and IBEA [91]) using an 

approximation of an elite set that is reliant on frequent, and potentially aggressive, 

                                                 
24  Higher population levels will tend to achieve more accurate convergence scores because there is a 

smaller fraction of squares that will be lost due to truncation.  Still, unless the population size is 
greater than (or equal to) the number of squares required to properly encapsulate the optimal front, 
frontal degradation is still likely and the accuracy of the convergence indicator cannot be assured.  
Given that the shape and extent of the true Pareto front is rarely known a priori, setting archive 
thresholds that will generate consistently accurate convergence scores without incurring a 
significant run-time cost (as would occur with larger thresholds) is difficult, if not impossible.  
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truncations.  While techniques using such a methodology have demonstrated 

impressive power, there exist a host of potentially serious drawbacks that affect both 

the performance and applicability of the optimisation process.  In particular, 

truncation may induce frontal degradation (where weak solutions are mistakenly 

accepted into the supposedly elite set); the loss of potentially beneficial regions 

(when an archive is simply too small to express all of the important areas in 

objective-space); and poor crowding estimation (since any approximations are 

generally derived from an incomplete picture of the true front).  Due to such issues, 

termination conditions are also difficult to produce, since little concrete information 

can be formed as to the true behaviour of the prevailing front (apparent front 

expansion may be caused by oscillation and apparent front progression may be a 

consequence of preceding frontal recession, for example). 

Given the problems which stem from the simple list representation of the archive and 

the mechanisms required to curb the complexity burden it carries, it is unusual that 

more work has not been directed at improving or finding better suited data structures 

or algorithms.  Indeed, only Fieldsend et al. [97], Mostaghim et al. [96] and Jensen 

[95] have offered suitable alternatives via augmented tree structures.  As will be seen 

in Section 6.2.2, while these approaches each yield efficiency gains when applied to 

the generic case, there may be scope for further refinement and improvement in the 

special two-dimensional case.   

6.2.2 EXISTING UNBOUNDED ARCHIVING TECHNIQUES 
Unbounded archives only become feasible for use in practical multiobjective 

optimisation systems if they gain an obvious performance advantage over the 

existing O(βn) time costs25 associated with naïve linear list storage techniques, while 

incurring only a marginal increase in the storage costs seen in truncated approaches.  

With this in mind Fieldsend et al. [97], Mostaghim et al. [96] and Jensen [95], each 

offer data structures and updating procedures that are suitably efficient to be viable 

alternatives to the prevailing truncation-based methodologies.  This section will 

explore the steps made by these researchers towards a powerful new standard in 

multiobjective optimisation thought, and those problems that have thus far curtailed 

community enthusiasm for unbounded archiving. 
                                                 
25  Recall that β is the number of objectives and n is the number of members stored in a population 

(the archive, in this case). 
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6.2.2.1 MOSTAGHIM QUAD-TREES 
The first series of algorithms described specifically for unbounded archiving are the 

three variants proposed by Mostaghim, Teich and Tyagi [96] (namely, Quad-Tree1, 

Quad-Tree2 and Quad-Tree3).  All three approaches result in the storage of non-

dominated solutions in quad-trees26 (as illustrated in Figure 34) and differ primarily 

in the way deletion occurs.  Specifically, Quad-Tree1 must re-insert all descendents 

of a deleted node; Quad-Tree2 instead checks descendents of a deleted node for 

domination and flags these for subsequent extraction; while Quad-Tree3 moves the 

smallest k-successor into the position of the dominated node and re-inserts all 

members of the remaining k-successor sub-trees at this point.  As an example, if the 

shaded (10,10,100) node is dominated in the quad-tree illustrated in Figure 34, then 

the Quad-Tree1 algorithm requires the re-insertion of all shaded descendent nodes; 

Quad-Tree2 must check (and potentially remove) the same set of nodes; and Quad-

Tree3 moves the green descendent up one level and re-inserts the darkly shaded 

descendents at this point.   

Regardless of approach however, the proposed algorithms are beset with the same 

general class of problems — that is, potentially expensive tree maintenance under the  
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 Figure 34 — An Example Mostaghim Quad-Tree for Unbounded Elite Archiving 

k-successorship is given by 1

1
2 ,

β
β−

=
×∑ i

i
k where β is the number of objectives and ki is zero  if the 

child node’s ith objective score is less than the ith objective score of the parent, or one otherwise. 

                                                 
26  For those unfamiliar with the quad-tree data structure, it may be useful to know that each node 

contains at most four branches (hence quad) only when labels are two-dimensional, as in the bi-
objective case.  When β-dimensional labels are required (when addressing β objectives), each node 
can have a maximum of 2β branches (making the quad-tree name more than a little misleading 
here).  To further confuse matters, the Mostaghim quad-trees never require the first or last 
branches, so the maximum number of children from each node is in fact 2β-2. 
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insertion of dominating nodes and an excessive number of (largely unnecessary) 

dominance checks.  Moreover, empirical evidence displayed in their own work [96] 

suggests that the approach is more costly than a simple linear list for a large number 

of evaluations.  Indeed, on the relatively simple ZDT1 function developed by Zitzler, 

Deb and Thiele [188], the variants are slower on average than an unbounded list even 

after 400,000 evaluations.  Thus, the proposed Mostaghim quad-tree algorithms are 

ultimately of limited practical worth (and will therefore not be discussed further in 

this work), but provided the impetus for similarly motivated ideas to be explored. 

6.2.2.2 DOMINATED TREES 
Improving on the performance of the Quad-Tree algorithms, Fieldsend, Everson and 

Singh [97] introduce both a new selection mechanism for unbounded archives — 

namely, Partitioned Quasi-Random Selection (PQRS) — and efficient data structures 

for the storage and maintenance of archival solution sets — specifically, Dominated 

and Non-dominated Trees.   

With respect to selection, a forest of β self-balancing trees is proposed (referred to as 

PQRS trees), with each objective-based tree partitioned into (e-1) identically sized 

bins for solution storage (where e is the number of solutions to be selected).  With 

the data structure in place, an approximation of a uniform sampling of any dimension 

is achieved by simply selecting a single solution from each bin in the corresponding 

tree (unless a bin is empty, in which case a nearest neighbour is selected).  Note that 

to preserve the extent of the front, Fieldsend et al. [97] also suggest the inclusion of 

extreme solutions in each selection set. 

In contrast, maintenance of the archive occurs in two data structures — the 

Dominated Tree and the supporting Non-dominated Tree27.  As illustrated in Figure 

35, both approaches are similarly composed of approximately jn/βk unique composite 

points: combinations of the objective-results from multiple independent solutions 

(constituents).  Importantly, no composite point is ever incomparable with another, 

and so the weakly-dominates relation can impose a complete order on any set of 

 

                                                 
27  Perhaps confusingly, Fieldsend et al. [97] also use Dominated Tree to denote the PQRS, 

Dominated and Non-dominated Trees in toto – and results indicating the performance of 
Dominated Trees refer to this grouping, as opposed to the singular data structure.  This work 
follows suit, since no alternative group name is provided.  
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Figure 35 — Example Dominated and Non-dominated Trees 
Dashed lines illustrate the constituents of each composite point; z is a query point.  Note that the 
illustrated trees are sub-optimal as some constituents are used in multiple composite points; only 

periodic cleaning of the tree can aleviate the inefficiencies caused by this phenomena.    

 

points — thus facilitating the use of ordered data structures, such as balanced binary 

search trees.  

Empirically, Fieldsend et al. [97] demonstrate the efficiency, and efficacy, of using 

the proposed mechanisms, with particularly impressive timing results when 

compared to the performance of an unbounded linear list.  However, the approach is 

not without its limitations.  In particular, the selected Dominated Tree structure may 

sporadically require complete re-building in order to maintain a suitable  

approximation of the optimal number of composite points (jn/βk).  As illustrated in 

Figure 36, which displays averages based on twenty distinct NSGA-II runs per 
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(d) P1 

Figure 36 — The Cost of Rebuilding Dominated Trees 
For all graphs, the x-axis represents the the number of solutions (taken from NSGA-II runs) presented 
to the archive.  (a), (b) and (c) display the average total number of solutions successfully added to the 
Dominated Tree and the average total number of solutions that must be re-inserted when naïve tree 
rebuilding is required (with cleaning occurring when the number of composites exceeds 60% of the 

archive size).  (d) shows the average total number of Dominated Tree rebuilds required on each tested 
problem. 

 

problem (see Appendix B.1.1), the potential for such rebuilding is neither infrequent 

nor low in impact.  Recalling that a naïve approach to tree rebuilding will come at a 

cost of O(n log n) for a tree with n members (even if a PQRS Tree is referenced), the 

need for complete reconstruction is expensive indeed, particularly given the 

unbounded nature of n.  Furthermore, to determine non-dominance of a solution with 

respect to the archive — and additional to the normal binary search — the 

constituents of composite points that are incomparable with the applicant solution 

must each be checked for dominance in-turn.  Referring to the example in Figure 35, 

this means that incoming solution z must be compared against constituents of 
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composite points C3 and C4.  The same constituent verifications must also be made 

for both the weakest composite point to dominate the solution (Cw) and all 

composites that share an axis with Cw, though this can be avoided in the two-

dimensional case.   

The effect is that the logarithmic nature of tree-insertion is offset by the need for 

periodic linear searches of solution subsets and highly expensive tree reconstructions.  

While Fieldsend et al. [97] correctly note that the algorithm is unlikely to degenerate 

into a truly linear search of the entire population of solutions, the overhead it induces 

is certainly significant enough to degrade performance (as will be explored in 

Section 6.4.2.3.1). 

6.2.2.3 ORTHOGONAL RANGE SEARCHING 
Although much of Jensen’s [95] thorough paper regarding the application of data 

structures to multiobjective optimisation focuses on improving the run-time 

performance of non-dominated sorting, it also briefly addresses archive maintenance.  

In particular, the paper suggests the use of fractional cascading and Dynamic Range 

Trees [189] (see Figure 37 for an example) to enable orthogonal (rectangular) range 

queries for the identification of dominated or dominating solutions.  Providing 

efficient run time complexities, the approach is of significant merit, though the use of 

Dynamic Range Trees will incur a non-linear storage complexity, which may be of 

some burden for particularly large archives.  Moreover, since it was not the focus of 

his work, Jensen does not implement or test the data structure, meaning that 

empirical performance analysis is presently unavailable.  Thus, expansion upon this 

 

5,15,90 10,30,30

20,20,20 50,50,0

5,15,90 20,20,20

10,30,30

20,20,20 5,15,90  

 Figure 37 — An Example Dynamic Range Tree 
The example illustrates a rudimentary three-dimensional range tree.  Unshaded nodes represent the 

first-level binary tree ordered by performance on the first objective; lightly shaded nodes form second-
level trees ordered by the second objective; darkly shaded nodes represent the third level, where nodes 

are ordered by third-objective performance.  Dashed lines indicate the presence of additional trees 
which have been excluded for brevity. 
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original proposal, particularly on problems of low dimensionality, lies as an 

important area of future work.  In particular, in the special bi-objective case, a one-

dimensional range tree may be all that is required if the properties outlined in Section 

6.1 are capitalised upon, thus negating the need for fractional cascading and 

secondary level sub-trees. 

6.3 INTRODUCING THE MAK_TREE 
All unbounded archiving algorithms proposed thus far are, quite reasonably, 

designed for generic β-objective non-dominated sets.  However, as introduced in 

Section 6.1, the bi-objective case carries a number of unique properties that may be 

manipulated to form more efficient specialised data structures and storage 

algorithms.  The Mak_Tree28 algorithm represents such an approach, delivering a 

highly efficient, simple, flexible and low-cost technique that is specifically tailored to 

the needs of bi-objective optimisation. 

6.3.1 THE MAK_TREE DATA STRUCTURE 
The Mak_Tree is a generic label for any binary tree structure that is dynamic, self-

balancing and ordered (arbitrarily) by performance on the first objective of a bi-

objective problem.  A node in any Mak_Tree represents a collection of solutions with 

identical objective scores (to enable Property Two, as described in Section 6.1.3) 

while every member of the tree is strictly non-dominated.  As such, the tree itself is 

not particularly interesting and can take on a wide variety of forms, from AVL 

structures [190, 191] to the Red-Black trees [192, 193] used herein.  It is the 

Mak_Tree algorithms, which build upon the unique properties of bi-objective sets 

and binary search trees, that are interesting and will form the focus of this work.    

Still, to place the behaviour of the Mak_Tree in context — and to bridge the gulf 

between theoretical discussions and practical implementations — it is beneficial to 

offer at least a brief exploration of the Red-Black tree structure that forms the 

foundation upon which the Mak_Tree algorithms build.  Again, it is worthwhile 

noting that the Red-Black tree represents but one of the wide range of self-balancing 

binary tree structures that are suitable for Mak_Tree application; its choice is largely 

arbitrary, though its simplicity and popularity (see Appendix F.1 for example source 

                                                 
28  The Mak_Tree is so named for an important person in the author’s life.  
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code in a variety of programming languages) are valuable factors in facilitating 

straight-forward Mak_Tree implementations. 

6.3.2 RED-BLACK TREES 
The Red-Black tree — borne out of seminal works by Bayer [193] and Guibas and 

Sedgewick [192] — is representative of a host of innovative data structures 

developed during the 1960’s and 1970’s that attempted to rectify inefficiencies 

inherent in standard binary search trees ([194, 195] offer succinct reviews and 

analyses).  Specifically, traditional binary structures are prone to becoming 

unbalanced, where the height of a tree may vary tremendously from the optimal (log2 

n).  The consequence is that the performance of standard binary search trees is 

subject to the order of updates (see Figure 38 for a classic, though pathological, 

example) — and the O(log n) search and insert bounds become unreliable in practice.  

As such, the Red-Black tree uses simple localised (colour-based) information to 

maintain a pseudo-balanced structure that adheres to O(log n) bounds. 

The power of the Red-Black tree comes from a number of simple properties that 

must always hold true.  Specifically, a Red-Black tree is composed of nodes that are 

coloured red or black, such that: 

• The root is always black; 

• No two red nodes may be directly connected to each other; 

• Each newly inserted node is initially coloured red; and 

• The tree (and any given sub-tree) is perfectly balanced when considering only 

the black nodes. 
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Figure 38 — Unbalanced and Balanced Binary Search Trees 
(a) A traditional (unbalanced) binary search tree formed under the insertion of ever-ascending numbers.  

(b) A balanced equivalent of the tree found in (a). 
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Figure 39 — An Extremely Unbalanced Red-Black Tree 
Black nodes feature heavy shading, while red nodes are unshaded.  Note that the tree is balanced when 

considering only black nodes, but unbalanced when considering all nodes.  Adding any element 
beneath the 12-node would result in the tree being re-balanced via a rotation and re-colouring. 

 

Since the tree is balanced under the consideration of black nodes and no two red 

nodes may be connected, it follows that the most a tree can be unbalanced is by a 

factor of two (see Figure 39 for an example) and the maximum height is 2log 2  n .  

Thus, while the Red-Black tree can only claim an approximation of balance, the 

difference is negligible in practice and O(log n) bounds apply. 

Updating a Red-Black tree proceeds precisely as it would in a standard binary search 

tree, though with the added burden of ensuring that the aforementioned Red-Black 

properties hold true.  While conceptually complex (and beyond the scope of this 

overview), property maintenance requires at most one rotation and O(log n) node re-

colourings, thus ensuring that the total time costs related to insertion and deletion do 

not expand beyond O(log n).   

By tightening the worst-case bounds — and by doing so with no practical cost 

beyond a slight increase in implementation complexity — the Red-Black tree offers 

the type of consistent performance that is beyond conventional binary search trees, 

but is necessary for use in time-critical real-world systems.   

6.3.2.1 A RED-BLACK MAK_TREE 
When the properties of the Red-Black tree are combined with the simple objective-

based ordering requirements of the Mak_Tree, it gives rise to the type of structure 

exemplified in Figure 40.  Note that the structure requires only minimal changes to  
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Figure 40 — An Example Red-Black Mak_Tree 
Black nodes feature heavy shading, while red nodes are unshaded.  Note that the tree is ordered by 

performance on the first objective. 

 

the basic Red-Black tree, and should therefore be accessible and simple to implement  

(especially given the host of pre-existing Red-Black tree implementations that are 

readily available, see Appendix F.1). 

6.3.3 UPDATING THE MAK_TREE 
It is obvious that for a Mak_Tree to remain non-dominated, it must only accept non-

dominated solutions into the tree and prune any solution that becomes dominated due 

to an insertion.  The basic algorithm to achieve such behaviour is outlined in 

Algorithm 2, where solution a is inserted into archive A.  To further illustrate the 

behaviour of the update operations introduced in the algorithm, it is beneficial to 

consider two general concepts: verifying non-dominance and locating dominated 

nodes. 

6.3.3.1 VERIFYING NON-DOMINANCE 
In order for a proposal to be inserted into the archive, it must not be dominated by 

any other stored solution.  Considering the procedure adopted in Algorithm 2, it is 

not necessarily intuitive how this is achieved.  However, recall that a unique property 

of ordered bi-objective non-dominated fronts is that if a solution is non-dominated 

with respect to its predecessor, then it is also non-dominated with respect to the 

remainder of the front (Property Four, Section 6.1.5).  Since insertion mirrors simple 

binary-tree insertion, and this means that the proposal will always be compared with 

its predecessor (unless it is dominated before this point or no such predecessor 

exists), any successfully added solution is guaranteed to be non-dominated. 
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Algorithm 2 — Insertion Into The Mak_Tree 

Inputs:  
 a  The solution to be inserted into the archive (tree) A. 
   

1: if ( null)=rootA  If the tree is empty (root is null) add a new  
2:  : createNode( )a=rootA  node containing the solution to the tree. 
3: else   
4:  : false; _ : {}= =rejected del nodes   
5:  _ : {}; : null; := = = rootdel subs b node A  Otherwise, start the search at the root of A. 

6:  ( )while ( leaf ) and ( true)≠ ≠node rejected   
7:   if ( )≺node a  If the current node dominates a 
8:    true=rejected  then the algorithm ends. 
9:   else if ( )≺ nodea  If the solution dominates the 

10:    
handle_dominance ( , , ,

_ , _ )
node B

del nodes del subs
a

 
current node then call the 
handle_dominance helper (Algorithm 3). 

12:    : left_or_insert( , )=node node a  Move left, or insert a new node with a if at a leaf. 
13:   else if ( )=nodea  If the solution and node share 
14:    : { }a= ∪node node  objective scores, add a to node 
15:    : true=rejected  and end the algorithm. 

16:   ( )_
1else if ( )a < obj1 labelf node  If the objective-one score of a 

17:    : left_or_insert( , )=node node a  is less than that of node, move  
18:   else  left or insert a if node is a leaf. 
19:    : right_or_insert( , )=node node a  Otherwise, move/insert to the right of node. 
20:  if (( null) and ( false))≠ =B rejected  If the solution was dominating 
21:   delete_all_sub_trees( _ )del subs  then remove all dominated 
22:   delete_all_nodes( _ )del nodes  nodes and sub-trees.  

 

Algorithm 3 — Handle_Dominance Helper 

Inputs:  
 a  The inserted solution. 
 node  The dominated node being examined. 
 b  The first found dominated node. 
 _del nodes  The set of individual nodes that are dominated by S. 
 _del subs  The set of sub-trees that are dominated by S. 
   

1: _ : _= +del nodes del nodes node   

2: if ( null)=b  If b has not yet been found, 
3:  :=b node  then label this node as B and find 
4:  := rightChildcurrent b  all dominated nodes to the right of it. 
5:  while( null)≠current   

6:   ( )_
2if ( )a ≤ obj 2 labelf current  If the solution dominates the 

7:    _ : _ { }= ∪del nodes del nodes current  current node, both the node and 
8:    if (left( ) null)≠current  its left sub-tree (if it exists) 
9:     _ : _ { }= ∪ leftChilddel subs del subs current  should be deleted. 

10:    := rightChildcurrent current  Move right.  
11:   else  The solution can only dominate 
12:    := leftChildcurrent current  nodes to the left, so move left. 
13: else if ( null)≠rightChildnode  If B has been found, all nodes 
14:  _ : _ { }= ∪ rightChilddel subs del subs node  to the right of node must be dominated. 
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Figure 41 — Illustrating the Range Properties of Binary Search Trees 
Any node in the sub-tree represented by the shaded region will always feature values between x and y.  

Specifically, for (a) the shaded region will always contain nodes with values between 20 (y) and 30 
(x), while the shaded region in (b) will always contain values between 10 (x) and 20 (y). 

 

6.3.3.2 LOCATING DOMINATED NODES 
Central to the algorithm for locating dominated nodes is the concept of dominated 

sets introduced in Property Three (Section 6.1.4) — that is, if a solution dominates 

nodes at index i and index j, it must also dominate the set of nodes with indices 

between i and j.  Since this essentially represents a range-query, it is useful to build 

on the range-related properties inherent in binary search trees.  Specifically, it is 

always the case that if a node y is the left-child of x, then all right-descendents of y 

will have in-order indices between the indexes of x and y (see Figure 41a).  This 

property also holds if y is a right-child of x and all left-descendents of y are 

considered (as demonstrated in Figure 41b).  The effect is that once an initial 

dominated node has been identified, any dominated node to its right is guaranteed to 

have a dominated left sub-tree, while any dominated node to its left must have a 

dominated right sub-tree (as illustrated in Figure 42). 
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Figure 42 — Illustrating the Range Properties of Mak_Trees 
If both x and y are dominated, any node in the shaded regions must also be dominated. 
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With this in mind, locating dominated nodes becomes relatively straight-forward and 

particularly efficient in the Mak_Tree algorithm.  After the discovery of the first 

dominated node b at index h, the location of all dominated nodes with indices 

between h+1 and j (the right-most member of the complete dominated set) requires 

at most O(log n) comparisons.  Specifically, the search proceeds as follows (starting 

at the right-child of b): if the current node is dominated label it and the left sub-tree 

as dominated and search the right sub-tree; otherwise, everything to the right of the 

current node is non-dominated, so move left.  The discovery of all nodes with indices 

between i (the left-most member of the complete dominated set) and h-1 requires 

little modification to the standard insertion procedure — on dominance, the search 

progresses left as usual, with the node and right sub-tree marked as being dominated.  

Figure 43 provides an example of the procedure in action (with a further example 

offered in Appendix F.3.1).   

Once discovered, the dominated nodes must be removed from the tree (lines 20–22 

in Algorithm 2).  It is important to note that dominated sub-trees (the heavily shaded 

boxes in Figure 43) and the individual dominated nodes (the lightly shaded cells in 

Figure 43) are handled independently during this deletion procedure.  As evidenced 

in Section 6.4.1.2.2, the deletion of large sub-trees, in particular, can afford the 

Mak_Tree algorithm an impressive performance gain. 
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Figure 43 — Locating Dominated Nodes in an Example Mak_Tree 
Assume that a solution with results (24,14) is being inserted into the tree and that B is the first 

dominated node to be identified.  The dashed bold line represents the O(log n) path taken to identify 
all dominated nodes to the right of B.  The solid bold line represents the O(log n) path taken to both 
identify all dominated nodes to the left of B and insert the solution at the correct location in the tree.  
For clarity, individual dominated nodes are lightly shaded, while dominated sub-trees feature heavy 

shading. 
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6.4 PERFORMANCE OF THE MAK_TREE 

6.4.1 COMPLEXITY ANALYSIS 
When considering the performance of a given data structure and algorithm, both time 

and space complexity are significant.  While emphasis is typically placed on 

efficiency, high space complexity can induce tighter limits on the feasible capacity of 

a given structure.  Since the very nature of unbounded archives is to store particularly 

large solution sets, it is important to avoid such limits. 

6.4.1.1 SPACE COMPLEXITY 
The optimal space complexity for any unbounded archive is O(n), as all solutions in 

the archival set must be accessible.  Since the Mak_Tree contains at most n nodes 

and the simple nature of the tree requires no repetition of nodes or solutions, the 

space complexity of the Mak_Tree is optimal and equal to O(n). 

The Dominated Tree structures achieve similarly optimal space complexity, though 

they require cleaning at appropriate thresholds to ensure that such optimality holds.  

Without cleaning, constituents may contribute to multiple composites and the spatial 

cost will increase accordingly. 

Finally, the Dynamic Range Tree suggested by Jensen requires O(n log n) space (see 

[196]) due to its two-level tree structure and thus represents the most expensive 

storage option presented in the literature thus far. 

6.4.1.2 RUN-TIME COMPLEXITY 
With respect to performance complexity, it is useful to consider the insertion of two 

distinct types of solution: strictly non-dominating — those that are dominated by or 

equal to some component of the archive, or otherwise completely incomparable — 

and dominating.   

6.4.1.2.1 Insertion of Non-dominating Solutions 

As alluded to in Section 6.3.3.1, the Mak_Tree algorithm is particularly efficient 

when inserting non-dominating solutions, as the algorithm requires at most O(log n) 

dominance comparisons during the simple binary navigation.  Since insertion in Red-

Black Trees will only ever require at most O(log n) node re-colourings and one 

rotation, the worst-case time cost for the insertion of any non-dominating solution in 
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the Mak_Tree is O(log n).  Such performance is optimal for any structure based on 

binary search trees. 

The Dominated Tree structures achieve similar performance, though the need for 

linear checking of composite constituents may be costly.  If the solution under 

consideration is dominated, then performance is optimal and requires only O(log n) 

dominance comparisons.  However, the algorithm is sub-optimal under the insertion 

of strictly incomparable solutions, with the burden of checking c constituents for 

dominance resulting in a search cost of O(log n + c).  While not discussed explicitly 

in the source paper, it also seems likely that verification of solution equality would 

require the checking of constituents belonging to the composite point sharing an axis 

with the solution — thus leading to sub-optimal performance if the inserted solution 

already has an equivalent stored.  Additionally, note that these time complexities 

only hold under suitable maintenance of the corresponding Dominated Tree and 

assume that the need for cleaning is infrequent (which cannot be guaranteed in 

general).  

A query in the two-dimensional fractional cascading Dynamic Range Tree will cost 

O(log n log(log n) + α), where α is the set of solutions satisfying the range query (see 

[196] for succinct summaries of Dynamic Range Tree behaviours and costs).  For 

any insertion, the algorithm will require at most two orthogonal range queries — the 

first identifies those solutions that dominate the proposal, while the second highlights 

archival members dominated by the proposal.  For a non-dominating solution, the 

second query will always return the empty set, while the first query need only return 

the first dominating node (since any α>0 is enough to disqualify the incoming 

solution from inclusion).  Thus, the total query cost for identifying a non-dominating 

node is O(log n log(log n)).  Since the update cost of the structure is also O(log n 

log(log n)), the total time cost for the insertion of a non-dominating solution into the 

Dynamic Range Tree is O(log n log(log n)). 

6.4.1.2.2 Insertion of Dominating Solutions 

Handling dominating solutions is an inherently more expensive proposition as it 

requires both the identification of dominated solutions and their subsequent removal.  

As discussed in Section 0, all η dominated nodes can be efficiently discovered with 

O(log n) dominance comparisons using the Mak_Tree.  If the naïve approach is taken 
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and each of the η dominated nodes are deleted in-turn, the final cost of identifying 

and removing dominated nodes with the Mak_Tree is O(η log n).  However, given 

that the query may return dominated sub-trees, it is useful to capitalise on sub-tree 

deletion in Red-Black Trees.  Specifically, for any sub-tree requiring deletion, the cost 

of removing the sub-tree is O(log τ log n) rather than O(τ log n), where τ is the size of 

the sub-tree.  For small η the difference is not particularly impressive, but as η 

increases, so must the size or number of sub-trees identified for deletion.  The effect 

is particularly evident in analysing the worst-case insertion bound, where the number 

of dominated nodes tends towards the size of the tree29 (η ≈ n).  In this case there will 

be approximately (2 log n) sub-trees and (2 log n) separate individual nodes that 

require deletion.  The individual nodes will cost a total of O((log n)2) to remove 

(though the amortised cost of this operation can be reduced if individual deletion 

occurs after sub-tree deletion is completed).  Both left and right of the root, deleted 

sub-tree sizes follow the pattern (22-1, 23-1, 24-1, ..., 2(log n)-1 ) and so the cost of 

deleting all sub-trees is: 

( )( )
( )( )
( )
( )

2 3 4 (log ) 1

2

3

2 log(2 1) log(2 1) log(2 1) ... log(2 1) log

2 1 2 3 ... (log ) 2 log

(log ) log

(log )

−× − + − + − + + − ×

= × + + + + − ×

=> ×

=

n n

n n

O n n

O n

 

(61) 

 
Thus, the total worst-case bound of identifying and removing dominated nodes from 

a Mak_Tree is O((log n)3).   

The Dynamic Range Tree can identify all η dominated solutions using an orthogonal 

query that costs O(log n log (log n) + η).  Once discovered, the dominated solutions 

must then be removed from the tree at a cost of O(η log n log (log n)).  Thus, when 

worst-case insertion occurs, the Dynamic Range Tree carries a cost of O(n log n log 

(log n)).   

To locate all η nodes for deletion, the Dominated Tree must perform two binary 

searches and subsequently check every constituent of dominated composite points.  

Thus, the cost of locating all dominated nodes in the archive will be at least  
                                                 
29  Though it is actually trivial to handle complete domination: if the left-most and right-most nodes 

in the tree are dominated, the inserted node simply becomes the root of a new Mak_Tree. 
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O(log n + η) and, more generally, O(log n + η + δ), where δ is the number of 

constituents belonging to dominated composite points.  To minimise this cost, 

Fieldsend et al. [97] propose the use of the alternative (though conceptually very 

similar30) Non-dominated Tree structure which ensures that any dominated 

composite point will feature only dominated constituents.  While offering some 

performance gain, constituents belonging to incomparable composite points will still 

need to be verified.  Thus, the cost of locating dominated nodes using the Non-

dominated Tree variant will be O(log n + µ), where µ is the number of incomparable 

composite constituents that must be examined. 

Upon the deletion of any solution, the corresponding Dominated Tree structure must 

update all composite points for which the solution was a constituent.  If the solution 

represented is the only constituent of a composite point, the composite point will be 

removed from the archive in O(log n) time (assuming use of a self-balancing tree).  If 

the solution was used in the most dominating composite point then, in the two-

dimensional case, the remaining constituent of the composite represents the new 

coordinates of the dominating point and the update can be completed in constant 

time. Otherwise, the affected composite point is updated through the re-use of a 

constituent of the succeeding (dominated) composite — requiring an O(log n) 

successor search.  Thus, the cost of deleting a single solution from any Dominated 

Tree is O(ν log n), where ν is the number of composite points that the solution is a 

member of.  Deletion of η solutions will cost O((u+η) log n), where u is the total 

number of extra composite points to which the η dominated solutions belong. 

Note that some practical improvements can be made over this performance if it is 

known when all constituents of a composite point are dominated (as is the case for 

certain composite points in Non-dominated Trees).  Given this knowledge, the 

completely dominated composite point can be deleted from the tree without the need 

for intermediary coordinate re-labelling.  However, given that the constituents of the 

dominated composites may also form part of non-dominated composites elsewhere in 

the tree, the overriding complexity costs remain much the same unless frequent 

cleaning occurs.  Better improvements are seen when applying binary sub-tree 

deletion to remove sets of completely dominated nodes, though the need to check 
                                                 
30  So similar, in fact, that the performance of the Non-dominated Tree echoes that of the Dominated 

Tree for all but the special deletion case. 
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and update constituents in non-dominated composite points curb the advantages 

afforded to such an approach when η is small.  Still, such techniques may hold merit 

and are certainly worth further consideration in future work.  

6.4.1.2.3 Amortised Cost of Inserting Dominating Solutions into 
Mak_Trees 

The cost of deletion in a Mak_Tree may appear prohibitive, but the worst-case 

scenario is misleading in practice.  This discrepancy between theory and practical 

reality is best illustrated via amortised time analysis (for those unfamiliar, Cormen, 

Leiserson and Rivest [197] provide a straight-forward introduction into amortised 

complexity and its value to real-world practitioners).  For any number of insertions χ, 

the maximum number of deletions that can occur is also χ (fairly obviously, the 

Mak_Tree cannot remove more than χ solutions or the archive would have fewer 

than zero members).  In this case, the amortised complexity of maintaining the 

Mak_Tree on an insertion-by-insertion basis is: 

(log ) ( log ) (log )χ χ
χ

 +  =   
n nO O n  (62) 

 

In other words, when the maintenance process is considered in toto (across multiple 

insertions), the performance overhead generated by deletion is completely eroded. 

6.4.1.2.4 Summary of Run-Time Complexity 

As evidenced in Table 9, the Mak_Tree provides superior time complexities to those 

previously discussed in the literature.  The Dynamic Range Tree is generally more 

expensive due to its two level structure — though the optimisation of the approach or 

the application of one-dimensional range trees rests as an interesting area of future 

work.  The Dominated Tree structures proposed by Fieldsend et al. [97] provide 

similar outcomes to the Mak_Tree, but only under the assumption that constituents 

contribute to a very small number of points and that composite cleaning is 

infrequent. Since composite cleaning requires the successive deletion of all 

constituents from all composite points they contribute to (excluding the least 

dominating node) or the complete rebuilding of the tree, the cost of such a procedure 

is prohibitive in all but sparse usage (which, again, cannot be guaranteed in general). 
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Table 9 — Big-Oh Space and Performance Complexity for Examined Data Structures 
† Assumes constituents do not contribute to a large number of composites.  ‡ Can be reduced to O(log 

n) for insertion of dominated solutions.  ♦Assumes infrequent composite cleaning.  ♣ Can be 
improved as η increases.  ♥ Amortised time removes the η factor. 

Approach Spatial 
Complexity 

Inserting Non-
dominating Solutions 

Searching for 
Dominated Solutions 

Deleting Dominated 
Solutions 

Mak_Tree O(n) O(log n) O(log n) O(η log n)♣♥ 

Dominated 
Tree O(n)† O(log n + c)‡♦ O(log n + µ) ♦ O((u+η) log n) ♦♣♥ 

Dynamic 
Range Tree O(n log n) O(log n log(log n)) O(log n log (log n) + η) O(η log n log (log n))♥ 

 

6.4.2 EMPIRICAL PERFORMANCE 
While theoretical analysis of algorithms provides an important grounding for the 

understanding of performance — particularly with respect to worst-case bounds — 

empirical examinations can elucidate behaviour under more realistic conditions.  As 

such, this section investigates the performance of the Mak_Tree across a diverse set 

of problems against both contemporary and common techniques. 

6.4.2.1 THE TEST PROBLEMS 
As described in Section 5.3, the AP test suite provides an excellent base for 

elucidating the performance of optimisation algorithms under the presence of a 

diverse set of interesting and potentially challenging problem features.  Many of 

these features are also important for understanding the general behaviour of 

unbounded elite stores — the shape of fronts, multi-frontal regions and the presence 

of constraints may all affect the performance of a given data structure or algorithm 

(some algorithms may better handle convex non-dominated fronts, for example).  Of 

more explicit importance to the performance of unbounded archiving techniques 

however are the size and growth characteristics of the non-dominated set.   

The effect of archival size should be obvious: the larger the unbounded set, the 

greater the potential number of solutions that an incoming proposal must be validated 

against.  Any inefficiencies in elite archiving will be more clearly elucidated in large 

unbounded sets, while smaller archives may highlight thresholds for which the 

overhead of sophisticated data structures outweighs the apparent benefits (if such a 

threshold exists).  Similarly, the performance of archiving strategies against differing  
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growth characteristics — such as variations in the acceptance/rejection rate trends 

and the number of archived solutions that become dominated over time — provides 

insight into the efficiency of update procedures and dominance verifications.   

It is useful then that, when optimised by a standard NSGA-II algorithm (with settings 

specified in Appendix B.1.1), the static noise-free two-dimensional AP functions 

produce sets that have diverse membership numbers and varied growth 

characteristics.  These factors are illustrated and discussed in Figure 44, which 

displays the average number of unique31 members in the prevailing non-dominated  

front over twenty distinct NSGA-II runs; Table 10, which analyses some points of 
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Figure 44 — Elite Unbounded Archive Sizes  
For all graphs, the x-axis represents the number of evaluations the NSGA-II algorithm has performed 

and the y-axis reflects the average size of the NSGA-II-produced non-dominated front. 

                                                 
31  Recall that any two non-dominated solutions sharing result vectors are considered equivalent in 

this work, regardless of the variables that compose each solution.   
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Table 10 — Unbounded Elite Set Characteristics 

Problem Final Size Comments 

AP-1 4705 
Discovery of the optimal front is rapid.  Subsequent evaluations focus on 
diversification of the front, leading to low removal:acceptance ratios 
(few late-generation solutions are highly dominating).   

AP-2 4472 As above. 

AP-3 5047 As above. 

AP-4 11973 Discovery of improved fronts leads to step-like growth rates (the 
problem is multi-frontal). 

AP-5 14829 Initially small set sizes grow rapidly until completion of run.  Figure 45
shows that the ratio of acceptance:removal is increasing over time. 

AP-8 844 High rejection levels due to constraint violations. 

AP-9 1651 High rejection levels due to constraint violations. 

AP-10 13788 Considerably fewer constraint-related rejections than in AP-8 and AP-9. 

AP-15 1930 Movement to optimal space, and early diversification in that space, is 
rapid, but subsequent improvement is both difficult and slow. 

AP-16 2166 As above. 

AP-17 9429 As above. 

AP-21 1671 As above. 

F-1 863 
Low final set size is principally due to large rejection rates (generating 
better proposals is difficult) and relatively high removal rates (when a 
better proposal is generated, it tends to be highly dominating). 

 

note; and Figure 45, which illustrates the ratios of solution acceptance, rejection and 

removal (archival deletion due to dominance) across the same test set.  

Note that the AP functions alone do not thoroughly test consistently small non-

dominated fronts except in two of the constraint-based problems (AP-8 and AP-9); to 

ensure that this case is suitably examined, the F-1 test function proposed in Fieldsend 

et al [97] is included as an additional problem.  The F-1 function describes a large 

objective-space with a large continuous, and convex, Pareto optimal front.  The size 

of the elite set remains low in these experiments as forward progression through the 

substantial objective-space is favoured over diversification when optimising with the 

NSGA-II algorithm (as discussed in Table 10).  

6.4.2.2 THE IMPLEMENTATION OF ALTERNATIVE ELITE STORAGE 
 TECHNIQUES 

To place the performance of the Mak_Tree algorithm in context, it is compared to the 

conventional unbounded linear list, a Dominated Tree and truncated (bounded) linear 

lists on the proposed test functions.  The specifics of each implementation are worth 

further discussion as they will invariably affect overall performance. 
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Figure 45 — Acceptance, Rejection and Removal Ratios 

Each graph reflects the ratios of acceptance, rejection and removal across 150,000 evaluations. 
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6.4.2.2.1 Unbounded Linear Lists 

The naïve list is conceptually very simple: an incoming solution is compared to each 

member of the non-dominated list — if the incoming solution is dominated, 

comparisons cease and the solution is rejected; if the solution dominates a pre-

existing member, that member is removed; if it is equivalent to an existing member, 

it is added to that node.  For the empirical analysis detailed in this section, member-

nodes are stored in a singly linked list arbitrarily ordered by performance on the first 

objective (such ordering carries no additional operational overhead). 

6.4.2.2.2 Dominated Trees 

The Dominated Tree structures are implemented as per the guidelines in Fieldsend et 

al. [97].  Note that existing implementations (such as that which is referenced in the 

original work [97]) use linked list structures for the storage of all composite points 

and PQRS cells.  This is an expensive variation from the directions provided in the 

paper since any search within a linked list is bounded by O(n), as opposed to O(log 

n) for a balanced binary tree structure.  The effect is that a linked-list approach to the 

Dominated Tree carries a worst-case complexity that is more expensive than the 

naïve list (though the practical reality is that the Dominated Tree approach, even in 

this malformed guise, would still likely be preferable due to the beneficial ordering 

of composites).  It is also worth noting that many of the results reported in Fieldsend 

et al. [97] imply a similar misuse of linked lists, as the deviation between timing 

results for the naïve approach and the Dominated Tree technique are generally small 

(particularly relative to the differences seen later in this work — see Section 6.4.2.3).  

To avoid such problems, the Dominated Tree structures are all built upon Red-Black 

Trees in this work — a consequence of which is that the results reported herein may 

be the first to accurately describe the performance of Dominated Trees with 

appropriate underlying data structures. 

With respect to cleaning, Non-dominated and Dominated Trees are re-built from 

PQRS cells whenever the number of composites exceeds 60% of the size of the 

archive (as-per the approach used in implementations provided by Fieldsend [198]).  

Assuming a PQRS Tree of size n, a Dominated or Non-dominated Tree is cleaned in 

O(n log n) time using this method. 
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6.4.2.2.3 Truncated Archives 

The truncated archive builds upon the naïve list, such that an upper threshold on 

membership numbers is maintained.  Once a threshold breach occurs, a density 

estimate for each solution is calculated and members deemed to be in the most 

densely populated region of objective-space are removed.  For this work, two types 

of truncated archival maintenance are examined: strict and batch.  In the case of strict 

maintenance, solutions are incrementally inserted into the archival set until the 

number of members exceeds the threshold and truncation occurs.  In batch 

processing, a collection of solutions is inserted into the archive and truncation may 

only occur at the completion of this procedure.  The two techniques emulate the 

behaviour typical of single-member and population-based optimisation techniques 

respectively and should therefore act as a good guide to practical truncated archive 

performance. 

With both truncation approaches, the density estimate (δ) of any solution (a) is: 

euclidean_dist( , ) euclidean_dist( , )
2

δ += a a a a  (63) 

where a  is the in-order predecessor of a and a  is the in-order successor.  If no 

predecessor or no successor exists, the Euclidean distance is infinite (to bias the 

inclusion of extreme members).   

Using this simple method, density estimation requires only O(n) comparisons32 and 

the maintenance process as a whole will require only O(n + breach) operations 

(where breach is the size of the threshold breach).  Such performance is optimal for 

any list-based truncated archive designed for operation in generic multiobjective 

optimisation. 

In this work, truncation levels of 50 and 100 are used, with batch processing 

approaches using equivalent batch sizes.  Again, these settings are consistent with 

those commonly seen throughout the literature (as demonstrated in [21, 74, 81, 82, 

92, 182-185]) and should provide an accurate representation of typical bounded 

archive performance. 
                                                 
32  Note that if batch processing results in s solutions surpassing the threshold, a single pass through 

the list is still all that is required — the s most crowded solutions are derived entirely from 
estimates formed on the first pass. 
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6.4.2.3 EMPIRICAL RESULTS AND DISCUSSION 
All reported results (see pages 139–141)  illustrate the average cumulative processing 

times of each archiving approach across twenty solution sets per problem.  Each 

solution set is produced by a distinct NSGA-II run (again, for parameter settings, see 

Appendix B.1.1), with timing results excluding the costs incurred during this 

optimisation process.  It is worth noting that any solution that has violated a 

constraint is immediately denied inclusion in any elite archival store — this is a 

simplification that may not be appropriate for all practical uses, where a secondary 

data structure may need to be employed for the storage of invalid proposals.  Such 

extension lies beyond the scope of this work, but rests as an interesting avenue of 

future work. 

6.4.2.3.1 The Mak_Tree and Unbounded Archiving Techniques 

As evidenced in Figure 46, Figure 47, Figure 48 and Table 11, the Mak_Tree 

outperforms the naïve list approach on every examined problem.  The need to 

traverse typically large portions of the set on insertion (or indeed the entire set, if the 

incoming proposal is non-dominated) results in exponential cumulative time costs — 

even when addressing sets with high rejection rates, where a smaller number of 

incoming non-dominated solutions should be expected.  In sharp contrast, the 

Mak_Tree maintains a near-linear growth-rate on every tested function.  Moreover, 

Table 11 illustrates that the Mak_Tree is at least competitive with, and generally 

faster than, the list even after a small number of insertions33.  This result runs counter 

to the rather intuitive theory that the maintenance and use of sophisticated data 

structures is inappropriate at small population levels and for brief runs [96, 97] where 

“the time cost of maintaining the data structures [outweigh] the search cost 

reduction” [97].  While such a statement is largely shown to hold true for the 

relatively complex Dominated Tree technique (Table 11), the simplicity of the 

Mak_Tree data structure and the efficiency of the Mak_Tree algorithms diminish the 

performance trade-off that once existed between brief and protracted runs. 

When compared with the contemporary Dominated Tree approach, the Mak_Tree is 

faster on every tested problem.  Like the unbounded list, the Dominated Tree tends to 
                                                 
33  The Mak_Tree is slower early in the run only on AP-2 and this is principally because of extremely 

small non-dominated set sizes during the initial phase of optimisation (the average set size over the 
first 5,000 evaluations is 6; over the first 10,000 evaluations the average size is 15). 
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have exponential growth in time costs — in this case principally due to the 

inefficiency inherent in constituent verifications and, more significantly, cleaning.  It 

is for this reason that the performance of Dominated Trees vary so noticeably with 

the size of the set being stored — as n grows, the O(n log n) cleaning operation 

carries a sharply increasing burden34.  By avoiding the need for re-building, the 

Mak_Tree avoids wild fluctuations in performance and is consistent across inputs.  

To illustrate the point, consider the total cumulative time costs of the Mak_Tree and 

the Dominated Tree on problems AP-5 (final set size: 14829) and F-1 (final set size: 

862): the Mak_Tree is 1.73 times slower on the larger set than on the small; the 

Dominated Tree is a remarkable 101.18 times slower.  The difference between good 

performance and bad performance is huge.  Given that the size of a non-dominated 

set will rarely, if ever, be known in advance, such variations are unacceptable in 

practice. 

 

 

                                                 
34  It is tempting to think that abandoning cleaning altogether may be preferable in this case.  

Unfortunately, the consequence of such an action is that the costs incurred by increased composite 
searching and updating exceed those of cleaning by a large margin.  See Appendix C.1 for a 
collection of results that illustrate the point. 
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(a) AP-1 
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(b) AP-2 
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(c) AP-3 
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(d) AP-4 
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(e) AP-5 
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(f) AP-8 

Figure 46 — Average Cumulative Time Costs of Differing Unbounded Archiving Techniques 
For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 

the average cumulative processing time in seconds 
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(a) AP-9 
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(b) AP-10 
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(d) AP-15 
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(e) AP-16 
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(f) AP-17 

Figure 47 — Average Cumulative Time Costs of Differing Unbounded Archiving Techniques 
For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 

the average cumulative processing time in seconds 
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(a) AP-21 
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(b) F-1 

Figure 48 — Average Cumulative Time Costs of Differing Unbounded Archiving Techniques 
For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 

the average cumulative processing time in seconds 

 

Table 11 — Average Total Cumulative Times for Elite Archiving Techniques 

 10,000 
Evaluations 

50,000 
Evaluations 

150,000 
Evaluations 

Problem 
(Set Sizes After 
10k/50k/150k Evals.) 

Mak Dom List Mak Dom List Mak Dom List

AP-1 
(150/1283/4705) 

0.06 0.19 0.10 0.30 4.78 4.44 1.17 36.66 127.21

AP-2 
(55/958/4472) 

0.06 0.06 0.03 0.30 3.66 3.15 1.18 35.66 113.75

AP-3 
(173/1253/5047) 

0.04 0.21 0.14 0.28 5.24 5.25 1.13 35.66 136.74

AP-4 
(316/3831/11973) 

0.06 0.17 0.16 0.33 30.76 36.72 1.20 138.67 491.98

AP-5 
(97/1481/14829) 

0.06 0.13 0.06 0.33 9.99 7.62 1.49 191.98 449.08

AP-8 
(161/459/844) 

0.03 0.06 0.08 0.13 0.37 0.95 0.37 0.69 5.54

AP-9 
(406/957/1651) 

0.04 0.16 0.16 0.18 1.30 2.43 0.52 1.75 13.31

AP-10 
(1075/5652/13788) 

0.05 0.94 0.59 0.38 45.52 56.99 1.01 115.89 385.13

AP-15 
(242/967/1930) 

0.06 0.36 0.24 0.40 6.27 6.22 1.02 9.41 37.87

AP-16 
(245/1008/2166) 

0.08 0.40 0.26 0.43 6.09 6.76 1.15 13.37 53.01

AP-17 
(587/3376/9429) 

0.07 0.89 0.45 0.54 49.42 45.13 1.42 105.42 295.19

AP-21 
(275/881/9429) 

0.06 0.38 0.24 0.45 6.01 6.17 1.03 7.81 29.77

F-1 
(146/518/1671) 

0.06 0.16 0.12 0.30 4.78 4.44 0.86 1.90 11.84
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The Mak_Tree and Truncated Archives 

Perhaps the most surprising, and certainly the most significant, result however is the 

relative performance of the Mak_Tree against the truncated archives (see Figure 49, 

Figure 50, Figure 51, Table 12).  On every test problem the Mak_Tree is not just 

competitive with the size-limited archiving techniques, but markedly better.  The 

reasoning is less obtuse than may be imagined.   

Firstly, consider the number of operations required when an incoming solution is 

non-dominating.  In the Mak_Tree, the cost is O(log n), while in a truncated archive 

the cost is O(n') (where n' is the size of the truncated archive).  For these tests, where 

n' is 50, there is no practical35 n such that O(log n) > O(n') and the Mak_Tree is 

clearly superior.   

The more complicated case is when a dominating solution enters the archive.  The 

Mak_Tree will take O(η log n) operations (though sub-tree deletion makes for large 

practical improvements over this when η is high), while the bounded archive remains 

at O(n').  So long as η < n'/(log n) the Mak_Tree will be at least approximately 

equivalent to the truncated list.  For n' = 50 and n = 500, for instance, there must be 

more than five deletions on every insertion for the Mak_Tree to begin falling behind 

— this is extremely unlikely.   

That is to say that the results indicate that a bounded archiving approach, complete 

with all of the disadvantages that such an approach entails (see Section 6.2), can be 

replaced by a truly unbounded archiving technique with practically no performance 

degradation whatsoever36.  Beyond the difficulties in implementing the Mak_Tree 

(which should be few, given its simplicity) and the increased storage requirements 

that unbounded archiving inevitably requires, there are few reasons to support the 

continued use of truncated elite sets in bi-objective optimisation. 

 

                                                 
35  Even an unbounded archive is unlikely to exceed more than 100,000,000. 
36  The truncated approach is marginally better suited to very small elite sets (particularly those with 

sizes that are consistently lower than a truncation threshold of fifty).  The existence of such sets in 
practice however, particularly for sustained runs, is unlikely. 



Chapter 6 — Bi-Objective Optimisation and the Mak_Tree 

- 143 - 

0

0.5

1

1.5

2

2.5

3

0
12

50
0
25

00
0
37

50
0
50

00
0
62

50
0
75

00
0
87

50
0

10
00

00

11
25

00

12
50

00

13
75

00

15
00

00

Trunc (50)

Batch (50)

Mak Tree

 
(a) AP-1 
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(b) AP-2 
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(c) AP-3 
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(d) AP-4 
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(e) AP-5 
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(f) AP-8 

Figure 49 — Average Cumulative Time Costs of Unbounded and Bounded Archiving 
Techniques 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average cumulative processing time in seconds 
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(a) AP-9 
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(b) AP-10 
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(d) AP-15 
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(e) AP-16 
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(f) AP-17 

Figure 50 — Average Cumulative Time Costs of Unbounded and Bounded Archiving 
Techniques 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average cumulative processing time in seconds 

 



Chapter 6 — Bi-Objective Optimisation and the Mak_Tree 

- 145 - 

Figure 51 –Average Cumulative Time Costs of Differing Unbounded Archiving Techniques 
For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 

the average cumulative processing time in seconds 

 

Table 12 — Average Total Cumulative Times for Elite Archiving Techniques 

 10,000 Evaluations 50,000 Evaluations 
 Mak Batch 

(50) 
Trunc 

(50)
Batch 
(100)

Trunc 
(100)

Mak Batch 
(50) 

Trunc 
(50) 

Batch 
(100)

Trunc 
(100)

AP-1 0.06 0.08 0.09 0.09 0.10 0.30 0.54 0.71 0.90 1.19
AP-2 0.06 0.03 0.04 0.03 0.04 0.30 0.51 0.65 0.80 1.01
AP-3 0.04 0.09 0.10 0.14 0.13 0.28 0.57 0.78 0.99 1.22
AP-4 0.06 0.06 0.08 0.08 0.10 0.33 0.51 0.74 0.93 1.19
AP-5 0.06 0.05 0.05 0.06 0.05 0.33 0.63 0.80 1.06 1.38
AP-8 0.03 0.04 0.04 0.06 0.07 0.13 0.25 0.22 0.42 0.45
AP-9 0.04 0.05 0.06 0.08 0.09 0.18 0.28 0.37 0.52 0.57
AP-10 0.05 0.08 0.11 0.12 0.18 0.38 0.53 0.69 0.83 1.22
AP-15 0.06 0.11 0.15 0.18 0.18 0.40 0.82 1.16 1.37 1.72
AP-16 0.08 0.13 0.16 0.19 0.23 0.43 0.92 1.21 1.47 1.85
AP-17 0.07 0.14 0.19 0.24 0.31 0.54 1.01 1.54 1.82 2.57
AP-21 0.06 0.12 0.15 0.18 0.20 0.45 0.94 1.29 1.55 1.77
F-1 0.06 0.08 0.08 0.11 0.12 0.30 0.54 0.71 0.90 1.19

 

Table 13 — Average Total Cumulative Times for Elite Archiving Techniques After 150,000 
Evaluations 

 Mak Batch 
(50) 

Trunc 
(50)

Batch 
(100)

Trunc 
(100)

Mak Batch 
(50) 

Trunc 
(50) 

Batch 
(100)

Trunc 
(100)

AP-1 1.17 1.81 2.43 3.13 4.30 AP-10 1.01 1.34 1.85 2.19 3.16
AP-2 1.18 1.78 2.31 2.96 3.88 AP-15 1.02 2.22 2.97 3.63 4.62
AP-3 1.13 1.89 2.51 3.14 4.13 AP-16 1.15 2.36 3.11 3.91 4.88
AP-4 1.20 1.75 2.37 3.16 4.31 AP-17 1.42 2.57 3.82 4.60 6.61
AP-5 1.49 1.99 2.65 3.48 5.00 AP-21 1.03 2.33 3.17 3.83 4.74
AP-8 0.37 0.71 0.71 1.18 1.29 F-1 0.86 1.68 1.83 2.78 2.83
AP-9 0.52 0.82 0.97 1.40 1.66
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6.5 CONCLUSIONS AND DISCUSSIONS 
Capitalising on the unique properties of bi-objective optimisation that were 

investigated in Section 6.1, the Mak_Tree represents a simple and efficient approach 

to elite unbounded archiving.  A rich set of theoretical and practical results illustrate 

the superiority of the Mak_Tree over pre-existing approaches to unbounded 

archiving when applied to bi-objective domains, while also highlighting 

improvement over simple list-based truncation.  Indeed, the end-of-run performance 

of the completely unbounded Mak_Tree was better than every examined approach on 

all thirteen test functions.  Thus, given the disadvantages inherent in traditional 

truncation approaches — such as receding or oscillating fronts, the loss of expensive 

solutions, poor crowding estimates and stopping condition complications — the 

Mak_Tree offers an exciting unbounded alternative that is largely free from the 

performance overhead and complexity burden that typically accompanies 

sophisticated archiving techniques.   

It is also worth noting that even those (typically first-generation) optimisers that do 

not explicitly integrate an elite archival set into the evolutionary process can benefit 

from the performance advantages offered by the Mak_Tree as an offline accumulator 

of the best solutions found thus far.  As noted by Coello, Veldhuizen and Lamont 

[199] (supporting a similar statement by Horn [4]) “any practical MOEA (Multi-

Objective Evolutionary Algorithm) implementation must include a secondary 

population composed of all Pareto optimal solutions found...” since the stochastic 

nature of the optimisation process may result in the loss of impressive proposals.  

Given this requirement, the efficiency increases seen in the application of the 

Mak_Tree are of benefit to most any existing evolutionary multiobjective optimiser 

operating in a bi-objective domain. 
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7 HARNESSING THE MAK_TREE 
With the foundations of the Mak_Tree now in place, it is interesting to explore how a 

complete archival set can be used effectively.  While later sections (Chapters 8–12) 

will investigate how unbounded archiving can be used to shape the evolutionary 

process, the basic Mak_Tree described in Section 6.3, which does not address 

efficient density estimation or crowding-based selections, is best used as an off-line37 

storage system.  In this capacity, the Mak_Tree can be used in the development of 

powerful real-time stopping criteria and as a base from which accurate end-of-run 

presentational sets are formed.   

7.1 STOPPING CONDITIONS 
Though Section 6.2.1.4 decried the lack of sophisticated stopping conditions for 

contemporary multiobjective optimisers, their sparsity is not without some 

justification.  Indeed, deriving an appropriate set of terminating criteria is an innately 

difficult proposition.   

Firstly, the multiobjective optimisation task itself is a multiobjective problem, with 

goals of producing a suitably distributed, accurate and well-spread front.  As such, 

any terminating condition must be able to effectively summarise performance on 

these distinct tasks — a typically difficult exercise given that little is generally 

known about the Pareto optimal front that the optimiser is attempting to estimate.  

How can accuracy be assessed, for instance, if it is not known where or what the 

target is?   

Secondly, in practice, successful termination of a run is less about indicating the 

formation of a near-perfect non-dominated set, and more about providing a good 

approximation in the shortest time possible.  Many decision makers would accept a 

front with one less optimal point if it could be produced in half of the time.  It is 

therefore important for a termination condition to gauge the rate of frontal 

improvement — but even then, how is such a rate used to effectively terminate a 

run?  Moreover, how are these two conflicting tasks — the quest for optimality and 

the need for efficiency — resolved?  

                                                 
37  For the purposes of this work, an off-line archive is one which is excluded from active 

participation in the evolutionary process — it is used principally for the storage of valuable 
solutions.  
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7.1.1 TERMINATION USING UNBOUNDED ARCHIVES 
As discussed earlier (Section 6.2), truncated archives provide a poor basis for 

termination analysis due to their potential for frontal degradation [97] and 

inaccuracies in density estimates.  By eradicating such concerns, unbounded elite 

archives offer a more complete picture of the prevailing optimal front and, in-turn, 

the behaviour of the optimiser as a whole.  

It is disappointing then that no practical work has been completed that examines the 

performance of unbounded archives in providing useful termination scenarios to end-

users.  Indeed, the only widely-available research that even discusses such potential 

is in the work of Fieldsend et al. on Dominated Trees [97], where a number of 

rudimentary suggestions are made.  In particular, they propose termination 

conditions based on the use of thresholds, such that:  

• a front is no longer improving if a given number of generations have passed 

without the creation of a dominant solution;  

• a front is appropriately distributed if the maximum nearest-neighbour 

distance is below some pre-defined threshold; and  

• the extent of the front is frozen if it has not changed over some number of 

evaluations.    

While these ideas correctly grasp the notions of front improvement, distribution and 

spread, they are potentially misleading and difficult to use in practice.  Consider 

frontal improvement and extent expansion: there is nothing in either of these 

procedures that gauges the value or regularity of beneficial insertions.  Thus, 

infrequent fine-grained improvements may substantially extend the run-time of the 

optimisation task with little practical benefit.  Furthermore, the distribution 

measurement is poor, since any isolated solution in objective-space will skew results.  

Indeed, a single outlier will often be enough to ensure that the front is viewed as 

being ill-distributed through the complete duration of the optimisation run.  

Moreover, procedures for defining threshold levels are undefined, there is no clear 

outline as to how the distinct conditions can be used together to form a single 

coherent termination mechanism, and there is no empirical investigation as to the 
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overall value of the ideas expressed38.  As such, there is significant scope for 

improvement and refinement beyond these initial suggestions — with the end goal of 

producing practically useful, simple and efficient terminating conditions that can 

truly capitalise on unbounded elite sets. 

7.1.2 KEY PROPERTIES OF TERMINATION CONDITIONS THAT USE 
UNBOUNDED ELITE SETS 

Before exploring how Mak_Trees can be used for effective run-termination, it is 

important to analyse precisely what should be expected of contemporary stopping 

criteria in a practical context.  In particular, any termination system should be easy to 

use, efficient, general, correct and autonomous, with analysis derived from truly 

unbounded elite sets. 

7.1.2.1 SIMPLICITY 
At the forefront of stopping-criteria design should always be simplicity.  It is pivotal 

that end-users need not know specific details regarding the nature of the objective-

space in general and the particulars of the true Pareto optimal front in order to 

operate the produced system.  Any stopping criterion that requires such knowledge 

precludes effective termination in ill-defined domains and limits use to experts only.   

Moreover, the end-user should be able to succinctly express their goals for a given 

run.  Large numbers of interacting user-defined parameters can make initial set-up 

difficult, may obscure meaning and can lead to potentially expensive parameter 

tuning.  As such, the parameter set should be small enough to avoid these pitfalls, yet 

rich enough to capture decision-maker requirements.  Simplicity is essential, but it 

should not come at the cost of expressive power. 

7.1.2.2 EFFICIENCY 
Given that optimiser termination will be derived from analyses of unbounded elite 

sets, efficiency is a primary concern.  In particular, any operation that requires 

frequent traversals of the entire archive will severely inhibit the overall performance 

of the multiobjective optimiser and will limit the applicability of the termination 

system in practice.  

                                                 
38  It is important to note that the Fieldsend et al. work [97] is not focused on termination and this is 

not intended as a criticism of the paper as a whole.  Rather, it is used as an illustration of the lack 
of thorough optimiser termination research. 
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7.1.2.3 GENERALITY 
The proposed termination conditions must function in a wide variety of domains and 

must not make assumptions about the nature of the objective-space or Pareto-optimal 

front.  That is to say, stopping criteria must never rely on the concavity or convexity 

of a front, an unbiased distribution of points in objective-space, or the connectedness 

of regions — they should provide correct estimates irrespective of domain.  Again, 

any loss of generality here will damage the practical applicability of any proposed 

system. 

7.1.2.4 CORRECTNESS 
Fairly obviously, an underlying goal of all termination criteria should be correctness 

— the ability to appropriately terminate an optimiser in a way that satisfies the 

requirements of the end-user.  Efficient and simple termination conditions mean little 

if the sets they produce are inappropriately distributed or inaccurate. 

7.1.2.5 AUTONOMY 
The termination criteria should require no (or very little) user interaction beyond the 

specification of initial parameters.  This is a fundamentally important practical 

concern — increasing user interaction incurs greater monetary costs (since the 

optimisation run must be observed in some capacity) and limits applicability in long-

run optimisations (which may require multiple days).  It is also important to note that 

the user should never be required to interpret the front that is being produced — this 

is the central task of the termination system and should be fully abstracted from the 

user where possible. 

7.1.3 A NEW UNBOUNDED APPROACH TO TERMINATION IN BI-
OBJECTIVE DOMAINS — INTRODUCING THE MAK_TERMINATOR 

Given that the Mak_Tree provides an impressively efficient, and potentially 

powerful, mechanism for maintaining an unbounded elite set of solutions, it is an 

appropriate foundation upon which to build a contemporary termination system that 

endeavours to satisfy the many properties outlined in Section 7.1.2.  The new system, 

henceforth known as the Mak_Terminator, capitalises on this foundation and 

introduces an additional data structure that enables the assessment of solution value 

relative to simply defined user requirements.   
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Figure 52 — Solution Utility in Objective-Space Grid 

Gray cells are previously occupied; the incoming green cell results in frontal progression; the new 
blue cell increases frontal extent; the incorporation of the red cell improves distribution. 

 

7.1.3.1 DEFINING SOLUTION UTILITY 
Consider a rudimentary sub-division of objective-space according to some pre-

defined resolution (as in PAES [143]).  Assuming that all proposals admitted into 

such a grid are non-dominated with respect to all previously inserted solutions, a 

number of interesting properties may be observed.  In particular, if the solution enters 

an unoccupied cell, it is either improving the distribution of the prevailing front, 

expanding the extent of the front, or otherwise moving the front forward (see Figure 

52).  Quite clearly, if the incoming solution does indeed reside in an unoccupied cell, 

then it is improving the value of the non-dominated front and the creation of that 

solution must be considered worthwhile.  Conversely, any solution that resides in 

occupied space offers no improvement to the cell-based projection of that front39.  

The integration of these notions into simple, yet powerful, stopping criteria lies at the 

heart of the Mak_Terminator. 

7.1.3.2 MAINTAINING THE OBJECTIVE-SPACE GRID 
The objective-space grid is a deliberately simple construct.  It can be represented as a 

rudimentary two-dimensional array of cells, with each cell maintaining an occupancy 

flag (note that no reference to the solutions which reside in a cell is required — such 

information is superfluous to the operation of the Mak_Terminator).  By capitalising 

on the efficient Mak_Tree for non-dominance determination, updating the grid is 

also straightforward.  Any solution that is accepted into the Mak_Tree is passed onto 
                                                 
39  The italicised distinction here is key.  Solutions entering occupied space may be useful to the 

underlying non-dominated front, but of no value to the coarse representation of that front in the 
grid.  The value of this difference will be discussed throughout this section. 
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the grid, with the flag in the corresponding cell set accordingly.  Determining the cell 

location of a solution (a) in an objective-space with a fixed number of regions per 

dimension is trivial, but is defined in Equation (64) for the sake of completeness: 

1 2( ( ) ) ( ( ) )cell( ) _ , _
( ) ( )

a aa
    − −    = × ×     − −    

f min_x f min_yx regions y regions
max_x min_x max_y min_y

 (64) 

If the boundaries of the objective-space grid can be statically specified in advance, 

the O(1) cost of inserting each solution into the grid does not affect the running 

performance of the standard Mak_Tree.  In the more likely case that the end-user is 

unaware of correct boundary values, an adaptive mechanism can be used that re-sizes 

the grid when the extent of the prevailing non-dominated front changes (as with the 

PAES hyper-grid [143]).  The need to re-insert every member of the Mak_Tree into 

the objective-space grid under such boundary movements carries an O(n) overhead 

(assuming that links between successive nodes in the Mak_Tree are maintained) that 

appears prohibitive.  In practice however, it is unlikely that incoming proposals will 

regularly affect the extent of the prevailing front and so long as rebuilding occurs 

less frequently than once in every O(log n) attempted insertions, the amortised time 

cost of the Mak_Tree remains unchanged.  However, if users are particularly 

concerned by the potential costs that adaptation incurs, the boundaries of the space 

can be made to rest some distance outside the true extent of the front, further 

reducing the likelihood of regular reconstructions. 

An alternative procedure, that implicitly specifies the resolution of the grid, is to 

define the objective-based precision required by the end-user.  In this case, since the 

maximum number of cells is unknown and the boundaries are undefined, a better 

supporting structure for the storage of cells is a simple balanced binary tree, ordered 

(arbitrarily) by the x (objective one) coordinate of the cell40.  Note that calculation of 

coordinates in this case is also trivial — for given precision settings ρ_x and ρ_y, a 

solution a belongs to the cell with coordinates defined by: 

1 2( ) ( )cell( ) ,
_ _
a aa

ρ ρ
       =         

f f
x y

 (65) 

                                                 
40  When distinct cells share an x value, the order is instead defined by the y coordinate. 
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The run-time performance of such a structure is impressive.  Since the binary tree 

need only support insertions, the worst-case overhead is O(log n) — leaving the 

performance of the Mak_Tree algorithm unaffected.  Moreover, unlike the array-

based approach, the behaviour of the system is not sensitive to frontal expansion and 

therefore offers more stable performance.  For these reasons, this technique is 

recommended over the array methodology in general, and will form the basis of 

subsequent analyses.  

7.1.3.3 MAK_TERMINATOR PARAMETERS 
The end-user is required to select two parameters for use by the Mak_Terminator: the 

maximum average time between the production of useful solutions and the required 

precision of the optimiser.  The key to these parameters is that they require little 

detailed knowledge about the domain or objective-space and that they have real 

practical meanings.  A user will know how long they are willing to wait for 

meaningful changes in the front — it matters not whether that time equates to forty-

five evaluations or ten thousand, and nor should it.  Similarly, setting the precision 

level of the terminator should be intuitive — the value is simply defined as the point 

at which improvements no longer bring practical benefits.  As an illustration, if the 

loss of a dollar in a production cost objective is largely insignificant, but an 

improvement of $10 is worth mention, then the precision level could reasonably be 

set at the $1 mark.  The point is, a non-technical end-user, with little knowledge of 

the peculiarities of multiobjective optimisation and the finer workings of the problem 

at hand, should be able to assign Mak_Terminator parameters without moving far 

beyond their comfort zone. 

7.1.3.4 THE MAK_TERMINATOR IN PRACTICE 
The performance r of a given optimiser at time t is related to the number of valuable 

solutions v (those which were non-dominated in the Mak_Tree and subsequently 

inserted into unoccupied cells) produced during the preceding ε evaluations41 such 

that: 

ν
ε

=r  (66) 

                                                 
41  This interval could be included as a separate parameter, but is best derived from the timing 

threshold defined by the user.  A sensible setting would be to have ε ≥ Γ/χ, with a preliminary 
recommendation of ε = 4Γ/χ proposed to reduce the impact of noise in v. 
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The termination of the run is based on this simple r value and occurs when: 

χ >Γ
r

 (67) 

where χ is the average time-cost per evaluation and Γ is the user-defined maximum 

time between production of valuable solutions.  Note that the user does not need to 

know the evaluation time of each operation in advance — this can be observed and 

updated throughout the run with little overhead42.  Again, this reduces the need for 

intimate domain knowledge and allows the termination system to match user 

requirements, irrespective of the particular configuration of the underlying algorithm 

or machine. 

7.1.3.5 EMPIRICAL RESULTS 
To observe the Mak_Terminator in a practical setting, the data sets produced by 

NSGA-II on the thirteen problems examined in Section 6.4.2 were assessed by the 

termination system under various precision settings, with Figure 53, Figure 54 and 

Figure 55 illustrating the average r scores from twenty distinct runs, each with ε = 

500 (see pages 158–160).  To explore the type of sets suggested by the 

Mak_Termination system, Figure 57, Figure 58 and Figure 59 (pages 161–163) 

display the median leading fronts for each problem at the median termination points 

specified in Figure 56.  For this analysis, termination occurs when r is zero — 

indicating no practically significant change over the preceding ε evaluations. 

The most obvious initial conclusion is that decreased precision leads to more rapid 

terminations (see Figure 53, Figure 54 and Figure 55).  The reasoning should be 

equally obvious — since the leading front consists of fewer objective-space cells, 

fine-grained improvements in extent, distribution and progression are less well 

identified; most changes are occurring within previously occupied cells.  So long as 

the precision level is appropriately specified, this is a desirable property, leading to 

termination when the changes are minimal with respect to their practical importance.   

It is also worth noting that the progressive r-value graphs (Figure 53, Figure 54 and 

Figure 55) offer insight into the behavioural characteristics of the optimiser, with the 

NSGA-II system displaying poor initial performance in AP-2, rapid convergence in 

                                                 
42  Though safeguards should exist to ensure that Γ > χ. 
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AP-8, AP-9 and, to a lesser extent, AP-10, and the discovery of false fronts (leading 

to temporal convergence) in AP-4.  The use of Mak_Terminator outputs to track real-

time performance of a system is therefore an interesting avenue of future work, 

particularly given the low complexity overhead afforded by such an approach. 

It is difficult to gain a definitive insight into the nature of termination sets at differing 

precision levels (Figure 57, Figure 58 and Figure 59), as they are obviously subject 

to the peculiarities of the underlying optimiser, though a number of general 

comments can be made.  In particular, the results indicate that precision level 

specification defines where an acceptable compromise between set quality and 

termination speed can be found (as one would reasonably expect).  Consider the 

relatively coarse ρ = 0.1 setting: in all bar AP-10, the Mak_Terminator ends the run 

at least twice as fast as the ρ = 0.01 system, but offers less impressive fronts.  The 

fact that the inferior sets are still good approximations of the Pareto optimal front 

(with respect to both proximity and shape) in all bar AP-2 is a testament to the 

robustness and power of the proposed termination system. 

It is worth noting that the poor performance of the less precise systems on AP-2 is 

related to how NSGA-II optimises the concave objective-space.  As illustrated in 

Figure 60, NSGA-II can become fixated on an extreme of the concave front, with 

small levels of frontal progression strongly favoured over diversification.  As the 

leading front nears optimal space, the progressions reduce in both frequency and 

magnitude (as illustrated by the declining early performance in Figure 53b), leading 

to system termination when the grid resolution is low.  Upon converging near the 

extreme optimal point however, NSGA-II then quickly and effectively distributes the 

search across the entirety of the front, resulting in the considerably more impressive 

ρ = 0.01 set seen in Figure 57b.  The point here is an important one — any 

termination system is forming conclusions about the likely future performance of an 

optimiser based on previous evidence, but can offer no guarantees as to the accuracy 

of those conclusions43.  While it may be true that the best predictor of future 

behaviour is past behaviour44, the difference between frontal stagnation and end-of-

run convergence is ultimately impossible to differentiate.  Thus, those looking to 

capitalise on intelligent stopping criteria should be aware that the results are subject 
                                                 
43  Assuming that the Pareto optimal set is not known in advance. 
44  A statement made famous by Doctor Phillip McGraw. 
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not only to the user-defined parameters, but also to the consistency of optimiser 

behaviour for the problem at hand. 
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(b) AP-2 
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(c) AP-3 
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(d) AP-4 
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(e) AP-5 
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(f) AP-8 

p=0.1 p=0.05 p=0.01 p=0.001 p=0.0001 p=0.00001

 
Figure 53 — Average r-Scores for Various Precision Levels 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average r-score over the preceding 500 evaluations.   
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(b) AP-10 
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(d) AP-15 
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(e) AP-16 
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(f) AP-17 
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Figure 54 — Average r-Scores for Various Precision Levels 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average r-score over the preceding 500 evaluations.  
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(b) F-1 

p=0.1 p=0.05 p=0.01 p=0.001 p=0.0001 p=0.00001

 
Figure 55 — Average r-Scores for Various Precision Levels 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average r-score over the preceding 500 evaluations.  
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Figure 56 — Median Number of Evaluations before Convergence Termination 

y-axis represents the median number of evaluations; x-axis is the problem being optimised; ρ is the 
precision of the Mak_Terminator.  F-1 excludes ρ = 0.01 as it fails to achieve full convergence.  
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(e) AP-5 
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Figure 57 — Median Fronts as at Mak_Termination 
For all graphs, the x-axis represents objective one; the y-axis is objective two; .green points are frontal 
members at termination with ρ = 0.01; red are terminated members with ρ = 0.05; and blue represents 

the median terminated front with ρ = 0.01. 
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(b) AP-10 
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(d) AP-15 
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(f) AP-17 

Figure 58 — Median Fronts as at Mak_Termination 
For all graphs, the x-axis represents objective one; the y-axis is objective two; .green points are frontal 
members at termination with ρ = 0.01; red are terminated members with ρ = 0.05; and blue represents 

the median terminated front with ρ = 0.01. 
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(a) AP-21 
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Figure 59 — Median Fronts as at Mak_Termination 
For all graphs, the x-axis represents objective one; the y-axis is objective two; .green points are frontal 
members at termination with ρ = 0.01; red are terminated members with ρ = 0.05; and blue represents 

the median terminated front with ρ = 0.01. 
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Figure 60 — Example Frontal Progression on AP-2 with ρ = 0.05 
Colour change represents a new set of ε observations.  x-axis is objective one; y-axis is objective two.  

Note that progression becomes increasingly fixated on one extreme region and is relatively fine-
grained.  Such narrow local progression may cause premature termination. 
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7.1.3.6 LIMITATIONS AND EXTENSIONS 
Though the performance of the Mak_Terminator is promising, it is subject to a 

number of limitations.  In particular, by using a single precision setting, there is an 

explicit assumption that frontal progression, distribution and extent are all equally 

valued in the optimisation process.  However, in practice, it is possible that an end-

user may wish to independently assign the precision levels for each of these 

improvement types, leading to, for instance, finer analysis of frontal progression than 

distribution.  Though some modification to the base approach is required, the 

Mak_Termination system is flexible enough to address such an extension.  Indeed, 

structurally all that is required is the inclusion of multiple objective-space grids — 

one for each uniquely defined precision setting.  Insertion into each grid is as per 

Section 7.1.3.2 (using the appropriate precision level to determine cell coordinates), 

with the utility of a non-dominated solution dictated by its membership in one of the 

grids.  Specifically, if the proposal is dominant with respect to some member of the 

primary Mak_Tree, it is considered valuable only if it occupies an empty cell in the 

dominance-based grid; if the solution expands the extent of the Mak_Tree, it is 

considered useful only if it belongs to an unoccupied cell in the extent-based grid; 

otherwise, the incoming member is of high utility only if it resides in a new region 

according to the distribution-based grid.  Since, at worst, this approach requires the 

inclusion of two additional binary supporting structures, the big-oh and amortised 

run-time complexities defined in Section 7.1.3.2 remain unchanged and the extended 

Mak_Terminator system remains an efficient option for real-time end-of-run 

determination. 

In cases where very little is known about the range and type of outputs expected from 

optimisation of the multiobjective problem at hand, definition of precision levels 

may be difficult.  In these instances, the array-based grid can be used (Section 

7.1.3.2), with the number of regions replacing the more problem-specific precision 

parameter.  The cost of rebuilding the adaptive grid under this variation is an 

interesting subject of future work, though it is unlikely to preclude application in 

most real-time practical settings.  As such, a more pressing concern is how intuitive 

the region parameter is.  While the user may be aware of how many distinct areas 

they are interested in examining, it is not necessarily clear whether a grid sub-divided 

according to this will effectively capture frontal progression.  Consider a decision-
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maker who is interested in examining five distinct regions — the resulting resolution 

of the grid is so coarse that premature termination is likely.  A better technique is 

therefore to use the basic region parameter for the definition of distribution and 

extent-based grids (as per the preceding paragraph) — where the meaning is 

consistent with the intention of the user — and a more fine-grained grid for frontal 

progression.  Further development of this concept and the construction of heuristics 

that guide the settings of the dominance-based grid are therefore interesting avenues 

of future exploration.   

Finally, the r-value is subject to noise.  The smaller the number of evaluations used 

to examine the performance of the optimiser, the higher the risk of anomalies leading 

to premature termination.  However, increasing the length at which r-value averages 

are observed can unduly increase the total run-time of the optimiser.  As such, an 

appropriate area of future study is to examine the trade-offs that exist between 

differing ε settings with a view to establishing suitable heuristics for its formation.  

For the moment, this thesis maintains that a setting of ε ≥ Γ/χ is appropriate and 

tentatively suggests ε = 4Γ/χ to reduce the influence of noise. 

7.2 THE PRESENTATION OF AN UNBOUNDED MAK_TREE 
While maintaining a complete and accurate elite archive throughout the optimisation 

process is inherently valuable (for reasons elaborated in Section 6.2), presentation of 

such a potentially large set to the decision maker at the completion of a run may be 

inappropriate [200, 201], not least because it may be overwhelming and difficult to 

process.  As such, transforming archives into an appropriately distributed set of some 

defined size (γ) is of key practical importance.  

Obviously, standard truncation-based systems are freed of this burden to some 

extent45, though there can be no guarantee that the final truncated set represents an 

evenly distributed approximation of the leading front46.  The existence of frontal 

degradation in truncated sets (see Section 6.2.1.1) rejects the assertion that 

                                                 
45  Deb and Goyal [200] note that even truncated archives are often too large for practical purposes 

and may require further summarisation. 
46  An argument can be made that ill-distributed fronts that emphasise clusters or isolation may 

inform decision makers on the fragility or scarcity of particular solutions.  The validity of such a 
claim is debatable, since it is difficult to confirm that frontal distribution characteristics are a 
product soley of the problem being addressed — variations in distribution may also reflect biases 
in the optimiser, for instance.   
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presentational members are non-dominated with respect to all generated solutions, 

while the incremental nature of archival updating makes establishing an evenly 

distributed set difficult.  The latter point is a subtle one — typically the goal of 

truncated archives in multiobjective optimisers is not to maintain an evenly 

distributed set, it is to maintain a collection of uncrowded solutions according to an 

(often inaccurate) approximation of the space explored thus far (to encourage the 

pursuit of poorly explored portions of objective-space).  Consider Figure 61: if the 

archiving procedure was charged with establishing an even distribution47 — as is 

important to the quality of the presentation set — the resultant archive should be (c); 

instead it is (b).  While it is true that the goals of seeking uncrowded solutions and an 

evenly distributed set may often overlap (as illustrated in Figure 62), the potential for  
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(a-ii) (b-ii) (c-ii) 
Figure 61 — Archival Truncation Leading to Poorly Distributed Presentation Sets 

(i) illustrates truncation according to hierarchical clustering (as in Zitzler [201]).  (ii) shows truncation 
according to the cuboid method of Deb et al. [82].  (a) is the initial set that requires the truncation; the 
red solutions should be removed if the presentation set is to be evenly distributed.  (b) is the resultant 

set after truncation — note the presence of the red solution in each case, indicating a sub-optimal 
distribution.  (c) is the ideally distributed truncated set. 

 
                                                 
47  This work assumes that an even distribution in objective-space is required.  Generating evenly 

distributed sets in multi-dimensional decision spaces is a non-trivial task that is beyond the scope 
of this study. 
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(a) (b) (c) 

Figure 62 — Archival Truncation Leading to Appropriately Distributed Presentation Sets 
(a) represents the initial set that requires truncation; the red solutions should be removed if the 
presentation set is to be evenly distributed.  (b) is the resultant truncated archive using cuboid 
crowding estimates, which achieves the same distribution as the optimal set presented in (c). 

 

divergence indicates that the performance of truncated archives for decision-maker 

presentation is, at the very least, sub-optimal. 

Given the apparent weaknesses of the truncated approach (which will be explored 

empirically in Section 7.2.1), developing a mechanism for the reduction of 

unbounded Mak_Trees into a more manageable presentational form seems to be a 

promising avenue of exploration.  While Deb and Goyal [200] offer a clustering-

based system (derived from the average-linkage method used in [201]) that is 

applicable, the process is expensive (carrying a computational burden of O(n2) [95]) 

and is subject to the same performance issues illustrated in Figure 61i.  A better 

method, which produces a suitably distributed collection of solutions with low 

computational overhead, is to derive the average nearest-neighbour distance (θ) 

across all members and space the selection of solutions by a distance of ι:  

θι
γ

= n  (68) 

 
If presentation only occurs at the completion of a run, the O(n) cost of such an 

operation will not affect the theoretical run-time performance of the Mak_Tree and 

can be achieved by simply traversing the non-dominated list twice: once to determine 

the value of θ, and once to select the members for presentation (see Algorithm 4 for 

details).  As illustrated in Table 14 however, this simplistic algorithm is prone to 

producing sets whose cardinality can vary quite dramatically from the γ value 

specified by the end-user.   
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Algorithm 4 — Forming A Basic Presentation Set 

Inputs:  
 ι  The optimal length between successive nodes. 
 root  The root of the non-dominated Mak_Tree 
   

1: :=∅Presentation  The presentation set is initially empty. 
2: : leftmost( )=current root  Navigate from the start of the list. 
3: while ( null)≠current  While there are more nodes in this list, 
4:  : { }= ∪Presentation Presentation current  include current node in the display set 
5:  :=next current  and find the next node that is further 

6:  ( ) ( )( )while δ( , ) nullι< ∧ ≠current next next  than ι away. 

7:   :=next next   
8:  :=current next   
9: : rightmost( )=PresentationPresentation root  Ensure the last node is an extreme member. 

 

Table 14 — Presentation Set Sizes Using the Basic Technique 
Results reflect averages produced from twenty distinct NSGA-II runs (see Appendix B.1.2 for 

settings) of 10,000 evaluations each.  Values in brackets represent standard deviation. 

 γ = 10 γ = 20 γ = 50 γ = 100 
AP-1 14.40 (0.50) 27.15 (0.88) 58.90 (2.00) 99.35 (3.98) 

AP-2 14.90 (0.85) 26.60 (1.70) 54.20 (5.27) 82.50 (9.61) 

AP-3 18.10 (1.41) 32.50 (1.70) 66.90 (3.74) 105.10 (5.69) 

AP-4 15.95 (2.87) 28.55 (6.96) 58.85 (21.69) 97.85 (44.95) 

AP-5 14.00 (0.79) 25.80 (1.54) 54.25 (3.04) 84.20 (8.19) 

AP-8 21.20 (2.02) 30.80 (1.64) 57.10 (2.38) 89.25 (3.88) 

AP-9 19.90 (1.17) 36.80 (2.04) 75.55 (2.54) 120.30 (3.81) 

AP-10 26.30 (2.08) 39.15 (2.52) 73.90 (5.45) 120.05 (11.24) 

AP-15 14.65 (0.59) 27.50 (1.05) 60.35 (2.58) 103.50 (4.08) 

AP-16 15.00 (0.56) 28.50 (1.05) 62.00 (2.05) 102.25 (3.67) 

AP-17 15.45 (0.60) 29.60 (0.94) 67.55 (2.06) 121.90 (4.55) 

AP-21 14.85 (0.67) 27.85 (1.27) 61.40 (2.85) 105.25 (5.79) 

F-1 16.35 (0.67) 30.05 (1.10) 60.90 (1.89) 94.60 (5.05) 

 

If the fidelity of the γ parameter is of utmost importance, a more complex algorithm 

that is capable of refining the presentation set is necessary.  As described in 

Algorithm 5 (henceforth referred to as the Mak_Presentation technique), the most 

intuitive way to achieve such a task is to adjust the value of ι according to the 

cardinality of the presentation set — lengthening the spacing if the collection is too 

large and shortening it when the set is too small.  Provided the number of 

modifications is limited to approximately log n, this improved methodology is  
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Algorithm 5 — The Mak_Presentation Algorithm 

Inputs:  
 θ  The average objective-space distance between solutions. 
 Presentation  The current presentation set. 
 γ  The required size of the presentation set. 
 root  The root of the non-dominated Mak_Tree 
 max  Maximum difference between required and actual presentation set size. 
 maxAdjusts  The maximum number of times the set may be adjusted. 
   

1: :=∅ProducedSets  Establish storage for all sets. 

2: : 0=adjusts   

3: form_presentation_set( , )θ
γ
nroot  

Form the initial presentation set 
and record it for future reference.

4: : { }= ∪ProducedSets ProducedSets Presentation  Record difference between the 
5: : γ= −diff Presentation  desired and actual size of the set,

6: ( )( )if < 0γ +diff  ensuring diff is never less than -γ.

7:  : 1 γ= −diff  So long as the size of the set 

8: ( ) ( )( )while γ− > ∧ <Presentation max adjusts maxAdjusts  is inappropriate and the set may 

9:  :ι θ
γ

= ×
+

n
diff

 still be adjusted 
Update the length and form 

10:  form_presentation_set( , )ιroot  a new presentation set. 
11:  : { }= ∪ProducedSets ProducedSets Presentation  Record the set for reference later.

12:  : −= maxAdjusts adjuststaper
maxAdjusts

 Taper the scaling of the change 
according to number of adjusts. 

13:  ( )( ): γ= + × −diff diff taper Presentation  Record the tapered change in  

14:  ( )( )if < 0γ +diff  difference. 

15:   : 1 γ= −diff  Make the set with cardinality 
16:  : 1= +adjusts adjusts  nearest to γ the final presentation
17: : selectBest( )=Presentation ProducedSets  set (ties favour larger sets). 

 

considerably less expensive than the clustering approach, with an operational 

overhead of O(n log n) that does not affect the overall amortised time cost of the 

Mak_Tree48.  As illustrated in Table 15, this basic extension is sufficient for the 

production of sets that are consistently very near to the specified γ value, with 

marked variations evident only at the higher setting levels in AP-4.  Still, the 

potential for such variation is a concern and future work should explore more 

sophisticated approaches to adjusting the value of ι, with annealing techniques 

offering a particularly interesting avenue. 

 

                                                 
48  So long as presentation only occurs at the end of the run or at a small number of fixed intervals. 
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Table 15 — Presentation Set Sizes Using the Mak_Presentation Algorithm 
Results reflect averages produced from twenty distinct NSGA-II runs (settings defined in  

Appendix B.1.2) of 10,000 evaluations each.  max = 1; maxAdjusts = 10; values in brackets represent 
standard deviation. 

 γ = 10 γ = 20 γ = 50 γ = 100 
 Set Size Adjustments Set Size Adjustments Set Size Adjustments Set Size Adjustments 

AP-1 10.65 (0.49) 2.00 (0.00) 20.20 (0.70) 2.10 (0.31) 50.00 (0.79) 1.45 (0.60) 100.00 (0.79) 1.25 (1.07)

AP-2 10.30 (0.66) 2.15 (0.49) 19.80 (0.77) 1.70 (0.66) 49.90 (0.79) 1.45 (1.28) 96.00 (5.68) 7.75 (3.24)

AP-3 10.70 (0.66) 3.75 (0.55) 20.45 (0.83) 2.65 (0.67) 50.00 (0.73) 2.00 (0.65) 100.05 (0.76) 1.40 (1.10)

AP-4 9.70 (0.73) 2.70 (1.26) 19.70 (0.86) 3.00 (1.95) 46.75 (6.59) 4.95 (3.35) 85.45 (25.0) 5.25 (3.80)

AP-5 10.35 (0.75) 2.10 (0.45) 19.80 (0.70) 1.65 (0.49) 49.95 (0.76) 1.25 (0.72) 96.65 (3.65) 6.95 (3.38)

AP-8 9.95 (0.83) 6.25 (1.62) 19.95 (0.89) 5.10 (2.81) 50.20 (0.83) 1.50 (0.61) 98.65 (1.18) 5.80 (3.38)

AP-9 10.15 (0.93) 4.30 (0.57) 20.10 (0.97) 4.20 (0.70) 50.25 (0.72) 2.90 (1.25) 100.10 (0.64) 2.65 (1.23)

AP-10 10.15 (0.67) 7.05 (0.89) 20.15 (0.81) 5.40 (1.31) 50.10 (0.79) 2.70 (1.69) 100.00 (0.65) 2.50 (1.88)

AP-15 10.40 (0.75) 2.20 (0.41) 20.35 (0.67) 2.05 (0.22) 49.75 (0.85) 1.55 (0.51) 100.00 (0.92) 1.50 (1.15)

AP-16 9.60 (0.82) 2.70 (0.47) 20.25 (0.79) 2.30 (0.47) 49.85 (0.88) 1.45 (0.51) 99.80 (0.77) 1.25 (1.07)

AP-17 9.95 (0.76) 2.65 (0.49) 20.10 (0.72) 2.65 (0.49) 50.15 (0.75) 2.20 (0.52) 99.75 (0.79) 2.05 (1.43)

AP-21 10.25 (0.72) 2.25 (0.44) 20.05 (0.76) 2.10 (0.55) 50.00 (0.86) 1.65 (0.59) 99.70 (0.86) 2.10 (1.55)

F-1 9.85 (0.88) 2.70 (0.47) 20.25 (0.85) 2.35 (0.49) 50.10 (0.85) 1.75 (1.21) 99.00 (1.21) 3.65 (3.62)

 

7.2.1 EMPIRICAL ANALYSIS OF PRESENTATIONAL ALGORITHMS 
With the low-cost Mak_Presentation algorithm in place, it is worthwhile examining 

its performance relative to pre-existing methods — namely, the clustering technique 

operating on both bounded and unbounded sets, and the use of end-of-run NSGA-II 

archives.  Since this work posits that the quality of a presentational set corresponds to 

how evenly distributed that set is, the performance of each system is indicated by the 

q metric: 
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where P is the set under examination; ∆ is the set of (Euclidean) distances between 

successive neighbouring solutions in objective-space; σ is the standard deviation of 

those distances; and q is the standard deviation divided by the mean (to prevent 

tightly packed presentation sets from becoming biased in the analysis). 

To ensure a rich exploration of the characteristics of each algorithm, q-based box-

plots and averages are provided, with results for each problem derived from twenty 



Chapter 7 — Harnessing the Mak_Tree 

- 171 - 

runs of NSGA-II (using 10,000 evaluations and parameters defined in Appendix 

B.1.2).  To provide statistical clarity, non-parametric two-tailed Kruskal-Wallis 

significance tests [202, 203] are performed (using tools provided as part of the PISA 

assessment suite [204, 205]) on the collected results for each problem, while 

randomly selected outputs are graphed to offer a visual representation (for all 

relevant tables and graphs see pages 173–177). 

The results indicate the power of the Mak_Presentation algorithm.  The new 

technique achieves better-distributed presentation sets on every tested function with 

respect to both box-plots (Figure 64) and averages (Table 16), with statistically 

significant differences (at the 5% level) in all cases.  The visualisations (Figure 65, 

Figure 66, Figure 67 and Figure 68) support these conclusions: the Mak_Presentation 

technique produces well-distributed sets irrespective of the characteristics of the 

unbounded front, with obvious disparity between it and the reduced bounded archive 

in AP-1, AP-5, AP-15 and F-1.  Note that even non-contiguous fronts (particularly 

AP-3 and AP-10) are effectively captured by the Mak_Presentation mechanism, an 

important consequence of using successor-distances in the selection phase and 

nearest-neighbour measurements in the formation of θ.  By capitalising on nearest-

neighbour metrics, the average distance between points is not skewed by large 

unoccupied regions of the objective-space49, while successor-distances encourage the 

selection of members in distinct isolated regions (see Figure 63 for an illustration).  It 

is also important to note that the simple technique described in Algorithm 5 captures 

the extreme members of each non-dominated set, which is significant given that 

Knowles et al. [206] cite this as a desirable archival property50.   

The results also offer empirical proof that bounded NSGA-II archives fail to 

maintain an evenly distributed collection of solutions suitable for immediate 

presentation, with q-based box-plots (Figure 64) and averages (Table 16) that are  

 

                                                 
49  Only those isolated regions that are occupied by a single point in objective-space will induce 

misleading averages – and these will only become significant if the number of such isolated 
regions is high relative to the total number of occupants in the set. 

50  It is worth commenting here that Deb and Goyal [200] suggest the importance of maintaining 
extreme solutions but offer no practical advice as to how this can be achieved with standard 
clustering.  For this work, the clusters are ordered by their position in two-dimensional objective-
space, with the first and last clusters offering extreme members as their contribution to the 
presentation set. 
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worse than every other examined approach.  Moreover, the Kruskal-Wallis tests 

confirm that these differences are again statistically significant (at the 5% level) in 

every instance.  Such inferiority is directly attributable to the difference between the 

maintenance of uncrowded regions and the development of an evenly distributed set.  

In practice, the pursuit of low-density areas comes at the expense of a well-spaced 

archive. 

Of the remaining techniques, it is difficult to establish a clear preference between 

clustering of the complete unbounded set and of the final archive.  Where 

performances are significantly different, the unbounded approach is preferable on 

AP-1, AP-5 and AP-9, while the bounded technique is better on AP-2, AP-8, AP-17 

and F-1.  It is reasonable to conclude that such results infer that the depth of the set 

under analysis is at most a secondary issue when employing clustering 

methodologies for set reduction (though using the truncated archive does permit the 

inclusion of weak solutions, as per Section 6.2.1).  Whether this statement is a 

general maxim for the production of presentation sets, or limited only to clustering 

techniques, is an interesting question that is left as an avenue for future work. 
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Figure 63 — Nearest Neighbours and Successor Distances in Determining Presentation Sets 
blue lines indicate nearest neighbours; red arrows show successors. 
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Figure 64 — q-value Performance of Presentational Algorithms (Box Plots) 
y-axis represents q-value scores; x-axis reflects the chosen algorithm.  NSGA-II is the final unrefined 

50 member archive for NSGA-II; Reduced NSGA-II trims this store to 20 members via clustering.  
Mak_Presentation and Cluster-Unbound each operate on the unbounded Mak_Tree and refine it to 20 

members.  Lower q-values are preferred. 
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Table 16 — Average q-value Performance of Presentational Algorithms 
NSGA-II Archive is the final unrefined 50 member elite store for NSGA-II; Cluster-Reduced NSGA-II 

trims this store to 20 members via clustering.  Mak_Presentation and Cluster-Reduced Unbounded 
each operate on the unbounded Mak_Tree and refine it to 20 members.  Lower q-values are preferred. 

 Mak 
Presentation 

of 
Unbounded 

Archive 

NSGA-II 
Archive 

Cluster-
Reduced 
NSGA-II 
Archive 

Cluster-
Reduced 

Unbounded 
Archive 

AP-1 0.13 0.46 0.32 0.29 
AP-2 0.19 0.53 0.34 0.37 
AP-3 0.28 0.76 0.37 0.38 
AP-4 0.34 1.17 0.70 0.46 
AP-5 0.16 0.52 0.34 0.30 
AP-8 0.44 1.14 0.54 0.55 
AP-9 0.14 1.36 0.77 0.33 
AP-10 0.23 0.58 0.29 0.29 
AP-15 0.13 0.49 0.34 0.33 
AP-16 0.13 0.48 0.31 0.29 
AP-17 0.12 0.52 0.34 0.39 
AP-21 0.17 0.52 0.36 0.33 
F-1 0.15 0.44 0.30 0.33 
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Figure 65 — Example Presentation Sets (γ =20) 
x-axis is objective-one; y-axis is objective-two.  Unbounded is the complete representation of the 
randomly selected front; Mak_Presentation uses the Mak_Presentation algorithm to reduce this 

unbounded set; Truncated uses the clustering algorithm to reduce the final NSGA-II archive. 
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Figure 66 — Example Presentation Sets (γ =20) 
x-axis is objective-one; y-axis is objective-two.  Unbounded is the complete representation of the 
randomly selected front; Mak_Presentation uses the Mak_Presentation algorithm to reduce this 

unbounded set; Truncated uses the clustering algorithm to reduce the final NSGA-II archive. 
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Figure 67 — Example Presentation Sets (γ =20) 
x-axis is objective-one; y-axis is objective-two.  Unbounded is the complete representation of the 
randomly selected front; Mak_Presentation uses the Mak_Presentation algorithm to reduce this 

unbounded set; Truncated uses the clustering algorithm to reduce the final NSGA-II archive. 
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Figure 68 — Example Presentation Sets (γ =20) 
x-axis is objective-one; y-axis is objective-two.  Unbounded is the complete representation of the 
randomly selected front; Mak_Presentation uses the Mak_Presentation algorithm to reduce this 

unbounded set; Truncated uses the clustering algorithm to reduce the final NSGA-II archive. 
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7.3 CONCLUDING REMARKS 
Exploring the potential of the unbounded Mak_Tree as an off-line supporting 

structure, this chapter has examined how an optimiser may be improved when an 

efficient elite store can be effectively manipulated.  Particular benefit is seen in the 

development of stopping criteria, an ill-explored field whose advancement has been 

hamstrung by the degenerative nature of truncated archival sets.  By harnessing the 

unbounded elite store, the proposed Mak_Terminator offers a simple, intuitive and 

particularly efficient approach to termination that can, in real-time, identify stopping 

points in optimiser runs according to user-defined precision settings and timing 

thresholds.  This work represents the first fully realised development of stopping 

criteria in an unbounded domain, and the promising empirical results suggest that the 

technique is one of merit and worthy of further investigation. 

Post-termination, the unbounded nature of the Mak_Tree means that, for practical 

use, the construction of a reduced presentational set is a necessity.  However, 

existing clustering-based techniques scale poorly to large archival sets due to their 

O(n2) complexity.  In response, this section has proposed a novel Mak_Presentation 

algorithm that is explicitly tasked with achieving evenly distributed sets at a 

relatively low cost.  The empirical results emphasise that beyond the improvements 

in computational overhead, the system also produces consistently better distributed 

sets than pre-existing clustering techniques.  Such promising findings suggest that 

the Mak_Presentation algorithm offers an excellent means for reducing the 

potentially cumbersome unbounded Mak_Tree into a valuable decision making tool 

for end-users.  Additionally, results illustrate that the deficiencies of the truncated 

archive are also evident when it is used as an unrefined presentational set.  The 

unevenly distributed NSGA-II archives, together with the potential for weak 

members, should underline that the use of truncated elite stores as a de facto 

presentational set is unacceptable. 
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8 EXTENDING THE MAK_TREE 
Section 6.3 introduced a highly efficient approach to unbounded archiving in the 

special bi-objective case.  While both empirical and theoretical results proved to be 

promising, the structure itself could be considered bare-boned — the Mak_Tree is 

principally concerned with maintaining access to the elite solutions of the prevailing 

non-dominated front, and little more.  In practice, supplementary information 

regarding the nature of the non-dominated front, such as crowding and extent-based 

statistics, are also of significant value, particularly in the selection phase of an 

evolutionary algorithm.  As such, this chapter describes a range of extensions to the 

Mak_Tree that are both efficient and of value to real-world optimisers. 

8.1 MAINTAINING CROWDING INFORMATION 
As illustrated in Section 6.2.1.3, simply having access to an unbounded elite set 

facilitates considerably more accurate frontal density analysis than is possible in the 

coarse approximations provided by truncated sets.  The principal issue then is 

whether crowding information can be efficiently extracted from, or maintained in, an 

unbounded archive.  Unfortunately, pre-existing generic approaches tend to be highly 

expensive and the naïve application of such techniques is therefore inappropriate.   

8.1.1 GENERIC CROWDING METRICS 
As discussed in Section 6.2.1.3, multiobjective evolutionary algorithms principally 

employ crowding metrics to push the search towards insufficiently explored areas of 

the objective-space51.  While the techniques vary considerably from algorithm to 

algorithm, all approaches are burdened with deficiencies that inhibit their application 

in an unbounded environment (and many are susceptible to poor performance even 

with sharply truncated sets).   

8.1.1.1 FITNESS SHARING AND DISTANCE-BASED CLUSTERING 
Common to most first-generation evolutionary multiobjective optimisers (such as 

NSGA [2], NPGA [142], SPEA [137] and MOGA [181]) is the notion of fitness 

sharing and distance-based clustering (see [51, 207] for summaries).  While the 

techniques used to achieve solution clustering are diverse, the general motivation 

                                                 
51  Crowding metrics also play an important role in archive truncation, but that is obviously of little 

value to this section. 
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remains the same — to group like solutions52 together, typically with the goal of 

penalising those that reside in densely populated regions (the act of penalising is 

often meekly referred to as fitness sharing, since a single fitness value is generally 

divided amongst the members of a cluster).   

While clustering and fitness sharing are popular, and often successful, approaches to 

maintaining population diversity, they are not without significant flaws.  Most 

proposed clustering approaches are reliant on a statically defined sharing parameter 

that dictates the size of clusters, the consequence of which is that performance is 

contingent on the correct selection of the parameter.  Specifically, when clusters are 

too large, narrow unexplored regions may be de-emphasised; and when clusters are 

too small, even identifying densely populated regions may be difficult (this is known 

as the bias/variance dilemma in classifier research).  While guides are available for 

identifying suitable cluster sizes (see [140], for example), they are typically reliant 

on at least some a priori knowledge about the domain and still require the user to 

have input regarding the desired resolution of the optimal set.   

Perhaps to address these concerns, Zitzler and Thiele [137] use a dynamic, 

parameter-less, hierarchical clustering algorithm known as the average linkage 

method to maintain a diverse front.  While freeing the user from the pressures of a 

sensitive parameter, the approach is extremely expensive (particularly when 

considering application in an unbounded archive), carrying a complexity burden of 

O(n2) for the discovery of only the smallest possible cluster.  If it is necessary to 

cluster c solutions, the cost is O(cn2), with a worst-case bound of O(n3) when every 

solution must be clustered. 

8.1.1.2 CELL-BASED CLUSTERING 
An alternative to the traditional distance-based clustering algorithms familiar to the 

first generation of multiobjective optimisers is a cell-based approach (equivalent to a 

histogram density estimation — see [208, 209] for introductions), where the  

 

                                                 
52  Groupings may occur in objective-space or solution-space, though the cost of comparing 

genotypic similarity can obviously become prohibitively expensive in high-dimensional solution 
spaces.  
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Figure 69 — Cell-Based Crowding Inaccuracies 
The shaded region is clearly less densely populated in both (a) and (b).  The high resolution of the grid 

in (a) means that all solutions have identical crowding.  The low resolution in (b) means that the 
shaded region is considered the equally most densely populated area of the objective space.  x-axis is 

objective one; y-axis is objective two. 

objective-space is subdivided into a hyper-grid53 and each solution is assigned a 

particular grid location (as exemplified in the Dynamic Multiobjective Evolutionary 

Algorithm [210], PAES [143], PESA [83] and PESA-II [84]).  In this case, the 

crowding of a particular solution is reflected by the number of members sharing its 

grid location.  Assuming the use of an appropriate data structure to store the grid, 

such as a quad-tree (as suggested by Jensen [95]), the crowding of a particular 

solution can be updated and retrieved in logarithmic time. 

As with the distance-based clustering approaches however, there is parameter 

sensitivity, particularly with respect to the size of the cells.  While many 

contemporary approaches are adaptive (adjusting cell-size as the nature of the 

prevailing front changes), the resolution of the grid must still be specified and the 

approach remains prone to poor approximations if the given resolution is 

inappropriate (see Figure 69 — another example of the bias/variance dilemma).  

Moreover, there are problems inherent in the nature of the archetypical adaptive 

structures suggested by Knowles and Corne [143].  Since the extent of the grid is 

defined by the extent of the prevailing front, any significant expansion of the front 

will require a complete rebuild of the cell structure — in the unbounded case, the 

                                                 
53  Again, it is possible to form such a grid in solution-space, but it is considerably less common. 
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O(n log n) cost that such reconstruction entails may be prohibitive if the extent of the 

front expands regularly.     

8.1.1.3 KTH NEAREST-NEIGHBOUR 
In describing the SPEA2 algorithm, Zitzler et al. [81] propose the use of κth nearest-

neighbour measures to approximate the crowding of a solution in objective-space.  

While particularly popular in fields outside of multiobjective optimisation (most 

notably, in classifier studies — see, for instance, [211-214]), the basic approach 

becomes prohibitively expensive when used with unbounded archives.  For any 

given solution, the distance to all other elite members must be calculated, and 

subsequently sorted, simply to deduce the κth neighbour.  Since this procedure carries 

an average time cost of O(n log n) for each member in the archive54, the cost of 

providing diversity statistics for the whole front is O(n2 log n) if it is calculated from 

scratch each time.  An alternative way to approach κth nearest-neighbours in a 

persistent unbounded archive is to update all members after an insertion or a 

deletion.  While deriving the neighbourhood of an incoming proposal will still carry 

a cost of O(n log n), updating the remaining members of the set will cost O(un2), 

assuming that each member maintains a sorted neighbourhood list and that u 

represents the number of elements that are added to or deleted from the list.  With 

either approach however, the bounds are likely to be prohibitive for most practical 

unbounded archives, and the O(n2) storage requirements implicit in the persistent 

technique may be problematic if storage space is a concern. 

It is also worthwhile noting that the κth nearest-neighbour algorithm described by 

Zitzler et al. [81] — where the crowding of a solution is governed only by the 

distance to the κth neighbour — is prone to producing misleading estimates.  

Consider Figure 70: it is clear that member y in (a) is in a more crowded region of 

objective-space than member z in (b), yet both solutions will yield identical κth 

nearest-neighbour scores.  By emphasising only the κth neighbour, the method 

proposed by Zitzler et al. [81] can miss more subtle information about the true nature  

 

                                                 
54  It is worth noting that the implementation of the κth nearest-neighbour algorithm used in this work 

makes use of quicksort, since it is generally considered to be amongst the fastest general-purpose 
sorting algorithms.  Because the (unlikely) worst-case for quicksort is O(n2), the worst-case bound 
for the κth nearest-neighbour algorithm, in this case, is O(n3).  
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Figure 70 — κth Nearest-Neighbour Inaccuracies 
y and z share identical κth (κ = 4) nearest-neighbour scores, despite the differences in the objective-

spaces in which they reside.  x-axis is objective one; y-axis is objective two. 

 

of the front, particularly with respect to local objective-space density.  A simple 

extension that reduces such problems is averaging the distances from the examined 

solution to all of its κ nearest-neighbours. 

Given that there is no practical complexity burden associated with the proposed 

extension, this thesis posits that the averaging methodology should be favoured over 

the traditional approach suggested by Zitzler et al. [81], even in bounded archives.  

This is an interesting avenue of future work. 

8.1.1.4 CUBOID NEAREST-NEIGHBOUR CROWDING 
To enhance the efficiency of crowd density estimation, Deb et al. [144] offer a 

coarse approximation derived from a simplification of existing nearest-neighbour 

approaches.  For each objective, the solutions are ordered according to performance 

on that objective and dimensional-crowding is defined as the distance to preceding 

and succeeding elements in the ordered-list (with extreme points given an infinite 

score).  The overall crowding of a solution (referred to here as cuboid crowding) is 

the average dimensional-crowding distance produced across all objectives.   

The efficiency advantages of this approach are impressive.  Assuming the use of a 

data structure that provides O(n log n) sorting, cuboid crowding information about 

every member in a provided non-dominated set can be produced in O(βn log n). 
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Figure 71 — Cuboid Crowding Inaccuracies 
(a) Green arrows indicate nearest cuboid neighbours in the x-dimension; orange arrows indicate 

nearest cuboid neighbours in the y-dimension.  (b) x is in more densely occupied space than y, but the 
localised nature of the cuboid method means that both are given identical crowding scores. 

The downside, of course, is that cuboid crowding can result in misleading density 

estimates.  In general, the neighbours of a solution in a given dimension need not 

necessarily reside close to that solution in objective-space (as illustrated in Figure 

71a), and so any deductions drawn from this incorrect picture are of debatable value.  

It is worth noting that such problems are not a concern for non-dominated sets in the 

two-dimensional case however, as Property One from Section 6.1.2 will hold and a 

correlation between proximity along a particular dimension and proximity in the 

complete objective-space exists55.  Instead, the overriding issue in the two-

dimensional case is that the consideration of only two neighbours may be insufficient 

to correctly gauge the nature of the objective-space surrounding a given solution.  In 

particular, heavily explored regions may not be correctly identified due to localised 

pockets of low-density (as exemplified in Figure 71b), while emphasis of a sparse 

area may be negated by solutions that feature high localised crowding.               

8.1.1.5 CONCLUSIONS ABOUT EXISTING GENERIC CROWDING METRICS 
While the range of crowding metrics available to contemporary multiobjective 

optimisation researchers is rich, they are all burdened with underlying deficiencies 

that inhibit their use in an unbounded environment.  For instance, both distance and 

                                                 
55  Results [77] indicate that the performance of NSGA-II degrades markedly as the number of 

objectives increases.  The diminishing accuracy of the cuboid crowding metric on higher 
dimensions may be related to this finding. 
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cell-based clustering approaches are sensitive to parameter settings, even when they 

capitalise on dynamic tuning (though the effect is typically less pronounced in these 

cases).  Alternatively, nearest-neighbour methodologies generally carry tremendous 

efficiency overheads, and efforts to reduce these costs produce density estimates of 

lower fidelity.  Moreover, it is true that neither nearest-neighbour nor clustering 

techniques provide a definitive insight into the true nature of the objective-space.  

Even the improved version of the κth nearest-neighbour method described in Section 

8.1.1.3, is susceptible to diminishing accuracy under poorly selected κ values and 

biasing, where disconnected regions and solutions residing nearer to the extremes of 

the front will be favoured over balanced compromises in an evenly distributed set.   

Consequently, the following chapters and sections examine more efficient ways to 

produce crowding estimates in unbounded bi-objective elite sets  

(Section 8.1.2–8.1.4, Section 8.3.1 and Section 8.3.6) and how such approximations 

may be used in selection (Section 8.1.5 and Section 8.3.2); consider an amalgamation 

of both cell-based and neighbour-based methodologies (Section 8.3.3) that may aid 

in the production of more consistent, and generally more accurate, estimates of 

objective-space density; and explore the empirical impact of differing crowding 

mechanisms in both bounded and unbounded optimisers (Chapters 9–12). 

8.1.2 SINGLE-NEAREST-NEIGHBOUR CROWDING IN MAK_TREES 
Recalling that Property One (Section 6.1.2) of bi-objective non-dominated sets 

means that the nearest objective-space neighbour of any solution in an ordered list 

will always be the predecessor or successor of that solution, the single-nearest-

neighbour of a member can be calculated with the same cost as locating its 

predecessor and successor in the list.  Assuming the use of a Mak_Tree that 

maintains direct links between nodes and their successors and predecessors (which 

can be done with no change to the O(log n) insertion costs), deriving the nearest-

neighbour scores for all members will carry an additional O(n) cost.  A naïve 

approach would require the complete recalculation of the neighbourhood for every 

update to maintain member scores, though this is clearly sub-optimal, with O(un) 

complexity for u updates.  As described in Algorithm 6, a better approach is to 

update only three members on insertion (the incoming node, its new successor and its  
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Algorithm 6 — Updating Nearest-Neighbour Scores After Insertion 
δ is a distance metric; dist refers to the current nearest-neighbour distance of a node. 

Inputs:  
 x  The inserted node. 
 x  The successor of the inserted node. 
 x  The predecessor of the inserted node. 
   

1: ( ) ( )( )if , ,δ δ<x x x x  If the distance from the inserted node to the successor is less 

2:  ( ): ,δ=distx x x  than to the predecessor, set the successor as the nearest-neighbour. 

3: else  Otherwise, set the predecessor as the nearest-neighbour. 

4:  ( ): ,δ=distx x x   

5: ( )( )if ,δ>
dist

x x x  If the incoming node is the nearest-neighbour of the 

6:  ( ): ,δ=
dist

x x x  successor, update the successor accordingly. 

7: ( )( )if ,δ>
dist

x x x  If the incoming node is the nearest-neighbour of the 

8:  ( ): ,δ=
dist

x x x  predecessor, update the predecessor accordingly. 

 

Algorithm 7 — Updating Nearest-Neighbour Scores After Deletion 
δ is a distance metric; dist refers to the current nearest-neighbour distance of a node. 

Inputs:  
 pi  The predecessor of the first node in the dominated set. 
 sj  The successor of the last node in the dominated set. 
 pi  The predecessor of pi. 
 sj  The successor of sj. 
   

1: ( ) ( )( )if , ,δ δ<pi sj pi pi   

2:  : ( , )δ=distpi pi sj  The sj node is the nearest-neighbour of the pi node. 
3: else   

4:  ( ): ,δ=distpi pi pi  The predecessor of pi is the nearest-neighbour of the pi node. 

5: ( ) ( )( )if , ,δ δ<sj pi sj sj   

6:  : ( , )δ=distsj sj pi  The pi node is the nearest-neighbour of the sj node. 
7: else   

8:  ( ): ,δ=distsj sj sj  The successor of sj is the nearest-neighbour of the sj node. 

 

new predecessor) and to capitalise on Property Three (Dominated Sets) for deletions 

(see Algorithm 7), so that only the predecessor of the i-terminal node and the 

successor of the j-terminal node need change (see Figure 72 for illustrations).  With 

this improved methodology, keeping nearest-neighbour scores for every member of  
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aa pi i_term j_term sjpi sj

 
          (a)             (b) 

Figure 72 — Updating Nearest Neighbours After Insertion and Deletion 
(a) The highlighted region is the dominated set.  (b) The highlighted region is the inserted node.  For 
(a) and (b) the dashed arrows represent potential objective-space nearest-neighbours for members. 

 

the unbounded list carries an O(1) cost per update56, irrespective of the number of 

members that are removed from the archive due to domination.  Thus, the overall 

performance of the Mak_Tree suffers no practical performance degradation when 

maintaining a complete and accurate set of nearest-neighbour scores.  

 

8.1.3 CUBOID CROWDING IN MAK_TREES 
Maintaining cuboid crowding estimates in a Mak_Tree is a simple modification of 

the methodology described for updating nearest-neighbours in Section 8.1.2.  As 

described in Algorithm 8, the cuboid score of an incoming node is always derived 

from its predecessor ( a ) and successor ( a ), while a  and a  estimates are always 

updated according to the incoming node.  Deletion (Algorithm 9) requires only the 

predecessor of the i-terminal and the successor of the j-terminal to be updated.  As  

 

Algorithm 8 — Updating Cuboid Scores After Insertion 
δ is a distance metric; pred_dist refers to the nearest preceeding neighbour distance for a given node; 

succ_dist is the nearest succeeding neighbour distance. 

Inputs:  
 x  The inserted node. 
 x  The successor of the inserted node. 
 x  The predecessor of the inserted node. 
   

1: _ : ( , )δ=succ distx x x  Record distance to successor of incoming node. 
2: _ : ( , )δ=pred distx x x  Record distance to predecessor of incoming node. 
3: _ : ( , )δ=pred distx x x  Update the successor’s predecessor distance. 
4: _ : ( , )δ=succ distx x x  Update the predecessor’s successor distance. 

                                                 
56  For all complexity analyses of nearest-neighbour techniques, it is assumed that the distance 

calculations carry no practical overhead.  This is a reasonable assumption given that the objective-
space will be strictly two-dimensional. 



Chapter 8 — Extending the Mak_Tree 

- 189 - 

Algorithm 9 — Updating Cuboid Scores After Deletion 
δ is a distance metric; pred_dist and succ_dist refer to the current nearest preceding and succeeding 

neighbour distances for the given node. 

Inputs:  
 pi  The predecessor of the first node in the dominated set (the pi node). 
 sj  The successor of the last node in the dominated set (the sj node). 
 pi  The predecessor of pi. 
 sj  The successor of sj. 
   

1: _ : ( , )δ=succ distpi pi sj  The successor of pi is now sj.  Update pi successor score accordingly. 
2: _ : ( , )δ=pred distsj sj pi  The predecessor of sj is now pi.  Update sj predecessor score accordingly. 

 

per Section 8.1.2, the maintenance of cuboid crowding values after insertion or 

deletion is an O(1) operation in the Mak_Tree and therefore carries no practical 

overhead.   

8.1.4 Κ NEAREST-NEIGHBOUR CROWDING IN MAK_TREES 
As suggested in Section 8.1.1.4, the analysis of a small number of neighbours may 

promote inaccurate density estimates and the use of a more rich set of members is 

typically preferable.  As such, it is useful to generalise the techniques described in 

Section 8.1.2 into κ nearest-neighbour measures.  Since the κ nearest-neighbours of a 

member will always reside in the κ predecessors and successors of that member 

(Property One), the cost of calculating all κ nearest-neighbour scores for all nodes is, 

fairly obviously, O(κn) — which becomes prohibitively expensive if completed on 

every insertion, carrying an O(uκn) cost.  As with single and cuboid nearest-

neighbour methods however, there exist optimisations that can considerably improve 

performance when crowds are estimated on a per-update basis.   

8.1.4.1.1 Updating κ Nearest-Neighbour Crowds After Insertion 

With respect to insertion it is necessary to derive the κ nearest-neighbours score of 

the incoming solution and update those members whose nearest neighbours have 

changed due to the insertion.   
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8.1.4.1.2 Deriving the κ Nearest-Neighbour Score of The New Member 

The nearest-neighbour score of the incoming solution requires the investigation of 

precisely κ+1 members57, starting with the in-order predecessor and successor of the 

solution (see Algorithm 10 and Figure 73).  As the algorithm progresses, the search 

simply expands in the direction of the most recently identified neighbour – 

 

Algorithm 10 — κ Nearest-Neighbours Insertion: Updating the New Node 

Inputs:  
 x  The inserted node. 

1: let : ; : ; := = =∅left x right x D  D is the collection of nearest-neighbour distances.  

2: let : null; : null= =leftmostNeighbour rightmostNeighbourx x  Leftmost and rightmost neighbours define the κ 
neighbourhood of x (initially undefined). 

3: for ( 1 to )κ=i  (Note: if n < κ, let κ = n)  
4:  ( )if ( null) ( null)≠ ∨ ≠right left  If there are archived nodes to examine, 

5:   ( )if ( , ) ( , )δ δ<x left x right  if left node is nearer to x than the right 
6:    : ( , )δ=iD x left  then note the distance to the left node, 
7:    :=leftmostNeighbourx left  set left as the leftmost neighbour of x 

8:    :=left left  and shift the left node. 
9:   else  If the right node is nearer to x than left 

10:    : ( , )δ=iD x right  then note the distance to the right node, 
11:    :=rightmostNeighbourx right  set right as the new rightmost neighbour  

12:    :=right right  of x and shift the right node. 
13: calculateKNNScore( , )x D  Assign x a crowding score. 
14: updateNeighbourScores( )x  Update predecessors and successors of x. 
 

D 1

(1,9) (3,7) (5,5) (6,4) (8,2) (99,1)(0,10)

left right

rightmost

(1,9) (3,7) (5,5) (6,4) (8,2)

right

(99,1)(0,10)

left

leftmost
rightmost leftmost

 

(1,9) (3,7) (5,5) (6,4) (8,2) (99,1)(0,10)
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rightmostleftmost

D 1D 2

rightmostleftmost

(1,9) (3,7) (5,5) (6,4) (8,2) (99,1)(0,10)

left rightD 1D 2 D 3  

Figure 73 — Updating the Inserted Node for κ Nearest-Neighbours Crowding 
Illustrates an example execution of Algorithm 10 for κ=3.  The shaded regions represent the inserted 
node and arrows depict nearest neighbours discovered thus far.    Note that the leftmost and rightmost 

boundaries of the neighbourhood are recorded for future reference. 
 

                                                 
57  In general, the complexity analysis of κ nearest-neighbour crowding assumes the existence of at 

least κ members.  If n < κ, then n should replace κ in all big-oh complexity estimates. 
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Algorithm 11 — κ Nearest-Neighbours Insertion: Updating Neighbours 

Inputs:  
 x  The inserted node. 

1: let :=c x  Start updating at predecessor of x.

2: 
( ) ( )( )
( ) ( )( )

, ,
while 

, ,

δ δ

δ δ

 ≥ ∨     ≥  

rightmostNeighbour

leftmostNeighbour

c c c x

c c c x
 

While the inserted solution is 
closer than either of the c node’s 
extreme neighbours 

3:  ( ) ( )( )if , ,δ δ<rightmostNeighbour leftmostNeighbourc c c c  Remove the furthest of the 

4:   ( )updateKNNScore , , leftmostNeighbourc x c  extreme neighbours from c’s 

5:   ( ): successor=leftmostNeighbour leftmostNeighbourc c  neighbourhood and update the  
6:  else  crowding estimate accordingly. 
7:   ( )updateKNNScore , , rightmostNeighbourc x c   

8:   ( ): predecessor=rightmostNeighbour rightmostNeighbourc c  Move to the next node to see if 
9:  :=c c  it also requires updating. 

10: let :=c x  Now check the successors of the 

11: 
( ) ( )( )
( ) ( )( )

, ,
while 

, ,

δ δ

δ δ

 ≥ ∨     ≥  

rightmostNeighbour

leftmostNeighbour

c c c x

c c c x
 

inserted solution, using a 

symmetrical method of lines 2-9. 

12:  ( ) ( )( )if , ,δ δ<leftmostNeighbour rightmostNeighbourc c c c   

13:   ( )updateKNNScore , , rightmostNeighbourc x c   

14:   ( ): predecessor=rightmostNeighbour rightmostNeighbourc c   
15:  else   
16:   ( )updateKNNScore , , leftmostNeighbourc x c   

17:   ( ): successor=leftmostNeighbour leftmostNeighbourc c   
18:  :=c c   

 

incrementally moving left for every selected neighbour that precedes the new 

member and right for neighbours that succeed.  Given the use of suitably inexpensive 

distance metrics and an efficient calculateKNNScore function, this simple 

technique, as used in one-dimensional κ nearest-neighbour estimates, carries a cost of 

O(κ).   

8.1.4.1.3 Updating The κ Nearest-Neighbour Scores of Remaining 
 Members 

When a new proposal is inserted into the archive, Property One implies that at most κ 

preceding and κ succeeding members may have affected neighbourhoods and require 

updating.  Specifically, the algorithm (as described in Algorithm 11 and illustrated in  
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(1,9) (3,7) (5,5) (6,4) (8,2) (99,1)(0,10)

cleftmost rightmost

(-4,15)

Updating (3,7).  Check whether either 
boundary node is further away than the 
inserted node.  If so, remove the furthest 
boundary solution from the neighbourhood 
of c and update. 

  

(1,9) (3,7) (5,5) (6,4) (8,2) (99,1)(0,10)

cleftmost rightmost

(-4,15)
The rightmost boundary node is updated by 
shifting it one place to the left.  The inserted 
solution is included in the neighbourhood. 

  

(1,9) (3,7) (5,5) (6,4) (8,2) (99,1)(0,10)

cleftmost rightmost

(-4,15)

Updating (1,9).  Check whether either 
boundary node of c is further away than the 
inserted node.  If so, remove the furthest 
boundary solution and update. 

  

(1,9) (3,7) (5,5) (6,4) (8,2) (99,1)(0,10)

cleftmost rightmost

(-4,15)
The rightmost boundary node is updated by 
shifting it one place to the left.  The inserted 
solution is included in the neighbourhood. 

(1,9) (3,7) (5,5) (6,4) (8,2) (99,1)(0,10)

cleftmost rightmost

(-4,15)
Updating (1,9).  Check whether either 
boundary node of c is further away than the 
inserted node.  Neither are, so stop. 

Figure 74 — Updating the Neighbourhood for κ Nearest-Neighbours Crowding After Insertion 
Dashed region is the inserted node; arrows indicate current neighbours; shaded region is the node 

being updated.  For brevity, the figure illustrates left updates only. 

 

Figure 74) proceeds by adjusting the neighbourhoods of each of the κ preceding 

members of the newly inserted node x (lines 3-8 in Algorithm 11), until x is too far 

away to warrant inclusion in a predecessor’s neighbourhood (the condition at line 2 

in Algorithm 11 becomes false).  A symmetrical procedure is used to correctly 

update the members lying to the right of the new proposal in the ordered list (see 

lines 10-17 in Algorithm 11).    

With an efficient algorithm in-place, and again assuming suitably inexpensive 

distance and updateKNNScore procedures, the worst-case time costs of updating 

the neighbourhoods of all preceding and succeeding members is only O(κ).   

8.1.4.2 UPDATING Κ NEAREST-NEIGHBOUR CROWDS AFTER DELETION 
Maintaining nearest-neighbour scores after deletion is a somewhat more complicated 

affair than after insertion, as it is necessary to consider the impact of losing multiple 

neighbours.  Still, the special properties of bi-objective sets can be capitalised upon 

to produce efficient results.  In particular, recall that the deleted set will occupy a 
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contiguous region in the ordered list (Property Three) and that the κ nearest-

neighbours of any solution must come from the κ successors and κ predecessors of 

that solution (Property One).  As such, at most κ predecessors of the first dominated 

member (i-terminal node) and κ successors of the last dominated node (j-terminal 

node) will require neighbourhood updating (see Algorithm 12 and Figure 75).  In the 

worst case, when all members of the deleted set are original members of the 

neighbourhood, the first predecessor of the dominated set will require κ comparisons 

to generate an updated crowding score since a replacement neighbour for each 

deleted member is required.  The second predecessor will require at most κ-1 

comparisons; the third, κ-2; and so on.  Thus, the worst-case complexity is O(κ+κ-

1+κ-2+...1) = O(κ2).  The procedure for updating successors of the deleted set is 

symmetrical and the overall worst-case complexity must therefore be O(κ2).  

Furthermore, if the number of nodes residing in the dominated set is less than κ, the 

worst-case complexity reduces to O(κd), where d is the number of members that are 

to be removed from the list. 

8.1.4.3 THE COMPLEXITY OF MAINTAINING Κ NEAREST-NEIGHBOURS 
The worst-case time costs for maintaining a complete and accurate set of nearest-

neighbour estimates after the insertion of a non-dominating new proposal is O(κ).  

When a dominating solution is to be included, the need to update multiple solutions 

with multiple new neighbours leads to a worst-case bound of O(κ2) when κ < d and 

O(κd) otherwise.  Given that a generic approach, akin to that of the κth nearest- 

neighbour algorithm employed by Zitzler et al. [81], will carry a burden of O(n2) [95] 

 

Algorithm 12 — κ Nearest-Neighbours Deletion 

Inputs:  
 _i term  The left-most terminal of the dominated (delete) set. 
 _j term  The right-most terminal of the dominated (delete) set. 

1: let : _ ; : _= =left i term right j term  Update all nodes before 

2: ( )while ( null) (deleteFromRight( , _ , _ ))≠ ∧left left i term j term  dominated set with 

3:  :=left left  affected neighbourhoods. 

4: ( )while ( null) (deleteFromLeft( , _ , _ ))≠ ∧right right i term j term  Update nodes after set with 

5:  :=right right  affected neighbourhoods. 
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Algorithm 13 — κ Nearest-Neighbours DeleteFromRight (Helper Algorithm) 

DeleteFromLeft is a symmetrical form of this algorithm. 

Inputs:  
 x  The node being tested for neighbourhood updating. 
 _i term  The left-most terminal of the dominated (delete) set. 
 _j term  The right-most terminal of the dominated (delete) set. 

1: 
( )

( )
let : _ ; : successor ;

: predecessor

= =

=

rightmostNeighbour

leftmostNeighbour

delNode i term end x

nextLeft x
  

2: ( ) ( )( )if , , _δ δ<rightmostNeighbourx x x i term  If this node is unaffected by 

3:  return false  the deletion, return false. 
4: else   

5:  ( ) ( )( )if , , _δ δ≤rightmostNeighbourx x x j term  Ensure that the next  

6:   : _=nextRight j term  rightmost candidate is not  
7:  else  a deleted node. 
8:   ( ): successor= rightmostNeighbournextRight x  While delNode is in a deleted part 

9:  ( ) ( )( )while _≠ ∧ ≠delNode j term delNode end  of x’s neighbourhood 

10:   ( )if ( null) ( null)= ∧ =nextLeft nextRight  If there are no more 
11:    updateKNNRemove( , )x delNode  candidates, simply remove 

12:    ( )if = rightmostNeighbourdelNode x  delNode from x’s neighbourhood. 

13:     : _=rightmostNeighbourx i term   

14:   ( )else if ( , ) ( , )δ δ<x nextLeft x nextRight  Otherwise, update the  
15:    updateKNNScore( , , )x nextLeft delNode  neighbourhood of x with the 
16:    :=leftmostNeighbourx nextLeft  next nearest candidate node 

17:    =nextLeft nextLeft  (nextLeft or nextRight) 

18:    ( )if = rightmostNeighbourdelNode x  and supply a new candidate 

19:     : _=rightmostNeighbourx i term  for the next iteration (by 
20:   else  (updating nextLeft or 
21:    updateKNNScore( , , )x nextRight delNode  nextRight). 
22:    :=rightmostNeighbourx nextRight   

23:    =nextRight right   
24:    if ( _ )=nextRight i term   
25:     : _=nextRight j term   
26:   =delNode delNode  Examine the next deleted node. 
27:  return true  Return: neighbourhood updated. 
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Updating the neighbourhood of (3,7).  
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x
   

Select the next nearest (non-dominated) 
neigbour for inclusion in the 
neighbourhood of x and remove the 
deleted neighbour.  Move delNode to the 
right and confirm that it is in the deleted 
set and a member of the x neighbourhood. 

(1,9) (3,7) (5,5) (6,4) (8,2) (99,1)(0,10)

delNodenextLeft

nextRight

(-4,15)

x
 

Select the next nearest (non-dominated) 
neigbour for inclusion in the 
neighbourhood of x and remove the 
deleted neighbour.  After moving the 
delNode to the right it lies outside the 
range of the deleted set — it must be reset. 

(1,9) (3,7) (5,5) (6,4) (8,2) (99,1)(0,10)

delNodenextLeft

nextRight

(-4,15)

x
   

Reset delNode to (5,5) and move x to the 
left.  Now updating the neighbourhood of 
(1,9).  Check if delNode is to be deleted 
and that it is in the neighbourhood of x. 

(1,9) (3,7) (5,5) (6,4) (8,2) (99,1)(0,10)

delNode

nextRight

(-4,15)

x
 

Select the next nearest (non-dominated) 
neigbour for inclusion in the 
neighbourhood of x and remove the 
deleted neighbour.  After moving the 
delNode to the right it lies outside the 
range of the x neighbourhood — it must 
be reset. 

(1,9) (3,7) (5,5) (6,4) (8,2) (99,1)(0,10)

delNode

nextRight

(-4,15)

x
 

Reset delNode to (5,5) and move x to the 
left.  delNode is not a member of the x 
neighbourhood, so stop. 

Figure 75 — Updating Neighbourhoods for κ Nearest-Neighbours Crowding after Deletion 
Dashed region is the deleted (dominated) set; arrows indicate current neighbours; shaded region is the 

node being updated.  For brevity, the figure illustrates left updates only. 

 

and that typically κ << n, the difference in performance is massive58 — particularly 

in unbounded archives, where potentially large values of n will essentially preclude 

the use of generic techniques in practice.  The reason for the disparity is the 

correlation between proximity in the archival list and proximity in objective-space.  

While Property One ensures that neighbours in the specialised bi-objective non-

dominated list are neighbours in objective-space, there is no way to efficiently 

                                                 
58  As an illustration, Zitzler et al. [81] recommend a value of k = .n  
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construct a list that features a similar correlation in the generic case and it is therefore 

difficult to avoid expensive searches of the entire population.   

It is also worth noting that the list members described in Algorithm 10, Algorithm 11 

and Algorithm 12 are identical to standard Mak_Tree nodes, but for the need to store 

a neighbourhood score and references to their leftmost and rightmost neighbours.  

Consequently, this extended Mak_Tree carries no increase in big-oh storage 

complexity over the basic structure described in Chapter 6.   

8.1.4.4 EMPIRICAL RESULTS 
While the theoretical performance edge generated by bi-objective specialisation of 

density estimation is impressive, it is not until practical performance analysis that the 

ramifications of such gains can be properly observed.  As such, the extended 

Mak_Tree is compared with a range of contemporary generic approaches on the 

same diverse data sets described in Section 6.4.2 (produced by NSGA-II runs with 

settings defined in Appendix B.1.1).  Specifically, the simple two-neighbour cuboid 

function suggested by Deb et al. [82] and the κth nearest-neighbour algorithm 

explored by Zitzler et al. [81] are both used for comparative purposes — with 

truncation thresholds of 50 employed for both batch and incremental processing, as 

per Section 6.4.2.2.3.  Since the goal is to maintain a complete and accurate set of 

nearest-neighbour scores for the non-dominated archive, each generic technique 

updates the estimates after a successful insertion (when incremental procedures are 

used) or otherwise after a complete batch has been processed.  The extended 

Mak_Tree itself uses the averaged κ neighbours approach proposed in Section 8.1.1.3 

and is updated after every successful insertion such that all members of the 

unbounded non-dominated list maintain correct density estimates.  All results are 

derived from the average time-costs of processing twenty data sets per-problem. 

The results illustrated in Figure 76, Figure 77, Figure 78 and Table 17 (see pages 

198–201) are remarkable.  The unbounded Mak_Tree successfully stores a complete 

set of density estimates at a cost that is markedly lower than with traditional κth 

nearest-neighbour approaches in a heavily truncated environment — even when both 

the size of the unbounded list is high and numerous neighbours are considered (as in 

AP-10 and AP-5).  Perhaps even more impressively, the extended Mak_Tree is 

competitive with, and frequently better than (when κ = 5), amongst the simplest of all 
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available distance-based crowding estimators — the two-neighbour cuboid function 

operating on a tightly bound list.  

The implications are profound.  Given that generic density estimators operating on 

truncated elite sets are prone to both considerable inaccuracy (see Section 6.2) and 

are inherently costly, the development of a procedure which simultaneously 

addresses both of these problems is pivotal to improving the performance of 

optimisation algorithms, both with respect to efficiency and efficacy.  Since 

crowding estimates consider the complete non-dominated set in the extended 

Mak_Tree and results indicate that the procedure is less expensive than 

contemporary truncated approaches, the extended Mak_Tree may rest as the key to 

improved algorithmic performance in bi-objective domains. 
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(a) AP-1 
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(b) AP-2 
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(c) AP-3 
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(d) AP-4 
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(e) AP-5 
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(f) AP-8 

Figure 76 — Average Cumulative Time Costs of Unbounded and Bounded Archiving 
Techniques With Complete Density Estimates (κ = 20) 

x-axis represents the number of solutions presented to the archive; y-axis is the average cumulative 
processing time in seconds.  The Zitzler results refer to κth neighbour performance in a batch-

processed truncated archive of 50. The Basic Mak results feature no crowding measures and are 
intended as a base-line. 
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(a) AP-9 
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(b) AP-10 
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(d) AP-15 
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(e) AP-16 
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(f) AP-17 

Figure 77 — Average Cumulative Time Costs of Unbounded and Bounded Archiving 
Techniques With Complete Density Estimates (κ = 20) 

x-axis represents the number of solutions presented to the archive; y-axis is the average cumulative 
processing time in seconds.  The Zitzler results refer to κth neighbour performance in a batch-

processed truncated archive of 50. The Basic Mak results feature no crowding measures and are 
intended as a base-line. 
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(a) AP-21 
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(b) F-1 

Figure 78 — Average Cumulative Time Costs of Unbounded and Bounded Archiving 
Techniques With Complete Density Estimates (κ = 20) 

x-axis represents the number of solutions presented to the archive; y-axis is the average cumulative 
processing time in seconds.  The Zitzler results refer to κth neighbour performance in a batch-

processed truncated archive of 50. The Basic Mak results feature no crowding measures and are 
intended as a base-line. 

Table 17 — Time-Based Performance of Archives with Complete Density Estimates 
B indicates batch processing; I is incremental processing; Zitz is the κth neighbour approach as used by 

Zitzler et al. [81]; Deb is the cuboid approach used by Deb et al. [82]; time presented in seconds. 

 
 

Mak 
K=0 

Mak 
K=5 

Zit (I) 
K=5 

Zit (B)
K=5

Mak
K=20

Zitz (I)
K=20

Zitz (B)
K=20

Deb 
(I)

Deb 
(B) 

AP-1 0.06 0.08 3.40 0.28 0.09 3.45 0.34 0.14 0.14 
AP-2 0.05 0.06 0.47 0.07 0.07 0.47 0.08 0.05 0.05 
AP-3 0.07 0.07 4.14 0.37 0.11 4.30 0.44 0.14 0.16 
AP-4 0.05 0.07 1.82 0.21 0.07 1.75 0.27 0.09 0.08 
AP-5 0.04 0.06 1.53 0.17 0.07 1.42 0.19 0.08 0.07 
AP-8 0.03 0.03 1.44 0.16 0.06 1.67 0.18 0.06 0.06 
AP-9 0.02 0.05 2.21 0.23 0.04 2.63 0.28 0.07 0.06 
AP-10 0.04 0.05 4.71 0.37 0.07 4.55 0.43 0.13 0.12 
AP-15 0.06 0.08 6.66 0.51 0.13 6.56 0.56 0.19 0.16 
AP-16 0.05 0.10 7.67 0.60 0.14 7.64 0.66 0.21 0.18 
AP-17 0.07 0.12 8.26 0.63 0.14 7.77 0.75 0.26 0.22 
AP-21 0.05 0.09 6.77 0.56 0.12 6.60 0.60 0.19 0.15 
F-1 0.05 0.06 3.07 0.30 0.08 3.73 0.34 0.13 0.12 

10,000 Evaluations 

 Mak 
K=0 

Mak 
K=5 

Zit (I) 
K=5 

Zit (B)
K=5

Mak
K=20

Zitz (I)
K=20

Zitz (B)
K=20

Deb 
(I)

Deb 
(B) 

AP-1 0.32 0.46 34.07 2.52 0.51 38.69 3.03 0.97 0.85 
AP-2 0.28 0.45 25.26 2.09 0.50 30.15 2.57 0.78 0.67 
AP-3 0.34 0.41 35.11 2.80 0.55 40.50 3.10 0.93 1.09 
AP-4 0.34 0.49 24.08 2.38 0.59 24.78 2.82 0.80 0.75 
AP-5 0.28 0.44 27.99 2.56 0.58 25.29 2.82 0.97 0.86 
AP-8 0.11 0.16 9.24 0.93 0.18 11.48 1.12 0.29 0.31 
AP-9 0.15 0.21 11.74 1.18 0.17 17.01 1.46 0.38 0.38 
AP-10 0.24 0.36 28.63 2.19 0.42 29.11 2.40 0.75 0.68 
AP-15 0.34 0.48 45.14 3.36 0.60 43.82 4.00 1.16 0.96 
AP-16 0.35 0.46 47.19 3.70 0.60 45.24 4.05 1.21 1.08 
AP-17 0.44 0.62 52.54 4.07 0.75 47.23 4.97 1.44 1.18 
AP-21 0.34 0.44 47.03 3.57 0.56 44.87 4.01 1.23 1.05 
F-1 0.27 0.33 24.69 2.26 0.38 36.92 2.72 0.76 0.72 

50,000 Evaluations 
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Table 18  — Time-Based Performance of Archives with Complete Density Estimates 
B indicates batch processing; I is incremental processing; Zitz is the κth neighbour approach as used by 

Zitzler et al. [81]; Deb is the cuboid approach used by Deb et al. [82]; time measured in seconds. 

 Mak 
K=0 

Mak 
K=5 

Zit (I)
K=5

Zit (B)
K=5

Mak
K=20

Zitz (I)
K=20

Zitz (B) 
K=20 

Deb 
(I) 

Deb 
(B)

AP-1 1.15 1.76 113.36 8.61 2.01 132.35 10.20 2.98 2.64
AP-2 1.14 1.59 93.02 7.61 2.04 115.99 9.27 2.66 2.36
AP-3 1.12 1.53 114.47 8.62 1.87 134.20 10.18 3.05 2.97
AP-4 1.29 1.89 83.83 8.41 2.40 85.84 9.41 2.68 2.49
AP-5 1.09 1.88 98.88 9.16 2.60 88.14 10.27 3.29 2.85
AP-8 0.37 0.51 30.89 2.71 0.45 40.21 3.48 0.91 0.98
AP-9 0.51 0.66 36.39 3.67 0.55 55.75 4.41 1.22 1.13
AP-10 0.81 1.08 83.56 6.32 1.50 88.25 6.80 2.30 1.95
AP-15 1.01 1.38 142.60 10.92 1.71 140.49 12.76 3.58 3.18
AP-16 1.08 1.56 148.21 11.86 1.72 144.00 12.91 3.77 3.41
AP-17 1.38 2.09 163.41 13.61 2.39 145.65 15.55 4.40 3.84
AP-21 0.98 1.35 147.85 11.49 1.65 142.49 13.13 3.80 3.35
F-1 0.84 1.07 76.80 7.23 1.06 126.05 8.80 2.32 2.28

150,000 Evaluations 

 

 
 

8.1.5 LOCATING ISOLATED SOLUTIONS IN THE ARCHIVE 
While maintaining a complete set of nearest-neighbour scores for the entire 

unbounded archive is a powerful utility, it does not guarantee an efficient mechanism 

for the identification and recovery of isolated (or crowded59) solutions residing in the 

store.  Indeed, a naïve approach will require the exploration of the entire set simply 

to locate the single most isolated node — thus carrying a prohibitive O(n) cost per 

retrieved element.  Given that many contemporary multiobjective optimisation 

algorithms must frequently identify the least (or most) crowded solutions in the 

archival population (see, for instance, NSGA-II [82, 175], SPEA [137] and SPEA2 

[81, 145]), discovering a more efficient approach is therefore a valuable endeavour. 

As proposed by Jensen [95], a suitable alternative to the naïve exploration-based 

approach, is to annotate the nodes of a (balanced) tree-based structure.  Specifically, 

for any given node d, the annotation should indicate the largest neighbourhood score 

of all members belonging to the sub-tree rooted at d (as illustrated in Figure 79).  

With the annotations in place, locating the least-crowded node is a simple matter of 

following the annotations until arriving at the isolated solution — an O(log n) search.   

                                                 
59  The procedures described herein for locating isolated solutions in an elite archival set are 

analogous to those required for locating crowded members.   
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Figure 79 — Example Tree Annotations 
Dashed cells represent crowding annotations; larger cells represent crowding scores. 

 

However, generic annotations have a problem.  While searching is efficient, 

maintaining correct annotations can be costly.  Whenever the neighbourhood scores 

of a member change, a new solution is inserted or an element is deleted, O(log n) (at 

worst) annotations must be updated, as the change flows up through the tree.  Thus, 

the insertion of a dominating solution that leads to the deletion of d members and 

results in s score changes will result in O(s log n + d log n) annotation updates.  By 

specialising annotations for use in Mak_Trees, the unique properties of non-

dominated bi-objective sets and binary trees can be combined to form a considerably 

more efficient procedure. 

8.1.5.1 ANNOTATING THE MAK_TREE 
8.1.5.1.1 Annotating The Mak_Tree Without Deletion 

When examining the techniques required to efficiently produce accurate annotations 

in Mak_Trees, it is beneficial to first consider incoming solutions that are non-

dominating, since deletion complicates proceedings.  As illustrated in Section 

8.1.4.1.3, assuming that the incoming solution is non-dominating, unique60 and 

accepted into the unbounded archive, at most 2κ+1 nodes (the incoming node and the 

κ successors and κ predecessors of that node) will have updated crowding scores.  

Intuitively, the easiest way to update the scores of the altered nodes is to simply push 

each change up the tree, as in the generic case, yielding a worst-case cost of O(κ log 

n).  However, since the updated nodes will always lie in a contiguous block (by 

virtue of Property One), the range-related characteristics of a binary tree (see  

 

                                                 
60  Unique in the sense that no other equivalent solution is already stored in the set. 
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Algorithm 14 — Updating Crowding Annotations After Insertion 

Inputs:  
 l  The leftmost updated node. 
 r  The rightmost updated node. 

1: let :=current l  Start at the leftmost updated node. 
2: ( )while null≠current  While there are more nodes to consider. 

3:  := rightChildrightChild current   

4:  
( )
( )_ _

null
if 

 ≠ ∧     ≤  
obj 2 label obj 2 label

rightChild

rightChild l
 

If right child has been updated then make 
5:   annotateSubTree( , , )rightChild l r  sure the sub-tree is correctly annotated. 
6:  updateAnnotation( )current  Update the annotation of the current node.
7:  leaveBreadCrumb( )current  Note that the node has been visited. 
8:  := parentcurrent current  Move up the tree. 
9: let :=current r  Start at the rightmost updated node. 

10: ( )( )while null (noBreadCrumb( ))≠ ∧current current  While there are more unvisited nodes. 

11:  := leftChildleftChild current   

12:  
( )
( )_ _

null
if 

 ≠ ∧     ≥  
obj1 label obj1 label

leftChild

leftChild l
 

If left child has been updated then make 
13:   annotateSubTree( , , )leftChild l r  sure the sub-tree is correctly annotated. 

14:  
knnScore( ),

: best annotation( ),
annotation( )

κ   =     

nnScore

annotation
current

current left
right

 
Update the annotation of the current node 
— any value flagged with ignore is 
disregarded. 

15:  := parentcurrent current  Move up the tree. 

 

Section 0) can be capitalised upon to improve performance.  As illustrated in 

Algorithm 14 and Figure 80, the resulting annotation procedure is relatively straight-

forward: start at the leftmost updated node (at worst, the κth predecessor of the 

inserted node) and progress upwards through the tree (along the primary path) as in 

the generic case; if the right child of the current node has been updated, recursively 

adjust the annotations for the corresponding sub-tree (in the secondary path), and 

then continue as normal.  Once this initial parse is complete, a symmetrical form of 

the procedure is repeated from the rightmost updated node, resulting in a correctly 

annotated tree.   

Since the recursive function requires at most O(κ) annotation updates and both 

primary paths have length O(log n), the worst-case performance bound of the 

procedure is O(κ + log n) annotation updates per insertion of non-dominating nodes;  

if there are only s score changes (s < κ), the performance is improved to O(s + log n).   
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Algorithm 15 — Annotate Sub-Tree (Recursive Helper Function) 

Inputs:  
 root  The root of the sub-tree 
 l  The leftmost updated node. 
 r  The rightmost updated node. 
1:let :=current root   
2:let := leftChildleft root   
3:let := rightChildright root   

4: ( )if noBreadCrumb( )current  If the annotation of this node has 
5: if ( null)≠right  not already been updated. 

6:  
( )
( )

_ _

_ _
if
 ≤ ∧     ≥ 

obj1 label obj1 label

obj1 label obj1 label

right r

right l
  

If right has been updated then 

7:   : annotateSubTree( , , )=rightVal right l r  its annotation must be updated first. 
8:  else  Otherwise record the annotation of 
9:   := annotationrightVal right  the right for reference later. 

10: else  If right is null then it is excluded 
11:  : ignore=rightVal  from annotation calculations. 
12: if ( null)≠left   

13:  
( )
( )

_ _

_ _
if
 ≤ ∧     ≥ 

obj1 label obj1 label

obj1 label obj1 label

left r

left l
 

 

If left has been updated then 

14:   : annotateSubTree( , , )=leftVal left l r  its annotation must be updated first. 
15:  else  Otherwise record the annotation of 
16:   := annotationleftVal left  the left for reference later. 
17: else  If left is null then it is excluded 
18:  : ignore=leftVal  from annotation calculations. 

19: ,: best ,
κ =   

nnScore
annotation currentcurrent leftVal rightVal  Set and return the current annotation. 

20:return annotationcurrent   

 

40,41

19,83

30,7011,91

35,6525,75

39,6233,6921,77

70,20

75,1560,35

80,1065,3050,391,97

 

Figure 80 — An Example Annotation Update After Insertion 
The bold lines represent the primary path; the dashed lines indicate the secondary path.  Shaded cells 
have changed crowding scores due to the insertion (note that they are in a contiguous range, as they 

must be).  Shaded cells with dark borders are the leftmost and rightmost adjusted cells.  All annotation 
changes are pushed up to the root at (40,41). 
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Clearly, the specialised approach to annotation is markedly better than the generic 

technique, particularly as the size of κ increases (as may be necessary for large 

unbounded archives). 

8.1.5.1.2 Annotating The Mak_Tree With Deletion 

When deleting nodes from a Mak_Tree there are two issues to consider: each deleted 

node may affect the annotations of their respective ancestral nodes and the loss of 

each member may impact the neighbourhood scores of other solutions.  The second 

issue is effectively handled by the procedures outlined in Section 8.1.5.1.1, so long 

as the annotation updates occur after the dominated nodes have been removed from 

the tree.  In contrast, the first issue is best handled before any changes to the tree  

 

Algorithm 16 — Annotation Updates After Deletion 

Inputs:  
 _i term  The leftmost deleted node (the i_terminal node). 
 _j term  The rightmost deleted node (the j_terminal node). 

1: let : _=current i term  Start at i_term. 

2: ( )while null≠current   
3:  := rightChildrightChild current   
4:  ( )if isDominated( )current   
5:   : ignoreκ =nnScorecurrent  Ensure that the dominated 
6:  ( )if isDominated( )rightChild  nodes are ignored. 

7:   : ignoreκ =nnScorerightChild   

8:   : ignore=annotationrightChild   

9:  
,

: best ,
κ   =    

nnScore

annotation annotation

annotation

current
current leftChild

rightChild
 Update the annotation with 

the best non-ignored score. 
10:  := parentcurrent current  Move up the tree. 
11: let : _=current j term  Start at j. 

12: ( )while null≠current  While there are more nodes 

13:  := leftChildleftChild current   

14:  ( )if isDominated( )current   

15:   : ignoreκ =nnScorecurrent  Ensure dominated 

16:  ( )if isDominated( )leftChild  nodes are ignored. 

17:   : ignoreκ =nnScoreleftChild   

18:   : ignore=annotationleftChild   

19:  
,

: best ,
κ   =    

nnScore

annotation annotation

annotation

current
current leftChild

rightChild
 Update the annotation with  

the best non-ignored score. 
20:  := parentcurrent current  Move up the tree. 
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have been made.  Assuming that the standard Mak_Tree insertion procedure (Section 

0) tags both the roots of dominated sub-trees (which will be removed via sub-tree 

deletion) and distinct dominated nodes, maintaining correct annotations for the 

ancestors of deleted nodes becomes straight-forward.  As illustrated in Algorithm 16 

(and exemplified in Figure 81), the technique requires changes to be pushed up only 

from the first and last dominated node in the list, with special provisions made for 

those nodes labelled as dominated to ensure the integrity of the annotations (both in 

this operation and in subsequent deletion-induced rotations).  Thus, the incorporation  
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Figure 81 — Example Annotation Updates With Deletion 
Dashed cells represent crowding annotations; solid cells indicate crowding scores; shaded cells are to 
be deleted (they are dominated); cells with emphasised borders are being updated by the algorithm.  
Note that the procedure starts at the i-terminal node (7) and progresses to the root.  Once arriving at 

the root, a symmetrical procedure takes place from the j-terminal node (6).  
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of deletion into the procedure outlined in Section 8.1.5.1.1 carries only an additional 

O(log n) cost, irrespective of the size of the deleted set. 

8.1.5.1.3 The Overall Complexity Burden of Mak_Tree Annotations 

A Mak_Tree featuring a continuously updated set of accurate neighbourhood-based 

annotations carries at most an additional complexity burden of O(κ + log n) updates 

per insertion — even if the incoming solution is highly dominant.  Relative to the 

O(κ log n + d log n) costs associated with generic approaches, the improvements 

offered by such specialisation into the bi-objective domain are noteworthy.  As in the 

maintenance of κ nearest-neighbour scores (Section 8.1.4.3), it is the correlation 

between proximity in objective-space and proximity in the ordered list that facilitates 

the efficiency gains.  Where generic approaches are obliged to push annotations up 

from each updated node in-turn, the range-properties of the binary Mak_Tree tree 

facilitate the maintenance of large numbers of updated nodes en masse.  

8.1.5.2 LOCATING A SET OF ISOLATED NODES 
While it is useful to know the location of the single least-crowded member of an 

unbounded elite list, it is perhaps more beneficial in practice to locate a set of 

isolated nodes.  This is particularly true in the case of evolutionary selection, where 

most systems require a diverse collection of breeding agents to ensure thorough 

exploration of the front and to minimise the effect of biasing, deception and 

discontinuities in the objective-space.  Fortunately, extending the annotation 

techniques described in Section 8.1.5.1 to facilitate the selection of the φ most 

isolated nodes is both simple and efficient. 

While it should be obvious that the annotations can be adjusted to represent not just 

the lowest crowd score of a node’s progeny, but the φ lowest scores, this approach 

expands the spatial complexity of Mak_Trees to O(φn) — since each node must 

maintain a list of at least φ scores — and the additional operational complexity of 

annotating the tree rises to O(φκ + φ log n).  A better approach then, is to temporarily 

“hide” each node after it has been selected from the Mak_Tree (see Figure 82).  In 

this case, changes are pushed up the tree from the selected node as if it were deleted, 

ensuring that the root annotation subsequently refers to the next least crowded node.  

Once the φ nodes have been selected, the tree is restored to its initial configuration  
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Figure 82 — An Example of Selecting Multiple Uncrowded Nodes from the Mak_Tree 
Bold lines indicate the selection paths taken to locate the least crowded available node.  Dashed cells 

indicate crowd annotations; solid cells contain crowd scores. 

 

— either by replacing the newly modified tree with the original annotated structure, 

or by simply “revealing” the original scores of the hidden nodes and pushing up the 

correct values accordingly.  In either case, the spatial complexity reduces to at most 

O(φ + n) ≡ O(n) (assuming that a reference to the list of selected agents is 

required61), while selection costs only O(φ log n), since each time a node is hidden or 

revealed there are at most O(log n) annotation updates required.    

While the proposed technique provides good performance when the selection of 

isolated nodes is infrequent relative to the number of tree updates, minor practical 

improvements can be made if a constant reference to the collection of the φ 

uncrowded solutions is required.  In this case, the set of selected nodes is stored as a 

simple binary-tree ordered by crowd-score, with each node remaining hidden in the 

primary Mak_Tree until a successful insertion occurs.  Upon insertion, any 

dominated members of the selection set are simply removed, while updated members 

of the set are extracted and revealed in the Mak_Tree.  Each updated node is then 

                                                 
61  It is debatable as to whether this cost is attributable to the Mak_Tree or the multiobjective 

optimisation algorithm, since the algorithm will almost certainly require an equivalent list.  
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tested against the worst-scoring member of the selection-set, being added if it is 

preferable — always ensuring that the set size is never greater than φ.  Once all 

updated nodes are tested, the remainder of the set is filled using the simple hiding 

mechanic described earlier.  While the worst-case time-cost bound is inferior, with a 

cost of O(κ + v log φ + h log n) (where h is the number of nodes which must be 

hidden or revealed and v is the number of deletions or insertions into the subsidiary 

binary tree), the typical performance is likely to be better since it is probable that c < 

φ, v < κ and log φ will generally be very small.  Still, the improvements are relatively 

minor and for the remainder of this work, it is assumed that the simpler approach is 

adopted. 

8.2   THE COMPLEXITY OF THE FULLY-FEATURED 
 EXTENDED MAK_TREE 

In section 6.4.1.2, the performance of the basic Mak_Tree was described as being 

O(log n) when strictly non-dominating solutions are inserted into the archive and O(η 

log n) when η members of the archive are dominated by the incoming proposal.  

How then does the overall performance of a fully-featured extended Mak_Tree — 

complete with κ nearest-neighbour estimates, annotations and the periodic selection 

of uncrowded members — compare with this extremely efficient base case?  When 

taken in toto, are the features of the extended Mak_Tree prohibitively expensive for 

use in an unbounded setting? 

Firstly consider the insertion of a non-dominating solution.  The fully-featured 

extended Mak_Tree must maintain a non-dominated list (as per the basic Mak_Tree), 

update the neighbourhood scores of affected solutions, maintain neighbourhood-

based annotations and facilitate periodic selection.  Assuming selection occurs at 

most every O(φ) attempted insertions (as is typical of most contemporary 

multiobjective evolutionary algorithms — see, for instance, NSGA-II [82], SPEA2 

[81] and PESA [136]) the total time cost is: 

( ) ( )log(log ) ( ) ( log ) 3log 2 logϕκ κ κ κ
ϕ

    + + + + = + = +       
nO n n O n O n  (70) 

Therefore the cost of maintaining and using a rich set of useful crowding estimates 

carries only an O(κ) cost beyond that which is required to preserve the complete 
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unbounded archival set when non-dominating solutions are inserted.  Given that κ 

will typically be a relatively small constant, this overhead is insignificant given the 

impressive potential that the extended Mak_Tree affords. 

As with the basic Mak_Tree, insertion of a dominating solution is more complex and 

carries a greater burden.  Specifically, when κ > η the fully-featured extended 

Mak_Tree has a worst-case time complexity of: 

( )log( log ) ( ) ( log ) (log )  ϕη κη κ η κ
ϕ

    + + + + = +       
nO n n O n  (71) 

When κ ≤ η, the cost becomes: 

( )2 2log( log ) ( ) ( log ) log  ϕη κ κ η κ
ϕ

    + + + + = +       
nO n n O n  (72) 

At first glance, these complexities look somewhat overwhelming — particularly in 

the presence of highly dominating solutions and large values of κ.   It is reassuring 

then that amortised time analysis illustrates a far more efficient practical reality.   

8.2.1 AMORTISED COST OF THE FULLY FEATURED MAK_TREE 

Since the performance of the deletion operation varies with the size of κ relative to η, 

the worst-case amortised time must consider various configurations of κ and η. 

8.2.1.1 AMORTISED COST WHEN κ > η > 0 

If κ > η across a set of χ insertion and deletion operations, the worst-case amortised 

time is: 

(log ) (log ) (log )χ κ χ κ κ
χ

 + + +  = +   
n nO O n  (73) 

Similarly, if χ solutions are inserted, the entire set is subsequently dominated and κ > 

η, then the cost is: 

(log ) ( log ) 2 logχ κ χ κ κκ
χ χ

   + + +   = + +        
n nO O n  (74) 

and since 0 < χ < κ, the worst-case amortised cost is: 
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( ) ( )2log 2log 1 logκκ κ κ
χ

  + + = + + = +   
O n O n O n  (75) 

Thus, the final worst-case amortised cost of deletion in the extended Mak_Tree when 

κ > η is O(log n + κ). 

8.2.1.2 AMORTISED COST WHEN 0 < κ ≤  η 

If multiple deletes are performed across χ operations and κ ≤ η for each delete (worst-

case is when κ = η), the amortised time is: 

2(log ) ( log ) (log ) (log )χ κ η η χ κ η κ
χ χ

   + + + + + +  =        
n n n nO O  (76) 

Since χ cannot be less than η (otherwise, deletion will be operating on an empty set) 

and any χ > η will improve performance (deletion is more costly than insertion), the 

worst case is when χ = η and is therefore equivalent to Equation (76) above: 

( )(log ) (log ) logη κ η κ κ
η

 + + +  = +   
n nO O n  (77) 

If χ solutions are inserted and the entire set is subsequently dominated and χ = κ ≤ η, 

then the worst-case amortised cost is: 

2 2(log ) ( log ) (log ) (log )χ χ
χ χ

 + + +  = + ⇒ +   
n k n k kO O n O n k  (78) 

Therefore, the final worst-case amortised performance of deletion in the fully 

featured Mak_Tree when κ ≤ η is O(log n + κ). 

8.2.1.3 AMORTISED COST WHEN η = 0 

When there are no nodes deleted, the worst-case amortised cost for insertion into the 

fully featured Mak_Tree remains at O(log n + κ).  Analysis is trivial, but provided for 

completeness.  Over χ non-dominating insertions, the amortised cost is: 

( )(log ) logχ κ κ
χ

 +  = +   
nO O n  (79) 
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8.2.1.4 OVERALL AMORTISED COST OF USING THE FULLY FEATURED 
 MAK_TREE 

As described in Sections 8.2.1.1, 8.2.1.2 and 8.2.1.3, maintaining a truly unbounded 

non-dominated set of solutions, complete with rich diversity statistics, annotations 

and periodic selections, has an amortised cost of only O(log n + κ) in the extended 

Mak_Tree.  Given the power inherent in such extra functionality — particularly with 

respect to the integration of unbounded archives into existing and new evolutionary 

algorithms — such high levels of efficiency are impressive.  Moreover, the amortised 

time costs indicate performance consistency that is not available in any pre-existing 

unbounded elite archival system — dominance frequency and scope do not affect the 

theoretical performance of the fully-featured extended Mak_Tree beyond the way in 

which such properties affect the size of the unbounded set.  Consequently, both 

optimisation algorithms that focus on diversification ahead of frontal progression and 

more elitist options will be equally well served by the extended Mak_Tree.  Such 

general applicability is of pivotal importance if unbounded bi-objective archives are 

to find wide-ranging application in the field.  Still, theoretical results are one thing 

and practical results quite another, it is therefore important to thoroughly analyse the 

fully-featured extended Mak_Tree in a practical environment.  If the theoretical 

results are supported by impressive practical performance, the value of the extended 

Mak_Tree will be confirmed.  

8.2.2 EMPIRICAL RESULTS 
In Section 8.1.4.4 the extended Mak_Tree proved to be not only comparable with 

existing generic approaches to density estimation in truncated environments, but 

frequently preferable.  It is therefore worth examining whether the costs associated 

with annotation and frequent selections skew the practical performance advantages 

of the Mak_Tree.  As such, the behaviour of the extended unbounded Mak_Tree is 

examined under differing rates of selection and again compared to contemporary 

generic approaches that feature heavily truncated archives (n = 50).  Specifically, 

results (see pages 215–219 for relevant tables and graphs) describe performance 

across the now familiar set of problems described in Section 6.4.2.1, with selection 

of φ agents occurring after every φ attempted insertions (as would be encountered in 

most evolutionary algorithms).  For the generic approaches, selection requires the 

sorting of n (50) solutions per φ insertions (irrespective of the size of φ) and the use 
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of a list-truncation procedure when φ < n (to return the appropriate selection set), but 

remain otherwise unaltered from the techniques described in Section 8.1.4.4.  When 

only annotations are being examined, both the batch-processed κth neighbour and 

cuboid approaches remain unchanged from Section 8.1.4.4.  As per previous 

empirical examinations (see Section  6.4.2.3, for instance) all results reflect the 

average cumulative time-costs of each approach on twenty data sets per problem 

(produced by NSGA-II with settings defined in Appendix B.1.1). 

Table 19, Figure 83, Figure 84 and Figure 85 clearly illustrate that when only 

annotations are required, the extended Mak_Tree is superior to the truncated κth 

nearest-neighbour technique on every tested function.  Given that the Mak_Tree is 

unbounded and maintains annotations for every node in the tree, these results are 

particularly impressive.  Even when compared to the two-neighbour cuboid method, 

the annotated Mak_Tree achieves consistently better end-of-run results when κ = 5, 

and is frequently more efficient, and generally competitive, when κ is as high as 20.  

Perhaps more importantly, the incorporation of frequent solution selections — an 

important element of most contemporary evolutionary algorithms — does not 

severely inhibit the performance of the extended Mak_Tree.  Indeed, Figure 83, 

Figure 84 and Figure 85 and Table 20, Table 21 and Table 22 illustrate that the 

proposed hiding mechanic results in a fully-featured Mak_Tree that is preferable to 

the incremental cuboid approach on all tested selection frequencies when κ = 5 and is 

faster than both batch κth nearest-neighbour and batch cuboid approaches when φ is 

fifty62.  It is also worth noting that the extended Mak_Tree is comparable, and 

typically preferable, to the cuboid approach even early in the run, as illustrated in 

Table 20 (again discounting the notion that sophisticated unbounded data structures 

are only relevant if population levels are particularly high).       

Figure 83, Figure 84 and Figure 85 also illustrate an interesting trend with respect to 

the extension of the basic Mak_Tree.  While each layer of added complexity 

degrades the overall performance of the Mak_Tree, the resultant time-costs remain 

approximately linear with respect to the number of evaluations, despite the diverse 

problem set, the range of population sizes and the varying archival growth rates.  

                                                 
62  Note that for these batch truncated systems, when φ = m the selection procedure is optimal, as 

additional distance calculations and solution sorts are not required if truncation takes place.  



Escaping the Bounds of Generality — Unbounded Bi-Objective Optimisation 

- 214 - 

This is a noteworthy result.  If the extensions carried an exponentially increasing 

burden, there would be a danger that longer runs or higher population levels could 

lead to prohibitive time costs in real-world settings.  In contrast, the lack of such a 

burden and the consistency of the results imply that the performance of the fully-

featured extended Mak_Tree will remain efficient irrespective of problem or archival 

characteristics — a promising feature for systems seeking practical application. 
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Table 19 — Empirical Performance of the Annotated Mak_Tree  
Mak refers to the fully-featured Mak_Tree with κ-neighbours crowding, annotations and periodic 

selections; Deb refers to the cuboid-based truncated approach with either incremental or batch 
updating; Zit referns to the generic κ nearest-neighbour approach operating on a truncated set.  Results 

indicate average time in seconds. 

 Mak 
k=0 

Mak_NA
k=5

Mak_A 
k=5

Zit (B)
k=5

Mak_NA
k=20

Mak_A 
k=20 

Zit (B) 
k=20 

Deb 
(B)

AP-1 0.06 0.08 0.10 0.28 0.09 0.15 0.34 0.14
AP-2 0.05 0.06 0.07 0.07 0.07 0.08 0.08 0.05
AP-3 0.07 0.07 0.10 0.37 0.11 0.17 0.44 0.14
AP-4 0.05 0.07 0.07 0.21 0.07 0.12 0.27 0.09
AP-5 0.04 0.06 0.10 0.17 0.07 0.12 0.19 0.08
AP-8 0.03 0.03 0.04 0.16 0.06 0.06 0.18 0.06
AP-9 0.01 0.05 0.04 0.23 0.04 0.08 0.28 0.07
AP-10 0.04 0.05 0.08 0.37 0.07 0.15 0.43 0.13
AP-15 0.06 0.08 0.12 0.51 0.13 0.20 0.56 0.19
AP-16 0.05 0.10 0.14 0.60 0.14 0.25 0.66 0.21
AP-17 0.07 0.12 0.15 0.63 0.14 0.27 0.75 0.26
AP-21 0.05 0.09 0.14 0.56 0.12 0.21 0.60 0.19
F-1 0.05 0.06 0.09 0.30 0.08 0.13 0.34 0.13

10,000 Evaluations 

 Mak 
k=0 

Mak_NA
k=5

Mak_A 
k=5

Zit (B)
k=5

Mak_NA
k=20

Mak_A 
k=20 

Zit (B) 
k=20 

Deb 
(B)

AP-1 0.32 0.46 0.58 2.52 0.51 0.87 3.03 0.97
AP-2 0.28 0.45 0.47 2.09 0.50 0.73 2.57 0.78
AP-3 0.34 0.41 0.56 2.80 0.55 0.84 3.10 0.93
AP-4 0.34 0.49 0.52 2.38 0.59 0.93 2.82 0.80
AP-5 0.28 0.44 0.63 2.56 0.58 0.97 2.82 0.97
AP-8 0.11 0.16 0.15 0.93 0.18 0.22 1.12 0.29
AP-9 0.18 0.21 0.24 1.18 0.17 0.29 1.46 0.38
AP-10 0.24 0.36 0.47 2.19 0.42 0.72 2.40 0.75
AP-15 0.34 0.48 0.60 3.36 0.60 0.91 4.00 1.16
AP-16 0.35 0.46 0.64 3.70 0.60 0.98 4.05 1.21
AP-17 0.44 0.62 0.77 4.07 0.75 1.32 4.97 1.44
AP-21 0.34 0.44 0.60 3.57 0.56 0.92 4.01 1.23
F-1 0.27 0.33 0.42 2.26 0.38 0.57 2.72 0.76

50,000 Evaluations 

 Mak 
k=0 

Mak_NA
k=5

Mak_A 
k=5

Zit (B)
k=5

Mak_NA
k=20

Mak_A 
k=20 

Zit (B) 
k=20 

Deb 
(B)

AP-1 1.15 1.76 1.99 8.61 2.01 3.00 10.20 2.98
AP-2 1.14 1.59 1.90 7.61 2.04 2.80 9.27 2.66
AP-3 1.12 1.53 1.84 8.62 1.87 2.69 10.18 3.05
AP-4 1.29 1.89 2.03 8.41 2.40 3.25 9.41 2.68
AP-5 1.09 1.88 2.46 9.16 2.60 4.09 10.27 3.29
AP-8 0.37 0.51 0.45 2.71 0.45 0.58 3.48 0.91
AP-9 0.32 0.66 0.74 3.67 0.55 0.87 4.41 1.22
AP-10 0.81 1.08 1.34 6.32 1.50 1.91 6.80 2.30
AP-15 1.01 1.38 1.62 10.92 1.71 2.17 12.76 3.58
AP-16 1.08 1.56 1.80 11.86 1.72 2.49 12.91 3.77
AP-17 1.38 2.09 2.36 13.61 2.39 3.63 15.55 4.40
AP-21 0.98 1.35 1.56 11.49 1.65 2.15 13.13 3.80
F-1 0.84 1.07 1.12 7.23 1.06 1.39 8.80 2.32

150,000 Evaluations 
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(f) AP-8 

Figure 83 — Average Cumulative Time Costs of Unbounded and Bounded Archiving 
Techniques With Complete Density Estimates, Annotations and Selection (κ = 20, φ = 50) 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average cumulative processing time in seconds.  The Zitzler results refer to performance in a 

batch-processed truncated archive of 50. The Mak Variations are, in increasing order of time-cost, the 
Basic Mak_Tree, the Crowded Mak_Tree, the Annotated Crowded Mak_Tree, and the Annotated 

Crowded Mak_Tree with Selection. 
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(d) AP-15 
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(e) AP-16 
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(f) AP-17 

Figure 84 — Average Cumulative Time Costs of Unbounded and Bounded Archiving 
Techniques With Complete Density Estimates, Annotations and Selection (κ = 20, φ = 50) 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average cumulative processing time in seconds.  The Zitzler results refer to performance in a 

batch-processed truncated archive of 50.  The Mak Variations are, in increasing order of time-cost, the 
Basic Mak_Tree, the Crowded Mak_Tree, the Annotated Crowded Mak_Tree, and the Annotated 

Crowded Mak_Tree with Selection. 
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(a) AP-21 
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(b) F-1 

Figure 85 — Average Cumulative Time Costs of Unbounded and Bounded Archiving 
Techniques With Complete Density Estimates, Annotations and Selection (κ = 20, φ = 50) 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average cumulative processing time in seconds.  The Zitzler results refer to performance in a 

batch-processed truncated archive of 50. The Mak Variations are, in increasing order of time-cost, the 
Basic Mak_Tree, the Crowded Mak_Tree, the Annotated Crowded Mak_Tree, and the Annotated 

Crowded Mak_Tree with Selection. 

 

Table 20 — Empirical Performance of the Fully-Featured Mak_Tree and the Truncated Cuboid 
After 10,000 NSGA-II Evaluations 

Mak refers to the exteded Mak_Tree with κ-neighbours crowding, annotations and periodic selections; 
Deb refers to the cuboid truncated approach with either incremental or batch updating.  Results 

indicate average time in seconds. 

 φ  = 10 φ = 20 φ = 30 φ = 40 φ = 50 
 Mak 

k=5 
Mak 
k=20 

Deb 
Inc 

Mak 
k=5

Mak 
k=20 

Deb 
Inc 

Mak 
k=5

Mak 
k=20

Deb 
Inc

Mak 
k=5

Mak 
k=20

Deb 
Inc

Mak 
k=5

Mak 
k=20 

Deb 
Inc 

Deb 
Bat 

AP-1 0.16 0.20 0.26 0.17 0.24 0.15 0.16 0.29 0.18 0.13 0.32 0.19 0.14 0.23 0.18 0.24 
AP-2 0.08 0.10 0.06 0.11 0.10 0.07 0.09 0.11 0.06 0.06 0.10 0.05 0.08 0.11 0.09 0.08 
AP-3 0.13 0.20 0.24 0.14 0.25 0.21 0.15 0.30 0.20 0.14 0.28 0.18 0.13 0.30 0.22 0.27 
AP-4 0.09 0.13 0.13 0.12 0.17 0.13 0.12 0.17 0.11 0.13 0.19 0.13 0.10 0.14 0.15 0.14 
AP-5 0.11 0.14 0.15 0.12 0.21 0.11 0.14 0.21 0.11 0.11 0.19 0.12 0.13 0.23 0.12 0.13 
AP-8 0.05 0.07 0.10 0.06 0.09 0.09 0.04 0.13 0.08 0.07 0.14 0.07 0.06 0.09 0.10 0.09 
AP-9 0.07 0.09 0.13 0.08 0.12 0.10 0.07 0.10 0.10 0.08 0.15 0.10 0.07 0.12 0.13 0.11 
AP-10 0.13 0.19 0.19 0.11 0.19 0.17 0.12 0.24 0.18 0.12 0.23 0.20 0.12 0.21 0.22 0.19 
AP-15 0.20 0.25 0.32 0.20 0.33 0.28 0.17 0.35 0.23 0.17 0.31 0.23 0.17 0.38 0.31 0.31 
AP-16 0.18 0.26 0.34 0.19 0.36 0.30 0.20 0.35 0.27 0.18 0.34 0.26 0.19 0.39 0.34 0.31 
AP-17 0.21 0.33 0.31 0.20 0.35 0.32 0.23 0.45 0.29 0.23 0.42 0.34 0.21 0.38 0.41 0.31 
AP-21 0.21 0.24 0.31 0.19 0.33 0.29 0.16 0.30 0.25 0.17 0.43 0.24 0.18 0.29 0.31 0.25 
F-1 0.14 0.18 0.23 0.15 0.21 0.19 0.13 0.22 0.18 0.12 0.24 0.16 0.13 0.23 0.21 0.19 
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Table 21 — Empirical Performance of the Fully-Featured Mak_Tree and the Truncated Cuboid 
After 50,000 NSGA-II Evaluations 

Mak refers to the exteded Mak_Tree with κ-neighbours crowding, annotations and periodic selections; 
Deb refers to the cuboid truncated approach with either incremental or batch updating.  Results 

indicate average time in seconds. 

 φ  = 10 φ = 20 φ = 30 φ = 40 φ = 50 
 Mak 

k=5
Mak 
k=20 

Deb 
Inc 

Mak 
k=5

Mak 
k=20

Deb 
Inc

Mak 
k=5

Mak 
k=20

Deb 
Inc

Mak 
k=5

Mak 
k=20

Deb 
Inc 

Mak 
k=5 

Mak 
k=20

Deb 
Inc 

Deb 
Bat

AP-1 0.91 1.15 1.55 0.95 1.43 1.35 0.92 1.53 1.34 0.87 1.52 1.34 0.81 1.48 1.51 1.46
AP-2 0.68 0.94 1.30 0.77 1.17 1.11 0.75 1.33 1.08 0.66 1.45 1.11 0.67 1.26 1.29 1.17
AP-3 0.85 1.07 1.53 0.88 1.34 1.44 0.78 1.50 1.27 0.75 1.64 1.42 0.75 1.49 1.53 1.45
AP-4 0.91 1.12 1.41 0.92 1.33 1.20 0.79 1.52 1.12 0.81 1.69 1.27 0.82 1.59 1.33 1.30
AP-5 0.88 1.22 1.51 1.02 1.53 1.46 0.89 1.69 1.24 0.88 1.90 1.31 0.82 1.62 1.44 1.39
AP-8 0.24 0.25 0.50 0.26 0.34 0.43 0.26 0.41 0.39 0.24 0.44 0.40 0.22 0.36 0.44 0.52
AP-9 0.31 0.36 0.61 0.35 0.46 0.52 0.32 0.53 0.56 0.37 0.53 0.54 0.31 0.57 0.60 0.63
AP-10 0.75 0.92 1.22 0.75 1.06 1.03 0.72 1.18 0.98 0.63 1.41 1.09 0.70 1.29 1.22 1.11
AP-15 0.93 1.15 1.79 0.96 1.47 1.66 0.90 1.63 1.64 0.90 1.57 1.54 0.85 1.57 1.78 1.70
AP-16 0.97 1.18 1.96 0.95 1.50 1.77 0.92 1.73 1.72 0.83 1.71 1.65 0.90 1.65 1.85 1.61
AP-17 1.25 1.73 2.20 1.29 1.98 1.92 1.17 2.20 1.94 1.22 2.40 1.94 1.13 2.25 2.24 1.97
AP-21 0.97 1.15 1.94 0.92 1.50 1.74 0.84 1.61 1.74 0.82 1.69 1.76 0.82 1.39 1.96 1.74
F-1 0.81 0.79 1.33 0.75 1.01 1.13 0.67 1.05 1.01 0.62 1.12 1.11 0.60 1.00 1.34 1.18

 
 

Table 22 — Empirical Performance of the Fully-Featured Mak_Tree and the Truncated Cuboid 
After 150,000 NSGA-II Evaluations 

Mak refers to the exteded Mak_Tree with κ-neighbours crowding, annotations and periodic selections; 
Deb refers to the cuboid truncated approach with either incremental or batch updating.  Results 

indicate average time in seconds. 

 φ  = 10 φ = 20 φ = 30 φ = 40 φ = 50 
 Mak 

k=5
Mak 
k=20 

Deb 
Inc 

Mak 
k=5

Mak 
k=20

Deb 
Inc

Mak 
k=5

Mak 
k=20

Deb 
Inc

Mak 
k=5

Mak 
k=20

Deb 
Inc 

Mak 
k=5 

Mak 
k=20

Deb 
Inc 

Deb 
Bat

AP-1 3.03 3.81 4.93 3.27 4.73 4.40 3.12 5.28 4.22 2.93 5.51 4.35 2.91 5.18 4.78 4.45
AP-2 2.84 3.52 4.47 3.10 4.42 3.97 2.95 4.87 3.90 2.59 5.18 3.80 2.57 4.76 4.36 4.19
AP-3 2.98 3.63 4.91 3.19 4.45 4.48 2.87 5.00 4.30 2.79 5.09 4.36 2.79 4.94 4.85 4.47
AP-4 3.31 4.04 4.63 3.49 4.84 4.08 3.30 5.68 3.94 3.22 5.95 4.14 3.31 5.68 4.62 4.36
AP-5 3.74 5.21 5.12 4.07 6.48 4.79 3.80 7.12 4.52 3.41 7.40 4.68 3.43 7.39 5.19 4.71
AP-8 0.75 0.72 1.50 0.80 0.91 1.34 0.76 1.06 1.30 0.71 1.15 1.34 0.68 1.05 1.52 1.58
AP-9 0.97 1.07 1.91 1.11 1.34 1.76 0.99 1.43 1.67 0.98 1.48 1.70 0.99 1.63 1.87 1.91
AP-10 2.14 2.81 3.54 2.25 3.35 3.16 2.08 3.81 3.05 1.83 3.89 3.24 1.89 3.63 3.59 3.10
AP-15 2.69 2.99 5.56 2.69 3.77 5.15 2.49 4.23 4.96 2.47 4.22 4.97 2.36 4.09 5.74 5.48
AP-16 2.91 3.31 6.04 2.85 4.24 5.51 2.78 4.70 5.35 2.65 4.65 5.36 2.68 4.63 6.00 5.53
AP-17 3.64 4.73 6.75 3.91 5.64 6.09 3.46 6.18 5.85 3.41 6.53 6.10 3.27 6.25 6.92 6.07
AP-21 2.56 2.91 5.88 2.60 3.65 5.37 2.40 4.19 5.26 2.41 4.21 5.28 2.28 3.87 5.94 5.59
F-1 2.09 2.06 3.92 2.10 2.62 3.51 1.98 2.82 3.22 1.84 3.04 3.30 1.83 2.75 3.79 3.71
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8.3 CELL-BASED CROWDING IN MAK_TREES 
As suggested in Section 8.1.1.2, tree data structures are well suited to generic cell-

based crowding procedures, offering an efficient alternative to distance-based density 

estimates.  The question is therefore whether specialisation into the bi-objective 

domain yields any noteworthy benefits beyond those already seen in the generic case.  

Does the use of the extended Mak_Tree provide advantages that simply cannot be 

achieved when the broad brush-stroke of generality is applied?   

8.3.1 USING A MAK_TREE FOR CELL-BASED DENSITY ESTIMATION 
It should be obvious that a Mak_Tree can be used to store cells with little 

modification to the original structure.  Indeed, if the ordering of solutions is defined 

by cell-coordinates rather than by precise objective-scores, the tree will store a list of 

non-dominated objective-space cells.  As such, the worst-case cost of using a cell-

based Mak_Tree is only O(η log c) when η>0 deletions are required, or O(log c) 

otherwise (where c is the number of stored cells, and assuming cell sizes remain 

fixed).  As with the basic Mak_Tree (Section 6.4.1.2), the overall complexity of 

insertions into the cell-based tree reduces to O(log c) when amortised time analysis is 

used; again, this is a more faithful representation of practical performance. 

Extension of the cell-based Mak_Tree to incorporate a complete set of crowding 

scores is trivial — each cell need only maintain a count of the number of members 

stored.  Since a successfully inserted member will only belong to one cell63, and 

because the crowding update procedure can be performed in constant time (it is little 

more than an increment procedure), the extension of the cell-based Mak_Tree to 

allow crowding statistics comes at no cost to the overall complexity of the original 

technique. 

Using generic approaches means that such impressive performance is impossible — 

the storage and updating of density estimates can be achieved efficiently, but the 

same cannot be said of maintaining an unbounded list of non-dominated cells (the 

inefficiencies associated with maintaining individual solutions apply at the cell-level 

here).  As such, the Mak_Tree provides an excellent foundation for cell-based elite 

                                                 
63  Note that this precludes the use of overlapping cells. 
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archiving — but further efficacy and efficiency gains can be made when a modified 

form of the extended Mak_Tree is considered.   

8.3.2 ANNOTATING AND SELECTING CELLS 
When selecting the least or most crowded cell is beneficial, the Mak_Tree 

specialisation can be used to provide extremely efficient tree annotations.  Via a 

simplified form of the procedures described in Section 8.1.5.1, complete annotations 

can be maintained at a cost of only O(log c) per successful insertion.  Specifically, 

the cell annotation algorithm proceeds as follows: if an insertion results in a deletion, 

use the procedure described in Section 8.1.5.1.2 (though there is no need to consider 

neighbourhood effects); otherwise simply push changes up from the updated cell.   

With annotations in place, selection of cells based on crowding information can 

capitalise on the same hiding mechanic as described in Section 8.1.5.2 and will 

therefore carry an equivalent O(φ log c) cost. 

8.3.3 MERGING DENSITY PROCEDURES 
A potentially interesting, and largely unexplored, idea is to merge cell-based and 

distance-based density estimates in elite archives.  In principle, by capitalising on the 

localised cell-based approach and the wider-reaching neighbourhood technique, the 

impact of the bias/variance dilemma diminishes.  For instance, if the cell-based 

Mak_Tree is annotated with both cell-crowding scores and κ nearest-neighbour 

estimates (and assuming that the resolution and κ parameters are complementary64), 

the optimisation algorithm can balance localised and global density concerns by 

simply alternating the selection mechanism from one annotation to the other.  The 

corresponding incorporation of nearest-neighbour estimates and suitable annotations 

in the extended cell-based Mak_Tree will increase the overall performance cost to 

O(log c + κ) under the insertion of non-dominating solutions.  Under the insertion of 

dominating proposals, the cost increases to O(η(log c + κ)) when they dominate 

fewer than κ solutions and to O(η log n + κ2) otherwise.  Again, the more practical 

amortised time analysis reduces these costs to O(log c + κ) per insertion.   

                                                 
64  Ideally, the grid resolution should be fine and the k value large, though the exact settings are 

largely subject to the problem at hand.  Development of heuristics for determining trade-offs 
between the two parameters is an area of potential future work. 
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8.3.4   EMPIRICAL RESULTS AND DISCUSSION 
To examine the performance of the basic cell-based Mak_Tree and the fully-featured 

alternative that provides facilities for merged density estimation, both techniques are 

compared with the truncated (non-cell-based) batch-processed two-neighbour cuboid 

approach (the most efficient of the examined truncated techniques) across a rich set 

of test problems (as per the methodologies described in Sections 6.4.2.3, 8.1.4.4 and 

8.2.2).  The tested Mak_Trees feature non-overlapping square cells of side length b, 

with a range of b values investigated to elucidate the impact of cell sizing on 

performance.   

As evidenced in Figure 86, Figure 87 and Figure 88 and in Table 23, Table 24 and 

Table 25 (pages 223–226), across a range of b values the fully-featured cell-based 

Mak_Trees with merged density estimates achieve consistently faster run-times than 

even the simple truncated cuboid approach (excepting very early in the run, where 

the Mak_Trees remains highly competitive, but not noticeably superior).  This is an 

impressive result given that the fully-featured cell-based Mak_Trees are unbounded 

in size, maintain density estimates based on a relatively large neighbourhood size of 

twenty, and provide tree-spanning annotations for both cell- and neighbourhood-

derived statistics. 

Clearly, the fundamental reason for the increased efficiency seen in the cell-based 

approach is a reduction in the number of nodes that must be stored in the Mak_Tree.  

Consider Figure 89, Figure 90 and Figure 91 (pages 227–229) — even the relatively 

precise b = 0.0001 setting produces trees that require markedly fewer nodes than the 

original Mak_Tree.  The question must therefore be: does the loss of precision 

adversely affect the efficacy of the Mak_Tree?   
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Figure 86 — Average Cumulative Time Costs of Cell-Based Archiving Techniques and Precise 
Archiving Approaches (b = 0.001, κ = 20, φ = 50) 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average cumulative processing time in seconds.  Mak_CC refers to a complete cell-based 

Mak_Tree with crowding, κ nearest-neighbour estimates, annotations and selection.  Mak_Precise is 
the equivalent data structure with individuals used in place of cells.  Mak_Cell  is a base-line, with no 

extended features in the cell-based environment.  The Cub results refer to performance in a batch-
processed truncated archive of 50 using the two-neighbour cuboid method. 
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(d) AP-15 
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(f) AP-17 

Figure 87 — Average Cumulative Time Costs of Cell-Based Archiving Techniques and Precise 
Archiving Approaches (b = 0.001, κ = 20, φ = 50) 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average cumulative processing time in seconds.  Mak_CC refers to a complete cell-based 

Mak_Tree with crowding, κ nearest-neighbour estimates, annotations and selection.  Mak_Precise is 
the equivalent data structure with individuals used in place of cells.  Mak_Cell  is a base-line, with no 

extended features in the cell-based environment.  The Cub results refer to performance in a batch-
processed truncated archive of 50 using the two-neighbour cuboid method. 
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(e) AP-21 
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(f) F-1 

Figure 88 — Average Cumulative Time Costs of Cell-Based Archiving Techniques and Precise 
Archiving Approaches (b = 0.001, κ = 20, φ = 50) 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average cumulative processing time in seconds.  Mak_CC refers to a complete cell-based 

Mak_Tree with crowding, κ nearest-neighbour estimates, annotations and selection.  Mak_Precise is 
the equivalent data structure with individuals used in place of cells.  Mak_Cell  is a base-line, with no 

extended features in the cell-based environment.  The Cub results refer to performance in a batch-
processed truncated archive of 50 using the two-neighbour cuboid method. 

 

 

Table 23 — Empirical Performance of Cell-Based Mak_Trees and the Truncated Cuboid After 
10,000 NSGA-II Evaluations 

When b is zero, non-cell-based systems are used.  Results indicate the average time in seconds. 

 Mak Mak Mak Mak Mak Mak Mak Cuboid
 b = 0 

k = 20 
φ = 50 

b = 0.001
k = 0
φ = 0

b = 0.001
k = 20
φ = 50

b = 0.005
k = 0
φ = 0

b = 0.005
k = 20
φ = 50

b = 0.01 
k = 0 
φ = 0 

b = 0.01
k = 20
φ = 50

b = 0
k = 0

φ = 50

AP-1 0.24 0.09 0.13 0.07 0.12 0.07 0.11 0.16
AP-2 0.10 0.06 0.06 0.08 0.08 0.07 0.15 0.04
AP-3 0.22 0.08 0.14 0.06 0.12 0.08 0.10 0.17
AP-4 0.13 0.08 0.09 0.07 0.10 0.07 0.10 0.08
AP-5 0.13 0.07 0.11 0.08 0.10 0.07 0.11 0.07
AP-8 0.07 0.05 0.05 0.04 0.05 0.03 0.07 0.05
AP-9 0.08 0.04 0.07 0.05 0.06 0.04 0.06 0.07
AP-10 0.15 0.06 0.08 0.05 0.06 0.04 0.05 0.11
AP-15 0.25 0.09 0.17 0.10 0.16 0.08 0.14 0.14
AP-16 0.27 0.08 0.19 0.10 0.17 0.09 0.16 0.19
AP-17 0.30 0.09 0.20 0.09 0.18 0.08 0.15 0.20
AP-21 0.23 0.08 0.16 0.09 0.16 0.08 0.14 0.15
F-1 0.17 0.08 0.14 0.07 0.12 0.09 0.14 0.15
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Table 24 — Empirical Performance of Cell-Based Mak_Trees and the Truncated Cuboid After 
50,000 NSGA-II Evaluations 

When b is zero, non-cell-based systems are used.  Results indicate the average time in seconds. 

 Mak Mak Mak Mak Mak Mak Mak Cuboid 
 b = 0 

k = 20 
φ = 50 

b = 0.001 
k = 0 
φ = 0 

b = 0.001 
k = 20 
φ = 50 

b = 0.005
k = 0
φ = 0

b = 0.005
k = 20
φ = 50

b = 0.01
k = 0
φ = 0

b = 0.01 
k = 20 
φ = 50 

b = 0 
k = 0 

φ = 50 
AP-1 1.15 0.45 0.72 0.37 0.61 0.37 0.54 0.89 
AP-2 0.98 0.40 0.61 0.38 0.51 0.37 0.57 0.67 
AP-3 1.08 0.37 0.59 0.38 0.51 0.37 0.46 0.94 
AP-4 1.10 0.43 0.66 0.42 0.58 0.41 0.47 0.73 
AP-5 1.20 0.38 0.68 0.45 0.56 0.35 0.51 0.81 
AP-8 0.28 0.20 0.23 0.17 0.20 0.14 0.27 0.29 
AP-9 0.40 0.22 0.35 0.22 0.28 0.19 0.30 0.38 
AP-10 0.86 0.28 0.36 0.29 0.38 0.30 0.35 0.59 
AP-15 1.16 0.45 0.84 0.48 0.71 0.41 0.63 0.96 
AP-16 1.24 0.46 0.91 0.49 0.76 0.44 0.67 1.01 
AP-17 1.49 0.58 1.00 0.50 0.73 0.42 0.61 1.11 
AP-21 1.15 0.47 0.80 0.44 0.71 0.37 0.59 1.01 
F-1 0.75 0.40 0.64 0.42 0.61 0.47 0.60 0.74 

 

 

 

Table 25 — Empirical Performance of Cell-Based Mak_Trees and the Truncated Cuboid After 
150,000 NSGA-II Evaluations 

When b is zero, non-cell-based systems are used.  Results indicate the average time in seconds. 

 Mak Mak Mak Mak Mak Mak Mak Cuboid 
 b = 0 

k = 20 
φ = 50 

b = 0.001 
k = 0 
φ = 0 

b = 0.001 
k = 20 
φ = 50 

b = 0.005
k = 0
φ = 0

b = 0.005
k = 20
φ = 50

b = 0.01
k = 0
φ = 0

b = 0.01 
k = 20 
φ = 50 

b = 0 
k = 0 

φ = 50 
AP-1 3.90 1.49 2.22 1.44 1.77 1.31 1.71 2.58 
AP-2 3.70 1.39 1.99 1.25 1.62 1.18 1.63 2.37 
AP-3 3.70 1.19 1.71 1.17 1.53 1.11 1.30 2.72 
AP-4 4.22 1.46 2.04 1.39 1.80 1.35 1.66 2.44 
AP-5 5.15 1.43 2.29 1.48 1.66 1.35 1.78 2.76 
AP-8 0.81 0.50 0.65 0.52 0.63 0.47 0.70 0.94 
AP-9 1.12 0.71 1.01 0.69 0.86 0.66 0.85 1.13 
AP-10 2.65 0.88 1.17 0.91 1.05 0.85 1.00 1.80 
AP-15 2.95 1.45 2.25 1.41 1.95 1.32 1.68 3.01 
AP-16 3.39 1.41 2.44 1.44 1.99 1.32 1.78 3.29 
AP-17 4.36 1.69 2.60 1.52 2.05 1.32 1.84 3.40 
AP-21 2.93 1.39 2.24 1.33 1.90 1.26 1.71 3.14 
F-1 2.11 1.17 1.81 1.22 1.73 1.20 1.60 2.23 
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(a) AP-1 
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(b) AP-2 
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(c) AP-3 
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(d) AP-4 
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(e) AP-5 
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(f) AP-8 

Figure 89 — Average Number of Nodes Stored in Various Mak_Trees 
For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average number of nodes stored in a given Mak_Tree.  The highest node count is the Mak_Tree, 

the second highest is the cell-based Mak_Tree with b = 0.001, the third highest uses b = 0.005, and the 
lowest features b = 0.01. 
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(a) AP-9 
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(b) AP-10 

0

500

1000

1500

2000

2500

0
12

50
0
25

00
0
37

50
0
50

00
0
62

50
0
75

00
0
87

50
0

10
00

00

11
25

00

12
50

00

13
75

00

15
00

00

 
(d) AP-15 
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(e) AP-16 

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0
12

50
0
25

00
0
37

50
0
50

00
0
62

50
0
75

00
0
87

50
0

10
00

00

11
25

00

12
50

00

13
75

00

15
00

00

 
(f) AP-17 

Figure 90 — Average Number of Nodes Stored in Various Mak_Trees 
For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average number of nodes stored in a given Mak_Tree.  The highest node count is the Mak_Tree, 

the second highest is the cell-based Mak_Tree with b = 0.001, the third highest uses b = 0.005, and the 
lowest uses b = 0.01. 
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(a) AP-21 
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(b) F-1 

Figure 91 — Average Number of Nodes Stored in Various Mak_Trees 
For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 

the average number of nodes stored in a given Mak_Tree.  The highest final node count is the 
Mak_Tree, the second highest is the cell-based Mak_Tree with b = 0.001, the third highest uses b = 

0.005, and the lowest uses b = 0.01. 
 

8.3.5 LIMITATIONS IN THE CELL-BASED APPROACH 
In practice, cell-based archiving is similar to, and subject to many of the same 

deficiencies as, the ε-dominance approach explored by Laumanns et al. [98].  In 

particular, the use of cell-based dominance in the construction and maintenance of an 

elite set is prone to both permitting the inclusion of weak solutions and excluding 

preferable proposals.  Consider Figure 92: solution a dominates b, but since they 

both reside in the same non-dominated cell they will both be included as members of 

the elite set.  Additionally, the shaded region represents a dominated cell whose 
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Figure 92 — An Example of the Limitations of Cell-Based Mak_Trees 

Points residing in non-shaded cells are members of the non-dominated front according to cell-based 
elite archiving.  Points in shaded cells are not included in the front. 
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constituents must be rejected, despite the fact that each constituent is a non-

dominated proposal.    

To illustrate the potential for poor performance in practice, the total number of stored 

solutions (this time including replicated solutions) in a precise unbounded Mak_Tree 

was compared with the number of proposals stored in cell-based Mak_Trees of 

differing granularity across a rich test suite (see Section 6.4.2 for an outline of how 

the proposals were generated by NSGA-II).  As illustrated in Figure 93, Figure 94 

and Figure 95 (pages 231–233), the cell-based archive has poor fidelity with the true 

elite unbounded set, with results indicating both the inclusion of weak solutions (see 

AP-1, AP-2, AP-5, AP-8, AP-9 and AP-10, in particular) and the exclusion of strong 

proposals (as best illustrated in AP-3, AP-4 and AP-16).   
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(b) AP-2 

0

1000

2000

3000

4000

5000

6000

0
12

50
0
25

00
0
37

50
0
50

00
0
62

50
0
75

00
0
87

50
0

10
00

00

11
25

00

12
50

00

13
75

00

15
00

00

b=0

b=0.001

b=0.01

 
(c) AP-3 
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(d) AP-4 
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(e) AP-5 
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(f) AP-8 

Figure 93 — Average Number of Solutions Stored in Various Mak_Trees 
b is the size of the cell; when b=0, non-cell-based Mak_Trees are used. 
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(a) AP-9 
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(b) AP-10 
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(d) AP-15 
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(e) AP-16 
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(f) AP-17 

Figure 94 — Average Number of Solutions Stored in Various Mak_Trees 
b is the size of the cell; when b=0, non-cell-based Mak_Trees are used. 
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(a) AP-21 

0

200

400

600

800

1000

1200

0
12

50
0
25

00
0
37

50
0
50

00
0
62

50
0
75

00
0
87

50
0

10
00

00

11
25

00

12
50

00

13
75

00

15
00

00

b=0b=0.001

b=0.01

 
(b) F-1 

Figure 95 — Average Number of Solutions Stored in Various Mak_Trees 
b is the size of the cell; when b=0, non-cell-based Mak_Trees are used. 

The consequence of such results is that an archive constructed with cells can offer no 

guarantee as to the quality of its members — as an elite store around which an entire 

optimisation algorithm can be built, it is therefore of debatable value.  This work 

therefore proposes that the cell-based Mak_Tree outlined in Section 8.3.1 should 

only be used when the efficiency of the data structure is of primary concern.  When 

accuracy is of greater import, this thesis recommends the use of two tree data 

structures. 

8.3.6 AN ACCURATE CELL-BASED APPROACH 
Recall that a basic Mak_Tree guarantees that its constituents are non-dominated with 

respect to every solution presented thus far.  With this in mind, the cell-based 

Mak_Tree should satisfy a similar constraint, lest it become prone to the 

degenerative behaviours familiar to truncated techniques.  Unfortunately, the simple 

approach formed in Section 8.3.1 — efficient thought it might be — cannot claim 

such efficacy.  A simple approach that rectifies this deficiency is to capitalise on two 

data structures: one to ensure the non-dominance of members and another to 

maintain cell-based crowding information. 

In this case, the basic Mak_Tree is extended such that nodes contain individuals (as 

per Section 6.3) and a link to the objective-space cell that houses them.  Cells are 

stored in a simple binary tree ordered by an arbitrarily chosen objective-space 

coordinate, with crowding annotations included if cell-based selection is necessary.  

Depending on intended usage, each cell can contain the housed solutions, a reference 
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to the solutions or simply a count.  Deletion from the simple cell-tree occurs only 

when all solutions residing in a cell have been removed.  Interestingly, if merged 

density approximations are required — with κ nearest-neighbours estimates between 

individuals and cell crowding to be employed — the only required structural change 

is the replacement of the basic Mak_Tree with the extended technique. 

Though it seems reasonable to assume that the use of two data structures would 

severely inhibit the overall performance of the unbounded archive, the computational 

burden is surprisingly low.  As with the previous complexity studies reported in this 

thesis, it is best to decompose performance into a number of distinct cases — 

namely, insertion of dominated, non-dominating and dominating solutions. 

Under the insertion of a dominated solution, the complexity is derived entirely from 

the underlying Mak_Tree structure.  Since a dominated solution will be identified 

during standard navigation of the Mak_Tree, the cost of rejecting a dominated 

solution is only O(log n). 

When inserting a non-dominating, yet non-dominated, individual, both the Mak_Tree 

and the simple cell-tree must be explored, incurring a cost of O(log n + log c) (where 

c is the number of stored cells).  Since the worst possible configuration of cells in 

this case is for each individual to belong to precisely one cell, the worst-case cost is 

O(log n + log n) = O(log n).  Cell-based annotations, at worst, increase this 

complexity to O(log n + 2log n) = O(log n).  If κ nearest-neighbours estimations and 

annotations are also required, the total complexity overhead of inserting non-

dominated non-dominating solutions will rest at O(log n + κ). 

The insertion of a dominating proposal will require the deletion of η members from 

the Mak_Tree, the removal of ηci individuals from cells and the extraction of up to 

ηcc cells themselves, leading to a computational overhead of O(η log n + ηci + ηcc log 

c) when crowding estimations and annotations are not considered.  The worst-case 

deletion is when each dominated individual results in the loss of a cell, leading to a 

run-time complexity of O(η log n + η + η log c).  Since, c ≥ η and c ≤ n, the worst-

case arrangement of cells is again when each individual is stored in a single cell, 

leading to O(η log n + η + η log n) = O(η log n).  When cell-based crowding and 

annotations are to be included, pushing annotation updates from each cell carries an 
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additional O(ηcc log c) cost, that results in a worst-case of O(η log n + η + 2η log n) = 

O(η log n).  If κ nearest-neighbours scores and annotations are required, the total 

worst-case complexity for the insertion of dominating proposals is O(η log n + κ2) 

when κ < η and O(η log n + ηκ) otherwise.  Following the same methodology as 

described in Section 8.2, the amortised cost of this procedure reduces to O(log n + κ). 

Thus, the addition of a data structure for the maintenance of cell-based density 

information does not affect the big-oh performance complexity of the fully-featured 

Mak_Tree.  The resulting hybrid methodology, which enables merged crowding 

estimation without the potential frontal degradation, is an interesting technique in 

addressing the bias/variance dilemma and rests as an avenue for future investigation. 

8.4 CONCLUSIONS 
While the basic Mak_Tree illustrated impressive performance with respect to the 

maintenance of a truly unbounded bi-objective set, it lacked many of the features 

necessary for use in a practical contemporary multiobjective optimiser.  In particular, 

there was no provision for efficient unbounded frontal density analysis and no 

mechanism for selection.  The extended Mak_Tree addresses these limitations by 

offering facilities for density estimation based on κ nearest-neighbours, cuboid and 

cell-based estimates, with a unique annotation system enabling periodic selection.  

Theoretical and empirical evidence suggests that the extended Mak_Tree delivers 

this additional functionality in an extremely efficient way — carrying at most an 

additional O(κ) cost per insertion under amortised time analysis and frequently 

outperforming even heavily truncated (n = 50) archiving techniques in empirical 

studies.  By providing a system that matches the needs of modern algorithm 

designers, avoids the dangers of truncation and achieves impressively fast results, the 

extended Mak_Tree should make unbounded bi-objective archiving a practical 

reality. 
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9 LIBERATING BOUNDED OPTIMISERS 
Although preceding chapters have established the advantages of using the specialist 

Mak_Tree for unbounded bi-objective archiving, there remain questions as to how 

the approach can be successfully integrated into evolutionary algorithms and whether 

such integration yields suitably impressive results to make the effort worthwhile.  

Thus, in this chapter, the Mak_Tree is incorporated into a diverse range of popular 

and contemporary generalist multiobjective evolutionary algorithms with a view to 

establishing the practical advantages that unbounded archiving and bi-objective 

specialisation can yield.  By using the Mak_Tree in a variety of roles — from simple 

reference set to active population — the chapter can also be used as a primer for 

researchers looking to integrate the unbounded techniques into their own algorithms.   

9.1 PERFORMANCE ANALYSIS 

Before examining the performance of Mak_Tree powered evolutionary algorithms, it 

is necessary to first determine precisely how that performance is to be measured.  

Perhaps surprisingly, this is an inherently difficult proposition. 

As suggested in Section 7.1, performance analysis in a multiobjective environment is 

complex because the multiobjective optimiser is itself endeavouring to satisfy 

multiple, potentially conflicting, goals [92] — specifically, the derived front should 

be accurate (near to the Pareto optimal front), diverse and well-spread.  But how does 

an accurate, though poorly spread, front compare with a diverse, inaccurate result 

set?  If two fronts are equally accurate, but one has wide reaching extent while the 

other is evenly distributed, which is preferable?  Until recently, such questions 

remained largely unaddressed.   

Early studies (such as [2, 88, 142, 182, 215]) generally featured simple graphical 

representations of frontal sets (often little more than a plotting of the members of the 

final population) coupled with rudimentary support in the form of metrics designed 

to elucidate the extent, cardinality, diversity and/or accuracy of the prevailing front.  

The problem with this approach to analysis is two-fold: interpretation of such basic 

visual output is potentially biased, bereft of statistical rigour and difficult to assess in 
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all but clear-cut cases of superiority65; and the basic numerical performance metrics 

are potentially misleading and prone to inconclusive results.  In particular, unless all 

measures point to a single algorithm, it is difficult to indicate the preferable system in 

an unbiased manner and, more significantly, even if all tests suggest a preferable 

algorithm on a given function, there is no guarantee that such a result is correct.  For 

instance, the output of two optimisers could be analysed with the cardinality-based 

ONVG (Overall Non-dominated Vector Generation) measure [216], the accuracy 

based generational distance metric [216] and the distribution indicator proposed by 

Deb [217], and have the weakly dominated front declared the unanimous winner in a 

comparative case study (Knowles et al [218] illustrate that such worrying variations 

are true even in non-pathological cases).  Clearly, such an outcome is inherently 

flawed — the preferability of dominating fronts rests as a foundation of 

contemporary multiobjective optimisation thought.  As recognised by Knowles et al. 

[218, 219], the key to successful performance metrics therefore lies not in 

highlighting the individual aspects of given fronts, as was fast becoming the de facto 

standard, but in producing comparative measures which are compatible with the 

Pareto dominance relation. 

Since the overwhelming majority of diversity, cardinality and spread measures fail 

the Pareto compliance test, the implication is that combinatorial metrics, which seek 

to produce a single output based on the multi-faceted Pareto front, loom as the most 

likely candidates for successful performance analysis.  Contemporary research 

supports this claim — hypervolume [137], epsilon [100] and the R2 and R3 [186] 

metrics are all Pareto compliant and are gaining increasing recognition in the 

literature (see, for instance, [91, 145, 218-221]).  Still, the approaches are not without 

their limitations.  In particular, combinatorial metrics typically feature some form of 

implicit bias — the effect of which is often difficult to gauge.  However, given a 

suitable collection of combinatorial metrics used in league with other analysis 

techniques, the effects of such bias are likely to be minimised and the metrics rest as 

the current best available option.  A more pressing concern then, is how best to use 

these performance indices. 

                                                 
65  As will be explored later, attainment surfaces and frequency matrices illustrate that it is possible to 

have meaningful visualisations in a multiobjective context — but even these should play no more 
than a supplemental role in performance analysis. 
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While there can be little doubt that Knowles et al. [218, 219] (and Hansen and 

Jaszkiewicz [186] before them) were fundamental in moving the field towards the 

acceptance of better (Pareto-compliant) performance metrics, their impressive work, 

and the work it clearly inspired (such as [91] and [145]), inadvertently and indirectly 

perpetuates a standard in multiobjective optimisation that is rarely questioned (save 

for the interesting work by Deb and Jain [103] and Laumanns et al. [102]) — 

namely, that performance is best gauged at a single point in the run ([81, 86, 137, 

142, 143, 200, 222, 223] are a small sample of the many works that display this 

trend).  The truth, of course, is that this is patently incorrect — simple, non-

pathological cases such as the one illustrated in Figure 96 show that results can be 

fundamentally altered depending on where the optimiser output is sampled (A is the 

better optimiser early in the run; B is preferable later — perhaps because it is 

superior at distributing solutions along the Pareto front).  By sacrificing analysis at 

multiple points in the run, conventional studies are not only producing potentially 

misleading results, but they are missing an opportunity to extract possibly interesting 

observations about the development of a run, which may shed light on both the 

nature of the problem and the optimiser.  As a consequence, this thesis capitalises on 

Pareto compliant metrics that illustrate the performance of each optimiser at periodic 

intervals, with attainment-based visualisation techniques used to supplement these 

results where appropriate.    
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Figure 96 — An Example Run-Time Performance Analysis 

Note that the relative performance of Algorithm A and Algorithm B varies depending on which point 
in the run the results are compared.  
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9.1.1 SELECTED PERFORMANCE METRICS 
With the motivation for performance measure selection now in place, it is necessary 

to further explore the specific approaches chosen — namely, the hypervolume (IH-) 

[137], epsilon (Iε+) [100], attainment surface [224] and frequency matrix metrics66.   

9.1.1.1 THE HYPERVOLUME INDICATOR 
Given a point r which is dominated by all members of a frontal set S, it is possible to 

calculate the hypervolume (IH) of space that is dominated by members of S, but not 

dominated by or incomparable with r (see Figure 97 for an illustration).  With respect 

to performance, if S is the prevailing front of an optimiser, the larger the resultant 

hypervolume, the better the algorithm has performed.  However, it would be 

convenient if the hypervolume was tending towards some fixed optimal value (say, 

zero), so that its proximity to “ideal” performance could be gauged.  If an optimal 

reference set W is known, then this relative hypervolume measure (IH-) can be given 

as:  

- H HH
I ( ) I ( ) I ( )= −S W S  (80) 

 

For the purposes of this work, the reference set W is produced from multiple long 

runs using a rich set of optimisers (including, but not limited to the optimisers and  
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Figure 97 — An Example Hypervolume 

The shaded area, bounded by the prevailing front (S) and the reference point r, represents the region 
from which the hypervolume is derived. 

                                                 
66  In the interests of brevity and due to time constraints, the R2 and R3 metrics were not employed in 

this study.  An important area of future work lies in the investigation of performance under such 
measures. 



Chapter 9 — Liberating Bounded Optimisers 

- 241 - 

 

runs used for the analyses of this thesis) such that W contains no members that are 

dominated by any proposal in the set S.  The reference point r is derived from the 

same set of runs and is the composite of the worst (highest) value for objective one 

and the worst value for objective two — in this case, there is no member of any set S 

that does not dominate r.   

Researchers looking to use the same data for comparative purposes are invited to 

contact the author of this work via e-mail at Adam.Berry@utas.edu.au. 

9.1.1.2 THE ADDITIVE EPSILON INDICATOR 
The unary additive epsilon performance metric indicates the minimum offset value ε 

that must be applied to all points in reference set W to make W weakly dominated by 

frontal set S: 

( )
( )( )

min{ , : }

where {1,..., }
ε

ε

ε

ε β

∈ ∃ ∈ ∀ ∈

= ≤ + ∀ ∈

≺

≺ a a

s S s w w W

s w s w a
 (81) 

As with the hypervolume measure, this thesis uses W as a goal set for a particular test 

problem (derived as in Section 9.1.1.2), and S as the output of a given optimiser.  

Thus, the explicit goal of an optimiser in this context is to minimise the value of ε 

over the course of a run.    

9.1.1.3 50% ATTAINMENT SURFACES 
Given a collection of output fronts C taken from |C| distinct optimiser runs at an 

identical evaluation point e, the 50% attainment surface represents the median 

attained optimal front over those |C| runs after e evaluations.  That is, the 50% 

attainment surface illustrates the region of objective-space that is at least weakly 

dominated by the prevailing optimal front on at least 50% of the runs (see Figure 98).   

As with most visual measures, attainment surfaces are at their most powerful when 

there is a clearly discernable difference between the produced fronts.  In these 

instances, the pair-wise comparisons can elucidate differences in the median 

distribution, extent and accuracy of produced fronts, and act as an important 

supplement to the numerical findings illustrated by epsilon and hypervolume  
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Figure 98 — An Example 50% Attainment Surface 
The dark line represents the attainment surface for this example — it describes the median optimal 

front produced by the optimiser over a number of distinct runs. 

 

indicators.  However, the 50% attainment surface is narrow in focus and provides 

little insight into the behaviour of an algorithm leading up to convergence on an 

optimal front.  A visual approach that is better suited to this task is the frequency 

matrix.   

9.1.1.4 FREQUENCY MATRICES 
Frequency matrices illustrate the regularity with which a given optimiser achieves 

particular regions of the objective-space across multiple runs.  Obviously there are a 

number of ways to derive this information, but for the purposes of this thesis the 

results are reliant on the sub-division of the objective-space into a static grid G (the 

dimensions of which are defined in Appendix F.2).  Each cell in G simply represents 

a frequency based on the number of runs in which the corresponding objective-space 

region was achieved: 

runsOccupied( ), ( )∀ ∈ = cc G frequency c
totalRuns

 (82) 

 

with colour coding of these values employed to produce a more accessible spectral 

graph (see Figure 99 for an example and Section 5.2.1 for a more detailed 

description). 
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Figure 99 - An Example Frequency Matrix 
(a), (b) and (c) represent independent runs; (d) represents the frequencies of attaining each objective-

space cell; (e) is a spectral representation of the frequency matrix in (d). 

 

For pair-wise comparisons, simple matrix-subtraction is applied, such that the 

frequency matrix formed by the first optimiser is subtracted from that which is  

formed by the second.  In this case, positive values reflect regions that were more 

frequently found by optimiser one, while negative values suggest areas that were 

more often identified by optimiser two.  Again, colour coding can emphasise these 

differences in a graphical form (for this chapter, positive values are assigned a red 

palette, while negative values are assigned a blue palette). 

The key to the power of frequency matrices is that they are capable of illustrating 

trends in algorithmic performance — not just along the optimal front, but throughout 

the course of a run.  As such, the resultant graphs can give visual clues as to search 

bias, convergence points and inefficiencies.  Moreover, the graphs provide insight 

into the nature of the problem at hand — indicating such important factors as 

deceptive regions (and their strength), false fronts and isolated portions of objective-

space.  Clearly, it is difficult to achieve such results in anything other than a visual 

analysis and this capacity alone renders frequency matrices an important component 

of any bi-objective comparative study.  

9.1.2 METHODOLOGY 
With the selected performance measures in place it is necessary to now explore how 

they are to be used in the context of this thesis, particularly with respect to the data 

being analysed and the way in which results are to be expressed. 
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9.1.2.1 DATA ACQUISITION 
A total of sixty independent runs per optimiser are performed for each test function, 

with data sampled at regular intervals of one thousand evaluations until termination 

occurs.  The termination point itself is arbitrarily chosen, but is never less than seven 

thousand evaluations and should be sufficient to explore the behaviour of each 

optimiser (as will become obvious in subsequent sections).  All optimisers use the 

mutation scheme described in Appendix B.2 and, where necessary, Simulated Binary 

Crossover (SBX [225]).     

To enable statistical analysis, the first twenty results are used exclusively for 

hypervolume performance analysis, the second twenty are sourced for frequency 

matrices and the corresponding attainment surfaces, and the final set of results are 

used with epsilon metrics.  Without such a division, Bonferroni corrections (at least) 

would be required when exploring multiple statistical inferences, which can severely 

weaken the validity of any rigorous study (for more details on the behaviour of 

multiple inferences under a single sample set, the interested reader is directed to 

Knowles et al. [218]).   

The selected test functions are extracted from the AP test suite and offer a disparate 

set of problem features.  Since not all of the basic evolutionary algorithms under 

consideration in this section are expressly designed to address the unique properties 

of noise, dynamic problem spaces and side-constraints, AP-1,2,3,4,5,15,16,17 and 21 

are selected67.  These nine functions alone are sufficient to test the performance of 

the evolutionary algorithms under the presence of concave, convex, mixed-shape and 

disconnected optimal fronts, deception, isolation, multi-frontality, zero-utility 

gradients and non-separability.  The results should therefore be indicative of 

optimiser use across a far-reaching set of potential domains.     

9.1.2.2 OUTPUT REPRESENTATION 
First order analysis of the hypervolume scores for a given set of evolutionary 

algorithms is provided on a per-function basis, with line graphs illustrating the 

average cumulative performance of each algorithm at 1000 evaluation intervals.  The 

same methodology is applied in the production of averaged epislon graphs.  These 

                                                 
67  Note that AP-14 would be a valid addition to this collection.  A minor error in its original 

implementation is the primary reason for its exclusion here. 
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online performance analyses depict the progression of given optimisers on each 

problem and can elucidate both pre- and post-frontal-convergence performance. 

First and second order analyses of hypervolume and epsilon scores are provided by 

simplified box-plots68 at specific evaluation points (7,000 evaluations for AP-5; 

10,000 evaluations for all other functions).  Importantly, such a representation 

succinctly describes both the variability and quality of results with respect to the 

chosen performance indicator at a given point in time and is well matched with the 

non-parametric Kruskal-Wallis-based [202, 203] significance tests used in this and 

all subsequent chapters.    

Note that the complete set of two-tailed pair-wise Kruskal-Wallis tests (produced via 

the assessor package provided in the PISA suite [204, 205]) for hypervolume and 

epsilon metrics are provided in Appendix E, with each section of results offering 

relevant portions of these tables to maximise clarity.  Whenever a pair-wise statistical 

comparison returns a result (p-value) of less than 0.05, the difference in end-of-run 

performance is considered significant (at the 5% level).        

Attainment graphs and frequency matrices provide pair-wise performance 

comparisons when required and are intended as a supplement to the epsilon and 

hypervolume measures.  In general, visually interpreting multiple (>2) algorithms 

with either of these approaches is difficult and of limited value69, so both visual 

analysis techniques are used primarily in paired scenarios.   

9.2 MAK_TREE INTEGRATION 
In principle, the application of unbounded bi-objective archiving in place of existing 

truncated variations should yield improved crowding estimation (Section 6.2.1.3), 

reduce the potential for frontal degradation (Section 6.2.1.1 and Section 6.2.1.2) and 

offer a platform for the accurate determination of solution dominance.  However, the 

question remains as to whether such improvements carry a real practical effect and 

whether existing generalist algorithms can benefit from the specialisation process.  

As such, a diverse set of both contemporary and popular evolutionary algorithms are 

extended, tested and analysed — with a view to establishing the impact of Mak_Tree 

                                                 
68  The simplified box plots used in this study feature true minimum and maximum values, without 

filtering of outliers.   
69  Unless there are marked differences between all tested algorithms, which is typically unlikely. 



Escaping the Bounds of Generality — Unbounded Bi-Objective Optimisation 

 

- 246 - 

integration and to offer prototypical methodologies for harnessing unbounded 

archives in a variety of distinct ways (including simple replacement, passive 

referencing and hybridisation).  In particular, PAES [79], PESA [136], NSGA-II 

[144] and SPEA2 [81] are each compared with an equivalent unbounded Mak_Tree 

variation to emphasise points of improvement and differentiation.  If improvement 

can be seen across these varied algorithmic techniques, it can be taken as a strong 

indicator of the power that the Mak_Tree can impart. 

9.2.1 THE PARETO ARCHIVED EVOLUTIONARY ALGORITHM 
Since PAES [79] was expressly designed to be “the simplest possible non-trivial 

[multiobjective] evolutionary algorithm” available [143] and was amongst the first 

wave of techniques to weave a truncated archive into the evolutionary process, it 

represents an ideal starting point for Mak_Tree integration and bi-objective 

specialisation.  Since the effectiveness of the PAES algorithm is so heavily 

predicated on the successful use of its archived population (as will be seen in the 

following section), the benefits (and potential disadvantages) of Mak_Tree 

replacement should be clearly identifiable. 

9.2.1.1 DESCRIBING THE PAES ALGORITHM 
At its core, PAES is little more than a basic hill-climbing algorithm (see Algorithm 

17) — employing a simple (1+1) Evolutionary Strategy (ES).  That is, the 

evolutionary algorithm simply picks the better of the parent and its child as the 

parent for the next generation, with basic asexual reproduction ensuring ongoing 

exploration.  The complexity of the approach therefore comes from the way in which 

the “better” relation is defined.  Clearly, a dominant agent is preferable over a 

dominated agent, but in the case of incomparability the pair-wise comparison is more 

difficult to resolve.  For PAES, the key to addressing this problem is the use of a 

truncated archive and corresponding objective-space grid.  Since the archive contains 

an approximation of the prevailing optimal front, locally incomparable solutions can 

be contrasted with frontal members to determine which is the preferable choice with 

respect to a larger population.  As such, a candidate that is dominated by some 

member of the archive is always rejected, since it is not furthering the cause of the 

greater population.  In the alternative case, where both candidates have membership 
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in the prevailing front, the solution that resides in the least-occupied objective-space 

cell is granted the right to breed. 

Algorithm 17 — The Basic PAES Algorithm 

19: : generateRandomSolution()primary =  Start the search at a random location. 
20: while (terminationConditionMet() true)≠   
21:  : asexualReproduction( )child primary=  Generate the child solution. 
22:  if ( )child primary≺  If the child dominates the current 
23:   updateArchive( )child  solution, update the archive,  
24:   updateGrid( )child  update the grid and  
25:   :primary child=  set the child as the new primary solution. 
26:  else if ( )primary child∼  If the child is incomparable with the 
27:   if ( : )x x child/∃ ∈ ≺Archive  current solution and is not dominated by 
28:    updateArchive( )child  the archival members, update the archive 
29:    updateGrid( )child  and the grid. 
30:    ( )if .crowd( )  .crowd( )child primary≤grid grid  Make the least crowded of the two  
31:     :primary child=  solutions the new primary solution. 

 

PAES archival truncation is also a relatively simple process.  When a membership 

threshold level is exceeded, the maintenance procedure requires the removal of a 

solution residing the most densely occupied objective-space cell, thus ensuring a 

more evenly distributed set of solutions against which comparisons can be made.  

Clearly, the approach is subject to the same concerns as raised in Section 6.2.1.3 and 

Section 8.1.1.2 (namely, inaccuracies in crowding estimation and sensitivity to grid 

resolution).  Subsequent results will verify whether such concerns are merited. 

9.2.1.2 INTEGRATING THE MAK_TREE INTO PAES 
Integration of the specialist unbounded archive into PAES is trivial: the only 

requisite change is the replacement of the truncated archive with the basic Mak_Tree.  

Note that it may be tempting to assume that some form of wholesale change is 

necessary with respect to the grid as well, but the structure can remain precisely as it 

is defined by Knowles and Corne [79] — its use and purpose are unaffected by the 

cardinality of the archival set. 

9.2.1.3 EMPIRICAL ANALYSIS METHODOLOGY 
The extended PAES algorithm (henceforth referred to as Mak_PAES, for 

convenience) is compared with the basic PAES approach (with a truncated archive of 

fifty members) via the methodology described in Section 9.1.2.  Both algorithms use 



Escaping the Bounds of Generality — Unbounded Bi-Objective Optimisation 

 

- 248 - 

random initial solutions, asexual reproduction with a mutation rate of 1/m and an 

adaptive grid comprised of 10,000 distinct cells.  For aesthetic reasons, all related 

graphs and tables are provided at the completion of this subsection (see pages 250–

260). 

9.2.1.4 EMPIRICAL ANALYSIS 
Given the simplicity of the extension, the results are impressive.  With respect to the 

progressive (averaged) hypervolume metric (Figure 100 and Figure 101), the 

unbounded PAES algorithm is preferable during the latter portions of the run on 

every tested function except AP-4.  The end-of-run box-plots (Figure 102) support 

this claim, with the median hypervolume performance being always preferable to the 

basic PAES technique, while also featuring superior (lower-lying) inter-quartile 

ranges in all tested functions bar AP-4.  With respect to statistical significance (Table 

26), the end-of-run Mak_PAES hypervolume results are never inferior, and they are 

preferable in the AP-1, AP-2, AP-3 and AP-5 functions in particular70. 

Similarly encouraging results are reported in the epsilon-based analyses.  In 

particular, the MAK_PAES algorithm is never significantly inferior and is 

significantly better on the AP-2 function when considering end-of-run performance 

(Figure 105 and Table 27).  Additionally, the progressive (Figure 103 and Figure 

104) and box-plot (Figure 105) results again indicate a general performance 

improvement during the later evaluations for the Mak_PAES alternative, though AP-

15 show a bias towards the original PAES technique.  Note that these results lead to 

an interesting outcome: Mak_PAES is superior on AP-15 under the hypervolume 

metric, but inferior when an epsilon indicator is applied; similarly, the basic PAES 

technique is both inferior (epsilon) and superior (hypervolume) when addressing the 

AP-4 function.  This disagreement between performance indicators illustrates the 

importance of multi-metric testing and suggests an inconclusive result on the 

corresponding functions71. 

                                                 
70  For brevity, when statistical tests return a significant difference in the distribution of indicator 

scores between a pair of algorithms and the box-plots illustrate superior performance in one of the 
two systems, the better performing algorithm is referred to as significantly better than its opponent 
for the corresponding test function under the given indicator.  

71  If function performance was significantly better according to one metric and significantly worse 
according to another, the results would be conclusive — the produced fronts, in this case, are 
incomparable [218].    
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Considering the visual analyses, the Mak_PAES attainment surfaces (Figure 108 and 

Figure 109) are clearly preferable with respect to both accuracy and distribution on 

AP-4, AP-15, AP-16, AP-17 and AP-21.  Regarding frequency matrices (Figure 106 

and Figure 107), the unbounded PAES technique achieves impressive fronts on a 

more consistent basis for the AP-2, AP-4, AP-5, AP-15, AP-16, AP-17 and AP-21 test 

functions in particular, with statistically significant differences seen in AP-4, AP-15 

and AP-17.  There are no test functions in which the PAES algorithm produces 

significantly better frequency performances.   

Thus, under at least one indicator, the end-of-run performance of the Mak_PAES 

algorithm is significantly better than the basic PAES approach on AP-1, AP-2, AP-3, 

AP-4, AP-5, AP-15 and AP-17 — that is, on seven of the nine selected test functions.  

Across all statistical analyses, there are no occasions where a significant difference 

infers superior end-of-run performance for the original, truncated, technique.  The 

reason for such a marked difference in performance is related to a lack of fidelity 

between the goals of the PAES algorithm and empirical reality.  At its core, PAES is 

a hill-climber where the gradient is (hierarchically) defined firstly by a pair-wise 

dominance comparison, secondly by membership in the prevailing front and finally 

by a crowding measure.  A failure to correctly express any of these factors and the 

intended gradient by which the search is governed is irrevocably changed.  While the 

pair-wise dominance comparison is correct, the representation of the prevailing front 

and occupied-space is prone (and, in the case of this study at least, subject) to errors 

caused by the truncation process.  Since the archive is open to degradation (as 

discussed in Section 6.2.1.1), non-elite solutions can become the primary (parent) 

solution in the evolutionary process.  Similarly, inaccuracies in truncated crowding 

(see section 6.2.1.3) mean that there is no guarantee that the selected solution resides 

in a valuable region of objective-space.  By using a complete set of elite solutions, 

the Mak_PAES algorithm ensures that only members of the prevailing front can 

become the primary solution, while the unbounded grid ensures that the crowding 

scores offer an accurate reflection of the space occupied by the front.  The results 

illustrate the primacy of such notions to the PAES algorithm and the potential for 

unbounded archiving to improve the results (with no marked increase in complexity) 

of this base-line algorithm. 
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(d) AP-4 
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Figure 100 — Progressive Hypervolume Averages 
PAES: Blue; Mak_PAES: Red.  y-axis is the average hypervolume performance; x-axis represents the 

number of evaluations executed by each optimiser. 
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Figure 101 — Progressive Hypervolume Averages 
PAES: Blue; Mak_PAES: Red.  y-axis is the average hypervolume performance; x-axis represents the 

number of evaluations executed by each optimiser. 
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(h) AP-17 

0
0.2

0.4
0.6

0.8
1

1.2

1.4
1.6

1.8
2

M
ak

_P
AE

S

PA
ES

 
(i) AP-21 

Figure 102 — End-of-Run Hypervolume Box-Plots 
y-axis is the hypervolume performance at the end of the run (7,000 evaluations in AP-5, 10,000 

evaluations in all remaining functions); x-axis indicates the selected optimiser. 
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Figure 103 — Progressive Epsilon Averages 
PAES: Blue; Mak_PAES: Red.  y-axis is the average epsilon performance; x-axis represents the 

number of evaluations executed by each optimiser.
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Figure 104 — Progressive Epsilon Averages 
PAES: Blue; Mak_PAES: Red.  y-axis is the average epsilon performance; x-axis represents the 

number of evaluations executed by each optimiser. 
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Figure 105 — End-of-Run Epsilon Box-Plots 
y-axis is the epsilon performance at the end of the run (7,000 evaluations in AP-5, 10,000 evaluations 

in all remaining functions); x-axis indicates the selected optimiser. 
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Table 26 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Hypervolume Results 
Bold italics indicate significant differences at the 5% level. 

 Hypervolume 
AP-1 4.283E-02 

AP-2 1.591E-05 

AP-3 9.485E-04 

AP-4 8.666E-01 

AP-5 2.156E-05 

AP-15 2.216E-01 

AP-16 1.531E-01 

AP-17 3.009E-01 

AP-21 3.359E-01 

 
 
 

Table 27 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Epsilon Results 
Bold italics indicate significant differences at the 5% level. 

 Epsilon 
AP-1 8.527E-02 

AP-2 2.122E-03 

AP-3 7.469E-01 

AP-4 2.613E-01 

AP-5 1.085E-01 

AP-15 8.352E-01 

AP-16 3.782E-01 

AP-17 5.501E-01 

AP-21 3.864E-01 

 



Chapter 9 — Liberating Bounded Optimisers 

- 257 - 

 

1 100 199
S1

S12

S23

S34

S45

S56

S67

S78

S89

S100

1 100 199
S1

S12

S23

S34

S45

S56

S67

S78

S89

S100

 

1 100 199
S1

S12

S23

S34

S45

S56

S67

S78

S89

S100

1 100 199
S1

S12

S23

S34

S45

S56

S67

S78

S89

S100

 

1 100 199
S1

S12

S23

S34

S45

S56

S67

S78

S89

S100

        . 

      . 
Figure 106 — End-of-Run Frequency Matrices 

(i) Frequency matrix for Mak_PAES.  (ii) The red palette represents where Mak_PAES more 
frequently attains a given region; the blue palette indicates where PAES attains an area more 

consistently. 

 

              (a.i) AP-1                   (a.ii) AP-1                       (b.i) AP-2                    (b.ii) AP-2        

              (c.i) AP-3                   (c.ii) AP-3                       (d.i) AP-4                    (d.ii) AP-4        

(e.i) AP-5                 (e.ii) AP-5 
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Figure 107 — End-of-Run Frequency Matrices 

(i) Frequency matrix for Mak_PAES.  (ii) The red palette represents where Mak_PAES more 
frequently attains a given region; the blue palette indicates where PAES attains an area more 

consistently. 

 

 

             (a.i) AP-15                  (a.ii) AP-15                     (b.i) AP-16                 (b.ii) AP-16        

 

             (c.i) AP-17                 (c.ii) AP-17                     (d.i) AP-21                 (d.ii) AP-21        



Chapter 9 — Liberating Bounded Optimisers 

- 259 - 

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0.0 0.2 0.4 0.6 0.8 1.0

(a) AP-1 

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0.0 0.2 0.4 0.6 0.8 1.0

(b) AP-2 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

(c) AP-3 

0
1

2
3

4
5

6
7

8
9

10

0.0 0.2 0.4 0.6 0.8 1.0

(d) AP-4 

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0.0 0.2 0.4 0.6 0.8 1.0
 

(e) AP-5 

Figure 108 — 50% Attainment Surfaces 
PAES: Green, Mak_PAES: Red.  y-axis is objective two; x-axis is objective one.
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Figure 109 — 50% Attainment Surfaces 
PAES: Green, Mak_PAES: Red.  y-axis is objective two; x-axis is objective one. 
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9.2.2 THE PARETO ENVELOPE SELECTION ALGORITHM 
Built around the principles of the grid-based crowding methods explored in PAES 

(see Section 9.2.1), the Pareto Envelope Selection Algorithm (PESA) [136] moves 

away from the simple hill-climbing strategy employed by that approach and towards 

a population-based genetic algorithm.  Importantly, where PAES used the archive 

purely as a reference set, the PESA algorithm explores the use of the (supposedly) 

elite store as a mating pool.  As such, the integration of the Mak_Tree into the PESA 

algorithm tests the suitability of specialist unbounded archiving when the prevailing 

front is an active part of the evolutionary process. 

9.2.2.1 DESCRIBING PESA 
As with PAES, the central construct of the PESA technique (see Algorithm 18) is an 

adaptive grid that is used to approximate the cell-based crowding of members of the 

truncated archive.  In particular, the selection of breeding agents is derived from a 

binary tournament of randomly selected archival members, where the winner of each 

match is derived from its cell-based crowding score.  The resultant offspring of the 

selected members are tested for eligibility in the archival store and included when 

appropriate, with archival truncation performed as in PAES.  The algorithm as a 

whole is little more than a repetition of this selection/update cycle. 

 

Algorithm 18 — The Pareto Envelope Selection Algorithm 

Inputs:  
 b  The maximum number of breeders required for each iteration. 

1: : ; : generateRandomPop()=∅ =Archive Children  Initialise the starting populations. 
2: while (terminationConditionMet() true)≠   
3:  updateArchive( )Children  Insert elite children into the archive and truncate 
4:  : ; :=∅ =∅Pool Parents  if necessary.  Clear the pool and parent sets. 

5:  ( )while 2<Pool b  Fill the breeding pool with random members of 

6:   { }: selectRandom( )= ∪Pool Pool Archive  the archive. 

7:  ( )while <Parents b  Host a binary tournament to select the parents 

8:   : selectRandom( )first = Pool  for the next generation. 
9:   : selectRandom( )second = Pool   

10:   ( )if .crowd( ) .crowd( )first second≤grid grid   
11:    : { }first= ∪Parents Parents   
12:   else   
13:    : { }second= ∪Parents Parents   
14:  : reproduce( )=Children Parents    Breed the parents to produce the next generation. 
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9.2.2.2 INTEGRATING THE MAK_TREE INTO PESA 
The incorporation of an unbounded archive into the PESA technique is somewhat 

less straight-forward than in PAES.  In particular, note that selection in PESA is 

predicated on using random extraction from the archival set and simple binary 

tournaments to apply evolutionary pressure on search diversification.  This is suitable 

in a heavily truncated environment as random extraction is still likely to sample a 

considerable portion, if not the entirety, of the approximated front.  In a purely 

unbounded archive, the random selection of frontal members will bias more densely 

occupied objective-spaces (since there will be more members in these areas) and the 

simplicity of a binary tournament offers insufficient pressure to rectify the 

imbalance.  As such, when using an unbounded archive it is necessary to replace 

random frontal extraction with an approach that provides either an even distribution 

of the objective-space or that otherwise removes the bias afforded to crowded 

members. 

An interesting approach is to replace random extraction with neighbourhood-based 

crowding selection.  In this case, the b least-crowded members are passed into the 

binary tournament, with match results dictated by the grid-based scores.  By using 

both neighbourhood and cell crowding estimates, this PESA variation also has the 

added benefit of observing objective-space density from two distinct, though equally 

valid, perspectives.  Moreover, since the approach requires no truncation of the true  

 

Algorithm 19 — Evenly Sub-Dividing the Objective-Space 

Inputs:  
 s  The number of solutions to be extracted. 

 obj  The current objective against which sub-division is occurring. 

 leftmost  The solution with the smallest value on the specified objective. 

 rightmost  The solution with the largest value on the specified objective. 

1: : leftmost rightmost= −obj objrange  The range is the extent of the front. 
2: : { , }leftmost rightmost=Set  Always include extreme members in set. 

3: := rangeincrement
s

 
Evenly sub-divide the space according to  
the extent of the front. 

4: : leftmost= objval   

5: ( )while <Set s   
6:  := +val val increment  Locate the solution with the objective score nearest 
7:  { }: findNearest( , )= ∪Set Set val obj  to the current value. 
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non-dominated set, the selected members are guaranteed to be constituents of the 

prevailing front — a claim that is impossible to make in the standard PESA 

algorithm. 

Alternatively, in an approach that shadows the PQRS technique suggested for use 

with Dominated Trees [97] (Section 6.2.2.2), the extraction procedure could 

endeavour to evenly sample the elite set.  In this case, the procedure alternates 

between focussing on the first and second objective for each generation and follows 

the procedure outlined in Algorithm 19.  For a selection set of size s, the cost of the 

new extraction procedure is O(s log n), as a simple binary search is required to 

identify each solution.  The benefit of the approach is that it is more closely matched 

to the basic PESA selection algorithm — taking an approximately even distribution 

of the current front and filtering this with cell-based crowding — but it does so with 

the assurances of archival-quality that an unbounded store provides.   

9.2.2.3 EMPIRICAL ANALYSIS METHODOLOGY 
The truncated PESA technique is compared with the crowding-based 

(Mak_PESA_C) and even-distribution (Mak_PESA_E) specialist unbounded 

algorithms via the methodology described in Section 9.1.2.  All approaches feature 

random initial populations, archives with 10,000 distinct cells (as per Section 

9.2.1.3), a crossover probability of 90% (with one child produced per interaction), a 

mutation rate of 1/m and binary tournaments with one hundred matches (the winners 

of which are used to produce fifty children).  With respect to Mak_PESA_C, to 

maximise efficiency, simple cuboid-based crowding measures (see Section 8.1.1.4) 

are employed via the extended Mak_Tree72.  The original PESA technique is bound 

by an archival threshold of fifty members.  As in Section 9.2.1.4, all relevant result 

graphs and tables are presented at the completion of this sub-section (see pages 266–

277). 

9.2.2.4 EMPIRICAL ANALYSIS 
The results are impressive.  Based on the end-of-run significance test results reported 

in Table 28 and Table 29 and the box-plots provided in Figure 112 and Figure 115, 

                                                 
72  Since this is essentially a first-parse crowding estimation (the cell-based binary tournaments 

represent the second parse), the added accuracy of a κ-nearest neighbours approach is unlikely to 
yield sufficient gains to merit the corresponding performance trade-off. 
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the Mak_PESA_C algorithm significantly outperforms the original PESA technique 

on epsilon metrics and (independently) hypervolume metrics across AP-1, AP-2, AP-

5, AP-15, AP-16, AP-17 and AP-21 (seven of the nine tested functions).  

Additionally, the progressive hypervolume (Figure 110 and Figure 111) and epsilon 

graphs (Figure 113 and Figure 114) show that the average performance of the 

Mak_PESA_C algorithm is preferable throughout the majority of the run on every 

tested function.   

The Mak_PESA_E algorithm reports similarly impressive results against the 

numerical metrics — with significant performance improvements seen under the 

hypervolume indicator (Figure 112 and Table 28) on AP-2, AP-3, AP-5, AP-15, AP-

16, AP-17 and AP-21 (seven of the nine examined functions), and significant epsilon 

gains (Figure 115 and Table 29) made in all bar the AP-4 function.  As with 

Mak_PESA_C, the Mak_PESA_E system achieves consistently better average 

performance across progressive indicators (Figure 113 and Figure 114) when 

compared to the basic PESA technique. 

Looking at the relative performance of the two unbounded approaches, the crowding 

technique displays a significant end-of-run performance edge on AP-1, AP-17 and 

AP-21 under the hypervolume metric (Figure 112 and Table 28), and on AP-17 under 

the epsilon metric (Figure 115 and Table 29).  The evenly distributed approach, in 

contrast, only significantly outperforms the unbounded cuboid approach on AP-3 

(with respect to both hypervolume and epsilon measures).  The relative inferiority of 

the crowding approach on the AP-3 function is likely related to its use of cuboid 

density estimation — the disconnected nature of the AP-3 front will lead to a heavy 

biasing of members that lie at the extremes of each isolated region (see Section 

8.1.1.4).  Clearly, such emphasis of extremal solutions comes at the expense of 

exploring truly uncrowded areas of objective-space and will affect the capacity of the 

Mak_PESA_C algorithm to effectively fill each disconnected region.   

Given the statistical (end-of-run) superiority or equivalence of Mak_PESA_C against 

Mak_PESA_E on all functions other than AP-3, the pair-wise visual analysis of the 

unbounded and bounded techniques will focus on Mak_PESA_C and the basic PESA 

approach.  Frequency matrices (Figure 116 and Figure 117) illustrate that the 

unbounded technique is more consistent in locating members of leading fronts and 
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that the unbounded approach better distributes the search (as best illustrated in AP-

15, AP-16, AP-17 and AP-21, where the search is shown to be far more expansive 

along each leading front).  The statistical significance tests support these claims and 

report mathematically significant differences in AP-2, AP-3, AP-5, AP-15, AP-16 and 

AP-17.  The attainment surfaces (Figure 118 and Figure 119) also demonstrate a 

clear advantage (particularly with respect to the spread of solutions) for the 

Mak_PESA_C algorithm on AP-2, AP-4, AP-5, AP-15, AP-16, AP-17 and AP-21. 

Thus, when compared with the original PESA technique across all metrics 

(hypervolume, epsilon and frequency), the unbounded Mak_PESA_C technique has 

significantly better end-of-run results on AP-2, AP-5, AP-15, AP-16 and AP-17 (five 

of the nine tested functions) and is significantly superior on at least one metric for all 

functions other than AP-4.  The relative failure of the original PESA algorithm is 

again related to the necessary duality of the truncated archive — members must be 

well-spread along the front to reduce the likelihood of accepting weak solutions, but 

they must also reflect areas of over-crowding in order to correctly guide the search.  

Clearly, the two goals are at odds — by creating an evenly distributed archival set, it 

is inherently difficult to identify regions of space which require exploration, while an 

ill-distributed set which better approximates objective-space crowding is more 

vulnerable to the acceptance of weak solutions.  The inability of the PESA algorithm 

to explore as much of the optimal objective-space as the unbounded approach in the 

later AP functions (AP-15 onwards) illustrates this deficiency — the truncated 

archive is insufficient for the correct identification of valuable regions.     

With respect to the two archival extraction procedures proposed, the differences are 

not particularly great, though they tend to favour the crowding technique when 

exploring significant differences (likely because this places further impetus on 

frontal exploration).  The minimal difference between the procedures suggests that 

the majority of the search power comes from the binary tournament and so the 

extraction procedure is of only minor import (though this work maintains that 

extraction should never favour crowded-regions — the procedure should actively 

bias against this, or otherwise seek an even spread of solutions).  The investigation of 

alternative extraction procedures and the effects on search performance should 

further elucidate the role of pre-processing in binary tournaments and rests as an 

interesting avenue of future work.    
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Figure 110 — Progressive Hypervolume Averages 
PESA: Blue; Mak_PESA_C: Red; Mak_PESA_E: Green.  y-axis is the average hypervolume 

performance; x-axis represents the number of evaluations executed by each optimiser. 
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Figure 111 — Progressive Hypervolume Averages 
PESA: Blue; Mak_PESA_C: Red; Mak_PESA_E: Green.  y-axis is the average hypervolume 

performance; x-axis represents the number of evaluations executed by each optimiser. 
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Figure 112 — End-of-Run Hypervolume Box-Plots 
y-axis is the hypervolume performance at the end of the run (7,000 evaluations in AP-5, 10,000 

evaluations in all remaining functions); x-axis indicates the selected optimiser. 
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Table 28 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Hypervolume Results 
Bold italics indicate significant differences at the 5% level. 
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Figure 113 — Progressive Epsilon Averages 
PESA: Blue; Mak_PESA_C: Red; Mak_PESA_E: Green.  y-axis is the average hypervolume 

performance; x-axis represents the number of evaluations executed by each optimiser.
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Figure 114 — Progressive Epsilon Averages 
PAES: Blue; Mak_PAES: Red.  y-axis is the average epsilon performance; x-axis represents the 

number of evaluations executed by each optimiser. 
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(i) AP-21 

Figure 115 — End-of-Run Epsilon Box-Plots 
y-axis is the epsilon performance at the end of the run (7,000 evaluations in AP-5, 10,000 evaluations 

in all remaining functions); x-axis indicates the selected optimiser. 
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Table 29 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Epsilon Results 
Bold italics indicate significant differences at the 5% level. 
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Figure 116 — End-of-Run Frequency Matrices 

(i) Frequency matrix for Mak_PESA_C.  (ii) The red palette represents where Mak_PESA_C more 
frequently attains a given region; the blue palette indicates where PESA attains an area more 

consistently. 

          (a.i) — AP-1              (a.ii) — AP-1                  (b.i) — AP-2               (b.ii) – AP-2        

          (c.i) — AP-3              (c.ii) — AP-3                  (d.i) — AP-4               (d.ii) – AP-4        

(e.i) — AP-5              (e.ii) — AP-5 
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Figure 117 — End-of-Run Frequency Matrices 

(i) Frequency matrix for Mak_PESA_C.  (ii) The red palette represents where Mak_PESA_C more 
frequently attains a given region; the blue palette indicates where PESA attains an area more 

consistently. 

 

 

         (a.i) — AP-15            (a.ii) — AP-15                (b.i) — AP-16             (b.ii) – AP-16        

         (c.i) — AP-17            (c.ii) — AP-17                (d.i) — AP-21             (d.ii) – AP-21        
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Figure 118 — 50% Attainment Surfaces 
PESA: Green, Mak_PESA_C: Red.  y-axis is objective two; x-axis is objective one.
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Figure 119 — 50% Attainment Surfaces 
PESA: Green, Mak_PESA_C: Red.  y-axis is objective two; x-axis is objective one. 
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9.2.3 THE ELITIST NON-DOMINATED SORTING GENETIC ALGORITHM 
(NSGA-II) 

Based simply on the number of applications (see, for instance, [113, 226-229]) and 

studies (including [43, 95, 151, 182, 230, 231]) devoted to the NSGA-II algorithm 

[82, 175], there can be little doubt that it stands as a corner-stone of contemporary 

multiobjective optimisation research.  It solidified the importance of elitism 

(particularly in combination with Knowles and Corne [143] and Zitzler et al. [80, 81, 

92]) and established a new, though simple, mechanism for parameter-less crowding 

estimation — namely, the cuboid function (see Section 8.1.1.4 for more details). 

9.2.3.1 DESCRIBING NSGA-II 
NSGA-II (see Algorithm 20) varies from its PESA contemporary in two key areas: it 

moves away from grid-based crowding estimation and towards a neighbourhood-

based approach; and it features an archive that is not charged with storing exclusively 

non-dominated solutions.  Indeed, the archival set contains as many fronts as are 

necessary to reach the threshold level, with excess members removed from the worst 

of the included fronts according to estimated crowding scores.  

Still, despite the apparent theoretical dissimilarities, the core mechanics of the 

NSGA-II algorithm differ little to those seen in the likes of PESA.  In both cases, the 

archival set is randomly sampled for entry into a binary tournament, with match 

outcomes dictated by some form of quality metric.  In the case of NSGA-II, the 

quality indicator considers frontal membership (lines 20–23 in Algorithm 20) in 

addition to crowding (lines 24–27), though it could be argued that this change is 

typically important only early in the run.  When the archival set is insufficiently large 

to store the entire prevailing front, the test for frontal membership is entirely 

meaningless: all archived solutions will reside in the same front and have the same 

frontal ranking.  Thus, so long as the prevailing front contains more members than 

can be stored in the archive, the only practical differentiation between PESA and 

NSGA-II is the selected crowding measure — be it neighbourhood-based or cell-

based. 

9.2.3.2 INTEGRATING THE MAK_TREE INTO NSGA-II 
To further explore the capacity of the Mak_Tree to improve the performance of 

evolutionary algorithms under differing roles, the unbounded archive is used here as a 
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purely referential set.  That is to say, the unbounded store may be queried for 

information, but the archival extraction process operates entirely on a truncated 

NSGA-II archive.  Thus, this section aims to explore whether access to more 

complete density estimations and dominance checks alone are enough to improve the 

performance of a powerful contemporary algorithm.   

Specifically, the NSGA-II algorithm described in Section 9.2.3.1 is modified such 

that the leading (rank one) non-dominated front may consist only of members that 

reside in the unbounded archive (since any other solution is dominated with respect  

 

Algorithm 20 — The NSGA-II Algorithm 

Inputs:  
 s  The maximum archive size. 

 b  The number of solutions allowed in the breeding pool. 

1: : generateRandomPop()=Arch  Initialise the starting population. 
2: :=∅Parents   
3: deriveFronts( )Arch   
4: while (terminationConditionMet() true)≠   

5:  ( )while <Parents b  Perform binary tournament selection 

6:   : selectRandom( )first = Arch  with members of the archive. 
7:   : selectRandom( )second = Arch   
8:   ( )if front( ) < front( )first second  The winner is the solution residing in a better 
9:    : { }first= ∪Parents Parents  (leading) front  

10:   ( )else if front( ) > front( )first second   
11:    : { }second= ∪Parents Parents   
12:   ( )else if cubScore( ) cubScore( )second first≤  or, in the case where both solutions reside in 
13:    : { }first= ∪Parents Parents  the same front, the winner is the least 
14:   else  crowded of the two solutions according 
15:    : { }second= ∪Parents Parents  to their cuboid-derived neighbourhoods. 
16:  : reproduce( )=Children Parents  Generate the child set from parents. 
17:  :=∅Parents   
18:  := ∪Arch Arch Children  Add all children to the archive and derive 
19:  : deriveFronts( )=Fronts Arch  the set of unique fronts in the archive. 
20:  :=∅Arch  Empty the archive. 
21:  : 1=currentFront   
22:  ( )while <Arch s  Until the archive is filled,  

23:   ( )if ∪ ≤currentFrontFronts Arch s   

24:    : { }a a= ∪ ∀ ∈ currentFrontArch Arch Fronts  add all members of the current front and 
25:    : 1= +currentFront currentFront  progress to the next front, 
26:   else  unless the archive will overflow, in which case, 
27:    := − ∪currentFrontn s Fronts Arch  add only the n least-crowded members of the 
28:    : leastCrowded( , )= ∪ currentFrontArch Arch Fronts n current front. 
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to the reference set) and that rank one members utilise unbounded cuboid crowding 

estimates when binary tournaments occur (using the efficient update process defined 

in Section 8.1.3).  It is important to note that the unbounded archive is entirely 

passive; it is simply probed for information about the current NSGA-II population in 

an effort to better represent the current state of the prevailing front.     

9.2.3.3 EMPIRICAL ANALYSIS METHODOLOGY 
The truncated NSGA-II algorithm featuring an unbounded reference set 

(Mak_NSGA-II) is compared to the original NSGA-II algorithm according to the 

methodology outlined in Section 9.1.2 provide relevant tables and graphs).  Both 

systems are similarly defined.  Namely, they feature: random initial populations, a 

crossover probability of 90% (with two children produced per interaction); a 

mutation rate of 1/m; and a truncated archive of fifty members from which fifty 

randomly selected pairs engage in matches to enter breeding pool.  The only point of 

differentiation is the use of an unbounded extended Mak_Tree as a reference set in 

the Mak_NSGA-II algorithm.  Again, for aesthetic reasons, all relevant graphs and 

tables are provided at the completion of this sub-section in pages 284–294.   

9.2.3.4 EMPIRICAL ANALYSIS 
The performance of the Mak_NSGA-II algorithm is strong despite using the 

unbounded archive acting as a purely passive reference set.  In particular, the end-of-

run hypervolume results (Figure 122) and statistical tests (Table 30) illustrate that the 

Mak_NSGA-II technique significantly outperforms the basic NSGA-II approach on 

AP-1, AP-3, AP-15, AP-16, AP-17 and AP-21 (six of the nine tested functions), with 

the later (AP-15, AP-16, AP-17 and AP-21) averaged progressive graphs (Figure 120 

and Figure 121) displaying considerable improvement levels through the length of 

the run.  The original technique is preferable in AP-2, AP-4 and AP-5 with respect to 

both progressive hypervolume performance (Figure 120 and Figure 121) and end-of-

run box-plots (Figure 122), though the difference is never statistically significant 

(Table 30). 

Performance measures under the epsilon metric are also positive.  The Mak_NSGA-

II algorithm achieves significantly better end-of-run results (Figure 125 and Table 
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31) on AP-3 and AP-17.  In contrast, the original technique garners a significant end-

of-run performance improvement only on AP-5.  It is worth noting that the averages 

for NSGA-II appear noticeably better than the Mak_NSGA-II alternative in AP-16 

(see Figure 124) — this is linked to the more erratic performance of Mak_NSGA-II 

under the epsilon metric on this problem (see Figure 125), though is insufficient to 

generate a statistically significant difference. 

The frequency matrices (Figure 126 and Figure 127) illustrate that the original 

algorithm is only markedly better on the AP-4 function, and even then the result is 

statistically insignificant.  Indeed, Mak_NSGA-II is better able to find impressive 

fronts more consistently in AP-1, AP-5, AP-15, AP-16, AP-17 and AP-21 — with a 

significant difference in AP-15, AP-16 and AP-17.  Note that where NSGA-II is 

significantly inferior, it tends to place a greater (and apparently less successful) 

search emphasis around the extremes of the optimal front — this is likely due to a 

subtle deviation in the way cuboid crowding operates under an unbounded reference 

set.  Where the original technique guarantees that the extremes of the locally stored 

optimal front are always granted maximal crowding scores to ensure victory in 

binary tournament matches, the same assertion can only be made under the 

Mak_NSGA-II scheme if the extremes of the locally stored front are also the 

extremes of the unbounded, global, front.  It is open to debate as to whether this 

approach is preferable in general as it may lead to shrinking local fronts (due to the 

potential loss of local extremes), though the impressive results here suggest that this 

is at most a secondary concern.   

The median attainment surfaces (Figure 128 and Figure 129) support the assertions 

made about the frequency matrices: namely that NSGA-II offers a clear advantage 

only in AP-4 and that AP-15, AP-16, AP-17 and AP-21 are better suited to the 

Mak_NSGA-II technique.  The remaining functions offer no clear visual indicator as 

to which algorithm is ideal. 

Thus, the results as a whole suggest that the Mak_NSGA-II algorithm is at least 

competitive with and generally better than the NSGA-II approach on the rich set of 

tested functions.  Indeed, the Mak_NSGA-II approach was significantly better 

according to at least one metric in six of the nine AP functions (AP-1, AP-3, AP-15, 

AP-16, AP-17 and AP-21) and significantly better under two metrics on four 
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problems (AP-3, AP-15, AP-16 and AP-17).  The key to the improved performance 

of the Mak_NSGA-II algorithm lies in weakening the duality of the truncated 

archive.  The key drawback of the conventional truncated archive is that it is 

fundamentally torn between storing a solution set that will better guide the search 

towards poorly explored regions of objective-space and one that will offer a suitably 

distributed set to reduce the likelihood of frontal degradation.  By using a reference 

set for non-dominance determination and crowding estimation, the truncated archival 

set can concentrate on storing solutions that are situated in valuable regions of space 

without the inaccurate crowding and dominance checks that plague a conventional 

truncated store.  As discussed earlier, the only danger that exists under this new 

scheme is the potential for shrinking local fronts (if a number of solutions lie in a 

single region of useful objective-space, the local archive could well converge onto 

this region).  This, however, opens up some interesting avenues of future work.  For 

instance, maximal local front spread could be maintained by incorporating the two 

extreme Mak_Tree solutions into the truncated archive (though this clearly breaches 

the passivity of the reference set), or local crowding scores could be used in the 

archival truncation phase to ensure an evenly distributed and well-spread local front 

(though this reduces the influence of global crowding measures in guiding the 

search). 

Across all tests, the only functions that caused continued problems for the unbounded 

reference approach were AP-4 and AP-5, though AP-5 illustrated the only significant 

difference (on the epsilon performance indicator).  The AP-4 result is particularly 

interesting — since, the function is multi-frontal and the frequency matrix (Figure 

126) illustrates a tendency for the optimisers to at least partially converge on sub-

optimal fronts, the reason for improved performance in NSGA-II may be related to 

noise.  As the basic NSGA-II archive is subject to the acceptance of weak solutions 

(as for most truncated approaches), the prevailing local front may be a noisy one — 

consisting of both dominated and non-dominated solutions73.  It is possible that these 

noisy solutions — which lie away from the false front — may provide the solution 

diversity necessary to escape continued premature convergence.  Thus, surprisingly, 

                                                 
73  Note that this does not refer to the noise caused by maintaining multiple fronts in the archival set 

(which is relevant only when the prevailing front is small in any case); it instead refers to the 
incorrect labelling of dominated solutions as non-dominated and the acceptance of weak members 
into the rank one local front. 
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the improved accuracy of the archival set in the Mak_NSGA-II algorithm may be a 

factor in reducing performance against multi-frontal tasks. 

It is more difficult to extract why numerical indicators infer that performance is 

inferior on AP-5 as visual metrics suggest that the Mak_NSGA-II algorithm is at 

least competitive and, in the case of frequencies, marginally superior.  From a 

theoretical standpoint, it is possible that the lack of noise in the quality of solutions 

stored in the leading front decreases the ability of the Mak_NSGA-II optimiser to 

escape biased or deceptive regions of objective-space, but the empirical results do 

not particularly support this notion (the frequency graphs illustrate a consistently 

well-spread search).  An alternative potential cause is a narrowing of the leading 

front around biased or isolated regions due to their temporary preferability with 

respect to global crowding measures (as predicted in Section 6.2.1.3), though again 

there is little empirical proof of such an occurrence.  
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(e) AP-5 

Figure 120 — Progressive Hypervolume Averages 
NSGA-II: Blue; Mak_NSGA-II: Green.  y-axis is the average hypervolume performance; x-axis 

represents the number of evaluations executed by each optimiser. 
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(d) AP-21 

Figure 121 — Progressive Hypervolume Averages 
NSGA-II: Blue; Mak_NSGA-II: Green.  y-axis is the average hypervolume performance; x-axis 

represents the number of evaluations executed by each optimiser. 
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(g) AP-16 
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(i) AP-21 

Figure 122 — End-of-Run Hypervolume Box-Plots 
y-axis is the hypervolume performance at the end of the run (7,000 evaluations in AP-5, 10,000 

evaluations in all remaining functions); x-axis indicates the selected optimiser. 
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Figure 123 — Progressive Epsilon Averages 
NSGA-II: Blue; Mak_NSGA-II: Green.  y-axis is the average hypervolume performance; x-axis 

represents the number of evaluations executed by each optimiser.



Escaping the Bounds of Generality — Unbounded Bi-Objective Optimisation 

 

- 288 - 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4
10

00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
(a) AP-15 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

 
(b) AP-16 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

(c) AP-17 

0

0.2

0.4

0.6

0.8

1

1.2

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

 
(d) AP-21 

Figure 124 — Progressive Epsilon Averages 
NSGA-II: Blue; Mak_NSGA-II: Green.  y-axis is the average epsilon performance; x-axis represents 

the number of evaluations executed by each optimiser. 
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(g) AP-16 
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(h) AP-17 
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(i) AP-21 

Figure 125 — End-of-Run Epsilon Box-Plots 
y-axis is the epsilon performance at the end of the run (7,000 evaluations in AP-5, 10,000 evaluations 

in all remaining functions); x-axis indicates the selected optimiser. 
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Table 30 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Hypervolume Results 
Bold italics indicate significant differences at the 5% level. 

 Hypervolume 
AP-1 3.340E-03 

AP-2 6.871E-01 

AP-3 2.076E-02 

AP-4 3.391E-01 

AP-5 6.599E-01 

AP-15 1.377E-02 

AP-16 2.110E-06 

AP-17 5.887E-06 

AP-21 4.062E-02 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 31 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Epsilon Results 
Bold italics indicate significant differences at the 5% level. 

 Epsilon 
AP-1 8.318E-01 

AP-2 8.426E-02 

AP-3 1.364E-02 

AP-4 4.965E-01 

AP-5 1.261E-02 

AP-15 1.157E-01 

AP-16 8.107E-01 

AP-17 4.230E-02 

AP-21 3.457E-01 
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Figure 126 — End-of-Run Frequency Matrices 

(i) Frequency matrix for Mak_NSGA-II.  (ii) The red palette represents where Mak_NSGA-II more 
frequently attains a given region; the blue palette indicates where NSGA-II attains an area more 

consistently. 

          (a.i) — AP-1             (a.ii) — AP-1                  (b.i) — AP-2               (b.ii) – AP-2       

          (c.i) — AP-3              (c.ii) — AP-3                  (d.i) — AP-4               (d.ii) – AP-4       

(e.i) — AP-5              (e.ii) — AP-5 
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Figure 127 — End-of-Run Frequency Matrices 

(i) Frequency matrix for Mak_NSGA-II.  (ii) The red palette represents where Mak_NSGA-II more 
frequently attains a given region; the blue palette indicates where NSGA-II attains an area more 

consistently. 

 

         (a.i) — AP-15            (a.ii) — AP-15               (b.i) — AP-16            (b.ii) – AP-16       

         (c.i) — AP-17            (c.ii) — AP-17               (d.i) — AP-21               (d.ii) – AP-21       
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Figure 128 — 50% Attainment Surfaces 
NSGA-II: Green, Mak_NSGA-II: Red.  y-axis is objective two; x-axis is objective one.
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(d) AP-21 

Figure 129 — 50% Attainment Surfaces 
NSGA-II: Green, Mak_NSGA-II: Red.  y-axis is objective two; x-axis is objective one. 
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9.2.4 THE IMPROVED STRENGTH PARETO EVOLUTIONARY 
ALGORITHM (SPEA2) 

The original SPEA algorithm [80, 137] must be considered one of the flag-bearers of 

elitism in multiobjective optimisation.  As initial studies [92, 137, 232] emphasised 

the superiority of SPEA over existing, non-elitist, first-generation algorithms such as 

NSGA [2], VEGA (the Vector Evaluated Genetic Algorithm) [146] and NPGA [141, 

142], the statement became clear: elitism was the way forward for multiobjective 

optimisation.  Amongst those heeding this message were Deb and Corne, who 

ultimately went on to produce algorithms that surpassed the SPEA progenitor 

(specifically, with the NSGA-II and PESA techniques).  In response, Zitzler refined 

the initial algorithm with subtle, though important, changes to fitness assignment, 

crowding estimation and archival truncation.  The result was the impressive, though 

unsurprisingly titled, SPEA2 algorithm [81, 145]. 

9.2.4.1 DESCRIBING SPEA2 
The SPEA2 algorithm (see Algorithm 21) shares a great deal in common with the 

NSGA-II system explored in Section 9.2.3 — specifically, it features a constantly 

sized archive, binary tournament selection from the archive and fitness assignment 

that considers both crowding and dominance.  It differs markedly though in the finer 

points of execution.  In SPEA2, the fitness of a solution is not defined according to 

frontal membership, but is derived from the strength of solutions that dominate it, 

while ties in raw fitness scores are broken not by cuboid crowding estimates, but by 

κth nearest-neighbour approximations.  Specifically, the final fitness of a solution a is 

given as:  

1( )
( ) 2

a a
aκδ

= +
+

fitness r  (83) 

 

Here, δκ(a) is the κth nearest-neighbour score of a and: 

( ) ( ) :a b b b aζ= ∀ ∈∑ ≺r P  (84) 
 

where ζ(b) is the strength function: the number of solutions in the combined 

population P (see Algorithm 21) that are dominated by b. 
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Algorithm 21 — The SPEA2 Algorithm 

Inputs:  
 b  The maximum number of solutions allowed in the breeding pool. 

 s  The maximum archive size. 

1: : generateRandomPop()=Arch  Initialise the starting population. 
2: :=Parents Arch   
3: while (terminationConditionMet() true)≠   
4:  : reproduce( )=Children Parents  Generate the child set from parents. 
5:  :=∅Parents  Add all children to the unprocessed archive and 
6:  := ∪Combined Arch Children  calculate fitness of members according to 
7:  calculateFitness( )Combined  strength and crowding scores. 
8:  : extractNonDominated( )=NonDom Combined  Remove non-dominated solutions from the 

9:  ( )while >NonDom s  combined set and store them in nonDom. 

10:   extractMostCrowded( )NonDom  Reduce the archival set to s if it is too large 
11:   calculateCrowd( )NonDom  by removing the most crowded members. 
12:  :=Arch NonDom   
13:  ( )while <Arch s  If the archive is too small, fill it with the 

14:   { }: extractFittest( )= ∪Arch Arch Combined  best scoring dominated solutions. 

15:  ( )while <Parents b  Perform binary tournament selection  

16:   : selectRandom( )first = Arch  with random members of the newly 
17:   : selectRandom( )second = Arch  updated archive. 
18:   ( )if fitness( ) < fitness( )first second  The winner of each tournament match is 
19:    : { }first= ∪Parents Parents  the solution with best fitness score. 
20:   else   
21:    : { }second= ∪Parents Parents   

 

It is worth noting that while the strength function is an effective way of emphasising 

valuable regions in the objective-space, it is rendered entirely ineffective so long as 

the number of non-dominated members in the population exceeds the maximum 

archival size.  In this case, both the truncation procedure and binary tournament are 

governed entirely by the crowding operator (echoing the behaviour of NSGA-II in 

equivalent scenarios). 

9.2.4.2 INTEGRATING THE MAK_TREE INTO SPEA2 
As a final exploration of the ways in which the unbounded Mak_Tree may be 

successfully integrated into existing algorithms, the SPEA2 system is extended via 

hybridisation.  Specifically, so long as the Mak_Tree contains fewer solutions than 

the truncated archive, SPEA2 is allowed to perform exactly as it does in standard 

operation (with no interference from the unbounded set whatsoever).  When the 

Mak_Tree breaches this artificial threshold, in lieu of the standard selection 
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methodology, globally uncrowded solutions are extracted from the unbounded set (as 

in Section 9.2.2.2) and passed to a crowding-based binary tournament74.  Thus, the 

hybridised technique endeavours to capitalise on the strength-based fitness function 

when the leading front is small and the rich information provided by an unbounded 

set when it is large.  Importantly, since the truncated archive will only be used when 

it is large enough to store the complete non-dominated front, it can be guaranteed 

that issues related to the dual nature of bounded sets (see Section 9.2.1.4, Section 

9.2.2.4 and Section 9.2.3.4) are completely avoided.  When used, the truncated 

archive will always contain (at least) the complete non-dominated front and, as such, 

dominance comparisons and crowding estimations are of high fidelity.    

To investigate the impact of different crowding measures, a simple cuboid method is 

employed during the unbounded phase in Mak_SPEA2, while a κ nearest-neighbours 

technique (using the averaging methodology described in Section 8.1.1.3) is similarly 

capitalised upon in Mak_SPEA2_KNN.         

9.2.4.3 EMPIRICAL ANALYSIS METHODOLOGY 
The original SPEA algorithm is compared with the two alternative hybrid techniques 

according to the methodology described in Section 9.1.2.  All three approaches use 

random starting populations, a crossover probability of 90% (with two children 

produced per breeding interaction), a mutation rate of 1/m and binary tournaments 

that operate on fifty pairs of solutions.  Both the original SPEA and the SPEA 

portion of the hybridised techniques feature truncated archives with exactly fifty 

solutions and use a κth nearest-neighbour technique (κ = 11) for crowding estimation.  

During the unbounded portion of the hybrid algorithm, the fifty least crowded 

solutions are extracted from the extended Mak_Tree (using the efficient methods 

described in Section 8.1), with randomly selected members of this set entering a 

crowd-based binary tournament.  The Mak_SPEA2 algorithm uses simple cuboid 

crowding as per Section 9.2.2.2, while the Mak_SPEA2_KNN system uses a κ 

nearest-neighbours technique (κ = 20)75.  It is important to note that the unbounded 

portion of the archive is used only so long as there exists at least fifty distinct 

                                                 
74  It is worth noting that both the extraction and binary tournaments use the same Mak_Tree-derived 

global crowding estimates (unlike in the PESA extensions, where two differing global metrics are 
used). 

75  The larger value of κ (relative to the basic SPEA2 setting) is employed here due to the unbounded 
size of the Mak_Tree-based archive. 
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members in the prevailing optimal front, with the hybrid algorithms reverting to the 

basic SPEA2 methodology whenever the leading front falls below this threshold 

level.  As with preceding empirical investigations, all relevant result graphs and 

tables are provided at the completion of this sub-section (pages 302–314). 

9.2.4.4 EMPIRICAL ANALYSIS 
The results are impressive and clearly illustrate the power of unbounded Mak_Trees 

in hybrid environments.  In particular, the end-of-run hypervolume results (Figure 

134) and the corresponding significance tests (Table 32) demonstrate a significant 

performance advantage for Mak_SPEA2 over the basic algorithm in AP-1, AP-3, AP-

5, AP-15, AP-16, AP-17 and AP-21 (seven of the nine tested functions), while it is 

preferable (though not significantly so) in the remaining AP functions.  The 

progressive average performance (Figure 132 and Figure 133) of the cuboid-based 

Mak_SPEA2 approach is also strong, with it outperforming the original technique 

across the majority of the run in AP-4, AP-15, AP-16, AP-17 and AP-21.  In contrast, 

the SPEA2 technique delivers consistently preferable average progressive 

performance only in AP-2.    

The epsilon-derived results are also positive for the Mak_SPEA2 technique.  

Specifically, end-of-run performance (Figure 137) is significantly better (Table 33) 

for the cuboid-based hybridised approach in AP-1, AP-3, AP-5, AP-16, AP-17 and 

AP-21 (six of the nine tested functions) and is never significantly worse.  Similarly, 

average performance (Figure 135 and Figure 136) of the Mak_SPEA2 algorithm is 

markedly better across the majority of the run in AP-1, AP-3, AP-4, AP-17 and AP-

21.   

Interestingly, the performance of the averaged κ nearest-neighbours-based SPEA2 

hybrid is inferior to that of its cuboid-based relative.  Examining end-of-run 

hypervolume performance (Figure 134), the Mak_SPEA2 algorithm is preferable to 

Mak_SPEA2_KNN on every tested function and is significantly better (Table 32) on 

AP-1, AP-3, AP-5, AP-16 and AP-21 (five of the nine tested functions).  Similarly, 

end-of-run epsilon indicators (Figure 137) and significance tests (Table 33) illustrate 

significant performance gains in the cuboid-based approach in AP-1, AP-3, AP-5, 

AP-16 and AP-21.  The probable cause for such inferiority is related to the size of the 

neighbourhood used in the KNN approach — at twenty, it is simply too large for 
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most of the problems encountered.  Given that Zitzler et al. [81] recommend a 

neighbourhood size of approximately n  for nearest-neighbour-based estimations 

and that the cardinality of the archive is rarely greater than 400 for any substantial 

portion of the run (see Figure 130), the KNN crowding estimations are likely to be 

misleading.  This is the bias/variance dilemma (see Section 8.1.1) in action: the 

neighbourhood represents too large a portion of the explored front and so de-

emphasises the importance of locally uncrowded solutions.  Moreover, by using an 

inappropriately large κ value, the diversity of the extracted set is diminished (since 

solutions residing in uncrowded regions will share similar crowding estimates).  This 

can be explored empirically: consider Figure 131 — when κ=10, the extracted 

solutions cover a large portion of the objective-space, but when κ=20 the objective-

space diversity of the extraction set is severely affected.  The exploration of hybrid 

performance under more appropriately chosen κ values therefore rests as an 

interesting avenue of future work (as does research into heuristics for setting κ in an 

unbounded environment and the application of adaptive k values in Mak_Trees).       

Still, despite the clear advantage afforded to the apparently superior cuboid crowding 

method, the MAK_SPEA2_KNN algorithm yields generally better results than those 

of the basic SPEA2 system.  Indeed, end-of-run hypervolume results (Figure 134 and 

Table 32) indicate that the Mak_SPEA2_KNN approach is significantly better than 

the SPEA approach in AP-15, AP-16 and AP-17, and is never significantly worse.  

With respect to epsilon results (Figure 137 and Table 33), the Mak_SPEA2_KNN 

technique is significantly better on AP-16, AP-17 and AP-21, and is never 

significantly outperformed. 

Although the KNN-based results are impressive, the cuboid technique remains 

clearly superior and, as a consequence, the visual analyses focus on the comparison 

of the Mak_SPEA2 hybrid technique and the truncated SPEA2 approach.  Frequency 

matrices (Figure 138 and Figure 139) illustrate that, in general, the Mak_SPEA2 

system more consistently locates valuable fronts than in the basic truncated approach 

(only AP-4 suggests inconclusive results), with significant differences in AP-1, AP-3, 

AP-15, AP-16, AP-17 and AP-21 (six of the nine tested functions).  The frequency 

matrices also elucidate some interesting run-time properties of the cuboid-based 

hybridised system.  In particular, AP-3 shows a slightly more frequent exploration of 
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the extremities of each disconnected region (likely because the cuboid crowding 

estimate will favour these extremes — as discussed in 9.2.3.4), while AP-21 

indicates that the hybrid technique is more frequently drawn to the deceptive region 

in the upper-left of the objective-space, but that it is also capable of escaping it to 

produce impressive fronts (escape is aided by having access to the complete frontal 

set).    

The median end-of-run attainment surfaces (Figure 140 and Figure 141) further 

advance the notion that the Mak_SPEA2 technique is preferable to the basic SPEA2 

approach.  In particular, results indicate better performance under this metric for the 

hybridised approach in AP-4, AP-5, AP-15, AP-16, AP-17 and AP-21.  Moreover, the 

Mak_SPEA2 technique is never clearly inferior to the median fronts produced by 

SPEA2. 

Looking at the performance measures in toto, there can be little debating the 

superiority of the Mak_SPEA2 algorithm over the contemporary, and powerful, 

SPEA2 technique.  Indeed, the end-of-run performance of Mak_SPEA2 is 

significantly better under at least one metric on every function other than AP-2 and 

AP-4, and is significantly better under two or more metrics on seven of the nine 

tested functions: namely, AP-1, AP-3, AP-5, AP-15, AP-16, AP-17 and AP-21.  

Across all numerical metrics, the end-performance of SPEA2 is never significantly 

better than the cuboid-based hybridised approach, while it is inferior to, or no better 

than, all attainment surfaces and frequency matrices produced by the new technique.   

The reasons for such superiority are similar to those stated elsewhere (see Section 

9.2.1.4, Section 9.2.2.4 and Section 9.2.3.4).  In particular, once the true leading front 

is larger than the capacity of the archive, the SPEA2 algorithm is open to inaccurate 

crowding estimations and the acceptance of weak solutions into the supposedly elite 

store.  The hybridised approach precludes such problems by granting access to the 

unbounded set when the leading front becomes too large for the truncated archive to 

function effectively.  Moreover, by using a hybrid methodology, the Mak_SPEA2 

and Mak_SPEA2_KNN approaches capitalise on the strength-based fitness measures 

when the truncated archive can be used effectively, allowing for more than just the 

(potentially small) leading front to contribute to the search.  The end result is a 

technique whose function better matches the intentions of the SPEA2 algorithm — 
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namely, the acceleration of the search via strength measures when the front is small 

and the expansion of the search via crowding when the front is large. 
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(b) 

Figure 130 - The Progressive Size of the Mak_SPEA2_KNN Unbounded Sets 
y-axis is the average number of solutions in the unbounded elite archive; x-axis is the number of 

evaluations performed.  Note that the elite archive populations are small relative to the size of κ used 
(specifically, κ = 20). 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
 

(a) κ = 20 

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.2 0.4 0.6 0.8 1.0
 

(b) κ = 10 

Figure 131 — Example Selections with Averaged κ Nearest-Neighbours 
y-axis is objective-two; x-axis is objective one.  Pink represents fifty selected solutions from an 

archive containing 152 members; boxes used for emphasis.  Note that (b) represents a more diverse 
selection of solutions than (a) due to its smaller κ value.   
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(e) AP-5 

Figure 132 — Progressive Hypervolume Averages 
SPEA2: Blue; Mak_SPEA2: Red; Mak_SPEA2_KNN: Green.  y-axis is the average hypervolume 

performance; x-axis represents the number of evaluations executed by each optimiser. 
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(d) AP-21 

Figure 133 — Progressive Hypervolume Averages 
SPEA2: Blue; Mak_SPEA2: Red; Mak_SPEA2_KNN: Green.  y-axis is the average hypervolume 

performance; x-axis represents the number of evaluations executed by each optimiser. 
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(i) AP-21 

Figure 134 — End-of-Run Hypervolume Box-Plots 
y-axis is the hypervolume performance at the end of the run (7,000 evaluations in AP-5, 10,000 

evaluations in all remaining functions); x-axis indicates the selected optimiser. 
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Table 32 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Hypervolume Results 
Bold italics indicate significant differences at the 5% level. 

 
SPEA2 

Mak_ 
SPEA2 

Mak_ 
SPEA2_ 

KNN 

SPEA2 - 1.37E-03 4.67E-01 

Mak_ 
SPEA2 

3.16E-01 - 9.42E-05 

(a) A
P-1 

Mak_ 
SPEA2_ 

KNN 
9.51E-01 2.88E-01 - 

 (b) AP-2 
 
 

 
SPEA2

Mak_ 
SPEA2

Mak_ 
SPEA2_ 

KNN 

SPEA2 - 1.45E-03 2.41E-01 

Mak_ 
SPEA2

1.16E-01 - 4.21E-02 

(c) A
P-3 

Mak_ 
SPEA2_

KNN 
7.85E-01 6.54E-02 - 

 (d) AP-4  

 
SPEA2

Mak_ 
SPEA2

Mak_ 
SPEA2_

KNN 

SPEA2 - 6.09E-03 7.66E-02

Mak_ 
SPEA2 

 - 8.29E-06

(e) A
P-5 

 
 

 
SPEA2 

Mak_ 
SPEA2 

Mak_ 
SPEA2_ 

KNN 

SPEA2 - 1.31E-11 5.67E-10 

Mak_ 
SPEA2 

5.58E-15 - 5.26E-01 

(f) A
P-15 

Mak_ 
SPEA2_ 

KNN 
2.01E-08 1.36E-02 - 

 (g) AP-16  

 
SPEA2

Mak_ 
SPEA2

Mak_ 
SPEA2_ 

KNN 

SPEA2 - 3.40E-07 1.01E-04 

Mak_ 
SPEA2

1.17E-04 - 2.02E-01 

(h) A
P-17 

Mak_ 
SPEA2_

KNN 
6.58E-02 4.04E-02 - 

 (i) AP-21  
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Figure 135 — Progressive Epsilon Averages 
SPEA2: Blue; Mak_SPEA2: Red; Mak_SPEA2_KNN: Green.  y-axis is the average hypervolume 

performance; x-axis represents the number of evaluations executed by each optimiser.
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(d) AP-21 

Figure 136 — Progressive Epsilon Averages 
SPEA2: Blue; Mak_SPEA2: Red; Mak_SPEA2_KNN: Green.  y-axis is the average epsilon 

performance; x-axis represents the number of evaluations executed by each optimiser. 
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(i) AP-21 

Figure 137 — End-of-Run Epsilon Box-Plots 
y-axis is the epsilon performance at the end of the run (7,000 evaluations in AP-5, 10,000 evaluations 

in all remaining functions); x-axis indicates the selected optimiser. 
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Table 33 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Epsilon Results 
Bold italics indicate significant differences at the 5% level. 

 
SPEA2 

Mak_ 
SPEA2 

Mak_ 
SPEA2_ 

KNN 

SPEA2 - 1.06E-06 1.60E-01 

Mak_ 
SPEA2 

5.47E-01 - 4.05E-04 

(a) A
P-1 

Mak_ 
SPEA2_ 

KNN 
5.84E-01 2.50E-01 - 

 (b) AP-2 
 
 

 
SPEA2

Mak_ 
SPEA2

Mak_ 
SPEA2_ 

KNN 

SPEA2 - 4.01E-04 1.12E-01 

Mak_ 
SPEA2

7.26E-01 - 4.77E-02 

(c) A
P-3 

Mak_ 
SPEA2_

KNN 
9.63E-01 6.91E-01 - 

 (d) AP-4  

 
SPEA2

Mak_ 
SPEA2

Mak_ 
SPEA2_

KNN 

SPEA2 - 2.35E-02 7.76E-01

Mak_ 
SPEA2 

 - 1.09E-02

(e) A
P-5 

 
 

 
SPEA2 

Mak_ 
SPEA2 

Mak_ 
SPEA2_ 

KNN 

SPEA2 - 3.90E-01 8.48E-01 

Mak_ 
SPEA2 

2.20E-02 - 5.04E-01 

(f) A
P-15 

Mak_ 
SPEA2_ 

KNN 
7.51E-03 6.97E-01 - 

 (g) AP-16   

 
SPEA2

Mak_ 
SPEA2

Mak_ 
SPEA2_ 

KNN 

SPEA2 - 2.18E-04 4.55E-04 

Mak_ 
SPEA2

5.32E-05 - 8.43E-01 

(h) A
P-17 

Mak_ 
SPEA2_

KNN 
4.36E-02 3.88E-02 - 

 (i) AP-21 
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Figure 138 — End-of-Run Frequency Matrices 

(i) Frequency matrix for Mak_SPEA2.  (ii) The red palette represents where Mak_SPEA2 more 
frequently attains a given region; the blue palette indicates where SPEA2 attains an area more 

consistently. 

          (a.i) — AP-1              (a.ii) — AP-1                  (b.i) — AP-2               (b.ii) – AP-2        

          (c.i) — AP-3              (c.ii) — AP-3                  (d.i) — AP-4               (d.ii) – AP-4       

(e.i) — AP-5              (e.ii) — AP-5 
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Figure 139 — End-of-Run Frequency Matrices 

(i) Frequency matrix for Mak_SPEA2.  (ii) The red palette represents where Mak_SPEA2 more 
frequently attains a given region; the blue palette indicates where SPEA2 attains an area more 

consistently. 

 

        (a.i) — AP-15             (a.ii) — AP-15                (b.i) — AP-16              (b.ii) – AP-16        

        (c.i) — AP-17            (c.ii) — AP-17               (d.i) — AP-21            (d.ii) – AP-21       



Chapter 9 — Liberating Bounded Optimisers 

- 313 - 

0
0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9
1

0.0 0.2 0.4 0.6 0.8 1.0

(a) AP-1 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0.0 0.2 0.4 0.6 0.8 1.0

(b) AP-2 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

(c) AP-3 

0
1

2
3

4
5
6

7
8

9
10

0.0 0.2 0.4 0.6 0.8 1.0

(d) AP-4 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0.0 0.2 0.4 0.6 0.8 1.0
 

(e) AP-5 

Figure 140 — 50% Attainment Surfaces 
SPEA2: Green, Mak_SPEA2: Red.  y-axis is objective two; x-axis is objective one.
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(c) AP-17 
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(d) AP-21 

Figure 141 — 50% Attainment Surfaces 
SPEA2: Green, Mak_SPEA2: Red.  y-axis is objective two; x-axis is objective one. 



Chapter 9 — Liberating Bounded Optimisers 

- 315 - 

9.2.5 CONCLUSIONS 
Whether it is used as the active population (as for PESA, Section 9.2.2), in a hybrid 

context (as for SPEA2, Section 9.2.4) or as a purely passive reference set in single- 

and multi-member systems (PAES, Section 9.2.1, and NSGA-II, Section 9.2.3, 

respectively), the integration of the Mak_Tree into contemporary evolutionary 

algorithms yields impressive results.  Indeed, across a diverse problem set and under 

a thorough statistical analysis, the extended techniques frequently achieve 

statistically significant improvements over their truncated originals.  Moreover, the 

results illustrate a level of robustness rarely found in algorithmic extensions — the 

Mak_PESA_C, Mak_PESA_E, Mak_SPEA2, Mak_SPEA2_KNN and Mak_PAES 

systems are never significantly worse than the bounded originals according to any of 

the examined metrics, and Mak_NSGA-II is significantly worse only according to a 

single indicator in AP-5 (and it is worth recalling that this extension capitalises on 

the Mak_Tree in only a purely passive, referential, manner).  These powerful results 

are a clear indication that the use of unbounded archiving is more than just a 

theoretical curiosity — the damage caused by frontal degradation and inaccurate 

crowding estimations has a real practical affect on the performance of the examined 

contemporary algorithms.  Therefore, particularly given the efficiency of the 

specialist Mak_Tree (see Chapter 6, Chapter 7 and Chapter 8) and its relative 

simplicity, the replacement of truncated techniques with unbounded approaches in 

the bi-objective domain is strongly encouraged.   

This chapter paints only part of the picture however.  If extension of existing 

bounded systems yields positive results, then the development of novel specialist 

algorithms designed explicitly for use with unbounded sets may afford even more 

impressive performance gains.  Before this is pursued however, it is useful to first 

explore more thoroughly the behaviour of existing contemporary algorithms.  With 

such an analysis in hand, novel techniques can be designed to exploit the strengths of 

those systems and address any weaknesses that may emerge.  
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10 ANALYSING CONTEMPORARY OPTIMISERS 
It is surprising that the renewed interest in multiobjective test suites (see, for 

instance, [41, 154, 158, 162, 164, 166, 172, 233, 234]) and performance metrics (see 

[103, 216, 218, 219, 224, 235-237]) has not led to a similar rebirth of comparative 

studies.  While work exists that capitalises on Pareto compliant performance 

indicators (see, for instance, [62, 81, 91, 137]), there exists no single study that uses 

these indicators to analyse a rich set of contemporary optimisers across a diverse 

collection of real-valued test problems.  The likely reason for the dearth of valuable 

comparative works (like that produced by Zitzler et al. [92] during the field’s 

infancy) is related to the impressive growth of multiobjective optimisation research 

(see Figure 2.1 in Coello et al.’s [51] thorough text).  Where early studies could 

provide a comprehensive insight into the field as a whole by examining a small 

number of algorithms across a narrow set of target domains — the breadth and 

diversity of contemporary research precludes such a simplistic goal: there is no 

concise set of algorithms and problems that offers a thorough and complete picture of 

the current state-of-play.  The key then is not to abandon comparative studies, but to 

reform them under the knowledge that the dynamics of the field have changed.  The 

goal of complete field-wide analysis may be infeasible, but contemporary researchers 

now have the tools to offer thorough and statistically sound analyses of distinct areas 

of contemporary multiobjective thought.  The production of such studies may offer 

only a sliver of light into an understanding of the field as a whole, but produce 

enough slivers and greater truths may be exposed. 

With this in mind, the following section will describe the performance of the leading 

contemporary elitist multiobjective genetic algorithms on a broad set of real-valued, 

static, unconstrained, bi-objective test problems.  Specifically, PAES, PESA, NSGA-

II, SPEA2 and IBEA (the Indicator Based Evolutionary Algorithm) are all examined 

under the nine functions proposed in Section 9.1.2.1 with the Pareto-compliant 

methods outlined in Section 9.1.1.  Note that these algorithms are intended only to 

represent some of the leading choices from the collection of core evolutionary 

algorithms — that is, those techniques that feature a single evolutionary process that 

is perpetuated throughout the length of the run.  Their selection does not infer 

superiority over algorithms produced under the banners of Simulated Annealing 

[238-241], Ant Colonies [40, 58, 242-244], Swarm Optimisers [89, 149, 174, 245, 
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246], Artificial Life [169, 247, 248], Memetics [62, 85, 249-251] or Messy Systems 

[222, 252-254] (amongst others), and indeed, it is hoped that this comparative study 

will inspire similar works in those distinct areas. 

Before commencing the core analysis though, it is first necessary to explore the 

Indicator Based Evolutionary Algorithm in more detail, since it has received only 

cursory attention (see Section 3.1.6) thus far.  

10.1  INDICATOR BASED EVOLUTIONARY ALGORITHMS  
In retrospect, the foundation of the Indicator Based Evolutionary Algorithm (IBEA) 

[91] is obvious.  If Pareto-compliant performance metrics offer insight into the 

quality of the frontal set (and its constituent members), then a performance indicator 

can be used during the evolutionary process to apply selection pressure.  If a Pareto-

compliant performance measure is used as the only indicator of preferability, the 

evolutionary algorithm is charged with a singular task — produce solutions that 

improve the estimated quality of the prevailing front.  This simple notion represents a 

marked, if not quite paradigmic, shift in conventional multiobjective thought — 

rather than trying to explicitly balance the distinct goals of diversity, spread and 

accuracy, these can be merged via a singular, scalar, performance indicator.   

While both impressive and appealingly simple, the IBEA algorithm is not without its 

flaws.  Though the algorithm offers a way to effectively merge the distinct goals of 

multiobjective optimisation, it is an inherently biased merger — the technique 

explicitly favours accuracy by manipulating the way the performance measure is 

used — and requires a scaling factor, which offsets a key advantage afforded by the 

exclusion of independent diversity approximations (namely, the definition of an extra 

parameter).  Moreover, assessing performance on a per-generation basis can carry a 

substantial run-time overhead that effectively limits the size of the truncated elite set 

on which the algorithm operates.  Still, the technique represents an exciting new 

approach to multiobjective optimisation and merits further analysis against its 

contemporaries.   

10.2  DESCRIBING IBEA 
The analysis in Section 10.4 explores the performance of two distinct adaptive IBEA 

systems — one defined by its use of hypervolume (IBEA_H) and another that 
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capitalises on the additive epsilon measure (IBEA_E).  It is important to note that the 

adaptive form of the IBEA algorithm uses scaled objective-scores and indicators, 

such that all values lie in the range [0,1].  With this in mind, the IBEA system 

proceeds as outlined in Algorithm 22, with fitness for solution a given as: 

( , )

( )

a b

b a

a
 −    ×

∈ −

= −∑
I

fitness v c

P

e  (85) 

 

where v is a system parameter, c is the maximum absolute value of I for all 

population members, and I is a Pareto compliant binary performance indicator.  In 

IBEA_H, I represents the volume of objective-space (up to a given reference point) 

dominated by b, but not by a, while in IBEA_E, I indicates the minimum distance in 

any dimension that a must be shifted to at least weakly dominate b.  

Note that, structurally at least, the IBEA technique is not markedly different to the 

SPEA2 and NSGA-II algorithms — all three feature constantly sized truncated 

archives, binary tournaments between members of the archive and a truncation  

 

Algorithm 22 — The IBEA Algorithm 

Inputs:  
 b  The maximum number of solutions allowed in the breeding pool. 

 s  The maximum archive size. 

1: : generateRandomPop()=Arch  Initialising the archive with random members. 
2: :=∅Parents   
3: while (terminationConditionMet() true)≠   
4:  calculateFitness( )Arch  Calculate the fitness of all members according 

5:  ( )while >Arch s  to binary performance indicators. 

6:   extractLeastFit( )Arch  Trim the archive to size by extracting the least 
7:   calculateFitness( )Arch  fit members of the set. 

8:  ( )while <Parents b  Perform binary tournament selection with 

9:   : selectRandom( )first = Arch  members of the archive. 
10:   : selectRandom( )second = Arch  Winners are those with superior, indicator- 

11:   ( )if <first secondfitness fitness  derived, fitness scores. 

12:    : { }first= ∪Parents Parents   
13:   else   
14:    : { }second= ∪Parents Parents   
15:  : reproduce( )=Children Parents  Create the next generation of solutions and 
16:  :=∅Parents  add this to the archive. 
17:  := ∪Arch Arch Children   
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system that is predicated on preferability.  The only point of differentiation, though it 

is an important one, is in IBEA’s use of numerical performance indicators to derive 

solution fitness. 

10.3  EMPIRICAL ANALYSIS METHODOLOGY 
As with preceding analyses, the performance of the contemporary elite systems is 

compared with hypervolume and epsilon numerical metrics taken over the course of 

each run (with twenty distinct runs per optimiser for each indicator).  Since this is a 

multi-system comparative study, in the interests of brevity, pair-wise visual analyses 

are included only when they offer meaningful insight into the differences of two 

algorithms.  Results for PAES, PESA, NSGA-II and SPEA2 are as per those seen 

earlier in this chapter (see Section 9.2.1, Section 9.2.2, Section 9.2.3 and Section 

9.2.4 respectively), with an equivalent set of IBEA_H and IBEA_E runs included to 

expand the scope of the study.  System parameters are as per those defined in 

preceding sections, with the IBEA techniques featuring v = 0.01 and IBEA_H using a 

scaled reference point of (2,2) (which is guaranteed to be greater than the normalised 

maximum of any function and is the recommendation of Zitzler and Kunzli [91]).  It 

is worth noting that, for consistency, all techniques use an archival threshold of fifty 

and identical mutation and crossover rates (where appropriate)76.  All relevant result 

graphs and tables are presented at the completion of this sub-section (pages 331–

345).    

10.4  EMPIRICAL ANALYSIS 
The explicit aim of many conventional comparative studies is to establish a clear 

hierarchy of preferability amongst the examined algorithms (see [92], for instance).  

While this is an honourable pursuit, it is equally important to establish which 

algorithms are suited to particular problems — armed with such thorough domain-

specific analysis, decision makers should be better able to select an approach that 

matches their current task.  Thus, this chapter will explore both domain-specific and 

general performance issues, with a view to better defining the nature of each 

examined algorithm. 

                                                 
76  Obviously, PAES has no crossover as it is a purely asexual system. 
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10.4.1  PAES PERFORMANCE 
The epsilon (Figure 147, Figure 148, Figure 149, Figure 150 and Figure 151) and 

hypervolume (Figure 142, Figure 143, Figure 144, Figure 145 and Figure 146) 

results for PAES are an excellent example of how strongly the characteristics of a 

given test function can affect the apparent quality of an algorithm.  The performance 

of PAES on AP-15 and AP-21 is particularly poor, with PAES being significantly 

worse than all algorithms under the hypervolume metric in AP-21 (Figure 145 and 

Figure 146), and, according to both metrics, significantly worse than at least three of 

the five other algorithms on AP-15 and AP-21 (Figure 145, Figure 146, Figure 150 

and Figure 151).  The likely reason for such under whelming performance is related 

to the non-separability of these functions and the underlying collateral noise (see 

Section 0) that this non-separability creates.  Since PAES, at its core, is a hill-

climbing algorithm with a heavy priority assigned to Pareto dominance, there is a 

tendency for it to have a particularly narrow search focus — recall that the search 

will only expand along the front if a newly generated solution is in less densely 

occupied space than the primary (parent) solution.  The consequence of such a 

focussed aggressive approach in non-separable problem domains is that particular 

genes and dependencies can be over-emphasised in order to generate temporary 

gains.  The problem, of course, is that by implicitly focussing on a sub-set of the 

solution, the development and improvement of other linkages must suffer.  

Moreover, the nature of collateral noise makes a latter-day improvement of such 

neglected alleles unlikely — since gains in other gene areas may degrade the overall 

utility of the solution (temporarily), the hill-climber is unlikely to orient the search in 

that direction.  Thus, multi-member systems with a predilection towards diversity — 

such as NSGA-II — are better suited to highly non-separable problems, as they are 

less likely to pursue a single solution archetype.   

The performance of PAES is similarly poor on AP-16, where it is significantly worse 

than every tested algorithm on both performance metrics (Figure 145, Figure 146, 

Figure 150 and Figure 151).  This result highlights the inefficiency of single-member 

hill-climbing algorithms in zero-utility gradient spaces — since the mutation of a 

single member will rarely result in a distinct improvement, the search will often stall 

or degenerate into a random walk around these flat regions of space.  Multi-member 

systems such as NSGA-II, SPEA2 and IBEA_E are better able to avoid such 
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problems as they typically feature well-distributed leading fronts.  This property 

reduces the likelihood of all members lying in low-gradient spaces and, as such, 

facilitates continuing evolutionary pressure that can drive the search.  

Still, the parent/child hill-climbing system is not without its advantages against the 

more common multi-member systems.  In particular, it is interesting to note that, 

relative to all other tested algorithms, the PAES technique has significantly better 

end-of-run results on AP-5 according to both hypervolume (Figure 145 and Figure 

146) and epsilon (Figure 150 and Figure 151) metrics, and demonstrates better early-

generation performance on both AP-1 and AP-2 (Figure 142 and Figure 147).  The 

differences here illustrate a difference in priorities — PAES will always pursue a 

dominant child and so explicitly biases Pareto dominance over diversity concerns, 

whereas the multi-member systems are designed to maintain a well distributed front 

throughout the course of the run.  The consequence is that PAES is faster at locating 

the optimal front in AP-1 and AP-2, but is considerably worse at effectively 

developing that front.  The same is true of AP-5, but the biased nature of that 

problem aids the convergence rates of the PAES system (it offers a useful gradient 

that the hill-climber can capitalise upon)77. 

Performance on AP-4 is also interesting — the simple, base-line, PAES algorithm is 

better able to address multi-frontality than its more complex, multi-member, 

successors.  The key to this disparity lies with frontal convergence.  When a multi-

member system converges onto a front, it is typically charged with ensuring an even 

distribution of members along that front.  While this is an appropriate technique if 

the front is optimal, it can severely hamper performance if it is not.  Consider a 

multi-member population situated along a false front — the set will typically be 

composed of many well-distributed incomparable proposals.  If a solution lying 

beyond the front is discovered, it will solicit only a small minority of the search 

focus in subsequent generations — it may be the most promising avenue of escape, 

but the nature of binary tournaments precludes it from dominating the evolutionary 

                                                 
77  It is important to note that this statement is not intended to reflect the superiority of PAES on 

biased problems in general.  The biased objective-space in AP-5 is fortuitously arranged in a 
manner that facilitates a sharp and narrow gradient that can be pursued by PAES without penalty.  
This aggressive exploration of locally optimal regions at the expense of diversity concerns will be 
extremely detrimental to the performance of PAES when the objective-space features misleading 
bias, as evidenced by its particularly poor performance in AP-17.  
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process78.  In contrast, the hill-climbing PAES algorithm can devote the entirety of 

the search effort towards escaping the front when the opportunity presents itself — 

so long as the discovered solution is preferable to the parent (as it typically will be), 

it will become the primary source of subsequent evolutionary exploration.  The 

ability to puncture false fronts in this manner is an interesting feature of hill-climbing 

systems and, given the difficulty that multi-frontality typically causes multiobjective 

optimisers, may rest as an interesting avenue of future research.  

10.4.2  PERFORMANCE OF MULTI-MEMBER SYSTEMS 

10.4.2.1  DIVERSITY-RELATED PERFORMANCE 
A principal difference between the competing evolutionary algorithms is the selected 

diversity mechanism — with techniques ranging from cuboid, κth neighbour and cell-

based approaches to the implicit indicator-derived estimations of the IBEA systems.  

Given such a breadth of available options, the best way of maintaining and 

developing a rich set of disparate solutions is clearly an important point of contention 

in the field.  One way to address such a debate is to examine the practical 

performance of each approach in problem domains whose principal complexity is 

derived from a need for diversity.  Consider AP-1, AP-2 and AP-3 — each of these 

problems feature simple objective-spaces, bereft of the types of deception, multi-

frontality, bias and collateral noise that may inhibit a search.  As such, optimisation 

of these problems does not so much test the ability of an optimiser to locate the front, 

but rather, its capacity to develop a rich set of solutions along that front.  Thus, high 

end-of-run performance in these algorithms suggests the utility of the corresponding 

diversity process — whether such basic diversity is valuable in more complex 

problem spaces is the subject of another debate (as discussed in Section 10.4.1, the 

maintenance of a diverse set can inhibit performance in multi-frontal problems like 

AP-4).    

Hypervolume results (Figure 145 and Figure 146) indicate that the IBEA_E 

algorithm (and, thus, its epsilon-based diversity estimation) is significantly better 

than the other examined systems on the simple AP-1, AP-2 and AP-3 problems, while 

epsilon indicators (Figure 150 and Figure 151) suggest a significant improvement in 

                                                 
78  The problem is exacerbated the larger the population is, since this will further dilute the impact of 

independent members. 



Escaping the Bounds of Generality — Unbounded Bi-Objective Optimisation 

 

- 324 - 

AP-2 and minor advantages in AP-1 and AP-3.  Equally importantly, IBEA_E is 

never significantly worse than any other tested system on these functions, 

irrespective of the selected performance indicator.  Such results suggest a clear 

differential between the implicit diversity maintenance techniques employed by 

IBEA_E and the approaches utilised by the other tested systems.  Similarly crisp 

orderings do not exist in the remaining techniques, though the results are no less 

meaningful. 

Consider the performance of IBEA_H (Figure 145, Figure 146, Figure 150 and 

Figure 151): it is particularly impressive in AP-1 and AP-3, significantly bettering all 

other non-IBEA systems under the hypervolume metric.  Such strong results are 

supported by performance in AP-3 under the epsilon metric, where it is again 

significantly better than all non-IBEA systems, and in the epsilon analysis of AP-1, 

where it is only significantly outperformed by NSGA-II.  However, its performance 

in the AP-2 function is extremely poor — with significantly better results achieved 

by every other tested system according to both metrics.  This lends support to the 

notion posited by Zitzler and Thiele [137] that hypervolume estimations may bias 

convex regions of objective-space — the concave optimal front in AP-2 clearly 

affects the capacity of the IBEA_H optimiser to distribute the search effectively.    

With respect to the remaining multi-member techniques, the NSGA-II cuboid 

approach appears preferable to the κth neighbour and cell-based strategies, with 

NSGA-II achieving significantly better results than both in AP-1 and AP-3 under 

hypervolume metrics (Figure 145 and Figure 146), and in AP-3 according to epsilon 

indicators (Figure 150 and Figure 151).  Moreover, the NSGA-II approach is never 

significantly worse than either technique under any metric for these three basic 

problems.  The results are interesting — even though SPEA2 uses a relatively small 

value for κ (very near to the suggestion made by Zitzler et al. [81]79), its performance 

indicates that even a minor bias away from locally uncrowded solutions and towards 

a more expansive analysis can have a detrimental affect on maintaining a well-

distributed search.  This is a somewhat unintuitive claim — the natural assumption is 

that the richer the density analysis, the better the estimations are likely to be (up to a 

point).  The reason for such unusual conclusions is again attributable to the dual 
                                                 
79  Following these guidelines a κ value of 10, rather than 11, is recommended.  It is very unlikely that 

such a small difference would significantly affect the performance of the SPEA2 algorithm. 
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nature of the truncated set — the goal of the archive is to maintain uncrowded 

members and offer a reasonably well-distributed approximation of the front (lest the 

accuracy of dominance comparisons becomes severely eroded).  However, the κth 

neighbour approach is inherently biased towards members lying at the extremes of 

objective-space (the larger the value of κ, the greater the bias) and, as such, the 

density-based truncation operation can lead to discontinuities in the centre of the 

archival front and an over-emphasis of exterior solutions — clearly this will affect 

how evenly distributed the archival set is.  Perhaps more importantly, the κth 

neighbour technique estimates how crowded the region is in which a solution resides 

and can therefore recommend the extraction of locally uncrowded members during 

truncation.  The κth neighbour estimations may therefore give a more accurate picture 

of the front, but are detrimental to the archive’s role as a dominance comparison set.   

Thus, the superiority of the cuboid approach over the SPEA2 technique on the simple 

AP-1, AP-2 and AP-3 test functions implies that, of the dual tasks that a truncated 

archive is charged with, the maintenance of a well-distributed archival set is of 

primary importance.  By using diversity estimation techniques that more readily 

allow poorly distributed archives, the SPEA2 algorithm is more susceptible to frontal 

degradation and the acceptance of weak solutions — the consequence of which is 

less evolutionary drive and clearly inferior results (as emphasised by both 

hypervolume and epsilon indicators).  

Similar problems beset the PESA approach.  Since PESA-based truncation removes a 

random member of the most occupied cell, there is the potential for shrinking fronts 

(since the extreme members of the prevailing front are not protected from deletion) 

and the introduction of frontal-discontinuities (particularly if solutions lying on the 

boundaries of a cell are removed).  Problems also exist if the grid is too evenly 

distributed or fine grained80 (where a large number of singly occupied cells can 

reduce much of the truncation process to random extractions), or if the grid is too 

coarse (where a small number of heavily occupied cells can incur similarly 

unpredictable deletions).  Examining the average post-truncation cell sizes (Figure 

156) of the PESA system, it is also clear that the crowding mechanism (under the 

selected grid resolution) provides little information to the binary tournament in these 
                                                 
80  This runs counter to the claim of Khare that “very fine grids... [produce] good performance in 

terms of diversity” [75]. 
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tests — reducing many of the matches to random selections.  Thus, there is potential 

for the truncated archive to suffer in terms of both distribution and crowding 

estimation.  Such deficiencies clearly underline the problems inherent in grid-based 

crowding — unless the cells are correctly sized, the procedure can collapse.    

10.4.2.2  PERFORMANCE AGAINST COMPLEX PROBLEM SPACES 
Performance on AP-15, AP-16, AP-17 and AP-21, in particular, illustrates a clear 

differential between the PESA algorithm and the other tested multi-member systems 

in complex problem domains.  Indeed, PESA is significantly worse than all other 

examined population-based algorithms on AP-15, AP-17 and AP-21 under epsilon 

metrics (Figure 150 and Figure 151), and significantly worse on AP-15, AP-16 and 

AP-17 according to hypervolume metrics (Figure 145 and Figure 146).  Moreover, it 

is never significantly better according to any metric when examining the complex 

AP-15, AP-16, AP-17 and AP-21 problems.  The poor performance of the PESA 

algorithm is likely attributable to the inadequacy of the selected grid mechanism (see 

Section 10.4.2.1) — the truncated set in each case is primarily composed of solutions 

sharing an identical crowding score.  Clearly, this removes the impetus for 

distributing the search effectively, with the evolutionary process operating on little 

more than a random sub-set of the (at best) leading front.   

PESA fares better in the multi-modal AP-4 function.  Indeed, the PESA algorithm is 

never significantly worse than any other system on either metric, and is significantly 

better than IBEA_H according to both metrics.  This somewhat surprising result — 

in league with the poor performance of IBEA_E in this domain — lends further 

weight to the notion that maintaining and exploring a well-distributed frontal set in 

multi-modal problem domains can have an adverse affect on overall performance (as 

outlined in Section 10.4.1).  Indeed, it appears that the weaknesses of the grid-based 

system (namely, the potential for shrinking fronts, discontinuities and randomised 

selections) introduces sufficient noise to encourage exploration away from each 

misleading front and thus inhibits premature convergence.  

Outside of the already discussed AP-4 function, the performance of IBEA_E on the 

complex test problems is particularly impressive (see Figure 145, Figure 146, Figure 

150 and Figure 151, in particular).  It is never significantly worse under either the 

hypervolume or epsilon metrics.  Moreover, it is significantly better than all multi-
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member systems on AP-5 for both metrics; significantly outperforms SPEA2 

according to at least one metric on all problems; is significantly superior over NSGA-

II on at least one indicator in AP-5, AP-15 and AP-21; and is significantly better than 

PESA on every function other than AP-4 with respect to both epsilon and 

hypervolume metrics.  Thus, together with the results illustrated in Section 10.4.2.1, 

the IBEA_E approach is the dominant technique with respect to the majority of 

functions addressed in this study.  This further solidifies the notion that the 

integration of performance indicators into multiobjective optimisers can yield 

powerful results.   

However, the relatively disappointing performance of IBEA_H demonstrates that the 

inclusion of an indicator alone does not guarantee unmitigated success — indeed, the 

choice of indicator is fundamentally important.  Empirical results suggest that the 

hypervolume indicator used in IBEA_H fails to adequately encourage a well-spread 

search (as most obviously evidenced in the AP-15 frequency matrix illustrated in 

Figure 155), the consequence of which is a system whose end-of-run performance is 

significantly worse (Figure 145, Figure 146, Figure 150 and Figure 151) than 

IBEA_E on every tested function bar AP-21 (according to at least one metric).  

Moreover, it suffers against the cuboid and neighbourhood based approaches of 

NSGA-II and SPEA2 — on at least one metric, it is significantly worse than either or 

both of these algorithms on six of the nine tested functions.  Given the apparent 

sensitivity of the IBEA approach to the underlying indicator, this thesis recommends 

that future works explore a richer set of Pareto-compliant techniques (such as R 

indicators [186]) with a view to establishing differences in performance 

characteristics. 

Of the popular NSGA-II and SPEA2 approaches, results suggest that NSGA-II is 

superior across a broad range of complex problem domains, with significant 

improvements seen in AP-5, AP-15 and AP-16 under the hypervolume metric and 

similarly statistically important gains made in AP-5 and AP-21 on the epsilon metric 

(Figure 145, Figure 146, Figure 150 and Figure 151).  Moreover, NSGA-II is never 

significantly worse than the SPEA2 approach on any tested function.  Such 

impressive performance relative to SPEA2 on problem domains with challenging 

objective-spaces illustrates the superiority of the NSGA-II system in guiding and 
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distributing the search and infers the preferability of the cuboid density estimation 

technique and the frontality-based fitness function.   

10.4.2.3  GENERAL PERFORMANCE 
While the No Free Lunch [161] theorem intimates, and the implicit biases of each 

technique suggest, that there can be no single optimal approach to bi-objective 

optimisation and it is therefore impossible to establish any kind of true general 

hierarchy of the available algorithms, it is possible to draw preliminary conclusions 

about the suitability of algorithms to particular classes of problem domains (as seen 

throughout this section).  Should a system perform well across a set of domains that 

are consistent with the type of problems encountered in the real world, then it is 

reasonable to assume that the approach rests as a good choice for those decision 

makers (in particular) with limited intimate a priori knowledge of the problem at 

hand. 

Of the tested algorithms, IBEA_E presents the most consistently impressive 

performance — effectively addressing varying frontal shapes, non-separability, 

deception and zero-utility gradient spaces.  Though PAES offers preferable results in 

both AP-4 and AP-5¸ that algorithm’s inability to perform adequately (under the 

settings used here) on the complex later test functions, and its relatively poor 

performance in the simple AP-1, AP-2 and AP-3 problems, effectively precludes 

PAES as a viable general-use choice.  Similarly, though NSGA-II significantly 

improves on the performance of IBEA_E on AP-4, IBEA_E is significantly better 

(according to at least one metric) in five of the nine examined functions.  Thus, given 

a general continuous bi-objective problem, this thesis offers a preliminary 

recommendation of the IBEA_E system as the best of the tested truncated 

approaches.  Future testing, particularly focussing on the variation of PAES, PESA 

and IBEA settings, should further explore this claim and endeavour to provide useful 

heuristics for parameter settings.     

Given the broad range of core evolutionary algorithms examined and the diverse set 

of test problems explored, it is also possible to begin appraising which domain 

features best inhibit the performance of multiobjective optimisers.  Most notable is 

the difficulty associated with multi-frontality — with attainment surfaces (Figure 

108, Figure 109, Figure 118, Figure 119, Figure 128, Figure 129, Figure 140, Figure 
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141, Figure 152 and Figure 153) and frequency matrices (Figure 116, Figure 117, 

Figure 126, Figure 127, Figure 138, Figure 139, Figure 154 and Figure 155) 

indicating an inability to consistently escape sub-optimal fronts for all algorithms 

(particularly in AP-4 and, to a lesser extent, AP-21).  Obviously the number and 

intensity of false fronts will affect the extent to which optimisers are damaged by 

multi-frontality, but the likes of AP-4 — with its frequent and well-defined fronts — 

will likely pose strong obstacles to efficiency (and the applicability of termination 

criteria).  Of the remaining domain characteristics, high levels of non-separability 

strongly affect all of the examined systems (the median attainment surfaces in AP-15 

and AP-21 are well-removed from the true front — see Figure 153), while zero-

utility gradients can be problematic (see AP-16 in Figure 153), particularly for hill-

climbing systems, which require a well-defined fitness slope to drive the 

evolutionary process effectively.  Finally, frontal shape remains a problem for some 

systems (concavity affects IBEA_H, in particular), but is otherwise a minor issue, 

while misleading bias appears to most affect systems that fail to maintain a 

sufficiently diverse population set (which better equips them to escape locally 

promising, but globally inferior, regions).  Thus, this thesis recommends that a 

greater focus be applied to research in the areas of multi-frontality and, to a lesser 

extent, non-separability and flat fitness spaces — improving performance of 

algorithms in these important areas is a key to solidifying the successes of 

multiobjective optimisation in real-world tasks.     

10.5  CONCLUSIONS 
This chapter has addressed the lack of thorough comparative studies in the area of 

contemporary core evolutionary algorithms by offering a rich analysis of NSGA-II, 

SPEA2, IBEA, PESA and PAES across a diverse problem set.  By examining 

performance under hypervolume and epsilon Pareto-compliant indicators and by 

exploring the statistical differences between results, the behaviour of each algorithm 

is placed in an unbiased contemporary context.  Importantly, the results speak not 

only to the general behaviour of each approach, but elucidate the influence of domain 

characteristics and explore the contributing factors that lead to both the successes and 

failures of each technique.  It is such information that will provide the base for the 

development of powerful new unbounded systems in the following chapter.  A 

summary of the key findings is offered in Table 34, with the breadth of observations 
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serving as an illustration of the importance of comparative studies and as a 

recommendation for continued work in the area.   

 

Table 34 - Summarising Key Findings in the Comparative Study of Contemporary Evolutionary 
Algorithms 

Parameter Selection Issues 

Resolution of PAES and PESA grid is a key factor in performance.  When cells typically contain only 
a single member, selection from, and truncation of, the archive can tend towards randomness. 

The selection of the underlying indicator for IBEA-based optimisation is important.  Empirical results 
suggest that the epsilon indicator is markedly better, in general, than the hypervolume indicator. 

Domain-Related Issues 

Multi-frontality causes problems for all optimisation techniques, particularly in AP-4.  Noise in the 
optimisation process may be the key to avoiding premature convergence and encouraging exploration 

away from the front.  The types of penetration offered by single-member, PAES-like, systems may 
also be important. 

Zero-utility gradient spaces are particularly problematic for single-member hill-climbing algorithms, 
since there is little contextual information with which to orient the search.  The lack of additional 

members also inhibits escape from such regions. 

Concave optimal fronts affect the performance of the hypervolume-based IBEA_H approach.  This is 
due to an implicit bias in the approach that favours convex objective-spaces. 

Non-separability causes difficulties for multiobjective optimisers in general, and particularly for the 
single-member PAES system.  Diversity appears to be central to improving performance, as 

dominance-centric approaches are prone to over-emphasising particular gene dependencies at the 
expense of others. 

Crowding Estimation Issues 

Results suggest that the cuboid diversity measure is typically preferable to the κth neighbour approach.  
The cuboid technique is more able to maintain an evenly distributed archival set, which better 

prevents both the inclusion of weak solutions and, in-turn, frontal degradation. 

The use of cell-based diversity estimates in PESA can be extremely detrimental to the quality of the 
archival set — truncation affords no protection of extreme members and may promote frontal 

shrinkage, while large frontal discontinuities can be introduced if the set is evenly distributed or built 
on inadequately sized cells. 

Overall Performance 

IBEA_E achieves the best performance in general, despite inefficiencies in AP-4 and AP-5. 

The PAES system is competitive in simple objective-spaces and multi-frontal domains, but suffers 
considerably under the introduction of non-separability and zero-utility gradient spaces (in particular). 

Of the popular NSGA-II and SPEA2 systems, NSGA-II is generally superior. 



Chapter 10 — Analysing Contemporary Optimisers 

- 331 - 

0

0.2

0.4

0.6

0.8

1

1.2

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

(a) AP-1 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

5000 6000 7000 8000 9000 10000

(b) AP-1 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

(c) AP-2 

0

0.1

0.2

0.3

0.4

0.5

0.6

5000 6000 7000 8000 9000 10000

(d) AP-2 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

(e) AP-3 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

5000 6000 7000 8000 9000 10000

(f) AP-3 

0.2
0.4 PAES PESA SPEA2 NSGA2 IBEA_E IBEA_H

 
 

Figure 142 — Progressive Hypervolume Averages 
y-axis: average hypervolume performance; x-axis: number of evaluations executed. 
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Figure 143 — Progressive Hypervolume Averages 
y-axis: average hypervolume performance; x-axis: number of evaluations executed. 
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Figure 144 — Progressive Hypervolume Averages 
y-axis: average hypervolume performance; x-axis: number of evaluations executed. 
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Figure 145 — End-of-Run Hypervolume Box-Plots 
y-axis is the hypervolume performance at the end of the run (7,000 evaluations in AP-5, 10,000 

evaluations in all remaining functions); x-axis indicates the selected optimiser. 
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 PAES PESA SPEA2 NSGA-II IBEA_E IBEA_H
PAES - 2.189E-02 2.604E-02 2.451E-01 3.935E-19 1.135E-10 
PESA 2.876E-01 - 9.461E-01 6.018E-04 7.668E-27 3.248E-17 
SPEA2 8.878E-01 2.286E-01 - 7.647E-04 1.317E-26 5.242E-17 
NSGA-II 1.537E-01 7.154E-01 1.171E-01 - 1.537E-15 7.180E-08 
IBEA_E 3.707E-11 1.593E-08 1.574E-11 1.071E-07 - 3.822E-03 

(a) A
P-1 

IBEA_H 2.706E-02 1.137E-03 3.834E-02 3.090E-04 1.542E-17 -  
 (b) AP-2   

 
 PAES PESA SPEA2 NSGA-II IBEA_E IBEA_H
PAES - 3.673E-01 9.765E-01 6.809E-05 2.043E-22 1.858E-10 
PESA 2.854E-01 - 3.519E-01 1.299E-06 1.782E-25 7.371E-13 
SPEA2 2.167E-02 2.166E-01 - 7.667E-05 2.561E-22 2.208E-10 
NSGA-II 7.838E-03 1.090E-01 7.123E-01 - 2.285E-10 1.067E-02 
IBEA_E 1.352E-02 1.582E-01 8.602E-01 8.473E-01 - 7.850E-05 

(c) A
P-3 

IBEA_H 9.024E-06 6.433E-04 2.773E-02 6.631E-02 4.266E-02 -  
 (d) AP-4   

 
 PAES PESA SPEA2 NSGA-II IBEA_E IBEA_H
PAES - 1.037E-30 1.551E-44 2.329E-29 2.995E-12 3.021E-24 
PESA  - 1.807E-04 7.039E-01 2.664E-08 6.503E-02 
SPEA2   - 3.963E-05 7.975E-19 3.953E-08 
NSGA-II    - 1.889E-07 1.422E-01 
IBEA_E     - 1.352E-04 

(e) A
P-5 

 
 PAES PESA SPEA2 NSGA-II IBEA_E IBEA_H
PAES - 3.077E-01 2.055E-04 9.495E-19 8.977E-26 2.227E-17 
PESA 8.846E-03 - 2.777E-06 4.581E-22 2.404E-29 1.263E-20 
SPEA2 5.122E-12 7.223E-06 - 2.530E-08 8.562E-14 2.397E-07 
NSGA-II 7.784E-28 5.538E-19 1.029E-06 - 3.514E-02 6.617E-01 
IBEA_E 2.315E-31 3.189E-22 6.305E-09 3.204E-01 - 1.114E-02 

(f) A
P-15 

IBEA_H 9.754E-21 9.563E-13 3.983E-03 3.736E-02 2.221E-03 -  
 (g) AP-16   

 
 PAES PESA SPEA2 NSGA-II IBEA_E IBEA_H
PAES - 3.263E-02 2.250E-25 6.196E-29 1.460E-34 1.241E-16 
PESA 7.472E-03 - 2.746E-18 1.400E-21 6.465E-27 1.373E-10 
SPEA2 2.341E-05 1.093E-01 - 3.079E-01 1.001E-02 7.745E-03 
NSGA-II 7.620E-08 5.049E-03 2.237E-01 - 1.172E-01 2.552E-04 
IBEA_E 3.190E-23 1.039E-14 2.529E-10 1.897E-07 - 2.632E-07 

(h) A
P-17 

IBEA_H 1.624E-18 9.622E-11 5.689E-07 1.207E-04 1.504E-01 -  
 (i) AP-21   

Figure 146 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Hypervolume Results 
Bold italics indicate significant differences at the 5% level. 
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Figure 147 — Progressive Epsilon Averages 
y-axis: average epsilon performance; x-axis: number of evaluations executed. 
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Figure 148 — Progressive Epsilon Averages 
y-axis: average epsilon performance; x-axis: number of evaluations executed. 
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Figure 149 — Progressive Epsilon Averages 
y-axis: average epsilon performance; x-axis: number of evaluations executed. 
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(e) AP-5 
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(f) AP-15 
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(g) AP-16 
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(h) AP-17 
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(i) AP-21 

Figure 150 — End-of-Run Epsilon Box-Plots 
y-axis is the epsilon performance at the end of the run (7,000 evaluations in AP-5, 10,000 evaluations 

in all remaining functions); x-axis indicates the selected optimiser. 
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 PAES PESA SPEA2 NSGA-II IBEA_E IBEA_H 
PAES - 1.123E-01 1.084E-01 1.531E-11 1.027E-16 1.016E-01 
PESA 7.044E-01 - 1.513E-03 4.618E-16 8.645E-22 1.358E-03 
SPEA2 4.373E-01 6.909E-01 - 1.274E-07 4.518E-12 9.745E-01 
NSGA-II 1.643E-01 3.112E-01 5.380E-01 - 7.160E-02 1.499E-07 
IBEA_E 6.399E-07 9.681E-08 1.200E-08 3.839E-10 - 5.513E-12 

(a) A
P-1 

IBEA_H 8.045E-05 3.470E-04 1.415E-03 9.624E-03 1.673E-17 -  
 (b) AP-2   

 
 PAES PESA SPEA2 NSGA-II IBEA_E IBEA_H 
PAES - 1.210E-01 9.491E-02 8.549E-02 4.212E-10 4.717E-08 
PESA 1.472E-01 - 9.044E-01 1.163E-03 2.630E-14 6.540E-12 
SPEA2 8.060E-03 2.254E-01 - 7.667E-04 1.179E-14 3.096E-12 
NSGA-II 5.898E-02 6.584E-01 4.405E-01 - 3.284E-06 1.262E-04 
IBEA_E 4.937E-05 8.060E-03 1.472E-01 2.682E-02 - 3.910E-01 

(c) A
P-3 

IBEA_H 6.171E-09 8.278E-06 9.972E-04 5.433E-05 6.216E-02 -  
 (d) AP-4   

 
 PAES PESA SPEA2 NSGA-II IBEA_E IBEA_H 
PAES - 1.526E-28 3.855E-38 2.034E-24 1.390E-09 1.458E-15 
PESA  - 8.146E-03 2.350E-01 2.743E-09 9.937E-05 
SPEA2   - 1.433E-04 1.289E-16 1.859E-10 
NSGA-II    - 1.264E-06 6.192E-03 
IBEA_E     - 2.909E-02 

(e) A
P-5 

 
 PAES PESA SPEA2 NSGA-II IBEA_E IBEA_H 
PAES - 7.968E-02 1.907E-13 3.632E-11 1.707E-10 1.594E-01 
PESA 1.323E-03 - 1.006E-18 3.923E-16 2.351E-15 1.692E-03 
SPEA2 1.884E-16 8.085E-08 - 4.026E-01 2.729E-01 1.035E-09 
NSGA-II 3.781E-19 7.332E-10 3.868E-01 - 7.948E-01 9.530E-08 
IBEA_E 1.296E-18 1.903E-09 4.857E-01 8.662E-01 - 3.518E-07 

(f) A
P-15 

IBEA_H 5.964E-07 6.318E-02 3.196E-04 9.476E-06 1.968E-05 -  
 (g) AP-16   

 
 PAES PESA SPEA2 NSGA-II IBEA_E IBEA_H 
PAES - 5.896E-01 1.936E-28 1.338E-30 1.178E-30 1.508E-11 
PESA 2.820E-01 - 1.494E-26 1.098E-28 9.680E-29 3.746E-10 
SPEA2 5.349E-06 4.330E-04 - 5.424E-01 5.321E-01 1.881E-07 
NSGA-II 2.369E-11 1.145E-08 2.108E-02 - 9.876E-01 7.755E-09 
IBEA_E 1.323E-10 5.240E-08 4.310E-02 7.739E-01 - 7.127E-09 

(h) A
P-17 

IBEA_H 7.764E-12 4.238E-09 1.292E-02 8.554E-01 6.387E-01 -  
 (i) AP-21   

 
Figure 151 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Epsilon Results 

Bold italics indicate significant differences at the 5% level. 
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(c) AP-3 
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(e) AP-5 

Figure 152 —Best and Worst Median End-of-Run 50% Attainment Surfaces for Each Problem 
y-axis: objective one; x-axis: objective two.  Best and worst systems derived from median 

hypervolume scores provided in Figure 145. 
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(b) AP-16 
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(d) AP-21 

Figure 153 —Best and Worst End-of-Run 50% Attainment Surfaces for Each Problem 
y-axis: objective one; x-axis: objective two.  Best and worst systems derived from median 

hypervolume scores provided in Figure 145. 
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Figure 154 — End-of-Run Frequency Matrices 

(i) Frequency matrix for IBEA_H.  (ii) The red palette represents where IBEA_H more frequently 
attains a given region; the blue palette indicates where IBEA_E attains an area more consistently. 

 

          (a.i) — AP-1              (a.ii) — AP-1                  (b.i) — AP-2                 (b.ii) – AP-2        

          (c.i) — AP-3              (c.ii) — AP-3                  (d.i) — AP-4                 (d.ii) – AP-4        

          (e.i) — AP-5              (e.ii) — AP-5                  (f.i) — AP-14                (f.ii) – AP-14       
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Figure 155 — End-of-Run Frequency Matrices 

(i) Frequency matrix for IBEA_H.  (ii) The red palette represents where IBEA_H more frequently 
attains a given region; the blue palette indicates where IBEA_E attains an area more consistently. 

 

          (a.i) — AP-15             (a.ii) — AP-15                  (b.i) — AP-16               (b.ii) – AP-16      

          (c.i) — AP-17             (c.ii) — AP-17                  (d.i) — AP-21               (d.ii) – AP-21      
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Figure 156 —Average Size of Post-Truncation Cells Using PESA 
y-axis: average cell size; x-axis: number of evaluations that PESA has performed. 
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11 NOVEL UNBOUNDED OPTIMISERS 
In an effort to express the power and versatility of the Mak_Tree, this section 

proposes and then explores two simple, novel, approaches to multiobjective 

optimisation.  By focussing on the weaknesses seen in the contemporary 

evolutionary algorithms explored in Chapter 0, the techniques offer not only an 

insight into how researchers can harness the power of unbounded sets in interesting 

new ways, but also how some of the more problematic domain characteristics can be 

addressed.   

11.1  INTRODUCING DIVERSITY_PAES 
Preceding sections have established a number of key flaws in the PAES approach, 

not least of which are an inability to effectively distribute the search along the 

optimal front (as illustrated in the AP-1, AP-2 and AP-3 results) and inefficiencies in 

zero-utility gradient spaces (as seen in AP-16).  Clearly, these are important issues 

that limit the applicability of PAES in real-world studies.  As such, this section 

proposes a novel new algorithm — Diversity_PAES — which maintains the core 

mechanics of the basic PAES approach, but augments these with the inclusion of an 

unbounded Mak_Tree.  

11.1.1  DESCRIBING DIVERSITY_PAES 
Where Mak_PAES simply replaced the truncated PAES archive with an unbounded 

Mak_Tree, Diversity_PAES more thoroughly integrates the archival set into the 

evolutionary process.  By capitalising on an extended Mak_Tree with cuboid-based 

crowding annotations, the Diversity_PAES algorithm has access to the least-crowded 

solution in the archival set during each iteration of the core evolutionary process.  

Rather than using this uncrowded solution purely for reference purposes, it is used to 

asexually produce one child per iteration, with the offspring integrated into the basic 

PAES system as per Algorithm 23.  Note that the core mechanics remain largely 

unchanged — the principal difference is that the primary solution is now compared 

against a set of two alternatives. 

As intimated by the name, the principal advantage of the Diversity_PAES algorithm 

is that it expressly encourages the pursuit of elite uncrowded spaces.  The traditional  
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Algorithm 23 — The Diversity_PAES Algorithm 

1: : generateRandomSolution()primary =  Start the search at random locations. 
2: : generateRandomSolution()remote =   
3: while (terminationConditionMet() true)≠   
4:  : asexualReproduction( )child primary=  Produce two children from the primary 
5:  : asexualReproduction( )remoteChild remote=  and remote solutions. 
6:  updateArchiveAndGrid( )child  Insert the remote and primary children into 
7:  updateArchiveAndGrid( )remoteChild  the archive, where appropriate. 
8:  ( )if child primary≺  If the primary child dominates the primary 

9:   ( )if remoteChild child≺  solution, but is dominated by the remote 
10:    :primary remoteChild=  child, the remote child becomes primary. 

11:   
isInArchive( ) 

else if 
( )

remoteChild
remoteChild child

 ∧    ∼
 

Otherwise, if the remote child is non-
dominated and incomparable to the  

12:    ( )if .crowd( ) .crowd( )child remoteChild≤grid grid  primary child, then make the solution 
13:     :primary child=  lying in the least crowded cell the  
14:    else  primary solution. 
15:     :primary remoteChild=   
16:   else   
17:    :primary child=  If the remote child is the only of the 
18:  ( )else if remoteChild primary≺  children to dominate the primary 
19:   :primary remoteChild=  solution, then it becomes the primary. 
20:  ( )else if isInArchive( )child  If neither child dominates the primary 

21:   ( )if .crowd( ) .crowd( )child primary≤grid grid  solution, select the least crowded non- 
22:    :primary child=  dominated child (if one exists). 
23:   ( )if isInArchive( )remoteChild  If the selected child is in less crowded 

24:    ( )if .crowd( ) .crowd( )remoteChild primary≤grid grid space than the primary solution, then 
25:     :primary remoteChild=  it becomes the primary. 
26:  ( )else if isInArchive( )remoteChild   

27:   ( )if .crowd( ) .crowd( )remoteChild primary≤grid grid   
28:    :primary remoteChild=  The remote parent is the least-crowded 
29:  : selectLeastCrowded( )remote = Archive  solution in the archive. 

 

PAES technique suffers in this respect as it must happen upon uncrowded regions in 

order to capitalise upon them — if uncrowded space is far-removed from the current 

location of the primary solution, navigating to that region is unlikely to be efficient.  

Furthermore, the incorporation of uncrowded solutions aids in the prevention of 

stagnation and offers an escape from deceptive regions.  If a basic hill-climbing 

approach like PAES descends a steep fitness gradient into deceptive isolated space81, 

it is inherently difficult to escape, as the fitness space surrounding the primary 

                                                 
81  In single-objective optimisation, this is typically referred to as a fitness well, since once a hill-

climber falls in, it is difficult to get back out. 
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solution will not correctly orient the search.  By maintaining a link with uncrowded 

space, the search is provided with another avenue of escape.  The fact that the 

alternative will typically lie away from the deceptive region — since this will 

become increasingly crowded as the search focus intensifies — only aids in 

production of viable escape routes. 

Thus, Diversity_PAES remains true to the low-population, asexual, cell-based 

mechanics of the original system, but incorporates elite uncrowded solutions to better 

drive diversity and aid performance in problematic domains.  Moreover, by 

capitalising on an unbounded archive, the selection of the least crowded elite solution 

is guaranteed to be correct — the proposal will always be a member of the leading 

front and reside in the least-occupied cell.   

11.2  INTRODUCING MAK_OS 
Of all of the examined problem domain characteristics, multi-frontality appears to be 

the most difficult for conventional multi-member systems to overcome.  An 

interesting mechanism designed to diminish such problems is the introduction of 

noise into the evolutionary process (as proffered in Section 10.4.2.2) — the explicit 

goal of which is to encourage a broader search that is less likely to prematurely 

converge.  Capitalising on this notion, the new Mak_OS (Over-use Selection) 

algorithm is designed to offer both an extremely simple approach to unbounded 

optimisation and a system that may better address multi-frontal concerns. 

11.2.1  DESCRIBING MAK_OS 
Designed exclusively for use with an unbounded archive, the Mak_OS system (as 

described in Algorithm 24) differentiates itself from the standard methodologies of 

those multi-member techniques examined throughout this chapter in a number of key 

areas.  In particular, all solutions involved in the breeding process are guaranteed to 

reside in the prevailing front82 (since the breeding pool is composed only of members 

of the unbounded elite archive); the initial selection set is based on unbounded 

crowding estimations (which avoid the inaccuracies of crowding inherent in a  

 

                                                 
82  A similar strategy is employed in PESA, the Single Front Genetic Algorithm (SFGA) and Parallel 

SFGA (PSFGA) systems [255], though their use of truncated archives precludes guarantees about 
frontal membership.  
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Algorithm 24 — The Mak_OS Algorithm 

Inputs:  
 α  The fraction of the archive to be included in the breeding pool (0 < α ≤ 1). 

 b  The maximum number of solutions allowed in the breeding pool. 

1: : generateRandomSolutions()=Children  Start the search at random locations. 
2: while (terminationConditionMet() true)≠   
3:  :=∅Parents  Insert the children into the 
4:  updateArchive( )Children  archive (where appropriate). 

5:  ( )( ): selectLeastCrowded , α= ×Pool Archive Archive Fill the pool with (α× Archive ) uncrowded  

6:  ( )( )while 0.5α> ×Pool Archive  solutions and truncate according to usage. 

7:   ( )removeMostUsed Pool   

8:  ( )while <Parents b  Perform binary tournament selection 

9:   : selectRandom( )first = Pool  based on solution usage.  If solution usage 
10:   : selectRandom( )second = Pool  is equivalent, then use crowding estimation 
11:   ( )if usage( ) usage( )first second<  to distinguish preferability. 
12:    : { }first= ∪Parents Parents   
13:    incrementUsage( )first  Update the usage rate of the selected 
14:   ( )else if usage( ) < usage( )second first  solution. 
15:     : { }second= ∪Parents Parents   
16:     incrementUsage( )second  Update the usage rate of the selected  
17:   ( )else if crowd( ) < crowd( )second first  solution. 
18:     : { }second= ∪Parents Parents   
19:     incrementUsage( )second   
20:   else   
21:     : { }first= ∪Parents Parents   
22:     incrementUsage( )first   
23:  : reproduce( )=Children Parents  Reproduce with the parental set. 

 

truncated environment); the cardinality of the selection set varies according to the 
size of the true non-dominated front (based on the α parameter); and the fitness of  

selection-set members is defined by the number of times they have bred in the past 

(with lower scores being preferable).  Importantly, the application of usage-based 

fitness for selection set truncation and binary tournaments not only varies the 

constituents of the breeding pool under stagnation conditions, but introduces a level 

of noise to the evolutionary process (since the least crowded solutions are not always 

selected).  Additionally, by varying the size of the selection set (and, in-turn, the 

breeding pool), the Mak_OS system takes on the properties of a simple hill-climbing 

system while the front is small and a multi-member optimiser when the front is large, 

thus encouraging aggressive dominance-based searching early in the run, and 

diversification when the front is suitably developed.   
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Thus, the Mak_OS system represents a simple new approach to multiobjective 

optimisation that is tailored to the use of unbounded archival sets and the 

requirements implicit of multi-frontal domains.  It is expected that its core mechanics 

should present scope for interesting future research. 

11.3  EMPIRICAL ANALYSIS METHODOLOGY 
The performance of the Mak_OS and Diversity_PAES techniques are contrasted 

with the contemporary evolutionary algorithms explored in Section 0 — namely, 

NSGA-II, SPEA2, PESA, PAES, IBEA_E and IBEA_H83.  All Mak_OS and 

Diversity_PAES systems are run twenty times per performance indicator (adhering 

to the methodologies outlined in Section 9.1.2.1), with results for other systems 

extracted from preceding sections.  The Mak_OS technique uses α = 0.2, the 

Diversity_PAES technique uses the same grid as in basic PAES (with 10,000 distinct 

cells), and all systems feature matched mutation and (where appropriate) crossover 

rates to maintain consistency.  Continuing the exploration of crowding estimations in 

optimiser performance, the Mak_OS system is implemented with NSGA-II-style 

cuboid approximations (henceforth referred to simply as Mak_OS) and also an 

averaged κ nearest-neighbours (κ = 20) approach (referenced as Mak_OS_KNN).  As 

per Chapter 0, in the interests of brevity and clarity, frequency and attainment 

surfaces will be used sparingly in this analysis, while graphs and tables are presented 

en masse at the end of this chapter (pages 361–373). 

11.4  EMPIRICAL ANALYSIS 

11.4.1  DIVERSITY_PAES PERFORMANCE 
Relative to the basic PAES approach, the performance of the new Diversity_PAES 

algorithm is particularly impressive.  Indeed, Diversity_PAES is significantly better 

than the contemporary asexual system on every function other than AP-4 according 

to end-of-run epsilon indicators (Figure 166, Figure 167 and Figure 168) and is 

significantly better on all bar AP-2, AP-4 and AP-21 when drawing inferences from 

the hypervolume results (Figure 160, Figure 161 and Figure 162).  Moreover, 

Diversity_PAES is never significantly worse than the original PAES system on any 

tested function according to both examined indicators.   

                                                 
83  The performance of the new systems against the Mak extensions seen in Section 9.2 is described 

later (see Section 12). 
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Looking at specific domains, the improvement seen in Diversity_PAES on AP-1,  

AP-2 and AP-3, particularly in the later stages of each run (Figure 157 and Figure 

163), suggests that the incorporation of the remote solution into the evolutionary 

process better encourages a well-distributed search than the simple PAES approach 

when nearing convergence.  Moreover, the hill-climbing Diversity_PAES system is 

competitive against the existing multi-member systems.  Specifically, it is 

significantly better than SPEA2, NSGA-II and PESA according to at least one metric 

(Figure 160, Figure 161, Figure 166 and Figure 167) for all three functions (though 

NSGA-II is significantly better under one metric for AP-1), and is otherwise only 

significantly worse than the impressive IBEA_E on AP-2 and AP-384.  Such results 

indicate that even small asexual systems are capable of generating well-distributed 

sets so long as they are driven by sufficiently powerful and accurate crowding 

mechanisms.   

While Diversity_PAES offers a significant improvement over the basic PAES 

technique on the AP-16 function — likely because the inclusion of the remote 

solution offers an alternative means of escape — it is still significantly outperformed 

by SPEA2, NSGA-II and IBEA_E under both selected indicators (Figure 160, Figure 

162, Figure 166 and Figure 168).  The implication is that well-distributed multi-

member systems are more equipped to handle zero-utility gradients, principally 

because it is less likely for all members to lie in flat fitness space and, as such, the 

search is better able to orient itself.   

The sharp improvement on the AP-5 function throughout the run (Figure 158 and 

Figure 164) suggests that when a steep utility gradient exists, the Diversity_PAES 

technique is able to effectively capitalise on it, while the improved end-of-run results 

(Figure 160, Figure 161, Figure 166 and Figure 167) — where Diversity_PAES is 

significantly better than all examined truncated systems under both metrics — further 

illustrate that the new technique can effectively distribute the search on convergence.  

There is debate though as to whether such an aggressive pursuit of promising 

gradients can be detrimental to the behaviour of the optimiser in less favourably 

arranged fitness-spaces, where the likes of deception could lead to evolutionary 

                                                 
84  IBEA_E significantly outperforms Diversity_PAES on AP-1 under the hypervolume metric, but, 

conversely, is significantly bettered according to the epsilon indicator.  This infers that the two 
algorithms produce incomparable fronts with respect to this problem. 
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dead-ends.  In particular, PAES (see Section 10.4.1) performed impressively in AP-5, 

but was the worst of all tested approaches in the deceptive AP-17 function.  It is 

reassuring then that Diversity_PAES offers not only a significant improvement over 

the basic PAES approach in the complex AP-17 problem, but also over every other 

tested contemporary system (with all bar SPEA2 being significantly outperformed on 

both indicators — see Figure 166, Figure 168, Figure 160 and Figure 162).  Such 

powerful results suggest that the inclusion of a remote solution into the evolutionary 

process is sufficient to prevent an over-emphasis on deceptive spaces (so long as the 

remote solution lies beyond the deceptive region, which is likely) without foregoing 

the efficiencies familiar to basic hill-climbing systems — namely, the capacity to 

exploit valuable search gradients.   

A particularly surprising result is seen in the highly non-separable AP-15 function: 

the asexual Diversity_PAES system is not just competitive with the examined multi-

member systems, but frequently preferable.  Indeed, Diversity_PAES is significantly 

better than all examined systems with respect to the hypervolume metric (Figure 160 

and Figure 162) and similarly preferable over every system other than SPEA2 under 

the epsilon indicator (Figure 166 and Figure 168).  The results suggest that the 

diversity mechanism employed in the new technique is sufficient to develop and 

maintain multiple valuable gene-dependencies simultaneously (unlike the 

conventional PAES system, see Section 10.4.1) and that the asexual reproduction 

system may be better suited to highly non-separable tasks than the popular sexual 

technique.  Indeed, it is possible that sexual crossover is of lower utility in problems 

like AP-15 since it can disrupt cross-gene dependencies — by manipulating only a 

small number of alleles (typically one) during each reproduction, the asexual system 

is better able to maintain connections in the chromosome and provides a more 

incremental approach to change.  This is an interesting idea, but one which certainly 

requires further investigation — as such, it rests as a potential avenue of future work. 

With respect to the multi-frontal AP-4 problem, Diversity_PAES significantly 

outperforms PESA, SPEA2, NSGA-II, IBEA_E and IBEA_H under the hypervolume 

metric (Figure 160 and Figure 161) and similarly betters SPEA2, NSGA-II, IBEA_E 

and IBEA_H given epsilon analysis (Figure 166 and Figure 167).  Such positive 

results illustrate that although the Diversity_PAES system incorporates a remote 

solution with the express purpose of better distributing the search, it is still capable of 
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effectively punctuating false fronts due to its capacity to quickly refocus the majority 

of the search around dominating children (as per PAES, see Section 10.4.1).  

The worst performance of the Diversity_PAES system relative to the contemporary 

multi-member systems is in AP-21, where it is significantly bettered by IBEA_E, 

IBEA_H and NSGA-II under epsilon indicators (Figure 166 and Figure 168) and 

SPEA2, NSGA-II, IBEA_H and IBEA_E according to hypervolume measures 

(Figure 160 and Figure 162).  Due to the overlapping domain characteristics present 

in this complex function, it is difficult to provide a definitive statement as to the 

cause of such performance degradation, but it is likely due to an interaction between 

multi-frontality and isolation.  Should Diversity_PAES puncture a false front into an 

isolated (or, worse, deceptive) region, the additional search emphasis in this low-

yield area is unproductive.  Interestingly then, the very mechanisms which are 

responsible for improved performance in simple multi-frontal problems like AP-4, 

may rest as a burden in certain configurations of multi-frontal space.  This notion 

merits further work.   

11.4.2  MAK_OS VERSUS MAK_OS_KNN 
With respect to the two examined crowding estimation mechanisms used in the 

Mak_OS technique, the averaged κ nearest-neighbours approach yields generally 

preferable results, with Mak_OS_KNN demonstrating significantly better end-of-run 

performance than the cuboid-based approach on AP-3, AP-15 and AP-17 under 

hypervolume metrics (Figure 160, Figure 161 and Figure 162) and on AP-15 and AP-

17 when considering epsilon metrics (Figure 166, Figure 167 and Figure 168).  

Moreover, the κ neighbours-based system is never significantly worse than the 

cuboid technique on any examined problem under either chosen metric.  To 

understand the reasons for such disparity, it is worthwhile examining the 

performance of each approach on the simple AP-1, AP-2 and AP-3 test functions, 

where the basic utility of each diversity estimation mechanism is best observed (as 

described in Section 10.4.2.1).  As illustrated in the corresponding progressive 

epsilon (and, to a lesser extent, hypervolume) graphs (Figure 163 and Figure 157), 

the cuboid approach produces preferable performance early in the run, when the 

population is small, but is inferior nearer to the termination point.  This lends further 

empirical weight to an important point — the utility of the underlying diversity 
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mechanism in multiobjective optimisers is intrinsically tied to the size of the 

population from which the estimations are drawn.  The cuboid approach is preferable 

early, as the population levels are too low for the high valued κ mechanism to 

function effectively — it will suffer from biases around the extremities of the front 

and poor emphasis of uncrowded individuals85.  The cuboid approach suffers later in 

the run, particularly around end-of-run convergence, as the technique is too narrow 

in focus — emphasising locally uncrowded solutions, when the development of these 

regions may not lead to a markedly better distribution of the frontal set as a whole.  

Given the significance of front cardinality in diversity estimation, this thesis 

recommends further investigation into dynamically changing diversity estimators.  

An interesting approach that can be of relatively low cost is to maintain multiple 

crowding-based annotations in the Mak_Tree, with selection operating on the most 

appropriate annotation given the current population size.  As an illustration — if the 

Mak_Tree maintains annotations for cuboid, small-neighbourhood-based and large-

neighbourhood-based crowding approximations, all that is required is a basic 

heuristic for selecting the most appropriate estimator given the current frontal size.  

Clearly the development of such heuristics also rests as an interesting piece of future 

work — not just for the formation of appropriate triggers in dynamic settings, but as 

a guide for researchers working with truncated archives, where the maximum size of 

the frontal set will be known in advance (as discussed earlier, Zitzler et al. [81] offers 

some work in this area with respect to the appropriate setting of κ in κth nearest-

neighbour estimators, but this is not particularly well supported with empirical proof 

of its utility to multiobjective optimisers). 

11.4.3  MAK_OS_KNN PERFORMANCE 
Since the κth nearest-neighbour approach yields generally better results than the 

cuboid technique for the Mak_OS methodology, subsequent analyses focus on the 

behaviour of Mak_OS_KNN.  Results illustrate that the performance of this system 

is particularly impressive on the simple AP-1, AP-2 and AP-3 functions (see Figure 

160, Figure 161, Figure 166 and Figure 167) where it is significantly better than all 

                                                 
85  The inclusion of noise (via the usage mechanic) in the Mak_OS_KNN system diminishes the 

influence of such regional-bias and encourages a more diverse collection of selected solutions 
upon which to build a search.  It is likely that such noise reduces the negative impact of the κ 
nearest-neighbours mechanism at lower population levels (unlike in the elitist Mak_SPEA2_KNN 
technique — see Section 9.2.4). 
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examined (non-OS) algorithms other than IBEA_E under both epsilon and 

hypervolume metrics.  Moreover, it is never significantly worse than IBEA_E and 

significantly outperforms it according to both metrics in AP-2 and under the epsilon 

metric in AP-1.  Similarly strong performance is seen in the Mak_OS_KNN system 

on AP-5 (again, see Figure 160, Figure 161, Figure 166 and Figure 167), where it is 

significantly better than all examined pre-existing optimisers according to both 

numerical metrics.   

The key to such impressive results is related to the dual nature of the Mak_OS_KNN 

system — when the search is progressing rapidly, it takes on the characteristics of a 

simple hill-climbing system with a prioritisation of dominance over diversity (due to 

the small size of the prevailing front – see Figure 169); when the search 

convergences, it takes on more familiar multi-member properties, with an increased 

bias towards diversification (due to the increased size of the archival set and the 

influence of crowding estimates in solution selection).  In simple objective-spaces 

like AP-1, AP-2, AP-3 and AP-5, this dual nature means that search gradients can be 

effectively exploited to locate optimal regions of space rapidly, with diversification 

taking a secondary role until expansion along that optimal region becomes necessary.  

Furthermore, since Mak_OS_KNN capitalises on an unbounded archive, the search 

is guaranteed to follow only non-dominated solutions (unlike in the basic PAES 

system, where the non-domination of primary solutions cannot be assumed).   

However, as discussed previously (see Section 10.4.1), an aggressive pursuit of high-

yield gradients at the expense of early diversification can be disadvantageous, 

particularly in the presence of strong deception — this was particularly obvious in 

the AP-17 function, where the PAES hill-climbing strategy faltered.  The 

Diversity_PAES results (see Section 11.4.1) suggested that the key to avoiding the 

lures of such deceptive spaces with simple hill-climbing systems lay principally with 

the explicit inclusion of remote solutions to encourage a more expansive search.  The 

significant improvement seen in the Mak_OS_KNN technique over the simple PAES 

approach (Figure 160, Figure 162, Figure 166 and Figure 168) similarly suggests that 

while the priority of the Mak_OS_KNN search rests with dominance during the low-

population phase of optimisation, it also encourages the pursuit of sufficiently 

diverse regions to avoid becoming fixated on deceptive spaces.   
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While the Mak_OS_KNN system may be capable of delivering preferable results to 

the basic hill-climbing system, the integration of noise can make it inferior to more 

conventional systems.  In particular, Mak_OS_KNN has significantly worse end-of-

run performance in AP-17 (Figure 160, Figure 162, Figure 166 and Figure 168) 

against NSGA-II, SPEA2, IBEA_E and Diversity_PAES — the likely cause of 

which is the application of usage-based fitness measures, which can diminish the 

influence of uncrowded solutions and reduce the frequency with which these regions 

are explored.  If uncrowded solutions represent regions away from alluring deceptive 

spaces (as they may often do), this relatively minor reduction in the importance of 

remote solutions may reduce performance in biased domains.   

The inclusion of noise though does come with some benefits — the most obvious of 

which is visible in the multi-frontal AP-4 problem.  Significantly outperforming 

every examined non-hill-climbing system (Figure 160, Figure 161, Figure 166 and 

Figure 167) under both epsilon and hypervolume metrics (improvement over PAES 

is insignificant), the Mak_OS_KNN technique achieves better frontal progression in 

this difficult problem space principally due to the inclusion of usage-based fitness 

(and, to a lesser extent, smaller early populations that better facilitate frontal 

punctuation).  When the optimiser converges onto a false front, the usage-derived 

fitness scores encourage variation in the breeding pool, such that a broader range of 

progenitors may be explored.  The effect is that the Mak_OS_KNN technique is 

better equipped to search along the front when convergence occurs, while the biasing 

of newly created solutions better focuses the search around puncturing proposals 

when they are produced.  In contrast, by focussing on the least-crowded solutions 

only, contemporary multi-member systems are limiting the scope of the search when 

convergence occurs — this is reasonable when diversification of an optimal frontal 

set is key, but becomes less appropriate when progression beyond the front is the 

primary concern. 

Given the simplicity of the approach, the performance of the Mak_OS_KNN system 

on AP-16 is also impressive (see Figure 160, Figure 162, Figure 166 and Figure 168).  

In particular, Mak_OS_KNN is only significantly bettered by NSGA-II86 (under the 

epsilon metric); shows a significant improvement over PAES, Diversity_PAES and 
                                                 
86  SPEA2 is preferable under epsilon metrics, but inferior under hypervolume metrics, thus 

indicating an incomparability between the sets produced by each system 
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PESA under both indicators; and yields significantly better end-of-run results than 

IBEA_H according to hypervolume.  The results suggest that even under relatively 

small populations (see Figure 169), the fitness mechanism is sufficient to encourage 

the type of diversity necessary to escape zero-utility gradient surfaces.  The result 

also lends weight to the notion that multi-member systems are better suited to 

problem domains with flat objective-spaces, as illustrated by the superiority of 

Mak_OS_KNN over both PAES and Diversity_PAES.  

The Mak_OS_KNN system is less successful in the non-separable AP-15 problem, 

but again remains competitive (see Figure 160, Figure 162, Figure 166 and Figure 

168).  Specifically, it is significantly worse than Diversity_PAES and IBEA_E on at 

least one metric, though it is significantly better on at least one metric when 

compared with IBEA_H, PESA, PAES and SPEA2.  The small degradation in 

performance relative to other successful multi-member systems is again attributable 

largely to noise.  By reducing the selective pressure on diversification, a smaller set 

of valuable dependencies is likely to be explored.  The effect is similar to that seen in 

PAES, where over-specialisation can become problematic, though it occurs on a 

considerably smaller scale and is thus less damaging.  

Performance on the complex AP-21 function (see Figure 160, Figure 162, Figure 166 

and Figure 168) is particularly note-worthy, given that the Mak_OS_KNN system is 

only significantly bettered by IBEA_E (under the hypervolume metric).  Beyond this 

single system, Mak_OS_KNN produces significantly better end-of-run results than 

Diversity_PAES, PAES, SPEA2 and PESA under both performance indicators, while 

also illustrating a significant improvement over NSGA-II under hypervolume 

measures.  This impressive performance shows the adaptability of the simple 

Mak_OS_KNN system and again illustrates that smaller selection sets (see Figure 

169) are capable of generating impressive results even in complex, multi-faceted, 

domains. 

11.4.4  SUMMARISING KEY FINDINGS 
Table 35 offers a summary of the key properties of the novel systems discussed in 

this chapter and provides a brief overview of some of the more important issues that 

have been elucidated by their application.  The summary again emphasises the 

importance of a thorough algorithmic study across a rich problem set. 
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Table 35 - Summarising Key Findings in the Comparative Study of Novel and Contemporary 
Evolutionary Algorithms 

General Properties of Novel Systems 

The incorporation of a globally-remote (non-dominated) solution into the hill-climbing process 
improves search capabilities, particularly when nearing convergence. 

Diversity_PAES encourages aggressive pursuit of positive utility gradients, while the incorporation of 
additional diversification pressure curbs the potential for convergence in deceptive regions (a 

limitation in conventional hill-climbing systems like PAES). 

The dual nature of the Mak_OS system means that it adapts aggressive hill-climbing properties early 
in the run, and a more search-centric, population-based, approach when nearing frontal convergence. 

Domain-Related Issues 

Further empirical evidence that though smaller populations are well suited to multi-frontal domains 
(where they may puncture false fronts more effectively), they are inappropriate for use in zero-utility 

gradient spaces (where an insufficient number of alternative search paths are provided). 

Preliminary results suggest that asexual breeding may improve performance on non-separable 
problems by better maintaining gene dependencies. 

Results indicate that selection-noise does improve performance on multi-frontal problems by 
encouraging a more thorough search along false fronts.  The reduction in importance of remote 

solutions may degrade performance when pursuit of uncrowded regions is key however (as in non-
separable or deceptive problems). 

Crowding Estimation Issues 

Additional empirical evidence that the selection of an appropriate crowding operator is contingent 
upon the size of the population.  The neighbourhood technique in Mak_OS_KNN is preferred later in 

the run where the population is large, while the cuboid approach is preferable when the non-
dominated set is small. 

 

11.5  CONCLUSIONS 
Via the integration of unbounded archiving and the application of novel techniques, 

the Mak_OS and Diversity_PAES systems are both simple approaches capable of 

generating particularly powerful results.  Indeed, though Diversity_PAES is 

essentially a low-cost hill-climbing algorithm augmented with explicit diversification 

mechanisms, it consistently significantly outperforms the original PAES system and 

is noticeably more robust — in particular, offering marked improvements in 

deceptive problem domains (where the increased diversity is important) and non-

separable functions (where both diversity and asexual reproduction appear to be 

pivotal).  Moreover, this simple technique is competitive with, and often better than, 

a host of contemporary population-based algorithms — further illustrating the 

capacity of unbounded archiving to deliver powerful performance gains. 
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The new Mak_OS_KNN approach yields similarly impressive results.  By 

capitalising on an adaptively sized binary tournament that is predicated on usage 

statistics, the unbounded technique offers an aggressive, dominance-centric, search 

while the archival set is small (typically early in the run) and a more expansive 

(potentially noisy) search when the set grows.  The consequence is a system that 

performs particularly well in simple problem spaces, where the aggressive search is 

beneficial, and in multi-frontal domains, where the noise and initially narrow search 

are important.  Moreover, excluding AP-17, across the remaining problem domains it 

is generally competitive with, and often better than, the popular pre-existing systems 

— illustrating a level of consistency that is lacking from all of the observed systems 

other than IBEA_E. 

Such promising results should be read as an open invitation to researchers.  If the 

development of simple novel algorithms predicated on the use of Mak_Trees can 

yield impressive gains, then the scope for more intricate unbounded systems is 

considerable.  As an illustration, by capitalising on adaptive diversity estimation 

techniques, integrating trailing fronts in fitness approximations or seeking more fine-

grained mechanisms for adaptive selection procedures (such as new ways to 

appropriately size binary tournaments), a host of new or augmented unbounded 

algorithms become available — all of which merit at least some further investigation.  

The pursuit of such work is strongly encouraged.  
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Figure 157 — Progressive Hypervolume Averages 
y-axis: average hypervolume performance; x-axis: number of evaluations executed. 
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Figure 158 — Progressive Hypervolume Averages 
y-axis: average hypervolume performance; x-axis: number of evaluations executed.
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Figure 159 — Progressive Hypervolume Averages 
y-axis: average hypervolume performance; x-axis: number of evaluations executed. 
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(j) AP-21 

Figure 160 — End-of-Run Hypervolume Box-Plots 
y-axis is the hypervolume performance at the end of the run (7,000 evaluations in AP-5, 10,000 

evaluations in all remaining functions); x-axis indicates the selected optimiser. 
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 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 1.66E-08 - 1.45E-14 2.28E-14 5.16E-06 3.09E-03 1.87E-06 1.76E-04 3.77E-01

Mak_OS 1.39E-16 3.09E-03 4.94E-24 8.38E-24 3.52E-13 - 6.06E-02 4.14E-01 3.67E-02
Mak_OS 
KNN 1.29E-22 1.87E-06 1.34E-30 2.33E-30 8.08E-19 6.06E-02 - 2.87E-01 8.65E-05

(a) AP-1 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 8.05E-02 - 4.92E-01 5.91E-02 7.46E-01 2.54E-16 1.37E-18 5.37E-07 8.88E-05

Mak_OS 6.79E-22 2.54E-16 1.89E-18 2.30E-22 2.60E-17 - 4.64E-01 4.05E-04 1.55E-29
Mak_OS 
KNN 2.34E-24 1.37E-18 8.42E-21 7.73E-25 1.28E-19 4.64E-01 - 2.23E-05 3.77E-32

(b) AP-2 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 5.35E-16 - 8.70E-19 6.56E-16 7.64E-06 1.67E-01 3.40E-04 4.45E-02 4.77E-02

Mak_OS 2.50E-20 1.67E-01 2.57E-23 3.11E-20 8.16E-09 - 2.57E-02 5.26E-01 8.47E-04
Mak_OS 
KNN 6.33E-28 3.40E-04 4.02E-31 8.03E-28 9.14E-15 2.57E-02 - 1.09E-01 4.66E-08

(c) AP-3 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 2.43E-01 - 2.58E-02 5.81E-04 1.47E-04 7.32E-01 4.41E-01 3.05E-04 3.12E-08

Mak_OS 4.08E-01 7.32E-01 5.86E-02 1.88E-03 5.28E-04 - 2.66E-01 1.04E-03 1.81E-07
Mak_OS 
KNN 5.31E-02 4.41E-01 2.83E-03 2.89E-05 5.83E-06 2.66E-01 - 1.36E-05 4.43E-10

(d) AP-4 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 1.21E-11 - 1.64E-56 5.73E-70 3.93E-55 2.17E-06 6.59E-04 1.45E-35 9.27E-50

Mak_OS 2.63E-02 2.17E-06 8.48E-39 1.00E-52 2.09E-37 - 1.65E-01 7.41E-19 4.51E-32
Mak_OS 
KNN 3.43E-04 6.59E-04 6.56E-44 8.88E-58 1.64E-42 1.65E-01 - 2.04E-23 4.09E-37

(e) AP-5 
Figure 161 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Hypervolume Results 

Bold italics indicate significant differences at the 5% level. 
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 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 1.13E-34 - 2.14E-38 1.53E-21 5.71E-06 4.63E-13 4.48E-06 1.27E-02 7.45E-07

Mak_OS 3.04E-10 4.63E-13 5.91E-13 6.02E-03 3.29E-03 - 3.90E-03 6.80E-07 1.21E-02
Mak_OS 
KNN 1.41E-18 4.48E-06 6.92E-22 3.36E-08 9.57E-01 3.90E-03 - 3.08E-02 7.01E-01

(a) AP-15 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 4.71E-02 - 5.22E-01 3.57E-07 4.69E-21 1.95E-19 1.96E-18 2.21E-24 1.45E-14

Mak_OS 4.26E-26 1.95E-19 2.04E-17 1.01E-05 6.18E-01 - 7.53E-01 1.36E-01 1.12E-01
Mak_OS 
KNN 5.20E-25 1.96E-18 1.89E-16 3.89E-05 4.16E-01 7.53E-01 - 7.13E-02 2.03E-01

(b) AP-16 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 6.90E-49 - 5.39E-41 3.57E-10 9.40E-08 3.61E-24 9.91E-18 1.16E-04 8.91E-18

Mak_OS 4.45E-11 3.61E-24 3.94E-06 5.33E-06 3.66E-08 - 4.95E-02 4.39E-12 5.12E-02
Mak_OS 
KNN 1.12E-16 9.91E-18 1.26E-10 8.09E-03 2.70E-04 4.95E-02 - 2.83E-07 9.88E-01

(c) AP-17 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 1.55E-01 - 2.05E-01 4.33E-03 5.49E-05 1.15E-08 4.23E-10 1.43E-18 3.27E-14

Mak_OS 2.81E-12 1.15E-08 6.10E-06 2.91E-03 7.56E-02 - 5.54E-01 4.39E-04 3.53E-02
Mak_OS 
KNN 6.28E-14 4.23E-10 3.78E-07 3.82E-04 1.82E-02 5.54E-01 - 3.28E-03 1.29E-01

(d) AP-21 
 

Figure 162 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Hypervolume Results 
Bold italics indicate significant differences at the 5% level. 
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Figure 163 — Progressive Epsilon Averages 
y-axis: average epsilon performance; x-axis: number of evaluations executed. 
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Figure 164 — Progressive Epsilon Averages 
y-axis: average epsilon performance; x-axis: number of evaluations executed. 
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Figure 165 — Progressive Epsilon Averages 
y-axis: average epsilon performance; x-axis: number of evaluations executed. 
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(b) AP-2 
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(g) AP-15 
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(h) AP-16 
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(i) AP-17 
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(j) AP-21 

Figure 166 — End-of-Run Epsilon Box-Plots 
y-axis is the epsilon performance at the end of the run (7,000 evaluations in AP-5, 10,000 evaluations 

in all remaining functions); x-axis indicates the selected optimiser. �
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 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 2.81E-02 - 1.77E-04 5.51E-01 2.31E-06 1.07E-16 1.96E-20 1.67E-10 5.73E-01

Mak_OS 7.93E-24 1.07E-16 2.38E-29 1.50E-18 7.76E-05 - 2.37E-01 2.85E-02 1.90E-18
Mak_OS 
KNN 6.48E-28 1.96E-20 1.36E-33 2.13E-22 3.90E-07 2.37E-01 - 8.07E-04 2.72E-22

(a) AP-1 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 5.39E-03 - 1.61E-03 4.01E-04 3.59E-05 2.40E-05 3.34E-08 2.28E-02 5.94E-11

Mak_OS 1.00E-11 2.40E-05 9.30E-13 7.09E-14 1.12E-15 - 1.67E-01 4.58E-02 4.94E-24
Mak_OS 
KNN 1.21E-15 3.34E-08 8.62E-17 5.07E-18 5.57E-20 1.67E-01 - 7.99E-04 7.94E-29

(b) AP-2 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 4.95E-04 - 6.86E-07 3.82E-07 7.32E-02 3.44E-03 2.86E-06 3.46E-03 3.76E-02

Mak_OS 4.15E-10 3.44E-03 2.59E-14 1.16E-14 3.25E-06 - 6.89E-02 9.98E-01 3.90E-01
Mak_OS 
KNN 4.21E-15 2.86E-06 6.56E-20 2.68E-20 2.32E-10 6.89E-02 - 6.85E-02 7.62E-03

(c) AP-3 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 8.73E-01 - 1.08E-01 5.02E-03 4.07E-02 1.44E-01 6.57E-01 2.54E-05 2.56E-09

Mak_OS 1.05E-01 1.44E-01 2.28E-03 2.41E-05 4.99E-04 - 3.08E-01 2.33E-08 3.78E-13
Mak_OS 
KNN 5.46E-01 6.57E-01 4.05E-02 1.20E-03 1.30E-02 3.08E-01 - 3.60E-06 2.02E-10

(d) AP-4 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 1.47E-05 - 1.50E-44 2.59E-54 3.56E-40 5.73E-01 2.35E-02 1.36E-22 3.54E-30

Mak_OS 1.13E-06 5.73E-01 1.26E-46 2.31E-56 3.00E-42 - 8.79E-02 1.69E-24 3.39E-32
Mak_OS 
KNN 1.20E-10 2.35E-02 6.67E-53 1.63E-62 1.51E-48 8.79E-02 - 1.78E-30 2.06E-38

(e) AP-5 
 

Figure 167 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Epsilon Results 
Bold italics indicate significant differences at the 5% level. 
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 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 7.76E-19 - 1.22E-24 7.38E-02 8.93E-03 3.00E-15 1.65E-03 4.11E-03 1.52E-14

Mak_OS 2.43E-01 3.00E-15 3.68E-03 2.59E-10 2.72E-08 - 4.36E-07 1.05E-07 8.10E-01
Mak_OS 
KNN 8.86E-10 1.65E-03 1.61E-14 1.68E-01 5.86E-01 4.36E-07 - 7.76E-01 1.39E-06

(a) AP-15 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 4.36E-05 - 3.64E-01 6.37E-06 1.00E-07 3.06E-03 7.96E-04 2.35E-07 3.40E-01

Mak_OS 7.82E-12 3.06E-03 1.22E-04 1.08E-01 1.38E-02 - 6.87E-01 2.16E-02 4.32E-02
Mak_OS 
KNN 6.21E-13 7.96E-04 2.35E-05 2.28E-01 3.88E-02 6.87E-01 - 5.75E-02 1.55E-02

(b) AP-16 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 2.25E-53 - 2.11E-51 4.66E-11 1.62E-09 1.39E-33 2.89E-17 1.76E-09 8.74E-28

Mak_OS 1.38E-07 1.39E-33 1.90E-06 2.20E-11 4.88E-13 - 2.59E-06 4.42E-13 1.05E-01
Mak_OS 
KNN 4.89E-21 2.89E-17 2.73E-19 3.07E-02 5.77E-03 2.59E-06 - 5.50E-03 1.69E-03

(c) AP-17 
 

 PAES Diversity
PAES PESA SPEA2 NSGA-II Mak 

OS 
Mak 

OS_KNN IBEA_E IBEA_H

Diversity 
PAES 2.20E-04 - 8.13E-03 3.71E-01 1.46E-03 2.10E-02 1.19E-04 3.70E-03 7.78E-04

Mak_OS 4.18E-09 2.10E-02 1.07E-06 1.55E-01 3.73E-01 - 1.15E-01 5.45E-01 2.83E-01
Mak_OS 
KNN 3.20E-13 1.19E-04 2.42E-10 2.88E-03 4.92E-01 1.15E-01 - 3.30E-01 6.14E-01

(d) AP-21 
 

Figure 168 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Epsilon Results 
Bold italics indicate significant differences at the 5% level. 
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(d) 

Figure 169 — Average Number of Solutions Extracted from the Archive in Mak_OS_KNN 
y-axis: number of solutions extracted; x-axis: number of evaluations executed. 
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12 COMPLETING THE ANALYSES 
Preceding chapters have offered rich analyses of contemporary truncated 

evolutionary systems, a range of Mak_Tree-based extensions and a selection of 

simple novel techniques.  In the interests of clarity, these chapters have been largely 

isolated from each other, but a number of valuable insights can be made when the 

complete collection of results are coalesced.  By broadening the scope of the 

investigation, the performance of the unbounded extensions can be placed in a more 

complete contemporary context; more general comments about the utility of 

unbounded archiving can be made; and domain-related peculiarities are better 

elucidated.  

12.1  EMPIRICAL ANALYSIS METHODOLOGY 
As this analysis is principally focussed on the recombination of results from previous 

sections, the chief methodological concern is not with acquisition, but rather with 

presentation.  Beyond the now familiar progressive averages that endeavour to 

succinctly describe algorithmic performance on a per-problem basis, this section 

introduces an indicator-based ranking system that, when merged with simple box-

plots, offers a clear differentiation between levels of performance on each problem.  

Specifically, an optimiser is given rank n on function f if it is significantly worse than 

at least one optimiser in rank n-1 on f, significantly better than at least one optimiser 

in rank n+1 on f, and never significantly better or worse than any member of rank n 

on f (see Equation (64)).   
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Figure 170 — Illustrating Ranked Box-Plots 

x-axis: distinct algorithms; y-axis: end-of-run indicator score.  

 

Once indicator-based rankings are completed, a powerful visualisation of 

performance is possible by simply arranging the box-plots such that all optimisers in 

a given rank appear in a contiguous region, with median indicator scores dictating 

the ordering of optimisers within each ranking (to offer insight into more fine-

grained performance improvements).  An example illustration is provided in Figure 

170 for reference purposes.  A more complete cross-problem analysis can be found 

by offering a table of normalised rankings for each system.  

To further emphasise end-of-run performance, this section also introduces simple 

combinatorial graphs that examine both median and average indicator-based 

termination scores.  Though it is possible to extract such results from progressive line 

graphs and box-plots, their combination here makes for a clearer depiction of typical 

performance, particularly given the large number of systems under observation 

(fifteen).  

12.2  EMPIRICAL PERFORMANCE 
When examining the results in toto (see the collected graphs and tables at the end of 

this chapter: pages 382–398) there can be little debating the potential power of 

unbounded archiving in bi-objective optimisation.  The ranked box-plots illustrate 

that an unbounded technique is rank-one for every tested function under epsilon 

indicators (see Figure 181, Figure 182 and Figure 183) and is similarly ranked on all 

problems other than AP-21 with respect to hypervolume (Figure 173, Figure 174 and 
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Figure 175).  Moreover, the set of best-ranked techniques is composed only of 

Mak_Tree-based systems in AP-2, AP-5, AP-15, AP-16 and AP-17 (five of the nine 

tested functions) according to hypervolume measures and in AP-1, AP-2, AP-5 and 

AP-17 (four of the nine examined problems) under epsilon indicators.  The end-of-

run average and median scores support such impressive results — the best performer 

under epsilon measures (Figure 184, Figure 185 and Figure 186) always operates on 

an unbounded set, while a truncated performer is preferable only in AP-21 with 

respect to hypervolume scores (Figure 176, Figure 177 and Figure 178). 

Given the breadth of popular contemporary truncated algorithms under examination, 

the superiority of unbounded techniques across such a variety of problem-space 

characteristics and according to such a thorough analysis suggests that unbounded 

archiving is a valuable tool for generic bi-objective optimisation tasks.  There still 

remains the question though, which is the best of the unbounded techniques offered 

in this thesis?  The answer is largely dependent on the type of problem characteristics 

encountered. 

Considering the early functions, the Mak_OS_KNN approach is clearly the best of 

all examined algorithms.  According to epsilon metrics it is rank-one in AP-1, AP-2, 

AP-3, AP-4 and AP-5 (Figure 181 and Figure 182), and is better than all non-

Mak_OS systems on those same functions with respect to both end-of-run averages 

and medians (Figure 184).  Similarly, hypervolume metrics suggest that it is the best 

performer under average and median scores in AP-1, AP-2, AP-3 and AP-4 (Figure 

176), and that it is rank-one in the same functions (Figure 173).  This adds further 

weight to the claim made in Section 11.4.2 that the Mak_OS-based technique is well 

suited to simple objective-spaces and those problems with multi-frontal 

characteristics. 

In contrast, the Mak_NSGA-II and Mak_SPEA2 techniques perform relatively 

poorly in the early AP-1, AP-2, AP-3, AP-4 and AP-5 functions — failing to achieve 

rank-one status under either epsilon (Figure 181 and Figure 182) or hypervolume 

(Figure 173 and Figure 174) metrics — but are impressive in the later test problems.  

In particular, according to hypervolume measures, Mak_NSGA-II and Mak_SPEA2 

are the only rank-one systems in AP-16 (Figure 174); share an optimal rank with 

Diversity_PAES in AP-17 (Figure 175); and are out-ranked only by Diversity_PAES 
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in AP-15 (Figure 174).  With respect to epsilon performance (see Figure 181 and 

Figure 182, in particular), both approaches are rank-one in AP-21, with Mak_SPEA2 

gaining rank-one status in AP-16, while Mak_NSGA-II achieves an ideal ranking in 

AP-15.  The epsilon-based box-plots also illustrate that Mak_SPEA2 and 

Mak_NSGA-II are impressive in AP-17, with only Diversity_PAES achieving a 

preferable ranking.  Thus, according to at least one indicator, the Mak_NSGA-II 

approach achieves a top ranking in AP-15, AP-16, AP-17 and AP-21, while 

Mak_SPEA2 is similarly ranked in all bar AP-15 (where it is rank-two).  Such 

positive results illustrate that the extended algorithms are capable not only of 

outperforming their truncated originals, but also a rich set of powerful pre-existing 

contemporary algorithms.   

More erratic results are evident in the Diversity_PAES system.  While achieving 

rank-one status in AP-4, AP-15 and AP-17 under both indicators and an ideal ranking 

for AP-5 with respect to hypervolume, it is relatively poor under at least one metric 

in the remaining functions (see Figure 173, Figure 174, Figure 175, Figure 181, 

Figure 182 and Figure 183).  The features that enable improved performance in 

domains with high levels of non-separability and fitness spaces with steep (valuable) 

gradients or multiple fronts (namely, its bias towards Pareto optimality and the use of 

simple asexual reproduction) are hindrances in domains where constant maintenance 

of a well-distributed frontal set is the key to progression (as in AP-16, in particular).   

The worst performing of the unbounded approaches are the Mak_PESA and 

Mak_PAES techniques.  Neither system achieves rank-one status under hypervolume 

measures (Figure 173, Figure 174, Figure 175), while the variants are of rank-one 

according to epsilon indicators only in AP-4 (Figure 181, Figure 182 and Figure 

183).  This echoes (though generally improves upon — see Section 10.4) the poor 

performance of the truncated PAES and PESA systems.  Still, it is again worth 

noting that such unsatisfactory outcomes are perhaps a product of the selected grid 

resolution and may not be indicative of performance in general (though if this is the 

case, the results do emphasise the sensitivity of the techniques to the characteristics 

of the underlying grid and imply the need for parameter tuning).  Future work should 

seek to clarify this.  
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Considering the truncated systems, results support the claims made in Section 0 that 

IBEA_E is the most consistently impressive of the contemporary systems.  Under 

hypervolume metrics (Figure 173, Figure 174, Figure 175), it is rank-one in AP-1, 

AP-3 and AP-21, with competitive, rank-two, performances in AP-2, AP-15, AP-16 

and AP-17.  With respect to epsilon indicators (Figure 181, Figure 182 and Figure 

183), IBEA_E achieves the top rank in AP-3, and is rank-two in AP-1, AP-2, AP-15, 

AP-16 and AP-21.  Moreover, IBEA_E is particularly poor only in AP-4 and AP-5 

under both examined indicators — illustrating a level of consistency across domain 

features that is lacking in the other truncated systems.  Indeed, NSGA-II, according 

to at least one indicator, features poor rankings in AP-1, AP-2, AP-3, AP-4, AP-5 and 

AP-21; SPEA2 is also unsatisfactory in these functions and in AP-15 and AP-16; 

PAES is disappointing in all functions other than AP-4 and AP-5; and PESA is 

similarly poor in all bar AP-4.  

With IBEA_E established as the most consistently impressive performer of the 

truncated techniques and Mak_OS_KNN, Mak_NSGA-II, Mak_SPEA2 and 

Diversity_PAES each illustrating the power of unbounded archiving, it is reasonable 

to endeavour to elucidate which of these algorithms is preferable for general bi-

objective use.  In truth, such a goal is impossible to achieve with any comparative 

study, but the richer the function suite under examination, the more accurate that 

generalised claims are likely to be.  Given that the extracted AP functions facilitate 

the examination of performance under differing frontal shapes, bias, isolation, 

deception, multi-frontality, non-separability and zero-utility gradient spaces, the 

results can speak to the likely behaviours of the examined systems in such 

continuous bi-objective domains and should sufficiently explore the flexibility of 

each system.   

An interesting way to explore the relative performance and adaptability of each 

algorithm is to employ stacked graphs and box-plots (see Figure 175, Figure 178, 

Figure 183, Figure 186) with data derived from the normalised end-of-run rankings, 

medians and averages for each examined problem (useful summaries of rankings are 

also provided in Table 36 and Table 37).  Examining these results, Mak_OS_KNN is 

clearly the most flexible of the examined systems: across functions, Mak_OS_KNN 

has the smallest stacked graph under both epsilon and hypervolume metrics for 

rankings (Figure 175 and Figure 183), averages and medians (Figure 178 and Figure 
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186); it has better lower and upper quartiles, medians and maximums than all other 

examined systems with respect to hypervolume (Figure 175) and epsilon (Figure 

183) ranks; and has better median and lower quartiles than all other approaches when 

examining average and median end-of-run hypervolume (Figure 178) and epsilon 

(Figure 186) box-plots.  Thus, with respect to both examined Pareto-compliant 

indicators, the Mak_OS_KNN technique offers the best general performance on the 

AP test suite.  By performing very well in AP-1, AP-2, AP-3, AP-4 and AP-5, and 

remaining competitive in AP-15, AP-16 and AP-21 (where it achieves rank-two 

status under at least one metric) it illustrates a level of consistency in performance 

that is lacking in the other leading techniques.  Indeed, while the results indicate that 

the Mak_OS_KNN system is best suited to simple objective-spaces and problems 

with useful utility gradients or multi-frontal regions, it is sufficiently robust to 

perform well across a more complete set of domain characteristics as well.   

Of the remaining systems, IBEA_E produces impressive results according to 

hypervolume indicators, with rank, median and average stacked graphs and box-plots 

(Figure 175 and Figure 178) illustrating that it features the best general non-

Mak_OS-based performance.  Results are less well defined under the epsilon 

indicators, however — with Mak_NSGA-II and Mak_SPEA2 frequently displaying 

comparable, and often better, suite-wide performances.  Indeed, when comparing the 

rankings of IBEA_E with these other techniques (Figure 181, Figure 182 and Figure 

183), it is bettered by Mak_SPEA2 on AP-4, AP-16, AP-17 and AP-21 (four of the 

nine tested functions), and is better only in AP-1, AP-2 and AP-3; while it is inferior 

to Mak_NSGA-II on AP-15, AP-17 and AP-21 (three functions) and better only in 

AP-2, AP-3 and AP-5.  Diversity_PAES also features better end-of-run median and 

average box-plots and stacked graphs than IBEA_E when examining epsilon 

indicators (Figure 186).  Such differences make it difficult to delineate a sharp 

ordering of the systems under the epsilon metric (beyond Mak_OS_KNN), 

particularly given the disparate behavioural characteristics of each system.  As such, 

future work in this area is recommended. 

12.3  CONCLUSIONS 
The analysis of the examined systems en masse provides a rich context from which 

general comments can be made about the relative performances of each technique.  
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The results again emphasise the practical power of using unbounded Mak_Trees — 

with the Mak_OS_KNN system offering the best general performance across the 

examined test-suite (due to its impressive performance on simple and multi-frontal 

domains and competitive outcomes on all functions other than AP-17).  Additionally, 

the Mak_NSGA-II, Mak_SPEA2_KNN and, to a lesser extent, Diversity_PAES 

techniques offer extremely competitive overall performances, with only the 

impressive IBEA_E system appearing preferable (under hypervolume measures).  As 

such, an interesting avenue of future work would be to extend the IBEA_E system 

into an unbounded domain with a view to further enhancing the performance of this 

powerful technique.  While such an extension is exciting, it is worth noting that it is 

not necessarily trivial — the calculation of epsilon scores will need to be modified 

such that it can operate efficiently in an unbounded set, lest the procedure become 

prohibitively expensive.   
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Table 36 — Normalised Hypervolume Ranks for each Examined Problem 
Green cells indicate a rank-one performance (normalised value of 0); gold cells indicate competitive 
performance, where the optimiser is no worse than a middle-ranking (normalised value in the range 

(0,0.5]); orange cells indicate poor performance, where the optimiser is worse than a middle-ranking 
(normalised value in the range (0.5,1)); red cells indicate the worst rank was achieved (normalised 

value of 1). 

 AP Problem Number  
 1 2 3 4 5 15 16 17 21 Avg 
Mak_OS_KNN 0.00 0.00 0.00 0.00 0.13 0.33 0.20 0.60 0.25 0.17 
Mak_OS 0.00 0.00 0.25 0.00 0.25 0.50 0.20 0.60 0.25 0.23 
IBEA_E 0.00 0.25 0.00 1.00 0.63 0.17 0.20 0.20 0.00 0.27 
Diversity_PAES 0.20 0.75 0.25 0.00 0.00 0.00 0.80 0.00 0.75 0.31 
Mak_NSGA-II 0.40 0.75 0.50 1.00 0.75 0.17 0.00 0.00 0.25 0.42 
Mak_SPEA2 0.60 0.75 0.75 0.50 0.88 0.17 0.00 0.00 0.25 0.43 
IBEA_H 0.20 1.00 0.25 1.00 0.75 0.33 0.40 0.60 0.00 0.50 
Mak_PESA_C 0.60 0.25 1.00 0.50 0.50 0.67 0.40 0.60 0.25 0.53 
Mak_PESA_E 0.80 0.25 0.75 0.50 0.50 0.50 0.60 0.60 0.50 0.56 
NSGA-II 0.60 0.75 0.75 1.00 0.75 0.33 0.20 0.20 0.50 0.56 
Mak_PAES 0.60 0.50 0.75 0.50 0.13 0.83 0.80 0.80 0.75 0.63 
Mak_SPEA2_KNN 1.00 0.75 1.00 1.00 1.00 0.17 0.20 0.20 0.50 0.65 
PAES 0.80 0.75 1.00 0.00 0.38 0.83 1.00 1.00 1.00 0.75 
SPEA2 1.00 0.75 1.00 1.00 1.00 0.67 0.60 0.40 0.50 0.77 
PESA 1.00 0.75 1.00 0.50 0.75 1.00 0.80 0.80 0.75 0.82 
 

Table 37 — Normalised Epsilon Ranks for each Examined Problem 
Green cells indicate a rank-one performance (normalised value of 0); gold cells indicate competitive 
performance, where the optimiser is no worse than a middle-ranking (normalised value in the range 

(0,0.5]); orange cells indicate poor performance, where the optimiser is worse than a middle-ranking 
(normalised value in the range (0.5,1)); red cells indicate that the worst rank was achieved 

(normalised value of 1). 

 AP Problem Number  
 1 2 3 4 5 15 16 17 21 Avg 
Mak_OS_KNN 0.00 0.00 0.00 0.00 0.17 0.25 0.25 0.50 0.00 0.13 
Mak_OS 0.00 0.00 0.00 0.00 0.17 0.50 0.25 0.67 0.33 0.21 
IBEA_E 0.25 0.25 0.00 0.67 0.83 0.25 0.25 0.33 0.33 0.35 
Mak_NSGA-II 0.25 0.75 0.33 0.67 1.00 0.00 0.25 0.17 0.00 0.38 
NSGA-II 0.25 0.75 0.67 0.33 0.83 0.25 0.00 0.33 0.00 0.38 
Mak_SPEA2 0.50 0.75 0.67 0.33 0.83 0.25 0.00 0.17 0.00 0.39 
Diversity_PAES 0.75 0.50 0.67 0.00 0.33 0.00 0.75 0.00 0.67 0.41 
Mak_SPEA2_KNN 0.75 0.75 1.00 0.67 1.00 0.25 0.00 0.17 0.33 0.55 
Mak_PESA_E 0.75 0.50 0.67 0.00 0.67 0.50 0.50 0.83 0.67 0.56 
IBEA_H 0.75 1.00 0.33 1.00 0.50 0.50 0.50 0.67 0.00 0.58 
Mak_PESA_C 0.75 0.50 1.00 0.33 0.67 0.50 0.50 0.50 0.67 0.60 
SPEA2 0.75 0.75 1.00 0.67 1.00 0.00 0.25 0.33 0.67 0.60 
Mak_PAES 0.75 0.50 1.00 0.00 0.50 0.75 1.00 1.00 1.00 0.72 
PAES 1.00 0.75 1.00 0.00 0.50 0.75 1.00 1.00 1.00 0.78 
PESA 1.00 0.75 1.00 0.33 0.83 1.00 0.75 1.00 1.00 0.85 
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Figure 171 — Progressive Hypervolume Averages 
y-axis: average hypervolume performance; x-axis: number of evaluations executed. 
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Figure 172 — Progressive Hypervolume Averages 
y-axis: average hypervolume performance; x-axis: number of evaluations executed. 
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Figure 173 — End-of-Run Hypervolume Box Plots with Statistical Ranks 
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Figure 174 — End-of-Run Hypervolume Box Plots with Statistical Ranks 
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Figure 175 — End-of-Run Hypervolume Box-Plots with Statistical Ranks and Summary 
Hypervolume Graphs (Normalised) 
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Figure 176 — End-of-Run Hypervolume Medians and Averages 
y-axis: normalised hypervolume scores; x-axis: optimiser.  Columns represent medians, points 

represent averages. 
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Figure 177 — End-of-Run Hypervolume Medians and Averages 
y-axis: normalised hypervolume scores; x-axis: optimiser.  Columns represent medians, points 

represent averages. 
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(a) Median Performance Box-Plots 
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(b) Median Performance Stacked Graphs 
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(c) Average Performance Box-Plots 
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(d) Average Performance Stacked Graphs 

Figure 178 — End-of-Run Hypervolume Medians and Averages 
y-axis: normalised hypervolume scores; x-axis: optimiser.  Results reflect performance over all 

examined test functions. 
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Figure 179 — Progressive Epsilon Averages 
y-axis: average epsilon performance; x-axis: number of evaluations executed. 
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Figure 180 — Progressive Epsilon Averages 
y-axis: average epsilon performance; x-axis: number of evaluations executed. 
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Figure 181 — End-of-Run Epsilon Box Plots with Statistical Ranks 
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Figure 182 — End-of-Run Epsilon Box Plots with Statistical Ranks 
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Figure 183 — End-of-Run Epsilon Box Plots with Statistical Ranks (AP-17, AP-21) and 
Summary Epsilon Graphs (Normalised) 
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(d) AP-4 

0

0.2

0.4

0.6

0.8

1

M
ak

_O
S_

KN
N

M
ak

_O
S

D
iv

er
si

ty
_P

AE
S

M
ak

_P
AE

S
PA

ES
IB

EA
_H

M
ak

_P
ES

A_
C

M
ak

_P
ES

A_
E

IB
EA

_E
PE

SA
N

SG
A2

M
ak

_S
PE

A2
M

ak
_S

PE
A2

_K
N

N
SP

EA
2

M
ak

_N
SG

A2

 
(e) AP-5 

Figure 184 — End-of-Run Epsilon Medians and Averages 
y-axis: normalised epsilon scores; x-axis: optimiser.  Columns represent medians, points represent 

averages. 
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(b) AP-16 

0

0.2

0.4

0.6

0.8

1

D
iv

er
si

ty
_P

AE
S

M
ak

_S
PE

A2
M

ak
_S

PE
A2

_K
N

N
M

ak
_N

SG
A2

IB
EA

_E
N

SG
A2

SP
EA

2
M

ak
_O

S_
KN

N
M

ak
_P

ES
A_

C
IB

EA
_H

M
ak

_O
S

M
ak

_P
ES

A_
E

PE
SA

M
ak

_P
AE

S
PA

ES

 
(c) AP-17 
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(d) AP-21 

Figure 185 — End-of-Run Epsilon Medians and Averages 
y-axis: normalised epsilon scores; x-axis: optimiser.  Columns represent medians, points represent 

averages. 
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(a) Median Performance Box-Plots 
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(b) Median Performance Stacked Graphs 
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(c) Average Performance Box-Plots 
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(d) Average Performance Stacked Graphs 

Figure 186 — End-of-Run Epsilon Medians and Averages 
y-axis: normalised epsilon scores; x-axis: optimiser.  Results reflect performance over all examined 

test functions. 
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13 CONCLUSIONS AND FUTURE WORK 

13.1  CONCLUSIONS 
A review of the literature, theoretical discussions and empirical evidence all suggest 

that the truncated archiving techniques that have become such a powerful standard in 

contemporary multiobjective evolutionary algorithms are subject to serious 

deficiencies.  Given that the archive is intended to provide a reference to the best 

solutions produced thus far, the potential for frontal degradation and the loss of 

valuable solutions is of extreme detriment to its function, while inaccurate crowding 

estimates inhibit the pursuit of ill-explored spaces.  By defining and then exploiting 

the characteristics of the non-dominated bi-objective set, this work offers specialist 

approaches that ameliorate such deficiencies by unlocking access to unbounded elite 

stores. 

The basic unbounded bi-objective Mak_Tree developed in this thesis emphasises the 

power that such specialisation can impart.  Indeed, the new construct offers markedly 

improved run-times over pre-existing generalist approaches to unbounded archiving 

from the perspective of both big-oh theoretical estimates and empirical observations 

across a diverse set of problems.  Moreover, the Mak_Tree produces competitive, 

and frequently preferable, empirical run-time performances when compared against 

even a tightly bound truncated methodology (n = 50).  Such results are both 

important and impressive.  Using the bi-objective specialisation frees an optimiser of 

the need for artificial binding, and it does so with no (or very little) practical 

efficiency overhead. 

Perhaps more significantly, extending the Mak_Tree to incorporate crowding 

estimates, annotations and selections — pivotal provisions for use with contemporary 

optimisers — results in an archiving strategy that is faster than strictly bound  

(n = 50) systems with equivalent crowding mechanisms.  Efficient extensions into 

cell-based Mak_Trees also facilitate multi-faceted crowding analyses which may 

diminish the bias/variance dilemma.   

Still, having access to the specialised bi-objective data structure means little if the 

removal of archival bounds imparts no practical advantage for optimisers.  As such, 

via the integration of the extended Mak_Tree into existing techniques, the 
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development of novel algorithms and the comprehensive analysis of these 

approaches and their truncated contemporaries, this thesis has offered a rich 

investigation of bi-objective optimisation in continuous domains that clearly reflects 

the power of unbounded optimisers.  Whether used as a reference set, as the active 

population or in a hybridised setting, the unbounded elite set frequently produces 

significant improvements over the truncated originals.  Moreover, such power is not 

limited merely to extensions.  The development of simple novel algorithms built 

around the Mak_Tree offers particularly impressive results.  The Mak_OS_KNN 

approach, in particular, capitalises on the flexibility of the Mak_Tree to deliver an 

adaptable, noisy, system that achieves the most robust and consistent performance of 

any of the examined techniques — bounded or otherwise.  Given the depth of the 

analysis, with respect to algorithms, test functions, performance indicators and 

statistical inferences, such results are a strong statement as to the damaging effects of 

artificial truncation and the utility of the new unbounded techniques proposed. 

The thesis also offers an alternative use for the Mak_Tree as an offline repository of 

solutions which is appropriate for background use in any type of optimiser.  Having 

efficient and continuous access to such a store of elite solutions provides an 

important foundation for the development of effective, intuitive, simple and 

autonomous run-termination criteria.  Indeed, the existence of high-fidelity criteria is 

contingent on the guarantee of set quality offered only in unbounded stores, and the 

proposed Mak_Terminator is amongst the first fully-realised termination systems that 

efficiently harnesses such a repository.   

Access to a store with guaranteed quality also enables the production of better 

presentation sets (distillations of Pestimate) than is possible when relying only on 

truncated approximations.  Moreover, the developed Mak_Presentation algorithm 

produces reduced sets that are significantly better distributed (in objective-space) 

than alternative techniques operating on both bounded and unbounded archives. 

Beyond elite archiving in particular, results illustrate a number of domain-related 

properties that may be important for multiobjective optimisation in general.  In 

particular, multi-frontality — which rests as amongst the most difficult domain 

features in multiobjective optimisation — appears to be best addressed by narrow-

search systems (such as hill-climbers), which are better able to pursue solutions that 
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puncture the front, and noisy systems, which encourage a more thorough search 

along the false front or away from the front.  A similarly complex characteristic is 

non-separability, with improved performances offered by systems emphasising the 

importance of diversity — likely because other approaches can become fixated on a 

particular subset of gene dependencies.  Interestingly, initial results also suggest that 

asexual reproduction is beneficial in such domains, largely because sexual crossover 

is prone to the disruption of gene dependencies and is more likely to introduce 

collateral noise.  Zero-utility gradient spaces and isolated deceptive regions pose few 

problems for effective multi-member systems, but can cause difficulties for small 

hill-climbing systems, where smaller populations simply lack the number of escape 

routes offered by more diverse sets.  The least problematic feature tends to be frontal 

shape, so long as the system lacks a strong bias towards convexity or concavity. 

A number of interesting observations can also be drawn from the comprehensive 

analysis of today’s leading core truncated evolutionary systems.  The results suggest 

that while the IBEA algorithm is clearly impressive (IBEA_E offers the best general 

performance of the examined truncated systems) it is sensitive to the selection of the 

underlying indicator.  It is for this reason that there is such a great disparity between 

IBEA_E and IBEA_H — the hypervolume indicator, potentially due to its biases, is 

less effective in promoting a balanced search.  The remaining optimisers offer insight 

into the importance of the crowding estimation mechanisms.  For truncated systems, 

it appears that the cuboid technique seen in NSGA-II is preferable to both the κth 

neighbour and cell-based approaches seen in SPEA2, PAES and PESA — principally 

because cuboid crowding is free of parameter sensitivities, is well suited to smaller 

population levels and is better able to maintain an evenly distributed truncated set 

that is more resistant to archival degradation.  The cell-based approach, in particular, 

is sensitive to the resolution of the grid in which it operates, with shrinking fronts, 

discontinuities and inaccurate density approximations all possible if the grid is too 

coarse or too fine (a particular problem given that the optimal resolution is rarely 

known in advance).  The κth neighbour approach tends to bias both the extremities of 

the objective-space and uncrowded regions, which can also lead to discontinuities in 

the archival expression of objective-space, particularly if the value of κ is poorly 

chosen.  In unbounded domains it appears that this problem can be ameliorated to 
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some extent if the influence of κ-neighbourhood scores is weakened by the presence 

of noise (as in Mak_OS_KNN), though this requires further investigation. 

The results as a whole also emphasise important methodological concerns.  In 

particular, it is clear that the analysis of multiple Pareto-compliant indicators across a 

broad set of disparate test functions is the key to a well-balanced investigation.  The 

variability of results across domains and under differing performance indicators in 

this work suggests that more shallow studies, which are limited in the breadth of the 

functions or utility-metrics under consideration, are prone to disguising biases in 

multiobjective optimisers and may promote misleading conclusions as to the general 

quality of the systems under investigation.   

13.2  FUTURE WORK 
As with most any preliminary study of new techniques, the most immediately 

interesting avenue of research is in the practical application of the proposed 

approaches and expansion into a broader set of domains.  Though the comparative 

studies of unbounded optimisers were thorough in their analysis of static continuous 

bi-objective domains, investigations into constrained spaces (such as AP-8, AP-9 and 

AP-10), noisy (AP-6 and AP-7), dynamic (AP-11, AP-12 and AP-13) and discrete 

problems (representing, for instance, knap-sack [256-258], travelling salesmen [259] 

and flowshop [59, 251, 260] domains) provide opportunities for both further 

empirical analysis and domain-specific specialisations.  The use of the Mak_Tree-

based optimisers in real-world domains will also further elucidate the flexibility of 

those systems and may emphasise application issues that are obscured in a purely 

research-based environment.  It is also worth noting that the significance, sensitivity 

and potential automation of optimiser parameters requires further investigation as 

such analysis was outside the focus of this work.  Additional study may be 

particularly important for cell-based systems, where both theory and results seem to 

imply that correctly setting the grid resolution rests as an extremely important 

performance factor, and for unbounded density estimates, where adaptive 

neighbourhood sizing is likely to be beneficial.  

Perhaps the most exciting new work revolves around the development of additional 

unbounded extensions, both with a view to further establishing the power of 

unbounded archiving and extracting real performance gains from practical systems.  
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Given the prevalence of truncation in contemporary optimisers, the breadth of 

available techniques that may benefit from the use of truly unbounded elite sets is 

impressive.  Moreover, using the reference, active and hybridised techniques 

described in Section 9.2 as a guide, the extension of these systems should be 

relatively straightforward.  Also note that while this thesis has focussed on 

contemporary (core) evolutionary algorithms, there is little reason why future studies 

should be so constrained — swarm, ant colony, artificial life, memetic and messy 

systems may also benefit from the use of unbounded elite sets. 

Given the impressive performance of the simple Mak_OS_KNN system and, to a 

lesser extent, Diversity_PAES, there is also scope for continued work in the 

development of novel algorithms centred around the use of unbounded archival sets.  

An interesting idea in this regard would be to use multiple Mak_Trees to maintain 

distinct fronts.  With access to more than just the elite set, a more complete picture of 

the explored objective-space is offered, particularly early in the run when the leading 

front is typically small.  Access to a broader set of solutions may also better enable 

the system to effectively navigate through zero-utility gradient spaces, escape 

deceptive regions and integrate noise.  The development of new selection (or 

extraction) strategies that are better suited to unbounded sets, also rests as a 

potentially rich area of study.  In particular, work should focus on strategies that are 

robust in the presence of objective-space biases and shifting archival sizes.  

Though there is little debating the power of the Mak_Tree, additional extension is 

required to make it a truly flexible system.  In particular, the storage of solutions to 

constrained, dynamic and noisy functions in an unbounded elite set is not trivial.  In 

both noisy and dynamic problems there is no guarantee that the results stored in the 

unbounded archive necessarily correspond to the true value of the stored solutions at 

any given time.  The temporal nature of performance in these non-static domains 

means that unique techniques to unbounded storage are required.  For dynamic 

problems with known time-steps, the use of a fixed number of time-specific 

Mak_Trees may be sufficient, with the optimiser selecting solutions from the most 

relevant archive.  In the case where such knowledge is unknown, it is feasible that a 

variable number of time-specific trees could be maintained, with archival analysis 

suggesting when distinct trees should be merged, deleted or created.  An interesting 
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approach to noisy problems is the storage of Mak_Tree nodes with performance 

intervals rather than precise points (perhaps extending the cell-based Mak_Tree). 

With respect to the storage of constraint violators in conventional Mak_Trees, a 

number of options exist and it is important to identify which technique yields the 

most promising outcomes.  Potential alternatives include the complete exclusion of 

violators, complete inclusion with violation annotations, the use of multiple 

Mak_Trees (with each assigned a maximum level of allowable violation) or 

variations thereof.   

Given the development and use of the comprehensive AP test suite in this thesis, a 

particularly valuable avenue of work is to produce further comparative studies, both 

to explore the relative behaviours of differing systems and to elucidate the strengths 

and weaknesses of the AP problems themselves.  Particular benefit would be found 

in differentiating the performances of the leading non-evolutionary approaches to 

multiobjective optimisation, including, but not limited to, operations research 

techniques and swarm and ant colony systems.  Expansion of the algorithms under 

analysis will also provide a more complete view of the state of the field as a whole 

and may indicate problem features that are suited to particular optimiser strategies. 

On a similar note, a more focussed analysis of the peculiarities of particular domain 

characteristics is of great import.  Preliminary results in this study indicate, for 

instance, that multi-frontality is best solved by narrow-search or noisy systems, and it 

is important to know whether this and other domain-related conclusions are true in 

general or simply quirks of the examined test functions.  An intensive investigation 

of this area may further clarify the key components of multiobjective optimisers and 

act as a primer for decision-makers seeking well-matched systems and researchers 

looking to develop both specialist and generalist optimisation techniques.  

There also exist a host of less pressing, though potentially valuable, options for study 

(many of which have already been touched upon in this thesis), including: 

• The implementation of the Dynamic Range Tree and investigation of 

specialisation into the bi-objective domain (potentially including the use of one-

dimensional range trees). 
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• The specialisation of the Dominated Tree into bi-objective domains, including 

investigation into the improvement of efficiency when deleting dominated sets 

(potentially by harnessing the power of binary sub-tree deletions). 

• The use of the Mak_Terminator in algorithmic studies to illustrate performance 

trends, particularly with respect to convergence characteristics.   

• The investigation of costs associated with rebuilding adaptive grids akin to those 

used in PAES, PESA and the grid-based Mak_Terminator.  If the costs are high, 

development of new data structures, improvements on existing structures or an 

increased focus on the development of heuristics may be valuable. 

• The analysis of the Mak_Terminator parameters with a view to exploring the 

trade-offs that exist between the period of observation and the accuracy of 

convergence estimation.  Subsequent development of practical heuristics that 

inform parameter settings would also be of value. 

• The refinement of the Mak_Presentation algorithm to maximise fidelity between 

desired and resultant set sizes.  An interesting avenue of exploration is to adjust 

optimal spaces between solutions according to an annealing process.  Analysis of 

Mak_Presentation performance at multiple points in the run (rather than simply at 

termination) may also reveal more behavioural characteristics of the technique. 

• A more thorough investigation into the use of pre-existing truncation methods for 

the presentation of unbounded sets (including, but not limited to, nearest-

neighbour, cuboid, κth nearest-neighbour and grid-based approaches).  Analysis 

should include an exploration of set distribution, computational cost and solution 

quality.   

• The comparison of the performance of averaged κ nearest-neighbours crowding 

estimation and the κth nearest-neighbour technique traditionally employed in 

SPEA2. 

• The development of the most appropriate way to capitalise on multi-faceted 

crowding estimations in an effort to offset the bias/variance dilemma.  Possible 

avenues include the integration of multiple density estimates via Mak_Tree 
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annotations, variable selection strategies that move between different types of 

crowding estimation and the development of heuristics that aid in determining the 

most appropriate type of estimate at a given time. 

• This thesis posits that the performance of the cuboid crowding estimation 

technique proposed by Deb et al. [82] will degrade markedly in higher 

dimensional objective-spaces (where the correlation between the estimate and the 

actual crowding of solutions weakens significantly).  A more formal analysis of 

this behaviour is important given the status and popularity of NSGA-II in the 

field.  The replacement of cuboid-crowding with κth nearest-neighbour clustering 

or PAES-like grid estimates in NSGA-II may also yield substantial performance 

gains (though potentially at a loss in efficiency). 

• The expansion of the analysis of the optimisers reviewed in this thesis to include 

other Pareto-compliant indicators, such as the R2 and R3 metrics offered by 

Hansen and Jaszkiewicz [186].  Such additional investigation should clarify the 

performance of IBEA_E (which appeared inconsistent between hypervolume and 

epsilon measures) and further reduce the impact of individual biases present in 

each of the scalar measures. 

• The impressive performance of IBEA_E across numerous test problems suggests 

that the use of Pareto compliant indicators in evolutionary optimisers is a 

promising direction.  However, the generally poor results offered by IBEA_H 

suggest that compliance alone is insufficient for optimiser efficacy.  As such, 

more work should be focussed on understanding the interaction between the 

indicator and the user-defined v parameter, the biases that exist in each of the 

explored indicators and the performance of other indicators (such as the R2 and 

R3 [186] metrics).   

• Given the improvements afforded contemporary methods when they capitalise on 

unbounded elite stores, extension of IBEA specifically into an unbounded system 

may yield similar gains, though care must be taken to maximise the efficiency of 

the procedure. 

• The poor performance of both PAES and PESA may be attributable to the 

selected grid resolutions for these systems.  Though this emphasises the 
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sensitivity of the corresponding parameters (and suggests that finer grid detail 

does not necessarily infer improved performance), it is worthwhile re-examining 

these systems under more favourable configurations.  Such testing should 

incorporate the unbounded extensions, which may also benefit from parameter 

tuning (note that the optimal settings for bounded and unbounded systems are 

likely to differ however). 

• The development of novel variation techniques that endeavour to adaptively track 

and exploit apparent cross-gene dependencies with a view to creating more 

powerful and robust optimisers.   
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13.3  FINAL THOUGHTS 
The introduction of this thesis questioned whether it was feasible to create 

unbounded bi-objective archives and, if so, whether such constructs could deliver 

tangible performance improvements both within and outside of the optimisation 

process.  By exploiting the special properties of the non-dominated bi-objective set, 

the newly developed Mak_Tree and its various extensions ably demonstrate the 

feasibility of efficient unbounded storage in bi-objective domains, with time-costs 

that are not only superior to pre-existing unbounded approaches but frequently better 

than, and at least competitive with, the deeply flawed tightly bound strategies 

common throughout the field.  Moreover, the Mak_Tree facilitated the development 

of new termination and presentation systems that benefit from access to a complete 

representation of truly non-dominated solutions, while both novel and adapted 

optimisers emphasised that unbounded archiving imparts a real practical performance 

advantage in bi-objective optimisation.  Thus, some 406 pages after it was first 

posed, there can be little doubt as to how to answer the questions of the introduction: 

not only is unbounded bi-objective archiving feasible but, with its capacity for real 

performance improvements, it is also an extremely valuable new piece towards 

solving the multiobjective puzzle. 
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A TEST PROBLEM APPENDIX 
A.1 EXAMINING AP-1 
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(e) Pareto Optimal Solution Values 

Figure A1 — Problem Characteristics for AP-1 
Objective-one is optimal when x1 = 0; objective-two is optimal when x2..m = 0.35 and x1 = 1  Note that 

the Pareto optimal front is convex — with extreme points of (0,1) and (1,0).  The optimal front is 
formed by setting x2..m to 0.35 and varying x1.  a → b indicates the mapping of a to b. 
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A.2 EXAMINING AP-2 
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(e) Pareto Optimal Solution Values 

 Figure A2 — Problem Characteristics for AP-2  
Note that objective-one is optimal when x1 = 0; objective-two is optimal when x2..m = 0.35 and x1 = 1.  

The Pareto optimal front is concave — with extreme points of (0,1) and (1,0) — and is formed by 
setting x2..m to 0.35 and varying x1.  a → b indicates the mapping of a to b. 
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A.3 EXAMINING AP-3 
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(e) Pareto Optimal Solution Values 

Figure A3 — Problem Characteristics for AP-3 
Note that objective-one is optimal when x1 = 0; objective-two is optimal when x2..m = 0.35 and x1 = 
0.85.  The Pareto optimal front is a disconnected series of convex curves — with extreme points of 
(0,1) and (0.85,-0.77) — and is formed by setting x2..m to 0.35 and varying x1.  a → b indicates the 

mapping of a to b. 
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A.4 EXAMINING AP-4 
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(e) Pareto Optimal Solution Values 

Figure A4 — Problem Characteristics for AP-4 
Objective-one is optimal when x1 = 0; objective-two is optimal when x2..m = 0.35 and x1 = 1.  Both (a) 
and (b) feature normalised solution values for x2..m.  Note that the Pareto optimal front is convex — 
with extreme points of (0,1) and (1,0) — and  is formed by setting x2..m to 0.35 and varying x1.  (d) 

shows the presence of at least two well-defined and disseminated false optimal fronts.  a → b 
indicates the mapping of a to b. 
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A.5 EXAMINING AP-5 
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(f) Pareto Optimal Solution Values 

Figure A5 — Problem Characteristics for AP-5 
Objective-one is optimal when x1 = 0.35; objective-two is optimal when x2..m = 0 and x1 = 1.  Both (a) 

and (b) feature normalised solution values for x2..m.  The Pareto optimal front is concave — with 
extreme points of (0.28,0.92) and (1,0) — and  is formed by setting x2..m to 0 and varying x1.  Note 
how poorly populated the optimal front is in (e) and how isolated it is from the remainder of the 

heavily biased space.  (d) normalises frequencies in the range of 0% - 10%, any frequency ≥ 10% is 
black.  The boxes in (c) and (e) highlight biased regions.  a → b indicates the mapping of a to b. 
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A.6 EXAMINING AP-6 
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-1 -0.12 0.76
-1

1.7

4.4

7.1

9.8

Obj. 1

Obj. 2

 
(e) Apparent Objective-Space 

-1 -0.12 0.76
-1

1.7

4.4

7.1

9.8

Obj. 1

Obj. 2

(f) True Objective-Space 

Figure A6 — Problem Characteristics for AP-6 
(a), (c) and (e) illustrate the distorted search- and objective-spaces that a search algorithm will 

encounter under the presence of the noisy Gaussian function.  (b), (d) and (f) each depict the true 
spaces that the noise obscures.   As per AP-2, the true Pareto optimal front  is a concave curve with 
extreme points of (0,1) and (1,0).  Objective-one is optimal when x1 = 0; objective-two is optimal 

when x2..m = 0.35 and x1 = 1.  a → b indicates the mapping of a to b. 
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(e) Pareto Optimal Solution Values 

Figure A7 — Problem Characteristics for AP-6 
(a) indicates the type of objective-space noise encountered in AP-6 — over 95% of all noise causes 

original objective-scores to lie in the range of [0,2x], while over 65% results in values lying in 
[0.5x,1.5x].  (e) indicates that the concave Pareto optimal front is formed by setting x2..m to 0.35 and 

varying x1. 
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A.7 EXAMINING AP-7 
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Figure A8 — Problem Characteristics for AP-7 
(a), (c) and (e) illustrate the distorted search- and objective-spaces that a search algorithm will 

encounter under the presence of the noisy non-Gaussian function.  (b), (d) and (f) each depict the true 
spaces that the noise obscures.   As per AP-2, the true Pareto optimal front  is a concave curve with 
extreme points of (0,1) and (1,0).  Objective-one is optimal when x1 = 0; objective-two is optimal 

when x2..m = 0.35 and x1 = 1.  a → b indicates the mapping of a to b.  
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(e) Pareto Optimal Solution Values 

Figure A9 — Problem Characteristics for AP-7 
(a) indicates the type of objective-space noise encountered in AP-7 — original objective-scores are 

recast such that there is an even likelihood of lying anywhere in the range [0,2x].  (e) indicates that the 
concave Pareto optimal front is formed by setting x2..m to 0.35 and varying x1. 
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A.8 EXAMINING AP-8 
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(e) Pareto Optimal Solution Values 

Figure A10 — Problem Characteristics for AP-8 
Objective-one is optimal when x1 = 0; objective-two is optimal when x2..m = 0.71 and x1 = 0.984.  Note 
that the feasible Pareto optimal front is a disconnected line — with extreme points of (0,1) and (1,0).  
The dashed convex curve in (c) and (d) represents the infeasible optimal front.  a → b indicates the 

mapping of a to b. 



Escaping the Bounds of Generality — Unbounded Bi-Objective Optimisation 

- 440 - 

A.9 EXAMINING AP-9 
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(e) Pareto Optimal Solution Values 

Figure A11 — Problem Characteristics for AP-9 
Objective-one is optimal when x1 = 0; objective-two is optimal when x2..m = 1.2 and x1 = 1.  Both (a) 
and (b) feature normalised solution values for x2..m.  The feasible Pareto optimal front is a continuous 

line — with extreme points of (0,3.7) and (1,0.88).  The dashed convex curve in (d) represents the 
infeasible optimal front.  a → b indicates the mapping of a to b. 
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A.10 EXAMINING AP-10 
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(e) Pareto Optimal Solution Values 

Figure A12 — Problem Characteristics for AP-10 
Objective-one is optimal when x1 = 0; objective-two is optimal when x2..m = 0 and x1 = 1.  The feasible 

Pareto optimal front is a discontiguous line — with extreme points of (0,1) and (1,0).  The dashed 
convex curve in (d) represents the infeasible optimal front.  a → b indicates the mapping of a to b. 
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A.11 EXAMINING AP-11 
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Figure A13 — Problem Characteristics for AP-11 
The solution-space for objective-one is static; the solution-space for objective-two changes over time, 

with a moving optimal region.  The Pareto optimal front is a static convex curve — with extreme 
points of (0,1) and (1,0) — embedded in a variably sized objective-space (with size oscillating 

between (e) and (f)).  Note that (a), (b), (c) and (d) feature normalised values for x2..m.  a → b indicates 
the mapping of a to b. 
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Figure A14 — Problem Characteristics for AP-11 
The Pareto optimal front is produced by varying x1 and setting x2..m to the appropriate time-dependent 
value defined in (a), as illustrated at several key time points in (b).  Performance on objective-one is 
time-independent and is optimal whenever x1 = 0; performance on objective-two is ideal only when 

x1 = 1 and x2..m is set appropriately (again, see (a)).  The periodic function described in (g) also 
dictates the size of the objective-space — it is maximal when |F(t)| = 1 and minimal when F(t) = 0.  

The period of F is t = 4. 
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A.12 EXAMINING AP-12 
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(f) Objective-Space [t=0, 2.67, 5.33, ...] 

Figure A15 — Problem Characteristics for AP-12 
The solution-space mappings are constant for objective-one; mappings for objective-two vary subtly 
over time, though the optimal region is static.  The Pareto optimal front varies shape with time, with 

static extreme points at (0,1) and (1,0).  Note that (a-d) feature normalised values for x2..m.  a → b 
indicates the mapping of a to b.   
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(f) Pareto Optimal Values for All t 

Figure A16 — Problem Characteristics for AP-12 
The Pareto optimal front is produced by varying x1 and setting x2..m to 0.35.  When the H function 

described in (e) is greater than one, the Pareto optimal front is concave; when H is less than one, the 
front is convex; when H equals one, the front is linear.  The period of the H function is t ≈ 2.67.  

Regardless of variation in shape, all optimal fronts share the same extremal points of (1,0) and (0,1).   
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A.13 EXAMINING AP-13 
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(h) Sol-Space → Objective Two [t=2] 

Figure A17 — Problem Characteristics for AP-13 
The search-gradient and optimal region varies markedly over time for objective-one.  In contrast, the 
optimal region is fixed for objective-two and the solution-space varies only subtly  across time.  Note 
that all of the above graphs feature normalised values for x2..m.  a → b indicates the mapping of a to b.   
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Figure A18 — Problem Characteristics for AP-13 
The objective-space bias varies with time, as does the shape of the Pareto optimal front.  Regardless of 

variation in shape, all optimal fronts share the same extremal points of (1,0) and (0,1).     
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(d) Pareto Optimal Solutions Over Time 

Figure A19 — Problem Characteristics for AP-13 
Objective-one is optimal when x1 = F(t) (see (d)); objective-two is optimal when  x1 = 0 and  

x2..m = 0.35.  When the H function described in (c) is greater than one, the Pareto optimal front is 
concave; when H is less than one, the front is convex; when H equals one, the front is linear.  

Regardless of variation in shape, all optimal fronts share the same extremal points of (1,0) and (0,1).  
Objective-space bias is controlled by the G function– when G is less than one, the objective-space is 
biased towards optimal objective-one performance; when G is greater than one, the objective-space 
favours regions with poor objective-one performance.  The period of F is t = 4; the period of G is  

t = 2; the peiod of H is t ≈ 2.67. 
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A.14 EXAMINING AP-14 
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Figure A20 — Problem Characteristics for AP-14 
Considering normalised decision-variable values, objective-one is optimal when x1..k = 0 and  

xk+1..m = 0.35 objective-two is optimal when x1..k = 1 and xk+1..m = 0.35.  The Pareto optimal front is a 
concave curve with extreme points at (0,4) and (2,0).  (e) illustrates the affect of pair-wise 

dependencies on the search-space gradients.  (a), (b), (c), (d) and (e) all illustrate normalised variable 
values.  a → b indicates the mapping of a to b. 
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(c) Dependencies in the Decision Variables 

Figure A21 — Problem Characteristics for AP-14 
(a) and (c) illustrate that dependencies only exist in local pai-wise couplings in the final l decision 

variables.  (b) shows that the Pareto optimal front is formed by setting xk+1..m to 0.35 (normalised) and 
varying xk+1..m. 
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A.15 EXAMINING AP-15 
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Figure A22 — Problem Characteristics for AP-15 
(a) illustrates that the first k decision variables are highly inter-dependent and feature mutual 

dependencies.  (b) shows that all xk+1..m-k are highly inter-dependent, include mutual dependencies and 
are affected by position parameters.  (b) also demonstrates that all xm-k+1..m have numerous 

dependencies on both position- and distance-related parameters, but lack any mutual dependencies.  
The resultant objective-space is a concave surface, with extent that is affected by the number and type 
of parameters chosen (due to the non-separability that exists between position and distance variables).  
The Pareto optimal front is formed by setting the normalised values of xk+1..m to 0.35 and varying x1..k. 
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A.16 EXAMINING AP-16 
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Figure A23 — Problem Characteristics for AP-16 
Considering normalised decision-variable values, objective-one is optimal when x1..k = 0 and  

xk+1..m = 0.35 objective-two is optimal when x1..k = 1 and xk+1..m = 0.35.  The Pareto optimal front is of 
mixed-shape with extreme points at (0,4) and (2,0).  (d) illustrates the lack of gradient information in 

the final l decision variables.  a → b indicates the mapping of a to b. 
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(b) Normalised Pareto Optimal Solution 

Values 

Figure A24 — Problem Characteristics for AP-16 
(a) demonstrates that all normalised xk+1..m values between 0.05 and 0.45 are mapped to a single point, 
as are values between 0.657 and 0.965.  (b) shows that the Pareto optimal front is formed by setting 

xk+1..m to 0.35 (normalised) and varying xk+1..m. 
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A.17 EXAMINING AP-17 
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Figure A25 — Problem Characteristics for AP-17 
Considering normalised decision variable values, objective-one is optimal when x1..k = 0 and  

xk+1..m = 0.35; objective-two is optimal when x1..k = 1 and xk+1..m = 0.35.  The solution-space mappings 
clearly illustrate that the search gradients aggressively discourage the exploration of these optimal 

areas in all bar the final l decision variables for objective-two.  The Pareto optimal front is a concave 
curve with extreme points at (0,4) and (2,0).  a → b indicates the mapping of a to b. 
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(b) Pareto Optimal Solution Values 

Figure A26 — Problem Characteristics for AP-17 
(a) demonstrates the lack of correlation between the search gradient and the location of the optimal 

value when deception is applied.  (b) shows that the Pareto optimal front is formed by setting xk+1..m to 
0.35 (normalised) and varying xk+1..m. 
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A.18 EXAMINING AP-18 
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Figure A27 — Problem Characteristics for AP-18 
Considering normalised decision variable values, objective-one is optimal when x1..k = 0 and  

xk+1..m = 0.35; objective-two is optimal when x1..k/2 = 0 and xk+1..m = 0.35; objective-three is optimal 
when x1..k = 1 and xk+1..m = 0.35.  Note that objective-one performance depends on x1..m, while 

objective-two and objective-three depend on only x1..k/2 and xk+1..m.  (e) and (f) illustrate slices of the 
objective-space and indicate the presence of bias.  a → b indicates the mapping of a to b.
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(c) Pareto Optimal Solution Values 

Figure A28 — Problem Characteristics for AP-18 
(a) further describes the presence of objective-space bias.  (b) illustrates the shape of the concave 

three-dimensional Pareto optimal front — with extremes at (1,0,0), (0,1,0) and (0,0,1).  Note that the 
diagram is not intended to impart density information.  (c) shows that the Pareto optimal front is 

formed by setting xk+1..m to 0.35 (normalised) and varying xk+1..m. 
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A.19 EXAMINING AP-19 
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(f) Solution-Space → Objective-Three 

Figure A29 — Problem Characteristics for AP-19 
Considering normalised decision variable values, objective-one is optimal when x1..k = 0 and  

xk+1..m = 0.35; objective-two is optimal when x1..3k/4+1 = 0 and xk+1..m = 0.35; objective-three is optimal 
when x1..k/2,3k/4+1..k = 0 and xk+1..m = 0.35.  Note that objective-one performance depends on x1..m, while 
objective-two depends on all variables bar x3k/4+1..k and objective-three is affected by xk/2+1..m.  a → b 

indicates the mapping of a to b.
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Figure A30 — Problem Characteristics for AP-19 
Considering normalised decision variable values, objective-four is optimal when x1..k/4,3k/4+1..k = 0 and 
xk+1..m = 0.35; and objective-five is optimal when x1..k/4 = 0 and xk+1..m = 0.35.  Note that objective-four 

performance depends on all variables bar xk/2+1..3k/4 and objective-five is affected by only x1..k/4 and 
xk+1..m.  (e) and (f) illustrate slices of the objective-space — each with obvious bias.  a → b indicates 

the mapping of a to b.
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Figure A31 — Problem Characteristics for AP-19 
Slices of the objective-space — each with obvious bias.
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(c) Pareto Optimal Solution Values 

Figure A32 — Problem Characteristics for AP-19 
(a) and (b) are slices of the objective-space — each with obvious bias.  (c) illustrates that the concave 

optimal front is formed by setting xk+1..m to 0.35 (normalised) and varying xk+1..m. 
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A.20 EXAMINING AP-20 
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(d) Solution-Space → Objective-One 
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(f) Solution-Space → Objective-One 

(when xk+1..m is optimal) 

Figure A33 — Problem Characteristics for AP-20 
As xk+1..m progressively approaches better performing space, the importance of x1..k diminishes until 

eventually — when xk+1..m is optimal at 0.35 — its value is meaningless (see the search-gradient in (f)).  
a → b indicates the mapping of a to b. 
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 (b) Pareto Optimal Solution Values 

Figure A34 — Problem Characteristics for AP-20 
The final Pareto optimal front is a single point in objective-space at (0.707, 0.707).  The front is 

formed by setting xk+1..m  to 0.35 (optimal performance is completely independent of the value of x1..k). 
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A.21 EXAMINING AP-21 
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(b) Solution-Space Dependencies for 
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(c) Solution-Space Dependencies for x1..k 
Caused by Biasing Function 
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(d) Effect of Deception on x1..k Values 

Figure A35 — Problem Characteristics for AP-21 
(a) and (c) illustrate that the first k decision variables are highly inter-dependent and feature mutual 

dependencies — caused both by the explicit non-separable function and the parameter biasing 
function.  (b) shows that all xk+1..m-k are highly inter-dependent, include mutual dependencies and are 
affected by position parameters.  (b) also demonstrates that all xm-k+1..m have numerous dependencies 

on both position- and distance-related parameters, but lack any mutual dependencies.  (d) 
demonstrates the lack of correlation between the search gradient and the location of the optimal value 

when deception is applied to x1..k. 
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(a) Effect of Multi-Modality on xk+1..m 
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(b) Effect of Multi-Modality on xk+1..m 
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Figure A36 — Problem Characteristics for AP-21 
(a) and (b) highlight the fine-grained multi-modality that affects xk+1..m.  (c) illustrates the bias of the 

objective-space, with (d) normalising frequencies to the range of 0% - 10% to better elucidate 
secondary influences (any frequency ≥ 10% is black).  The Pareto optimal front is a concave surface, 
with extent that is affected by the number and type of parameters chosen (due to the non-separability 

that exists between position and distance variables). 
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A.22 AN AUXILIARY TEST PROBLEM — P1 
1..

1..
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 (87) 

 

This auxiliary multi-faceted problem (constructed from the functions provided in 

[158]) features a mixed-shape Pareto optimal front and parameter biasing that 

favours the later decision variables (see Figure A37 for spectral graph analyses).  The 

problem is further complicated by the presence of a small zero-utility gradient that 

affects the final l solution parameters. 

The problem is included as an alternative to the particularly complex multi-faceted 

AP-21 problem and is appropriate for use when the investigation of high-levels of 

non-separability is not required.   
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Figure A37 — Problem Characteristics for Auxiliary Problem P1 
Objective-one is optimal when x1..k = 0 and xk+1..m = 0.35; objective-two is optimal when x1..k = 1 and 

xk+1..m = 0.35.  Note that the solution-spaces in these examples consider neighbouring decision 
variables only — increased spacings result in similar gradients, though they are increasingly affected 
by parameter weights.  The Pareto optimal front is of mixed-shape with extreme points at (0,4) and 

(2,0).  a → b indicates the mapping of a to b. 
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A.23 AUXILIARY FUNCTIONS FOR TEST PROBLEMS 

A.23.1 S_LINEAR 

s_linear( , )
−

=
 − + 

x opt
x opt

opt x opt
 (A1) 

Taken from Huband et al. [158], the s_linear function recasts the variable x such that 

it maps to zero when at opt according to Figure A38. 
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Figure A38 — Illustrating the s_linear Function 

A.23.2 R_FLAT 

( ) ( )( ) (1 ) ( )r_flat( , , , ) min 0, min 0,
1

× − − × −   = + − × − − ×    −
a b x a y cx a b c a x b c x

b c
 (A2) 

Taken from Huband et al. [158], the r_flat function takes a variable x and maps it 

such that it equals a when initially between b and c (see Figure A39). 
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Figure A39 — Illustrating the r_flat Function 
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A.23.3 INTERDEPEND 
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1 1interdepend( )

0.5 1
= =

+ −
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X X

i i j
i j

X X X
X

X X
 (A3) 

Specialised from Huband et al.’s [158] r_nonsep, the interdepend function takes a set 

of solutions X and forms pair-wise dependencies as per Figure A40. 

x1 x2 x3 x4 x|x|-1 x|x|...
 

Figure A40 — Illustrating Dependencies caused by the Interdepend function 
Arrows represent dependencies. 
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 (A4) 

Taken from Huband et al. [158], the s_decept function takes a variable x and recasts 

it according to Figure A41. 
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Figure A41 — Illustrating the s_decept Function 
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A.23.5 NONSEP_SPECIAL 
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1 mod
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 (A5) 

A newly defined function (inspired by Huband et al.’s r_nonsep [158]), 

nonsep_special takes two sets (X and Y) and maps dependencies according to 

Equation (A6).  Note that the function ensures that each member in X has exactly 

(|Y|-a) dependencies and that those dependencies can only come from the first |X| 

members of Y (see Figure A42 for an example).  The function leads to particularly 

interesting forms of non-separability when X is a subset of Y — specifically, when 

(1+|Y|-a) = |X|, the first |X| members are mutually dependent upon each other; when 

(1+|Y|-a) < |X| the first |X| members are either completely indirectly dependent upon 

each other (when |Y|-a < 0.5x|X|) or a mix of indirect and mutual dependence  (when 

|Y|-a > 0.5|X|). 

( ) ( ) { } ( ){ }1 mod 1, 2,..., , 1, 2,...,

where  represents a dependency,
+ +→ ∀ ∈ ∈ −

→
i i j XX Y i X j Y a

 (A6) 
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Figure A42 — Illustrating Example Dependencies Caused by the nonsep_special Function 
Arrows represent dependencies.  In this example, a = 3. 
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A.23.6 S_MULTI 

( )
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f x a opt g x b optx a b opt
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 (A7) 

Taken from Huband et al. [158], the s_multi function recasts the variable x such that 

it maps to zero when at opt, and is affected by the presence of 2a local minima when 

not at opt.  The b parameter is used to control the depth of the gullies leading to local 

(and global) minima — with smaller settings resulting in lower local minima87 and 

higher local maxima.  Figure A43 offers an example use of the s_multi function. 
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Figure A43 — Illustrating an Example of Using s_multi 

Dashed boxes indicate local minima.  In this example, opt = 0.7, a = 2 and b = 1.  Dashed boxes 
illustrate deceptive minima (optima).  

A.23.7 B_PARAM 

( )
( , , , )

( , ) (1 2 ) 0.5

( , , , ) ( ) ( , )

b_param( , , , , )

 = − − × − + 
= + − ×

= power r a b c

f r a a r r a

power r a b c b c b f r a

x r a b c x

 (A8) 

Taken from Huband et al. [158], the b_param function dictates how dependent x is 

upon other solution variables (represented here as a previously reduced value, r).  

The a, b, c and r parameters dictate the power by which the original x value is raised 

— as per Figure A44.  Higher values of b and c reduce the dependence of x on r by 
                                                 
87  When b = 0, the local minima become global minima with values of zero. 
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encouraging higher power values.  For clarity, the result of b_param when applied to 

x for various power settings is illustrated in Figure A44. 
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(b) How Applying power Affects x 

Figure A44 — Illustrating b_param 
Describes how the power component of b_param is derived and applied.  
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B ALGORITHM PARTICULARS 

B.1 NSGA-II SETTINGS 

B.1.1 CONFIGURATION ONE 

Table A1 — Key Parameter Settings for NSGA-II 

Crossover Rate 0.9 (using Simulated Binary Crossover) 

Mutation Rate 1/m 

Population Size 100, unless otherwise defined 

Constraints 
All feasible solutions are given preference; if required, infeasible 
solutions are ranked by their violation scores (with ties broken by 
dominance) 

 

B.1.2 CONFIGURATION TWO 

Table A2 — Key Parameter Settings for NSGA-II  

Crossover Rate 0.9 (using Simulated Binary Crossover 

Mutation Rate 1/m 

Population Size 50 

Constraints 
All feasible solutions are given preference; if required, infeasible 
solutions are ranked by their violation scores (with ties broken by 
dominance) 
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B.2 MUTATION OPERATOR USED FOR ALL OPTIMISERS 
All optimisers described in the thesis use an identical mutation operator (described in 

Equation (A9)) to ensure consistency.  The rand() function returns an evenly 

distributed random number between zero and one, while e is Euler’s number.   

3.2 rand()

( , , ) rand() 0.5 
( , , )

otherwise     ( , , )
where:
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100
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ω ω
ω
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max x x
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(A9) 
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C SUPPLEMENTAL RESULTS 

C.1 THE EFFECT OF CLEANING DOMINATED TREES 
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(c) AP-3 
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(e) AP-5 
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(f) AP-8 

Figure A45 — Comparative Cumulative Time Costs for Dominated Trees With and Without 
Cleaning 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average cumulative processing time in seconds 
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(a) AP-9 
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(b) AP-10 
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(c) AP-15 
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(e) AP-16 
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(f) AP-17 

Figure A46 — Comparative Cumulative Time Costs for Dominated Trees With and Without 
Cleaning 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average cumulative processing time in seconds 
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(e) AP-21 
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(f) F-1 

Figure A47 — Comparative Cumulative Time Costs for Dominated Trees With and Without 
Cleaning 

For all graphs, the x-axis represents the number of solutions presented to the archive and the y-axis is 
the average cumulative processing time in seconds 
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D NOMENCLATURE 

D.1 STYLE GUIDE 
Table A3 — Style Guide Listing 

a Bold italics The solution vector a. 

ai Subscript italics The ith decision variable in solution a.   
A Capital italics The collection A. 

Ai Subscript italics Element i of collection A. 

aprop Superscript italics a has the property prop. 

fun(a,b) Courier 
fun is a function, program or algorithm 

accepting parameters a and b. 

 
D.2 SPECIAL NOTATIONS 

Table A4 — Special Notations Listing 

a1..k All decision variables of a with indexes in the range of [1:k]. 

x => y The statement x logically leads to the statement y. 

v ≈ w The value of v is approximately equivalent to the value of w. 

a  The in-order list-predecessor of a. 

a  The in-order list-successor of a. 

significant 
Any italicised use of the word significant infers statistical significance 

(at the 5% level) according to a two-tailed Kruskal-Wallis test. 
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D.3 TERMS AND OPERATORS 
Table A5 — Terms and Operators Listing 

Y The complete decision-space. 

F The complete objective-space. 

f A multiobjective function (returns a list of objective-scores). 

 fi The ith multiobjective function (returns a single objective-score). 

( )if a  The ith objective-score for solution a. 

≺a b  
The vector performance of solution a strongly (strictly) dominates the 

vector performance of solution b. 

≺a b  
The vector performance of solution a weakly dominates the vector 

performance of solution b. 

a = b 
Solution a shares the same point in objective-space as solution b 

(equivalent vector performance). 

∼a b  
The vector performance of solution a is incomparable with the vector 

performance of solution b. 

Pfront The true (complete) Pareto front. 

Pestimate A non-dominated collection of solutions that estimate the Pareto front. 

Plocal 
The non-dominated collection of solutions produced up to a given point 

in the optimisation process. 

β The number of objectives to be optimised. 

m The number of decision variables. 

n The size of the current population of solutions. 

κ The size of the neighbourhood for nearest-neighbour calculations. 

i_terminal The first member of the dominated set. 

j_terminal The last member of the dominated set. 

F1 The leading (supposedly non-dominated) front in the NSGA-II archive. 
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D.4 MAK_TREE NODE PROPERTIES 
All Mak_Tree nodes (node) have access to (and maintain) the properties outlined in 

Table A6. 

Table A6 — Mak_Tree Properties Listing 

parentnode  The parent of node or null if it does not exist. 
leftChildnode  The left child of node or null if it does not exist. 
rightChildnode  The right child of node or null if it does not exist. 
obj1_labelnode  The objective one score associated with this node. 

_obj2 labelnode  The objective two score associated with this node. 

node  The in-order list-predecessor of node. 

node  The in-order list-successor of node. 

 

Extended Mak_Tree nodes (node) may have access to (and maintain) the properties 

outlined in Table A6. 

Table A7 — Extended Mak_Tree Properties Listing 
annotationnode  The crowding annotation for node. 
κnnScorenode  The κ nearest-neighbour score of node. 

leftmostNeighbournode  
The leftmost neighbour of node in node’s collection of nearest 

neighbours; null if there is no such boundary neighbour. 

rightmostNeighbournode  
The rightmost neighbour of node in node’s collection of nearest 

neighbours; null if there is no such boundary neighbour. 

breadcrumbnode  
An identifier used to determine which nodes have been visited 

during annotation updates. 
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D.5 ACRONYMS 
Table A8 and Table A9 define the acronyms used throughout this work.  

Table A8 — Acronyms (Part One) 

AP The newly developed Alternative Problem suite. 

CTP Constrained Test Problem suite. 

Diversity_PAES 
The novel diversity-based hill-climbing system, founded on 

the principles of the Pareto Archived Evolutionary Strategy. 

DMOEA The Dynamic Multi-Objective Evolutionary Algorithm. 

F1 Formula One. 

FDA Farina, Deb and Amato’s dynamic test suite. 

GA Genetic Algorithm. 

IBEA The Indicator Based Evolutionary Algorithm. 

IBEA_E IBEA using an epsilon performance indicator. 

IBEA_H IBEA using a hypervolume performance indicator. 

Mak_NSGA-II 
The unbounded elitist Non-dominated Sorting Genetic 

Algorithm. 

Mak_OS 
The unbounded Overuse Selection algorithm with cuboid 

crowding. 

Mak_OS_KNN 
The unbounded Overuse Selection algorithm with averaged 

κ nearest-neighbours crowding. 

Mak_PAES The unbounded Pareto Archived Evolutionary Strategy. 

Mak_PESA The unbounded Pareto Envelope Selection Algorithm. 

Mak_SPEA2 
The unbounded improved Strength Pareto Evolutionary 

Algorithm with cuboid crowding. 

Mak_SPEA2_KNN 
The unbounded improved Strength Pareto Evolutionary 

Algorithm with averaged κ nearest-neighbours crowding.. 

MOEA Multi-Objective Evolutionary Algorithm (generic term). 

MOGA The Multi-Objective Genetic Algorithm (specific algorithm). 

NPGA The Niched Pareto Genetic Algorithm. 

NSGA The Non-dominated Sorting Genetic Algorithm. 

NSGA-II The elitist Non-dominated Sorting Genetic Algorithm. 
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Table A9 — Acronyms (Part Two) 

PAES The Pareto Archived Evolutionary Strategy. 

PESA The Pareto Envelope Selection Algorithm. 

PQRS Partitioned Quasi-Random Selection scheme. 

SPEA The Strength Pareto Evolutionary Algorithm. 

SPEA2 The improved Strength Pareto Evolutionary Algorithm. 

WFG The Walking Fish Group test suite. 

ZDT Zitzler, Deb and Thiele’s test suite. 
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E FULL LISTING OF EPSILON AND HYPERVOLUME 
STATISTICAL INFERENCES 

E.1 HYPERVOLUME INFERENCES 
 

 PAES Mak 
PAES 

Div. 
PAES PESA

Mak 
PESA 

C 

Mak 
PESA 

E 
SPEA2 Mak 

SPEA2
Mak 

SPEA2
KNN 

NSGA-
II 

Mak 
NSGA-

II 
Mak 
OS 

Mak 
OS 

KNN 
IBEA 

E 
IBEA 

H 

PAES - 4.28E-02 1.66E-08 2.19E-02 6.36E-02 4.80E-01 2.60E-02 3.20E-01 3.28E-03 2.45E-01 4.89E-05 1.39E-16 1.29E-22 3.93E-19 1.13E-10
Mak 
PAES 1.59E-05 - 1.93E-04 1.99E-05 8.63E-01 6.51E-03 2.65E-05 3.00E-01 1.00E-06 3.85E-01 3.75E-02 7.74E-11 3.96E-16 4.93E-13 4.82E-06

Diversity 
PAES 8.05E-02 8.82E-03 - 1.45E-14 9.89E-05 3.22E-10 2.28E-14 2.39E-06 1.58E-16 5.16E-06 9.27E-02 3.09E-03 1.87E-06 1.76E-04 3.77E-01

PESA 2.88E-01 9.97E-04 4.92E-01 - 4.09E-05 1.11E-01 9.46E-01 1.09E-03 5.09E-01 6.02E-04 5.39E-10 4.94E-24 1.34E-30 7.67E-27 3.25E-17
Mak 
PESA_C 1.23E-13 7.64E-04 4.82E-09 9.41E-11 - 1.07E-02 5.40E-05 3.87E-01 2.25E-06 4.86E-01 2.45E-02 2.76E-11 1.19E-16 1.62E-13 2.19E-06

Mak 
PESA_E 6.99E-11 1.76E-02 8.95E-07 2.80E-08 3.11E-01 - 1.27E-01 8.97E-02 2.47E-02 6.23E-02 2.22E-06 8.84E-19 5.25E-25 2.02E-21 1.50E-12

SPEA2 8.88E-01 8.59E-06 5.91E-02 2.29E-01 4.86E-14 3.00E-11 - 1.37E-03 4.67E-01 7.65E-04 7.94E-10 8.38E-24 2.33E-30 1.32E-26 5.24E-17
Mak 
SPEA2 3.89E-01 4.86E-04 3.73E-01 8.39E-01 2.79E-11 9.45E-09 3.16E-01 - 9.42E-05 8.66E-01 1.94E-03 1.18E-13 2.34E-19 4.80E-16 2.98E-08

Mak 
SPEA2 
KNN 

8.39E-01 6.53E-06 5.13E-02 2.06E-01 3.23E-14 2.06E-11 9.51E-01 2.88E-01 - 4.76E-05 1.06E-11 2.68E-26 5.74E-33 3.69E-29 2.74E-19

NSGA-II 1.54E-01 3.33E-03 7.46E-01 7.15E-01 7.86E-10 1.83E-07 1.17E-01 5.70E-01 1.03E-01 - 3.34E-03 3.52E-13 8.08E-19 1.54E-15 7.18E-08
Mak 
NSGA-II 3.05E-01 8.73E-04 4.68E-01 9.70E-01 7.50E-11 2.28E-08 2.44E-01 8.69E-01 2.20E-01 6.87E-01 - 4.62E-06 2.60E-10 8.95E-08 1.06E-02

Mak 
OS 6.79E-22 4.03E-09 2.54E-16 1.89E-18 8.03E-03 2.74E-04 2.30E-22 4.31E-19 1.43E-22 2.60E-17 1.43E-18 - 6.06E-02 4.14E-01 3.67E-02

Mak 
OS 
KNN 

2.34E-24 5.97E-11 1.37E-18 8.42E-21 7.64E-04 1.42E-05 7.73E-25 1.82E-21 4.75E-25 1.28E-19 6.32E-21 4.64E-01 - 2.87E-01 8.65E-05

IBEA_E 3.71E-11 1.32E-02 5.37E-07 1.59E-08 3.64E-01 9.16E-01 1.57E-11 5.31E-09 1.08E-11 1.07E-07 1.30E-08 4.05E-04 2.23E-05 - 3.82E-03
IBEA_H 2.71E-02 1.85E-10 8.88E-05 1.14E-03 1.99E-20 3.28E-17 3.83E-02 2.24E-03 4.44E-02 3.09E-04 1.30E-03 1.55E-29 3.77E-32 1.54E-17 - 

(a) AP-1 (white) and AP-2 (dark grey) 
 

 PAES Mak 
PAES 

Div. 
PAES PESA

Mak 
PESA 

C 

Mak 
PESA 

E 
SPEA2 Mak 

SPEA2
Mak 

SPEA2
KNN 

NSGA-
II 

Mak 
NSGA-

II 
Mak 
OS 

Mak 
OS 

KNN 
IBEA 

E 
IBEA 

H 

PAES - 9.49E-04 5.35E-16 3.67E-01 4.81E-01 1.98E-05 9.76E-01 1.31E-03 2.30E-01 6.81E-05 7.66E-10 2.50E-20 6.33E-28 2.04E-22 1.86E-10
Mak 
PAES 8.67E-01 - 2.82E-07 2.98E-05 8.87E-03 3.18E-01 1.05E-03 9.25E-01 3.35E-02 4.83E-01 2.69E-03 1.54E-10 7.25E-17 3.27E-12 1.20E-03

Diversity 
PAES 2.43E-01 1.82E-01 - 8.70E-19 6.26E-14 2.77E-05 6.56E-16 1.76E-07 1.56E-12 7.64E-06 2.63E-02 1.67E-01 3.40E-04 4.45E-02 4.77E-02

PESA 2.85E-01 3.68E-01 2.58E-02 - 1.09E-01 3.07E-07 3.52E-01 4.42E-05 3.60E-02 1.30E-06 3.46E-12 2.57E-23 4.02E-31 1.78E-25 7.37E-13
Mak 
PESA_C 5.76E-01 6.96E-01 8.46E-02 6.10E-01 - 3.29E-04 5.00E-01 1.16E-02 6.18E-01 9.58E-04 3.64E-08 4.42E-18 1.78E-25 4.23E-20 9.88E-09

Mak 
PESA_E 2.11E-01 2.78E-01 1.59E-02 8.54E-01 4.88E-01 - 2.24E-05 2.75E-01 1.89E-03 7.66E-01 4.36E-02 3.99E-08 6.63E-14 1.27E-09 2.38E-02

SPEA2 2.17E-02 3.31E-02 5.81E-04 2.17E-01 8.14E-02 2.93E-01 - 1.45E-03 2.41E-01 7.67E-05 9.06E-10 3.11E-20 8.03E-28 2.56E-22 2.21E-10
Mak 
SPEA2 4.65E-01 5.73E-01 5.81E-02 7.35E-01 8.63E-01 6.01E-01 1.16E-01 - 4.21E-02 4.26E-01 1.98E-03 8.79E-11 3.72E-17 1.81E-12 8.65E-04

Mak 
SPEA2 
KNN 

1.03E-02 1.64E-02 2.12E-04 1.32E-01 4.41E-02 1.86E-01 7.85E-01 6.54E-02 - 4.86E-03 4.55E-07 1.53E-16 8.96E-24 1.66E-18 1.34E-07

NSGA-II 7.84E-03 1.26E-02 1.47E-04 1.09E-01 3.50E-02 1.56E-01 7.12E-01 5.27E-02 9.23E-01 - 2.08E-02 8.16E-09 9.14E-15 2.29E-10 1.07E-02
Mak 
NSGA-II 3.29E-04 6.07E-04 2.49E-06 1.08E-02 2.30E-03 1.79E-02 1.86E-01 3.98E-03 2.93E-01 3.39E-01 - 3.52E-04 1.27E-08 2.87E-05 8.07E-01

Mak 
OS 4.08E-01 3.20E-01 7.32E-01 5.86E-02 1.66E-01 3.81E-02 1.88E-03 1.20E-01 7.44E-04 5.28E-04 1.16E-05 - 2.57E-02 5.26E-01 8.47E-04

Mak 
OS 
KNN 

5.31E-02 3.57E-02 4.41E-01 2.83E-03 1.29E-02 1.55E-03 2.89E-05 7.93E-03 8.94E-06 5.83E-06 5.68E-08 2.66E-01 - 1.09E-01 4.66E-08

IBEA_E 1.35E-02 2.12E-02 3.05E-04 1.58E-01 5.52E-02 2.20E-01 8.60E-01 8.07E-02 9.23E-01 8.47E-01 2.51E-01 1.04E-03 1.36E-05 - 7.85E-05
IBEA_H 9.02E-06 1.87E-05 3.12E-08 6.43E-04 9.42E-05 1.22E-03 2.77E-02 1.84E-04 5.34E-02 6.63E-02 3.76E-01 1.81E-07 4.43E-10 4.27E-02 - 

 

(b) AP-3 (white) and AP-4 (dark grey) 
 

Figure A48 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Hypervolume Results 
Bold Italics indicate significant differences at the 5% level. 
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 PAES Mak 

PAES 
Div. 

PAES PESA
Mak 

PESA 
C 

Mak 
PESA 

E 
SPEA2 Mak 

SPEA2
Mak 

SPEA2
KNN 

NSGA-
II 

Mak 
NSGA-

II 
Mak 
OS 

Mak 
OS 

KNN 
IBEA 

E 
IBEA 

H 

PAES - 2.16E-05 1.21E-11 1.04E-30 3.72E-05 1.85E-06 1.55E-44 2.03E-34 4.63E-51 2.33E-29 6.33E-31 2.63E-02 3.43E-04 3.00E-12 3.02E-24 
Mak 
PAES  - 6.37E-03 1.81E-46 1.00E-15 8.40E-18 2.79E-60 2.96E-50 1.39E-66 4.54E-45 1.09E-46 3.77E-02 4.87E-01 8.66E-26 1.16E-39 

Diversity 
PAES   - 1.64E-56 1.43E-24 6.46E-27 5.73E-70 3.16E-60 4.84E-76 3.93E-55 9.95E-57 2.17E-06 6.59E-04 1.45E-35 9.27E-50 

PESA    - 1.12E-16 1.20E-14 1.81E-04 3.03E-01 5.84E-08 7.04E-01 9.52E-01 8.48E-39 6.56E-44 2.66E-08 6.50E-02 
Mak 
PESA_C     - 4.97E-01 2.63E-29 6.50E-20 1.08E-35 1.57E-15 7.36E-17 5.59E-10 1.07E-13 2.10E-03 2.16E-11 

Mak 
PESA_E      - 6.46E-27 9.35E-18 3.17E-33 1.48E-13 8.02E-15 9.75E-12 1.11E-15 1.60E-02 1.17E-09 

SPEA2       - 6.09E-03 7.66E-02 3.96E-05 2.27E-04 1.00E-52 8.88E-58 7.97E-19 3.95E-08 
Mak 
SPEA2        - 8.29E-06 1.59E-01 3.32E-01 1.39E-42 1.06E-47 8.11E-11 4.23E-03 

Mak 
SPEA2 
KNN 

        - 7.76E-09 7.96E-08 3.63E-59 3.94E-64 1.09E-24 1.32E-12 

NSGA-II          - 6.60E-01 2.09E-37 1.64E-42 1.89E-07 1.42E-01 
Mak 
NSGA-II           - 5.11E-39 3.94E-44 1.94E-08 5.68E-02 

Mak 
OS            - 1.65E-01 7.41E-19 4.51E-32 

Mak 
OS 
KNN 

            - 2.04E-23 4.09E-37 

IBEA_E              - 1.35E-04 

(a) AP-5 (white) 
 

 PAES Mak 
PAES 

Div. 
PAES PESA

Mak 
PESA 

C 

Mak 
PESA 

E 
SPEA2 Mak 

SPEA2
Mak 

SPEA2
KNN 

NSGA-
II 

Mak 
NSGA-

II 
Mak 
OS 

Mak 
OS 

KNN 
IBEA 

E 
IBEA 

H 

PAES - 2.22E-01 1.13E-34 3.08E-01 1.76E-04 4.81E-06 2.06E-04 4.51E-23 5.75E-21 9.50E-19 5.00E-27 3.04E-10 1.41E-18 8.98E-26 2.23E-17 
Mak 
PAES 1.53E-01 - 2.87E-30 2.54E-02 1.05E-02 6.76E-04 1.18E-02 4.63E-19 4.48E-17 5.26E-15 7.74E-23 2.29E-07 7.57E-15 1.24E-21 9.70E-14 

Diversity 
PAES 4.71E-02 5.75E-01 - 2.14E-38 2.10E-21 1.25E-18 1.53E-21 1.09E-03 1.04E-04 5.71E-06 3.28E-02 4.63E-13 4.48E-06 1.27E-02 7.45E-07 

PESA 8.85E-03 2.30E-01 5.22E-01 - 2.30E-06 3.25E-08 2.78E-06 1.45E-26 2.21E-24 4.58E-22 1.25E-30 5.91E-13 6.92E-22 2.40E-29 1.26E-20 
Mak 
PESA_C 4.60E-17 7.18E-13 2.37E-11 1.03E-09 - 3.90E-01 9.67E-01 1.69E-11 7.18E-10 3.14E-08 1.02E-14 6.80E-03 4.17E-08 1.12E-13 2.94E-07 

Mak 
PESA_E 8.04E-12 2.95E-08 5.10E-07 9.97E-06 7.02E-02 - 3.68E-01 2.56E-09 7.66E-08 2.23E-06 2.72E-12 6.31E-02 2.86E-06 2.53E-11 1.58E-05 

SPEA2 5.12E-12 2.01E-08 3.57E-07 7.22E-06 8.21E-02 9.42E-01 - 1.31E-11 5.67E-10 2.53E-08 7.73E-15 6.02E-03 3.36E-08 8.56E-14 2.40E-07 
Mak 
SPEA2 1.35E-39 2.26E-34 2.41E-32 4.74E-30 3.30E-10 3.41E-15 5.58E-15 - 5.26E-01 1.87E-01 2.49E-01 2.47E-05 1.69E-01 4.28E-01 7.92E-02 

Mak 
SPEA2 
KNN 

1.36E-30 1.43E-25 1.18E-23 1.64E-21 7.15E-05 1.36E-08 2.01E-08 1.36E-02 - 4.92E-01 7.45E-02 3.09E-04 4.58E-01 1.54E-01 2.61E-01 

NSGA-II 7.78E-28 6.44E-23 4.69E-21 5.54E-19 1.29E-03 7.26E-07 1.03E-06 1.23E-03 4.36E-01 - 1.38E-02 3.29E-03 9.57E-01 3.51E-02 6.62E-01 
Mak 
NSGA-II 2.13E-45 3.93E-40 4.50E-38 9.87E-36 1.71E-14 4.39E-20 7.54E-20 1.16E-01 6.30E-05 2.11E-06 - 1.13E-07 1.19E-02 7.18E-01 3.82E-03 

Mak 
OS 4.26E-26 2.93E-21 1.95E-19 2.04E-17 6.33E-03 7.34E-06 1.01E-05 2.04E-04 2.02E-01 6.18E-01 1.89E-07 - 3.90E-03 6.80E-07 1.21E-02 

Mak 
OS 
KNN 

5.20E-25 3.14E-20 1.96E-18 1.89E-16 1.55E-02 2.87E-05 3.89E-05 5.87E-05 1.12E-01 4.16E-01 3.74E-08 7.53E-01 - 3.08E-02 7.01E-01 

IBEA_E 2.32E-31 2.59E-26 2.21E-24 3.19E-22 2.95E-05 4.23E-09 6.30E-09 2.41E-02 8.30E-01 3.20E-01 1.48E-04 1.36E-01 7.13E-02 - 1.11E-02 
IBEA_H 9.75E-21 3.14E-16 1.45E-14 9.56E-13 2.48E-01 3.17E-03 3.98E-03 1.76E-07 4.39E-03 3.74E-02 2.75E-11 1.12E-01 2.03E-01 2.22E-03 - 

(b) AP-15 (white) and AP-16 (dark grey) 
 

Figure A49 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Hypervolume Results 
Bold Italics indicate significant differences at the 5% level. 
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 PAES Mak 

PAES 
Div. 

PAES PESA
Mak 

PESA 
C 

Mak 
PESA 

E 
SPEA2 Mak 

SPEA2
Mak 

SPEA2
KNN 

NSGA-
II 

Mak 
NSGA-

II 
Mak 
OS 

Mak 
OS 

KNN 
IBEA 

E 
IBEA 

H 

PAES - 3.01E-01 6.90E-49 3.26E-02 9.15E-18 9.81E-12 2.25E-25 3.44E-44 1.70E-39 6.20E-29 1.01E-45 4.45E-11 1.12E-16 1.46E-34 1.24E-16
Mak 
PAES 3.36E-01 - 4.44E-45 2.68E-01 1.22E-14 4.16E-09 7.10E-22 2.22E-40 1.04E-35 2.53E-25 6.57E-42 1.60E-08 1.26E-13 7.83E-31 1.38E-13

Diversity 
PAES 1.55E-01 6.46E-01 - 5.39E-41 1.21E-16 2.51E-23 3.57E-10 2.02E-01 1.11E-02 9.40E-08 3.90E-01 3.61E-24 9.91E-18 1.16E-04 8.91E-18

PESA 7.47E-03 8.46E-02 2.05E-01 - 1.51E-11 1.24E-06 2.75E-18 2.57E-36 1.07E-31 1.40E-21 7.78E-38 3.94E-06 1.26E-10 6.46E-27 1.37E-10
Mak 
PESA_C 7.23E-13 2.60E-10 3.56E-09 2.29E-06 - 3.87E-02 2.14E-02 6.42E-13 1.42E-09 9.63E-04 4.30E-14 2.08E-02 7.24E-01 1.56E-06 7.13E-01

Mak 
PESA_E 1.71E-07 1.55E-05 1.04E-04 8.10E-03 3.18E-02 - 1.59E-05 3.91E-19 3.31E-15 1.32E-07 1.79E-20 8.04E-01 8.59E-02 2.03E-11 8.86E-02

SPEA2 2.34E-05 9.60E-04 4.33E-03 1.09E-01 1.44E-03 2.90E-01 - 3.40E-07 1.01E-04 3.08E-01 4.12E-08 5.33E-06 8.09E-03 1.00E-02 7.74E-03
Mak 
SPEA2 7.91E-15 4.11E-12 6.81E-11 7.92E-08 4.92E-01 4.75E-03 1.17E-04 - 2.02E-01 3.55E-05 6.78E-01 6.23E-20 6.52E-14 9.00E-03 5.91E-14

Mak 
SPEA2 
KNN 

2.65E-09 4.13E-07 3.65E-06 6.38E-04 1.71E-01 4.32E-01 6.58E-02 4.04E-02 - 3.74E-03 9.14E-02 6.01E-16 1.86E-10 1.77E-01 1.71E-10

NSGA-II 7.62E-08 7.73E-06 5.49E-05 5.05E-03 4.66E-02 8.73E-01 2.24E-01 7.64E-03 5.31E-01 - 5.89E-06 3.66E-08 2.70E-04 1.17E-01 2.55E-04
Mak 
NSGA-II 4.98E-13 1.85E-10 2.57E-09 1.75E-06 9.54E-01 2.75E-02 1.18E-03 5.29E-01 1.54E-01 4.06E-02 - 2.75E-21 4.05E-15 2.54E-03 3.66E-15

Mak 
OS 2.81E-12 8.98E-10 1.15E-08 6.10E-06 8.30E-01 5.30E-02 2.91E-03 3.67E-01 2.49E-01 7.56E-02 7.85E-01 - 4.95E-02 4.39E-12 5.12E-02

Mak 
OS 
KNN 

6.28E-14 2.78E-11 4.23E-10 3.78E-07 7.06E-01 1.18E-02 3.82E-04 7.56E-01 8.15E-02 1.82E-02 7.50E-01 5.54E-01 - 2.83E-07 9.88E-01

IBEA_E 3.19E-23 4.83E-20 1.43E-18 1.04E-14 9.43E-04 8.45E-08 2.53E-10 8.41E-03 3.82E-06 1.90E-07 1.15E-03 4.39E-04 3.28E-03 - 2.63E-07
IBEA_H 1.62E-18 1.47E-15 3.27E-14 9.62E-11 5.85E-02 6.40E-05 5.69E-07 2.27E-01 1.20E-03 1.21E-04 6.66E-02 3.53E-02 1.29E-01 1.50E-01 - 

(a) AP-17 (white) and AP-21 (dark grey) 
 

Figure A50 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Hypervolume Results 
Bold Italics indicate significant differences at the 5% level. 
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E.2 EPSILON INFERENCES 
 

 PAES Mak 
PAES 

Div. 
PAES PESA

Mak 
PESA 

C 

Mak 
PESA 

E 
SPEA2 Mak 

SPEA2
Mak 

SPEA2
KNN 

NSGA-
II 

Mak 
NSGA-

II 
Mak 
OS 

Mak 
OS 

KNN 
IBEA 

E 
IBEA 

H 

PAES - 8.53E-02 2.81E-02 1.12E-01 5.20E-02 1.43E-02 1.08E-01 2.02E-10 2.76E-03 1.53E-11 4.13E-12 7.93E-24 6.48E-28 1.03E-16 1.02E-01 
Mak 
PAES 2.12E-03 - 6.31E-01 1.02E-03 8.23E-01 4.62E-01 9.07E-01 1.84E-06 1.97E-01 2.29E-07 7.80E-08 3.49E-18 5.19E-22 9.29E-12 9.33E-01 

Diversity 
PAES 5.39E-03 7.67E-01 - 1.77E-04 7.98E-01 7.98E-01 5.51E-01 1.59E-05 4.17E-01 2.31E-06 8.49E-07 1.07E-16 1.96E-20 1.67E-10 5.73E-01 

PESA 7.04E-01 5.78E-04 1.61E-03 - 4.60E-04 6.43E-05 1.51E-03 8.76E-15 6.01E-06 4.62E-16 1.05E-16 2.38E-29 1.36E-33 8.65E-22 1.36E-03 
Mak 
PESA_C 2.20E-03 9.92E-01 7.75E-01 6.00E-04 - 6.09E-01 7.34E-01 5.14E-06 2.86E-01 6.88E-07 2.43E-07 1.75E-17 2.85E-21 3.64E-11 7.58E-01 

Mak 
PESA_E 1.01E-01 1.46E-01 2.47E-01 4.39E-02 1.49E-01 - 3.94E-01 4.67E-05 5.79E-01 7.40E-06 2.83E-06 6.37E-16 1.32E-19 7.36E-10 4.12E-01 

SPEA2 4.37E-01 1.30E-04 4.01E-04 6.91E-01 1.36E-04 1.61E-02 - 1.06E-06 1.60E-01 1.27E-07 4.27E-08 1.50E-18 2.13E-22 4.52E-12 9.74E-01 
Mak 
SPEA2 1.68E-01 1.07E-05 3.79E-05 3.17E-01 1.12E-05 2.71E-03 5.47E-01 - 4.05E-04 6.67E-01 5.20E-01 1.28E-05 4.40E-08 2.59E-02 1.23E-06 

Mak 
SPEA2 
KNN 

8.19E-01 9.83E-04 2.64E-03 8.80E-01 1.02E-03 6.21E-02 5.84E-01 2.50E-01 - 7.76E-05 3.25E-05 2.76E-14 7.59E-18 1.60E-08 1.69E-01 

NSGA-II 1.64E-01 1.01E-05 3.59E-05 3.11E-01 1.06E-05 2.60E-03 5.38E-01 9.90E-01 2.45E-01 - 8.32E-01 7.76E-05 3.90E-07 7.16E-02 1.50E-07 
Mak 
NSGA-II 7.35E-01 6.10E-03 1.42E-02 4.73E-01 6.30E-03 1.93E-01 2.65E-01 8.66E-02 5.71E-01 8.43E-02 - 1.79E-04 1.09E-06 1.12E-01 5.04E-08 

Mak 
OS 1.00E-11 8.13E-05 2.40E-05 9.30E-13 7.80E-05 1.06E-07 7.09E-14 1.23E-15 2.41E-12 1.12E-15 7.73E-11 - 2.37E-01 2.85E-02 1.90E-18 

Mak 
OS 
KNN 

1.21E-15 1.54E-07 3.34E-08 8.62E-17 1.46E-07 4.85E-11 5.07E-18 6.13E-20 2.48E-16 5.57E-20 1.20E-14 1.67E-01 - 8.07E-04 2.72E-22 

IBEA_E 6.40E-07 4.72E-02 2.28E-02 9.68E-08 4.61E-02 6.46E-04 1.20E-08 4.14E-10 2.08E-07 3.84E-10 3.15E-06 4.58E-02 7.99E-04 - 5.51E-12 
IBEA_H 8.05E-05 9.84E-12 5.94E-11 3.47E-04 1.05E-11 3.99E-08 1.41E-03 9.27E-03 1.97E-04 9.62E-03 1.99E-05 4.94E-24 7.94E-29 1.67E-17 - 

(a) AP-1 (white) and AP-2 (dark grey) 
 

 PAES Mak 
PAES 

Div. 
PAES PESA

Mak 
PESA 

C 

Mak 
PESA 

E 
SPEA2 Mak 

SPEA2
Mak 

SPEA2
KNN 

NSGA-
II 

Mak 
NSGA-

II 
Mak 
OS 

Mak 
OS 

KNN 
IBEA 

E 
IBEA 

H 

PAES - 7.47E-01 4.95E-04 1.21E-01 7.47E-01 7.36E-02 9.49E-02 5.77E-02 9.34E-01 8.55E-02 3.46E-05 4.15E-10 4.21E-15 4.21E-10 4.72E-08 
Mak 
PAES 2.61E-01 - 1.52E-03 6.13E-02 5.19E-01 1.42E-01 4.66E-02 1.15E-01 6.85E-01 1.62E-01 1.27E-04 2.59E-09 3.67E-14 2.63E-09 2.44E-07 

Diversity 
PAES 8.73E-01 3.35E-01 - 6.86E-07 1.48E-04 8.50E-02 3.82E-07 1.07E-01 3.66E-04 7.32E-02 4.95E-01 3.44E-03 2.86E-06 3.46E-03 3.76E-02 

PESA 1.47E-01 1.04E-02 1.08E-01 - 2.19E-01 9.13E-04 9.04E-01 6.20E-04 1.42E-01 1.16E-03 2.14E-08 2.59E-14 6.56E-20 2.63E-14 6.54E-12 
Mak 
PESA_C 6.22E-01 1.06E-01 5.14E-01 3.38E-01 - 3.50E-02 1.77E-01 2.66E-02 8.10E-01 4.14E-02 8.65E-06 6.23E-11 4.60E-16 6.32E-11 8.47E-09 

Mak 
PESA_E 9.44E-01 2.92E-01 9.29E-01 1.29E-01 5.73E-01 - 5.98E-04 9.12E-01 6.13E-02 9.44E-01 1.65E-02 4.47E-06 3.49E-10 4.52E-06 1.66E-04 

SPEA2 8.06E-03 1.81E-04 5.02E-03 2.25E-01 3.05E-02 6.56E-03 - 4.01E-04 1.12E-01 7.67E-04 1.13E-08 1.16E-14 2.68E-20 1.18E-14 3.10E-12 
Mak 
SPEA2 2.12E-02 6.62E-04 1.38E-02 3.88E-01 6.93E-02 1.76E-02 7.26E-01 - 4.77E-02 8.57E-01 2.21E-02 7.32E-06 6.58E-10 7.41E-06 2.52E-04 

Mak 
SPEA2 
KNN 

7.03E-03 1.51E-04 4.35E-03 2.08E-01 2.71E-02 5.71E-03 9.63E-01 6.91E-01 - 7.16E-02 2.45E-05 2.57E-10 2.40E-15 2.61E-10 3.06E-08 

NSGA-II 5.90E-02 2.74E-03 4.07E-02 6.58E-01 1.62E-01 5.03E-02 4.41E-01 6.74E-01 4.13E-01 - 1.36E-02 3.25E-06 2.32E-10 3.28E-06 1.26E-04 
Mak 
NSGA-II 1.05E-02 2.56E-04 6.60E-03 2.62E-01 3.81E-02 8.57E-03 9.27E-01 7.95E-01 8.90E-01 4.96E-01 - 2.42E-02 5.56E-05 2.43E-02 1.61E-01 

Mak 
OS 1.05E-01 6.17E-01 1.44E-01 2.28E-03 3.49E-02 1.21E-01 2.41E-05 1.01E-04 1.97E-05 4.99E-04 3.54E-05 - 6.89E-02 9.98E-01 3.90E-01 

Mak 
OS 
KNN 

5.46E-01 6.03E-01 6.57E-01 4.05E-02 2.73E-01 5.94E-01 1.20E-03 3.76E-03 1.02E-03 1.30E-02 1.63E-03 3.08E-01 - 6.85E-02 7.62E-03 

IBEA_E 4.94E-05 3.02E-07 2.54E-05 8.06E-03 3.38E-04 3.70E-05 1.47E-01 7.22E-02 1.61E-01 2.68E-02 1.24E-01 2.33E-08 3.60E-06 - 3.91E-01 
IBEA_H 6.17E-09 8.82E-12 2.56E-09 8.28E-06 8.43E-08 4.20E-09 9.97E-04 2.82E-04 1.17E-03 5.43E-05 7.25E-04 3.78E-13 2.02E-10 6.22E-02 - 

(b) AP-3 (white) and AP-4 (dark grey) 
 

Figure A51 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Epsilon Results 
Bold Italics indicate significant differences at the 5% level. 
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 PAES Mak 

PAES 
Div. 

PAES PESA
Mak 

PESA 
C 

Mak 
PESA 

E 
SPEA2 Mak 

SPEA2
Mak 

SPEA2
KNN 

NSGA-
II 

Mak 
NSGA-

II 
Mak 
OS 

Mak 
OS 

KNN 
IBEA 

E 
IBEA 

H 

PAES - 1.09E-01 1.47E-05 1.53E-28 4.42E-05 2.05E-06 3.86E-38 6.52E-30 3.50E-39 2.03E-24 2.97E-33 1.13E-06 1.20E-10 1.39E-09 1.46E-15
Mak 
PAES  - 5.46E-03 2.67E-34 2.19E-08 4.55E-10 4.73E-44 1.05E-35 4.24E-45 4.99E-30 4.09E-39 8.72E-04 6.93E-07 7.31E-14 1.37E-20

Diversity 
PAES   - 1.50E-44 7.20E-16 5.17E-18 2.59E-54 5.65E-46 2.39E-55 3.56E-40 2.11E-49 5.73E-01 2.35E-02 1.36E-22 3.54E-30

PESA    - 5.71E-15 5.72E-13 8.15E-03 6.99E-01 3.45E-03 2.35E-01 1.88E-01 1.26E-46 6.67E-53 2.74E-09 9.94E-05
Mak 
PESA_C     - 4.85E-01 2.02E-23 4.03E-16 2.19E-24 1.23E-11 5.16E-19 1.36E-17 3.86E-23 3.54E-02 2.28E-05

Mak 
PESA_E      - 4.29E-21 4.61E-14 4.94E-22 7.77E-10 7.88E-17 8.34E-20 1.61E-25 1.58E-01 3.65E-04

SPEA2       - 2.35E-02 7.76E-01 1.43E-04 1.80E-01 2.31E-56 1.63E-62 1.29E-16 1.86E-10
Mak 
SPEA2        - 1.09E-02 1.16E-01 3.51E-01 4.75E-48 2.59E-54 3.03E-10 2.02E-05

Mak 
SPEA2 
KNN 

        - 4.59E-05 1.04E-01 2.16E-57 1.59E-63 1.72E-17 3.42E-11

NSGA-II          - 1.26E-02 3.00E-42 1.51E-48 1.26E-06 6.19E-03
Mak 
NSGA-II           - 1.80E-51 1.07E-57 1.04E-12 2.72E-07

Mak 
OS            - 8.79E-02 1.69E-24 3.39E-32

Mak 
OS 
KNN 

            - 1.78E-30 2.06E-38

IBEA_E              - 2.91E-02

(a) AP-5 (white) 
 

 PAES Mak 
PAES 

Div. 
PAES PESA

Mak 
PESA 

C 

Mak 
PESA 

E 
SPEA2 Mak 

SPEA2
Mak 

SPEA2
KNN 

NSGA-
II 

Mak 
NSGA-

II 
Mak 
OS 

Mak 
OS 

KNN 
IBEA 

E 
IBEA 

H 

PAES - 8.35E-01 7.76E-19 7.97E-02 4.11E-02 9.42E-02 1.91E-13 4.14E-11 6.56E-13 3.63E-11 1.37E-15 2.43E-01 8.86E-10 1.71E-10 1.59E-01
Mak 
PAES 3.78E-01 - 1.68E-19 1.22E-01 2.46E-02 6.01E-02 4.88E-14 1.17E-11 1.71E-13 1.02E-11 3.24E-16 1.69E-01 2.67E-10 4.97E-11 1.07E-01

Diversity 
PAES 4.36E-05 1.21E-03 - 1.22E-24 9.97E-13 9.00E-14 7.38E-02 8.38E-03 4.80E-02 8.93E-03 2.92E-01 3.00E-15 1.65E-03 4.11E-03 1.52E-14

PESA 1.32E-03 1.89E-02 3.64E-01 - 1.70E-04 6.73E-04 1.01E-18 4.57E-16 4.04E-18 3.92E-16 4.15E-21 3.68E-03 1.61E-14 2.35E-15 1.69E-03
Mak 
PESA_C 1.82E-09 1.98E-07 4.00E-02 3.21E-03 - 7.10E-01 3.43E-08 2.41E-06 9.27E-08 2.18E-06 5.90E-10 3.78E-01 2.45E-05 7.11E-06 5.22E-01

Mak 
PESA_E 3.33E-10 4.32E-08 1.89E-02 1.21E-03 7.66E-01 - 4.64E-09 4.08E-07 1.31E-08 3.66E-07 6.67E-11 6.11E-01 4.80E-06 1.29E-06 7.89E-01

SPEA2 1.88E-16 7.48E-14 6.37E-06 8.08E-08 1.17E-02 2.59E-02 - 3.90E-01 8.48E-01 4.03E-01 4.60E-01 2.59E-10 1.68E-01 2.73E-01 1.03E-09
Mak 
SPEA2 7.09E-24 6.18E-21 3.32E-11 1.09E-13 2.14E-06 8.24E-06 2.20E-02 - 5.04E-01 9.83E-01 1.11E-01 3.06E-08 6.01E-01 8.12E-01 1.07E-07

Mak 
SPEA2 
KNN 

3.32E-25 3.19E-22 3.03E-12 8.23E-15 3.30E-07 1.39E-06 7.51E-03 6.97E-01 - 5.18E-01 3.52E-01 7.82E-10 2.34E-01 3.65E-01 3.03E-09

NSGA-II 3.78E-19 2.10E-16 1.00E-07 7.33E-10 7.60E-04 2.09E-03 3.87E-01 1.52E-01 6.89E-02 - 1.16E-01 2.72E-08 5.86E-01 7.95E-01 9.53E-08
Mak 
NSGA-II 2.17E-18 1.11E-15 3.34E-07 2.83E-09 1.72E-03 4.46E-03 5.31E-01 9.49E-02 3.98E-02 8.11E-01 - 2.96E-12 3.46E-02 6.71E-02 1.32E-11

Mak 
OS 7.82E-12 1.44E-09 3.06E-03 1.22E-04 3.56E-01 5.31E-01 1.08E-01 1.13E-04 2.30E-05 1.38E-02 2.59E-02 - 4.36E-07 1.05E-07 8.10E-01

Mak 
OS 
KNN 

6.21E-13 1.41E-10 7.96E-04 2.35E-05 1.85E-01 3.04E-01 2.28E-01 5.17E-04 1.19E-04 3.88E-02 6.74E-02 6.87E-01 - 7.76E-01 1.39E-06

IBEA_E 1.30E-18 6.78E-16 2.35E-07 1.90E-09 1.36E-03 3.58E-03 4.86E-01 1.10E-01 4.71E-02 8.66E-01 9.43E-01 2.16E-02 5.75E-02 - 3.52E-07
IBEA_H 5.96E-07 3.21E-05 3.40E-01 6.32E-02 2.69E-01 1.61E-01 3.20E-04 8.02E-09 9.18E-10 9.48E-06 2.66E-05 4.32E-02 1.55E-02 1.97E-05 - 

(b) AP-15 (white) and AP-16 (dark grey) 
 

Figure A52 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Epsilon Results 
Bold Italics indicate significant differences at the 5% level. 
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 PAES Mak 

PAES 
Div. 

PAES PESA
Mak 

PESA 
C 

Mak 
PESA 

E 
SPEA2 Mak 

SPEA2
Mak 

SPEA2
KNN 

NSGA-
II 

Mak 
NSGA-

II 
Mak 
OS 

Mak 
OS 

KNN 
IBEA 

E 
IBEA 

H 

PAES - 5.50E-01 2.25E-53 5.90E-01 5.94E-16 9.30E-07 1.94E-28 5.36E-42 2.87E-41 1.34E-30 5.60E-38 1.38E-07 4.89E-21 1.18E-30 1.51E-11 
Mak 
PAES 3.86E-01 - 3.45E-51 9.54E-01 3.41E-14 1.42E-05 2.38E-26 8.44E-40 4.50E-39 1.76E-28 8.53E-36 2.49E-06 4.19E-19 1.55E-28 5.24E-10 

Diversity 
PAES 2.20E-04 4.33E-03 - 2.11E-51 1.83E-22 5.44E-35 4.66E-11 2.13E-03 1.10E-03 1.62E-09 3.63E-05 1.39E-33 2.89E-17 1.76E-09 8.74E-28 

PESA 2.82E-01 8.33E-01 8.13E-03 - 2.32E-14 1.10E-05 1.49E-26 5.16E-40 2.75E-39 1.10E-28 5.23E-36 1.90E-06 2.73E-19 9.68E-29 3.75E-10 
Mak 
PESA_C 4.13E-07 2.19E-05 1.51E-01 5.27E-05 - 4.18E-04 1.85E-04 6.58E-13 2.31E-12 1.54E-05 5.13E-10 1.62E-03 1.07E-01 1.44E-05 1.21E-01 

Mak 
PESA_E 1.05E-05 3.49E-04 4.58E-01 7.46E-04 4.87E-01 - 1.99E-12 4.80E-24 2.25E-23 3.88E-14 2.10E-20 6.98E-01 4.07E-07 3.50E-14 4.47E-02 

SPEA2 5.35E-06 1.97E-04 3.71E-01 4.33E-04 5.86E-01 8.79E-01 - 2.18E-04 4.55E-04 5.42E-01 8.51E-03 2.20E-11 3.07E-02 5.32E-01 1.88E-07 
Mak 
SPEA2 2.01E-16 7.21E-14 1.01E-06 2.84E-13 4.37E-04 2.84E-05 5.32E-05 - 8.43E-01 1.90E-03 2.74E-01 9.79E-23 9.37E-09 1.99E-03 1.76E-17 

Mak 
SPEA2 
KNN 

1.36E-10 1.77E-08 3.75E-03 5.37E-08 1.39E-01 3.01E-02 4.36E-02 3.88E-02 - 3.58E-03 3.70E-01 4.48E-22 2.70E-08 3.76E-03 7.17E-17 

NSGA-II 2.37E-11 3.63E-09 1.46E-03 1.14E-08 7.70E-02 1.40E-02 2.11E-02 7.55E-02 7.70E-01 - 4.23E-02 4.88E-13 5.77E-03 9.88E-01 7.76E-09 
Mak 
NSGA-II 6.00E-14 1.48E-11 4.23E-05 5.29E-11 6.95E-03 7.28E-04 1.23E-03 4.02E-01 2.17E-01 3.46E-01 - 3.74E-19 2.32E-06 4.39E-02 3.33E-14 

Mak 
OS 4.18E-09 3.86E-07 2.10E-02 1.07E-06 3.79E-01 1.16E-01 1.55E-01 7.86E-03 5.48E-01 3.73E-01 6.71E-02 - 2.59E-06 4.42E-13 1.05E-01 

Mak 
OS 
KNN 

3.20E-13 6.99E-11 1.19E-04 2.42E-10 1.44E-02 1.75E-03 2.88E-03 2.74E-01 3.28E-01 4.92E-01 7.97E-01 1.15E-01 - 5.50E-03 1.69E-03 

IBEA_E 1.32E-10 1.73E-08 3.70E-03 5.24E-08 1.38E-01 2.98E-02 4.31E-02 3.92E-02 9.96E-01 7.74E-01 2.19E-01 5.45E-01 3.30E-01 - 7.13E-09 
IBEA_H 7.76E-12 1.31E-09 7.78E-04 4.24E-09 5.13E-02 8.41E-03 1.29E-02 1.10E-01 6.35E-01 8.55E-01 4.47E-01 2.83E-01 6.14E-01 6.39E-01 - 

 

(a) AP-17 (white) and AP-21 (dark grey) 
 

Figure A53 — Two-Tailed Kruskal-Wallis Tests on End-of-Run Epsilon Results 
Bold Italics indicate significant differences at the 5% level. 
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F MISCELLANEOUS 

F.1 AVAILABILITY OF SOURCE CODE FOR RED-BLACK 
 TREE  IMPLEMENTATIONS 

Table A10 lists websites offering full implementations of the basic Red-Black tree 

for a variety of contemporary programming languages.  The resources are reliable as 

at March 2007. 

Table A10 - Online Sources for Red-Black Tree Implementations 

C 

http://web.mit.edu/~emin/www/source_code/red_black_tree/index.html 
http://sourceforge.net/projects/libredblack/ 

C# 

http://www.codeplex.com/NGenerics 
C++ 

http://sourceforge.net/projects/libredblack/ 
http://web.mit.edu/~emin/www/source_code/red_black_tree/index.html 

Java 

As TreeMap from the standard library (Java 1.2–1.6: current version as at the time of 
writing): 
http://java.sun.com/javase/downloads/index.jsp 
 
As a stand-alone implementation: 
http://gee.cs.oswego.edu/dl/classes/collections 
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F.2 FREQUENCY MATRIX SETTINGS 
All displayed frequency matrices from Chapter 9 onwards represent attained regions 

lying in the space bounded by the objective-one and objective-two range values 

(Table A11). 

Table A11 - Frequency Matrix Dimensions 

Function Objective-One Range Objective-Two Range 
AP-1 [0,1] [0,1.2] 
AP-2 [0,1] [0,1.2] 
AP-3 [0,1] [0,1.2] 
AP-4 [0,1] [0,10] 
AP-5 [0,1] [0,1.2] 
AP-15 [0,2.5] [0,4.5] 
AP-16 [0,2.5] [0,4.5] 
AP-17 [0,2.5] [0,4.5] 
AP-21 [0,2.5] [0,4.5] 

 
 
F.3 FURTHER ILLUSTRATIONS 

F.3.1 LOCATING DOMINATED NODES 
Figure A54 illustrates an additional example of inserting a dominating solution into 

the basic Mak_Tree. 
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Figure A54 — Locating Dominated Nodes in an Example Mak_Tree 
Assume that a solution with results (29,40) is being inserted into the tree and that B is the first 

dominated node to be identified.  The dashed bold line represents the O(log n) path taken to identify 
all dominated nodes to the right of B.  The solid bold line represents the O(log n) path taken to both 
identify all dominated nodes to the left of B and insert the solution at the correct location in the tree.  
For clarity, individual dominated nodes are lightly shaded, while dominated sub-trees feature heavy 

shading. 

  


