Evolutionary Strategies for the High-Level Synthesis
of VLSI-Based DSP Systems for Low Power

A Thesis submitted to the University of Wales
Fror the Degree of Doctor of Philosophy

M S Bright

Circuits and Systems Research Group
Division of Electronic Engineering
School of Engineering
Cardiff University

October 1998

DECLARATION

This work has not previously been accepted in substance for any degree and is not
being concurrently submitted in candidature for any other degree.

Signed..........ooo (candidate)

This thesis is the result of my own investigations, except where otherwise stated.
Other sources are acknowledged by footnotes giving explicit references. A

bibliography is appended.

I hereby give consent for my thesis, if accepted, to be available for photocopy and
for inter-library loan, and for the title and summary to be made available to other

organisations.

i

Acknowledgements
I would like to thank my supervisor, Dr. T. Arslan, for all the patience and
assistance he has shown me over the course of my undergraduate and postgraduate

studies. He ensured that the research was enjoyable as well as fruitful.

Thanks also to all of my colleagues in the Circuits and Systems Research

Group for their assistance and support.
I also thank my family and friends who have helped me immensely during
the research and the preparation of this thesis, and throughout the whole of my

studies.

To Louise, for her unlimited support, understanding and patience.

il

Summary

Power consumption of signal-processing microcircuit systems has become
increasingly important in recent years, primarily due to the explosion in demand for
portable systems where battery-lifetime is a major marketing point. In addition, the
thermal dissipation levels of microcircuits are beginning to affect reliability and
future development. These factors have elevated the importance of power in the
design process.

The consideration of power adds another degree of complexity to the design
process, hence the requirement for power-conscious tools to support low-power
system design. Considering power as a high-level parameter promises to maximise
power reductions. However, the complex nature of the high-level design process is
significantly increased with the consideration of power consumption;, hence the
interest in the application of heuristic optimisation techniques.

This thesis presents a high-level tool for the power-conscious design of digital
signal processing systems in CMOS technology. The tool consists of a specially
tailored genetic algorithm with embedded high-level design properties. The
embedding of these techniques required extensive modification to standard genetic
algorithm operations to instil the algorithm with the ability to explore the low-
power solution space efficiently. Problem specific genetic mutation and crossover
operations were developed to incorporate high-level design transformations. To
guide the search, power estimation strategies were examined and implemented
within the fitness evaluation framework.

The prototype system was extended to incorporate additional genetic techniques to
improve the efficiency and results of the exploration. The power-estimation module
was also enhanced to obtain estimations based on practical circuit synthesis
techniques.

The performance of the enhanced tool is illustrated with benchmark circuits,
illustrating the tool’s ability to reduce the power of practical signal processing
examples. The multi-objective properties of the genetic algorithm are exploited to
present design information illustrating the trade-off between area and power while
keeping throughput constant. Alternative search techniques were developed and
compared with the genetic algorithm. The results illustrate the superiority of the
genetic algorithm in obtaining the lowest power solution and presenting trade-off
information.

v

Contents

Declaration.....................................c.cccccci ii
Acknowledgements..................ccccceiiiiiiiiiiiiiiii e ifi
SUMMQTY ..ottt iv
CONIENLS............cooiiiiii v
LiSt Of FIQUFES ... ix
LiSt Of TADIESeoooiiiiiiiiiieeee e Xiii
ABBreVIQtions.....................oooooveiiiiiiiiiiiiiiiiiiiiee xiv
Nomenclatureccccciiiiieee xvi
Chapter 1 = Introduction..........coevreeeeriiee e 1
1.1 Motivation for Low-Power VLS| ... 1
1.2 Requirements for Low-Power Computer Aided Design
TOO0IS e 5
1.3 0verview of ThesSiS.............c 9
1.4 Publications Arising from This Research...................................... 11
Chapter 2 - Synthesis for Low Power VLSI 13
2.1 High-Level Synthesis..................cc 14
2.1.1 Behavioural Level Problem Representation 18
2.2 Power Dissipation in CMOS Devicesooooeiiiiii, 21
2.3 Power ReduCtion.............ccoooiiiiiiiii 24
2.4 High-Level Power Reduction....................ccooiiiiii 30
2.4.1 Architectural Level Power-Reduction 30
2.4.2 Behavioural Level Optimisation..................cccccveeeeeeeeiieeeeeenn 35
2.5 Power Reduction Using Transformations.........................ccccvee. 37
25T REUMING ... 39
2.8.2PIPEIINING. ... 40
2.5.3 Automatic PIPEliNING...............ccoovviiieeeiieee 41
254 Loop Unfoldingoovvmeeeeieiiiieeeee e 41
2.5 SUMMANY ... 44
Chapter 3 - Power Analysis......cccccccmiiiiiinnicciieeennnnenenne 46
3.1 Power Dissipation in CMOS Devicescooooeeiiiiiiiiiiieeie, 48
3.2 Transistor Level Analysisccooooiiiiiiii i 49
3.3 LogicLevel AnalysSiS............oooiiiiiii i 50
3.4 Architectural Level Analysisoooooiiiiiii i 54
3.5 Behavioural Level Analysisc.cooooiiiiiii i 59
Chapter 4 — Genetic Algorithmsoooocciiinnnninnn. 64
4.1 Overview of Genetic Algorithms, 64
4.2 Standard Genetic Algorithm Implementation............................... 67

4.2.1 Solution Representationcccvveeeeeeeeeeeeieeieeeeieeeereenn 67

4.2.2 Fitness ASSESSMENL ... o 68

4.2.3 Reproduction OPerators..............ccovvveeeeeeeeeeeeeeeeeeeieeeesieeieeenn 69
4.2.4 SOIution SeIECHONcccovee 71
4.2.5 StoppiNg Criteriacccoee e 73
4.3 Non-Standard Genetic Algorithms.......................co, 74
4.4 Applications of Genetic Algorithms......................., 75
4.5 Application of GAs to the Problem of Low-Power
SYNMNESIS ..o 78
Chapter 5 - The Genetic Algorithm............ccceiiinnnnnnnnnnn. 80
5.1 Problem Representation...................ccooooii 82
5.1.1 Chromosome Representationccoceeveeeeeeeeeeeieeeirenn 83
5.1.2 Input Data Format ..o 87
5.2 Population Initialisation..................c.ooiii 88
5.3 Selection Procedureccooooiiiiiiiiieieceeeeeeeeeeeee 89
5.3.1 Implementation of Selection Procedure within
GALOPS ..o 91
5.4 Genetic Mutation Operators ..., 92
5.4.1 Retime Transformation as Mutation 96
5.4.2 Back Retime Transformation as Mutation 98
5.4.3 Pipeline Transformation as Mutation..................................... 99
5.4.4 Automatic Pipeline Transformation as Mutation.................. 104
5.4.5 Unfolding Transformation as Mutation 106
5.4.6 Application of Mutation Operators................cccovvvvveveveeeeenn. 110
5.5 Genetic Crossover Operators............ccoooeeeeieieieeiieiiieeceeeeeeeeeee 113
5.5.1 Problem-Specific Crossover Operator..................ccccevveenn.. 115
5.5.2 Implementation of Crossover Operator................ccccevveennn. 118
5.6 Fitness Evaluation..................o. 121
5.6.1 Supply Voltage EStimationcccovvveveeeeeeeeeiiiieeeeienn 124
5.6.2 Capacitance Estimation.................cccooveeveeeeeeeeeeeeeieeieeeeeeeinn 130
5.6.3 Power Estimation Used as Fitness................cccccceeeeeeei 135
5.7 Benchmark Designs ... 136
5.7.1 3rd Order Finite Impulse Response Filter (FIR3) 137
5.7.2 8th Order Finite Impulse Response Filter (FIRS)................. 137
5.7.3 2nd Order Lattice Filter (LAT2)........ccooveeeeeeeeeeeeeeeeeeeeeeeee 138
5.7.4 8th Order Avenhaus Filterccoovvveeeeeeeeeeeiieieeeeieen 139
5.8 Genetic Algorithm Operating Parameters........................ooooe 143
5.9 Implementationand Results...................coooi i 149
5.9.1 Optimisation without Unfolding................ccccovvveeeeeeiiiieeiinn. 149
5.9.2 Optimisation with Unfolding................ccoovveveveeeeeeeiiiieeeeein 157
5.9.3 CONCIUSIONS. ... 160
Chapter 6 - Enhanced Fitness Estimation.................... 162
6.1 Scheduling and Functional Unit Allocation 163
6.1.1 Scheduling AIQOrItRIMScccoveeeeeeeeeeeeeeeeeeeee 166
6.2 Overview of Estimation of Hardware Resources....................... 170
6.3 Initial Estimates of Lower Bounds on Functional Units............... 171

vi

6.4 Improved Estimate of Lower Bounds on Functional Units........... 174

6.4.1 ASAP/ALAP Scheduling...........ccccooveeeeeeeiieiieeiieeceeee 174
6.4.2 The Relaxed Estimation Techniquecccce... 177
6.5 Examples of Lower Bound Estimation.. 183
6.6 Estimation of Lower Bounds on Registers.................................. 186
6.7 Hardware Unit Models................cccooiiiiii 190
6.8 Capacitance Estimation...........................cocc 191
6.8.1 Switched Capacitance of Functional Units.......................... 192
6.8.2 Switched Capacitance of Registers.............ccccvvveeeevevvereenn. 193
6.9 Summary of Enhanced Fitness/Power Estimation Module......... 194

Chapter 7 — Modifications to the Prototype GALOPS. 197

7.1 Enhanced Mutation Operator (Remove-Pipeline)..................... 197
7.2 The Elitism Mechanism for Chromosome Selection................... 200
7.2.1 Experimental Analysis of Effect of Elitism 201
7.3 Selection of Operator Application Rates.........................ooooee 204
7.3.1 Taguchi Optimisation of GA Application Rates................... 210
7.4 Ranking Selection Schemeooooooiii 218
7.4.1 Experimental Analysis of Effect of Ranking......................... 224
7.5 SUMMAIY ..o 225
Chapter 8 — ResUItS........ccoeveeeeeeeeeeeee e 227
8.1 Benchmark CirCUitsScooooiiiiiiiiiiiiie e 227
8.2 GALOPS Operating Parameters ... 229
8.3 Results for Ten Benchmark Designsccoooooiiieiiiieee 229
.31 BTAPFIR ... 231
.32 AVENSDIooooeeeeeeeeee e 233
B.3.3AVENSPA. oo 234
8. 3.4 DOST .o 235
835 BIQUADS ... 236
8.3.6 GMLATA ... 238
.37 ELLIPS ... 239
.38 LIMSS......oooeeeeee 240
B39 VOLTERRA oo 241
8.3.10 ORTHZLAT .o 242
8.4 DISCUSSION ...ttt 243
8.5 CONCIUSIONS......ooieeeee e 246
Chapter 9 - Multi-Objective Search Space
Exploration.......... i 249
9.1 Pareto-Surfacecooooiiiiiiieie e 251
9.2 Pareto Surface Generation in GALOPS ... 254
9.3 Area and Power Trade-off for Benchmark Designs.................... 255
O A N Y e | 256
9.3.2AVENSDI ... 257
9.3.3AVENSPA..... ..ot 258

vii

9.3 4 DCST ..o 259

9.35BIQUADSI ... 260
R R O L 261
O A N | 261
9.3.8LMSE.. ... 262
939 VOLTERRAttt 263
9.3.10 ORTHZLAT ..ot 264
9.4 DISCUSSION ...ttt 264
S IR O] o T 1111 T T o 266
Chapter 10 — Development of Alternative Search
TeChNIqUES.......ccooiirrr s 267
10.1 Gradient Search ... 268
10.1.1 Implementation and Results of Gradient Search............... 269
10.2 Simulated Annealingccccc 272
10.2.1 Implementation and Results of Simulated Annealing 275
10.3 CONCIUSION ..o 280
Chapter 11 - Conclusions and Future Work 283
11.1 Primary Features of This Work.......................cocooi 283
11.2 System Implementation.......................... 285
11,3 DISCUSSION ..o 286
11.4 CONCIUSIONS ...t 291
T1.5 Future WOrK........ooooi i 293
ReferenCes........oooiii 297
Appendix A

viil

List of Figures

Figure 1.1 Power Consumption Trends in Intel Processors.......................... 4
Figure 2.1 Example Data Flow Graph.............................. 19
Figure 2.2 Example Illustrating Critical Path...................................... 20
Figure 2.3 Typical CMOS Digital Circuit Under Activation...................... 22
Figure 2.4 Relationship between VDD and delay.............................. 23
Figure 2.5 Example of Two Different Logic Designs with the Same
FUnCtion ...t 27
Figure 2.6 Scheduling and Allocation for Low-Power.............................. 32
Figure 2.7 Use of Slower Low Power Functional Units on Non-
Time-Critical Operationscoooeieiiiiieeeiie, 33
Figure 2.8 Use of Transformations to Reduce Supply Voltage 36
Figure 2.9 Example of Retiming Transformation 39
Figure 2.10 Example of Pipelining Transformation................................... 40
Figure 2.11 Example of Automatic Pipeline Transformation.................... 41
Figure 2.12 3 Steps of the Unfolding Process....................coccooiiii. 43
Figure 2.13 Example of the 3 Steps of the Unfolding
Transformations..............coooiivioiiiiei e, 44
Figure 3.1 The Dual-Bit-Type Model...........................ccooiiiii 56
Figure 3.2 RTL Template for Behavioural Level Power Analysis 60
Figure 3.3 Interconnect Capacitance Model [Chan95].............................. 62
Figure 4.1 Pseudo-Code for aBasic GA..................cccoooiiiiii 67
Figure 4.2 Example of a Mutation Operationoooeeeoio. 69
Figure 4.3 Example of a Crossover Operation........................oocoeeion. 70
Figure 4.4 Roulette Wheel Creation ... 72
Figure 5.1 Overview of GALOPS — Low Power GA-Based
Synthesis TOOl.................ooo i 82
Figure 5.2 GALOPS Chromosome Templateooei 84
Figure 5.3 Example Chromosome Representation..................................... 85
Figure 5.4 Example GALOPS Input File......................oo 88
Figure 5.5 Plot of Solutions within a Search Space 89
Figure 5.6 Effect of Linearisation on Fitness Values 90
Figure 5.7 Chromosome Selection Procedure...........................oo 91
Figure 5.8 DFG Mutation Process.............ccccoooiiiiiiiiiiiiiiiieee 93
Figure 5.9 Example Mutation Operation Using A Retime
Transformation................oooiiiioiiii 95
Figure 5.10 Pseudo-Code for the Retime Mutation Algorithm................... 96
Figure 5.11 Four Stages of the Retime Mutation Algorithm 98
Figure 5.12 Example of the Back Retime Transformation........................ 98
Figure 5.13 Pseudo-Code of the Back Retime Transformation.................. 99
Figure 5.14 Pseudo-Code for the Pipeline Mutation Algorithm 100
Figure 5.15 Example for Checking Pipeline Constraints 101
Figure 5.16 Identification of Cutset Points in Pipeline Mutation.............. 103

ix

Figure 5.17 Pseudo-Code for ‘Cutset’” Delay Insertion.......................... 104
Figure 5.18 Pseudo-Code for the Automatic Pipeline Mutation

Algorithm ... 105
Figure 5.19 Step 1 Of Unfolding Transformation.................................... 107
Figure 5.20 Pseudo-Code for Step 2 of the Unfolding

Transformation..................ooociiiiiiiii 107
Figure 5.21 Pseudo-Code for Step 3 of the Unfolding

Transformation..................ooociiiiiiiii 108
Figure 5.22 Application of Mutation Operators within GALOPS 112
Figure 5.23 DFG Functionality Corruption due to the Crossover

PrOCESS ... 114
Figure 5.24 Identification of Transformations for Crossover

OPEration...........ocooiiiiii e 116
Figure 5.25 Effect of Crossover on Two Chromosomes 117
Figure 5.26 Pseudo-Code for Crossover Transformation Operation......... 119
Figure 5.27 Fitness Evaluation of New Design....................................... 123
Figure 5.28 Pseudo-Code for Recursive Path Search Algorithm.............. 125
Figure 5.29 Start Point Of Critical Path.. 126
Figure 5.30 Example of Determination of Critical Path........................... 127
Figure 5.31 Pseudo-Code for Supply Voltage Calculation...................... 129
Figure 5.32 Interconnect Capacitance Model [Chan95].......................... 134
Figure 5.33 Capacitance Estimation Process.............................coo, 135
Figure 5.34 3rd Order FIR Filter..........................cccooiii 137
Figure 5.35 8th Order FIR Filter ..., 138
Figure 5.36 2nd Order Lattice Filter...................................co, 139
Figure 5.37 8th Order Avenhaus Filter — Direct Form

Representation (AVENSPA) ... 140
Figure 5.38 8th Order Avenhaus Filter — Parallel Form.......................... 142
Figure 5.39 Effect of Varying Application Rates on Power

Reduction of Benchmark Designs... 145
Figure 5.40 Effect of Varying Application Rates on Power

Reduction of Benchmark Designs (Batches 2-7).................. 147
Figure 5.41 Effect of Varying Application Rates on Convergence

Rate. ... 148
Figure 5.42 Illustration of Pipeline Stages in Optimised 3rd Order

FIR FAlter..........o..oooiiiiiii e, 151
Figure 5.43 Processed DFG of 8th Order Avenhaus Filter — Direct

FOrm. ... 154
Figure 5.44 Plot of Best Fitness throughout Evolution from

Average of Multiple Runs............................o 155
Figure 5.45 Best GA Performance for AVEN8DI Design....................... 156
Figure 5.46 GA Performance and Effect of Unfolding on

AVENSDI DeSIgN.........cooooiiiiiiiiiiiieee e 159

Figure 6.1 Example Scheduling Operation................................coocoe, 164
Figure 6.2 Illustration of Design Space with Upper and Lower

Bounds ... 170
Figure 6.3 Example of Unfeasible Schedule Generated by Absolute

Lower Bounds on Functional Units...........................ooo 173

Figure 6.4 Pseudo-code for ASAP Scheduling Algorithm 175

Figure 6.5 Pseudo-Code for ALAP Scheduling Algorithm......................
Figure 6.6 ASAP and ALAP Scheduling of 3 Tap FIR Filter DFG..........
Figure 6.7 Illustration of Schedule Generated Using Crude Lower
Bounds as Limits on Functional Units
Figure 6.8 Pseudo-code for List-Scheduling Algorithm...........................
Figure 6.9 Slack Times for 3 Tap FIR Filter................................
Figure 6.10 Pseudo-Code for Lower Bounds Estimation of
Functional Units.................coooiiiiii
Figure 6.11 Estimates of Number of Multipliers for Range of DFGs
Generated for Low-Power Exploration of 8th Order
Avenhaus Filter ...
Figure 6.12 Estimates of Number of Adders for Range of DFGs
Generated for Low-Power Exploration of 8th Order
Avenhaus Filter ...
Figure 6.13 Determination of Minimum Lifetime of a Variable E...........
Figure 6.14 Pseudo-Code for Estimation of Minimum Number of
REGISIETS. ...
Figure 6.15 Register Accesses in an Example DFG................................
Figure 6.16 Overview of Enhanced Area and Capacitance
Estimation Procedures.....................cooooiiii
Figure 7.1 Reversible Exploration...................co.cooooii,
Figure 7.2 Pseudo-Code for Remove-Pipeline Mutation.........................
Figure 7.3 Application of Remove-Pipeline Mutation............................
Figure 7.4 Effect of Increasing Elitism Application on Power
Consumption of Benchmark Designs...................................
Figure 7.5 Effect on GA Iteration Length of Increasing Elitism
APPHCAtION. ...
Figure 7.6 Example Graph Showing the Effect of Parameter A...............
Figure 7.7 Plot of S/N Ratios for AVENSDIDFG ...
Figure 7.8 Plot of S/N Ratios for AVENSPADFG.....................oo
Figure 7.9 Domination of Fitness by Super-Fit Individual
ChromoSOMEocoiiiiiiiiiiei e
Figure 7.10 Effect of Ranking on Simple Population
Representation......................coooiiiiiiiii e
Figure 7.11 Assignment of Rank to a Population of Individuals..............
Figure 7.12 Pseudo-Code for the Ranking Algorithm.............................
Figure 8.1 GA Performance for STAPFIR Non-Unfolded
Figure 8.2 GA Performance for AVENSDI Non-Unfolded....................
Figure 8.3 GA Performance for AVENSPA ...,
Figure 8.4 GA Performance for DCST Unfolded
Figure 8.5 GA Performance for BIQAUD3 ...,
Figure 8.6 GA Performance for GMLAT4 Non-Unfolded.....................
Figure 8.7 GA Performance for ELLIPS ...,
Figure 8.8 GA Performance for LMSS5 Non-Unfolded.............................
Figure 8.9 GA Performance for VOLTERRA
Figure 8.10 GA Performance for ORTH2LAT Unfolded Design.............
Figure 8.11 Power Reduction and Area Increase for Ten
Benchmark Designs......................ccoooiiiiii

xi

Figure 9.1 Example Pareto-Surface for 2-Dimensional

OptiMISAtION ...t 252
Figure 9.2 Identification of Pareto-Points in GALOPS............................ 254
Figure 9.3 Example of different DFGs with the Same Power and

Area CharacteristiCs............ooooiiviiiiiiiiiei e 256
Figure 9.4 Pareto-Surface for STAPFIR........................ccoooooii, 256
Figure 9.5 Pareto-Surface for AVENSDI ..., 257
Figure 9.6 Pareto-Surface for AVENSPA ..., 258
Figure 9.7 Pareto-Surface for DCST ..., 259
Figure 9.8 Pareto-Surface for BIQUAD3 ..., 260
Figure 9.9 Pareto-Surface for GMLAT4 ..., 260
Figure 9.10 Pareto-Surface for ELLIPS...........................coo, 261
Figure 9.11 Pareto-Surface for LMSS ... 262
Figure 9.12 Pareto-Surface for VOLTERRA.. 263
Figure 9.13 Pareto-Surface for ORTH2LATcooociiiii, 264
Figure 9.14 Typical Pareto-Surface Chart 265
Figure 10.1 Illustration of an Optimisation Process.............................. 273
Figure 10.2 Pseudo-Code for Simulated Annealing Algorithm................ 275
Figure 10.3 Comparison of GA and SA Search...................................... 278
Figure 10.4 Pareto-Surface Information Generated with SA and GA....... 280

xii

List of Tables

Table 5.1 Architectural Level Components...........................cccoccooee . 132
Table 5.2 Application Rates for Analysis......................c.o..ccooiiii 144
Table 5.3 Results without Unfolding of Prototype GALOPS................... 150
Table 5.4 Results with the Application of Unfolding.............................. 157
Table 6.1 Estimates on Minimum Number of Functional Units

for Benchmark DFGs..............ooocooii 184
Table 6.2 Switched Capacitance Estimations of Hardware Units............. 191
Table 7.1 Mode Power-Consumption for Benchmark Designs

with Varying Elitism Parameter... 202
Table 7.2 Example Orthogonal Taguchi Array.......................ccoocoeee 207
Table 7.3 Set of Results Produced from Taguchi Experiments 208
Table 7.4 Signal-To-Noise Ratio Analysis for Experiment

ReSUILS.....oooii 209
Table 7.5 Possible Application Rates of Each Operator.......................... 211
Table 7.6 Taguchi Array for Optimisation of Genetic Operator

Application Ratescoooi 213
Table 7.7 Taguchi Results for AVENSDIDFG...............................o 214
Table 7.8 Taguchi Results for AVENSPA ... 215
Table 7.9 S/N Ratio Analysis for AVENSDIDFG................................. 216
Table 7.10 S/N Ratio Analysis for AVENSPADFG 216
Table 7.11 Selected Application Rates from Taguchi Analysis of

Two DFG DeSIgNSoooooiiiiiiiieeeeee e 217
Table 7.12 Selected Application Rates for GALOP System.................... 218
Table 7.13 Mode Power Consumption Obtained with FPS and

Ranking Selection Schemescoo, 224
Table 8.1 Overall Power Reduction and Area Increase for

Benchmark Designs....................cccoooiiiiii 230
Table 10.1 Comparison of Results Obtained with Gradient

Search and GALOPS ..., 270
Table 10.2 Comparison of Results Obtained with SAand GA................ 278

Xiii

ALAP
ANSI
ASAP
ASIC
AVENSDI
AVENSPA
BIQUAD3
BP

CAD
CMOS
CP

CPL
DARPA
DBT
DCST
DCT
DFG
DSP
ELLIPS
FDS

FIR
FIR3
FIRS
FPS
FSM

GA
GALOPS
GMLAT4
HLT

1/0

IC

IEEE
IR

ILP
LAT2
LMS5
LSB
MIPS
MOGA
MSB
NDS

NP

Abbreviations

As Late As Possible

American National Standards Institute
As Soon As Possible

Application Specific Integrated Circuit
8" Order Avenhaus Filter Direct Form
8™ Order Avenhaus Filer Parallel Form
3" Order Bi-Quadratic Filter

Break Point

Computer Aided Design
Complementary Metal Oxide Semiconductor
Critical Path

Complementary Pass-Gate Logic
Defence Advanced Research Projects Agency
Dual Bit Type

Discrete Sine/Cosine Transform
Discrete Cosine Transform

Data Flow Graph

Digital Signal Processing

5™ Order Elliptic Wavelet Filter

Force Directed Scheduling

Finite Impulse Response

3 Order FIR Filter

8™ Order FIR Filter

Fitness Proportionate Selection

Finite State Machine

Genetic Algorithm

Genetic Algorithm for Low Power Synthesis
4™ Order Gray-Markel Lattice Filter
High Level Transformation
Input/Output

Integrated Circuit

Institute of Electrical and Electronic Engineers
Infinite Impulse Response

Integer Linear Programming

2" Order Lattice Filter

5™ Order Least Mean Square Algorithm
Least Significant Bit

Millions of Instructions Per Second
Multi-Objective GA

Most Significant Bit

Non Dominated Solution
Non-Polynomial

X1v

ORHT2LAT 2" Order Orthogonal Lattice Filter

PDA Portable Digital Assistant

PFA Power Factor Approximation

PGA Parallel Genetic Algorithm

RAM Random Access Memory

RCS Resource Constrained Scheduling

RTL Register Transfer Level

SA Simulated Annealing

SPA Stochastic Power Analysis

TCS Time Constrained Scheduling

TRCS Time and Resource Constrained Scheduling

UsS United States

UWN Universal White Noise

VHDL Very High Speed Integrated Circuit High-level Description
Language

VLSI Very Large Scale Integration

VOLTERRA Volterra Filter

WWW World Wide Web

XV

Chapter 2

Isc
Ipy
Vop
Ipp
Cr
Vin
Vout

P average

P switching
P short-circuit
P leakage

C
S
k
C*
L
N
UV
D

r
/]

Chapter 3

Voo
C*
Paverage
Py(x)
Pyx)
S

Ci
PyXy)

Chapter 4

Num
Fnc
DEL

Nomenclature

Short-circuit current
Dynamic switching current
Supply voltage

Supply current

Load capacitance

Input voltage

Output voltage

Average power
Switching power
Short-circuit power
Leakage power
Capacitance

Frequency

Switching activity
Switched Capacitance
Inductor

Unfolding factor
Connect from node U to V in a DFG
Delay node in a DFG
Execution time of a DFG
Ceiling function

Supply voltage

Switched Capacitance

Average power

Signal Probability

Transition Probability
Frequency

Capacitance of node 1
Transition probability of node i

Number of gene in a chromosome
Function of gene in a chromosome
Delay node in a DFG

linear fitness Linear fitness of a solution

fitness

min(fitness)
max(fitness)

M
N
L

Fitness of a solution

Minimum fitness in a population
Maximum fitness in a population
Number of solutions in a population
Unfolding factor

Number of nodes in a DFG

xvi

Vop Supply voltage

C* Switched Capacitance
Chapter 6
abs minki Absolute lower bound on resources of type 1.
add-min Estimate of minimum number of add resources
C step Control step
[/ Ceiling function
Chunctional units Capacitance of functional units in datapath
C; Capacitance of resource of type 1
Cinterconnect Capacitance of interconnect in datapath
Cp Critical Path length
Cregisiers Capacitance of registers in datapath
Ciingle register Capacitance of a single register
Crotal Total capacitance of datapath
E Variable passed between two nodes in a DFG
1 Resource or node type
k Number of signals feeding node or resource
m Number of nodes in a DFG
max_Ri Upper bound on number of resources of type i
min_C step Minimum length of critical path
mult-min Estimate of minimum number of multiplier resources
n Number of connection nets in a DFG which require a
variable to be stored
N Number of operations in the DFG
Ni Number of operations of type i in the DFG
Ri Number of hardware resources of type 1
Sarap ALAP time of operation S
Sasap ASAP time of operation S
slack time The mobility of an operation in a DFG
Liifemin Minimum lifetime of a variable
1otal ontror seps Maximum number of control steps in a schedule
X Number of control steps in a schedule
Chapter 7
S/N Signal to noise ratio of Taguchi experiment result
Chapter 10
T Temperature
k Boltzmann’s constant
ok Change in energy between two states
p(cL) Probability of selection of a solution

xvii

Chapter 1— Introduction

Chapter 1 = Introduction

1.1 Motivation for Low-Power VLSI

The design of VLSI (Very Large Scale Integration) devices has historically
concentrated on providing higher levels of performance while reducing cost. The
increasing development of smaller feature sizes has enabled increased integration
levels to produce designs with millions of transistors, enabling existing designs to be
implemented with reduced area. This reduction in area can translate to a smaller die
size, reducing packaging costs and increasing the fabrication yield. Often, reduced
design area is exploited to enable more features to be incorporated on the same size
VLSI device (‘system on a chip’), thus increasing performance without significantly
increasing the packaging cost of the device. Improvements to the VLSI fabrication
process have enabled an increase in wafer and die size, further increasing the amount
of transistors that can be integrated onto a single device. In addition to increased
integration the clock frequencies of VLSI devices are continually increasing in order
to squeeze the maximum possible performance out of these highly complex designs.

One effect of increasing integration levels and clock-frequencies is the
increased power consumption (and heat dissipation) of VLSI devices. In recent years
the importance of power consumption as a VLSI implementation parameter has
increased significantly due to several main factors.

One of the major commercial trends to have influenced the importance of
power consumption is the explosion in the portable electronics market [Sheng92,

Chan94a, Chan92]. Personal computers, mobile phones, pagers and Personal Digital

Chapter 1— Introduction

Assistants (PDAs) are examples of portable systems that have achieved significant
commercial success. The portable system share of the computing and communication
market is only expected to increase in the future [Singh95, Yeap96]. Future
developments in portable systems are expected to see the development of Portable
Communication Systems [Sheng92, Snyder94], integrating communication and
computation facilities in a single unit.

For portable electronic systems the continuous operating time provided by a
single battery charge is a major factor in commercial success. A short operating time
will remove the main feature of the system, its portability, and hence reduce its
attractiveness to consumers. The operating lifetime of a portable system is dependent
on both its power consumption and the battery capacity. While battery technology
has increased considerably since the development of portable systems it is not
expected to offer significant advances in the near future [Singh95, Chuang98,
Bella95a]. Providing longer operating times through increased battery capacity
means using a larger, heavier battery. This is undesirable as the weight of portable
systems is also of major concern to consumers. Therefore, the increase of operating
time of a portable electronic system requires reduction of its power requirements.

In addition to increasing the operating time of existing portable systems,
there is an increasing expectation from consumers for these systems to offer the
same features and performance as their non-portable versions, increasing the burden
on the already lean power-budget [Gary96]. Therefore, power reduction is not only
required for today’s portable systems, but also to enable the development of the next

generation of portable systems with increased functionality.

Chapter 1— Introduction

While the VLSI devices consume a significant portion of the overall power
budget, power reduction of portable systems has targeted all areas of the system,
such as the display [Ajluni95] and communication modules [Mcgrath95, Sheng92,
Larson98]. The expansion in functions required in portable systems (multimedia,
voice-mail, etc.) has increased the requirement for dedicated Digital Signal
Processors (DSPs). The advantage of DSPs over generic microprocessors is that
they can be designed for low-power operation for a specific task, leading to
significant reductions in power [Burd96, Arslan95, Lyon93].

The reduction of the power burden in portable systems is not the only driving
force behind low power VLSI design. Increased power consumption has led to
devices that dissipate a considerable amount of heat, which subsequently leads to an
increase in the packaging costs of the device. The requirement for heat sinks, fans
and heat management systems significantly adds to the cost of the device, affecting
its commercial viability. Reduction of power and associated heat dissipation can
reduce device cost and hence increase its commercial success [Bursky95]. In
addition, high temperature devices can have a significantly reduced reliability, leading
to an increased probability of device failure [Singh95, Bella95a, Rabaey96, Yeap96].

Recently, power consumption and heat dissipation have been identified as a
potential limitation to increased levels of integration and clock frequencies. Power is
beginning to become a limiting factor in the design of the next generation of high-
performance devices [Szek98, Chuang98, Pedram95].

Power reduction has been targeted as being of paramount importance by the
VLSI industry. The US Advanced Research Projects Agency has initiated a program

to develop the technology and design infrastructure required for low power VLSI,

Chapter 1— Introduction

with the aim of producing power savings of orders of magnitude — from 100
milliwatts/MIPS to 10 microwatts/MIPS [Lem94, Fried94]. Companies such as
Toshiba [Kunii95], Motorola [Gary94], IBM [lkeda95], Intel [Guerra98, Intel98]
and DEC [Gowan98] have implemented schemes for the development of low-power
devices and portable systems; providing additions to their existing product range and
new systems to satisfy the demand for higher performance at lower energy. Figure

1.1 illustrates the power trends in the Intel family of processors [Intel98, Bella95a,

Tiwari98].
35
30
A25
%—20
2
3 15
o
10
5 l
ole= ‘ ‘ 1
386 486 Pentium Pentium Pentium Mobile Mobile
33MHz 55MHz 66MHz Pro Il Pentium Pentium

200MHz 266MHz 166MHz 233MHz

Figure 1.1 Power Consumption Trends in Intel Processors

As processor performance increased (due in part to increased integration
levels and higher clock speeds) power dissipation initially increased. However,
recognition of the power restraints on portable systems led to the development of the
Intel Mobile Processor family for portable systems. The Mobile processors have
benefited from reduced feature sizes, 0.35um and 0.25um, which enabled lower

supply voltages (less than 2V). In addition the processors were designed for low-

Chapter 1— Introduction

power operation, incorporating power saving techniques such as different standby
levels depending on application requirements. As the figure illustrates the Pentium
66MHz has a power consumption of 16 Watts compared to the Mobile Pentium
233MHz power consumption of 4 Watts which offers significantly increased
processing power. Similar design schemes have led to the development of low-
power versions of the Motorola PowerPC (PowerPC 603 [Gary94]) and the DEC
Alpha (DEC Alpha 21264 [Gowan98]). These design examples illustrate the benefit
of targetting power as an objective parameter in the design process, leading to
reduced power consumption while preserving the trend towards increased
computational throughput.

The factors discussed in this chapter highlight the reasons why power
consumption has become an important parameter in VLSI devices. For portable and
high-performance systems it has joined the traditional parameters of area and speed

as an objective parameter for VLSI devices [Bella95, Bella95b].

1.2 Requirements for Low-Power Computer Aided Design Tools

The requirement for low power VLSI devices significantly increases the
complexity of the VLSI design and fabrication process. Amendments to the
fabrication process (such as process scaling) can offer reductions in power
consumption but they require costly modifications [Singh95]. Voltage reduction
through feature size reduction (voltage scaling) takes advantage of reduced feature
sizes requiring lower electric fields and hence lower voltages to obtain the same

throughput. While voltage scaling has been used extensively (witness the industries

Chapter 1— Introduction

move to a 3.3V standard) it is not expected to provide the required power
reductions while maintaining the increase in throughput [Meng98, Singh95,
Landman94a].

This has led to the increasing recognition that the incorporation of power
consumption as a standard design parameter is expected to return the largest benefits
with the smallest increases in cost [Singh95, Roy95, Horo94]. Effectively this means
adopting a design for power strategy.

The inclusion of power as a design parameter increases the burden on the
VLSI design engineer who is dealing with increasingly complex devices with more
demanding implementation and design-time requirements. Computer Aided Design
(CAD) tools are frequently used in VLSI design to deal with the sheer complexity of
the devices. Traditional CAD tools typically contain area and speed optimisation but
the consideration of power consumption increases the optimisation task from 2
dimensions (area and speed) to 3 dimensions (area, speed and power). This
considerably increases the complexity of the optimisation task; in addition, the three
objectives are typically in competition i.e. low power design is a multi-objective task
which requires trade-offs to be made between area, speed and power. Therefore
there is a requirement for CAD tools which can consider all three parameters to
enable the VLSI designer to produce designs that meet area, speed and power
specifications. These CAD tools must incorporate techniques for power
manipulation (to reduce power) and power estimation (to provide feedback to
determine the effect of power modifications).

There are a variety of techniques that target low power VLSI at all levels of

the design process, from floorplanning and layout to high-level algorithm

Chapter 1— Introduction

modification. High-level consideration of power as an initial design parameter is
expected to provide the greatest power reduction in terms of return on investment
[Rabaey96, Singh95, Bella95b, Chan98]. Lower level techniques, such as those at
the circuit or logic level, tend to have a limited, local impact on power consumption
as they operate within constraints specified by higher levels of the design process.
High-level power design does not operate within such constraints so it has greater
freedom to manipulate the design to explore the low power solution space.

While commercial CAD tools are beginning to address the need for low
power design very few currently offer high-level power estimation and even fewer
offer optimisation [Coudert96, Landman94a]. There is a requirement for increased
development of high-level CAD tools that consider power as an objective parameter
[Macii97]. The disadvantage of high-level power reduction is that high-level VLSI
design is already a complex problem; many of the tasks are NP-complete, requiring
heuristic algorithms to determine satisfactory solutions to the problems. The
complexity of the high-level design problem is compounded by the addition of power
as an objective. A high-level low power CAD tool requires the ability to handle the
complex solution space to produce low power designs.

The ability to handle complex solution spaces is a requirement at many levels
of the VLSI design process. The difficulty of determining good VLSI design
solutions, in a reasonable amount of time has resulted in significant research into the
application of heuristic optimisation techniques, both to improve the design process
and the resulting designs. Simulated Annealing (SA) is one such technique, a
heuristic algorithm inspired by the phsyical process of cooling, it has been

successfully used within the complex VLSI routing process [Kirk83,Vecchi83] and

Chapter 1— Introduction

VLSI synthesis [Neil]. Tabu Search [Reeves95, Glover98] is a heuristic technique
which explores the solution space by building upon information gained from previous
exploratory moves. They have only recently begun to be used in VLSI design
optimisation problems at the physical design level.

Genetic Algorithms (GAs) are a search and optimisation technique inspired
by the processes of natural evolution. They have been successfully applied to areas
of VLSI physical design automation, solving complex problems and improving on
results obtained with other techniques such as SA. This proven track record in VLSI
design, together with their proven optimisation capabilities in such complex
problems, makes them a good choice for investigation as the basis of a low power
design system.

For the purposes of this thesis there is only scope to perform an indepth
investigation of one of the afore mentioned techniques. The evidence of the success
of GAs in solving complex, multi-objective VLSI problems has led to their selection
as the optimisation technique investigated in this thesis.

The objective of this research is to investigate the combination of high-level
power exploration with artificial intelligence search techniques. This thesis presents
the development and analysis a low-power CAD tool that uses high-level algorithmic
modifications for power reduction. The tool incorporates a GA that manipulates
high-level algorithmic descriptions, incorporating modified genetic search
techniques, to explore the low-power solution space.

The tool targets the power reduction of DSP devices implemented as
Application Specific Integrated Circuits (ASICs) in CMOS technology. The

importance of low-power DSP devices, in particular those developed for specific

Chapter 1— Introduction

functions, was discussed in section 1.1. ASIC DSPs offer the potential to execute
complex signal processing functions with greater efficiency and lower-power
consumption than general purpose processors. CMOS is chosen, as it is the most
commonly used VLSI technology today. This is primarily because of its excellent

scaling qualities and its low power consumption when not switching.

1.3 Overview of Thesis

The thesis is divided into 11 chapters. This chapter has presented the
requirement for low power VLSI devices and the associated need for CAD tools to
assist the design engineer in achieving low power targets.

Chapter 2 discusses the problem of high-level power synthesis. Traditional
high-level VLSI synthesis is reviewed to present its advantages relating to design
exploration and modification at early levels of the design process. The contributing
factors of power dissipation in CMOS devices are discussed before presenting an
overview of techniques that target low-power VLSI design. The discussion
presented in chapter 2 concludes that although low power is best tackled at all levels
of the design process, incorporating all techniques into a unified framework, high-
level low power design offers the greatest benefits in terms of power reduction.
Techniques for high-level power reduction are discussed before presenting the
technique used in this thesis: high-level behavioural transformation. The technique
incorporates high-level transformations to manipulate the power consumption of
high-level algorithms. The transformations incorporated into the CAD tool presented

in this thesis are also presented.

Chapter 1— Introduction

Chapter 3 examines the other requirement of a low power CAD tool: power
estimation. Power estimation techniques are reviewed at all levels of the design
process to illustrate the trend of high-level power estimation having to trade
accuracy for speed. High-level power estimation techniques, though still in their
infancy, are discussed within the context of feedback to a high-level power
estimation system.

Chapter 4 presents the concepts of the GA search and optimisation
technique. Examples of the technique to solve VLSI engineering problems, including
power reduction, are discussed. The chapter discusses the complexity of high-level
behavioural transformation for low power, illustrating the requirement for efficient
tools, such as a GA, that can deal with the complex solution space inherent in low
power design.

Chapter 5 contains the development of the low-power design tool,
incorporating high-level power design and estimation into a genetic framework. The
prototype design is tested with a small set of benchmark circuits to illustrate its
effectiveness in reducing the power consumption of high-level signal processing
applications.

Chapter 6 presents modifications to the tools’ power estimation module to
provide more accurate feedback during the search and modification process. The
improved techniques incorporate high-level synthesis methods and high-level power
analysis techniques.

Chapter 7 targets the optimisation of the GA processes. Various
modifications to the standard GA are discussed and analysed to determine their

effects on the low power tool are beneficial.

10

Chapter 1— Introduction

Chapter 8 presents ten benchmark signal-processing designs with the results
obtained by the developed tool for power reduction. The results illustrate the ability
of the tool to reduce the power consumption of the high-level designs.

Chapter 9 discusses the concept of multi-objective optimisation, where
conflicting parameters such as area and speed are required to be concurrently
optimised. The GA can be used to generate invaluable information to the VLSI
designer illustrating a range of trade-offs that can be made. The chapter includes
pareto-surface charts for each of the ten benchmark designs, illustrating the area-
power trade-offs that can be made.

Chapter 10 compares the GA technique with other search and optimisation
techniques, to illustrate its effectiveness in producing low power designs and
exploring the solution space to present design trade-off information.

Chapter 11 presents conclusions and future work.

1.4 Publications Arising from This Research

1. M.S. Bright and T. Arslan, “A Genetic Framework For The High-Level
Optimisation Of Low Power VLSI DSP Systems”, IEE Electronics
Letters, 20th June 1996, Vol. 32, No. 13, pp. 1150-1151

2. T. Arslan, E. Ozdemir E., M.S. Bright and D .H. Horrocks, “Genetic
Synthesis Techniques for Low-Power Digital Signal Processing Circuits”,
IEE Colloq. On Digital Synthesis, London, UK, 15th Feb 1996, pp.7/1-
7/5

3. M. S. Bright and T. Arslan, “A Genetic Algorithm for the High-Level

Synthesis of DSP Systems for Low Power”, Proc. IEE/IEEE Conf. on

11

Chapter 1— Introduction

Genetic Algorithms in Engineering Systems, Innovations and
Applications (GALESIA '97), Glasgow, UK, 2-4 Sept. 1997, pp. 174-
179

. M. S. Bright and T. Arslan, “Transformational-Based Synthesis of VLSI
Based DSP Systems for Low Power Using a Genetic Algorithm”, IEEE
Int. Symposium on Circuits and Systems, ISCAS 98, Monterey CA, 31
May — 3 June 1998

. M. S. Bright and T. Arslan, “Low-Power High-Level DSP System
Methodologies and Techniques: Impact on CAD”, IEE UK Low-Power
Forum, Sheffield UK, Sept. 16™-17" 1998, pp. 7.1-7.5

. M. S. Bright and T. Arslan, “Supply Voltage Reduction Through High-
Level Design Techniques”, IEE UK Low-Power Forum, Sheffield UK,
Sept. 16™-17™ 1998, pp. 10.1-10.5

. M. S. Bright and T. Arslan, “Multi-Objective Design Strategies for High-
Level Low-Power Design of DSP Systems”, IEEE Int. Symposium on
Circuits and Systems, ISCAS 99, Florida

. M. S. Bright and T. Arslan, “Synthesis Of Low-Power DSP Systems
Using A Genetic Algorithm”, IEEE Trans. On Evolutionary Computation

(In Preparation)

12

Chapter 2 —Synthesis for Low Power VLSI

Chapter 2 - Synthesis for Low Power VLSI

The complexity of VLSI devices has increased greatly since their inception,
with modern devices typically containing millions of transistors. Exploitation of
these advances in VLSI technology requires advanced design tools to handle the
increased complexity. In addition, VLSI designers are being asked to produce
designs with higher performance and zero defects, while reducing the design time.
CAD tools have been, and will continue to be, instrumental in achieving these goals
[Casa80, Micheli90]. The addition of objective parameters such as area, power, etc.
further increases the burden on the VLSI design engineer, increasing the need for
effective CAD tools.

A typical ASIC design methodology [Gajski94] starts with a set of device
requirements developed in conjunction with designers and the marketing
department. From this specification a team of designers produce an architectural-
level specification of the chip which resolves the requirements specification into
high-level functional blocks. This is then passed onto logic and layout designers
who convert each block into a logic- or circuit-level schematic. VLSI schematic
capture tools can then be used to simulate and synthesise the design down to the
device level. In this typical design methodology the CAD tools are not used until
the architectural level layout has been specified.

One of the most important developments of recent years in VLSI design has
been the advent of high-level synthesis systems and CAD tools. High-level

synthesis enables the design to be described purely in a behavioural form ie. a

13

Chapter 2 —Synthesis for Low Power VLSI

specification of its desired function. CAD tools that employ high-level synthesis
methodologies can then be used to synthesise the design down to the device level, a
complete automation of the VLSI design and fabrication process.

This chapter discusses high-level synthesis and low-power design
techniques. The discussion on high-level design concludes that high-level synthesis
offers considerable advantages as part of the VLSI design process. Similarly, power
reduction at the high-level has the greatest effect on overall power consumption.
Therefore, high-level synthesis with low-power objectives offers the combination of
these advantages. Therefore, the work presented in this thesis considers power
reduction as part of the high-level synthesis process.

This chapter describes the properties of high-level synthesis and high-level
CAD tools in section 2.1. Section 2.2 outlines the main factors contributing to
CMOS power as background for the following discussion on low-power design
techniques. Section 2.3 presents an overview of techniques that have been
developed to reduce the power consumption of VLSI devices. Section 2.4
specifically discusses high-level power reduction techniques including those used in
the tool presented in this thesis. The techniques use high-level behavioural
transformations to reduce power consumption at the algorithmic level. Section 2.5

presents the specific set of high-level transformations used within the tool.

2.1 High-Level Synthesis

The term ‘high-level synthesis’ is usually used to describe the process of
turning an abstract behavioural description of a desired function or algorithm into
an architectural-level specification. The behavioural-description describes the input

and output behaviour of the algorithm in terms of operations and data transfers,

14

Chapter 2 —Synthesis for Low Power VLSI

separate from any VLSI implementation details. The architectural level maps the
operations and data onto functional units and registers, effectively producing a
block diagram of the VLSI device.

High-level synthesis is a relatively new addition to traditional VLSI
synthesis techniques. In the 1970s interest in CAD and design synthesis was mostly
at lower levels of the design process, such as automation of layout and routing. In
the 1980s interest in high-level synthesis techniques increased partly due to the
increasing complexity of VLSI devices, resulting in extensive work on high-level
synthesis techniques [McFar90].

The tasks of high-level synthesis can be conveniently grouped into three
main steps [Micheli94]:

1. Compile the behavioural specification into an internal representation.

The internal representation is a convenient format for the exploration of
the solution space as well as the execution of the high-level synthesis
tasks.

2. Perform optimising transformations on the internal representation of the
behavioural specification. Depending on the CAD tool, the
transformations are used to produce an optimal design or to provide a
range of alternative designs to the designer so that the optimal can be
selected.

3. Perform the high-level synthesis tasks such as scheduling and allocation

to produce the layout of the hardware structure [Micheli94].

The tool presented in this thesis concentrates on the application of the first

two steps to produce optimal high-level algorithms for low-power implementation.

15

Chapter 2 —Synthesis for Low Power VLSI

During this process the tool performs many of the high-level synthesis tasks of step
3 to estimate characteristics of the hardware structure. The system does not actually
produce hardware structures as it is intended as the first step in a more
comprehensive high-level synthesis system. There are a number of steps that can be
applied during step 3 to reduce power consumption, as discussed in section 2.4. The
tool in this thesis concentrates on the reduction of power in step 2. The presented
system produces optimised high-level designs to enable the subsequent application
of high-level procedures which optimise power during step 3.

In recent years there has been a trend to automating synthesis at higher and
higher levels of the design process due to the advantages of high-level synthesis.
High-level synthesis is seen as one of the main techniques to reduce the design-
cycle time of complex VLSI devices. A long design cycle can render a project
obsolete by the time it reaches the marketplace. This is especially so in the case of
military applications where new technology is required to be available as soon as
possible. The US Defence Advanced Research Projects Agency (DARPA) has
recognised that the development of high-level synthesis tools is one of the key
requirements in improving the ASIC design process [Madis96, Madis96a]. The
automation of high-level synthesis tasks will produce designs more quickly
[McFar83]; therefore, designs have greater chance of meeting their market window
and hence maximising profits in commercial applications.

The increased complexity of ASIC applications is requiring greater
concentration on the verification of the design, to ensure it is error free and matches
the specification, at all levels of the design process. High-level synthesis makes it
possible to verify the device’s function far earlier in the design process than lower

level tools. The behavioural descriptions are less complex than their corresponding

16

Chapter 2 —Synthesis for Low Power VLSI

architectural-level descriptions, making design simulations and any necessary re-
designs faster to implement. Once the high-level behavioural specification has been
verified high-level synthesis presents the ability to use automated CAD tools
throughout the rest of the design process. As these tools use proven techniques they
are less prone to introducing errors into the design, reducing or eliminating the time
required for costly redesigns [Camp90, McFar90].

One of the most important advantages offered by high-level synthesis is the
ability to explore the design space at very early stages in the design process.
Decisions made at high-levels have the greatest affect on the VLSI device’s
implementation parameters such as area and power [Micheli90, Bentz97, McFar90,
Guerra98, Sato94]. A good high-level synthesis tool presents alternative designs in
a reasonable amount of time so that the effect of high-level decisions can be
explored and high-level trade-offs performed [McFar90]. One of the main aims of a
high-level CAD tool is to produce an optimal design. Earlier high-level tools
produced sub-optimal designs that required considerably larger area than those
produced by manual techniques [McFar83, McFar90]. Even with advanced high-
level synthesis tools, manual optimisation may still be required to extract the
maximum possible performance [Gajski94]. The continuing development of high-
level CAD tools is aimed at optimising both the devices produced and the time
taken to perform the synthesis process with the aim of outperforming manual
synthesis and optimisation techniques.

A number of high-level CAD synthesis tools have been developed to take
advantage of the properties described in the previous paragraphs. The
CATHEDRAL system [Guerts91] specifically targets the synthesis of DSP devices,

applying high level transformations to explore the solution space. Other systems

17

Chapter 2 —Synthesis for Low Power VLSI

such as FLAMEL [Trick87], HYPER [Rabaey90, Reese94, Chan95, Bentz] and
MIMOLA [Bhask90] also apply high-level transformations during the synthesis
process to obtain designs optimal in terms of desired parameters such as area,
speed, power, etc. The high-level transformations are used to modify the
characteristics of the behavioural descriptions, changing the VLSI implementation
characteristics [Walker89]. These tools are academic based research projects; high-
level synthesis tools have only recently become of interest to the commercial
market [Gajski94]. In-house, high-level CAD tools have been used to develop
practical devices and commercially available high-level synthesis tools are in
development. One of the key reasons for the increase in commercial interest is the
extra VLSI device criterion required to be optimised during the synthesis process,
such as operation with reduced power consumption [Walker94]. The experience of
academic tools and the growing commercial acceptance of high-level synthesis
illustrates its importance as a VLSI design technique; not only to harness the power
available in today’s multi-million transistor devices but also to produce designs

with the required optimal operation characteristics.

2.1.1 Behavioural Level Problem Representation
As discussed previously, step 1 in high-level synthesis is to represent a
behavioural description or algorithm of the problem in a suitable format. High-level
languages such as VHDL [Ash95, Bhask90], VERILOG [Gajski94] and even
PASCAL [Trick87] have been used to describe high-level algorithms. VHDL is an
IEEE recognised standard and, as such, has wide support in high-level synthesis.
Whichever method is used to describe the behavioural algorithm, it is usually

transformed into an internal representation format within the high-level synthesis

18

Chapter 2 —Synthesis for Low Power VLSI

tool. The typical format for internal representation is the Data Flow Graph (DFQG)
[Casa80, McFar90, Rabaey90, Gela93, Srivo5 and Park98]. The properties of a
DFG are described in this section.

A DFG is a directed graph that represents a complete iteration of the signal-
processing algorithm. An example of a simple DFG, illustrating a 2™ order Finite

Impulse Response (FIR) filter operation, is shown in Figure 2.1.

el e2
Input Delay Data Transfer Edge
D /
Computational
Node
el e4

e5 | Output

Figure 2.1 Example Data Flow Graph

Within the DFG, each node represents an operation on data by an element,
e.g. addition, multiplication or delay. The directed edges represent data transfer
between nodes, in a specific direction. In this example, each node has been
numbered from el to eS5.

A DFG inherently contains the precedence constraints between operations in
a signal-processing algorithm. This precedence information indicates which
operations have the potential to be executed concurrently. The precedence

information is also important for determining which operations are critical to the

19

Chapter 2 —Synthesis for Low Power VLSI

timing of the algorithm. A critical operation is an operation along the ‘Critical Path’
(CP) of the DFG. The CP limits the maximum operating speed of a DFG because
each element along this path must have completed its function before the next
processing iteration can occur. Therefore the maximum sampling frequency of the

DFG is the inverse of CP period, as illustrated in Figure 2.2.

Figure 2.2 Example Illustrating Critical Path

Within a VLSI device, concurrent operations can be executed in parallel on
separate processing units. For example, in Figure 2.2 there is no directed edge
connecting the multiplication nodes. This implies that there is no precedence
relation between these two operations and they can, therefore, be performed
concurrently, independently of each other. This example illustrates how the DFG
provides an intuitive view of the amount of parallelism available in a signal-
processing algorithm. Concurrent execution of operations enables the algorithm to
be processed at the maximum possible speed. In contrast, performing operations
sequentially on the same unit may reduce speed but have the advantage of reducing

arca.

20

Chapter 2 —Synthesis for Low Power VLSI

An important aspect of a DFG is that the precedence information is not
stored implicitly, as it is with a serially executed program, listing a single operation
on each line, with a clearly defined order. The DFG allows flexible ordering of the
operations, within the bounds set by the precedence constraints. This enables area
and speed decisions to be taken when the hardware is being designed, not when the
algorithm is being designed.

This ability of a DFG to fully encapsulate a signal-processing algorithm
without prescribing hardware implementation details has made the DFG a typical
form of algorithm representation within high-level VLSI synthesis systems

[Chan95, Gajski94, Guerts91, Trick87, Gela93].

2.2 Power Dissipation in CMOS Devices

This section presents a brief summary of power dissipation in CMOS
devices in order to explain the techniques used for power reduction. Figure 2.3
illustrates a typical CMOS digital circuit showing the current and voltage

components.

21

Chapter 2 —Synthesis for Low Power VLSI

VDD

op = lsc + 1

SC DY

Figure 2.3 Typical CMOS Digital Circuit

Isc denotes the short-circuit current during the signal transition and Ipy is the
dynamic current that is consumed while the transistor is switching. The leakage
current is not illustrated here. The average power consumption of such a device is

given by [Arslan95]:

Paverage = Pswitching + Pshort-circuit + Pleakage (2 1)

Equation (2.1) illustrates that the average power is a combination of the
dynamic power (dissipated during switching, to perform the desired function) and
the static power (associated with the short-circuit and leakage currents). The static
power is a factor of the VLSI implementation and can be made negligible by
applying appropriate design techniques [Arslan95, Blair94, Chan95]. Therefore,
the average power is effectively the switching power of the CMOS device. The
switching power is a factor of the supply voltage, capacitance and switching

activity, expressed in (2.2) [Arslan95]:

22

Chapter 2 —Synthesis for Low Power VLSI

Paverage = VéD X C X f X k (2.2)

where Vpp is the supply voltage, C the capacitance, f the frequency and k
the switching activity which is defined as the average number of times the design
makes a power consuming (O to 1) transition. C and k are usually combined to form
the product C*, known as the switched-capacitance or effective-capacitance of a
design. Reduction in average power therefore concentrates on the minimisation of
supply voltage and C*, the activity-capacitance product.

Equation (2.2) identifies that power has a quadratic dependency on the
supply voltage therefore reducing the supply voltage is targeted as a key method of
reducing power. Unfortunately, the reduction of supply voltage by itself has an
associated penalty as it leads to a reduction in speed [Chan95, Liu93, Chan92]. This

is illustrated in Figure 2.4.

&
Q
(@]
o]
5]
g
£
@]
> ~
0 XXX —x—x—x
1 2 3 4 5
VDD (Volts)

Figure 2.4 Relationship between Vpp and delay [Chan95a]. 2um CMOS.

23

Chapter 2 —Synthesis for Low Power VLSI

Figure 2.4 shows the effect of reducing the supply voltage of a device that
has a nominal Vpp of 5V. As the voltage is decreased the delays in the device
increase. For example, reducing the voltage to 2.9V will double the delay time of
the device and hence halve the computational throughput. For many designs this
reduction in speed is unacceptable. To compensate for the increase in delay,
voltage-reduction strategies typically incorporate speed-up mechanisms to enable
voltage to be reduced while preserving the original throughput. For a reduction to
2.9V the initial design requires a two-fold speed increase. Subsequent reduction of
its voltage to 2.9V (from an initial 5V) will produce a low-voltage low-power
device with the same throughput as the original.

Switched-capacitance reduction, while not apparently offering the large
benefits of voltage reduction, is still an effective and practical technique for power
reduction. Reduction of C* is achieved through reduction of capacitance, reduction
of switching activity or reduction of the activity-capacitance product. The
capacitance is related to the physical implementation of the device; therefore,
capacitance reductions are achieved through area reductions. Switching activity is
both application and implementation-style dependent so it can be reduced through
manipulation of the device and the algorithm. The reduction of the activity-
capacitance product is typically achieved through assigning high-activity signals to

low-capacitance connections.

2.3 Power Reduction
Power consumption can be influenced at all levels of the design process —
technology, circuit, logic, architectural and the high-level behavioural description.

This section prevents an overview of techniques that can be used to reduce power

24

Chapter 2 —Synthesis for Low Power VLSI

consumption during the design process. The work in this thesis targets the reduction
in power of DSP devices (as discussed in Chapter 1). In application-specific data-
intensive DSP applications the majority of power consumption is due to the
datapath that processes the data [Rabaey95, Mehra94]. Although techniques for
reduction of control and memory power consumption are available the discussion in
this chapter concentrates on those techniques which affect the datapath power
consumption.

At the technology level, reduction of supply voltage has been considered an
effective means of power reduction [Blair94, Horo94]. As described in section 2.2,
reduction of supply voltage incurs a speed penalty. However, if the threshold
voltage and device dimensions are reduced by the same factor as the supply voltage
the field strength in the device remains constant [Chan95a, Blair94, Horo94,
Chan92]. Therefore, the reduction in supply voltage does not incur an associated
speed decrease. This is known as ‘Technology Scaling” [Horo94] or ‘constant
electric field scaling’ [Blair94]. Unfortunately the side effect of threshold voltage
reduction is an increase in the sub-threshold leakage currents [Blair94]. This can be
significant enough to account for a large portion of the total power consumption. In
addition, low threshold voltages reduce the noise margin in the device and the
reduction of feature sizes requires modifications to the fabrication process, which
requires a large capital investment. This voltage scaling approach has been typically
used when feature sizes were decreased in search of higher speed and greater
integration levels [Blair94] i.e. voltage reduction was a by-product of increased
integration.

The choice of logic family can have an impact on power consumption. A

promising alternative to CMOS is the use of Complementary Pass-gate Logic (CPL)

25

Chapter 2 —Synthesis for Low Power VLSI

[Blair94, Chan92, Yeap96]. A CPL design only uses n-type transistors (CMOS uses
both n-type and p-type semiconductor material) so a simple CPL circuit has half the
transistors, and hence lower capacitance, of an equivalent function CMOS circuit.
However, CPL requires a modification to the fabrication process and increased
development in CAD tools that support this logic style. The use of CPL requires a
large investment as it involves a fundamental change in the technology and design
of VLSI devices.

Another technology level consideration is the use of adiabatic switching,
where the load capacitor C is resonated with an inductor L. which recovers some of
the charge used to switch the capacitor [Lo98]. However, the delay of the LC circuit
increases the delay of the device [Horo94].

At the circuit-level the main aim is to reduce the activity-capacitance
product. Transistor sizing can have a significant effect on power as smaller
transistors consume less power [Dev95, Horo94, Chan92, Yeap96]. However,
smaller transistors are also slower. Therefore transistor sizes are selected to meet
the specified speed requirements, effectively trading excess speed for power. In
addition, cost functions which map high activity nodes onto small transistors help
reduce C* [Chan95a]. Similar techniques can be applied during the routing and
placement stage, mapping high-activity nets onto shorter (lower capacitance) wires.
This has produced power reductions of up to 18% [Singh95]. During the placement
steps, consideration of locality, keeping blocks with a high degree of
communication close together, also helps to reduce C* achieving a 10% reduction
in power [Singh95, Blair94]. During the floorplanning stage another objective is to
give a more even spread to the power, to reduce ‘hot-spots’ in the chip and hence

improve reliability.

26

Chapter 2 —Synthesis for Low Power VLSI

The logic level has also been targeted as a design step in which power
saving modifications can be made. To minimise C*, logic blocks can be designed to
minimise switching activity. For example, a ripple adder makes a lot of internal
signal changes before settling on its final result. Replacing it with a larger carry-
save adder may reduce C* at the expense of an increase in area [Chan92, Chan95a],
while automated design techniques can actually reduce C* and area of adders
[Kim98]. The strong dependence of power on switching activity means that glitch
activity (spurious transitions), though not contributing to the overall computation,
can account for 20-40% of the total power of a complete VLSI system [Singh95,
Chan92]. One technique to reduce glitch activity is to place or move (retime) flip-
flops within the circuit. Activity at the flip-flop’s inputs is not propagated until the
clock signal is enabled; the flip-flop effectively acts as a glitch filter [Mont92,
Dev95]. The technique has been reported to achieve power reductions of
approximately 8% [Singh95].

Careful designing of logic functions can also reduce overall switching

activity as illustrated in Figure 2.5.

A
AB
A B—
AB
a1
C AB.C. C ABC
D —_— CD) D A.B.C.
Tree Structure Chain Structure

Figure 2.5 Example of Two Different Logic Designs with the Same Function

27

Chapter 2 —Synthesis for Low Power VLSI

Both designs in Figure 2.5 perform the same function using the same
number of gates. Assuming that all input signals are valid at approximately the
same time then signal analysis determines that the chain structure will have the
lowest switching activity if glitch activity is ignored [Chan95a]. However, the chain
structure contains unbalanced paths (paths of different lengths). For example, input
D is valid on the final NAND gate before the previous two NAND gates have
finished processing signals A, B and C. Therefore the final NAND gate may change
its output (a glitch) during the computation. The paths in the tree structure are
balanced so it does not suffer from this problem. This example shows that
consideration of glitch activity is important to determine the lowest activity and
hence lowest switching power design. The paths can be balanced by inserting
buffers in the shorter paths to equalise all path lengths or sizing down gates (to
make them slower). These two methods reduce glitch activity but can also reduce
the overall speed [Bella95b, Singh95, Najm94]. Multipliers have been designed
which incorporate extra buffers for path balancing resulting in a decrease of C*
[Devos].

Within a typical system certain logic blocks are not required all of the time.
However, the inputs of these blocks are typically left connected to the data and
clock lines so the logic block still processes the input data, resulting in unnecessary
power-consuming transitions. Clock gating is a technique for shutting down unused
sections of the design to prevent these spurious transitions. Logic gates on the
clock-signal are used to prevent it from clocking the unnecessary logic blocks when
they are not needed [Dev95, Balir94, Liu93]. An extension to clock gating is the use
of precomputation logic to disable redundant sub-circuits. The precomputation logic

is used to compute the output value of a given circuit one clock cycle before the

28

Chapter 2 —Synthesis for Low Power VLSI

circuit is needed. If the precomputation analysis meets certain criteria then sections
of the circuit can be disabled, as they are not required to process the input data
[Dev9S]. Techniques have been developed to automatically synthesise
precomputation logic to maximise the power reduction [Kim96, Singh95]. The
technique can produce savings of up to 62% in switching activity with a small
increase in area and delay [Singh95].

The techniques previously described in this section are examples that target
power reduction through voltage and capacitance reduction from the technology to
the logic level. Other examples are; the choice of 2°s complement, 1’s complement
[Dev95] or Gray code [Su94] number representation to reduce switching; the use of
asynchronous designs to remove high capacitance clock-lines [Blair94]; increasing
the correlation of consecutive signals to a logic block to reduce internal switching
activity [Dev95, Singh95] and the use of parallel processing and pipelining to
increase speed and hence reduce voltage [Blair94, Horo94].

Although the techniques described in this section have proven effective in
reducing power consumption considerable advancements are still required if the
targets of power reduction for the next generation of low-power devices are to be
met [Fried94].

To achieve these targets high-level power reduction is expected to play an
important role. High-level power reduction, where power is considered as early as
possible in the design process, is expected to produce the greatest power reduction
[Blair94, Horo94, Singh95, Chan95a]. Optimisation at lower-levels is constrained
within the specifications of the high-level design. Power reduction at high-levels
does not operate within such constraints and therefore provides greater freedom to

explore the low-power design space [Rabaey96].

29

Chapter 2 —Synthesis for Low Power VLSI

In addition, the advantages of high-level synthesis (as described in section
2.1) of flexibility and increased design speed also apply to high-level low-power
synthesis. The earlier power consumption is considered in the design process the
sooner designs can be verified and, if necessary, altered to conform to the power
consumption specifications.

This work presents a high-level power reduction tool in order to exploit the
advantages of high-level power reduction as described in this section. The next
section presents a review of high-level power reduction techniques and applications

including the technique used in this work.

2.4 High-Level Power Reduction

High-level power reduction techniques can be conveniently grouped by the
level of abstraction at which they operate. Architectural-level techniques optimise
the power consumption during the synthesis of the behavioural description into a
Register Transfer Level (RTL) design. RTL is a term used to describe the
architectural level of abstraction where the design has been decomposed to a
functional logic-block schematic, containing adders, registers, buffers, etc.
Behavioural-level techniques optimise the high-level behavioural description or

algorithm.

2.4.1 Architectural Level Power-Reduction
During architectural synthesis each operation in the behavioural description
has to be assigned an execution step (scheduling) and a functional hardware unit
(allocation and binding) to produce the RTL level design. This is known as the

architectural level of the synthesis process.

30

Chapter 2 —Synthesis for Low Power VLSI

The scheduling and assignment of operations to particular functional units
can be optimised to reduce the switching activity of the RTL design. This
optimisation strategy uses the concept of correlation between two data samples. The
correlation level is a measure of the number of different bits in the two sets of data;
a higher level corresponds to fewer bit differences. If highly correlated samples can
be successively assigned to the same functional unit it reduces the switching activity
at the inputs of that unit, and hence the switching activity on its internal nodes.
Figure 2.6 illustrates this process with an example in which signals el and e2 have a
high-level of correlation. A non-power-conscious scheduling and allocation step
may produce the schedule shown on the left, where the multiplication operations on
el and e2 are assigned to different hardware units (M1 and M2 respectively,
denoted by ovals in the figure). The schedule on the right is generated with a power-
conscious methodology to exploit correlation between signals. The highly
correlated signals are now successively applied to the same multiplier, therefore the
activity at the inputs of this multiplier between time steps is relatively low, hence
reducing its internal switching activity. The low-power schedule has reduced power
consumption while using the same number of resources and the same schedule

length.

31

Chapter 2 —Synthesis for Low Power VLSI

Initial Schedule Low-Power Schedule
el e2

T1 M2
T2

Figure 2.6 Scheduling and Allocation for Low-Power

However, such a scheduling strategy is a non-trivial task; therefore, specific
algorithms have been developed to attempt to find the optimum solutions [Rag95,
Rag95a, Rag94]. The algorithms incorporate linear programming techniques to
solve the NP-hard problem of concurrent scheduling and allocation while
considering competing objectives such as area and power. This illustrates the
requirement for heuristic algorithms to be developed to tackle the complex
problems of high-level low-power design.

In addition to reducing the switching activity of the functional units, similar
techniques for increasing correlation can be used to reduce the switching activity of
registers in the RTL design [Chang95, Kumar95]. High-level transformations such
as loop-folding have been used to increase the amount of highly correlated sets of
data in a single algorithm iteration, allowing for reduction of switching activity
when used with a scheduling strategy which exploits such correlation [Kim97].

Spatial locality in an algorithm, where operations have a high-degree of
communication, can also be exploited during the architectural synthesis process

[Mehra96a]. The architecture is partitioned so that such operations are assigned to

32

Chapter 2 —Synthesis for Low Power VLSI

the same hardware resource, thus reducing the overall activity-capacitance product
as high activity data transfers are not performed on long (and hence high
capacitance) data lines [Mehra96, Landman96]. Temporal locality (operations close
in time) can also be exploited to reduce the number of registers files needed
[Rabaey95].

During the high-level synthesis process each operation within the data-path
may be implemented with a choice of functional units; e.g. multiplication with array
or booth multipliers. Each unit has different area and speed characteristics that can
be exploited for low-power operation. Power-Profiler [Martin95, Martin96] exploits
the use of a library of functionally equivalent units to assign slower but less power-
hungry functional units to non-critical-time sections of the algorithm; an example of

this process is shown in Figure 2.7.

Critical Path :
150 ns
@ e al =50ns m1 & m2: 50ns Array Multiplier
m1+m2 = 100ns m3 : 100ns Shift-Add Multiplier
m3 = 100ns (Shift-Add less power than Array)

m3 al

Figure 2.7 Use of Slower Low Power Functional Units on Non-Time-Critical
Operations

In this example the period of the design is set to 150 nanoseconds. The
adder requires 50ns to process the data therefore the m1 and m2 multipliers must
have a combined delay of 100ns or less. However, m3 can have a delay of 100ns

without violating the specified period constraint. Therefore m3 can be implemented

33

Chapter 2 —Synthesis for Low Power VLSI

with a slower but less power-hungry multiplier, reducing overall power without
affecting speed. The Power-Profiler tool optimally assigns operations to hardware
units to reduce power while meeting area and speed constraints. A related
optimisation strategy is the use of primitive operators, such as shift-add operations
in the place of multiplications, to reduce the power consumption of the
multiplications within a DSP algorithm. This strategy can have a significant effect
as the multiply operations can consume a large part of the overall power due to their
large capacitance and switching activity.

One of the first RTL power-optimisation techniques to gain commercial
recognition is the use of clock-gating strategies. This technique uses extra logic to
disable the clock signal to functional units that are not currently required for
processing. If the clock-signal is fed to such units it results in unnecessary switching
activity on their internal nodes. Therefore, clock gating can result in considerable
reduction in switching activity [Mehra96]. Synopsys’ Design Power tool now
supports automatic synthesis of RTL designs with clock gating, the first commercial
tool to support power-optimisation at this level of the design process [Synop98].
Clock gating has also been used in the new generation of Mobile Pentium
Processors to reduce switching activity [Intel98b].

The discussed architectural level techniques are examples of power
optimisation strategies that can be considered when synthesising a high-level
algorithm into an RTL netlist consisting of logic blocks such as adders, registers,
etc., control circuitry and data/control busses. Once the RTL netlist is created it is
used to drive logic level tools in the next stage of the synthesis process. Logic level
optimisation strategies, discussed in section 2.3, can then be used to further

investigate a low-power implementation.

34

Chapter 2 —Synthesis for Low Power VLSI

The architectural level techniques described in this section have been used
to achieve significant power reductions in practical applications. However, as
discussed previously, power consumption is best addressed as early as possible in
the design stage to ensure that it is reduced at all levels of the design process. The
next section describes the reduction of power at the behavioural level, tackling the

power consumption inherent in the algorithm itself.

2.4.2 Behavioural Level Optimisation

One of the initial tasks in the design of a DSP system is the algorithm
selection phase [Parhi92]. Typically, a number of algorithms exist for a desired
application. For example, comparisons of 8 different Discrete Cosine Transform
(DCT) algorithms in [Potko95] illustrated the different power characteristics of a
suite of functionally equivalent algorithms. The work in [Potko95] also presented
the development of a CAD tool for the automatic selection of an algorithm for a
specific task based on its estimated power consumption. The presented results
illustrate the benefits of correct algorithm selection at this phase of the design
process.

After selection of the optimum algorithm, further power reductions can be
obtained through optimisation of the algorithm itself. One of the most significant
low-power design techniques presented in recent years is the use of behavioural
transformations for high-level power optimisation [Chan95, Chan92a, Good94,
Bright98b]. The technique is based on minimising the main factors contributing to
power consumption of a CMOS device, the supply voltage and switched

capacitance.

35

Chapter 2 —Synthesis for Low Power VLSI

In systems such as HYPER-LP [Chan95, Chan92a] and that presented in
[Sriv96], the use of behavioural transformations for power optimisation at the high-
level has produced power reductions of an order of magnitude and greater. These
tools are academic research projects; power reduction at the behavioural level is
currently unsupported by commercial CAD tools. ASC Inc. are developing one of
the first commercial CAD tools to incorporate behavioural transformations and
scheduling for switching activity reduction. The tool, Power-Buster-D [ASC], is
currently in the beta-development phase.

High-Level Transformations (HLTs) are used to modify the speed and
capacitance characteristics of a behavioural description. One major degree of
freedom available in optimising DSP systems is that once the required sampling rate
has been achieved there is no benefit in increasing the speed of the algorithm.
Therefore, the HLT-based approach increases the speed of an algorithm in order to
trade excess speed for supply voltage reductions. Figure 2.8 presents an overview of

the HLT-based technique for voltage reduction.

Original 5V Faster 5V
R 1
Apply Pf:;f:e‘g)egggrf . Lower Voltage
Transformations With Same Design
Increase Speed Speed As
A Original

Transformation Selection

Figure 2.8 Use of Transformations to Reduce Supply Voltage

36

Chapter 2 —Synthesis for Low Power VLSI

The transformational based approach can also be used to reduce the
switching capacitance component of power by restructuring the high-level
algorithm so it requires less capacitance and less switching activity.

The advantage of transformational-based power exploration is that it enables
the algorithm to be modified without changing its function, thus allowing
exploration of the design space while preserving the intended function of the
design. Power reduction using high-level transformations is the core of the power

reduction technique used in the tool presented in this thesis.

2.5 Power Reduction Using Transformations

This section explains the methodology of using HLTs to reduce power. As
previously described (in section 2.2) voltage reduction provides a significant power
reduction at the cost of a decrease in system throughput. For example, reducing the
supply voltage to approximately 3V doubles the delay of a device, halving its
computation speed. This reduction in speed can be compensated for with the
application of the HLTs. The HLTs are used to increase the speed of a design;
reducing the supply voltage until its speed returns to that of the original then slows
the design down. This results in a device with a lower operating voltage (and hence
lower power) but the same computational throughput as the original design.

The transformation approach assumes that the initial behavioural description
is designed to meet its required processing speed exactly. Therefore, any reduction
in speed is not tolerable; so a reduction in voltage requires an increase in the speed
of the device.

Section 2.2 also identifies switched capacitance as a component of power

dissipation. HLTs can reduce capacitance through reducing the amount of hardware

37

Chapter 2 —Synthesis for Low Power VLSI

resources required or reducing the switching activity. The distributivity
transformation [Parhi95] is an example of a HLT that reduces the number of
operations and hence the switched capacitance of a design. Careful ordering and
cascading of operations in a design [Singh95] has also been shown to have an effect
on the switching activity.

The disadvantage of HLTs is that they compound the already complex
nature of the low-power synthesis problem. The use of only a single HLT known as
retiming [Potko91] for design optimisation has been shown to be an NP-complete
problem [Chan95, Chan92a, Lies83]. The complexity of the problem implies that it
is very unlikely that an algorithm, guaranteed to find the solution in polynomial
time, could be developed to synthesise the optimum solution [Chan95]. To solve the
complex problem many low-power synthesis tools use a combination of heuristic
and probabilistic techniques to apply the transformations, such as the use of
simulated annealing in conjunction with VLSI design rules in [Chan95].

HLTs modify the high-level design descriptions represented as DFGs
(described in section 2.1.1). The HLTs operate on the functional blocks of the DFG
to alter its VLSI implementation characteristics (power, speed, area, etc.). HLTs,
and their use for VLSI design and optimisation, are well documented in the VLSI
design literature [Luck93, Parhi89, Huang94, Parhi95, Walker89, Koel, Wang95] as
they have traditionally been used to optimise designs for speed and area. They have
been successfully incorporated into automated design systems to improve the VLSI
synthesis process [Huang96, Laksh98, Laksh98a]. There is, therefore, a range of
transformations available, each with specific optimisation characteristics. The HLTs

used within the system developed in this thesis are chosen for their qualities of

38

Chapter 2 —Synthesis for Low Power VLSI

increasing design speed to allow for a reduction in supply voltage. The

transformations are described in the following sections.

2.5.1 Retiming
Retiming [Parhi95, Potko91, Potko94, Lies83, Lock93] is the process of
moving the delay elements from the input of a functional element to its outputs.
This can reduce the critical path length which bounds the speed of a design. A
shorter critical path produces a higher speed device. In addition, retiming can
reduce the resource utilisation (and hence capacitance) as it can reduce the number
of operations which are required to be performed at any one time. Figure 2.9

illustrates the application of retiming on a simple DFG.

: @D
FOre
Bl %

Original DFG Retimed DFG

Figure 2.9 Example of Retiming Transformation

In the example of Figure 2.9 the two delays on the input of the adder have
been retimed through the adder to become a single delay on its output. The retiming
step has reduced the critical path from 3 to 2 nodes; the retimed DFG is 50% faster
than the original. The figure illustrates that a retiming operation requires delays on
all of the input nets of a selected node, otherwise the retime operation cannot be

performed. This ensures that the functionality of the DFG is preserved.

39

Chapter 2 —Synthesis for Low Power VLSI

2.5.2 Pipelining

Pipelining [Parhi89, Potko92a] is another transformation that can be used to
reduce the critical path length, and hence increase speed. It operates by inserting
delay elements into the DFG at specific points, known as cutset points. These cutset
points are never found within the feedback loops of a DFG so the application of
pipelining can be limited on designs with large feedback paths. The feedback or
recursive loops of a DFG can effectively place a limit on the reduction of the
critical path with transformations such as retiming and pipelining [Mess98, Fett93,

Chun%4].

Dby ow P,
D (X (X
x)wo () o]

Original DFG Pipelined DFG

Figure 2.10 Example of Pipelining Transformation

In Figure 2.10 a pipeline delay has been inserted to reduce the critical path
from 3 to 2 elements, a 50% speed increase. The effect of pipelining is to split the
DFG into separate sections, pipeline stages, each of which can be processed
concurrently. Therefore, insertion of a pipeline stage increases the amount of
parallel processing that can be performed and hence increases the speed of the DFG
(as all of the operations are performed in a shorter time length). However, another
effect of pipelining is that it increases the latency of the DFG. Latency is defined as
the time taken for a change at the inputs to have an effect on the outputs. Increased

latency results in the DFG taking longer to produce its first output signal. An N-

40

Chapter 2 —Synthesis for Low Power VLSI

stage pipelined DFG requires N processing iterations before the data reaches the
output. Once the DFG has been iterated N-times the data is output on each

subsequent iteration.

2.5.3 Automatic Pipelining
Automatic Pipelining is a special combination of retiming and pipelining
[Luck93]. Delay elements are inserted on the primary inputs of the DFG and then

retimed through the DFG.

T D o'
N B e N e By SO Iy
o)]

Original DFG Stage 1 Auto-Pipelined DFG

Figure 2.11 Example of Automatic Pipeline Transformation

Figure 2.11 illustrates that automatic pipelining is a two-stage
transformation that combines properties of pipelining (insertion of delays on inputs

in stage 1) and retiming (the second stage, retiming the delays into the DFG).

2.5.4 Loop Unfolding
Loop Unfolding [Parhi91] is a complex transformation that 'unfolds' the
DFG to create a parallel implementation that processes N samples in parallel, where
N is the ‘unfolding factor’. Speedup is achieved in terms of samples processed as
the DFG processes N samples per iteration; therefore, its effective sampling

frequency is N times the initial design that processes one sample. The unfolded

41

Chapter 2 —Synthesis for Low Power VLSI

design may also offer more efficient use of hardware resources as more operations
may mean hardware resources left idle for shorter time periods.

The unfolding transformation is one of the most complex to apply as it
affects every element within the DFG, producing a totally new DFG. The new DFG
is in effect a parallel version of the original DFG, containing approximately N times
the number of elements of the original, where N is the unfolding factor. The
unfolding factor is a selectable parameter that determines how much parallelism is
introduced into the DFG; for example, an unfolding factor of 3 creates a DFG that is
effectively 3 of the original DFGs processing in parallel.

The implementation of the loop unfolding algorithm is based on that
presented in [Parhi91]. The algorithm functions by initially creating a new DFG,
(labelled the ‘child” DFG) with N copies of each computational node in the original
DFG (the ‘parent’ DFG). For example, a parent node U would create U;, U,...Ux
child nodes in the child DFG. The suffix attached to each child node is known as its
‘unfolding integer’.

There are a series of rules for the unfolding algorithm on how to connect the
nodes (assign the precedence relations) in the child DFG, thus creating a
functionally correct unfolded DFG. These rules are applied as a 3-step process.
Figure 2.12 presents the pseudo-code for the three steps of the unfolding
transformation, incorporating the rules to preserve the input-output functionality of
the DFG.

Within the context of the unfolding transformation, a delay node is not
considered as a computational node. For example, a net connecting an adder to a
delay, followed by a net connecting the delay to another adder, is considered as a

single net connecting the 2 adders, with a delay node on the net.

42

Chapter 2 —Synthesis for Low Power VLSI

Step 1: For each node U in the original DFG, create N corresponding nodes in the new
DFG. Label the nodes U;, U, ...U.

Step 2: For each net from node U-V in the original DFG, containing no delay nodes,
connect a net from nodes U—V, for K= 1 to N.

Step 3: For each net U-V in the original DFG containing delay nodes, perform Step 3A or
Step 3B.

Step 3A: IF number of delay nodes fium_delay_nodes) between computational
nodes U->V is LESS THAN N:

FOR q = (hum_delay_nodes+1) TO N:

Connect nets from Ug.num_delay_nodes)—>Vq With no delay nodes on the net.

FOR q =1 TOnum_delay_nodes:

Connect nets from Un.num_delay_nodes+qy—>Vq With a single delay node on each net.

Step 3B: IF number of delay nodes between computational nodes WV is
GREATER THAN OR EQUAL TO N:
FORg=1toN:

Connect nets from L*(num_delay_nodes—q+1)/NTX(N—num_delay_nodes+q)_>vq7 with
[(num_delay_nodes-q+1)/N| number of delay nodes on each net.

Note: /X /denotes a ‘ceiling function’ i.e. the smallest integer greater than or equal to X.

Figure 2.12 3 Steps of the Unfolding Process

Figure 2.13 illustrates this process for a small Infinite Impulse Response
(ITR) filter. For this example an unfolding factor of 2 is selected (N=2). The first
step creates N copies of each node in the original DFG. Step 2 connects those nets
that did not contain delay nodes in the original DFG, following the rules laid out in
Figure 2.12. For the last step (step 3) the nets that did contain delays are connected.
In this case the number of delays is less than the unfolding factor, therefore step 3A
is executed. The results of the calculations for connecting nets and inserting delays
are also shown in the example. The first calculation is to connect nets without
delays, resulting in a connection from net A; to B,. The second calculation selects
nets that will have a single delay, in this case A; to B;. These calculations result in

the complete, 2-unfolded DFG presented in the figure.

43

Chapter 2 —Synthesis for Low Power VLSI

Original DFG Step 1 Step 2

1
IN () ,OUT N, @ OUT, N
N

1
B1
2

A
1@OUT1
A
Z@OUTZ

1
1
D

)
B
IN, A2® out, |

ouT

1 A
Step 3 |N1 > [>
Num_delays (1) < N Therefore execute Step 3A B
A4 i—Bg (for g=1+1 to N) <
For A,.;—B; net with no delays ouT
Al—)Bz A2
Uniirg—=> Vg (for g=1to 1) IN,
For A;.1:1—B; net with one delay B
Az—)Bl 2

T

Figure 2.13 Example of the 3 Steps of the Unfolding Transformations

2.5 Summary

High-level synthesis offers significant advantages to the VLSI designer in
today’s competitive VLSI market where designs are increasing in complexity while
requiring shorter times-to-market. The addition of new device criteria, such as
power consumption, is further increasing the burden on the VLSI designer. This has
led to the development of CAD tools to enable the designer to handle complex
designs while exploring the solution space to meet competing criteria.

To support these CAD tools power optimisation techniques have been

developed which tackle power at all levels of the design process. Power reduction at

44

Chapter 2 —Synthesis for Low Power VLSI

the high-level is desirable, both to integrate with the advantages of high-level CAD
tools and to obtain the greatest savings in power reduction. The high-level
techniques presented in this chapter offer significant reductions in power
consumption but require research into application methods to obtain optimum
power reductions.

The transformation-based power reduction technique offers considerable
benefits but increases the complexity of the VLSI task, both in its consideration of
power as a design objective and the optimum application of the transformations.
This complexity makes determination of the best low-power design an NP-hard
task. Therefore, the work presented in this thesis incorporates the use of artificial
intelligence techniques to explore the complex solution-space of transformation-

based exploration for low-power designs.

45

Chapter 3 —Power Analysis

Chapter 3 - Power Analysis

During the design of low-power VLSI devices, the designer or CAD tool is
faced with a large number of alternative designs that have different power
consumption characteristics. Therefore, power analysis routines are necessary to
enable comparisons between designs and parameter trade-offs. A VLSI power
analysis tool is an essential component of any low-power design system.

A review of power analysis tools in [Pedram95] noted that prior to 1995
there was very little academic effort or interest in developing power analysis
techniques and virtually no tools available from industry. However, the large
increase in demand for power-conscious designs and low-power ICs has led to
increased awareness of the need for advanced tools, to enable the increasing
development of low-power design tools [Singh95, Coudert96, Tuck97]. The US
Advanced Research Projects Agency has instigated a low-power -electronics
research program which includes the development of VLSI power-analysis tools
[Lem94]. It is recognised that the development of power analysis tools is a prime
requirement for the design and improvement of portable computing systems
[Chwirka95]. Companies such as Motorola, Sente, Synopsys [Rabaey97], and
Texas Instruments [Roy95] have identified the need for advanced tools that can
operate at high-levels of abstraction.

This chapter gives an overview of the primary methods developed for power
analysis and estimation. The analysis methods are conveniently grouped by the

level of abstraction at which they operate: transistor, logic (or gate), architectural

46

Chapter 3 —Power Analysis

(RTL) and behavioural or algorithmic. At each level some of the more popular
power analysis tools are described to illustrate the use of power analysis in a
practical synthesis environment. The power analysis tools that operate at these
levels use various techniques to estimate the final power consumption of the VLSI
device, therefore power analysis is also referred to as power estimation.

Traditional power analysis techniques have targeted the lower levels of
abstraction, such as the transistor and more recently the logic level. The advantage
of analysing lower levels of the design is that the analysis tool has a complete VLSI
design to process, hence all of the required parameters (area, technology, transistor
sizes, routing, etc.) are available. The power analysis is reduced to a simulation of
the VLSI circuit, with tools such as SPICE [Rabaey]. The primary disadvantage of
low-level tools is the time required to produce a result. PowerMill [Synop98c], a
transistor level tool, is quoted as being able to simulate 1000 transistors per CPU
second [Roy95]. An IC with 3 million transistors would require 11 months CPU
time for a single run, clearly unacceptable for use as feedback in a low-power CAD
tool.

Analysis tools that operate at a higher level of abstraction offer the benefit
of enabling designs to be modified early in the design cycle, which is expected to
yield the greatest benefits in terms of power reduction [Frenk97, Pedram95,
Roy95]. In addition, high-level tools typically produce results more quickly.
However, trying to estimate power dissipation at early stages in the design cycle is a
non-trivial task [Singh95]. Designers need to trade off accuracy for the gain in
speed. Therefore, high-level tools are typically used to compare the relative power
consumption of alternative designs rather than provide absolute power values

[Mehra96, Ketz94].

47

Chapter 3 —Power Analysis

3.1 Power Dissipation in CMOS Devices

The main contributing factors of power dissipation were introduced in
section 2.2. This section discusses the previously described factors in terms of
power analysis of DSP devices. To summarise, the average energy per computation

in a DSP device implemented in CMOS 1is given by [Arslan95]:

Paverage = V;D X C * (3.1)

where Vpp is the supply voltage, and C* is the switched-capacitance or
effective-capacitance of a design. Average power is used to calculate battery life
and junction temperature [Frenk97] and is, therefore, typically used as the figure of
merit [Yeap96, Bella95b]. Estimation of the parameters of equation (3.1) will yield
an estimate of the average power consumption of the design.

Equation (3.1) illustrates that the average power is activity dependent (as C*
contains the switching activity estimation). This makes power estimation a complex
process, as the switching activity is dependent upon the devices input signals and
implementation style. Implementation style may by determined at lower levels of
the design process (but not at higher levels), but input-signal data may not be
available as it is strongly dependent upon the device application.

The optimisation tool presented in this thesis specifically targets the
synthesis of low-power DSP algorithms; therefore the discussion of power analysis
concentrates on DSP devices. The average power dissipation of DSP devices,
implemented as ASICs, can be divided into algorithm and implementation

dependent power. Algorithm inherent power dissipation comes from the execution

48

Chapter 3 —Power Analysis

of the operations within the DSP (e.g. additions, multiplications). This power
dissipation is relatively independent of the architectural implementation style used.
The overhead power is a factor of the VLSI implementation such as the control
logic, registers, buses, etc. required to implement the DSP algorithm. Therefore
estimation of the power consumption of a DSP device requires analysis of both the

algorithm and the intended VLSI platform.

3.2 Transistor Level Analysis

Transistor level analysis is one of the longest established areas of power
analysis. The ‘de-facto’ power analysis tool is SPICE, a circuit-level simulator
developed in the 1970’s at University of California at Berkeley [Rabaey]. SPICE
simulates a circuit-level description of the design at the transistor level to produce
current and voltage waveforms, which can be used to determine the power
consumption of the design. The fact that SPICE operates on such a low-level
description accounts for its high level of accuracy, it is effectively simulating the
completed design, with accurate models of transistors and device level components.

One of the main disadvantages of SPICE is its speed; such low-level device
simulations are very computationally intensive. Simulating relatively small devices
(a few thousand components) can take more than 5 hours. Another disadvantage of
SPICE is its dependence on the provided input patterns for simulation. Power
consumption is highly dependent on switching activity, so the power estimations
produced by SPICE are specific to the input patterns used to simulate the design;
SPICE is a ‘strongly-pattern-dependent’ tool [Najm94].

While SPICE is a very slow tool its high level of accuracy makes it useful in

later stages of the design process, to validate results produced by other power

49

Chapter 3 —Power Analysis

analysis tools and to develop SPICE characterised modules for use at higher-levels.
The commercial transistor-level power-analysis tool PowerMill [Synop98c] exploits
this feature. PowerMill simulates the design using SPICE developed modules,
effectively reducing the complexity of the simulation. For example, a digital
multiplier with 1,500 devices requires 5.6 hours for simulation in SPICE whereas
PowerMill requires 3.9 minutes, with only a +£5% decrease in accuracy. This
illustrates the speed and accuracy trade-off in the design of power-analysis tools,
which is regarded as an acceptable sacrifice [Roy95, Singh95, Mehra96].

AMPS [Synop] is a power-optimisation tool which incorporates the analysis
features of PowerMill within the optimisation process. AMPS automatically resizes
the transistors to optimise for speed, area and power; PowerMill is used as feedback
within the process to validate the effect of different optimisations.

While many techniques have been developed to attempt to increase the
speed of transistor-level power-analysis [Lia096, Van93], the disadvantages of the
tools have limited their use in high-level power optimisation strategies to validation
and lower-level optimisation tools once the design has been synthesised through to

the transistor level.

3.3 Logic Level Analysis

To overcome the disadvantages of transistor-level analysis several logic-
level power estimation techniques have been proposed. The main aim of logic-level
tools is to increase the speed of the process with an acceptable impact on accuracy.
Logic- or gate-level power analysis is less accurate than transistor level analysis as

the details of power dissipation of transistors are simplified in gate-level models.

50

Chapter 3 —Power Analysis

As described in section 3.2, transistor-level tools suffer from a strong-
pattern-dependence, one technique to reduce this dependence is to represent input
and internal signals as probabilities; this is known as a probabilistic power-analysis
technique. These signal probabilities, rather than the actual signals, are propagated
through the logic circuit to produce signal probabilities for every node in the design.
There are a number of ways of defining signal probabilities; two of the most

common are [Najm94]:

e Signal Probability — P«(X), the probability that a signal at node X will be
high
e Transition Probability — P(X), the probability that a signal at node X

will make a power consuming (0—1) transition.

By determining these probability factors for every node in the circuit the

total power can be estimated, for example:

Paverage = f xV}, x Zn:CiPt(Xl.) (3.2)
i=1
where f is frequency, Vpp supply voltage, C; the capacitance of node i and
P«(Xj) the transition probability of node i. Specific rules exist for the propagation of
signal or transition probabilities depending on the type of logic gate the signals are
passing through.
The use of probabilities rather than absolute signal values requires the

consideration of signal correlations, which fall into two categories. Spatial

51

Chapter 3 —Power Analysis

correlation refers to two signals in the circuit that are dependent upon each other
e.g. both inputs to a particular AND gate may never be high. Temporal correlation
refers to two signals with a dependency in time i.e. a 1 may never follow a previous
1 on a particular node. Temporal correlations are particularly important when
analysing designs with feedback as the next set of signals is directly related to the
current set [Najm95].

In addition to the consideration of correlation, logic-level analysis tools need
to consider the effect of glitch transitions in the circuit which may not affect
functionality but can consume up to 70% of the total power in a combinational logic
block [Najm94] (20-40% of the total power in a VLSI system [Singh95]).

LTIMES [Cirit87] is an example of a power analysis tool that uses the
propagation of signal probabilities together with a capacitance specification file to
determine the total power consumption. It ignores all signal correlations, which
enables it to produce results relatively quickly at the expense of accuracy.
Consideration of correlation and glitches significantly increases the complexity of
the analysis, so they are often left out or simplified during the power analysis
[Najm94, Bella95b].

PowerGate [Synop98b] is an example of a tool that considers correlations
and glitches. It can analyse an 8500 cell logic circuit 486 times faster than SPICE,
with an associated 10% reduction in accuracy; it can analyse a 48000 cell logic
circuit 60 times faster than PowerMill, with an associated 5% reduction in
comparative accuracy. These qualitative examples show the benefit in speed of
using logic-level analysis tools and the trade-off in accuracy made to achieve the

speed increase.

52

Chapter 3 —Power Analysis

An alternative to propagating signal probabilities, thus removing the
problems of modelling correlations, is to simulate the logic circuit using actual
input vectors. A Monte Carlo approach [Burch93] combines the advantages of
simulation (no need to model correlation effects) with probability techniques
(reduced pattern-dependence of analysis). Such an approach is known as a statistical
analysis technique. The circuit is simulated with typical or randomly selected input
vectors for a specified number of times. The activity and estimated current for each
vector is used to determine the power consumption. The average power
consumption is the average of the power estimations for each vector. Each
additional simulation increases the confidence in the result; therefore the required
accuracy can be specified up front while considering its effect on the speed of the
analysis. The disadvantage of this technique is that it is still slower than
probabilistic techniques, again illustrating the trade-off between accuracy and
speed.

Design_Power [Synop98d] allows the user to select between probabilistic
and statistical analysis techniques, trading off speed for accuracy. Typically,
probabilistic analysis is used initially to select design changes, its increased speed
enabling design changes to be selected relatively quickly. Statistical methods are
typically used later to validate sets of design changes, the reduction in speed
compensated for by the increase in accuracy. Power Compiler [Synop98d] is a gate-
level power optimisation tool that uses Design Power to perform power estimations
and validate gate-level power optimisations more quickly than transistor-level tools
would allow.

Logic-level analysis tools have become more popular in recent years,

evidenced by the commercial and academic tools described here. Systems such as

53

Chapter 3 —Power Analysis

Power Tool [Veritools] and XPower [Genashor] illustrate the increasing
commercial support for logic-level analysis tools. Their main advantages over
transistor-level tools are the reduction in analysis times at the expense of accuracy.
The level of error is acceptable given the large speed increases, enabling the tools to

be used within practical power optimisation systems.

3.4 Architectural Level Analysis

The architectural level refers to the RT level of abstraction, where the design
is described in terms of modules such as adders, registers, multipliers, etc. RTL
power analysis is the problem of estimating the power consumption of these
modules and hence the total power consumption of the design. Many tools now use
the RT-level as the point of entry for describing the design [Macii97]; therefore
RTL analysis tools are becoming increasingly useful.

While section 3.3 outlined the use of logic-level power analysis tools within
power optimisation systems, the tools still suffer from long run-times as the number
of logic elements increases. This has reduced their application in high-level power
optimisation systems.

Gate-level tools estimate the power consumed by logic (e.g. AND, OR)
units whereas RTL tools estimate the power consumption of modules (e.g. adders,
busses). RTL analysis typically deals with fewer discrete blocks as the large
numbers of logic elements are grouped into the higher level modules. Therefore, the
RTL power analysis should be faster than the logic-level, following the trend of
higher levels of analysis producing results more quickly than lower levels.

The technique proposed in [Liu94] expresses the power consumption of

typical components in an RTL system as a function of basic parameters such as

54

Chapter 3 —Power Analysis

capacitance and size. The disadvantage of this technique is that assumptions made
in building the power models (for extraction of the basic parameters) reduces the
accuracy of the estimation.

The Power Factor Approximation (PFA) method [Powell90, Chau92,
Powell91] is an RTL technique that develops power-characterised models for
hardware units such as I/0, interconnection, execution units, etc. The technique
targets the power analysis of DSP algorithms.

PFA is based on the assumption that it is the VLSI implementation
technology and not the size of the RTL module that determines the average
switching activity, load capacitance and current per logic element in a module. A
PFA constant is derived to estimate the average power dissipated per gate, per
clock-cycle for a specific type of module. Different modules have a different PFA
constant depending on their function and implementation style (e.g. an array or
booth multiplier). The average power of a module is the product of the PFA
constant, the clock frequency and a measure of the complexity of the module. The
complexity of the module can be related to factors such as the bit-width to enable
their effect on power to be analysed. The average power of the whole design is the
sum of the average power of all modules. The main advantage of the PFA technique
is its speed. Once the PFA constant for each module type has been determined, it
can be reused in any number of analyses.

The PFA constant for each module is determined by characterising each
module for capacitance and switching activity. The disadvantage of the PFA
technique is that the switching activity is derived using a Universal White Noise
(UWN) model. However, typical DSP signals such as speech and music do not

approximate UWN signals. The PFA technique ignores correlations in the signals

55

Chapter 3 —Power Analysis

and as a result the accuracy suffers when the actual input signals do not have UWN
properties. PFA’s primary advantage is its increased speed over logic-level analysis
tools.

The Stochastic Power Analysis (SPA) technique [Landman93, Landman94,
Landman96a] improves on the accuracy of the PFA technique by including the
effect of typical signal activities on power consumption. The core of the SPA
technique is the development of the Dual-Bit-Type (DBT) model for two’s-

complement signal representation, illustrated in Figure 3.1.

Signal
Probﬂbility
BPO BP1
0.5 ' :

v

LSB Bit # MSB
Figure 3.1 The Dual-Bit-Type Model

The DBT model was developed to model word-level statistics based on the
bit-level statistics such as the signal probabilities described in section 3.3. The DBT
figure illustrates the signal probability of each bit from the LSB to the MSB of a
word. For the LSBs the probability is approx. 0.5, equivalent to the UWN model.
For higher order bits the probability drops, indicating that the MSBs have a high-
level of correlation. This explains the problems of the PFA technique as it assumes
all bits of the signal follow a UWN model, the DBT model illustrates that this

assumption is not correct.

56

Chapter 3 —Power Analysis

The DBT model has been shown to be true for a range of typical signal
types such as speech and music [Landman93]; the breakpoints and signal
probability levels are derived for each signal type. Therefore, the power analysis is
related to the typical application of the DSP algorithm without requiring detailed
information of the actual input signals.

As with logic-level analysis tools the derived word-level statistics are
propagated through the RTL design. Each type of module affects the word-level
statistics in a pre-defined manner, enabling a complete set of word-level statistics to
be obtained for all the nodes in the RTL design. The word-level statistics are
combined with black-box capacitance models of RTL modules to produce a
switching activity dependent estimate of power consumption.

Signal correlations such as temporal correlation (section 3.3) present a more
difficult problem but heuristic techniques have been developed to model some
correlations. Feedback in the RTL design is a primary problem; this is solved by
approximating recursive sections with non-recursive sections with minimal effect
on the accuracy of the result. As with the PFA technique, the SPA method is
primarily targeted at DSP designs implemented as ASICs.

For a typical music signal application, compared with transistor level
analysis tools the PFA technique has an error of 90% while the SPA technique has
an error of 10% [Landman93]. This illustrates the importance of considering signal
properties when analysing power. However, for differential image signals, which
have similar properties to the UWN model, both techniques have an error of 5%.
Therefore SPA is a better technique where the typical application of the DSP
algorithm is known at the RTL level. Typically the SPA technique has an error of

10-15% when compared to transistor-level techniques [Landman96], with a large

57

Chapter 3 —Power Analysis

increase in speed over transistor- and logic-level analysis. The inaccuracies are
partially due to uncertainties about the final placement and routing of the modules,
VLSI design aspects which are not finalised at the RTL level.

SPA has been incorporated within a low-power system design framework
[Landman96] to illustrate its usefulness in evaluating high-level architectural design
choices. In case studies, the power consumption of execution units was significantly
overestimated; however, the overestimation was systematic i.e. the relative
comparison between designs was still valid. This illustrates that high-level analysis
tools are more useful for comparing designs than estimating absolute power
consumption.

WattWatcher/Architect from Sente [Sente] is one of the few commercially
available tools to tackle architectural level power analysis. The power is estimated
directly from an RTL description of the design to take advantage of the speed
benefits available at this level.

The previously described Design Power, a logic-level tool, can also be used
for RTL analysis. The tool performs a fast synthesis on the RTL design to produce a
logic-level layout from which the power can be estimated using logic-level tools.
The disadvantage of this technique is the time overhead required to synthesise the
RTL design and the large number of gates that could be produced from such a
synthesis.

PowerPlay [Lidsk96] is a WWW based power analysis tool that was
developed to address the problem of creating a library of RTL modules
characterised for capacitance and power. The power analysis is a simple process
that counts the number of units of each type and reports power consumption in

relation to frequency and supply voltage. The main aim of the tool is not the

58

Chapter 3 —Power Analysis

development of a novel power analysis method, but rather harnessing the power of
the WWW to enable designers from all over the world to pool resources in creating
a complete library of characterised RTL modules. These modules can be used as
part of an RTL power analysis tool.

RTL power analysis tools are becoming increasing popular for both
commercial and academic design projects. However, it is recognised that power
optimisation will yield the largest benefits if it is tackled from the highest levels of
abstraction first. RTL tools require certain aspects of the design to be finalised,
therefore greater attention has become focused on the development of behavioural

level tools.

3.5 Behavioural Level Analysis

Behavioural level analysis attempts to estimate the power consumption of a
design at the highest level of abstraction, the algorithmic description of the signal-
processing task. The algorithm describes the task in terms of operations (e.g.
additions, multiplications) and data transfers between those operations.

Power analysis at this level requires estimation of the power consumption of
operations in the algorithm and the implementation overhead such as registers,
interconnect, etc. The approach developed in [Chan95], [Mehra94] and [Rabaey95]
identifies that power consumption comes from datapath, interconnect, control and
memory units. It uses a combination of analytical and stochastic analysis techniques
to produce a behavioural level analysis tool with an average error of 20% compared
to RTL tools.

The accuracy of behavioural level power analysis tools is limited because

there is very little VLSI implementation information available. For example,

59

Chapter 3 —Power Analysis

operations in the algorithm are not yet mapped to specific units in the RTL design.
Therefore the SPA technique cannot be used to propagate signal correlations around
the design [Mehra96, Rabaey95, Mehra94].

The behavioural technique simplifies the estimation process by tying the

DSP algorithm to a specific RTL implementation style, as illustrated in Figure 3.2.

Bus
r y
Y evw vy [
\ Mux / \ Mux / :
: Finite State
: Y Machine
| —|
Registers Registers | Local
Controller

Exu

XU]

Figure 3.2 RTL Template for Behavioural Level Power Analysis

The figure depicts an RTL hardware unit consisting of registers,
multiplexers and the main execution unit. The RTL design uses a Finite State
Machine (FSM) as a global controller, with local controllers associated with each
hardware unit. While this simplifies the estimation task it does limit the general
applicability of the results.

The power analysis is split into estimating the consumption of datapath,

interconnect, control and memory units separately. Some of the information is

60

Chapter 3 —Power Analysis

estimated directly from the datapath while statistical models are developed to
estimate the rest.

Datapath — The estimation of datapath power is related to the number of
module accesses as opposed to the actual number of modules. The power
consumption is relatively independent of the number of modules as 10 accesses to a
single module dissipates approximately the same power as 1 access to 10 modules.
The number of execution unit accesses is directly related to the number of
operations of that type in the DFG. Pre-characterised execution unit modules are
used to estimate the total switched capacitance and hence the total power
consumption. Analysis of the algorithm yields upper and lower bounds on the
required number of register accesses to execute the algorithm. The average of the
two bounds is taken as the actual value; again, this is combined with characterised
modules to determine the switched capacitance of the registers.

Interconnect — Though often ignored during high-level power analysis,
interconnect can typically consume between 10% and 30% of the total power
[Mehra94]. It is one of the most difficult parameters to estimate at the high-level as
it is strongly linked to low-level layout parameters. For this reason a statistical
model of interconnect capacitance is used which relates interconnect capacitance to
the VLSI datapath area (containing the execution units, registers, busses, etc.),

shown in Figure 3.3.

61

Chapter 3 —Power Analysis

1500 -

1000 -

500 -

Interconnect Cap pF

O I T I !
0 2.95 10 23.5 80

Area mm

Figure 3.3 Interconnect Capacitance Model [Chan95]

The work presented in [Mehra94] and [Chan95] also presents techniques for
estimation of control and memory units power consumption. However, it is noted
that the datapath and interconnect component accounts for the majority of the power
in the data-intensive algorithms targeted.

The clock distribution network or clock tree can account for a significant
portion of the total power budget. The clock-tree is typically the longest net in the
VLSI device and hence has a relatively large capacitance. The typically high
frequencies and the large number of capacitive loads they drive increases the high
power dissipation of clock lines. Clock power estimation is typically incorporated
into the power estimation of register units, as these are the datapath units driven by
the clock line [Chan95]. The register capacitance models are comprised of the
registers switching capacitance and its contribution to the load capacitance of the
clock line. Summation of the register capacitance will produce the total load on the

clock line due to datapath units. The use of architectural and physical level design

62

Chapter 3 —Power Analysis

strategies is used to reduce the intrinsic capacitance of the clock line, resulting in
the load on the clock line being the most significant contributor to clock power
dissipation. At the architectural level designs are developed with controllable and
gated clocks; this enables reduction of clock activity and also reduces the length of
any single segment of the clock line (and hence the activity-capacitance product)
[Chan95, Pedram95, Ketz94]. At the physical level the use of a distributed buffer
system, where buffer elements are placed throughout the clock tree, also reduces the
length of any single clock elements [Rabaey96].

The results presented for behavioural level power analysis tools [Mehra94,
Chan95] illustrate that accuracy is sacrificed both for increased speed and the ability
to estimate power at such a high-level of abstraction. However, use of high-level
analysis in tools such as Explore [Mehra94] and HYPER-LP [Chan95] illustrates
the benefits of being able to compare designs for relative power consumption at
such early stages in the design process. While behavioural level analysis tools are
still in the early stages of development they are already providing invaluable
feedback to high-level design tools.

As well as describing ‘state of the art” [Mehra94] behavioural power
analysis techniques, this section has illustrated the lack of behavioural level analysis
tools. No commercial behavioural level power analysis tools are currently available
[Coudert96] though prototypes are in development such as Power-Buster-D being

developed by ASC and Princeton University [ASC].

63

Chapter 4 —Genetic Algorithms

Chapter 4 — Genetic Algorithms

The power optimisation tool presented in this thesis uses a Genetic
Algorithm (GA) as its core search and optimisation mechanism. This chapter
introduces the main concepts of a genetic algorithm before describing their
application in engineering design and optimisation problems Finally, the last section
of this chapter explains why is advantageous to use a GA to solve the complex

problems inherent in high-level power optimisation and synthesis.

4.1 Overview of Genetic Algorithms

The GA is a search and optimisation technique inspired by the processes of
natural selection in biological organisms. The lineage of GAs can be traced back to
Darwin’s “On the Origin of Species” [Darwin], in which it was recognised that
species evolve according to their ability to survive and reproduce.

The evolutionary process can be viewed as an adaptive optimisation
technique. The optimisation process is searching for a ‘good’ solution to the
problem of surviving and reproducing in the changing natural world; each natural
organism is considered to be an alternative solution to this problem. Those
organisms better adapted to survive in the environment will have greater
opportunity for reproduction. The process of reproduction results in the
perpetuation of the genes of the parent organisms; therefore, the genes of the better
organisms are more likely to be spread throughout the population as the

evolutionary process continues. The solutions are taken from a range of billions of

64

Chapter 4 —Genetic Algorithms

possible solutions, the characteristics of which are dictated by the organisms’
genetic sequences. The genes which create an organism that is better than its
competitors will be reproduced and successively refined (during many generations
of the reproduction process) to produce even better solutions.

The optimisation features of natural evolution have inspired evolutionary
optimisation strategies since the 1960’s [Schwef95]. In the 1970’s John Holland
invented the specific evolutionary optimisation technique which has become known
as the GA; he proposed a rigorous definition and analysis of the technique in his
seminal publication “Adaptation in Natural and Artificial Systems” [Holland92].
Holland’s work developed relatively simple GAs that were shown to solve some
extremely difficult problems. GAs have since been further analysed and refined in
many basic texts [Davis91, Goldberg89, Mitch96, Beasley93, Teuk95a]. Since their
initial inception, GAs have been applied to problems in fields as diverse as
economics, biology, political science and engineering. In [Holland92] it is noted
that GAs have become a recognised technique for the solution of practical ‘real-
world’ problems. The increase and success in their application to practical
engineering problems is evident in publications such as [Zalzala97] and the
proceedings of the Genetic Algorithms in Engineering Systems conferences
[Galesia95, Galesia97].

Within a GA, potential solutions to the problem are encoded as
chromosomes; the chromosome consists of a set of genes, which represent the
characteristics of that solution. The GA operates on a number of chromosomes,
collectively termed a population. In order to assess each solution’s potential for
reproduction it is necessary to gauge the ‘fitness’ of each solution. This is a measure

of the ability of that solution to satisfy the objective problem. Those solutions with

65

Chapter 4 —Genetic Algorithms

a higher fitness have a greater chance of selection for reproduction. The
reproduction process creates new individuals with the combined characteristics of
the ‘parent’ individuals. Hence, the properties of higher fitness individuals are
propagated throughout the population.

Successive application of the reproduction process creates a whole new
population of solutions, termed the ‘next generation’. This generation contains a
higher proportion of the characteristics possessed by the fitter solutions of the
previous generation. The mechanism of selection and reproduction facilitates the
exploration of the solution space.

Successive generations of the GA explore a variety of solutions throughout
the solution space. If the GA is successful it will converge to an optimal region of
the solution space, producing an optimal solution to the objective problem.

The main advantages of the GA are its robustness and flexibility. It is able to
outperform more traditional optimisation techniques due to its ability to escape
local optima in the solution space. A typical problem may be characterised as a
solution space with a large number of hills and valleys; however, one hill is higher
than all the rest (the optimal solution). Traditional techniques may take the path of
steepest ascent to find the peak; but the first peak found may not be the highest
peak. The GA has the ability to evaluate many peaks at a time (due to the use of a
population of solutions). In addition, the GA has the ability to suffer temporary
decreases in solution quality (by moving downhill) in order to avoid becoming
stuck on the first peak found. This ability is conferred upon the GA by basing the
selection of individuals on probability rather than certain selection of the absolute
fittest individual. Lower fitness individuals still have some chance of selection,

enabling the GA to escape local optima.

66

Chapter 4 —Genetic Algorithms

The GA is a flexible optimisation technique, as it does not require any prior
knowledge of the search space. Therefore, assumptions made about the problem do
not limit the search process. The GA only requires a suitable coding structure, a
method of modifying that structure during reproduction and a system for assessing
the quality of individual solutions. If the goals of the process change only the fitness
function is required to be modified instead of a complete modi,fication of the

optimisation algorithm.

4.2 Standard Genetic Algorithm Implementation
This section describes the implementation details of a basic GA. Figure 4.1

presents the pseudo-code of a basic GA.

Algorithm Genetic_Algorithm

Initialise Population_of_Solutions

While stopping criteria not met
Compute fitness of solutions
Select solutions for reproduction
Apply reproduction operators (genetic operators)

Breed next generation of solutions
End While

Fittest solution found is best solution

End Algorithm
Figure 4.1 Pseudo-Code for a Basic GA

4.2.1 Solution Representation
An initial requirement for implementation of a GA is to encode possible
solutions to the problem into a chromosome structure suitable for manipulation by

the GA.

67

Chapter 4 —Genetic Algorithms

Holland’s original work [Holland92] suggested using binary-strings of 0’s
and 1’s to represent the solutions. The individual elements within the chromosome,
such as each 1 or 0, are known as genes. Subsequent research into GAs has seen the
use of more complex representations such as alphabet-strings [Goldberg89] and
decision trees [Schnecke95]. The most important point is that the representation
encodes the important properties of the solution in a method which enables those
properties to be fully explored by the GA.

The choice of chromosome representation is very important if the full power
of a GA is to be exploited. An unsuitable choice of chromosome representation can
place an unnecessary computational strain on the GA, requiring complex
manipulation and decoding for quality evaluation. The choice of chromosome can
also affect the performance of the GA in searching the solution space. It may even
prevent the GA from determining an optimal solution as a poorly designed
chromosome may not be able to represent all possible solutions or it may not allow

certain operations.

4.2.2 Fitness Assessment
For each application of a GA a means of determining the relative quality of
each solution is required. Fitness assessment is the process of decoding the
chromosome and calculating its relevant parameters. The quality or fitness is a
direct measure of how well the parameters of the encoded solution satisfy the
objective function. The objective function is goal or desired state of the

optimisation process.

68

Chapter 4 —Genetic Algorithms

4.2.3 Reproduction Operators

The reproduction step of the GA selects individuals from the current
generation to produce offspring that will comprise the next generation. The
production of offspring involves the modification and combination of the genes of
solutions in the current generation; this is the core of the search mechanism, as the
next generation will consist of a different set of chromosomes to the previous
generation. Modification of the chromosomes is achieved through the application of
genetic operators, the two most common of which are known as mutation and
CrOSSOVer.

Mutation operates on a single chromosome to modify its characteristics
through random manipulation of its genes. An example of the mutation process is

illustrated in Figure 4.2 for a binary-string chromosome.

1100110 andom mutation of a bit

111 0110 from O to 1

Figure 4.2 Example of a Mutation Operation

This example illustrates the random change of the value of a gene within the
chromosome. The mutation has produced a new chromosome with different
characteristics to the parent chromosome. Mutation is primarily used to introduce
diversity into the population to encourage the GA to explore new areas of the
solution space.

Crossover operates on two chromosomes, combining their genetic material
to produce ‘child” chromosomes. The application of ‘two-point’ crossover on a

binary-string representation is illustrated in Figure 4.3

69

Chapter 4 —Genetic Algorithms

Parent Child
Chromosomes Chromosomes

Chromosome111100110><::11011010
Chromosome 2 1 0|0 11 0 0 1 10100101

3

Genes Selected For Exchanged
Crossover Genes

Figure 4.3 Example of a Crossover Operation

In this example a region of the same size has been selected in both
chromosomes. Each region is swapped with that in the other chromosome to
produce new children with some genes from both parents, they combine the genetic
characteristics of two solutions.

The idea behind crossover is to use the information currently stored within
the GA population to explore other regions of the solution space. If the selection of
the parent chromosomes favours selection of the fitter individuals then crossover
combines the characteristics of good parents to explore regions of the solution space
that indicate the potential to yield good solutions.

The illustrated example of crossover, using ‘two-point’ crossover, is one
example of a potential crossover operator. Many other crossover methods exist,
such as ‘one-point’ crossover, ‘masked’ selection, order-based [Goldberg89,
Mitch96, Teuk95b Beasley93a], etc. exist. Particular techniques have been
developed to suit the chromosome implementation, such as the splicing of complete

tree-subsets used in [Schnecke95]. The important aspect of crossover is the

70

Chapter 4 —Genetic Algorithms

combination of genetic material to produce new solutions, hopefully with improved
fitness characteristics.

Crossover and mutation are typically both applied in a genetic algorithm, at
application rates tailored to suit the specific problem. Crossover applied without an
associated mutation operator may not be able to explore certain regions of the
solution space as it can only combine information that is already present in the
chromosomes. It is possible for a single gene to have the same value in all
chromosomes. Without a mutation operation that gene would never be changed,
consequentially blocking off a region of the solution space from the search.
Crossover increases the likelihood of a good set of genes, which may have resulted
from a mutation operation, being propagated throughout the population, increasing

the efficiency of the search process.

4.2.4 Solution Selection

The selection procedure of a genetic algorithm is a key component of the
search process. The original concept of the selection mechanism [Holland92,
Goldberg89] was to mimic the process of natural selection in nature. The
evolutionary theory of natural selection is based on the idea of ‘survival of the
fittest’, where individuals that are more successful within their environment have
more chance of reproducing and hence propagating their characteristics into the
next generation.

Within the context of a GA, this theory dictates that those individuals that
are more successful in meeting the specified objective will have more chance of
being chosen for reproduction into the next generation. Hence, the GA attempts to

find better solutions by building on the current best solutions. This will guide the

71

Chapter 4 —Genetic Algorithms

search procedure to those locations within the search space that contain the best
solutions.

Since the initial development of GAs, many techniques have been developed
that aim to improve and build on this standard idea [Davis89, Beasley93, Whit89,
Baker85] However, the basic idea behind all of these techniques is the probabilistic
selection of individuals based on their quality. The most commonly used technique
is known as the Fitness Proportionate Selection (FPS) method where individuals are
selected with a probability based on their quality. Therefore, FPS is a probabilistic
selection technique.

The FPS selection method was suggested by Holland based on his analysis
of the famous ‘2-armed-bandit problem’ [Holland92, Goldberg89]. FPS allocates to
each individual a fixed probability of being selected, based upon its fitness relative

to the total fitness of all individuals within the generation.

iSeIection Marker
1

O Solution 1
H Solution 2
O Solution 3

Figure 4.4 Roulette Wheel Creation

One implementation of FPS is to create a ‘roulette wheel’” where the size of

segment allocated to each individual is directly related to its fitness. The larger the

72

Chapter 4 —Genetic Algorithms

fitness of an individual, the larger the segment allocated to it. Figure 4.4 illustrates a
roulette wheel created from a population of 3 individuals.

The number next to each slice is that solutions fitness, so it can be seen that
the solution with the largest fitness (solution 2) has the largest slice of the roulette
wheel. A single spin of the wheel will result in one segment pointed to by the
selection marker; this segment will be the selected solution. Repeated spins of the
wheel are used to select enough individuals to create a whole generation. Those
solutions with a larger slice of the wheel will have greater chance of being pointed
to by the selection marker.

An important characteristic of the FPS roulette wheel method is that all
solutions have some chance of being selected. A simple greedy algorithm, which
always attempts to select the best solution, will repeatedly select solution 2; the
search method will become trapped on solution 2. This could lead to sub-optimal
solutions if solution 2 is only a local optimal solution. The FPS method gives lower
fitness solutions some chance of selection, therefore helping the GA to escape local

optima.

4.2.5 Stopping Criteria
The GA is typically required to determine a ‘satisfying’ solution to a
problem where other search techniques have failed or are not expected to achieve
much success. The required parameters for a satisfying solution are specified before
the GA is executed. When a solution which achieves the objectives is produced the
evolutionary process is terminated i.e. the stopping criteria has been satisfied.
In some cases the GA is used to determine the ‘best’ solution to the

problem, the global-optimum point in the solution space. While a GA can not be

73

Chapter 4 —Genetic Algorithms

guaranteed to find the global-optimum, if implemented correctly it will typically
find a ‘good’ or satisfying solution in a reasonable amount of time. In these cases
the stopping criteria is usually specified in terms of the number of generations or
solution evaluations since the last improvement in fitness was found. The actual
number of generations is typically set very high to increase the likelihood that the
GA has settled on the highest peak in the solution space.

Other techniques exist for determining whether a GA has terminated a
search, such as assessing the convergence of the population. One method is to
analyse every solution in the population. If 95% of the genes in each chromosome
are identical in all solutions then the GA is considered to have converged and the

search is terminated [Beasley93].

There are many variations to the basic GA operators and components
described here, all of which are aimed at improving the efficiency and success of
the GA [Beasley93a]. This chapter is not intended as an exhaustive review of all the

features of a GA, it is an introduction to the fundamental concepts of the technique.

4.3 Non-Standard Genetic Algorithms

The previous section introduced the concept of a standard genetic algorithm,
comprising of standard GA components that have undergone little or no change
since their initial proposal by Holland and his successors. Several researchers using
GAs to solve complex, real-world engineering problems have proposed that, for
GAs to achieve their full potential in engineering design, it is necessary to
specifically design the GA to suit the problem [Davis89, Davis87, Beasley93a].

This leads to the development of non-standard GAs, incorporating domain-specific

74

Chapter 4 —Genetic Algorithms

design and exploration techniques into a standard genetic framework. The GA
based high-level design tool presented in this thesis is an example of such a
problem-specific GA, it is effectively a hybrid of power design methodologies and
GA search techniques.

Such hybrid systems offer the advantages of exploiting the efficient search
technique of the GA while utilising expert knowledge about the problem; a simple
GA does not incorporate any expert knowledge. Example hybrid or non-standard
GA systems [Esch91, Sinclair98, Davis94, Schaff93, Arslan96a, Martin95,
Lienin95] exploit the use of non-standard chromosome representation (e.g. a non-
binary chromosome such as a tree representation of each component in a VLSI
layout task), adaptive operator rates and non-standard genetic operators. Non-
standard genetic operators incorporate problem-specific techniques to modify the
chromosome according to standard design rules. Incorporation of these rules has
been shown to improve the efficiency and results of the GA-based search technique
for a range of problems. The primary advantage of hybrid or non-standard GA
systems is their combination of the benefits of the GA and the standard design
techniques. They enable design exploration to utilise existing techniques within a

GA framework.

4.4 Applications of Genetic Algorithms

Since their inception GAs have been applied to a wide range of problems
such as machine learning, scientific modelling and engineering optimisation or
design applications [Mitch96]. The applications described in this section

concentrate on those used during the VLSI design process as the application

75

Chapter 4 —Genetic Algorithms

described in this thesis is an example of a GA to optimise a parameter (power
consumption) during VLSI design.

In the design and application of VLSI devices, GAs have been shown to
produce superior solutions compared to other techniques for problems such as test-
pattern generation [Odare94, Arslan96c]. In [Schnecke95, Schnecke95a] the GA
was used to optimise the layout of a VLSI device, simultaneously minimising wire
routing requirements (through optimal placement of cells) while solving the
complex problem of obtaining a valid routing design. In the example described, the
GA was use to both solve the complex problem and inherently optimise the
produced solutions. The consideration of routing and cell placement in parallel
enables a better solution to be determined in comparison with the traditional method
of considering placement and routing as separate stages.

The use of parallel GAs [Chipp97] has also been demonstrated to provide an
efficient VLSI routing tool in [Lienig97] while simultaneously minimising area and
capacitance. The reduction of capacitance reduces the delays in connections, hence
increasing the speed of the VLSI device. Again, the results obtained with the GA
are superior to those found using other techniques.

GAs have also been used at the transistor-level to evolve VLSI designs for
digital and analogue applications [Davis94], increasing the speed of the design
process and optimising objective parameters.

In [Arslan96a, Arslan96b] a GA has been used to solve the complex
problem of logic-level VLSI design. A library of component cells describing a
variety of digital logic functions is provided for the GA. The GA synthesises a
design, constructed from the cell library, which performs a specified function such

as a binary adder/subtractor or a parity checker. The results demonstrate a primary

76

Chapter 4 —Genetic Algorithms

advantage of GAs, the ability to generate a range of solutions that satisfy the
problem criteria but have different implementation characteristics. This is due to the
multiple-solution nature of the GA search technique that processes and evaluates a
large number of possible solutions. The generation of alternative designs is a useful
feature for the VLSI designer as it gives them greater flexibility to integrate those
designs into the whole system.

GAs have also been applied to higher-levels of the design process to
optimise the scheduling and allocation steps in converting an algorithmic level
description into a logic-module layout. Scheduling and allocation assign specific
modules in the VLSI device to operations specified in the algorithm. This process
has been tackled using a variety of heuristic solutions and techniques, none
guaranteed to find the optimal solution due to the high degree of dependency
between the tasks. The GA is used to find an optimal trade-off point between the
conflicting parameters, to optimise for area [Grewal97] and reduction of the time
taken to perform the scheduling and allocation process [Mandal96, Grewal97].

Power-Profiler [Martin95, Martin96] illustrates the use of a GA to tackle
some aspects of the problem of low-power VLSI synthesis. The work presented in
this thesis optimises a high-level design for low-power implementation. Power-
Profiler operates at a lower level of the design process, optimising power during the
scheduling, allocation and binding process of a specified high-level algorithm. The
GA is used to assign VLSI cells such as adders and multipliers to operations in the
algorithm. Each operation has a number of alternative cells such as the use of
Booth, Array, etc. cells for a multiplication operation. Each multiplier cell-type has
the same function but different area, speed and power characteristics. By assigning

slower but less power-hungry cells to non-time-critical operations in the algorithm

77

Chapter 4 —Genetic Algorithms

the GA reduces the overall power consumption while simultaneously satisfying area
and speed requirements.

Stages of the work presented in this thesis have been published in various
periodicals and conferences [Bright96, Arslan96, Bright97, Bright98, Bright98a]
illustrating the first use of a GA for manipulating a high-level design specification

to reduce its VLSI power requirements.

This section has presented a number of successful applications of GAs to
various problems of the VLSI design process. The systems described illustrate that
the GA is useful at all stages of the design process both to solve the complex

problems and optimise the VLSI implementation characteristics.

4.5 Application of GAs to the Problem of Low-Power Synthesis

The technique used for power reduction in this work was previously
described in section 2.4. One of the main disadvantages of the technique is its
complexity. It has been illustrated that the use of a single transformation, used for
area minimisation, presents an NP-complete problem i.e. a problem that cannot be
solved in polynomial time [Potko91].

Use of additional transformations further increases the complexity of the
problem due to the interaction between transformations e.g. one transformation may
subsequently enable or prevent the application of another. Previous use of
transformations for high-level optimisation has required the development of specific
heuristics [Potko91, Huang94] to perform a search of the solution space to
determine the best solution. In [Chan95] a simulated annealing algorithm (another

algorithm inspired by a natural process) was used to assist the transformation

78

Chapter 4 —Genetic Algorithms

application process. In that work, the application of the simulated annealing
algorithm was limited to design refinements once the design had been transformed
using application heuristics.

As discussed previously in this chapter, GAs have been applied to many
VLSI design problems, producing results which typically outperform other
techniques in many situations. In addition to the proven track record of GAs in
VLSI design, the complexity of the high-level low-power design problem makes it
suitable for the investigation of the application of GAs, to attempt to produce a tool

that synthesises designs which satisfy the objective criteria.

79

Chapter 5 - The Genetic Algorithm

Chapter 5 - The Genetic Algorithm

The previous chapters have presented the techniques of power reduction,
power estimation and GA-based search and optimisation. To investigate the use of
GAs in a low-power design environment a prototype tool is developed to optimise
high-level designs for low-power VLSI implementation. This chapter presents the
development of the initial prototype Genetic Algorithm for LOw Power Synthesis
(GALOPS).

The prototype version of GALOPS processes an original specified signal-
processing algorithm, to produce a new algorithm that has lower power
consumption requirements than the original version. The target implementation
platform of the algorithms is a CMOS VLSI device.

The main characteristic of the GALOPS tool is the use of high-level
transformations, embedded within the genetic search and optimisation framework,
to enable power exploration.

GALOPS is based on a typical GA structure as introduced in section 4.2.
The structural flowchart of GALOPS is illustrated in Figure 5.1. The first step is to
create the initial population of candidate solutions. As discussed previously in
section 4.2 (GAs), the GA requires candidate solutions to be encoded in an
appropriate format for GA based manipulation. The problem of encoding high-level
signal processing designs in a suitable format is discussed in section 5.1.

Section 5.2 describes the population initialisation procedure, specifically

addressing the conflicting requirements of a GA requiring a random starting point

80

Chapter 5 - The Genetic Algorithm

and a VLSI synthesis system that needs to develop designs with a specific non-
random function.

At the core of a GA is its selection procedure, which is used to select those
designs that will be used to create the next population (the next generation) of
solutions. This procedure is presented in section 5.3.

One of the most important features of a GA is its use of genetic modification
procedures to actually perform the solution space exploration. The use of these
operators within a high-level synthesis system requires significant modification to
standard GA techniques. These genetic modification procedures are presented in
sections 5.4 and 5.5.

The design evaluation procedure is used to assess the individual quality of
each design. In the case of GALOPS this requires complex estimation of VLSI
parameters such as the calculation of power consumption, area and supply voltage.
The mechanisms for the evaluation of candidate solutions are presented in section
5.6.

Sections 5.7 to 5.9 describe the use of benchmark designs to calibrate the
prototype GA synthesis tool and present initials results illustrating its use as a low-

power synthesis tool.

81

Chapter 5 - The Genetic Algorithm

Initial Signal Initialise First
Processing Generation
Algorithm Population

Initial Generation

v

Evaluate Solutions

!

Select Solutions For
Reproduction

!

Apply Genetic
Modification
Procedures

Current Generation

Stop Criteria Met?

Yes

Optimised Solution

Figure 5.1 Overview of GALOPS — Low Power GA-Based Synthesis Tool

5.1 Problem Representation

GALOPS optimises high-level signal processing algorithms for low power
CMOS VLSI implementation. To manipulate these algorithms GALOPS uses an
internal DFG [Davis82] structure as discussed in section 2.1.1. This section
describes the techniques used to incorporate this representation format into a GA

framework.

82

Chapter 5 - The Genetic Algorithm

5.1.1 Chromosome Representation

To use the GA as a high-level synthesis system the DFG algorithm
representation format needs to be incorporated into a chromosome representation, to
fully integrate with the various features of a GA.

The chromosome within GALOPS needs to store a large amount of
information to fully represent a candidate solution DFG. Each computational node
needs to be stored, together with the precedence information vital for preserving the
knowledge of the correct algorithm function. A bit-string representation suggested
by Holland [Holland92] and discussed in section 4.2, would require a very large
chromosome to fully encode the function and precedence constraints of each node
in the DFG. Even if the length of such a chromosome was not prohibitive, the
amount of encoding and decoding required in interpreting the chromosome for
evaluation and modification places an unnecessary burden on the already complex
synthesis process. Several researchers using GAs to solve complex, real-world
engineering problems have identified this problem of bit-string chromosome
representation [Davis89]. Previous research has led to the recognition that, for GAs
to achieve their full potential in engineering design, it is necessary to specifically
design the GA to suit the problem [Davis89, Davis87, Beasley93a]. An important
part of this process is the development of a problem-specific chromosome to fully
utilise the abilities of a GA.

GALOPS uses a chromosome structure that is a complete representation of a
DFQG, storing both the required functional and precedence constraint information.
This chromosome structure was chosen to minimise the amount of encoding and

decoding that is required both for chromosome evaluation and modification during

83

Chapter 5 - The Genetic Algorithm

the synthesis procedure. Figure 5.2 shows the chromosome template used to store a

complete DFG.
¢ Chromosome Of Length N >
Gene 1 Gene 2 Gene N
Num: 1 Num: 2 Num: 3
Fnc: X Fnc: X Information In Fnc: X
Inputs: X Inputs: X One Gene Inputs: X
Outputs: X Outputs: X Outputs: X

Figure 5.2 GALOPS Chromosome Template

As illustrated in Figure 5.2, each node of the DFG is stored in a separate
gene in the chromosome. Within each gene is stored the relevant information for

that node. This information consists of the following:

Num — A unique Number used to identify each gene.
Fnc — The computational Function of that node
Inputs — A list of Input edges of that node.

Output — The Output edge of that node.

To illustrate the storage of a DFG within this chromosome template Figure
5.3 depicts the FIR Filter DFG of Figure 2.1 (in section 2.1.1) stored as a
chromosome. This example also illustrates the storage of the relevant information
for each node e.g. node 2 (Num: 2) is a delay node (DEL) with 1 input net (el) and

an output net (e2).

84

Chapter 5 - The Genetic Algorithm

[1

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5
Num: 1 Num: 2 Num: 3 Num: 4 Num: 5
Fnc: IN Fnc: DEL Fne: MUL Fne: MUL Fnc: ADD
Inputs: Inputs: el Inputs: el Inputs: €2 Inputs: €3, e4
Outputs: el Outputs: €2 Outputs: €3 Outputs: e4 Outputs: €5

— > Precedence Relationships

Figure 5.3 Example Chromosome Representation

The precedence lines in the example, though not actually present within the
chromosome, illustrate how the Inputs information is used to extract the
precedence information between each gene.

This chromosome structure has been specifically tailored to suit the low
power high-level synthesis problem, providing a problem representation format

with the following properties:

e Gene Based Information Storage — The input and output information in each

gene ensures that the precedence constraints present in the DFG are preserved
within the GA. GALOPS manipulates chromosomes without modifying the
contents of the gene. This enables the GA to modify the overall chromosome
without corrupting precedence information stored within genes.

e Problem-Specific VLSI Parameter Information — When evaluating a particular

DFG a number of practical VLSI design parameters are used. The function
(Fnc) of each node can be used to look up area, delay and capacitance

characteristics specific to that node type.

85

Chapter 5 - The Genetic Algorithm

Storage of Primary Inputs — The primary inputs of the DFG are encoded as

functional nodes. This provides convenient entry points in the chromosome
from which it can be processed for evaluation or modification. The primary
outputs are not required during the modification or evaluation processes so they
are stored externally to the chromosome in a lookup table. This outputs table is
used to decode the chromosome back into a high-level design (represented as a
DFG) at the end of the genetic synthesis process.

Variable Length Chromosome — Traditionally, GAs have used chromosomes of

a fixed length to simplify their computational complexity. However, the
modifications applied to the DFGs produce chromosomes of varying sizes
throughout the evolutionary process. A fixed length chromosome, with “empty”
genes left for future growth, is memory inefficient and may not be large enough
to accommodate all possible modifications. To ensure complete flexibility the
chromosome is of variable length so genes can be added and removed during
the modification process.

Complete DFG Representation - The chromosome representation format is

capable of completely storing a DFG with varying numbers of nodes, types of

node and precedence constraints.

Because GALOPS uses a specific chromosome format that has non-binary

(and even non-alphabet [Davis89]) representation it precludes the use of a standard

‘off the shelf” GA package for implementation [Filho94]. Packages such as

GENESIS [Gref84] (one of the more popular standard GA packages) are typically

used for binary-string and sometimes alphabet-string chromosome representation.

In addition, such packages use a set of genetic operators suited to the particular

86

Chapter 5 - The Genetic Algorithm

chromosome representation. The specific chromosome representation of GALOPS
requires genetic operators designed to handle the structure. Therefore, all routines

used in GALOPS are specifically developed as part of this research.

5.1.2 Input Data Format

The candidate designs, to be optimised for low-power operation, are
presented to the synthesis tool in a netlist format used to describe combinational
logic circuits in [Bright95]. The tool described in [Bright95] developed compilation
routines that were used as a base for the chromosome compilation routines
described in this work. Figure 5.4 gives an example netlist of the DFG presented in
figure 2.1.1 (section 2.1.1).

The header lines at the beginning of the netlist file are used to describe the
design and also list its input and output nets. This is then followed by the main body
of the netlist. Each line in this netlist describes a functional node within the

algorithm, followed by its data transfer inputs.

$ 2" order FIR Filter
$ this is a comment line
$ primary inputs

el

$ primary outputs

e2

$ circuits description

$ DFG level

$ output type inputs
e2 del el
ed mul el
e4 mul e2

e5 add el ed

Figure 5.4 Example GALOPS Input File

The example shown contains 4 elements within the DFG; a delay, 2

multipliers and an adder. The output and input tags refer to the connections to each

87

Chapter 5 - The Genetic Algorithm

operator e.g. the adder has two input nets (e3 and e4) and one output net (e5). The
compiler routines within GALOPS convert this netlist into an internal

representation of the DFG.

5.2 Population Initialisation

An important component of a GA based search mechanism is a series of
random starting points [Beasley93]. This enables the GA to start searching the
complex solution space in a range of locations, helping to prevent it from presenting
local optima as the best solution. A traditional technique to generate such an initial
population would be to repeatedly generate chromosomes with random genetic
properties until the required population size has been created [Holland92,
Goldberg89, Davis91]. However, the purpose of GALOPS is to optimise, for low
power operation, signal-processing algorithms with a specific function. Throughout
the optimisation procedure it is of paramount importance that the function of the
specified design is not corrupted.

Random generation of chromosomes would not only produce designs with
incorrect functionality, it would also generate a large number of unfeasible designs
e.g. output nets connected to output nets. To solve this problem GALOPS uses the
initial specified design as a seed for the random population.

The low power design techniques, introduced previously in section 2.5, are
applied to the initial design, using a random selection to determine the type of
technique applied. Each application produces a new design with different
characteristics, effectively creating a new starting point from which to explore the
low power solution space. Repeated application of the low power design techniques

generates an initial population of random designs, from which the GA can begin its

88

Chapter 5 - The Genetic Algorithm

search of the solution space. The initial population size is specified as a GA

parameter.

5.3 Selection Procedure

The selection procedure, described in section 4.2.4, is used to select
individuals for reproduction and hence create the next generation of solutions in the
GA. The FPS scheme was outlined in section 4.2.4. Although a popular technique
the FPS method does have some limitations. Figure 5.5 illustrates one of the
problems of FPS. This figure depicts a number of solutions (denoted with X’s)
within an imaginary solution space, plotted across a fitness axis. The fitness values

of each solution are also shown in Figure 5.5.

Solution | Fitmess
1 90

90.4
90.6
90.8
91
91.2
91.6
91.8

Solution Space

X&X
I>$2< X |
90 92

Fitness

0 ~1 O\ W = Wb

Figure 5.5 Plot of Solutions within a Search Space

The figure shows a number of solutions within a small fitness range. If the
minimum fitness is separated from the maximum fitness by only a small increment
then the FPS technique will create a roulette wheel where each solution will have an
almost equal share of the wheel. Therefore, the selection pressure on each
individual will be the same, rather than favouring the more fit individuals. This is a

problem of ‘fitness-scaling’ [Beasley93].

89

Chapter 5 - The Genetic Algorithm

A number of techniques have been developed to improve this aspect of the
FPS reproduction process, such as Windowing [Beasley93, Hanc95] and Sigma
Scaling [Beasley93, Hanc95]. The prototype version of GALOPS uses a technique
known as ‘linearisation’ [Hanc95] to tackle the problem of ‘fitness-scaling’.

The linearisation process assigns a fitness value between 0 and 1 to every
individual, based on their fitness relative to the total fitness. The formula to

calculate an individual’s linearised fitness is:

fitness —min(fitness)

linear _ fitness = : —— :
max(fitness) — min(fitness)

Figure 5.6 illustrates how the process of linearisation effects the spread of

fitness values shown in Figure 5.5.

Solution | Linear

Solution Space 5 itness

0.2222
0.3333
0.4444
0.5556
0.6667
0.8889
1

X
X
LI ON NN =

Fitness

Figure 5.6 Effect of Linearisation on Fitness Values

As can be seen from the graph, the linearisation process spreads out the
population between the specified minimum and maximum values, magnifying the
differences between a range of solutions with similar fitness values. These
linearised fitness values are used in the roulette wheel in place of the actual fitness

values. The linearisation operation results in good solutions (linear fitness close to

90

Chapter 5 - The Genetic Algorithm

1) taking a significantly larger segment of the roulette wheel in comparison to poor
solutions (linear fitness close to 0). Hence, the better solutions will have a

significantly greater chance of selection than the poorer solutions.

5.3.1 Implementation of Selection Procedure within GALOPS
The algorithm for selection of individuals, based on the previously discussed

techniques, is summarised in Figure 5.7.

. Fitness Values For
Stage 1 . Entire Population

Linearise Fitness Values

Linear Fitness
Values For Entire
A , Population

-«
Create 'Roulette Wheel'

Stage 2 : ‘
Generate Random - Roulette
Number . Wheel
Random

Number Y
' Use Random Number

with the 'Roulette ,”
Wheel' to select)
chromosome N Selected

Chromosome

,,,,,,,, » Data Transfer
— » Program Flow

Figure 5.7 Chromosome Selection Procedure

The flowchart depicts both the program flow and the transfer of data. This
algorithm is executed in two stages. The first stage, executed once per generation,
creates the linearised values and the Roulette wheel. Stage 2 is then repeated until

enough individuals have been selected to fill the next generation of the GA.

91

Chapter 5 - The Genetic Algorithm

To efficiently select the desired chromosome from the roulette wheel the
Bisection Method [Teuk95b] is used to rapidly search the wheel for the
chromosome selected by the random number. A simple incremental search through
the roulette wheel will require a maximum of M iterations, where M is the
population size. The Bisection Method reduces the number of iterations to a
maximum of logaM, a considerable reduction in complexity.

The selection procedure is used to select the transformations for simple
reproduction (copying to the next generation) and also for genetic modification,

such as crossover or mutation.

5.4 Genetic Mutation Operators

The importance of a mutation operator within the genetic synthesis system
was emphasised in section 4.2.3. To summarise, the mutation operator introduces
diversity into the population by modifying the properties of chromosomes. This
modification produces a new chromosome with different qualities. This section
describes how the concept of mutation is incorporated into a genetic synthesis tool.

A Standard genetic mutation process randomly mutates the value of
individual genes in a chromosome to produce genes of other values [Holland92,
Goldberg89]. Within the context of the chromosome representing a DFG, such a
mutation process would act on the nodes of the DFG. A typical mutation could be
the replacement of one type of operator with another. Figure 5.8 illustrates the

problem of incorporating this idea directly into the synthesis process.

92

Chapter 5 - The Genetic Algorithm

Initial Solution Mutated Solution
D D
Node (Gene) Node (nge)
Selected For Mutate’d To ’
Mutation AnotherI Value
! I
I
ke o MUTATION L 4

Figure 5.8 DFG Mutation Process

In this example, application of a random mutation (replacing a multiplier
with an adder) has resulted in the mutated DFG having a different function to the
initial DFG. If this mutation scheme were to be applied to the entire population of
solutions, it would result in a large number of chromosomes with incorrect
functional operation i.e. a function different to that of the specified DFG. These
solutions would be unacceptable, as the low power solution must be one that has no
functional difference to the original solution. Therefore, the mutation modification
process needs to consider the importance of DFG functionality.

One method of modification used in genetic synthesis tools, where
functionality of the chromosome is of paramount importance, is to use a ‘repair
operator’ [Arslan96a, Arslan96b].

The repair technique analyses the function of mutated chromosomes. If a
chromosome is corrupt (i.e. incorrect function) then the repair operator is invoked.
The aim of the repair operation is to produce a chromosome with the desired
function by modifying the corrupt chromosome. The repair technique requires

detailed knowledge of both the required and actual function of the chromosome.

93

Chapter 5 - The Genetic Algorithm

Such information for a DFG would be obtained through simulation, a
computationally intensive task.

The computation expense is not the only disadvantage of using the repair
operator within this VLSI synthesis system. Consider a single gene mutation of a
complex DFG, replacing an adder with a multiplier, altering functionality. With the
complex feedback paths and precedence constraints of a DFG, repairing the
chromosome could require a considerable alteration of the DFG structure, which
could negate the work of the mutation operation. In effect, the repair operator could
return the mutated DFG to its initial state. Therefore, the use of a repair operator
can affect the efficiency of the GA.

An alternative to using a repair operator is to modify the mutation process so
that it does not corrupt DFG functionality; i.e. it does not produce incorrect
chromosomes. This requires the development of ‘problem-specific operators’ that
incorporate information specific to the problem [Beasley93a, Gref87]. In the case of
high-level synthesis, problem-specific operators will only apply modifications that
do not corrupt the functionality of the DFG.

Section 2.5 introduced HLT techniques that operate on DFGs to modify
their implementation characteristics, such as speed and power. The HLTs are VLSI
design techniques that dictate what modifications can be made to a DFG without
corrupting the desired function. These HLTs are used as the mutation operators of
the genetic synthesis system.

The HLTs can be considered as mutation operators as they operate on
individual nodes within the DFG (genes within the chromosome) to produce a new

DFG (chromosome) with different characteristics (fitness). An example of a

94

Chapter 5 - The Genetic Algorithm

mutation operation is shown in Figure 5.9. This mutation operation uses the Retime

transformation.
Node (Gene) Node (Gene)
Selected For | ‘Mutated'To]
Mutation . Another |
'Location’ :
D I
I
I
I
I
MUTATION I
(RETIME) D <_]
Initial Solution Mutated Solution

Figure 5.9 Example Mutation Operation Using A Retime Transformation

In this example, the mutation operation selects a delay element in the DFG.
The retime transformation is used to move the delay through the adder to produce a
new DFG with a different topology but the same function, a retimed DFG. This
produces a DFG with different implementation characteristics to the original.

The prototype version of GALOPS has a number of transformations,
introduced in section 2.5. The following sections describe how each of these
transformations is implemented as a mutation operator within a genetic synthesis

tool.

95

Chapter 5 - The Genetic Algorithm

5.4.1 Retime Transformation as Mutation

The properties of the retime transformation, how it modifies the DFG, were
discussed in section 2.5.1. This section describes how the properties of this
transformation are incorporated into GALOPS as a genetic mutation operator.

The basic function of a retime operation is to move a group of delay nodes
from the input net of a node to its output net. Therefore the retime-mutation in
GALOPS must select a delay in the DFG and move the delay under the appropriate
retime rules to ensure the DFG is not corrupted. Figure 5.10 presents the pseudo-

code for the retiming algorithm.

Algorithm Retime
Passed chromosome to be mutated

Randomly select a delay_node in the chromosome

Check retime constraints are met:
IF the delay_node drives a primary output net
DO NOT perform retime
EXIT algorithm

Randomly select an output_node driven by the delay_node
IF the output_node is a delay
DO NOT perform retime
EXIT algorithm

Check retime is possible on selected output_node
IF NOT possible to retime
DO NOT perform retime
EXIT algorithm
End check retime constraints

Perform the retime operation:
Remove the delay_node from the current location (remove gene)
‘Rewire’ the nets around the removed delay
Insert delay on output net of the selected output_node (insert gene)
‘Rewire’ the nets around the inserted delay
End perform retime operation
End Algorithm Retime

Figure 5.10 Pseudo-Code for the Retime Mutation Algorithm

The retime algorithm randomly selects a delay in the DFG that is to be

retimed. The random selection of a delay exploits the ability of a GA to not require

96

Chapter 5 - The Genetic Algorithm

detailed information about the problem to determine an optimum solution.
Identifying a ‘good’ retime operation would be a complex process that would
require detailed knowledge of both the problem domain and the DFG. This
complexity would be compounded in the case of identifying a retime that has no
obvious immediate benefits, but yields a DFG with potential to become an optimum
solution. Rather than trying to identify a ‘good’ delay, the GA is used to apply
repeated selection of a random delay. Throughout the evolutionary search, the GA
will evaluate a wide range of possible retime operations, rather than determining a
set of specific applications.

The check retime constraints sub-routine ensures that the non-corrupting
properties of the retime transformation are incorporated within the retime algorithm.
Within this sub-routine, some problem-specific knowledge is incorporated to
increase the efficiency of the search process. If the selected delay node has been
chosen to be retimed through another delay then the retime process is not
performed. Retiming a delay through another effectively results in the two delays
swapping locations, resulting in no change in the DFG; therefore, this is prevented
from occurring.

Once the initial selections and checks have been performed and satisfied, the
algorithm performs the retime operation, which consists of four distinct stages.
The delay node is removed from the chromosome and a new delay node is inserted.
The DFG is ‘rewired’ following the standard retime transformation rules, resulting
in a DFG where the initial selected delay node has been retimed forward through a

selected node. Figure 5.11 illustrates the four stages of this process.

97

Chapter 5 - The Genetic Algorithm

P
|
L I
—
Stage 1: Remove Selected Delay Stage 2: Rewire DFG
D D
Stage 3: Insert New Delay Stage 4: Rewire DFG

Figure 5.11 Four Stages of the Retime Mutation Algorithm

5.4.2 Back Retime Transformation as Mutation
A particular feature of the retime operation is that it is bi-directional. The
retime operation retimes delays from the inputs of a node to its output, but it can
also perform a ‘back’ retime operation. This ‘back’ retime operation consists of

moving a delay from the output of a node to its inputs, as illustrated in Figure 5.12.

= SO

Figure 5.12 Example of the Back Retime Transformation

Although the back retime operation is an integral part of the retime
transformation, it is implemented as a separate transformation. This enables
GALOPS to apply back retiming as a separate mutation stage. The pseudo-code for

the back-retime operation illustrated in Figure 5.12 is shown in Figure 5.13.

98

Chapter 5 - The Genetic Algorithm

As with the retime transformation, the back retime operation must obey
certain constraints to ensure that its application does not corrupt the functionality of
the DFG. The primary constraint is that, for a delay node to be back retimed
through a specified node, all of the fanout nodes of the specified node must be delay
nodes. All of these delay nodes can then be removed and delay nodes placed on all
input nets of the specified node. The execution of the back retime operation,
replacing the nodes and rewiring the nets, is similar to the retime operation shown

in Figure 5.11.

Algorithm Back Retime
Passed chromosome to be mutated

Randomly select a delay_node in the chromosome
Determine fanin_node of this delay_node

Check back retime_constraints are met
Determine all fanout_nodes of the fanin_node
IF NOT all fanout_nodes are delay nodes
DO NOT perform back retime
EXIT algorithm
End Check back retime constraints

Perform back retime operation:
Remove all fanout_nodes (of the fanin_node)
‘Rewire’ the nets around the removed delay
Insert delay node on all input nets of fanin_node
‘Rewire’ the nets around the inserted delays
End perform back retime operation
END Algorithm Back Retime

Figure 5.13 Pseudo-Code of the Back Retime Transformation

5.4.3 Pipeline Transformation as Mutation
This section describes how the pipeline transformation, which was described
in section 2.5.2, is used as a genetic mutation operation within GALOPS.
The effect on the DFG of the pipeline transformation is to insert delay
elements at specific points within the DFG. Initially a single pipeline delay is

inserted, which then requires the insertion of other delays at ‘cutset’ points to

99

Chapter 5 - The Genetic Algorithm

preserve the correct function of the DFG. The pseudo-code for the pipeline

algorithm is shown in Figure 5.14.

Algorithm Pipeline
Passed chromosome to be mutated

Check pipeline constraints are met:
Determine Critical Path of the chromosome
IF the Critical Path is less than 2 nodes long
DO NOT perform pipeline
EXIT algorithm

Randomly select a node from the Critical Path (the selected_node)
Select a fanout_node of the selected_node

Check Pipeline possible between these nodes:
IF feedback path exists between these nodes
DO NOT perform pipeline
EXIT algorithm

End check pipeline constraints
Insert pipeline_delay between selected_node and fanout_node

Trace through the pipelined_path
Use pipelined_path data to insert ‘cutset’ delay elements
END Algorithm Pipeline

Figure 5.14 Pseudo-Code for the Pipeline Mutation Algorithm

The initial step in the pipeline algorithm is to determine the critical path
(CP) of the DFG. The CP is the longest computational path in the DFG. The CP is
used to invest the pipeline mutation operator with implicit optimisation capabilities.
Implicit optimisation is achieved by targeting the application of mutations to those
areas of the DFG that it is expected will result in an increase in fitness. In the case
of pipelining, which is primarily used to increase the speed of the DFG (and hence
reduce supply voltage), implicit optimisation is achieved by only inserting delays
along the CP. This implicit optimisation process limits the number of pipeline
stages inserted in a DFG (excessive pipelining is detrimental to both performance

and area). Furthermore, this use of expert knowledge about the effects of the

100

Chapter 5 - The Genetic Algorithm

pipeline transformation on power consumption aids in focusing the low power
search on certain areas of the solution space, assisting in the efficiency of the
search.

The pipeline delay is inserted between two nodes, selected from the CP. The
check pipeline constraints sub-routine is used to ensure the correct application of
the pipeline transformation. The first constraint checks that the CP contains at least
2 nodes. This check contains implicit optimisation characteristics, as pipelining a
CP of less than 2 has no benefit in increasing the speed (a CP of 1 cannot be
reduced any further by pipelining).

The second constraint is to ensure that the location for insertion of the
pipeline delay element is not within a loop, as pipeline delays cannot be inserted
within a loop. If a ‘feedback path’ exists between 2 elements then they are in a loop.

This is illustrated by considering the DFG of Figure 5.15.

- —

—-——3 e——-

=P Critical Path Feedback Loop

Figure 5.15 Example for Checking Pipeline Constraints

In this example, a large part of the DFG consists of a feedback loop. The CP

is shown in bold, encompassing all of the computational nodes within the DFG.

101

Chapter 5 - The Genetic Algorithm

Therefore, each node could be selected for a pipeline operation. However, all nodes
except el violate the feedback loop constraint, therefore the only possible pipeline
location is between nodes el and e2.

The loop constraint is checked using a recursive algorithm, which traces
through all the fanin nodes of a selected node. For example, if node e2 were
selected to have a pipeline delay inserted on its output net (between nodes €2 and

e3) then the following process would be used to check the constraints:

Select node e2:
Two fanin nodes, e1 and €6
Select node e1
No fanin nodes, end search on this node
Select node €6
One fanin node e5
Select node €5
One fanin node e4
Select node €3
One fanin node e2
Fanin node is equal to initial search node THEREFORE
Feedback loop exists, pipeline constraint violated
End search process

In this example, the routine correctly detects that the constraint has been
violated. Therefore, the pipeline mutation is not possible at that location in the
chromosome. If the pipeline constraints are satisfied, the pipeline algorithm inserts
the pipeline delay between the selected elements. The next stage of the pipeline
process is to insert the ‘cutset’ delays in the DFG, to ensure that correct

functionality is preserved. Figure 5.16 illustrates this process with an example DFG.

102

Chapter 5 - The Genetic Algorithm

D

Pipeline Delay

—————p Pipelined Path
---------- Cutset Points

Figure 5.16 Identification of Cutset Points in Pipeline Mutation

The example in Figure 5.16 shows a pipeline delay inserted within a DFG.
Also shown are the ‘pipelined path’ and the ‘cutset’ points. The pipelined path is
characterised as all nodes within the DFG that are affected by the inserted delay.
Identification of the pipelined path requires tracing forwards through the DFG, from
the inserted pipeline delay, to identify any nodes along its fanout path. This is
achieved using a recursive routine similar to that used to identify an element in a
loop, which was described previously. In this example, 4 additions and 1 delay
element are identified as belonging to the pipelined path.

After identification of the pipelined path it is used to identify the ‘cutset’
points. These points are any nets that, though not in the pipelined path themselves,
are fanin nets of a node within the pipelined path. In this example, 3 ‘cutset’ points
have been identified, shown as dotted lines in Figure 5.16. Inserting delay elements
on the ‘cutset’ points completes the final stage of the pipeline transformation. This
produces a pipelined DFG with no change in function, but an increase in latency.

The consideration of latency was discussed in section 2.5.2. The “insert ‘cutset’

103

Chapter 5 - The Genetic Algorithm

delay elements” process, illustrated in the example of Figure 5.16, is summarised in
the pseudo-code of Figure 5.17. An example of the application of the pipeline

transformation was presented in Figure 2.10.

Stage 1 - Determine Pipelined Path:
Passed current_node (initially set to the pipelined delay)
Identify all fanout_nodes of current_node

IF no fanout_nodes
Exit Stage 1 (go onto next stage)
ELSE FOR each fanout_node
Store as pipelined_path_node
Set as current_node
Call Determine Pipelined Path (recursive call to Stage 1)
End Stage 1

Stage 2 - Determine Cutset Points:
FOR each pipelined_path_node
FOR each fanin_net of node
IF fanin_net not in pipelined_path
Store as cutset_net
End Stage 2

Stage 3 - Pipeline Cutset Points:
FOR each cutset_net
Insert delay element on cutset_net
End Stage 3

Figure 5.17 Pseudo-Code for ‘Cutset’ Delay Insertion

5.4.4 Automatic Pipeline Transformation as Mutation

The automatic pipeline transformation was described in section 2.5.3. This
section presents the algorithms used within GALOPS to execute automatic
pipelining as a genetic mutation operation.

The automatic pipeline transformation is a specialised form of retiming and
pipelining. The process consists of two distinct stages. The first stage involves
inserting delay nodes onto the inputs of the DFG (effectively pipelining the input
stage). The second stage requires moving these delay nodes from the input nets into
the body of the DFG (the retiming stage). Figure 5.18 presents the pseudo-code for

this transformation.

104

Chapter 5 - The Genetic Algorithm

Algorithm Auto-Pipeline
Passed chromosome to be mutated

Check auto-pipe constraints are met:
Check retime stage possible:
For each primary input_net of the DFG
Check IF delay inserted on input_net
That subsequent ‘retime’ step would be possible
IF NOT possible
DO NOT perform auto-pipe
EXIT algorithm
Check pipeline stage is necessary:
For each primary input_net
IF delay node already on input_net
DO NOT perform auto-pipe
EXIT algorithm
End check auto-pipe constraints
IF auto-pipe constraints satisfied
FOR each primary input_net
Insert delay element on input_net

‘Retime’ delay element through node driven by input_net
End Algorithm Auto-Pipeline

Figure 5.18 Pseudo-Code for the Automatic Pipeline Mutation Algorithm

As with all of the transformations, automatic pipelining has a number of
constraints that must be satisfied before application. The first constraint in Figure
5.18 checks that the transformation can be applied to the DFG. This check ensures
that the first stage was successful before executing the second step. By checking
this before inserting the delays, it prevents the unnecessary execution of the first
stage in the case where automatic pipelining is not possible.

The second constraint is another example of the transformations
implemented to contain implicit optimisation characteristics. This stage checks that
there are no delay elements on the input nets of the DFG. The insertion of delay
elements on the input nets of a DFG, which already contains delay nodes on its
inputs, could result in redundant automatic pipeline stages. If left unchecked this
could lead to a large number of delays inserted on the input of the DFG. As these

delays would not affect functionality and have a marginal impact on power

105

Chapter 5 - The Genetic Algorithm

consumption, they could go undetected by the synthesis process. Thus, the
constraint prevents this from occurring.

If the constraints are satisfied, the automatic pipeline process is executed in
two stages, pipelining and retiming, to produce a DFG that has been automatically

pipelined (as illustrated in the example Figure 2.11).

5.4.5 Unfolding Transformation as Mutation

The properties of the unfolding transformation, how it modifies the DFG,
were discussed in section 2.5.4. This section describes how the properties of this
transformation are incorporated into GALOPS as a genetic mutation operator.

The 3 steps of the unfolding transformation, including the rules to preserve
precedence information and functionality, were initially presented in section 2.5.4.
To summarise, the original DFG is known as the ‘parent’ and the unfolded DFG is
known as the ‘child’. The unfolding process creates N child nodes for each parent
node, where N is the unfolding factor. The connection of child nodes to form the
completed unfolded DFG follows rules that preserve the functionality of the DFG.
To ensure precedence information is correctly ‘unfolded’, for each child node Uy in
the unfolded DFG, it is necessary to be able to identify its parent node U in the
original DFG. This information is also necessary to determine the number of delay
nodes on nets in the parent DFG, to correctly perform Steps 2 and 3. To facilitate
this, during the unfolding process the GA creates both the child DFG and an
‘unfolding list which stores the relevant information. Figure 5.19 illustrates how
this unfolded list is created during the execution of Step 1 for a single node in the

parent DFG.

106

Chapter 5 - The Genetic Algorithm

N 'Unfolded List' Entries

Unfolded List Unfolded List Unfolded List
Entry 1 Entry 1 Entry N

Single Parent

-~ e AN

Parent Node |d==7 5 Create N
N Pointers To N Pointers to Unfolded List
| | Single Parent Entries

N Child Nodes

Node
Create N Child
Nodes \/\ \ 4 \ 4 v

\/ Child Node 1 Child Node 2 Child Node N

N Child Nodes

Figure 5.19 Step 1 Of Unfolding Transformation

The figure shows that for each child node created an associated node is
created in the unfolded list, shown at the top of the figure. Each node in the
unfolded list contains a pointer to both the child node and the single parent node
from which it was created. Effectively, the unfolded list creates a link between a
child and its associated parent node. Using the unfolded list, the parent node of any
child node can be rapidly identified. Once the information stored in the unfolded list
has been used to completely construct the unfolded ‘child” DFG, the unfolded list is
deleted.

Using this concept of the unfolded list, the pseudo-code for Step 2 of the

unfolding process is shown in Figure 5.20.

Algorithm Step 2 of Unfolding Transformation

FOR each entry in the unfolded list determine child_node (node_V)
Determine fanin_node of node_V’s parent_node
IF fanin_node 1S NOT a delay node
Determine child_node of this fanin_node (node_U)
IF unfolded_integer of node_U EQUALS unfolded_integer of node_V
Connect node_U to node_V

End Algorithm Step 2
Figure 5.20 Pseudo-Code for Step 2 of the Unfolding Transformation

107

Chapter 5 - The Genetic Algorithm

The pseudo-code for the next step of the unfolding transformation, Step 3, is

shown in Figure 5.21.

Algorithm Step 3 of Unfolding Transformation
FOR each entry in the unfolded list determine child_node (node_V)
Determine fanin_node of node_\V'’s parent_node
IF fanin_node IS a delay node
Count number of delay nodes on the entire net
IF number of delay nodes IS LESS THAN unfolding factor (N)
EXECUTE Step 3A
ELSE
EXECUTE Step 3B
END FOR
Step 3A:
IF unfolded_integer of node_V IS LESS THAN number of delays
Determine fanin_node of the delays in parent DFG
Determine child_node (node_U) with unfolded_integer EQUAL TO
N-number_of_delays+unfolded_integer
Connect node_U to node_V
ELSE
Determine fanin_node of the delays in parent DFG
Determine child_node (node_U) with unfolded_integer EQUAL TO
N-number_of_delays+unfolded_integer
Connect node_U to node_V with ONE delay node on the net
END Step 3A
Step 3B:
IF number of delays IS GREATER THAN unfolding_integer of node_V
Determine parent_node of node_V
g = unfolded_integer
Compute ceiling function to find required child_node (node_U)
[(num_delay_nodes-q+1)/N |x(N-num_delay_nodes+q)
Insert ‘ceiling function’ num of delays on output net of node_U
[(num_delay_nodes-q+1)/N |
Connect last inserted delay to fanin net of node_V
END Step 3B
END Algorithm Step 3

Figure 5.21 Pseudo-Code for Step 3 of the Unfolding Transformation

Execution of all the steps of the unfolding transformation will produce a
new DFG, unfolded by an amount specified by the unfolding factor (N). The three
steps of the unfolding transformation were illustrated in Chapter 2, in Figure 2.13.

Due to its ability to create chromosomes that have excellent power
implementation characteristics relative to the rest of the population, the unfolding

transformation requires a special process of application to chromosomes. If left

108

Chapter 5 - The Genetic Algorithm

unchecked the properties of the unfolding transformation could lead to the GA
localising its search, very early in the search process, on the ‘unfolded design’
region of the solution space. This may prevent the GA from performing an efficient
search of the larger solution space. While this would produce valid low power
solutions, an unfolded design has the associated disadvantage of a large area
overhead. To minimise this overhead the unfolding transformation is applied using
the Postponing Principle [Huang94].

The idea behind the postponing principle is to incorporate some problem-
specific VLSI knowledge into the transformation application process. This is
achieved by attempting to order the application of transformations. However, as
previously discussed, the optimum order of transformation application cannot be
determined. Therefore, the postponing principle places a loose restriction on the
order.

The principle achieves this restriction by reserving the application of certain
transformations until a specified target has been reached. Such a target may be that
a certain number of iterations have passed, using the current transformation set,
during which no increase in solution quality has been produced. The postponed
transformations are then applied to attempt to improve the solution. If successful,
the initial transformation set is reapplied and the whole postponing process is
executed again.

Within the context of the unfolding transformation, the principle postpones
the application of the unfolding transformation, to first obtain an optimum solution
with the other transformations. When a specified number of generations have

passed with no increase in quality, unfolding is applied in an attempt to improve

109

Chapter 5 - The Genetic Algorithm

this solution. If unfolding is successful, its application is again postponed while the
other transformations attempt to improve the quality of the unfolded solutions.

The use of the postponing principle also has a beneficial effect on the speed
of the GA. Unfolding creates large chromosomes, therefore unconstrained
unfolding applied throughout the evolution would require considerable computation
to process and evaluate these unfolded designs. By limiting the application of
unfolding, the increased computation required to deal with unfolded designs is also
limited. However, the postponing principle is applied in order to improve the
synthesised designs, therefore this reduction in computation is not obtained by
sacrificing the performance of the search process.

Another parameter used to control the application of the unfolding
transformation is the ‘Unfolding Factor’. As previously described, this specifies
how much to ‘unfold’ the DFG. GALOPS uses a random weighted selection to
choose from a range of unfolding factors, from 2 to 4. The weighted selection
means that an unfolding factor of 2 is more likely than a factor of 3. These factors
were chosen to limit the application of a large unfolding factor during a single
generation. Gradual application of lower unfolding factors will create a DFG with
large unfolding factors over a number of generations, rather than a single
generation. This allows the GA to explore the possibilities of each unfolded DFG,

instead of immediately generating huge DFGs with the associated area expense.

5.4.6 Application of Mutation Operators
The genetic mutation operators of GALOPS were introduced in sections
5.4.1 to 5.4.5. The operators constitute a Transformation Library, which can be

accessed by the GA to optimise the candidate solutions. This section describes how

110

Chapter 5 - The Genetic Algorithm

these operators are applied to the chromosomes to create new solutions, generation
after generation.

At the start of a single generation the current population consists of a fixed
number of solutions. The solutions are selected (using the Selection Procedure) for
reproduction and modification. After modification, the chromosomes are stored in
the new population. This process is repeated until the new population contains the
required number of solutions. The older population is then deleted and the new
population becomes the current population, starting a new generation of the
synthesis process. In a ‘generational’ GA [Goldberg89, Whit89], of which
GALOPS is a type, the size of the population remains constant from generation to
generation. The evolutionary search consists of repeated iterations of the select-
modify-store process, creating one generation after another. This process is

summarised in Figure 5.22.

111

Chapter 5 - The Genetic Algorithm

< Roulette Wheel)
C Current Population>
: | v

""""""""" » Select Chromosome

Single
C Application Rates > l "Chromosome

~~~~~ » Select Operator Repeat Until
New Population Full

v v v v v

S Automatic . .
Pipeline Pipeline Unfolding| | Retime NONE

A S NN IS

RS \ 4 »

Sing}é"~-.. g
....... New Populati
Chromosome ’C =W mopdiation

— » Program Flow
-3 Data Transfer

Figure 5.22 Application of Mutation Operators within GALOPS

An important process in this flowchart is the actual selection of the mutation
operator. As the flowchart illustrates, the mutation operators are applied at
predefined application rates. The ability to select application rates was implemented
to provide a mechanism through which to analyse the effects of transformations.
The required rate of application of each transformation may be dependent on each
DFQG, the interaction with other transformations, or other factors. The application
rates can be used to analyse these factors.

The application rates are also useful for attempting to incorporate problem-
specific knowledge into the synthesis process. For example, a known design
heuristic is that pipelining creates large increases in quality, but has an associated

latency penalty. However, retiming may require a large number of applications to

112



Chapter 5 - The Genetic Algorithm

create a better solution, but it does not have the associated latency penalty. So, the
application rates are set to take this into account by applying retiming at a much
greater rate than pipelining; attempting to produce a low power design with
minimum impact on latency.

The NONE box in the chart illustrates the fact that mutation is not applied to
all solutions. In a standard GA, solutions are selected for mutation, crossover or

simply reproduction (copied from one generation to the next).

5.5 Genetic Crossover Operators

The crossover operator, first discussed in Chapter 4, Section 4.2.3, is
considered by some researchers to be a fundamental aspect of a GA [Holland92,
Goldberg89, Beasley93]. Therefore, in addition to the development of mutation
operators, problem-specific crossover operators are required for GALOPS.

The crossover operator attempts to find new, better solutions by combining
the characteristics of current good solutions [Holland92]. Current good solutions are
identified by the selection procedure before being passed to the mutation or
crossover operators for genetic modification.

A simple implementation of a standard crossover operation would attempt to
combine the characteristics of two parent chromosomes to produce two child
chromosomes. The crossover operator selects a range of genes within each parent
chromosome; these genes are then swapped to produce two new chromosomes with
characteristics belonging to each parent. As with the mutation operation, the simple
application of this process to DFGs creates problems. This is illustrated in Figure

5.23.

113



Chapter 5 - The Genetic Algorithm

Two Parent Chromosomes Two Child Chromosomes
>< ’.-‘ D |
. Bad Cotnection
" Crossover
Process - S—
} » D “» D s D
—» D f-lIBad Connection—p

Selected Crossover Point

Figure 5.23 DFG Functionality Corruption due to the Crossover Process

This example demonstrates the crossover process for two parent
chromosomes. The crossover point selects genes from each parent chromosome; the
crossover process is highlighted in parent 1. In this parent, the two delay nodes are
swapped with the single addition node of parent 2, to create child chromosome 2.
As the example shows, this produces a chromosome with a number of problems.
The output of one of the delay nodes is left open, resulting in a bad connection
within the DFG. This contributes to the corrupt functionality, which is not only due
to bad connections but also due to the incorrect signal processing function that the
child chromosome now represents. Note that the original parent chromosomes have
the same functionality as each other; parent 2 is a ‘retimed’ version of parent 1, two
delay nodes have been moved from the inputs of the addition, to a single delay node

on its output.

114



Chapter 5 - The Genetic Algorithm

This example illustrates that crossover has the same problems of
implementation as the genetic mutation operation, which required the development
of problem specific genetic mutations. As with the mutation operator, the crossover
operator is modified to produce new chromosomes with no change in DFG
functionality. The modified crossover operation is a problem-specific genetic

operator.

5.5.1 Problem-Specific Crossover Operator

The fundamental aspect of crossover is that it attempts to combine the
characteristics of solutions. Within GALOPS, both its desired function and the
series of transformations that have been applied dictate the characteristics of a
solution. Therefore, combining the characteristics, while maintaining the same
functionality, is effectively combining the series of transformations that have been
applied. The crossover system used within GALOPS is based on this concept.

To perform a crossover operation, Each chromosome is analysed to identify
a transformation. The identification of transformations is made possible by
assigning a specific label type to each node inserted by a specific transformation.
Standard nodes, present in the original DFG, are typically labelled from e; to ey,
where L is the number of nodes in the DFG. Each transformation uses a different
prefix to label the node; for example, retimed delay nodes are labelled with ‘rx’,
where X is the node number. The ‘r’ identifies that this delay node has been retimed
to its current position in the DFG. The other transformations use similar methods of
identification.

After identifying a transformation in a chromosome, the transformation is

applied to the other chromosome, producing a chromosome with some of the

115



Chapter 5 - The Genetic Algorithm

transformation characteristics of both chromosomes. An example of the first stage
of this process, identifying the transformations in two parent chromosomes, is

illustrated in Figure 5.24.

—» D D
D
Parent Chromosome 1 » Pipeline Delay
Nodes
—n D D
Pipeline /
Delay Node Retimed
Delay Node

Parent Chromosome 2

Figure 5.24 Identification of Transformations for Crossover Operation

In the example shown, a pipeline stage (with the relevant pipeline delay
nodes) has been identified in parent 1. In parent 2, two transformations have been
identified; a pipeline stage containing a single pipeline delay node and a retimed
delay node. The crossover operation is executed on each parent in sequence.

The first operation is to apply the pipeline transformation of parent 1 to
parent 2. Not only must the pipeline operation be applied correctly, it also has to be
applied to the same location in parent 2. This is required to maintain consistency

with the concept of a genetic crossover operation [Holland92]. This requires

116



Chapter 5 - The Genetic Algorithm

identification of not only the type of transformation, but also its location in the
original DFG (parent 1). When the location in parent 1 has been identified, the same
location is searched for in parent 2. In some cases, this search may fail due to the
application of transformations in parent 2 significantly altering the DFG structure.
In this example, the location is easily identified and the pipeline transformation is
applied at that location. Again, in some cases this operation may fail due to the
pipeline constraints at that location in parent 2. The completion of the pipeline
transformation crossover creates a new child chromosome, as shown in Figure 5.25.

Parent 2 has two crossover operations, therefore one is selected for
application to parent 1. In this example, the retime transformation is applied,

creating a new child chromosome, as shown in Figure 5.25.

|

/

Retimed
Delay Node D

Child Chromosome 1
Retime Applied To Parent 1

D } \
Child Chromosome 2

Pipeline Applied To Parent 2 \ Pipeline Delay
Nodes

Figure 5.25 Effect of Crossover on Two Chromosomes

117



Chapter 5 - The Genetic Algorithm

Parent 2 illustrates the fact that a chromosome may have had a number of
transformations applied. If there are a collection of transformations to choose from,
either a single transformation or a number of transformations can be selected for
crossover. Selecting a single transformation for crossover is analogous to a standard
two-point crossover mechanism with a localised selection of genes [Goldberg89,
Beasley93]. GALOPS uses this two-point crossover method to identify and transfer
a single transformation. Where a number of possible transformations exist, a single
transformation is randomly selected for crossover.

For each of the possible transformations, a relevant crossover operation has
to be implemented. The task of each crossover operator is to detect the
transformation in one parent and attempt to apply it to another parent, ensuring that
all application rules are obeyed. The next section describes the implementation of

the crossover operator.

5.5.2 Implementation of Crossover Operator

The algorithm for the crossover operator comprises both the selection of
which operator to apply and the search for that operator in the chromosome. Once
the desired crossover operator has been selected, the search performed and the
crossover constraints satisfied, the transformational crossover is applied.

The mutation operator accesses its transformations from a core
transformation library. The same library is used to perform the transformations
within the crossover process. Therefore, the crossover operation consists of two
distinct processes; identify the transformation then apply.

The pseudo-code for the crossover process is shown in Figure 5.26. This

pseudo-code formalises the crossover procedures illustrated in Figure 5.24 and

118



Chapter 5 - The Genetic Algorithm

Figure 5.25. The crossover algorithm processes two parent chromosomes,
attempting to apply a transformation operator to parent 2 that was identified in
parent 1. Therefore, this process will only create a single child chromosome,
whereas crossover traditionally creates two children [Holland92, Goldberg89].
Applying a transformation to parent 1, which was identified in parent 2, creates the
second child. This is achieved by re-applying the crossover transformation
algorithm, but on this second iteration, the order in which the parent chromosomes
are passed to it is switched. In effect, during the second iteration of the complete

crossover algorithm parent! in the pseudo-code is actually parent 2, and vice-versa.

Algorithm Crossover
Passed parent1 chromosome
Passed parent2 chromosome
Returns single child chromosome (parent 1 transform applied to parent 2)

IF parent1|S THE SAME as parent2
Crossover unsuccessful

REPEAT UNTIL crossover successful OR ALL transformations attempted
Select crossover operator:
Unfolding
Retiming
Pipelining
Back Retiming
Automatic Pipelining

REPEAT UNTIL all selected crossover operators in parent1 attempted
Attempt to detect selected crossover operator in parent?
IF detected
Find relevant location in parent2
Check constraints on applying transformation
IF constraints satisfied
Apply transformation to parent2
Child chromosome created
Crossover successful
ELSE
Select new crossover operator in parent?
END REPEAT

END REPEAT

IF crossover NOT successful
Copy parent1 chromosome to next generation (single child)

End Algorithm Crossover

Figure 5.26 Pseudo-Code for Crossover Transformation Operation

119



Chapter 5 - The Genetic Algorithm

On entrance to the crossover algorithm, the fitness values of the two parents
are compared. Applying crossover to parents with the same fitness is prevented
from occurring as the 1:1 allocation technique ensures that chromosomes with the
same fitness have the same genetic structure.

The choice of which crossover operator to apply is based on specified
application rates. For example, GALOPS may attempt to perform a retime
crossover operation on the solutions selected for crossover. However, the search
procedure may detect that a retime crossover is not possible. In this case, GALOPS
selects another crossover transformation to be applied, again based on the specified
application rates. This process is repeated until all of the transformations have been
attempted. In certain cases, a transformational-based crossover may not be possible
between two parents. In this instance GALOPS simply copies the parent to the next
generation, producing a child chromosome with no modifications.

Each specific crossover operator may yield a number of possible locations in
parent 1. For example, parent 1 may have a number of pipeline stages. In this case,
each of the pipeline stages is selected for crossover until either one is successful or
they have all been attempted.

The application of the unfolding crossover operator, as with the unfolding
mutation operator, requires special consideration. The standard crossover
transformation requires identification of transformations within a chromosome. In
the case of the unfolding transformation, all of the nodes within a chromosome are
affected, therefore no search is required to identify its application. It is simply
identified by determining the current unfolding factor of that chromosome (non-
unfolded chromosomes are considered to have an unfolding factor of 1). If

unfolding is selected, the unfolding factors of both parents are determined. If the

120



Chapter 5 - The Genetic Algorithm

unfolding factor of parent 1 is greater than parent 2, then unfolding is applied to
parent 2, with an unfolding factor chosen to create a child with the same final
unfolding factor as parent 1.

The entire crossover operator, as with each of the specific transformational
based mutation operators, is applied to the population of chromosomes at a specific
rate, labelled the crossover rate. This GA parameter, as with mutation application
rates, is difficult to define for a wide range of solutions. The required crossover rate
is strongly problem dependent, therefore it is most commonly defined after
experimental analysis [Goldberg91, Hanc95]. Some attempt has been made to
determine ‘good’ GA parameters such as the application rate of crossover, but the
research has primarily been restricted to certain classes of problems with bit-string
representation [DeJong].

The crossover operator and the mutation operator comprise the genetic

mutation operators of the GALOPS system.

5.6 Fitness Evaluation

As discussed in section 4.2.2, a GA requires a means of measuring the
quality of a particular solution, in particular, the quality of a solution relevant to
other solutions. Within the context of a synthesis system for low power operation
the primary measure of quality is how well a particular design meets specified
power consumption requirements.

As well as power consumption, other VLSI implementation parameters are
of interest to help determine how the power reduction has impacted on items such

as speed, area, complexity, etc. Therefore, the fitness evaluation section of a VLSI

121



Chapter 5 - The Genetic Algorithm

synthesis system must be capable of calculating practical VLSI implementation
parameters.

It is recognised that, at the high-level of abstraction (which GALOPS uses),
accurate power estimation is an extremely complex process (as discussed in section
3.5). Error rates of up to 40% are considered acceptable, providing that the values
provide a good indication of the relative quality of a range of solutions [Roy95,
Chuang98]. However, the computation of relative power consumption, even with
significant error tolerances, is still a complex process.

This ability to trade-off absolute for relative accuracy suits a standard
property of a GA. A GA compares solutions for their relative merits when selecting
chromosomes for reproduction; therefore, it is more useful to know the relative
power consumption of two designs (e.g. which solution consumes less power) than
it is to know the actual power consumption of each design. Therefore, a GA
synthesis methodology has apparent benefits when combined with the problem of
high-level power estimation.

Part of the problem of determining an accurate VLSI implementation
parameter is the length of time such calculations take. Very accurate estimations of
power dissipation are possible if very detailed information is available and time is
not a limitation. However, a prime requirement for a GA fitness evaluation function
is rapid execution speed, as a typical GA uses fitness evaluation many times during
the evolutionary search process. The fitness evaluation function is very often the
limiting factor in the execution time of a GA.

GALOPS therefore requires a rapid evaluation function, that estimates
power consumption while tracking other VLSI implementation parameters, with

emphasis on relative rather than absolute accuracy. While power estimation is a

122



Chapter 5 - The Genetic Algorithm

complex and time consuming process, the fitness evaluation of a GA is required to
return a value relatively quickly; this places the conflicting requirements of
accuracy and speed on the fitness function. Hence, the fitness evaluation section of
GALOPS comprises a high-level power estimation module that attempts to
determine power quickly.

The main tasks in power estimation were described in chapter 3. To
summarise, the equation for energy per computation of a signal processing

algorithm implemented on a CMOS device is shown in equation 5.2.
Energy per computation =Vpp” * C

(5.2)

This equation shows that the main constituents of power are the supply

voltage (Vpp) and the switched capacitance (C).

Estimate Voltage Estimate Capacitance
Determine Speed
Of New Design <- - O(igina/
Design DFG Determine Area Of
Il New Design
Compare With
Speed Qf oid <- - New Design -y i
Design DFG Use Area
] Estimation To
Determine
Use Speed Capacitance
Comparison To
Estimate Supply
Voltage
Estimate Power
(Fitness) Using
N . 7 Parameters ™~ . /
Estimated Estimated
Voltage \ Capacitance

Estimated Fitness

v

Figure 5.27 Fitness Evaluation of New Design

123



Chapter 5 - The Genetic Algorithm

Figure 5.27 presents an overview of the fitness evaluation process. The
figure shows that supply voltage and capacitance can be estimated separately,
therefore the fitness evaluation process consists of two distinct sections. Also shown
in this figure are the relevant steps required to estimate each parameter, as described

in sections 5.6.1 and 5.6.2.

5.6.1 Supply Voltage Estimation

As described in section 2.4, the supply voltage is used to reduce the power
consumption by trading speed for supply voltage, as a reduction in supply voltage
decreases the speed of a CMOS device. The original designs are assumed to have a
supply voltage of 5V. Any increases in speed (due to the high-level
transformations) can be traded for a reduction in the 5V supply voltage, and hence a
reduction in power. The precise reduction in supply voltage for a specified speed
can be calculated. Therefore, the required power supply of a particular chromosome
can be calculated by comparing its operating speed to that of the original. The curve
for speed against delay (Figure 2.4 in section 2.2) can be used to extrapolate the
power supply of a specified DFG.

For example, if the throughput speed of the original design can be doubled it
can tolerate a two-fold increase in the delay of the CMOS device. A reduction in
voltage would return the throughput of the chromosome to its original. The increase
in the delay of the device is achieved by reducing the supply voltage to 2.9V
(determined from the delay-voltage graph). Therefore, a DFG with a maximum
speed twice that of the original will operate at the same speed of the original if its
supply voltage is 2.9V. This example shows that estimation of the speed of a DFG

(in comparison to the speed of the original) will yield its required supply voltage.

124



Chapter 5 - The Genetic Algorithm

The maximum throughput speed of a DFG is bounded by the length of its
critical path (CP). Therefore, the calculation of speed requires estimation of the
length of the CP of the DFG. The CP of a DFG is defined as the longest path
between non-computational nodes ie. delay nodes and input/output nodes.
Therefore, the CP is determined by finding the longest path of computational nodes
(e.g. adders, multipliers) within the DFG. The prototype version of GALOPS
achieves this using an algorithm to determine the length of all computational paths,
the longest found is then defined as the CP. A CP algorithm using a recursive

structure, to explore all possible paths within the DFG, is illustrated in Figure 5.28.

Algorithm Search Path
Passed current_node

IF current_node is delay or input
EXIT algorithm (STOP search down this path)

For each input_net of the current_node
IF input_net in path_list
STOP search down this path (input_net is in a loop)

ELSE
Store input_net in path_list
Set current_node to input_net
Call Search Path (recursive call)
End Algorithm Search Path

Figure 5.28 Pseudo-Code for Recursive Path Search Algorithm

The algorithm is executed for each node in the DFG, exploring all possible
paths from that node. As each node in a path is traversed, it is added to a path list
that contains all the nodes in that path. When that path has been fully explored, it is
compared with the path currently stored as the CP. If it is a longer path, then it is
stored as the CP. Although this method does correctly identify the CP in a DFG, it

is a brute-force method that does not consider some properties of the DFG.

125



Chapter 5 - The Genetic Algorithm

The definition of non-computational elements as ‘path-termination’ nodes is
one factor considered within a refined CP algorithm. This is illustrated in Figure
5.29. The example shows that the start of a CP will always be the fanin element of a
delay or output node (‘path-termination’ nodes). In this example, the CP comprises
nodes 4, 2 and 1. Searching from node 2 would yield a path containing nodes 2 and
1, a subset of path 4,2,1. To prevent subset paths from being explored (unnecessary
computation) the search for the critical path is only executed from start nodes, those
which are the fanin nodes of termination nodes. This significantly reduces the

amount of exploration required by the algorithm.

Critical Path = 4,21

Termination
Node

/

D —>»

Start Node
Figure 5.29 Start Point Of Critical Path

Another problem with the recursive algorithm is that it requires a large
amount of recursion to explore paths of even moderate lengths e.g. a few hundred
elements. Tests on this prototype path-exploration algorithm demonstrated that such
heavily recursive algorithms are difficult to analyse and cause program failures for
large paths. Therefore, the algorithm was replaced with a non-recursive version.

The non-recursive CP algorithm creates a path list for each possible path

within the DFG, all paths are considered to start at ‘path-termination’ nodes. Figure

126



Chapter 5 - The Genetic Algorithm

5.30 illustrates the operation of this algorithm with a simple example, exploring the

path from a single start node.

Path
Termination
D Node
Start —
Node

\’ Step 1 - Update Path List

1 “— Nodes In Path
Length =1 |, | ength Of Path

Step 2 - Update Path List

2,1 31
Length =2 Length =2

Input1

Step 3 - Update Path List

4,3,1
Length =3

Input2

Figure 5.30 Example of Determination of Critical Path

The first step of the algorithm is the creation of the path list for the initial
node. The path list, as shown in the diagram, contains a list of all the nodes in the
path and an integer representing how many nodes are in the path. The algorithm
proceeds by moving onto the fanin nodes of the current node. For each of these
nodes, a copy of the current path list is made, before it is updated with the
information for those nodes. There are now two path lists for the current path under
exploration. This step is repeated again by moving onto the fanin nodes of the
current nodes, nodes 2 and 3. In the case of node 2 (the multiplier) its fanin node is

a primary input; therefore, the path is terminated. A complete path, nodes 1 and 2, is

127



Chapter 5 - The Genetic Algorithm

now stored within a path list. The length of this path is compared with the length of
the CP found so far. If the new path has a greater length then it is stored as the CP.
Regardless of the result of this comparison, the terminated path list is deleted.

In the case of node 3, it has two fanin nodes. One is a delay node, therefore
the search is terminated for that fanin node; the other fanin node is a multiplier, so
the algorithm proceeds onto that node, creating an updated path list.

The fanin node of node 4 is a primary input, therefore the search is
terminated at that point, and the path list is compared with the current longest and
then deleted. As all path lists have been deleted, the search for all paths that start at
node 1 has been completed. This example shows a small section of a DFG, with a
single start node. The algorithm is repeated for all start nodes within the DFG. To
determine the CP of the DFG.

Determination of the critical path does not produce an actual speed rating
(for example in Hz) for the DFG. It implies the maximum operating speed,
dependent on how fast data can be processed through the critical path. This is
because the maximum speed is also governed by the speed of a single node. For
example, a CP length of 5 nodes, each with a delay time of 1millisecond, could be
operated at a maximum speed of 1/(5x1x107) Hz (200 Hz). Therefore,
determination of absolute speed requires specific knowledge of the speed and hence
the implementation style of each node. Rather than limit the use of high-level tools
to specific VLSI implementations, the delay time of each node is expressed in non-
specific terms. GALOPS uses a unity-delay model [Micheli94], where each node is
considered to have a delay of a single processing cycle. This widely used model
[Iman96] has the benefits of reduced complexity, as each node can be considered to

contribute the same delay to the overall CP length delay.

128



Chapter 5 - The Genetic Algorithm

As using a unity-delay model removes the need for actual speed values, the
speed of each DFG in GALOPS is expressed in relation to the speed of the original
DFG. For example, if the original DFG has a CP of 2, and a new DFG has a CP of
1, the new DFG is considered to be twice as fast as the original. This ‘speed-ratio’ is
used to calculate the required supply voltage for the new DFG, to force it to operate
at the same speed as the original. The supply voltage is calculated using a piecewise
linear model of the curve in figure 2.4 (section 2.2). The speed ratio is passed to this
model and a required supply voltage is returned. Figure 5.31 presents the pseudo-

code for the calculation of the supply voltage of a DFG.

Algorithm Calculate Supply Voltage
Passed critical_path_length of original DFG

Determine critical_path_length of new DFG
Speed Ratio equals original_CP/new_CP

Use piecewise linear model of VDD/Delay curve:
Speed Ratio gives displacement on y-axis
Model of curve returns displacement on x-axis
Returns supply_voltage

End use model

End Algorithm Calculate Supply Voltage
Figure 5.31 Pseudo-Code for Supply Voltage Calculation

The use of an unfolding transformation, to gain power reductions through
increased parallelism, increases the complexity of the supply voltage estimation
process. As the unfolded DFG is a parallel implementation, that can handle N input
samples in parallel, its effective critical path length is 1/N times its actual critical
path length [Arslan95]. For example, consider an original DFG with a critical path
length of 5 steps to complete one cycle. Unfolding with an unfolding parameter of 2
results in a DFG that process two samples in parallel, but has a critical path length

of 10 steps. Therefore, 10 steps of either DFG will result in 2 samples being

129



Chapter 5 - The Genetic Algorithm

processed; the original DFG will execute two cycles, the unfolded DFG one cycle.
Therefore, it is apparent that the two DFGs have the same throughput. The unfolded
DFG is effectively processing one sample per 5 steps of the critical path, therefore
its effective critical path length (when compared with the original DFG) is 5 steps.
This is equal to the actual critical path length divided by the unfolding parameter of
the unfolding DFG.

This consideration of parallelism is incorporated within the CP algorithm.
After determining the actual length of the CP, the unfolding parameter of each DFG
is checked and if necessary an effective CP length is also calculated. The effective
length is used to determine the comparative speed and hence the supply voltage of

the unfolded DFG.

5.6.2 Capacitance Estimation

As described in chapter 3, switched capacitance estimation is a complex
process that requires determination of specific VLSI implementation data for a
given algorithm. Many of the parameters required to calculate the switched
capacitance, such as area, floorplan layout, transistor sizes, etc., are not finalised at
the high-level. To determine absolute values for these parameters, a full synthesis
procedure, down to silicon layout level, would be required for each DFG and,
hence, for each fitness evaluation. This would be extremely prohibitive in terms of
computation time; a problem widely recognised in high-level power synthesis. A
solution to this problem is to estimate this data from the identifiable properties of
the DFG [Sheng92, Kumar95]. A range of techniques exist to estimate low level

VLSI implementation parameters, though few operate at the high-level of

130



Chapter 5 - The Genetic Algorithm

abstraction utilised by GALOPS (as described in chapter 3). This section outlines
the capacitance estimation technique used in the prototype version of GALOPS.

The GALOPS capacitance estimation technique is based on estimating the
VLSI implementation capacitance of the DFG’s data path. The estimation and
synthesis of memory and control units are not considered. Within the context of the
data-intensive signal processing algorithms discussed in this work, the data path
contributes the greatest portion of the total area and power dissipated [Chaud96].

The problem of estimating switching capacitance was discussed in greater
detail in chapter 3. The switched capacitance of a VLSI device is a combination of
both the physical capacitance and the switching activity. The physical capacitance is
a characteristic of the actual VLSI implementation, whereas the switching activity is
dependent on the desired signal processing function of the device (the input data).
This dependence of switching activity on device function makes it a difficult
parameter to estimate. Restricting the signal processing application to a particular
function during the synthesis process can limit the flexibility of the synthesis tool.

The prototype version of GALOPS considers the physical capacitance rather
than the switched capacitance. The physical capacitance can be considered as a
worst case switched capacitance estimation, where each physical resource is
switched all of the time. This limits the accuracy of the estimation, but it does
simplify and hence increase the computation speed of the power estimation process;
this is a similar approach to the PFA technique introduced in chapter 3.

The capacitance estimation technique in GALOPS uses a pre-characterised
library of components, of the type required to implement signal-processing
functions. Each component is characterised for area and capacitance. This is

accomplished by creating a library of VLSI device components, created with the

131



Chapter 5 - The Genetic Algorithm

SOLO1400 semi-custom VLSI synthesis tool. SOLO1400 was used to construct a
range of components, a full layout synthesis of each component yielded physical

capacitance and area information listed in Table 5.1 [Puck94, Wilk92].

Component Area (mm®) | Capacitance (pF)
8*8 Bit Array Multiplier | 1.8625 0.23168
8*8 Bit Ripple Adder 0.1554 0.02467
8 Bit Register 0.0462 0.00707

Table 5.1 Architectural Level Components

The choice of components to be incorporated in the component library was
motivated by ease of design and demonstration of the capabilities of a GA based
synthesis system that utilised high-level transformations. A wider choice of
component types could be incorporated into the component library, increasing the
flexibility of the synthesis tool. For example, the components were all designed for
8-bit word lengths; however, additional components with a range of word sizes
could be easily characterised and incorporated into the component library.

With the parameters for each component of the data path determined, the
task of physical capacitance estimation is one of determining which components are
required to implement the data-path section of the DFG. The prototype version of
GALOPS uses a 1:1 allocation technique where a single execution unit on the VLSI
device executes each operation in the DFG. For example, a DFG with 3 additions
and 2 multiplications would be implemented using 3 adders and 2 multipliers,

together with the required registers and interconnections.

132



Chapter 5 - The Genetic Algorithm

Application of the 1:1 allocation technique, together with data from the
library of execution units, is used to determine the area of the data-path component
of the VLSI device.

The switched capacitance of the functional units, in terms of the power
consumption, is largely independent of the allocation technique used. For example,
10 mutliplications on 1 multiplier, or 1 multiplication on each of 10 multipliers, will
consume the same amount of power. Therefore, the 1:1 allocation technique reduces
the capacitance estimation error introduced by only considering the physical
capacitance. Using the 1:1 allocation technique, the capacitance of the data path can
be extrapolated directly from the DFG.

As with the wvoltage estimation, the unfolded DFGs require special
consideration when estimating their capacitance. An unfolded DFG creates a
parallel and hence larger implementation of the original DFG, capable of processing
a number of input samples in parallel. This capability of handling samples in
parallel results in the DFG operating at a lower sampling rate (as it handles a
number of samples) but still processing samples at the same throughput rate.
Capacitance is increased by a factor of N but the speed of switching is reduced to
1/N. Therefore, the switched capacitance remains the same. Therefore, the effective
capacitance of the data path component of an N unfolded DFG is 1/N times its
estimated physical capacitance for a constant throughput rate [Chan95]. This
consideration of parallelism is incorporated into the algorithms for estimation of
capacitance.

As described previously, the execution unit library and the DFG can be used
to determine the capacitance and area of the execution units. However, a significant

portion of the total capacitance is due to interconnect capacitance. In large designs,

133



Chapter 5 - The Genetic Algorithm

this capacitance begins to dominate the overall capacitance [Chan95]. This
capacitance is determined using a statistically derived model shown in Figure 5.32

[Chan95].

1500 -

1000 -

500 -

Interconnect Cap pF

O I T T !

0 2.95 10 23.5 80

Area mm2

Figure 5.32 Interconnect Capacitance Model

This curve was characterised as a piecewise linear model in [Chan95] with
four distinct points. The model returns a value for interconnect capacitance
estimation from the estimated area of the data-path. The capacitance estimation

procedure is summarised in Figure 5.33.

134



Chapter 5 - The Genetic Algorithm

Candidate
DFG

Analyse for
Number and Type
of Operations

VLSI Component
Library

—_—
I | 1
e o)

il ' |
[§ E

1L

Estimate Physical
Capacitance Of
Data-Path

Interconnect
Capacitance
Model

Estimate Area of
Data-Path

v

L L

y

Estimate
Interconnect
Capacitance

=

Figure 5.33 Capacitance Estimation Process

Data-Path
Physical
Capacitance
Estimation

The process illustrated in Figure 5.33 will yield capacitance estimation for a

candidate DFG. When combined with the voltage estimation, produced using the

techniques of section 5.6.1, it will produce an estimate of power for the candidate

solution.

5.6.3 Power Estimation Used as Fitness

The previous sections described the process of estimating the power

consumption of a DFG. The fitness of each solution is obtained by scaling its

estimated power consumption in relation to the estimated power of the original

DFGQG, as illustrated in equation 5.3.

Fitness =

Power Of Original Design

Power Of Current Design

(5.3)

135



Chapter 5 - The Genetic Algorithm

Using this equation, a design with power consumption lower than the
original will have a fitness value higher than 1. In addition to fitness scaling, certain
boundary conditions are placed on the estimated parameters. This is necessary
because the genetic synthesis procedure may produce VLSI designs with a desirable
power reduction but impractical implementation requirements.

A lower bound is placed on the required supply voltage, as designs with
large speed increases may require supply voltages close to zero. Even ignoring the
obvious problems of noise at such low levels, such voltages may be well below
practical threshold voltages. The components used in the VLSI library are
considered to operate with a threshold voltage of 1V, therefore any design with a
supply voltage equal to or less than this is an impractical design. Such designs are
assigned a very low fitness value to limit their chances of reproduction.

Another constraint placed on the designs is their implementation size. The
interconnect capacitance model covers an area range from 2.95mm? to 80mm,. Any

designs outside this range are also assigned a low fitness.

5.7 Benchmark Designs
To illustrate the effectiveness of the GA and the algorithms presented, the
performance of the prototype version of GALOPS is illustrated with a set of

benchmark example designs.

136



Chapter 5 - The Genetic Algorithm

5.7.1 3" Order Finite Impulse Response Filter (FIR3)

Figure 5.34 3" Order FIR Filter

This filter is an example of a non-recursive signal-processing operation, as it
has no feedback loops or recursive paths. The DFG for this filter is shown in Figure
5.34. This is a relatively simple filter with 3 multiplications and 2 additions. The

actual DFG used is a direct form representation of the signal-processing algorithm.

5.7.2 8" Order Finite Impulse Response Filter (FIR8)
This is a more complex implementation of an FIR filter, with more
operations and connecting nets resulting in a greater variety of possible options for

optimisation. The DFG, shown in Figure 5.35, is in direct form.

137



Chapter 5 - The Genetic Algorithm

EIRCINCIRCIRCIRCIRCINES
-
Figure 5.35 8" Order FIR Filter

As the figure illustrates, this 8" order filter is a larger version of the 3™ order
FIR filter comprising of 8 multiplications and 7 additions. This larger DFG can be
used as simple illustration of the complexity of the optimisation process. For
example, this filter has 14 possible pipeline locations if identified using the critical
path technique. Each pipeline operation would create a new DFG with a different

set of possible pipeline locations; added to this are all the possible retime, automatic

retime and unfolding transformations.

5.7.3 2" Order Lattice Filter (LAT2)

This is an example of a recursive filter operation as it contains a
combination of feed-forward and feedback paths. As discussed previously, the
feedback loops found in signal-processing applications affect the application of the
transformations; recursive applications are more difficult to optimise as they place
more restrictions on the optimisation steps that can be applied. The DFG for this
algorithm is shown in Figure 5.36. This filter operation consists of 4 multiplications

and 4 addition operations, again presented in direct form.

138



Chapter 5 - The Genetic Algorithm

%
@Hg
[ &

Figure 5.36 2™ Order Lattice Filter

5.7.4 8" Order Avenhaus Filter

This large filter, shown in Figure 5.37, consists of 31 operations (16
multiplications and 15 additions). The large number of data-nets and nodes provides
a wide range of possible transformation optimisations. For example, the delay nodes
present 23 potential retime mutations, each of which would create a new DFG with
an associated number of potential retime operations. Again, this illustrates the
complexity of the synthesis process as each of these DFGs could in turn produce a
number of DFGs. Over a number of transformation applications, the number of
DFGs with distinct characteristics grows exponentially; hence the difficulty in
identifying a set of transformations (and the correct order of application) that would

yield an optimum design.

139



Chapter 5 - The Genetic Algorithm

«

«

«

<

il

X

Figure 5.37 8" Order Avenhaus Filter — Direct Form Representation (AVENSDI)

140



Chapter 5 - The Genetic Algorithm

The filter of Figure 5.37 is one possible representation of an 8" order
Avenhaus filter, a direct-form. Signal-processing algorithms can be represented in a
range of formats, each producing the same function but with different operation
characteristics. The 8™ order Avenhaus filter of Figure 5.38 is presented in parallel-
form, a distinct DFG with different implementation characteristics, such as word-
length requirements and robustness. The direct and parallel forms of the Avenhaus
filter are obtainable by applying a specified set of transformations to one, creating
the other. The specific transformations required to switch between the two
implementations have a significant effect on the numerical stability and word-length
requirements of each design. The transformation set used in the GALOPS synthesis
system has been chosen so as not to affect the word-length requirements.

This different representation of the signal-processing algorithm requires a
distinct set of transformation mutations for optimisation, different to those of the
direct-form representation. Therefore, this example also illustrates that the chosen
signal-processing representation can have an affect on the optimisation process and
consequently the power reduction obtained. This ‘algorithm selection’ phase is

another level at which power can be optimised as discussed in chapter 2.

141



Chapter 5 - The Genetic Algorithm

G
R

Figure 5.38 8" Order Avenhaus Filter — Parallel Form

142



Chapter 5 - The Genetic Algorithm

5.8 Genetic Algorithm Operating Parameters

The GALOPS system has a set of genetic operators that are applied to the
population at specified rates, as described in sections 5.4 and 5. The rate at which
the genetic operations are applied is very much problem dependent and can have a
significant impact on the performance of the algorithm [Davis91, Goldberg89]. If
applied at too high or too low a rate it can lead to the generation of poor solutions
and also result in very large numbers of generations required for optimisation.
Therefore, selection of the application rates is an important process in designing the
GA.

The prototype system has 5 mutation operators and a single crossover
operation, each of which is assigned an individual application rate. The crossover
rate s fixed at 20% to allow for a large amount of crossover to be applied while still
allowing the 5 genetic mutations to be applied at significant rates (the total
application rate can not exceed 100%). In contrast to a typical GA, the mutation
operations of GALOPS perform a large amount of the exploration; therefore
crossover is not applied at such a high rate as in other GAs [Davis91].

The unfold transformation is applied in conjunction with the postponing
principle, so it is only active for a small number of generations (compared to the
other transformations). It is intended as a transformation to further optimise the best
solutions determined with the other transformations. Therefore, its application rate
is not as critical because it only needs to be applied to a portion of the best solutions
for a small amount of generations. The unfold application rate is fixed at 10% to
ensure it is applied to a range of better solutions in the population, thereby

optimising the current best solutions. The limit of 10% will provide a reasonable

143



Chapter 5 - The Genetic Algorithm

amount of unfolded solutions for exploration without saturating the population with
large, complex unfolded-designs.

The task is now reduced to the selection of application rates for the
remaining 4 transformations (genetic mutations). An exhaustive experimental
analysis, where each possible combination is analysed, would be a complex and
time consuming task. For example, 4 operations with a limited range of 5 possible
values would require 5* experiments.

The number of possible application rates and therefore possible
combinations is reduced by not considering small fluctuations in application rates,
as they are not expected to have a large impact on the GA. To further reduce the
complexity of the task, the previously mentioned transformation heuristics (section
5.4) are used to select sets of potential application rates e.g. apply retiming at a
higher rate than pipelining.

Table 5.2 shows seven sets of potential application rates, expressed as
probability percentages. Each set is applied to each of the four example designs and

the resulting GA performance analysed to gauge the performance of that set of

parameters.
Application Rates

BatchNumber | / | 2 | 3 | 4| 5 | 6 | 7
Operator
Retime 1 |5 ]10 |5 |10 |20]20
Back Retime 1 |5 ]10 |5 |10 |20]20
Pipeline I |5 ]10 |1 |1 2 |5
Auto-Pipe 1 |5 |10 |1 |1 2 |5

Table 5.2 Application Rates for Analysis

144



Chapter 5 - The Genetic Algorithm

Batches 1-3 apply an approximate geometric progression to the application
rates from 1 to 10. Batches 3-6 apply the retiming transformations at greater rates
than the pipelining transformations in accordance with the transformation heuristics.
This set of potential application rates is a small sample of the possible
combinations. Therefore, the determined application rates may not be optimal.
However, the chosen sets allow for analysis of the effect of the application rates
without requiring a prohibitive number of combinations.

Each batch is applied to each of the five benchmark DFG designs 50 times,
resulting in 1750 (50*5*7) complete runs of the GA. Each design is synthesised 50
times to minimise the effects of the stochastic nature of the GA. The graph in Figure
5.39 demonstrates the effect of the application rates on determining the best
solution.

Each run of the GA produces a design with the best-found power reduction
(reported as a percentage of the original power consumption). The mode value from
all 50 runs of a single design is taken as the best power reduction obtained for that
design with the current set of application rates. For the purposes of this analysis, all
results for each design are compared with the worst result found for that design
across all seven batches. To allow the results of all designs to be compared on a
single graph the y-axis is normalised with respect to the worst design. Therefore a
higher value on the y-axis indicates a design superior to the worst, whereas a value

of 1 on the y-axis indicates a design equal to the worst.

145



Chapter 5 - The Genetic Algorithm

4.5
4 - W ————u
c
el
B 3.5
=
0} ——fir3
xr 3
o —=—fir8
=
2.5 A
8 ——|at2
3 ——aven8pa
o 2
= —a—aven8di
151
=
1 —= » = = » u
05 T T T T T T 1

batch1 batch2 batch3 batch4 batch5 batch6 batch7

Figure 5.39 Effect of Varying Application Rates on Power Reduction of Benchmark
Designs

The graph shows that batch 1 produced the worst results for all of the
designs. The performance of batch 1 is so poor that the results of batches 2-7 appear
indistinguishable i.e. it implies that the different application rates of batches 2-7
have no effect on the results. However, the graph of Figure 5.40 illustrates the

results of batches 2-7 with the results of batch 1 omitted.

146



Chapter 5 - The Genetic Algorithm

1.015 -
s 1.014
2
3
o ir3
g --l--fir8
5 1.005 - lat2
g —>—aven8pa
T —*%— aven8di
£
z 1
0.995

batch2 batch3 batch4 batch5 batch6 batch7

Figure 5.40 Effect of Varying Application Rates on Power Reduction of Benchmark
Designs (Batches 2-7)

This graph illustrates that all designs, with the exception of the FIR3 design,
are affected by the different application rates. The FIR3 is unaffected because it is a
relatively simple design that requires a few simple optimisation steps.

The results do not follow a visible trend; however, it is clear that all of the
designs have the best power reduction in batch 6. Note that although some of the
designs also receive the best power reduction in other batches, batch 6 is the only
batch where all of the designs receive the best power reduction. Therefore the
application rates of batch 6 are chosen as the current set of application rates for
GALOPS, in combination with the previously specified unfold and crossover rates.

The chosen set of rates applies the retiming transformations at a
significantly greater rate than the pipelining transformations, supporting the

assumptions made in analysing the properties of the transformations for their

147



Chapter 5 - The Genetic Algorithm

optimisation capabilities. This illustrates the potential of the GA synthesis tool as a
means of analysing the interaction between various optimisation techniques.

The graph in Figure 5.41 illustrates the effect of the application rates on the
average number of generations required by the GA to produce the best results.
Again, to enable comparison of all designs, the results are compared with the worst
across all batches (the highest number of generations). Therefore, in this graph a
value of 1 on the y-axis corresponds to the largest number of generations for that
design, lower values denote less generations.

The selected application rates do not produce the minimum number of
generations. However, the goal of the synthesis system is to produce the optimum
result, with the required length of time to produce this result a secondary

consideration.

0.9 -
2]
S 08 -
<
2 0.7
[
&2 06 - ——1ir3
o —=—fir8
805 —A—[at2
g —X—aven8pa
Z 041 —X—aven8di
o
Q
2 0.3 A
©
£
S 0.2 -
zZ

0.1 -

0 T T T T T T 1

batch1 batch2 batch3 batch4 batch5 batch6 batch7

Figure 5.41 Effect of Varying Application Rates on Convergence Rate

148



Chapter 5 - The Genetic Algorithm

5.9 Implementation and Results

GALOPS is implemented in the C programming language and is compiled
and executed on a Pentium Pro 200MHz running the Microsoft Windows NT®
operating system. The computer has 64 Megabytes of RAM. Different benchmark
designs have different memory requirements. However, the designs presented here
were all optimised within 16 Megabytes of RAM.

As discussed previously, the stochastic nature of a GA makes it possible that
the GA will produce different results under the same operating conditions e.g.
different required number of generations. Therefore, as with the determination of
the operating parameters, each design was processed 50 times to produce a set of
results for each design. The GA was executed with the operating parameters
determined in section 5.8.

A distinction is made between the synthesis of designs with and without the
application of the unfolding transformation. Unfolding is a powerful transformation
that can produce designs with low-power characteristics, however its application
can incur a large area overhead. It is not always desirable to minimise power at the
expense of this increased VLSI device area that unfolding can produce. Therefore,
the ability of the synthesis system to optimise designs without the application of the

unfolding transformation is examined.

5.9.1. Optimisation without Unfolding
Table 5.3 presents the results obtained by GALOPS for the processed
benchmark designs. The result reported is the mode value for the total set of 50 runs

of each design. The mode, rather than the average, is used as it is an actual result

149



Chapter 5 - The Genetic Algorithm

from the GA that refers to a synthesised design. An average of the results may refer
to a design that was never actually produced (and may in fact be infeasible).

The Power Percentage column reports the estimated power consumption of
the synthesised design as a percentage of the original power consumption. The
Estimated Size compares the size of the optimised design to the original design; this
provides the data for the area increase necessary to implement the low-power
design. Supply voltage is the new Vpp for that design. The table also lists the
average number of generations required to synthesise the best design, as a guide for
the run-time of the GA. The results are all based on the assumption that the designs

operate at an initial voltage of 5V at the required throughput rate.

Design Power Estimated Estimated Size Average
Percentage | Supply Voltage | (New Size : Original | Number Of

(%) (Volts) Size) Generations
FIR3 19 2.1 1.04 1
FIRS 9 1.5 1.07 627
LAT2 59 3.9 1.00 6
AVENSPA 21 2.3 1.02 298
AVENSDI 16 2.0 1.02 506

Table 5.3 Results without Unfolding of Prototype GALOPS

The results demonstrate that GALOPS has reduced the power consumption
of all of the benchmark designs to less than 60% of their original estimated power
consumption. The reductions have been achieved with a significant reduction in the
supply voltage of each design; it is clear from the table that the greater the supply
voltage reduction the greater the corresponding power reduction.

The power consumption of the FIR3 filter has been reduced to
approximately 20% of the original design. This was achieved by reducing the

critical path of the filter from 3 control steps to 1, allowing a reduction in supply

150




Chapter 5 - The Genetic Algorithm

voltage to approximately 2V. The reduction in critical path was achieved with the
use of two pipeline stages, as illustrated in Figure 5.42. This figure was created with
a graphical application specifically designed for use with GALOPS, to interpret and

display the DFG designs [Rhis97].

(1) D D

Pipeline
Stage 1

Pipeline
Stage 2

Figure 5.42 Illustration of Pipeline Stages in Optimised 3™ Order FIR Filter

The pipeline stages are marked out in the figure. The size increase of the
design was approximately 4%, due to the increased number of registers that it is
estimated will be required to implement the design. This apparently small increase
in area is primarily due to the use of the 1:1 technique for the allocation of resources
in the VLSI device. The 1:1 technique allocates a separate unit to each process
node; the application of pipelining does not increase the number of process nodes so
it does not significantly affect the area. In effect, the original design is area
inefficient so the optimisations do not require considerable extra area.

However, GALOPS has determined a DFG for the signal-processing

function, optimised for low-power operation using the 1:1 allocation technique. As

151



Chapter 5 - The Genetic Algorithm

the allocation technique is a component of the fitness function other allocation
techniques can be incorporated into the fitness function without requiring
modification of the optimisation procedure. The FIR3 design was produced on the
first generation, as it is simply the combination of the two pipeline stages.

The FIRS8 design has a much greater power reduction than the smaller FIR
design. This is because the critical path has been reduced from 8 elements to 1
element. This larger ratio of reduction allows the FIR8 filter to be operated at a
much lower voltage while maintaining the same throughput as its original. The
optimisation was produced with a combination of pipeline stages and the retiming
of the inserted pipeline stages. Again, the small power increase is due to the extra
registers required.

The LAT?2 filter is the smallest recursive filter in the benchmark set. It
reports the poorest power reduction but it is still reduced to 60% of the original. The
application of retiming has reduced the critical path from 4 to 3 steps, allowing a
1.15V reduction in voltage. This small filter illustrates the constraint that the
feedback loops in a DFG place on the use of transformations such as pipelining.

The power consumption of the Avenhaus filters has been reduced to less
than 25% in both cases. However, the AVENS8DI has the greater power reduction.
This is due to the fact that both designs have a reduced critical path of 3 steps, but
the AVENSDI had a greater initial critical path of 10 steps (compared to 8 steps in
AVENSPA). The critical path of AVENSDI has been reduced by a greater amount
so the supply voltage of AVENSDI can be correspondingly reduced by a larger
amount while still preserving the throughput rate.

It is important to note that the larger critical path of the non-optimised

AVENSDI, while giving greater scope for power reduction, requires a faster clock

152



Chapter 5 - The Genetic Algorithm

speed to attain the same throughout as the non-optimised AVENSPA, ie. the
AVENSPA has the larger maximum speed and hence greater throughput rate. As
both designs have maintained the same original throughput rate, the optimised
AVENSDI has lower power consumption but also lower throughput rate than the
optimised AVEN8PA. This example illustrates the importance of the algorithm and
representation format for power optimisation, as the same function produced by two
different algorithm representations produces designs with different speed and power
characteristics. Figure 5.43 illustrates the DFG of the optimised AVENSDI DFG.
The DFG structure has been obtained through a combination of the retime
and pipeline transformations. The correct application of the transformations has
resulted in each feedback loop of the DFG containing the same amount of delays as
the corresponding loop in the original DFG. This is a requirement for the
preservation of the original function of the DFG. This DFG could be further
improved by optimising the allocation of delay nodes in the DFG. For example, the
bank of 4 delay nodes located at the bottom of the DFG could be removed and the
four delay nodes present in the vertical centre of the DFG used to supply the exact
same data. However, such an optimisation could also be performed as part of the

scheduling and allocation step.

153



Chapter 5 - The Genetic Algorithm

b
|
Il

b
b

:
L

b
!@ !@
X X

A+ o+

Figure 5.43 Processed DFG of 8" Order Avenhaus Filter — Direct Form

The performance of the DFG during the synthesis of this structure is
illustrated in Figure 5.44 and Figure 5.45. Figure 5.44 depicts the fitness of the
fittest solution in the population throughout evolution. This graph is an average over

all runs that produced the DFG of Figure 5.43.

154



Chapter 5 - The Genetic Algorithm

0 T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000

Generation

Figure 5.44 Plot of Best Fitness throughout Evolution from Average of Multiple
Runs

The graph illustrates that the GA performs the majority of the fitness
improvements in the first 100 generations. The best solution is found, on average, at
between 400 and 500 generations.

Figure 5.45 presents the best performance of the synthesis of the AVENSDI
design; considered the best performance for this design as it produces the best
design found in the minimum number of generations. This graph also shows the
average fitness of the population, to illustrate how the population begins to

converge around a fittest solution.

155



Chapter 5 - The Genetic Algorithm

Fitness
N

1 v I I I I I

0 10 20 30 40 50 60

Generation

——Best Fitness —+— Average Fitness

Figure 5.45 Best GA Performance for AVEN8DI Design

The graph illustrates the successive improvements to the design produced
throughout evolution. Small increases in fitness are primarily due to decreases in
the expected area of the design. The larger increases in fitness, such as at generation
50, are due to decreases in the voltage of the design; the voltage has the greatest
impact on the power and hence the fitness of the design. The average fitness curve
illustrates how the average fitness of the population slowly rises to the best fitness
after each increase in best fitness. However, the average fitness never equals the
best fitness, indicating that the population is never saturated with copies of the best
design.

The results in Table 5.3 also illustrate how the complexity of the design
affects the number of generations required for the optimisation process. The more
complex designs, such as FIR8 and AVENSDI require considerably longer
generations than the FIR3 and LAT2 designs, which are relatively small. The

AVENSPA requires fewer generations than the AVENSDI, implying that the

156



Chapter 5 - The Genetic Algorithm

optimisation of the AVENSPA representation is less complex for the purposes of
low-power optimisation. Again, this illustrates the effect of algorithm representation

and selection on the synthesis process.

5.9.2 Optimisation with Unfolding

Design Power Estimated |Estimated Size| Average
Reduced To |Supply Voltage| Compared To | Number Of

(%) (Volts) Original Generations
FIR3 8 1.4 8.04 430
FIR8 7 1.3 411 1890
LAT2 59 3.9 1.00 6
AVENSPA 21 2.3 1.02 298
AVENSDI 16 2.0 1.01 506

Table 5.4 Results with the Application of Unfolding

As with the results for the non-application of unfolding, these results were
produced from 50 complete runs of the GA for each of the designs (a total of 300
complete GA runs), with the GA operating parameters as selected from batch 6.

If these results are compared with those in Table 5.3, for the non-unfolded
case, it is apparent that the recursive designs (the LAT2 and the two AVEN
designs) have exactly the same results. In the case of the LAT2, the application of
unfolding has failed to improve the fitness of the design produced with the rest of
the transformation set. The simple recursive loop of LAT2, when unfolded creates a
design with a significantly longer critical path. Even when considering the fact that
the N-unfolded design is processing N samples in parallel, the unfolded LAT2
design has greater power consumption than the original due to the increased area
required. Therefore the best LAT2 design determined with the GA system is a non-

unfolded design.

157



Chapter 5 - The Genetic Algorithm

The AVEN filters do not benefit from the application of unfolding.
However, this is due to the increased size of the unfolded designs exceeding the
90mm’-area limit placed upon the system by the capacitance models. The unfolded
designs are therefore assigned a very low fitness as they are assumed to be
unfeasible low power designs.

The non-recursive designs have received the greatest power reductions from
the application of the unfolding transformations. The fact that these designs do not
include any feedback loops improves the success of the unfolding transformation in
creating new designs with higher speeds through the use of parallelism. The higher
speeds can be traded for reduced supply voltage and hence lower power
consumption.

The increased use of parallelism accounts for the large increases in area of
each design. The FIR3 design has an increased size over 8 times that of the original;
the design has an unfold factor of 8, so it effectively consists of 8 times as many
processing nodes, sampling 8 sets of input data in parallel. This illustrates one of the
key exploitation areas for low power VLSI design. Increased integration levels have
made it possible to place more transistors on a device; as this example shows, some
extra transistors can be traded for low power operation. However, a size increase of
800% 1s only tolerable dependent on how critical the requirement for low power
operation is. In effect, there is a trade off between low-power operation and area.
The amount of significance to place on each parameter is very much application
dependent.

The increased number of generations required to produce the unfolded FIR
designs is due to the application of the postponing principle. This principle holds off

the application of unfolding until the best fitness of designs within a given

158



Chapter 5 - The Genetic Algorithm

population has not increased for a number of generations; therefore the postponing
principle increases the number of generations required to produce the best design.
Figure 5.46 illustrates the effect of postponing with the fitness profiles
obtained for the FIR8 filter during the best run (that which produced the best design
in the minimum number of generations). The graph includes the best solution and

the average fitness of the entire population in the current generation.

16

14 - C__

12 B

A

® 101 > PO appepryiraig
[O]
g
=

61

4 —Best Fitness

5 — Average Fitness

O T T T T T 1

0 200 400 600 800 1000 1200

Generation

Figure 5.46 GA Performance and Effect of Unfolding on AVENSDI Design

The graph has three main points of interest. Point A indicates the last
increase in fitness due to the application of transformations without unfolding. At
point B the best fitness has been static for a large number of generations so the
unfolding principle is used to add the unfolding transformation to the set of
transformations that can be applied. The application of unfolding at point B results
in an increase in fitness. The unfolding transformation remains in the potential set
of transformations for a number of generations; hence the subsequent increase in

fitness at point C, again due to the application of the unfolding transformation. In

159



Chapter 5 - The Genetic Algorithm

this case the unfolding transformation has increased the fitness of a previously
unfolded design by increasing the order to which it is unfolded. The unfolding
transformation has a cumulative effect; i.e. an N-unfolded design subsequently
unfolded to a factor of P will have a total unfolding factor of NxP.

After point C the unfolding transformation is unable to further increase the
fitness of the design due to the limitations on the maximum size. The small
increases in fitness after point C are due to the application of the other
transformations, increasing the fitness of the unfolded design. This graph also
illustrates that unfolded designs are produced over a larger number of generations

than non-unfolded designs.

5.9.3 Conclusions

A Genetic Algorithm approach to high-level low-power synthesis has been
introduced. The GA uses non-standard chromosome representation with problem
specific genetic operators developed for the synthesis tool. The flexibility of the
non-standard chromosome representation ensures that the GA is capable of
synthesising signal processing designs of varying complexity and size. The
chromosome representation incorporates knowledge specific to the problem domain
such as the concepts of precedence of operations and the implementation details of
VLSI functional units.

The problem specific operators modify the standard genetic crossover and
mutation techniques in order to apply standard DSP design transformations within
the GA framework, to ensure that design functionality is preserved. In addition to
the preservation of functionality, the modifications enable the genetic operators to

incorporate expert DSP VLSI design knowledge into the GA based synthesis tool.

160



Chapter 5 - The Genetic Algorithm

The GA successfully searches the complex search space inherent in high-
level low-power synthesis. The results presented for a variety of signal-processing
architectures demonstrate that the GA is an effective tool for DSP synthesis.

The use of a transformation library to supply the GA with low-power
optimisation techniques provides a framework for the addition of new techniques, to
investigate their power reducing applications, or to determine the effect of
interaction between transformations on providing the best solution. The
examination of potential sets of transformation application rates produced results
that supported hypotheses regarding the relationships between the transformations.

The transformations used, together with the application rates determined
through experimental results and analyses, produce low-power designs without
affecting design function or suffering loss in performance.

The prototype version of GALOPS incorporates standard features of a GA,
such as roulette wheel selection and fitness scaling (linearisation). There are many
possible modifications to a standard GA aimed at improving performance, such as
the discussed use of linearised fitness values. Investigation of modifications to the
GA are necessary, to examine their effectiveness and to possibly improve the
performance of the GA.

The fitness function of GALOPS incorporates a power estimation module
for the comparative analysis of designs for power consumption and area. More
sophisticated techniques for the estimation of these parameters exist. These
techniques need to be examined and incorporated into GALOPS to improve the

performance of the GA and the reliability of the results.

161



Chapter 6 — Enhanced Fitness Estimation

Chapter 6 - Enhanced Fitness Estimation

The previous chapter presented the initial version of GALOPS, describing
the power optimisation and estimation techniques used to achieve the presented
results. The initial version of GALOPS uses power estimation techniques that rely
on the estimation of supply voltage and capacitance. The supply voltage estimation
uses a statistical model, relating speed to voltage, to determine accurate voltage
estimation.

The capacitance estimation technique analyses the target DFG design to
estimate the required number of functional units to implement that design, together
with the associated interconnect capacitance. The estimation of the number of
functional units is based on a 1:1 allocation technique.

The allocation process is part of the high-level synthesis task. To
summarise, high-level synthesis is the process of mapping a target DFG design onto
a Register-Transfer-Level (RTL) design that implements the DFGs behaviour. The
1:1 allocation technique creates an RTL design with as many functional units as
there are operations in the DFG. The 1:1 technique has the benefit of simplicity
during the synthesis process; however, the 1:1 allocation ignores the fact that not all
the operations within the DFG are required to be executed during every control step
(or clock cycle). Operations of the same function, that are required to be executed at
different times, can actually share the same hardware resource. Therefore, the 1:1
allocation technique creates an area-inefficient RTL design, with more functional

units than necessary.

162



Chapter 6 — Enhanced Fitness Estimation

Practical high-level synthesis systems use a number of techniques to attempt
to produce an RTL design with the minimum number of functional units, while
obeying throughput constraints. Therefore, the fitness function of GALOPS needs
to incorporate these techniques to produce more practical area estimations of the
target DFG designs.

The three main tasks of high-level RTL synthesis are scheduling, allocation
and binding. Scheduling and functional unit allocation typically occur in parallel,
therefore it is the scheduling process which determines the number of functional
units required for implementing the DFG.

This chapter describes improvements to the power estimation routines used
in GALOPS, to improve their accuracy and make the power analysis more relevant
to practical VLSI synthesis systems which use tasks such as scheduling and
allocation to improve the efficiency of the final VLSI design. Section 6.1 introduces
the concepts and techniques used in scheduling and allocation to synthesise high-
level designs. Section 6.2 presents the requirements for a system which estimates
the final number of hardware resources (to estimate area and capacitance) before
sections 6.3 to 6.7 describe the hardware estimation techniques in detail. Section 6.8
integrates the new hardware estimation techniques into the capacitance estimation
process. Section 6.9 presents an overview of the new power estimation routines

incorporating the techniques described in this chapter.

6.1 Scheduling and Functional Unit Allocation

The basic scheduling problem is defined as the problem of mapping a set of

operations in the DFG onto a set of control steps, such that the precedence

163



Chapter 6 — Enhanced Fitness Estimation

relationships in the DFG are preserved. Figure 6.1 illustrates a simple DFG with
one possible schedule.

The process of generating a feasible schedule, which obeys precedence
constraints, 1s not considered a primary topic of the work presented in this thesis. A
good overview of the main topics of the scheduling process is presented in

[Walker95].

B A C
A B

C

DFG

X Control Step 1

Control Step 2

Control Step 3

SCHEDULE

Figure 6.1 Example Scheduling Operation

The above schedule was generated using the As-Soon-As-Possible (ASAP)
scheduling algorithm where every operation is placed into the earliest possible
control step while obeying precedence relations [Hwang91, Micheli94]. The
example DFG has been scheduled in 3 control steps, so a complete iteration of the
DFG requires three control steps. The required number of functional units of each
type is determined by counting the number of units in each control step. The

maximum number over all control steps is the required number of units. In this

164



Chapter 6 — Enhanced Fitness Estimation

example, 2 multipliers are required because both multiplications are scheduled in
the same control step. One adder is required to implement the DFG.

The example of Figure 6.1illustrates one of the problems of the scheduling
process, that of determining a schedule with the optimal (minimum) number of
functional units. The multiplication of input C could be scheduled in control step 2,
as its output is not required until control step 3. This would produce a schedule that
requires 1 multiplier and 1 adder; 1 fewer multipliers than required with the initial
schedule. Therefore, even with this simple DFG, different schedules exist with
significantly different implementation requirements. Determining a schedule which
meets implementation constraints on the number of available resources is known as
the Resource Constrained Scheduling (RCS) [Walker95] problem, such as the
limitation of 1 multiplier for the example in Figure 6.1.

Another common constraint in the scheduling process is the limitation of the
number of control steps, known as Time Constrained Scheduling (TCS). The
number of control steps is directly proportional to the speed of the implemented
design; generally, fewer control steps results in a faster design [Walker95]. The
combination of scheduling with limited resources and control steps is the problem
of Time and Resource Constrained Scheduling (TRCS) [Walker95].

Determination of an optimal scheduling i.e. scheduling with minimum time
and resources, is a non-trivial task as the scheduling problem is at least NP-
complete [Rabaey91a, Gebot93]. Various heuristic algorithms have been developed
to tackle the complex scheduling/allocation process. The next section introduces
some of the more widely used heuristic scheduling algorithms, together with other

techniques used to solve the scheduling problem.

165



Chapter 6 — Enhanced Fitness Estimation

An important point to note in the example of Figure 6.1 is that each
operation is scheduled in a single control step. The control steps are of equal length
in time; therefore, it is assumed that each operation is performed in the same length
of time i.e. one clock cycle. However, in practical devices, multiplications can
typically take longer than additions. The use of a unity-delay model in the
scheduling simplifies the problem [Micheli94] at the cost of reducing the
effectiveness of the scheduling algorithm. Consideration of non-unity operation
lengths, such as allowing certain operations to span several control steps
(multicycling [Walker95]) or scheduling a number of operations to be processed
sequentially in a single control step (chaining [Walker95]) may enable shorter and

more efficient schedules to be generated.

6.1.1 Scheduling Algorithms

ASAP and the similar As-Late-As-Possible (ALAP) scheduling are simple
algorithms that topologically order the operations in the DFG [Rabaey9la].
Although these algorithms provide a rapid solution to the scheduling problem they
are greedy algorithms which produce a single, often sub-optimal solution.

List-scheduling [Walker95] is an algorithm commonly used to solve the
RCS problem. Whereas ASAP and ALAP scheduling process each operation of the
DFG in turn, list scheduling processes each control step in turn; a maximum number
of control steps is defined as part of the RCS problem. List-scheduling uses a ready-
list to keep track of unscheduled operations that can be scheduled into the current
control step without violating precedence constraints. The ready-list is sorted
according to a priority function, usually based on the mobility of a particular

operation. The mobility of an operation is defined as the number of control steps it

166



Chapter 6 — Enhanced Fitness Estimation

can be scheduled in. This is determined as the difference between its ASAP and
ALAP control steps i.e. the earliest and latest possible control step that operation
can be scheduled in. Operations with zero mobility have to be placed into the
current control step, while operations with higher mobility can be placed lower in
the ready-list, to be scheduled into a later control step. The use of the ready-list
enables the list-scheduling algorithm to provide superior solutions to the RCS
problem when compared with ASAP/ALAP scheduling. However, this increased
performance comes at the cost of increased computational complexity while still not
guaranteeing to provide a solution with the minimum required number of functional
units.

Force-Directed Scheduling (FDS) [Paulin89] uses a stepwise refinement
process to solve the TCS problem while attempting to reduce the required number
of functional units. The number of functional units is minimised by uniformly
distributing the operations of each type across the schedule (thus reducing the
number of operations of the same type in any single control step). FDS is an
iterative algorithm that successively builds up an entire schedule, keeping the
schedule balanced as each operation is added. Therefore, FDS differs from list-
scheduling in that it considers the whole schedule, not one control step at a time.
The expected cost in functional units of assigning an operation to a particular
control step is used to select which step the operation is scheduled into. As well as
the direct cost of that particular operation, precedence relations with other
operations create an indirect cost, which also has to be considered. As FDS
concurrently considers all operations throughout the whole schedule, it produces
solutions to the RCS problem while minimising functional unit cost in comparison

to the list-scheduling algorithm. Unfortunately, the algorithm 1is less

167



Chapter 6 — Enhanced Fitness Estimation

computationally efficient than the list-scheduling and ASAP/ALAP algorithms,
requiring longer execution times to create the schedule.

Another heuristic scheduling algorithm is the process of scheduling the
critical path first (thus producing a design with the minimum number of control
steps), followed by the scheduling of the remaining operations in control steps
which minimise the functional unit requirements [Camp91].

The described heuristic algorithms suffer from the problem of determining
sub-optimal solutions for many scheduling problems [Walker95]. Globally optimal
solutions are desirable to maximise VLSI performance while minimising area,
achieved by optimally solving the TRCS problem i.e. minimum area and maximum
speed. Integer Linear Programming (ILP) [Gebot93] has been used to produce
globally optimal solutions; however, the complexity of the scheduling problem
means that the ILP solvers cannot determine an optimum solution in polynomial
time. For relatively small problems the run-time of the ILP scheduling algorithm is
large [Walker95]. Other attempts at producing globally optimal solutions, such as
the use of simulated annealing [Dev89], also suffer from increased computational
complexity.

The computational complexity, and the associated run-times of the discussed
scheduling algorithms may not present a problem in a high-level synthesis system
which is required to simply produce an RTL output for a specified design, as the
scheduling algorithm is only required to be run once. However, within a design
exploration system, where candidate designs are compared for desired
characteristics, the long run-times can become prohibitive. This is especially the
case within a GA design exploration system such as GALOPS, which typically

evaluates many thousands of solutions throughout the design exploration process.

168



Chapter 6 — Enhanced Fitness Estimation

For these systems the complexity of the scheduling algorithms significantly increase
the overall computational complexity.

The problem of determining the implementation parameters of the RTL
design (such as speed and area), while minimising the length of time required for
such an analysis has led to increased research into the estimation, rather than the
calculation, of such parameters. Instead of determining the optimal RTL solution
through the use of complex scheduling algorithms, less complex algorithms are
used to obtain estimates on such parameters as the required number of functional
units. The estimates can be used to guide the design exploration without the
associated computational overhead of performing a complete RTL synthesis for
optimal designs. The estimates are used to provide a fitness measure to the GA
synthesis system (GALOPS). In addition, the estimates can also be used to provide
starting points for the complete scheduling algorithms, reducing their required run-
time [Rabaey90].

The variety of scheduling algorithms available in high-level synthesis
present a range of possible RTL designs for a single power-optimised DFG.
Therefore, the choice of scheduling algorithm can significantly affect the final
power consumption of the RTL design. Indeed, scheduling algorithms have been
developed which consider power as an objective parameter (section 2.4) during the
scheduling and allocation process. To enable analysis of the power-reduction
capabilities of the behavioural-level techniques presented in GALOPS, such
architectural-level power reduction algorithms are not included within the current
synthesis system. A complete low-power synthesis system would utilise the full

range of techniques at all levels of the synthesis process.

169



Chapter 6 — Enhanced Fitness Estimation

6.2 Overview of Estimation of Hardware Resources

The fitness evaluation used in GALOPS estimates the power consumption of
the data path component of the implemented design. Therefore, estimation of
hardware resources involves the estimation of the functional units required to
implement the data path as an RTL design. Precise determination of the minimum
number of functional units is an NP-complete problem; therefore there is little hope
of finding an estimation algorithm which could solve the problem in polynomial
time [Chaud96]. However the determination of upper and lower bounds on the
hardware resources presents a problem of reduced complexity which can be solved
in polynomial time [Rabaey91]. Figure 6.2 illustrates the concept of upper and

lower bounds on the number of functional units.

— Upper Bounds
— Optimal Designs

----- Lower Bounds

Functional Units

~.,

Schedule Length

Figure 6.2 Illustration of Design Space with Upper and Lower Bounds

The graph illustrates the optimal number of functional units, for a specific

design, for different schedule lengths. The optimal design is the feasible design

170



Chapter 6 — Enhanced Fitness Estimation

created with the least number of functional units. The feasible design space is
represented by the area above the optimal designs curve i.e. all feasible designs
require at least as many functional units as the optimum design. The upper bounds
curve 1s within the feasible design space; i.e. all upper bounds are feasible designs.
The lower bounds curve is the theoretical minimum number of functional units
required to implement the design. In some cases the theoretical lower bounds may
not be able to produce feasible designs, however, the lower bound provides
valuable information for estimating the minimum area required to implement the
DFQG, thus providing a means of exploring the solution space.

The algorithms presented in [Potko89] provide estimations of the upper and
lower bounds for a given DFG with a specified schedule length. Within the
GALOPS synthesis system the bounds derived with these algorithms are used to
compare the area and hence the capacitance of rival designs. This area estimation is
based on the minimum estimated area required to implement the DFG; therefore the
lower bounds on functional units are used to provide this area estimation. The lower
bounds are typically used as a measure of the quality of the solution, in relation to
the expected area, as they are typically the closest to the practical solution
[Rabaey9la]. The determination of upper bounds on functional units is not
presented in this thesis as the data is not required as part of the GA fitness

evaluation.

6.3 Initial Estimates of Lower Bounds on Functional Units

The estimation process for determining lower bounds starts by obtaining a

crude estimate on the initial lower bounds of functional estimates [Rabaey9la,

171



Chapter 6 — Enhanced Fitness Estimation

Rabaey90]. Additional steps in the estimation process are then used to refine these
crude lower bounds, providing a more accurate estimate.

The crude estimate is the absolute lower bound on the number of functional
units; it is obtained by assuming that the operations in the DFG can be equally
spread out between all control steps. That is, given N operations of type 1 (Ni), to be
executed in X control steps, an absolute minimum of N/X number of resources of
type 1 (Ri) will be required (assuming that all operations are performed within a
single control step).

For the systems under consideration in GALOPS, which are critically timed
(i.e. operating at maximum throughput), the number of available control steps is the
same as the critical path length (Cp). That is, the entire DFG is processed in the
same length of time that it takes to process the critical path of the DFG.

Therefore, the absolute minimum number of resources is given by:

Ni

Ri= C_p 6.1)

abs_min

However, this is an optimistic estimate as it assumes that the operations can
be evenly spread throughout the schedule. In practice, precedence relations prevent
this from occurring. Therefore, the actual number of operations is typically higher

than this lower bound, as illustrated by the example of Figure 6.3.

172



Chapter 6 — Enhanced Fitness Estimation

51 éH

DFG CRITICAL UNFEASIBLE
SCHEDULE SCHEDULE

A B
X 4

Figure 6.3 Example of Unfeasible Schedule Generated by Absolute Lower Bounds
on Functional Units

The example DFG in Figure 6.3 would be estimated to require 1 multiplier if
using the minimum bounds provided by equation 6.1 (]—3/ 3—‘). However, the

optimum critical schedule shows that the precedence constraints on the first two
multiplication operations require them to be performed in the first control step as
their outputs are required for the addition in the second control step. Therefore, the
actual number of multipliers required is 2. If the lower bound was used as a
limitation on the number of resources the unfeasible schedule in Figure 6.3 may be
generated. The schedule is unfeasible as it has more control steps than the length of
the critical path. Therefore, strictly adhering to the lower bound estimation can
create an implementation with a lower throughput rate than required.

Analysis of the crude lower bound [Rabaey94] for 50 DFG examples,

covering a wide range of benchmark applications, resulted in a maximum observed

173



Chapter 6 — Enhanced Fitness Estimation

error between the lower bound and the actual cost of 386%. The average observed
error was 72%.

An improved estimation of the lower bound is used to produce a value that
is closer to the actual number of functional units that will produce a feasible
schedule. This improved value increases the accuracy of the area estimation based

on the minimum bound technique.

6.4 Improved Estimate of Lower Bounds on Functional Units

The improved estimation process begins with a topological ordering and
levelling of the input DFG with respect to its input and output nodes [Rabaey9la,
Rabaey90]. This is achieved by scheduling the graph using the ASAP and ALAP
scheduling algorithms [Walker95, Micheli94]. The information provided by this
scheduling step, together with the crude lower bounds, is then used within a relaxed
estimation technique [Rabaey94] to determine more accurate lower bounds on the

required number of functional units.

6.4.1 ASAP/ALAP Scheduling
ASAP and ALAP are the simplest scheduling algorithms, processing each
node in turn and placing it in the earliest or latest possible control step. The pseudo-

code for the ASAP algorithm is shown in Figure 6.4.

174



Chapter 6 — Enhanced Fitness Estimation

Function ASAP_Schedule
Passed DFG
Note: C_step = Control_Step

WHILE NOT every operation scheduled
FOR each operation in the DFG
IF no predecessor operations
C_step of current_operation = 1
ELSE IF all predecessor operations have been scheduled
C_step of current_operation = max[C_step(predecessors)]+1
Next operation in DFG
End WHILE
END Algorithm ASAP_Schedule

Figure 6.4 Pseudo-code for ASAP Scheduling Algorithm

The ASAP algorithm processes every operation in the DFG in turn until they
have all been scheduled. If an operation has no predecessor nodes on its inputs it is
scheduled in the first control step i.e. it is executed as-soon-as-possible. Operations
defined as having no predecessor nodes are those where all inputs are driven by
primary DFG inputs or delay nodes. Delay nodes in a DFG indicate inter-iteration
loops i.e. a delay node indicates where the current iteration of the DFG begins and
ends.

Operations with predecessor nodes can only be scheduled if those
predecessor nodes themselves have been scheduled. If this constraint is satisfied the
control step for the current operation is determined by finding the largest control
step of all predecessors and scheduling the current operation in the next control
step. This ensures that the operation does not try to process its inputs before they
have been determined by its predecessor nodes i.e. precedence constraints are not
violated. Performing the ASAP algorithm will produce a schedule list. The list
stores every functional node in the DFG along with its ASAP control step.

The ALAP schedule puts every functional operation into the latest possible

control step; the pseudo-code for this algorithm is shown in Figure 6.5. The

175



Chapter 6 — Enhanced Fitness Estimation

maximum number of control steps has to be defined before the ALAP schedule can
be performed. For critically timed DFGs the maximum number of control steps is
the same as the length of the critical path of the DFG. The schedule list is also used

to store the ALAP control step of each functional operation.

Function ALAP_Schedule
Passed DFG
Note: C_step = Control_Step

WHILE NOT every operation scheduled
FOR each operation in the DFG
IF no descendent operations
C_step of current_operation = critical_path_length
ELSE IF all descendent operations have been scheduled
C_step of current_operation = min[C_step (descendants)]-1
Next operation in DFG
End WHILE
END Algorithm ALAP_Schedule

Figure 6.5 Pseudo-Code for ALAP Scheduling Algorithm

An example of the result of a scheduling operation, for the 3 Tap FIR filter,

is shown in Figure 6.6.

e e2 e3 e e2

FEONCE)

RN
7S R

3 TAP FIR DFG ASAP ALAP
SCHEDULE SCHEDULE

Figure 6.6 ASAP and ALAP Scheduling of 3 Tap FIR Filter DFG

176



Chapter 6 — Enhanced Fitness Estimation

An important point to note about the ASAP schedule is that it produces
schedules of the same length as the critical path of the source DFG. Therefore, as
both critical path length determination and functional unit estimation are required
during the fitness estimation procedure, the current critical path estimation
procedure can be replaced with the ASAP scheduling step.

Once the schedule list has been created with both the required ASAP and

ALAP information it can be used for the next step of the estimation process.

6.4.2 The Relaxed Estimation Technique
The relaxed estimation technique is an iterative improvement algorithm used
to refine the crude lower bounds obtained from the initial analysis of the DFG, thus
reducing the error between the estimated number of functional units and the actual
number of functional units.

The iterative refinement process is outlined as:

e Set maximum number of available functional units of type i (max Ri)
equal to crude lower bound on functional units of type i (abs min Ri)
determined from equation (6.1).

e Determine the minimum number of control steps (min C step) required
for implementing the DFG algorithm with the above constraint
(max_Ri). This is effectively performing RCS scheduling i.e. scheduling
with a constraint on the number of available resources to determine a
minimum schedule.

e If the number of control steps is greater than available (CP length) or no

feasible schedule can be generated with the resource constraint

177



Chapter 6 — Enhanced Fitness Estimation

(max_Ri), increment max Ri and repeat the scheduling step. Otherwise,

max_Ri is the relaxed estimation of the required number of resources of

type i.

The process determines whether the current estimation of the number of
functional units (see equation (6.1)) will produce a feasible schedule that does not
require more control steps than those available. If the resource constraint prevents
such a schedule from being generated the constraint is relaxed (incremented) and
another schedule generated. The process is repeated until a feasible schedule of the
required length is generated i.e. a schedule that satisfies the timing constraints.

The process can be illustrated by considering the 3 Tap FIR example. Initial
lower bound estimates for this DFG creates a limit of 1 on the number of add and
multiply functional units. The schedule generated with this constraint is shown in
Figure 6.7. As only one operation of each type can be scheduled in each step, the
scheduling process generates a schedule of length 4. The critical path length of the 3
Tap FIR filter is 3, therefore this schedule violates the timing constraints. The
limitation on the maximum number of resources needs to be relaxed to produce a
schedule that satisfies the timing constraints. In this example, increasing the number
of available multipliers to 2 will produce a schedule that satisfies the timing
constraints. Therefore the lower bound estimation on multipliers has been refined to

a more accurate estimate.

178



Chapter 6 — Enhanced Fitness Estimation

ed Schedule
e Requires 4
Control Steps

BRI CI [ CIRCD

el e2 e3 e5

Figure 6.7 Illustration of Schedule Generated Using Crude Lower Bounds as Limits
on Functional Units

A problem arises when considering which resource bound to increment
when considering more than 1 type of resource i.e. should the constraint on adders
or multipliers be relaxed? Analysis of the problem in Figure 6.7 reveals that it is the
multiplier constraint that needs to be relaxed, but it is difficult to generalise the
identification process for all algorithms. The relaxed estimation process reduces the
complexity of this problem by considering only one functional unit type at a time.

The relaxed estimation process is as follows:

1. Determine crude lower bounds on adders and multipliers

2. Use iterative refinement process to estimate number of adders using
lower bounds on adders as an initial constraint but no constraint on the
number of multipliers.

3. Use iterative refinement process to estimate number of multipliers using
lower bounds on multipliers as an initial constraint but no constraint on

the number of adders.

179



Chapter 6 — Enhanced Fitness Estimation

While this ‘relaxation’ of constraints considerably reduces the complexity of
the problem, it may produce estimates that do not actually generate feasible results
[Rabaey94]. More complex algorithms have been developed to consider the parallel
estimation of 2 or more types of functional units [Chaud95, Chaud96]. However,
they rarely outperform algorithms that only consider one type of resource
[Chaud96, Potko97] while requiring a more complex and hence computationally
intensive estimation process.

The actual scheduling process is performed with the list-scheduling
algorithm. This algorithm is commonly used to solve the RCS problem as it
produces relatively efficient schedules without requiring large run-times

[Walker95]. The pseudo-code for this algorithm is shown in Figure 6.8.

Algorithm List_Schedule
Passed ASAP and ALAP scheduling information
Passed limits on numbers of functional units

Compute slack_times of each operation

Current_Cstep setto 0

While NOT all operations scheduled
Increment Current_Cstep
Identify data-ready operations
Place data-ready ops into ready-list
Sort ready-list in order of slack_times

For each op in theready-list
Schedule into Current_Cstep IF functional units limit not broken
Next element inready-list
End While

Return length of schedule Current_Cstep)
End Algorithm List_Schedule

Figure 6.8 Pseudo-code for List-Scheduling Algorithm

The list-scheduling algorithm uses a ready-list to keep track of data-ready

operations. A data-ready operation is defined as an operation that can be scheduled

180



Chapter 6 — Enhanced Fitness Estimation

into the current control step without violating precedence constraints. To determine
which operations are selected from the ready-list for scheduling, the ready-list is
sorted to prioritise selection. The sorting criteria is based on the slack [Micheli94]
of each operation, which is computed from the ASAP and ALAP times of each
operation; hence the requirement for the ASAP and ALAP information.

The slack of an operation is defined as its mobility, the difference between
its ASAP and ALAP control step. Operations with a smaller slack-time rate a higher
priority in the scheduling process as there are comparatively fewer control steps into
which those operations can be scheduled. These operations with small slack-times
have less freedom for movement around the schedule when compared with
operations with larger slack-times. Therefore, the core of the list-scheduling
algorithm is to postpone the scheduling of the operations with more freedom until
last, then schedule them into control steps that satisfy the resource constraints.

Figure 6.9 illustrates the slack-times for the 3 Tap FIR Filter example.

OP ASAP ALAP SLACK

TIME TIME
el 1 1 0
e2 1 1 0
e3 1 2 1
e4 2 2 0
ed 3 3 0

3 TAP FIR DFG

Figure 6.9 Slack Times for 3 Tap FIR Filter

181



Chapter 6 — Enhanced Fitness Estimation

Operation €3 has a slack time of 1 as it can be scheduled in control step 1 or
2. The other operations have a slack time of zero; they have no mobility so they
have to be scheduled into the specified control step. Note that operations on the
critical path of the DFG always have a slack time of zero.

Application of the list-scheduling algorithm produces a schedule with a
certain amount of control steps, which satisfies the resource constraints specified by
the lower bounds on the number of functional units. If the length of this schedule is
greater than that specified by the timing constraint (the length of the critical path)
then the schedule is considered unfeasible. The bounds on resources are then
revised and the list-scheduling process repeated to attempt to generate a feasible
solution.

The pseudo-code for the complete lower-bounds estimation process is

shown in Figure 6.10.

182



Chapter 6 — Enhanced Fitness Estimation

Algorithm Lower_Bounds_Estimation
Passed ASAP scheduling information (performed during crude estimation)
Passed DFG

Determine crude lower-bounds on Add and Multiply units
(add-min)
(mult-min)

ALAP schedule the DFG

WHILE schedule-length greater than critical-path-length
List-schedule using add-min as resource limit on adders
(no limit on multipliery
IF schedule-length greater than critical-path-length
Increment add-min (increase resource limit)

List-schedule using mult-min as resource limit on multipliers
(no limit on adder9

IF schedule-length greater than critical-path-length
Increment mult-min (increase resource limit)

End WHILE

Return add-min and mulf-min bounds as estimates of minimum number of
functional units required

End Algorithm Lower-Bounds-Estimation

Figure 6.10 Pseudo-Code for Lower Bounds Estimation of Functional Units

The relaxed estimation technique considerably reduces the error between
estimated and actual costs of functional units. Results produced on the same
benchmark set used to analyse the crude lower bounds show the maximum error has
been reduced from 383% to 67% with this technique, while the average and median

errors are reduced from 72% to 14% and from 86% to 7% respectively.

6.5 Examples of Lower Bound Estimation

To illustrate the performance of the new functional unit estimation routines,
results are presented for the benchmark DFG examples described in section 5.7.
Table 6.1 lists the estimated lower bounds on the number of add and multiply units
together with the crude lower estimates and the actual number of operations in the

DFG.

183



Chapter 6 — Enhanced Fitness Estimation

Adders Multipliers
DFG Crude Refined | Number of Crude Refined | Number of
Lower Lower Operations Lower Lower Operations
Bound Bound in DFG Bound Bound in DFG
FIR3 1 1 2 1 2 3
FIRS 1 1 1 2 8
LAT2 1 2 4 1 2 4
AVENSPA |2 4 15 3 4 18
AVENSDI |2 2 16 2 2 16

Table 6.1 Estimates on Minimum Number of Functional Units for Benchmark
DFGs

The table illustrates that, for the designs in Table 6.1, the required number of
functional units is always less than the number of operations in the DFG. This
highlights the need to replace the 1:1 allocation technique for the area estimation of
the functional units with a more robust estimation technique that is more applicable
to practical VLSI devices.

The 8™ order Avenhaus DFG, highlighted in the table, also illustrates the
importance of the relaxed estimation technique to obtain a more accurate estimation
of the required area. With the 1:1 estimation allocation technique the number of
multipliers is 18, equal to the number of multiplication operations in the DFG. A
crude estimate on the lower bound produces a requirement of 3 multipliers, a
considerable saving, especially when the cost of multipliers in terms of area is
considered. The relaxed estimation technique refines the initial estimate to 4
multipliers, requiring 4 iterations to refine both the multiplier and adder estimates.
The expense of the extra iterations required to refine the initial crude estimates is

compensated for by the improved accuracy.

184



Chapter 6 — Enhanced Fitness Estimation

Another important benefit of the improved area estimation routines is
evident from analysing the estimates for example DFGs throughout the power
exploration process. Figure 6.11 and Figure 6.12 illustrate the estimates for a wide
range of possible DFGs. Both graphs depict estimations for 3501 DFGs generated
throughout the exploration process. Figure 6.11 depicts the estimated lower bound
on the number of multipliers, together with the actual number of multiply
operations in the DFG. Figure 6.12 depicts the estimated lower bound on the

number of adders, together with the actual number of add operations in the DFG.

20
18
167 [ owerBound
2 14 +
c
2 12 + | ——Number of
5 .
- 10 Operations
E 8+
>
< 6 ”41—1
4 i
2 A4
0 T T T T T T
1 501 1001 1501 2001 2501 3001

DFG Number

Figure 6.11 Estimates of Number of Multipliers for Range of DFGs Generated for
Low-Power Exploration of 8" Order Avenhaus Filter

185



Chapter 6 — Enhanced Fitness Estimation

16 -
14 -
" 12 —— Lower Bound
E 10 —— Number Of
o g Operations
3
3 °
4 | |
2 |
0 T T T T T T
1 501 1001 1501 2001 2501 3001

DFG Number

Figure 6.12 Estimates of Number of Adders for Range of DFGs Generated for Low-
Power Exploration of 8™ Order Avenhaus Filter

The graphs illustrate that the estimated number of resources required for
implementation varies throughout evolution, while the actual number of operations
in the DFG never changes. This is due to different DFG topologies of the same
function having different scheduling characteristics, resulting in different
implementation characteristics. The 1:1 allocation technique shows no change in the
required number of functional units throughout evolution but the more accurate
estimation technique is more sensitive to changes to the DFG i.e. the effects of the
transformations are more accurately analysed with the improved area estimation

technique.

6.6 Estimation of Lower Bounds on Registers
In addition to improving the estimates of the number of functional units (to

execute operations in the DFG) the improved fitness estimation routines include

186



Chapter 6 — Enhanced Fitness Estimation

more accurate estimates of the number of registers required for the RTL
implementation of the DFG.

Register estimation is the process of determining how many registers are
required to implement the RTL so a sample is processed in the required time i.e.
within a maximum number of control steps. The minimum number of registers of
type 7 (those connected to an operation of type 7) is computed from the following

formula [Potko89]:

k
: n
Ri 2 Z tlife min /TOtalcontrol_steps (6.2)
n=0

where £ is the total number of signals feeding into operation 7; Totalcontrol steps
is the number of control steps available for the schedule (equal to the length of the
critical path).

h

The variable ¢”, . is the minimum lifetime of the n'

Jife min signal feeding into
operation i. The minimum lifetime is defined as the minimum amount of time
(control steps) that the variable is required to be ‘alive’ i.e. the amount of time it is
required to be stored in a register. By determining the minimum lifetime
requirements of all variables the minimum number of registers to store those

variables can be determined. The example DFG in Figure 6.13 is used to illustrate

the process of determining the minimum lifetime of a variable [Rabaey94].

187



Chapter 6 — Enhanced Fitness Estimation

Possible
Slack
Sourc_e Timing
Operation Diagrams
S Salsap STap
| | 1
| |
| |
) Dasap Dalap
Variable E
Salsap STap
| | 2
| |
Destination | |
Operation Dasap Dalap
D

Figure 6.13 Determination of Minimum Lifetime of a Variable E

The DFG in Figure 6.13 illustrates a simple operation between two nodes (a
source and destination), passing a variable between the two nodes. The minimum
lifetime of the variable is determined by the scheduled execution time of the source
and destination nodes. Each node has an associated ASAP and ALAP scheduling
time, determined by application of the ASAP and ALAP scheduling algorithms
during execution of the functional unit’s estimation process. The ASAP and ALAP
times are used to produce the slack time of each operation.

As illustrated in Figure 6.13 there are two cases of interest:

1. The slack times of the source and destination overlap. In this case the
source ALAP time is later than the destination ASAP time (Saiap > Dasap)-
The minimum possible lifetime is achieved if the operations are

scheduled to allow operation D to consume variable E immediately after

188



Chapter 6 — Enhanced Fitness Estimation

generation by operation S. The minimum lifetime is therefore the time
taken for the destination D to process the variable E, equal to one control
step. Therefore, tiifemin = teontrol step-

2. The slack times of the source and destination node do not overlap (Saiap
< Dasap). In this case variable E has to be minimally alive for a longer
period of time, as operation D is not available to process the variable
immediately after operation S has produced it. The variable has to be
alive from S.p to Dawp plus the processing time of operation D.

Therefore, tifemin = Dasap 'salap + 1:controlistep~

The equations presented for the two cases also extend to the third possible
case, where Suap = Daswp. The pseudo-code for the register estimation process is

illustrated in Figure 6.14.

Algorithm Register Estimation
Passed ASAP and ALAP scheduling information
Passed DFG
Schedule_length = critical_path_length

Determine minimum lifetimes of registers:
For each operation in the DFG
For each input_net of the current_operation
Determine source and destination of input_net
IF source_ALAP = destination_ASAP
Min_lifetime of input_net = 1
ELSE
Min-lifetime of input_net =
destination_ASAP-source_ALAP+1
Next input_net of current_operation
Next operation in the DFG
End Determine minimum lifetimes

Registers_estimate =[ (Smin_lifetimes)/schedule_length|

End Algorithm Registers Estimate

Figure 6.14 Pseudo-Code for Estimation of Minimum Number of Registers

189



Chapter 6 — Enhanced Fitness Estimation

This algorithm produces a lower bound on the number of registers required
to implement the DFG as an RTL design. The area of a single register is stored in
the library of functional unit models so the lower bound can be used to compute the
lower bound on the total area required for the registers in the data-path segment of

the DSP design.

6.7 Hardware Unit Models

In addition to producing more accurate estimations of the number of
functional resources, the improved fitness estimation technique incorporates more
accurate models of the actual hardware units in terms of their switched capacitance.
The original hardware models presented in section 5.6.2 used a VLSI synthesis tool
to return implementation characteristics of designed functional units. These units
were characterised by area and capacitance for use in the power estimation process.
However, the capacitance estimation of these models neglected the effect of internal
switching activity on their capacitance. More accurate models presented in
[Chan95] include the modelling of internal switching activity when determining the
capacitance of the hardware units. While the current fitness estimation technique
does not consider switching activity over the whole system, the new hardware
models will ensure that internal switching activity of hardware modules is
considered. This improves the accuracy of the power estimation process [Chan95].

The new capacitance estimation models also incorporate clock-tree
capacitance data, as the registers are the datapath units driven by the clock line
[Chan95]. The register capacitance models are comprised of the registers switching
capacitance and its contribution to the load capacitance of the clock line.

Summation of the register capacitance will produce the total load on the clock line

190



Chapter 6 — Enhanced Fitness Estimation

due to datapath units. As described in chapter 3, the intrinsic capacitance in the
clock line is reduced using architectural and physical level design strategies. The

new capacitance characteristics of the hardware models are shown in Table 6.2.

Hardware Unit Switched Capacitance (Pico Farads)

8x8 Bit Array Multiplier 16.2
8x8 Bit Ripple Adder 1.162
8 Bit Register 0.482

Table 6.2 Switched Capacitance Estimations of Hardware Units

However, the results presented in [Chan95] do not include the area
estimation of the hardware units. Therefore, these improved capacitance estimations

are used with the area estimations presented in section 5.6.2.

6.8 Capacitance Estimation

The improved area estimation routines process a candidate DFG to
determine how many hardware units of each type are required to implement the
DFG. While this has an effect on the area of the VLSI implementation it does not
have as significant an effect on the capacitance contribution to power.

The capacitance of a DSP algorithm is related to the number of operations it
performs, rather than the number of hardware units those operations are performed
on. 10 multiplication operations will require approximately the same amount of
switched capacitance whether 10 parallel or 1 shared multiplier is used. The original
method of 1:1 allocation for each operation ensured that a dedicated functional unit

performed each operation; therefore, the capacitance and area estimations were able

191



Chapter 6 — Enhanced Fitness Estimation

to use the same estimation data of the number of functional units. However, as the
new area estimation routines remove the direct relationship between the number of
functional units and their total switched capacitance, new capacitance estimation
routines are required. The total switched capacitance for the data-path segment of

the RTL design is determined from:

Ctotal = Cﬁlnctional-units + Cregisters +Cinterc0nnect (63)

The new capacitance estimation routines estimate Crunctional-units a0d Cregisters;
the estimation of Cipterconnect 1S Unaffected by the new area estimation routines as it

still follows the same relationship with area.

6.8.1 Switched Capacitance of Functional Units
The amount of capacitance switched when performing the operations (add,
multiply, etc.) of the DSP operation is determined through analysis of the DFG. The
quantity of each operation is used in conjunction with the new switched capacitance
values for each operation type (Table 6.2) to determine the overall switched
capacitance for each operation type. So the total capacitance of functional units is

equal to:

m
C functional _units — Z Ci (6.4)

n=1

192



Chapter 6 — Enhanced Fitness Estimation

where m is the total number of operations of type 7 in the DFG. (i, the
capacitance of module type i, is determined from the functional unit hardware

models.

6.8.2 Switched Capacitance of Registers

The total switched capacitance of the registers in the RTL design is directly
proportional to the number of accesses made to registers. Within a scheduled DFG
all data transferred from one operation to another across a cycle boundary must be
stored in a register [Micheli94]. As the GALOPS systems uses a unity-delay model,
where each operation is scheduled in a single control step, the inputs and outputs of
all operations cross cycle boundaries. Therefore, each data-net in the DFG implies

access to a register, as illustrated in Figure 6.15.

Figure 6.15 Register Accesses in an Example DFG

193



Chapter 6 — Enhanced Fitness Estimation

This register access methodology does not store primary input and output
values in registers [Micheli94.]. Therefore, the example in figure 14 requires 5
register accesses. Input ‘c’ is a feedback signal from the output of the DFG; in this
case a register is required to transfer the variable back to the inputs.

Once the number of register accesses has been determined the total register

capacitance, as a contribution to power, is determined from:

n
Cregisters - Z Csingleiregister (6.5)
1

where n is the number of connection nets in the DFG which require a

variable to be stored and Cgingle register 1S the switched capacitance of a single register.

194



Chapter 6 — Enhanced Fitness Estimation

6.9 Summary of Enhanced Fitness/Power Estimation Module

Critical Path
Used To
Determine

Area Estimation

DFG

ASAP Scheduling

- v

Speed

v

ASAP

Determine Initial
Lower Bounds on
Functional Units

Initial
Bounds

ALAP Scheduling

ALAP

ASAP

h 4

Refine Estimate
on Number of
Functional Units

A

v

-~ DFG -

Reg

Estimate

Estimate Number
of Regsisters

T

Units

Functional
Unit
Hardware
Library

vv

Estimate Area of
Data-Path of RTL
Design

Estimate

Capacitance Estimation

Functional

DFG Unit
Hardware
v .
] Library
Estimate
Switched Cap of |
DFGH] Func_:tlonal
Operations and
Register
Accesses
4 Total
Cap
- Used For --p
r'y Power
Estimation
Estimate
» Interconnect
Capacitance
Area

A

— » Program Flow

-—-» Data Transfer

Figure 6.16 Overview of Enhanced Area and Capacitance Estimation Procedures

The new fitness estimation routines incorporate more accurate area

estimation techniques built on validated techniques used for exploration and design

of systems at the high-level [Potko89, Chan95, Rabaey9la, Rabaey94]. The

improved area estimation techniques removed the direct relationship between

physical area and switched capacitance; therefore, new switched capacitance

estimation routines were implemented. In addition, the capacitance hardware library

was improved to incorporate capacitance values that include the consideration of

switching activity within each operation type.

195



Chapter 6 — Enhanced Fitness Estimation

In addition to improving the estimate of the interconnect capacitance, the
area estimation is invaluable in analysing the effects of the power optimisation
process. Figure 6.16 summarises the new area and switched capacitance estimation
procedure. The improved estimation routines not only increase the accuracy of the
power estimation procedure but also make the analysis more relevant to practical

VLSI systems.

196



Chapter 7 — Modifications to the Prototype GALOPS

Chapter 7 — Modifications to the Prototype GALOPS

Chapter 5 presented the initial implementation of GALOPS, which
incorporated a number of standard GA techniques to facilitate an exploration of the
low-power design space. GAs have been the subject of intensive research since their
introduction, resulting in the development of a number of techniques for improving
the efficiency of the search mechanism. This chapter describes the implementation
of some of the techniques into the GALOPS tool with the aim of improving both the

search efficiency and the results obtained.

7.1 Enhanced Mutation Operator (Remove-Pipeline)

The HLTs used in the prototype version of GALOPS are used to explore the
solution space for low-power designs. The retiming and back-retiming HLTs enable
complete exploration of the retime search space, as any search move can be undone
through application of its reverse transformation.

The pipeline HLT has no such reverse operation; as the application of
pipelining in a standard design task rarely involves the removal of inserted pipeline
stages. Therefore, a pipeline operation on a chromosome confines all descendants of
that chromosome to be pipelined designs. This could result in the search
prematurely settling in the pipelined area of the solution space.

To enable complete exploration of the solution space, GALOPS uses a
reverse-pipeline operator for the removal of pipelines from pipelined designs. The

reverse pipeline operator enables the guided walk through the solution space to

197



Chapter 7 — Modifications to the Prototype GALOPS

‘backtrack’ into non-pipelined areas. The reverse-pipeline operator is required as
without any backtracking capability the GA may not efficiently explore non-
pipelined sections of the solution space. The retime and pipeline transformations are
now both bi-directional; a quality of basic genetic algorithms as illustrated in Figure

7.1 [Davis91, Holland92, Goldberg89].

)

100111(0)110

Mutation 1

X

100111(1)110

Mutation 2

o

100111(0)110

(

Figure 7.1 Reversible Exploration

The removal of pipelines involves the identification of pipeline stages along
with all modifications made to the DFG to insert that pipeline, such as the insertion
of cutset delays. The relevant genes are then removed, restructuring the
chromosome to remove the pipeline stage. The pseudo-code for the remove-pipeline

transformation is shown in Figure 7.2.

198



Chapter 7 — Modifications to the Prototype GALOPS

Algorithm Remove Pipeline
Passed chromosome DFG to be mutated

Create a list of all pipelined delays in the DFG
IF no pipeline delays then remove_pipeline NOT possible
Exit algorithm

Randomly select a pipeline_delay in the DFG
Determine the cutset_points associated with the pipeline_delay
IF all cutset_elements are NOT delays
Pipeline cannot be removed
Exit algorithm
ELSE
Remove pipeline_delay from the DFG
Remove cutset_elements from the DFG

End IF

End Algorithm Remove Pipeline

Figure 7.2 Pseudo-Code for Remove-Pipeline Mutation

An example of the application of the remove-pipeline mutation is shown in
Figure 7.3. This example shows the 3 TAP FIR filter with a single pipeline stage.
Pipeline delays are denoted with a ‘p’ whereas cutset delays are denoted with a ‘c’.
The first constraint of the algorithm, identify pipeline delays, is satisfied so the
pipeline delay is selected. The cutset delays are then determined with the same
routine as that used to insert the pipeline stage. Subsequent mutation and crossover
operations to a pipelined DFG (such as retiming mutations) may have produced a
DFG where the cutset elements are no longer delays but actual functional
operations. Removal of such elements would corrupt the DFG function; therefore,
the remove pipeline operation is only applied if it does not corrupt the DFG.

The pipeline delays in this example satisfy the constraints (they are not in
loops and can be removed) so the pipeline delay is removed, producing the middle
DFG. Removal of the remaining cutset delays then produces the right-hand DFG, a

non-pipelined 3 TAP FIR design.

199



Chapter 7 — Modifications to the Prototype GALOPS

e

Figure 7.3 Application of Remove-Pipeline Mutation

7.2 The Elitism Mechanism for Chromosome Selection

As discussed in section 5.3 the traditional chromosome selection techniques
can be modified to improve the results obtained with the GA, such as the use of
fitness linearisation. This section introduces another selection scheme known as
elitism.

The elitism mechanism [Hanc95] (sometimes known as Top-n selection) is
not a replacement for the traditional FPS scheme; it is used in addition to the
standard GA selection method. The probabilistic selection method could result in
the current best solution not being selected for reproduction, hence the loss of the
chromosomes valuable genetic data. In addition, as the reproduction scheme is used
to select chromosomes for genetic modification the best chromosome could also be
lost through mutation or crossover. Hence, the GA loses the chance to exploit the
current best information.

The elitist strategy ensures that a specified portion of the next generation is
created from reproductions (copies) of the current best solution. The basic
application of the elitist operator makes a single copy of the best solution. However,
the number of copies of the best solution can be specified, with different values

having different effects on the synthesis process. The more copies of the current

200



Chapter 7 — Modifications to the Prototype GALOPS

best solution available, the greater the exploitation of the properties of that solution.
However, too many copies and the exploration process stagnates around the current
best solution. Therefore, an elitism application rate has to be determined to trade-off

between the benefits of exploration and exploitation.

7.2.1 Experimental Analysis of Effect of Elitism

Experimental analysis is used to determine the actual elitism application rate
to be used in the GALOPS system. The values analysed are: 1, 1%, 2%, 5%, 10%,
and 20%. This covers a wide range of cases from the simplest of only applying
elitism to a single chromosome, to applying elitism to 20% of the population (i.e.
20% of the next generation are copies of the current best solution). Typically,
elitism is applied at a much lower rate than 20%; therefore, analysis of the results
with the selected application rates will yield values for a wide range of cases. In
addition, the case of no elitism (elitism set to 0) is also analysed for comparison.

The elitism application rates were tested on the 5 benchmark DFG designs
described in section 5.7, using the mutation and crossover application rates
determined in section 5.8. Each elitism rate is applied to each of the 5 benchmark
designs 20 times to minimise the effects of the stochastic nature of the GA on the
elitism analysis. The analysis requires 600 complete runs of the GA (20%6*5).

Each run of the GA produces a design with the best found power
consumption, reported as a percentage of the original designs power consumption.
The mode value from all 20 runs of each design is taken as the optimum power
consumption determined for that design. Table 7.1 lists the mode power
consumption for each design with varying elitism application, quoted to 4

significant figures.

201



Chapter 7 — Modifications to the Prototype GALOPS

Benchmark Design Power Consumption
Batch |[Elitism |[FIR3 FIR8 LAT2 AVENSPA|AVENSDI
0 0 23.54 18.29 59.44 23.79 20.13
1 1 23.54 15.76 59.44 23.82 20.04
2 1% 23.54 15.76 59.44 23.82 20.01
3 2% 23.54 15.76 59.44 23.79 20.01
4 5% 23.54 15.86 59.44 23.82 20.04
5 10% 23.54 16.04 59.44 23.79 20.04
6 20% 23.54 18.25 59.44 23.89 23.82

Table 7.1 Mode Power-Consumption for Benchmark Designs with Varying Elitism
Parameter

The table illustrates that FIR3 and LAT2 are unaftected by the variation in

the elitism parameter. These are relatively less complex designs, therefore optimum

synthesis of these designs is essentially independent of fluctuations in GA

parameters.

However, the more complex designs (FIR8, AVENSPA and

AVENSDI) are affected by the elitism parameter, as illustrated in Figure 7.4.

Normalised Mode Power

1.02

0.98
0.96
0.94
0.92 4

0.9 +
0.88
0.86

084 &

0.82

—m—fir8
—e—aven8pa
—e—avens8di

Batch Number

Figure 7.4 Effect of Increasing Elitism Application on Power Consumption of
Benchmark Designs

202



Chapter 7 — Modifications to the Prototype GALOPS

To enable comparison of the different benchmark designs, the power
consumption for each design is normalised with respect to the worst (highest) found
for that design across all elitism parameter analyses in Table 7.1. Therefore, a lower
y-axis value in this graph indicates a superior solution. The graph illustrates that the
application of elitism results in an increase in the quality of the solutions i.e.
produces designs with lower power consumption. However, increases beyond a
certain level of elitism results in the GA producing poorer solutions with higher
power consumption i.e. the GA is more likely to become stuck in local optima.

The minimum point for all curves corresponds to an elitism parameter of 2%
i.e. batch 3. Although some of the curves are also at the minimum value in other
batches, batch 3 is the only batch where all curves are at a minimum. Therefore,
batch 3 produces the best overall results for the benchmark designs.

Figure 7.5 illustrates the effect of elitism on the average number of

generations required to determine the best solution.

700 1 —m fir8
—e—aven8pa

600 - P
—e—aven8di

Average Number of Generations

0 T T T T T T 1
0 1 2 3 4 5 6

Batch Number

Figure 7.5 Effect on GA Iteration Length of Increasing Elitism Application

203



Chapter 7 — Modifications to the Prototype GALOPS

Initial application of elitism results in an increase in the required number of
generations to determine the best solution. This indicates that the introduction of
elitism slows down the convergence rate i.e. the GA takes longer to settle on an
optimum solution. However, in the case of the fir§ and aven8di designs, the
increase in the number of generations also corresponds with an increase in the
quality of the best solution. The GA is exploiting the current best information to
determine better solutions.

The graph indicates a general trend of increased application of elitism
reducing the number of generations required in determining the best solution. This
implies that the higher the rate of elitism, the faster the population converges on the
best-found solution. As the results in Table 7.1 show, this fast convergence results
in the determination of sub-optimal solutions when compared with the results for
lower rates of elitism. The increased number of copies of the best solution in each
generation results in the population becoming saturated with solutions very similar
to the best solution.

The selected application rate that produced the best results, batch 3, lies
between the two extremes of maximum and minimum numbers of generations. This
implies that the selected application rate is successful because it makes a good
trade-oft between exploiting the information in the current search area and

exploring the solution space for new search areas.

7.3 Selection of Operator Application Rates
In section 5.8 it was noted that GA operators are applied at specified rates,
the actual rates can have an effect on the success of the GA. The prototype version

of GALOPS uses GA application rates determined using a relatively small set of

204



Chapter 7 — Modifications to the Prototype GALOPS

experiments. The results obtained by a GA can be sensitive to the applications rate
selected. Therefore, it is necessary to perform a comprehensive examination of the
application rates. This chapter reviews techniques used to determine an optimum set
of GA operation parameters before describing the use of a particular method, the
Taguchi method, to optimise the GA parameters in order to improve the success of

the GA.

For each implementation of a GA a set of parameter values is defined which
specifies the operator probabilities i.e. the probability of a particular mutation,
crossover or reproduction (the genetic operators) being applied to a chromosome.
The correct setting of operator probabilities is very important to produce an
effective algorithm that efficiently utilises the available computing resources to
determine a good solution. Unfortunately, the determination of an optimum set of
parameters is far from a trivial task. This is due, in part, to the fact that Genetic
Algorithms are used in a wide range of problem solving applications; therefore, it is
highly unlikely that an ideal set of parameters will suit all GA applications.

One of the earliest investigations into determining a set of ideal operator
probabilities was addressed in [DeJong]. However, in this case the problem is
simplified by only considering bit-string chromosome representations and a limited
number and type of genetic operators. In recognition of the difficulty of determining
a set of parameters suited to a wide range of GA applications, the problem was
further simplified by analysing the GA on a restricted test-suite of applications. The
simplifications used limit the application of the resulting operator probabilities to

similar types of GA with binary-string representation [Davis89].

205



Chapter 7 — Modifications to the Prototype GALOPS

Many real-world optimisation problems (such as GALOPS) have a set of
complex genetic operators and do not use binary-string representation [Davis89].
For such GAs it is highly unlikely that a generic set of operator probabilities exist
which encompass all possible implementations of real-world problems. Therefore,
the optimum set of parameters must be tuned for each GA through analysis and
investigation of its properties.

The use of ‘meta-level” GAs is one technique that has been suggested for
optimum parameter tuning of GAs [Gref86]. A meta-level GA attempts to
determine an optimum set of parameters for a target-GA by using another GA to
perform the optimisation process. Potential sets of operator probabilities are
encoded as chromosomes for the meta-level GA to optimise. Fitness evaluation of
each chromosome involves executing the target-GA with the set of proposed
probabilities, assigning a score to the chromosome based on the observed
performance of the GA.

Such a ‘meta-level” GA will typically require many thousands of complete
target-GA optimisations [Turton94]. Each target-GA optimisation will typically
require many thousands of evaluations of the target objective function. Therefore,
meta-level GAs are typically prohibitive in terms of computation time.

An alternative to the use of meta-level GAs or pre-computed parameter
values is the use of the Taguchi Method [Turton94]. The Taguchi method is a
quality engineering methodology developed by Dr. Geneci Taguchi [Ranjit90]. It
was initially developed for use in manufacturing industry to improve the quality of
the production process. One of the components of the Taguchi method is the
determination of operating parameters to produce the best quality solution. The

Taguchi method uses a defined set of orthogonal arrays to plan a series of

206



Chapter 7 — Modifications to the Prototype GALOPS

experiments for the determination of the best parameter settings. An example of an

orthogonal array is given in Table 7.2.

Parameter
Experiment | A B C
1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

Table 7.2 Example Orthogonal Taguchi Array

Each row in the array corresponds to a specific experiment. Each column
defines a particular parameter to be optimised; therefore, each row in the array
defines a set of values for all of the parameters of an experiment. The settings are
described as ‘levels’; each level corresponds to a specified real world value for that
parameter, determined by the nature of the problem.

The advantage of the Taguchi method is its reduction in the number of
experiments required to efficiently optimise the set of parameters. In the example of
Table 7.2, there are 3 wvariables, each with 2 possible levels. A standard
experimental procedure to determine the optimum values would require the testing
of all possible combinations (factorial experiment design). Therefore, 8 (2°)
experiments would be required instead of the 4 needed for the Taguchi method. For
larger numbers of parameters with even more levels, the reduction in the required
number of experiments is greater. The statistical validity of the technique is not
analysed here; the reader is referred to [Ranjit90, Turton94] for a more thorough

examination of the Taguchi method.

207



Chapter 7 — Modifications to the Prototype GALOPS

After completion of the experiments, the best level for each parameter is

determined through analysis of the results. The example array and a set of results

are presented in Table 7.3 to illustrate this process.

Experiment
1
2
3
4

N = =

A

Parameter
B

1 1

2 2

1 2

2 1

C

Result
No. 1 | No. 2
4 5
3 6
7 7
4 5

No. 3

L &N e K

Table 7.3 Set of Results Produced from Taguchi Experiments

As the table shows, each experiment is performed a number of times under

the same conditions. This is of particular importance in the case of a GA as the

probabilistic nature of the GA makes it possible that different results will be

produced under the exact same set of operating conditions. Therefore, a GA is

typically run a number of times to analyse its performance.

For each experiment, the average of the results can be used to evaluate the

result. However, Taguchi presented a further refinement to the Taguchi method

through the introduction of the concept of signal-to-noise ratio. The signal-to-noise

analysis is more robust than the average as it determines which set of parameters

produce not only the best result, but also the smallest variation around that result.

The formula for determining the signal-to-noise ratio is shown in (7.1),

n

2!

Signal To Noise = —10log,,| =—
n

(7.1)

208



Chapter 7 — Modifications to the Prototype GALOPS

where y; is the result of the /" trial and # is the number of trials per
experiment. This formula is used when the aim is to minimise the result y. Table
7.4 shows the revised Taguchi array, incorporating the signal-to-noise values for

each experiment.

Parameter Result Signal-To-Noise
Experiment | A | B C | No.1 ‘ No. 2 ‘
1 1 1 1 4 5 4 -12.79
2 1 ‘2 ‘2 3 ‘6 ‘5 ‘ -13.68
3 2 1 2 7 7 6 -16.50
4 2 12 I 4 E E | -13.42 |

Table 7.4 Signal-To-Noise Ratio Analysis for Experiment Results

Each parameter is analysed in turn to determine the best level. An average of
the S/N ratios for a particular level of the parameter is calculated from the table.

The following example shows this calculation step for parameter A.

Parameter A — Level 1

Exp1:-12.79, Exp2: -13.68
Average = -13.235

Parameter A - Level 2

Exp3: -16.50, Exp4: -13.42
Average = -14.96

This information can then be plotted on a graph as shown in Figure 7.6.

209



Chapter 7 — Modifications to the Prototype GALOPS

-12 T T T 1

1251 Level 1 Level 2
-13 -

-13.5 -
14 -
-14.5 -

Average Signal-To-Noise

-15 -

-15.5 -

Figure 7.6 Example Graph Showing the Effect of Parameter A

The graph shows that level 1 produces the highest average S/N value, it is
therefore chosen as the best setting for parameter A (assuming lowest result is best
in this problem). The actual value of the parameter is determined by matching the
level with the predefined set of real world values. This process is repeated for each
parameter to produce the set of values that it is expected will result in the best
system performance. The resulting set of values may not actually have been
analysed in an experiment (there may not have been such a combination in the
Taguchi array) Therefore, a validation step is often performed to verify the

performance of the values.

7.3.1 Taguchi Optimisation of GA Application Rates
The current version of GALOPS has 7 possible reproduction choices (6
transformations and crossover), each of which has to be assigned a specific
application probability. Table 7.5 lists all of the choices (parameters) with a set of
possible application rates (values). The values are presented as percentages, the

percentage probability of that operator being selected.

210



Chapter 7 — Modifications to the Prototype GALOPS

Parameter Values (%)

Retime 1,2,5,10, 20
Back-Retime 1,2,5,10, 20
Auto-Pipe 1,2,5,10, 20
Pipeline 1,2, 5,10, 20
Remove-Pipeline 1,2, 5,10, 20
Unfold 1,2,5,10, 20
Crossover 1,2, 5,10, 20

Table 7.5 Possible Application Rates of Each Operator

Each variable has four possible values, from 1% to a maximum of 20%. If
each operator were applied at the maximum value of 20%, it would result in a total
application rate of 140%. Therefore, some combinations (such as all rates at 20%)
are not investigated where it would lead to unfeasible application rates.

The table of possible values is simplified by the removal of the unfold
parameter, as described in section 5.8. To summarise, the unfolding principle limits
the application of the unfolding transformation so its application rate is not critical
to GA performance.

The selection of crossover rate is simplified by reducing the number of
values to 10% and 20%. This ensures that crossover is applied at a high rate without
limiting the potential applications of the mutation operators. GALOPS is not a
conventional GA as the mutation operators perform a lot of the exploration,
therefore the crossover rate is not as high as in a typical GA application.

The optimisation process consists of 6 variables, 5 of which have 5 possible
levels; crossover has two possible levels. When using a Taguchi array for such a
process, depending on the array used there may be a requirement for orthogonality
between the variables. For this reason, the Lso array is selected as it allows a large

degree of interdependence between the parameters. This optimisation process

211



Chapter 7 — Modifications to the Prototype GALOPS

requires the use of a modified form of the Lso array, which has 50 experiments. The
annotated array for the Taguchi optimisation of the GALOPS operating parameters
is shown in Table 7.6. The application rates are listed as percentages i.e. the
percentage probability of each operator being selected. The total percentage is also
illustrated for each experiment to ensure that no sum of application rate percentages
is greater than 100%. If the sum were greater than 100% the GA would attempt to
apply the operators to more than 100% of the current generation, an unfeasible
operation. Therefore, the elitism application rate is also included in this table for the
purposes of calculating the total application rates.

The GALOPS tool is a flexible DSP synthesis tool which can process a wide
range of signal processing applications. In this case, Taguchi optimisation of the
GA parameters for one particular DFG topology may result in the GA being
optimised for that particular design. The Taguchi optimisation is therefore applied
to two DFG designs, the direct and parallel forms of 8" order Avenhaus filter
(AVENSDI and AVENSPA respectively). The direct and parallel implementations
are significantly different DFGs, requiring a different set and order of
transformations for optimisation. In addition, both designs contain recursive and
non-recursive sections that require different methods of optimisation.

The optimisation process is performed 5 times for each experiment in the
Lso array. The results for the AVENSDI and AVENSPA design are shown in Table
7.7 and Table 7.8 respectively, along with the calculated S/N ratio for each
experiment. The %Power columns refer to the power of the optimised design

expressed as a percentage of the power of the original non-optimised design.

212



Chapter 7 — Modifications to the Prototype GALOPS

Experiment |Crossover Retime Back Auto |Pipeline Remove |Elitism Total
Retime Pipe Pipe

1 10 1 1 1 1 1 2 17

2 10 1 2 2 2 2 2 21

3 10 1 5 5 5 5 2 33

4 10 1 10 10 10 10 2 53

5 10 1 20 20 20 20 2 93

6 10 2 1 2 5 10 2 32

7 10 2 2 5 10 20 2 51

8 10 2 5 10 20 1 2 40

9 10 2 10 20 1 2 2 47
10 10 2 20 1 2 5 2 42
1 10 5 1 5 20 2 2 45
12 10 5 2 10 1 5 2 35
13 10 5 5 20 2 10 2 54
14 10 5 10 1 5 1 2 34
15 10 5 20 2 10 20 2 69
16 10 10 1 10 2 20 2 55
17 10 10 2 20 5 1 2 50
18 10 10 5 1 10 2 2 40
19 10 10 10 2 20 5 2 59
20 10 10 20 5 1 10 2 58
21 10 20 1 20 10 5 2 68
22 10 20 2 1 20 10 2 65
23 10 20 5 2 1 20 2 60
24 10 20 10 5 2 1 2 50
25 10 20 20 10 5 2 2 69
26 20 1 1 1 10 20 2 55
27 20 1 2 2 20 1 2 48
28 20 1 5 5 1 2 2 36
29 20 1 10 10 2 5 2 50
30 20 1 20 20 5 10 2 78
31 20 2 1 2 1 5 2 33
32 20 2 2 5 2 10 2 43
33 20 2 5 10 5 20 2 64
34 20 2 10 20 10 1 2 65
35 20 2 20 1 20 2 2 67
36 20 5 1 5 5 1 2 39
37 20 5 2 10 10 2 2 51
38 20 5 5 20 20 5 2 77
39 20 5 10 1 1 10 2 49
40 20 5 20 2 2 20 2 71
41 20 10 1 10 20 10 2 73
42 20 10 2 20 10 20 2 84
43 20 10 5 1 5 1 2 44
44 20 10 10 2 2 2 2 48
45 20 10 20 5 1 5 2 63
46 20 20 1 20 2 2 2 67
47 20 20 2 1 5 5 2 55
48 20 20 5 2 10 10 2 69
49 20 20 10 5 20 20 2 97
50 20 20 20 10 1 1 2 74

Table 7.6 Taguchi Array for Optimisation of Genetic Operator Application Rates

213



Chapter 7 — Modifications to the Prototype GALOPS

Experiment (%Power 1 |%Power 2 [%Power3 |%Power4 |%Power5 [ S/N Ratio
1 20.10 25.62 25.55 20.13 25.44 27.19
2 25.59 20.20 20.13 2552 20.10 26.80
3 20.17 20.17 20.17 25.43 20.04 26.42
4 20.20 20.20 20.20 20.13 20.20 26.10
5 20.04 20.08 20.17 20.10 20.10 26.06
6 20.13 20.20 20.10 34.34 20.10 26.69
7 20.33 20.22 20.17 20.26 20.13 26.12
8 20.04 20.04 20.29 20.33 20.20 26.10
9 20.15 20.24 25.46 20.15 20.10 26.43

10 20.04 20.06 20.04 20.17 20.13 26.06
1" 20.26 20.22 20.17 20.10 20.17 26.10
12 20.10 20.08 20.20 20.13 20.17 26.08
13 20.33 20.06 20.01 20.33 20.10 26.09
14 20.04 20.15 20.04 20.24 20.10 26.07
15 20.06 20.04 20.08 20.04 20.13 26.05
16 20.10 20.17 20.04 20.20 20.13 26.08
17 20.13 20.15 20.06 20.06 20.10 26.06
18 20.17 20.01 20.17 20.20 20.22 26.09
19 20.06 20.04 20.15 20.04 20.15 26.06
20 20.15 20.17 20.08 20.24 20.15 26.09
21 20.11 20.15 20.17 20.08 20.08 26.07
22 20.20 20.06 20.06 20.06 20.08 26.06
23 20.01 20.04 20.08 20.08 20.01 26.04
24 20.04 20.08 20.04 20.06 20.01 26.04
25 20.04 20.01 20.01 20.15 20.13 26.05
26 2552 20.38 20.15 25.68 20.31 26.84
27 20.24 20.31 20.22 20.06 20.26 26.12
28 20.22 25.55 2552 20.22 20.13 26.81
29 20.17 20.06 20.20 20.13 20.13 26.08
30 20.08 20.13 20.24 20.04 20.01 26.06
31 20.13 20.20 20.17 20.22 20.10 26.09
32 20.15 20.20 20.15 25.47 20.08 26.42
33 20.26 2552 20.15 20.10 20.24 26.44
34 20.24 20.06 20.13 20.04 20.06 26.07
35 20.06 20.10 20.17 20.29 20.15 26.09
36 20.04 20.17 20.31 20.17 20.24 26.10
37 20.24 20.17 20.38 20.06 20.36 26.12
38 20.15 20.13 20.06 20.10 20.17 26.07
39 20.20 20.24 20.04 20.08 20.20 26.09
40 20.06 20.22 20.29 20.15 20.06 26.09
41 20.04 20.06 20.22 20.26 20.29 26.10
42 20.06 20.10 20.13 20.08 20.10 26.06
43 20.40 20.10 20.10 20.04 20.13 26.09
44 20.08 20.06 20.17 20.17 20.17 26.08
45 20.13 20.06 20.15 20.15 20.08 26.07
46 20.17 20.22 20.06 20.17 20.08 26.08
47 20.15 20.08 20.17 20.06 20.13 26.07
48 20.04 20.17 20.06 20.04 20.04 26.05
49 20.01 20.06 20.13 20.06 20.10 26.05
50 20.04 20.13 20.13 20.13 20.04 26.06

Table 7.7 Taguchi Results for AVEN8DI DFG

214



Chapter 7 — Modifications to the Prototype GALOPS

Experiment (%Power 1 |%Power 2 [%Power3 |%Power4 |%Power5 [ S/N Ratio
1 23.84 23.89 23.84 23.79 23.82 27.54
2 23.92 23.92 23.82 23.85 23.87 27.56
3 23.92 23.87 23.84 23.87 23.84 27.56
4 23.92 23.89 23.89 23.87 23.87 27.56
5 23.89 23.87 23.82 23.92 23.89 27.56
6 23.87 23.82 23.82 23.79 23.89 27.54
7 23.89 23.79 23.82 23.82 23.82 27.54
8 23.82 23.84 23.87 23.84 23.87 27.55
9 23.84 23.84 23.79 23.89 23.84 27.55

10 23.79 23.89 23.89 23.89 23.89 27.56
1" 23.84 23.87 23.89 23.79 23.82 27.55
12 23.74 23.79 23.84 23.82 23.82 27.53
13 23.87 23.74 23.79 23.84 23.79 27.53
14 23.82 23.82 23.89 23.89 23.77 27.54
15 23.89 23.87 23.89 23.89 23.89 27.56
16 23.82 23.77 23.82 23.82 23.79 27.53
17 23.82 23.84 23.79 23.82 23.79 27.54
18 23.82 23.82 23.84 23.82 23.82 27.54
19 23.79 23.74 23.79 23.82 23.84 27.53
20 23.84 23.79 23.89 23.82 23.79 27.54
21 23.84 23.87 23.89 23.77 23.84 27.55
22 23.82 23.79 23.82 23.84 23.84 27.54
23 23.79 23.79 23.74 23.82 23.89 27.53
24 23.79 23.77 23.77 23.82 23.79 27.53
25 23.77 23.82 23.79 23.77 23.72 27.52
26 23.84 23.92 23.79 23.77 23.87 27.54
27 23.87 23.87 23.99 23.94 23.84 27.57
28 23.84 23.87 23.84 23.77 23.79 27.54
29 23.82 23.87 23.89 23.89 23.79 27.55
30 23.84 23.84 23.87 23.89 23.92 27.56
31 23.89 23.84 23.79 23.82 23.84 27.54
32 23.82 23.87 23.84 23.79 23.87 27.54
33 23.89 23.79 23.89 23.89 23.92 27.56
34 23.87 23.84 23.89 23.79 23.89 27.55
35 23.87 23.92 23.94 23.94 23.87 27.57
36 23.87 23.82 23.87 23.87 23.82 27.55
37 23.82 23.79 23.77 23.82 23.82 27.53
38 23.84 23.77 23.82 23.89 23.84 27.54
39 23.84 23.79 23.74 23.77 23.77 27.52
40 23.79 23.79 23.79 23.82 23.84 27.53
41 23.87 23.82 23.87 23.87 23.79 27.55
42 23.79 23.84 23.79 23.79 23.82 27.53
43 23.82 23.74 23.82 23.82 23.82 27.53
44 23.79 23.82 23.77 23.79 23.74 27.52
45 23.77 23.82 23.77 23.74 23.84 27.53
46 23.77 23.77 23.84 23.82 23.82 27.53
47 23.82 23.82 23.89 23.82 23.79 27.54
48 23.79 23.82 23.84 23.79 23.82 27.54
49 23.79 23.82 23.82 23.82 23.82 27.54
50 23.82 23.79 23.82 23.74 23.82 27.53

Table 7.8 Taguchi Results for AVENSPA

The data in these tables is used to determine the average S/N ratios for each

level of each parameter i.e. the application rate for each transformation. This data,

for both DFGs, is presented in Table 7.9 and Table 7.10.

215



Chapter 7 — Modifications to the Prototype GALOPS

Application Rate
Transformation 1% 2% 5% 10% 20%
Crossover -65.66 -65.50
Retime -26.56 -26.37 -26.09 -26.08 -26.06
Back Retime -26.46 -26.23 -26.27 -26.12 -26.07
Automatic Pipeline -26.31 -26.31 -26.28 -26.14 -26.12
Pipeline -26.33 -26.22 -26.32 -26.18 -26.08
Remove Pipeline -26.21 -26.33 -26.12 -26.27 -26.22

Table 7.9 S/N Ratio Analysis for AVENSDI DFG

Application Rate
Transformation 1% 2% 5% 10% 20%
Crossover -68.86 -68.86
Retime -27.55 -27.55 -27.54 -27.53 -27.53
Back Retime -27.54 -27.54 -27.54 -27.54 -27.55
A-Pipe -27.54 -27.54 -27.54 -27.54 -27.54
Pipeline -27.54 -27.54 -27.54 -27.55 -27.55
Rem-Pipe -27.54 -27.54 -27.54 -27.54 -27.54

Table 7.10 S/N Ratio Analysis for AVENSPA DFG

The tables illustrate that the higher rate of crossover (20%) produces the

largest S/N noise ratio. For the other transformations the graphs of S/N versus

Application Rate are plotted in Figure 7.7 and Figure 7.8 for the AVENSDI and

20

AVENSPA respectively.
Application Rate
0 5 10 15
-26.00 : ‘ ‘
-26.10 ~
-26.20 ~
o)
©
X .26.30 - .
pd X
) ¢ —-o- Retime
-26.40 1 4 ---m-- Back Retime
| ',l —a— A-Pipe
-26.50 1/ —x— Pipeline
¢ —x— Rem-Pipe
-26.60 -

Figure 7.7 Plot of S/N Ratios for AVEN8DI DFG

216



Chapter 7 — Modifications to the Prototype GALOPS

Application Rate

-27.53

-27.54

-27.54

-27.55

S/N Ratio

-27.55

-27.56 -

-27.56 -

— ¢ — Retime

- - & - - Back Retime
—+— A-Pipe
—>— Pipeline
—%— Rem-Pipe

Figure 7.8 Plot of S/N Ratios for AVENSPA DFG

For each transformation, the application rate that gives the largest S/N ratio

is the best application rate for that transformation; the selected rates are listed Table

7.11.

Application Rate
Transformation AVENSDI Result | AVENSPA Result
Retime 20% 20%
Back Retime 20% 10%
Automatic Pipeline 20% 5%
Pipeline 20% 1%
Remove Pipeline 5% 2%

Table 7.11 Selected Application Rates from Taguchi Analysis of Two DFG Designs

The table highlights the difficulty in determining an optimum set of

parameters for a GA intended to optimise a wide range of DFGs with different

characteristics. For the pipeline transformation, a high rate of 20% is selected for

217



Chapter 7 — Modifications to the Prototype GALOPS

the AVENSDI, but a lower rate of 1% is selected for the AVENSPA due to the
different effect that pipelining has on both DFGs. In addition, the determined
application rates for the AVENSDI design, together with a crossover rate of 20%,
would produce a total application rate greater than 100%, clearly an unfeasible set
of application rates. There is no ideal solution for selecting the best set of
application rates from those presented by the Taguchi analysis. The selected
application rates for the GALOPS system are chosen by averaging the values

returned by the Taguchi analysis, illustrated in Table 7.12.

Transformation Application Rate
Retime 20%

Back Retime 15%

Automatic Pipeline | 12%

Pipeline 10%

Remove Pipeline 3%

Table 7.12 Selected Application Rates for GALOP System

7.4 Ranking Selection Scheme

The prototype GA presented in chapter 5 uses the Fitness Proportionate
Selection (FPS) scheme to select individuals for genetic modification and hence
reproduction into the next generation of individuals. The goal of a selection scheme
in an optimisation algorithm is to balance the two objectives of exploration of the
solution space and exploitation of the current information about that solution space
[Goldberg91].

Exploration is achieved by processing a large selection of individuals
throughout the evolutionary process, thereby sampling (exploring) a range of points

in the solution space. Exploitation aims to determine which regions of the solution

218



Chapter 7 — Modifications to the Prototype GALOPS

space are worth exploring by combining and modifying the characteristics of known
good solutions, exploiting the information stored within the current population.

A totally random search is a good example of pure exploration, where the
next set of individuals is created totally at random. The opposite of pure exploration
is a hill-climbing algorithm where the next sample point is entirely dependent upon
the current-best sample point. Pure exploration will result in an inefficient sampling
of the solution space that may require a large amount of time to determine the
optimum solution, if it ever does. Pure exploitation will result in premature
convergence, where the population of individuals converges around local optimum
in the solution space. Premature convergence results in the production of a sub-
optimal solution, as the search space has not been sufficiently explored. The ideal
combination of exploration and exploitation will result in an optimum solution
determined by an efficient exploration of the solution space.

The FPS method attempts to combine the required characteristics of
exploration and exploitation. The selection of the better individuals exploits the
information stored in the current generation. The probabilistic selection of those
individuals, where weaker individuals have some chance of selection, provides the
mechanism for reducing the chance of premature convergence.

However, the problem of rapid convergence, where the entire population
prematurely converges on a single chromosome or sub-optimal region of the
solution space [Baker85, Hanc95], is still a common problem in GAs that use FPS.
This leads to the loss of valuable genetic information stored in the population
throughout the exploration of the solution space. This produces a stagnation of the

search process; the exploration becomes fixed on a particular solution. Such

219



Chapter 7 — Modifications to the Prototype GALOPS

premature convergence usually results in the GA producing a solution that is sub-
optimal.

Premature convergence arises when using FPS due to its method of
assigning a probability of selection. The probability is directly proportional to the
solutions absolute fitness relative to that of the other solutions in the population. As
illustrated in Figure 7.9, this method can suffer from the problem of ‘super-fit’
individuals. A super-fit individual is a chromosome with a fitness significantly

above the average fitness of the entire population.

Solution Space

Super-Fit Individual
g%?% .
5 7 19
Fitness

Figure 7.9 Domination of Fitness by Super-Fit Individual Chromosome

In the example of Figure 7.9, the super-fit individual would be allocated the
majority of selections, as it would be assigned a large selection probability. The
super-fit individual would dominate the population. The population would rapidly
converge upon a single chromosome.

Baker [Baker85] first suggested ranking as a possible solution to the
problem of premature convergence. The basic idea of ranking is to sort the

individuals from best to worst and assign each individual a rank in the ordered

220



Chapter 7 — Modifications to the Prototype GALOPS

population i.e. the best solution has the highest rank. The selection probability is
then determined from a solutions rank as opposed to its absolute fitness value. This
dependence of selection on rank, rather than fitness, is an effective means of
controlling the dominance of super-fit individuals [Whit89]. The effect of ranking

the example population of Figure 7.9 is shown in Figure 7.10.

Solution Space

X X X X X X >ﬂ
0 8
Rank

Figure 7.10 Effect of Ranking on Simple Population Representation

The effect of ranking is to spread out the solutions across the rank range,
removing the dominance of any particular individual. In effect, the solutions have
been mapped from the fitness dimension to the ranked fitness dimension. While the
linearisation method can also increase the range of fitness values, it is unsuitable for
dealing with the problem of dominant individuals. The application of ranking
preserves the relative order of quality of solutions.

The use of ranking also assists in reducing the dependence of selection on
the quality of the GAs evaluation function. In the case of GALOPS, the evaluation
function is a power estimation technique that is subject to inaccuracies due to the
recognised problems of high-level power estimation. Inaccurate power estimations,

though useful as a relative measure of quality, effectively introduce noise into a

221



Chapter 7 — Modifications to the Prototype GALOPS

selection process based on absolute fitness values. One of the features of a GA is
that it is a robust system able to handle noisy data [Beasley93, Goldberg89].
However, the ranking procedure acts as an additional noise filter, removing the
inaccuracies in the absolute data while preserving the ability to compare the
solutions relatively.

The comparative analysis of selection schemes in the literature [Goldberg91,
Hanc95], though useful in understanding the implications of each technique, do not
categorically specify which particular selection technique will give the best
performance. This is partly due to the range of parameters that affect GA
performance, such as population size, mutation rates, number of generations, etc. In
addition, the specific problem also affects GA performance and the selection of
optimum parameters, hence, generalisations for the best selection technique are
extremely difficult [Goldberg91]. Therefore, the use of ranking is evaluated for the
particular problem in this thesis in comparison with the standard FPS technique
used in the prototype version of GALOPS.

The application of ranking involves two distinct processes. First, the
chromosomes are sorted in order of fitness; next, the rank of each individual (based
on its sorted order) is used in a proportionate selection mechanism. Therefore,
ranking has the additional complexity of requiring a sorting step. As noted in
[Goldberg91], the complexity of the sorting step can dominate the overall time
complexity of the complete selection procedure. Therefore, it is important that a
reasonably fast sorting algorithm is used. GALOPS uses a heapsort algorithm
[Teuk95a], which has a time complexity of O (n log n).

The assigned rank of each solution is not merely its order in the sorted

population, as this could result in solutions with the same fitness having a different

222



Chapter 7 — Modifications to the Prototype GALOPS

rank. For example, a number of solutions each with the same fitness would have a
successively increasing rank. This would unfairly bias the selection procedure to
those solutions placed at the top of the pile (of same fitness solutions) during the
sorting process. The algorithm used to calculate the rank assigns the same rank
value to each of these ‘tied’ fitness values. The assigned rank value is equal to the
mean of all the rank values that would have been successively calculated for each
‘tied’ value, as illustrated in Figure 7.11. In this example, all three fitness values of

8 are assigned the same mean rank ((3+4+5)/3).

Sorted Fitness 2 5 8 8 8 10 17 33
Simple Rank 1 2 3 4 5 6 7 8
Assigned Rank 1 2 4 4 4 6 7 8

Figure 7.11 Assignment of Rank to a Population of Individuals

The algorithm for the implementation of ranking within GALOPS is shown

in Figure 7.12.

223



Chapter 7 — Modifications to the Prototype GALOPS

Algorithm Rank Population
Passed population of chromosomes at start of each generation
Sort the population in ascending order of fitness
Reset initial_rank
FOR all chromosomes in population
IF fitness of next_chromosome NOT EQUAL to current
SET rank to initial_rank
Increment initial_rank
ELSE
Reset cumulative_rank
UNTIL end of range of same fitness values
Add initial_rank to cumulative_rank
Increment initial_rank
END UNTIL
Calculate mean_rank
Assign mean_rank to range of same fitness values
END IF
END FOR

End Algorithm Rank Population
Figure 7.12 Pseudo-Code for the Ranking Algorithm

The pseudo-code contains the instructions used to determine a mean rank for
a range of chromosomes with the same fitness value. Once the rank values have
been generated they are used in place of the fitness values in the FPS scheme i.e. the
roulette wheel is now comprised of the rank values rather than the actual fitness

values.

7.4.1 Experimental Analysis of Effect of Ranking

The benchmark designs (AVENSPA, AVENS8DI and 8TAPFIR) described in
Chapter 5 are used to investigate the effect of the ranking selection scheme. The
LAT2 and FIR3 designs are not used because they are relatively simple designs
whose synthesis is unaffected by the selection scheme used. Each design was
synthesised 20 times to reduce the effect of stochastic errors on the results. Table

7.13 lists the mode power consumption (expressed as a percentage of the original

224



Chapter 7 — Modifications to the Prototype GALOPS

power consumption) for each of the designs, both for the use of the FPS and Ranked

selection schemes.

Mode Power Consumption
Percentage

Design FPS Ranking

FIR8 15.95 15.86

AVENSDI 20.06 20.01

AVENSPA 23.82 23.82

Table 7.13 Mode Power Consumption Obtained with FPS and Ranking Selection

Schemes

The table illustrates that for two of the three designs analysed the power
optimisation process is improved with the use of a ranked selection scheme. The
AVENSPA is not improved but the use of ranking does not have a detrimental
effect either. Therefore ranking is incorporated as a standard component of the

GALOPS tool.

7.5 Summary

This chapter has introduced extensions to the genetic framework in an
attempt to improve the efficiency and success of the search and optimisation
process. Taguchi optimisation, a technique for determining a good set of operating
parameters, was applied to the system to determine application rates for the genetic
operators. The results illustrated the difficulty in determining a generic set of
parameters in a system that processes a wide range of problems with different

optimisation requirements.

225



Chapter 7 — Modifications to the Prototype GALOPS

Ranking selection was investigated and shown to improve the results
obtained with GALOPS compared with the FPS scheme. The rank-based selection

scheme is therefore incorporated as a component in the GALOPS system.

226



Chapter 8 —Results

Chapter 8 — Results

The algorithms used within GALOPS have been described in the previous
chapters. It is implemented in the C language and the current version comprises
approximately 7000 lines of source code. The system was developed on a Microsoft
Windows95 platform using Microsoft Developer Studio. However, the use of ANSI
standard C and the exclusion of any machine specific directives (such as the use of
windows) was chosen to produce portable code that can be transferred to any
system with a C compiler.

This chapter presents the results obtained with the GALOPS tool. The
results are illustrated with a set of ten benchmark designs chosen to cover a range of
signal-processing applications; these designs are introduced in section 8.1. Section
8.2 presents the operating parameters of GALOPS used to produce the results in this
chapter. Section 8.3 presents the results for all ten designs in terms of the power

reduction obtained with the GALOPS tool.

8.1 Benchmark Circuits

The benchmark designs presented in section 5.7 were used both to illustrate
the effectiveness of the synthesis tool and to investigate improvements and
additions to the original tool. In addition to those designs, this chapter presents
another 7 benchmark designs for analysing the GALOPS tool. The designs were

selected to cover a wide range of signal processing applications of varying

227



Chapter 8 —Results

complexity. The set of 10 benchmark designs used to analyse the final version of

GALOPS are:

e S8TAPFIR — The 8" order FIR Filter. This is an example of a purely non-
recursive DSP operation, the DFG consists entirely of feed-forward data
transfers.

e AVENSDI — The direct form of the 8" Order Avenhaus Filter

e AVENSPA — The parallel form of the 8" order Avenhaus filter. Both
versions of the Avenhaus filter contain a combination of recursive and
non-recursive sections in their DFGs.

e DCST — A specific implementation of a discrete cosine and sine
transformation algorithm for high-speed VLSI implementation [Chiu94].
This is an example of a non-filtering signal processing application,
extensively used in multimedia and data compression.

e BIQUAD3 — A 3" order Biquad filter [Rabaey9la]. This filter is
comprised of two distinct stages, both of which contain recursive loops.

e GMLAT4 — A 4 stage Gray-Markel filter [Gela93], a complex filter
structure with a large recursive loop on its output stage.

e ELLIP5 — A 5™ order elliptic wavelet filter. This complex filter contains
40 nodes in its DFG.

e LMS5 — A 5™ order least mean square algorithm [Gela93].

e VOLTERRA —A Volterra filter. This design presents a complex problem
to the synthesis system as it consists of a single large recursive loop.

e ORTH2LAT - A 2™ order orthogonal lattice filter [Gela93].

228



Chapter 8 —Results

The DFG of each of the benchmark designs is included in Appendix A.

8.2 GALOPS Operating Parameters
GALOPS is executed with the operating parameters determined in previous

chapters of the thesis —

¢ Ranked Based Selection of Chromosomes

¢ Transformation Application Rate
Retime 20%
Back Retime 15%
Automatic Pipeline 12%
Pipeline 10%
Remove Pipeline 3%
Crossover 20%
Unfolding (Postponed) 5%
Elitism 2%

Each design is synthesised 30 times to reduce the effects of the stochastic
nature of the GA on the presented results for each design. The stopping criteria for
the GA is based on a timeout parameter; if no improvement in the fittest solution is
obtained for 500 generations then the GA is considered to have found its ‘best’
solution and the synthesis process is stopped. The best solution found over all
generations is stored as the best solution determined by the GA for that particular

design.

8.3 Results for Ten Benchmark Designs

As discussed previously in chapter 5, the unfolding transformation is applied
later in the evolutionary process to attempt to optimise designs produced with the
other transformations. Application of unfolding produces large designs that

effectively are parallel versions of the original. Therefore the results are presented

229



Chapter 8 —Results

for both the unfolding and non-unfolding case, to illustrate the power reduction that

can be obtained without creating a parallel processing form of the algorithm.

Table 8.1 lists the results obtained for the ten benchmark designs using the

operating parameters listed in section 8.2.

Without Unfolding With Unfolding
Benchmark | Power Area Supply Power | Area Supply
Design (% Of (% Of Voltage % Of | (%Of Voltage
Original) Original) (Volts) Original) | Original) (Volts)
STAPFIR 15.76 441.2 1.5 13.37 795.8 1.5
AVENSDI 20.06 304.2 20 19.64 524.8 20
AVENSPA 23.82 155.8 23
DCST 30.68 102.9 2.8 28.68 150.8 2.8
BIQUAD3 30.89 104.3 2.8
GMLAT4 32.71 152.7 2.8 32.39 382.4 2.8
ELLIPS 69.86 58.98 4.3
LMSS 88.90 62.73 5.0 82.55 117.0 5.0
VOLTERRA 95.56 69.06 5.0
ORTH2LAT 100.0 100.0 5.0 97.55 162.1 5.0

Table 8.1 Overall Power Reduction and Area Increase for Benchmark Designs

The table is split into two halves, the left half shows the results obtained

without unfolding and the right half shows the results obtained with unfolding. The
shaded entries in the unfolding section of the table denote benchmark designs that
did not benefit from the application of unfolding i.e. the unfolded designs did not
consume less power than the non-unfolded designs.

The Power column refers to the estimated power consumption of the best
design found throughout the evolutionary search process. It is expressed as a
percentage of the original designs’ power consumption. The percentage illustrates
the improvement in power consumption obtained by the GALOPS synthesis tool,
rather than presenting absolute values estimated using the high-level power

estimation module. As discussed previously, the techniques used in the high-level

230



Chapter 8 —Results

power analysis module are not intended to provide absolute power consumption
statistics; rather, the power analysis enables the comparison of power consumption
between two designs. In this case that comparison, between the optimised and the
original design, is expressed as a percentage.

The Area column refers to the area of the best-found design with the power
consumption reported in the power column. This is also expressed as a percentage
to illustrate the increase or decrease in size in relation to the original design. The
Supply Voltage column presents the estimated supply voltage that the best-found
design requires in order to meet the power consumption reported in the power
column, expressed in Volts.

The following sections discuss the results obtained with each of the

benchmark designs.

8.3.1 8TAPFIR

The 8TAPFIR design reports the largest power reduction, the best-found
design consumes 15.763% of the original design for the non-unfolded case. This
was obtained through the use of pipelining and retiming to reduce the critical path
from an initial 8 elements to 1 element; this results in an 8-fold increase in speed
which can be traded for a reduced supply voltage of 1.469V. The implications of
operating at low voltages are discussed in section 8.5. of this chapter. The estimated
area of the datapath component is approximately 4.4 (440%) times the original
design. The initial design was estimated to require 2 multipliers and 1 adder,
whereas the low-power design requires 8 multipliers and 7 adders, 6 extra
multipliers and 6 extra adders. The reduction in power consumption was obtained

through exploiting the available concurrency in the graph, increasing the parallelism

231



Chapter 8 —Results

through pipelining. This increases the speed of the design (hence allowing a
reduced voltage) but also increases the amount of operations that must be performed
in parallel and hence increases the required amount of hardware.

The unfolded 8TAPFIR design consumes 13.37% of the power of the
original, a further reduction of approximately 2% compared to the non-unfolded
design. The area is approximately 800% that of the original design, primarily due to
the requirement for 16 multipliers and 5 adders. The results illustrate that the
unfolded design is larger and requires a higher supply voltage than the non-unfolded
design but consumes less power. This is possible as the power analysis process
considers the average power consumed per sample. The unfolded version is
processing 4 samples in parallel, therefore its effective switched capacitance is ¥4 of
its actual switched capacitance (as explained previously in section 5.6). While the
unfolded version processes 4 samples in parallel, its estimated area is not 4 times
that of the non-unfolded version (it is approximately twice the non-unfolded
version). Therefore the interconnect component of switched capacitance (related to
area) has also not increased 4-fold, resulting in an overall reduction in effective
switched capacitance.

While unfolding does produce further power reduction this example
illustrates that there exists a trade-off between area and power. The unfolded
version only produces a further 2% reduction in power yet it is twice the size of the
non-unfolded version.

Figure 8.1 illustrates the performance of the GA for a typical synthesis run;
the figure illustrates the best fitness in the population and the average fitness of the

whole population.

232



Chapter 8 —Results

Fitness

—Best Fitness

—— Average Fitness

O T T T T T T T T T T
1 21 41 61 81 101 121 141 161 181 201

Generation

Figure 8.1 GA Performance for 8TAPFIR Non-Unfolded

For this example the design was produced within 180 generations, on
average the 8TAPFIR required 420 generations to produce the best-found design.
The unfolded designs are produced, on average, within 640 generations. The longer

time is primarily due to the use of the unfolding principle, as described previously.

8.3.2 AVENS8DI

This filter has a power consumption of 20.058% of its original high-level
design with a corresponding area of 304% of the original design. The power
reduction was primarily obtained through a reduction in supply voltage to 1.995V.
This was achieved by reducing the critical path from 9 to 3 elements, a 3-fold speed
increase. As with the 8TAPFIR design, this was achieved by increasing the
parallelism in the design through pipelining and retiming; the initial design required
2 adders and 2 multipliers, the optimised design requires 6 adders and 6 multipliers,
hence the 3-fold increase in area.

The application of unfolding further reduces the power consumption of the

AVENSDI design, but it is unable to reduce the effective critical path below 3

233



Chapter 8 —Results

elements. The reduction in power consumption is due to the parallel processing of
samples; the unfolded design processes two samples in parallel while the area has
increased less than two-fold. The unfolded design is approximately 1.7 times the
size of the non-unfolded design, yet this large increase in area only yields a further

0.42% reduction in power.

;| |

2 J —— Best Fitness
14 —— Average Fitness

0 T T T T T T T T T T
1 21 41 61 81 101 121 141 161 181 201

Generation

Fitness

Figure 8.2 GA Performance for AVEN8DI Non-Unfolded

The GA performance is illustrated in Figure 8.2. The best-found design is
found within an average of 210 generations (155 generations for this example). The

unfolded version is found within an average of 862 generations.

8.3.3 AVENSPA
Reducing the critical path from 8 to 3 elements has reduced the power to
23.816%. The area of the optimised design is 150% of the original design, a 50%
increase in area with greater than 75% reduction in power. The application of
unfolding did not improve the obtained power reduction as unfolding could not

reduce the effective length of the critical path and could not reduce the eftective

234



Chapter 8 —Results

switched capacitance. The unfolded AVENSPA designs were greater than N times
the size of their non-unfolded originals, where N is the unfolding factor (and the
number of samples the unfolded version processes in parallel).

The GA performance is illustrated in Figure 8.3. In this example the best-

found design was found on generation 86, the average is 100 generations.

— Best Fitness
—— Average Fitness

Fitness

0 T T T T T
1 21 41 61 81 101

Generation

Figure 8.3 GA Performance for AVENSPA

8.3.4 DCST
This non-filter signal processing application has a reduced power
consumption of 30% due to a reduction of its critical path from 6 to 3 elements. The
large power reduction has been obtained with relatively minimal impact on area.
Unfolding produces a further decrease, again due to the processing multiple
samples in parallel reducing the effective capacitance switched per sample. The GA

performance is illustrated in Figure 8.4.

235



Chapter 8 —Results

\n
N
o
S
ic 15 — best fitness

1 —— average fithess

0.5 -
0 T T T T T T T 1
0 50 100 150 200 250 300 350 400

Generation

Figure 8.4 GA Performance for DCST Unfolded

This example illustrates the effect of unfolding on the GA performance. The
non-unfolded best design is found within an average of 5 generations. The
postponing principle reserves application of the unfolding transformation for a few
hundred generations to ensure that the best non-unfolded design has been found. In
this example the application of unfolding at generation 389 begins the search of the
unfolded design solution space; the best-found unfolded design is found at

generation 395 (on average it is found within 393 generations).

8.3.5 BIQUAD3
This design has a 2-fold speed increase due to the critical path being reduced
from 6 to 3 elements. The transformations increased the available parallelism in the
design enabling more operations to be performed in parallel. However, rather than
requiring more resources the transformations enabled more efficient use of the
initial resources (2 adders and 2 multipliers). The small area increase is due to the
extra number of registers required to implement the faster design (achieved with a

combination of pipelining and retiming). The initial design is estimated to require 5

236



Chapter 8 —Results

registers while the optimised design is estimated to require 8 registers. Unfolding

failed to improve the design.

The GA performance is illustrated in Figure 8.5. The optimum BIQUAD?3

design is found, on average, within 8 generations. This relatively fast optimisation

is due to the pipelining transformations specifically targeting the minimisation of

the critical path. The inherent optimisation characteristics of the implemented

pipeline transformation, to target

critical path reduction, assist the GA search

mechanism in quickly finding the best solution for this design.

3.5 4
3 M c D
2.5 A
2 4
@
g
E
1.5 1
A
1 u
— Best Fitness
— Average Fitness
0.5 -
0 T T T T T T T T 1
1 2 3 4 Ge%eration6 8 ° 10
Figure 8.5 GA Performance for BIQAUD3

As this is a relatively simple optimisation process the effect of each

optimisation step can be illustrated by points A, B, C and D. Points A and B

237



Chapter 8 —Results

correspond to large increases in fitness where the critical path is reduced to its final
length of 3 elements. Points C and D correspond to further optimisation steps,
which reduce the area of this faster design. As voltage has the greatest impact on
power it is the speed reducing transformations that account for the majority of the
fitness increase.

This curve is typical of the synthesis process for all of the benchmark
designs. Initial fitness improvements are primarily due to the reduction of critical
path, resulting in a reduction in supply voltage. Once the shortest critical path has
been determined the GA searches for the best (smallest) area implementation of that
fastest design. These reductions in area correspond to smaller increases in fitness; in

effect the fastest design is subsequently fine-tuned for small area implementation.

8.3.6 GMLAT4

This DFG has a lower supply voltage by reducing the critical path from 8 to
5 elements. The area has increased by 50% due to the requirements for an extra
adder and an extra multiplier in the optimised version. The optimised version also
requires 13 registers (compared to the original’s 7) due to the use of pipelining
increasing parallelism and hence reducing the critical path. Unfolding produces a
design with an unfolding factor of 3 (processing 3 samples in parallel) with only a
0.316% further reduction in power compared to the non-unfolded version, despite
requiring approximately 3 times the size of the non-unfolded version. This
illustrates the importance of analysing both the unfolded and non-unfolded results
as the very small reduction in power for the unfolded version comes at a large

expense in area compared to the non-unfolded version.

238



Chapter 8 —Results

The GA performance is illustrated in Figure 8.6. The optimum design is
found on generation 12 (found on average within 12 generations). The unfolded

design is found, on average, within 390 generations.

3,
2.5 /

—— Best Fitness

Fitness
- o
\\

—— Average Fitness

0 @ T/ *"1T "1 /1 1 11 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Generation

Figure 8.6 GA Performance for GMLAT4 Non-Unfolded

8.3.7 ELLIP5

This large filter has an initial critical path length of 14 elements, the
GALOQPS tool has reduced this to 12 elements enabling the voltage to be reduced to
4.328V. In addition, the non-optimised version is estimated to require 3 adders, 2
multipliers and 10 registers. The optimised version is estimated to require 3 adders,
1 multiplier and 10 registers, a reduction of 1 multiplier. As the multiplier is the
most complex and largest component in the datapath, this reduction produces a
significant saving in area of approximately 40% [Ma90]. This example illustrates
that the GALOPS tool optimises for supply voltage and area. The reduction of
supply voltage produces the largest power savings; the impact of area on switched
capacitance (and hence power) results in the tool indirectly optimising area while

reducing power consumption.

239



Chapter 8 —Results

The GA performance is illustrated in Figure 8.7. The best design is typically

found within 19 generations.

1.6
1.4
12 /_//
o 17
é’ 0.8 -
i 06 - — best fithess
04 - —— average fitness
0.2 1
o—mm77— T T
1 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20
Generation
Figure 8.7 GA Performance for ELLIPS
8.3.8 LMS5

This DFG has a reduced power consumption of approximately 90% without
any reduction in supply voltage. The GALOPS tool was not able to reduce the
critical path length but was able to reduce resource utilisation from 4 adders and 5
multipliers to 3 adders and 3 multipliers, a reduction in area of approximately 40%.
Unfolding further reduced power by reducing the eftective switched capacitance but
with an associated 17% increase in area compared to the initial design (88% larger
than the optimised non-unfolded design).

The GA performance is illustrated in Figure 8.8. The initial few generations
show a drop in the average fitness. The transformations are exploring the solution
space, producing inferior designs with longer critical paths and larger areas than the
initial design. Eventually the search moves towards a better region of the solution

space that contains designs with smaller areas, hence the average fitness of the

240



Chapter 8 —Results

entire population begins to increase. The best solution is found, on average, within

32 generations and 430 generations for the non-unfolded and unfolded cases

respectively.

Fitness

095 . — Best Fitness
—— Average Fitness
0.9
0.85
08 T T T T T T T T

1 256 29 33 37 41 45 49

Generation

1 5 9 13 17 2

Figure 8.8 GA Performance for LMS5 Non-Unfolded

8.3.9 VOLTERRA

As with the LMSS design, the GALOPS tool was unable to reduce the

critical path length of the VOLTERRA design. The critical path of the VOLTERRA

design is a large feedback loop that limits the application of pipelining

transformations. The power reduction of 5% is achieved by optimising resource

utilisation; the optimised VOLTERRA is estimated to require 1 less multiplier than

the initial design.

The GA performance is illustrated in Figure 8.9. The fittest solution is found

on the first generation, the critical path is not reduced but the area is. As with the

LMSS design the average fitness initially drops before increasing.

241



Chapter 8 —Results

Fitness
—
(e)
—
|

14 — Best Fitness
—— Average Fitness

1 26 29 33 37 41 4

Generation

1 5 9 13 17 2 5 49

Figure 8.9 GA Performance for VOLTERRA

8.3.10 ORTH2LAT

The results illustrate that the GALOPS tool failed to reduce either the
voltage or area of this design, the power consumption was not reduced. As with the
LMSS5 and VOLTERRA the critical path is a recursive loop which limits the
application of the transformations for path reduction. In addition, the
transformations were unable to reduce the resource utilisation.

The unfolding transformation produced a design with a power consumption
of 3% less than the original design with an associated 62% increase in area. The
effective capacitance of the 2-unfolded design is less than that of the original
design, thus the 3% reduction in power.

The GA performance is illustrated in Figure 8.10.

242



Chapter 8 —Results

1.03 -
1.02 -
1.01

0.99 -
0.98 -
0.97
0.96 -
0.95

0.94 T T T T T T T 1
0 100 200 300 400 500 600 700 800

— Best Fitness
—— Average Fitness

Figure 8.10 GA Performance for ORTH2LAT Unfolded Design

In this example the application of unfolding at generation 376 produces the
best-found design. The average fitness varies throughout evolution as the
transformations are producing designs which are sub-optimal compared to the
current fittest. This decreases the average fitness of the population. The process of
natural selection then favours the selection of the fitter members of the population,
increasing the average fitness. This process is continually repeated throughout the

evolution hence the variation in the average fitness.

8.4 Discussion
Figure 8.11 illustrates the power reduction and area increase obtained with
all of the benchmark designs, the ‘X’ denotes a design produced with the unfolding

transformation.

243



Chapter 8 —Results

9.000
8.000
7.000 +
6.000 - X B Power
5.000 - Reduction
X Ratio
4.000 + X
3.000 1 OArea
’ X Increase

2.000 + X Ratio
ey jil]ﬂ
0.000 +

= 5 I @ s2) 3 2 9 o ®

g ¢ ¢ € 3§ § § E & g

© & 2 g © e 5

DFG

Figure 8.11 Power Reduction and Area Increase for Ten Benchmark Designs

The 8TAPFIR design has the largest power reduction and also the largest
area increase. This is due to the large initial critical path in this design that is
reduced to its minimum possible length of 1. Therefore the speedup ratio is large,
allowing for a large decrease in voltage and hence a large reduction in power. The
non-recursive nature of the 8TAPFIR design is also beneficial for power reduction;
as it does not contain any feedback loops the application of the transformations is
not limited and unfolding can produce designs with considerable power savings by
reducing the effective critical path length (hence the large area increase).

The AVENSDI to ELLIPS designs display decreasing amounts of power
reduction. This is partly due to the increased amount of recursion in these designs
limiting the application of the transformations; in particular, when the critical path
is within a recursive loop the transformations are unable to significantly reduce its
length. For these designs, excepting the AVENSPA design, unfolding does not
produce a reduction in the length of the critical path but it does reduce the effective

switched capacitance by processing more samples in parallel.

244



Chapter 8 —Results

The last three designs all contain significant amounts of recursion; of
particular importance is the fact that the critical path is contained within a recursive
loop. Therefore the transformations are unable to speed-up the design so the supply
voltage cannot be reduced. In these designs the power reduction is obtained through
reducing the effective capacitance.

The results for each design are presented in comparison with their original
design instead of absolute values. This accounts for some of the difference in power
consumption between the benchmark designs. Where a design has a relatively large
critical path, which can be significantly reduced, it can operate from a significantly
lower supply voltage and hence report a large percentage decrease in power. If a
design has a small initial critical path then reducing it may not produce the same
speed-up, and hence the same voltage reduction, as the design with the larger
critical path. For example, consider the AVENSDI and DCST designs. The
AVENSDI has an initial path of 9 elements, the DCST has an initial path of 6
elements. Both are reduced to 3 elements, a 3-fold and 2-fold increase in speed
respectively. Therefore, the AVENSDI has a lower supply voltage (due to its larger
speed increase) and hence a larger percentage power reduction is reported. The
example illustrates that the reported power reduction is related to the complexity of
the initial design; hence the larger design in this case reports a larger power
reduction.

The ELLIPS and VOLTERRA designs are optimised for power while
reducing the estimated area of the design, illustrating the dual consideration of
speed and area during the low-power design process. However, speed will always
be the main optimisation factor due to the quadratic influence of supply voltage on

power. The results clearly illustrate that large power savings are possible through

245



Chapter 8 —Results

reduction of supply voltage, operating the device at a supply voltage that produces

the required throughput.

8.5 Conclusions

This thesis has presented a low-power synthesis tool that integrates various
GA search and optimisation techniques within a power-exploration framework. The
power exploration includes a high-level power estimation tool that considers the
effect of the high-level synthesis process on the candidate designs, estimating the
power consumption due to low-level parameters such as capacitance and area.

Results were presented for ten benchmark designs that cover a range of
applications of varying complexity and implementation requirements. The results
illustrate that the tool is capable of processing and analysing a range of designs,
producing significant power reductions in most cases.

The suggested supply voltages for the low-voltage designs are significantly
different to the industry standards of 5V and 3.3V. Different supply voltages for
ICs, where the whole core of the chip operates at a non-standard supply voltage, are
possible through the implementation of small-area, efficient, voltage-level
converters on the IC [Strat94, Strat94a]. The IC is fabricated to require the specified
external supply voltage (such as 3.3V), but the on-chip voltage converter supplies
the required low-power voltage to the device core. Such systems have been used to
implement practical, fabricated signal-processing devices, for example in a low-
power portable multimedia terminal [Chan94, Sheng92] and low-voltage DSP
devices [Lee98].

The latest generation of mobile Pentium-processor chips is an example of

the application of low-voltage to produce low-power devices. They have been

246



Chapter 8 —Results

specifically designed to meet the challenge of providing full functionality and
longer battery life for modern portable computing systems. The devices operate
from a 3.3V power supply but they have a core voltage of 2.45V to reduce power
consumption [Intel98b]. The required low-voltage for the core is provided with the
addition of an extra supply voltage input, an alternative solution to using an on-chip
voltage converter. The description of the processor in [Intel98b] also notes that
future developments of the processor may utilise an even lower core supply voltage
in order to reduce power further.

Recent techniques for power reduction have seen the use of dynamically
varying voltages, where the voltage of the processor can be determined at run-time.
Certain tasks can be processed over long run-times where the result is not required
immediately. Rather than process the task as fast as possible the supply voltage of
the processor is selected to reduce system speed so that the task is processed within
the required time [Hong98]. In addition separate systems can be run at different
voltage levels, to maximise the potential voltage reduction for the overall system
[Shiue98].

These practical examples illustrate the feasibility of operating ICs at
different core voltage levels. While non-standard supply voltages have an impact on
cost and fabrication complexity, they are essential for producing ICs where low
power consumption is a critical requirement, as illustrated by the results produced
with the GALOPS tool.

The area increases for those designs with large power reductions follow the
traditional trend of trading off area for speed (and hence lower supply voltage). The
closer the design is expected to operate at its minimum possible critical path length,

the more parallel processing will be required and hence a larger number of

247



Chapter 8 —Results

resources is required. The application of unfolding, to utilise parallel processing of
samples for higher speed, increases the area-speed trade-off. Traditionally, increases
in VLSI integration, allowing for devices with more transistors, were traded off for
speed increases. The presented results illustrate that in future, increases in device
integration and device size may be traded off for power reduction where the desired

speed is already obtained.

248



Chapter 9 — Multi-Objective Search Space Exploration

Chapter 9 - Multi-Objective Search Space Exploration

The optimisation process presented in GALOPS attempts to optimise a
single parameter, the estimated power consumption of a signal-processing
algorithm, for VLSI implementation. However, practical VLSI design, as with
many engineering design problems, involves the simultaneous optimisation of a
number of objective parameters such as power, area, speed, cost, etc.

Within the context of a GA, the multiple parameters need to be integrated
into the optimisation process, to ensure that all parameters are simultaneously
optimised 1.e. no single parameter is concentrated on at the expense of others. The
simultaneous optimisation of all parameters will produce a single solution, a global
optimum solution for all objectives. One technique for implementing multiple-
parameter optimisation is the use of a weighted fitness function [Arslan96a,

Arslan96b] as illustrated in (9.1).

Total _Fitness = a.Parameter, + . Parameter, +....+ ¢ Parameter, (CAY

The use of a weighted fitness function combines the discrete fitness values
for each parameter into a scalar fitness value. The scalar fitness value is used to
assess the overall quality of the solution. Equation (9.1) demonstrates that a typical
implementation of a weighted fitness function is a sum of all the individual fitness
scores for each of the parameters, from 1 to N different parameters. The variables
o, 3, etc. are used to weight the individual contribution of each parameter to the

overall fitness.

249



Chapter 9 — Multi-Objective Search Space Exploration

One of the main problems with such a technique is the definition of the
weighting variables, as these will significantly affect the performance of the system
in determining the globally optimal result [Gwee96]. The weights effectively place
a priority on the optimisation of a particular parameter in relation to the
optimisation of other parameters. Therefore, assigning the correct priority to the
multiple parameters is required to enable the optimisation process to produce the
global optimum solution.

In a variety of practical engineering problems, prioritisation of the multiple
objectives is a complex and difficult process. Such problems are often characterised
by a number of competing objectives, where improvements in one parameter come
at the cost of degrading the quality of other parameters. The trade-offs between such
competing parameters are often non-linear. For example, consider the dual-
objective problem of synthesising a minimum area and minimum power VLSI
device. The two parameters are in competition with each other as many low-power
design techniques use extra area to decrease power. In a practical design process the
VLSI device may be targeted for a certain die size. An increase in die size past this
upper limit may result in a large increase in cost (and decrease in fitness), whereas
increases below this limit will have a small effect on cost and overall fitness. Thus,
the effect of area on the overall fitness is dependent upon the actual fitness value. A
single weight to assign a specific priority to the area parameter would not accurately
reflect the total fitness for all solutions.

If the non-linear nature of the objectives can be overcome, there is still the
problem of assigning a relative priority to each parameter for all cases e.g. is area

more important than power, and if so, how much more important?

250



Chapter 9 — Multi-Objective Search Space Exploration

The example illustrates the difficulty of combining distinct parameters into a
single fitness evaluation to generate a single globally optimal solution. An
alternative to a weighted fitness function is to use the GA to explore the solution
space and present a range of alternative non-dominated solutions (NDS) that are
each optimal for a single parameter [Esben96, Gwee96]. This removes the need to
prioritise parameters during the optimisation process. The alternative solutions can
then be analysed by the expert designer to select the solution that best satisfies the
specified requirements.

During the optimisation process the GA already evaluates many alternative
solutions. Rather than discard this useful information when presenting a single
solution, the information can be used to illustrate the trade-offs between different
parameters in the optimisation problem. The trade-off between competing
parameters is typically presented as a Pareto-surface [Goldberg89].

The use of Pareto-surface information, collected throughout the GA
optimisation process, has been previously illustrated to be beneficial to the low-
power synthesis process in the Power-Profiler tool [Martin95, Martin96]. Power-
Profiler used the points explored during the GA search to present architectural
trade-offs as pareto-surfaces, illustrating the trade-off between number of functional

units and power for example.

9.1 Pareto-Surface

A Pareto-surface is made up from a set of non-dominated solutions (NDS);
that is, for the parameters under analysis, each point on the pareto-surface has no
better values for those parameters. Figure 9.1 shows an example of a pareto-surface

for a 2-dimensional optimisation problem.

251



Chapter 9 — Multi-Objective Search Space Exploration

40
35 Feasible Solution Region
O
> 30 O
5 25 <>ﬁ'3 .
o
20 O m| O
E 15 e U = O
© o -
& 10 - C O -
5 | Non-Feasible Solution Region O
0 T T T T *
1 3 5 7 9
Parameter X
o Pareto-Points o0 Non-Optimal Points —— Pareto Surface

Figure 9.1 Example Pareto-Surface for 2-Dimensional Optimisation

The chart illustrates a typical engineering design example where 2
competing parameters (X and Y) are required to be minimised. Each solution is
illustrated on the chart as either a diamond or a square. The diamonds denote the set
of NDS i.e. those solutions for which no point has a lower value for both the X and
Y parameter. These points are known as Pareto-optimal or Pareto-points. The
Pareto-surface, a curve joining the set of Pareto-points, marks the boundary
between the range of feasible and non-feasible solutions, illustrating the trade-off
between each parameter.

The set of NDS does not present an obvious single optimum solution. The
task of selecting the best solution is left to the design engineer, dependent upon the
priority placed on each parameter. One of the main advantages of the Pareto-chart is
that it shows the effect of varying a parameter, as opposed to presenting the
designer with a single point solution. For example, the chart may show that a small

variation in X, previously set as a constraint, may allow such a large reduction in Y

252



Chapter 9 — Multi-Objective Search Space Exploration

as to make the overall design feasible. The Pareto-chart allows the designer to use
their expert knowledge of the problem to select an optimum solution.

The range of alternative solutions may be more useful than a single point
solution for the next stage of the design and implementation process. A single
solution may be selected from the NDS based on some additional criteria not
present in the optimisation strategy, such as ease of understanding or preferred
implementation styles. Such criteria are difficult to define in qualitative terms and
hence very difficult to incorporate into a design objective function.

Within the context of a CAD synthesis tool, the presentation of design
alternatives is regarded as essential by most design engineers; CAD users do not
like point solutions [Gajski94]. The presentation of a set of optimal solutions
enables the design engineer to gain a greater understanding of the low power
solution space and the power characteristics of the problem to be optimised.

The results presented for the GALOPS tool in chapter 8 are the lowest
power solution of each design. The results illustrate that the specified power
reduction is typically achieved through an increase in area. While the identification
of the lowest power solution is important, it is also useful to the CAD designer to
present solutions that span a range of areas, enabling the designer to select the
lowest power solution for a range of area constraints.

The pareto-surface is used to illustrate the trade-off between area and power
of the designs. For each point on the area axis the lowest power solution determined
by GALOPS is identified. These points make up the set of NDS. The generation of
pareto-surface information is used to examine the effect of the power optimisation
process on the area of the design. Rather than generating a single low-power

solution, the pareto-surface information can be used by the design engineer to select

253



Chapter 9 — Multi-Objective Search Space Exploration

the best low-power solution for a specified area constraint. Therefore, the pareto-
surface enables the smallest implementation of a particular low-power design or, it
enables the identification of the lowest-power design that can be synthesised for a
specific area. Rather than trying to optimise a single solution for low-power and
small-area, GALOPS concentrates on optimising for low-power, consequently

presenting a range of low-power solutions across the area axis.

9.2 Pareto Surface Generation in GALOPS

A pareto-point is defined as that which has no lower value in both the X and
Y axes, the area and power axis in this case. Identification of Pareto-points can be
split into a two-stage process, where all designs with the lowest Y value for every
generated X value are first identified. This set of designs is sorted into ascending X-
values. The next stage steps through the set of sorted designs, removing any with a

larger Y value than the previous lowest found. This process is illustrated in figure

X.

Stage 1 — Creates All Points in

100 - Graph (Minimum Power for Every
< * Area Value)
~ 80 - ]
2 .
§ 60 - ¢ [ Stage 2 - Identifies Pareto-Points
3 . (Minimum for both Power and
L 40+ L] Area)
- °
(]
2 20 - N
o

O T T T 1
0 5 10 15 20
Area (mm2)

¢ Pareto-Optimal Points m Dominated Points

Figure 9.2 Identification of Pareto-Points in GALOPS

254



Chapter 9 — Multi-Objective Search Space Exploration

Executing both stages produces a set of NDS, the area-power pareto-optimal
points. After each generation is created, the power and area of each design is
analysed to create a list of points following stage 1 i.e. the minimum power for each
area explored during the synthesis process. After the GA has determined the lowest
power solution, stage 2 is executed to determine which of these points are pareto-

optimal.

9.3 Area and Power Trade-off for Benchmark Designs

This section illustrates the area and power trade-offs, through the use of
pareto-surface analysis, for the benchmark designs presented in section 8.1. The
pareto-charts were generated using the techniques described in section 9.2. The GA
parameters were the same as those used to generate the results presented in section
8.3. Each pareto-chart is presented in a separate section for that design. In each
chart a solid line denotes the pareto-surface. The pareto-surface is presented as a
straight line rather than a curve joining the pareto-points. This is due to the nature of
the VLSI synthesis problem. Solutions exist at discrete points in the solution space;
a curve may imply that there is a range of solutions between two points when no
feasible solutions actually exist between those points.

Each chart also shows the unique points in the solution space examined
while searching for an optimum solution for that design. Each ‘x’ denotes a unique
power-area point for a design. It should be noted that each area-power point does
not necessarily correspond to a single design. A number of designs can have the
same area-power characteristics, as illustrated in Figure 9.2. Therefore, the number
of ‘x’ points in the graph may not be representative of the total number of designs

analysed throughout the search process

255



Chapter 9 — Multi-Objective Search Space Exploration

3 Multipliers
1 Adder

= = B

Same Power
Consumption

Figure 9.3 Example of different DFGs with the Same Power and Area

Characteristics

9.3.1 8TAPFIR

Power (%)

120 -
100 - % <— Initial Solution
—— Pareto Surface
80 - x Search Point
60 -
40 -
20 7 § § = X X X
0 T T T T T T T 1
0 10 20 30 40 50 60 70 80

Estimated Area (mmz2)

Figure 9.4 Pareto-Surface for STAPFIR

The pareto-chart in Figure 9.4 illustrates the initial solution, with a power

consumption of 100% at 5V. The chart clearly illustrates the trade-off between area

and power; the greater the area increase, the larger the power reduction which can

be obtained. However, once minimum power consumption has been obtained the

graph also illustrates that designs larger than approx. 33mm’ offer no further

reduction in power.

256



Chapter 9 — Multi-Objective Search Space Exploration

The advantage of the graph is illustrated by comparing it with the point-
solution data presented in section 8.3. The point-solution specified a design with a
power consumption of 13.381% with an area of 33mm’ (an increase of approx.
600% compared to the initial solution). The graph illustrates that a power
consumption of 14.9% is achievable with an area of 18mm” (an area increase of
approx. 350%). Using the pareto-chart the VLSI designer can decide whether the
further increase in area is worth the extra, small reduction in power. A similar
analysis on trade-offs, especially when compared to the single-point solutions, can
be performed for all of the Pareto-surfaces in this section.

The graph also illustrates that the power can be reduced to 92% while the
area is also reduced. Viewed as a whole, the graph presents a family of solutions to
the VLSI designer, the required solution can be selected based upon the particular

implementation criteria.

9.3.2 AVENS8DI
120 -
100 A <4— Initial Solution

—— Pareto Surface

0]
o
|

x  Search Point

Power (%)
()]
o

40 ~

0 Xxx&xi"xxw X X X XXX X

0 T T T T T T T T 1
0 10 20 30 40 50 60 70 80 Q0

Area (mm2)

Figure 9.5 Pareto-Surface for AVENSDI

257



Chapter 9 — Multi-Objective Search Space Exploration

This pareto-surface also illustrates the small decreases in power
consumption that are obtained with successively larger designs. The large amount
of search points for larger areas illustrates the search of the unfolded-design search

space, producing larger designs but with larger power consumption than the 23mm?

design.
9.3.3 AVENSEPA
120 -
100 -
Pareto Surface
80 - .
— X Search Point
S
@ 60 -
2
<)
o
40 -
x % x X X
20
0 T T T T T T 1
5 10 15 20 25 30 35 40
Area (mm2)

Figure 9.6 Pareto-Surface for AVENSPA

The chart illustrates that power can be reduced to less than 60% while also
reducing area from approx. 8.5mm?’ to 6.5mm?, which cannot be deduced from a
single solution showing the lowest power obtained. The AVEN8PA design did not
benefit from the unfolding transformation, the solutions larger than 15mm?’
represent the unfolded designs with larger power consumption than the non-

unfolded design.

258



Chapter 9 — Multi-Objective Search Space Exploration

9.3.4 DCST
120 -
100 - x 4— nitial Solution
S0 —— Pareto Surface
I X x  Search Point
S
¢ 60+
5
a 5 y N
40 A x X % x C x
Fo %xf, X M x5 % X X X
20 -
O T
0 10 20 30 40 50 60 70 80 20

Area (mm2)

Figure 9.7 Pareto-Surface for DCST

This chart illustrates that power was reduced to approx. 40% with a decrease
in area; the lowest-power design has a power consumption of 30% with a 2%
increase in area (an area of approx. 12mm?). The chart shows a large number of
search points explored above this area, illustrating the exploration of the pipelined

and unfolded solution space.

259



Chapter 9 — Multi-Objective Search Space Exploration

9.3.5 BIQUAD3
120 4
100 + % <« Initial Solution
—— Pareto Surface
—_ 80 1 x Search Point
S
g 60 + x
4 x X x x x
i x x
40 i*vg!ixxxxx x X
20 +
0 5 10 15 20 25 30 35 40 45

Area (mm2)

Figure 9.8 Pareto-Surface for BIQUAD3

This chart also illustrates that power reduction is possible while reducing

area.
9.3.6 GMLAT4
120 -
100 -
80 | —— Pareto Surface
- x  Search Point
2 X
5 60
g
& x
20 -
0 10 20 30 40 50 60 70

Area (mm2)

Figure 9.9 Pareto-Surface for GMLAT4

260



Chapter 9 — Multi-Objective Search Space Exploration

The power consumption of this design can be reduced to approx. 50% with
only a 0.1lmm? increase in area. Reduction to the lowest-found power of approx.

. . 2
30% requires an area increase of approx. 12mm”.

9.3.7 ELLIPS

120

110 /
X

100 -

Initial Solution

—— Pareto Surface

90 | x  Search Point

80 x

Power (%)

b S
ek
70 A . XX X

60

50 ‘ ‘ ‘ ‘ ‘ ‘ ‘
2 3 4 5 6 7 8 9

Area (mm2)

Figure 9.10 Pareto-Surface for ELLIPS

This design clearly illustrates that a large reduction in area (40%) is possible
while reducing the power consumption to 70%. The chart illustrates the inefficiency
of directly implementing the initial design without implementing power- or area-

reducing transformations to produce a more power- and area-efficient design.

261



Chapter 9 — Multi-Objective Search Space Exploration

9.3.8LMS5
200 -
180 |
—— Pareto Surface
160 1 x  Search Point
< 140
g Initial Solution
£ 120 % x>
o
X
100 1 X x X x
x X X x XX X
80 *
60 : : : : : : : ‘
0 10 20 30 40 50 60 70 80

Area (mm2)

Figure 9.11 Pareto-Surface for LMSS5

This chart illustrates that application of the transformations produced a lot of
designs that were smaller than the initial design but with considerably higher power
consumption. However, reduction of the power to 90% is possible with a 4mm®
decrease in area. The lowest-power design (83%) requires an area increase of

2
2mm”.

262



Chapter 9 — Multi-Objective Search Space Exploration

9.3.9 VOLTERRA

160

150 - X

140 1 —— Pareto Surface

130 - X x  Search Point

120 A

X

Power (%)

X

110 A

Initial Solution
100 - x 4 x x x

90 -

80

0 5 10 15 20 25

Area (mm2)

Figure 9.12 Pareto-Surface for VOLTERRA

This chart illustrates the difficulty that GALOPS had reducing the power
consumption of the VOLTERRA design. The recursive nature of the design
restricted the application of the transformations hence the small number of search

points (26).

263



Chapter 9 — Multi-Objective Search Space Exploration

9.3.10 ORTH2LAT

220 -
200 -

—— Pareto Surface
x  Search Point

180 -

160
140

Power (%)

120

x X x X X
x XX g xX

100 -

80

Initial Solution

60

0 10 20 30 40 50 60 70 80 90

Area (mm2)

Figure 9.13 Pareto-Surface for ORTH2LAT

This pareto-surface illustrates that unfolding is required to reduce the power
consumption by 3%, with a 60% increase in area. Even though designs are explored
up to approx. 90mm? (the maximum in GALOPS) no further power reduction is

obtained.

9.4 Discussion

All of the pareto-surface charts follow the same trend, illustrating a
relationship between power and area. Decreasing power consumption is typically
achieved through greater area. Where designs were optimised with a decrease in
area this was due to inefficiencies in the initial DFG specification. In these cases,
once the area had been reduced to achieve a power reduction, further power
reduction typically required more area. This is primarily due to the impact of speed

on power as described before. Operating at a lower speed (and hence a lower

264



Chapter 9 — Multi-Objective Search Space Exploration

voltage) requires more parallel processing to retain throughput; therefore, more
resources are needed in the datapath.

Figure 9.14 illustrates the typical features of the pareto-surface charts.

Critical Path = N+1

X x X Critical Path = N
_ X X
X A
7 X X x X Critical Path = N-1
X X
X A
4 - X X
100% X Initig Solution X 5 X
g X x KRR Critical Path = N-2
Dc;:_ x & =
- X X
.- X X X
} VDA X X
X ’ X X X
X,.—'—. X X X X
] 3 X . X
. Unfold=2 .- Unfold=3
T T T T Arlea T T T T 1

Figure 9.14 Typical Pareto-Surface Chart

In this figure, the pareto-surface is denoted by a solid-line. The pareto-
surface follows the typical trend of increased area allowing reduced power. The
search-points, denoted by X’s, can be grouped by the length of their critical path.
The initial critical path length (N) contains the initial solution. For each critical path
a range of solutions exist with different area requirements. However, the power

consumption of these designs is relatively similar. This is because the length of the

265



Chapter 9 — Multi-Objective Search Space Exploration

critical path specifies the design’s supply voltage, which has the greatest impact on
power. The area has a lesser impact on power.

The graph also shows grouping of solutions by unfolding factor; as
unfolding is always performed at integer intervals the increase in area approximates

to the product of the unfolding factor and the area of the non-unfolded design.

9.5 Conclusion

This chapter has presented the use of pareto-surface charts for the
determination of the best design to meet the required parameters. These parameters
may be VLSI implementation details, such as power and area, or higher-level
design decisions such as the cost of a particular device size or the preferred supply
voltage (related to the critical path length).

The multi-solution nature of the GA, which inherently performs an
exploration of the solution space, is exploited to produce the pareto-surface charts.
Rather than discard the information built up during the search process the pareto-
surface enables use of this information for design selection and analysis of the
search procedure. They provide information about the nature of the solution space
to provide an intuitive view of low-power design trade-offs, as discussed in section
94.

For a number of solutions the pareto-surface charts highlight low-power
solutions that require smaller areas with only minimal reduction in the overall
power reduction, compared to the single ‘best-power’ solutions presented in chapter
8. This information is invaluable to the design engineer as he can select the design
that best suits his overall requirements rather than the single criteria of reducing

power.

266



Chapter 10 — Development of Alternative Search Techniques

Chapter 10 — Development of Alternative Search Techniques

As described in Chapter 4, the GA has many advantageous properties that
prompted its selection as the core of a high-level power-conscious design tool. Its
parallel nature, sampling multiple points of the solution space, provides a robust and
efficient search mechanism, capable of determining ‘good’ solutions in complex,
discontinuous search spaces. In addition, GAs have been successfully used in many
VLSI design and analysis applications, outperforming more traditional algorithms.
Therefore, the GALOPS system uses a GA to search the complex solution space
inherent in the low-power synthesis problem. However, while the GA has been
demonstrated as being able to produce solutions to a range of benchmark designs, it
is not the only method of searching the solution space to determine a ‘good’
solution that meets the objective requirements.

This chapter presents the development of alternative search algorithms to
explore the high-level power design space. The selected algorithms represent a
small subset of search techniques, incorporating simple heuristics (Gradient search)
and naturally inspired optimisation processes (Simulated Annealing). These
techniques are traditionally used to solve a range of problems, including VLSI
design problems, and as such the choice of a GA for the GALOPS system needs to
be analysed in terms of its ability to outperform other techniques.

The chapter outlines the development of the algorithms that require the core
transformation and exploration routines that were developed for the implementation

of the GA-based search tool. The performance of the developed algorithms is

267



Chapter 10 — Development of Alternative Search Techniques

compared with the GA using the results obtained for the set of benchmark designs

listed in Appendix A.

10.1 Gradient Search

One of the simplest search algorithms is the gradient or hill-climbing
algorithm. The algorithm attempts to find the optimum solution through successive
modifications of the initial solution. If the modification produces an improvement,
then the modified solution is chosen as the starting point for the next modification.
The algorithm is known as a hill-climbing algorithm because it only accepts
improvements to the solution i.e. only ‘uphill’ movements in the solution space are
accepted.

A modification to the simple hill-climbing algorithm is known as steepest-
gradient-search [Rich93], in which a large number of modifications are applied to
the current solution to create a set of modified solutions. The modified solution with
the largest increase in fitness (the steepest gradient) is selected as the next solution.
The disadvantage of such a technique is the complexity of generating all possible
solutions as this may require the creation of a prohibitive number of solutions.
There is a trade-off between generating a suitable set of solutions and limiting the
amount of time required in generating and testing those solutions.

Another disadvantage of the gradient search algorithm is due to its ‘greedy
nature’ of only accepting positive moves. This can often result in it in it settling on
the first peak it locates in the solution space; it becomes stuck in a local maximum.
In a multi-modal solution space with lots of peaks this can often be a sub-optimal
peak. One of the main advantages of a GA is its ability to escape local maximum

points in the search space, to enable it to find a global optimum. For this reason the

268



Chapter 10 — Development of Alternative Search Techniques

performance of a gradient search is compared with the results determined by
GALOPS, to illustrate that the ability to escape local maximums is a required

component of a high-level low-power synthesis tool.

10.1.1 Implementation and Results of Gradient Search

The core of the GALOPS system is used to implement the gradient search
algorithm. The high-level transformations are used to create modified solutions
from a single initial solution (the specified design). The best modified-solution (the
lowest power) is selected and used to generate the next set of modified solutions.
The algorithm is terminated when there is no improvement in the solution (no
reduction in power consumption) for 1000 iterations. The current solution will be
the best solution found with the gradient search.

The results are compared with those presented in chapter 8 for the ten
benchmark circuits used to illustrate the power reductions obtained with GALOPS.

Figure 10.1 lists the results obtained with the gradient search technique alongside

those found with the GA.
Gradient Search GALOPS Gradient
Power |Area Supply Power Area Supply Power —
(% of |(%of |Voltage (% of (% of  |Voltage GALOPS
original) |original) [(Volts) original) |original) |(Volts) Power
S8TAPFIR 31.21 109.3 238 15.76| 4412 1.5 -15.45
AVENSDI 43.75| 1521 3.2 20.06| 304.2 2.0 -23.69
AVENSPA 4474 1020 3.3 23.82| 1558 23 -20.92
DCST 30.73| 103.4 238 30.68 102.9 238 -0.059
BIQUAD3 31.08] 1054 238 30.89 1043 2.8 -0.188
GMLAT4 43.92| 147.0 3.2 32.71 152.7 238 -11.21
ELLIPS 75.41 100.0 43 69.86| 58.99 43 -5.550
LMS5 89.36| 63.17 5.0 88.90 6273 5.0 -0.459
VOLTERRA| 9556 69.06 5.0 95.56| 69.06 5.0 0.000
ORTH2LAT 100.0) 100.0 5.0 97.56| 162.1 5.0 -2.447

Table 10.1 Comparison of Results Obtained with Gradient Search and GALOPS

269



Chapter 10 — Development of Alternative Search Techniques

The table is split into 3 sections. The first section lists the results obtained
with the Gradient search, including the power (as a percentage of the original), the
area (as a percentage of the original) and the supply voltage. The second section
lists the same three parameters as determined with GALOPS. The last section lists
the difference between the power results obtained with the gradient search and
GALOPS.

The table illustrates that in no case does the gradient search outperform the
GA-based search performed by GALOPS. Those designs with a difference of
greater than 10% (8 TAPFIR, AVENSDI, AVENSPA and GMLAT4) all obtained a
lower supply voltage with GALOPS than with the gradient search technique.
GALOPS was able to reduce the critical path of these designs by a greater degree
than the gradient search. For example, the 8TAPFIR critical path has been reduced
to 1 element with GALOPS but only reduced to 4 elements with the gradient search.
The gradient search has settled on a local optima, which prevents further
optimisation of the design. GALOPS is able to escape this local optima to find the
design with the shortest critical path.

Those designs with a difference in power reduction of less than 10% but
greater than 0% (DCST, BIQUAD3, ELLIPS, LMSS and ORTH2LAT) have the
same supply voltage, and hence the same critical path length, as those designs
synthesised with GALOPS. The difference in power consumption is due to the
reduced area of the designs produced with GALOPS. These designs have critical
paths that can be effectively reduced by the application of the transformations that
have been implemented to target critical path length reduction. However, the
reduction of area while reducing power is a more complex process that requires the

GA-based search mechanism. For example, the ELLIPS design produced by the

270



Chapter 10 — Development of Alternative Search Techniques

gradient search requires 3 adders and 2 multipliers. The design produced by
GALOPS requires 1 less multiplier while still obtaining the same voltage reduction.
This is a considerable saving in size and complexity when the size of a multiplier is
considered (the GA produced design is 30% smaller than the gradient produced
design). In the case of ORTH2LATS the GA was able to reduce power consumption
(through the application of unfolding) where the gradient search failed. The best-
found unfolded design required a design with higher power consumption than the
original as a starting point in the unfolding process. The greedy nature of the
gradient search algorithm prevented such designs from surviving in the population;
hence unfolding did not improve the performance of the gradient search for this
design.

The designs with a small difference in power reduction (less than 1%) have
a small area difference due to the GA-synthesised designs requiring less registers
than the gradient search designs. The functional block requirements (adders,
multipliers, etc.) of the RTL design are the same but restructuring the DFG has
created more efficient use of the variables and hence requires less physical registers
i.e. there are less variables alive at the same time.

Both gradient search and GALOPS obtained the same reduction in power
for the VOLTERRA design through a reduction in area. As discussed in chapter 8,
the VOLTERRA design is difficult to optimise with the transformation set due to
the large feedback loop that contains the critical path. A simple retiming operation
on this path results in reduced hardware; this simple operation was discovered by

both search techniques.

271



Chapter 10 — Development of Alternative Search Techniques

10.2 Simulated Annealing

Simulated Annealing (SA) [Davis87a, Reeves95], like the Genetic
Algorithm, is an optimisation technique inspired by a natural process. It was first
presented as an optimisation technique in the early 1980s [Kirk83] and has been
used for applications such as VLSI routing [Vecchi83] and VLSI synthesis [Neil].
The algorithm simulates the cooling of a material in a heat bath — a process known
as annealing. The final structural properties of the material depend upon the cooling
rate. If the material is cooled too quickly the molecules of the material settle into
high-energy states, resulting in a polycrystalline or brittle material. If the material is
cooled more slowly a perfect crystal arrangement can be achieved, as the molecules
are more likely to settle into lower energy states — cooling too slowly wastes time in
determining the best solution. In terms of optimisation, determination of a low
energy state is analogous to determining a global minimum (or optimum) for a
problem.

The SA algorithm can be considered a modification of traditional search and
optimisation techniques, such as the previously discussed gradient search. A
traditional gradient search determines the optimum solution by always moving in
the direction of improvement. In each step of the search, the current solution is
modified to produce a set of neighbour solutions. The best solution from the set of

neighbour solutions is selected as the next solution.

272



Chapter 10 — Development of Alternative Search Techniques

Start
Location

£(x)

Figure 10.1 Illustration of an Optimisation Process

The main problem of this technique is its ability to become stuck in local
optima, as discussed previously in section 10.1. The steepest-gradient technique is
unable to select moves that temporarily result in degradation of solution quality. In
problems with a range of peaks in the solution space this may result in the
determination of a sub-optimal solution as illustrated in Figure 10.1. Traditional
steepest-descent techniques will become stuck in the local minima at point A,
unable to escape this to determine the global minima at point B.

It is clear from the example in Figure 10.1 that locating the global minima
requires some uphill moves. However, as the final objective is the determination of
a minimum result the uphill moves must be used sparingly and applied in a
controlled manner. SA uses a control method based on a law of thermodynamics
that states that at a temperature 7, the probability of an increase in energy of

magnitude JF is given by:

-
p(OE)=e Vi (10.1)

273



Chapter 10 — Development of Alternative Search Techniques

where k& is Boltzmann’s constant. This equation is used to determine the
probability of accepting an uphill move (in a minimisation problem). oF is the
change in energy of two solutions (E;-E;). In an optimisation process the energy of
a solution is its fitness in relation to the objective function. E; is the energy of the
current solution and E; is the energy of the neighbouring solution. If E><E; then the
probability will be greater then unity i.e. E; is always selected as it is a better
solution (assuming lowest fitness is best, as it is in a minimisation problem). If
E>>E,, then E; is selected according to the probability p(dF). Boltzmann’s constant
can be removed from the equation as the specification of 7" can take & into account
at the start of the optimisation process.

The implementation of the algorithm is similar to gradient search, where an
initial solution is modified to generate possible alternative solutions, selected or
discarded according to p(oF). The process is repeated for a certain number of
iterations before 7'is reduced. As 7'is reduced, the probability of accepting a higher
energy state is also reduced; 7'is the control parameter in the optimisation process.

The rate at which 7" is reduced, and the size of reduction, is determined by
the cooling schedule. If 7" is reduced too quickly the system will become stuck in a
local optima; conversely, if 7" is reduced too slowly the algorithm will spend an
unnecessary amount of time exploring the solution space. The determination of a
suitable cooling rate is one of the main problems with SA as it can have a
significant effect on the results of the algorithm [Teuk95].

The algorithm is terminated when the frozen state is achieved i.e. the
solution with the desired parameters is found. The SA process is effectively a

gradient-descent algorithm with the addition of the capability to escape local optima

274



Chapter 10 — Development of Alternative Search Techniques

(providing the specified cooling schedule enables it). This is the primary advantage

of simulated annealing over more traditional optimisation techniques.

10.2.1 Implementation and Results of Simulated Annealing
As with the gradient search algorithm the SA algorithm uses the core of
routines developed for the GALOPS system. The pseudo-code for the SA algorithm

is presented in Figure 10.2.

Algorithm Simulated Annealing
Passed Initial DFG Design (set to Current_Design)
Annealing Temperature Initialised To TEMP
WHILE Frozen_State not achieved

FOR 700 design modifications
Randomly Select a Transformation
Apply Transformation to Current_Design to Produce New_Design
Determine Fitness of New_Design

SA SELECTION PROCESS

IF New_Fitness > Old_Fitness
Select New_Design as Current_Design

ELSE
Calc. Probability Of Selecting New_Design (0%-100%)
SA_Prob = exp(-((1/New_fitness)-(1/0ld_Fitness))/TEMP)

Generate Random Probability R_Prob(0%-100%)
IF SA_Prob > R_Prob
Select New_Design as Current_Design
END IF
END SA SELECTION PROCESS
END FOR
Reduce TEMP by 10%
End WHILE
End Algorithm Simulated Annealing

Figure 10.2 Pseudo-Code for Simulated Annealing Algorithm

The SA algorithm begins by modifying the initial design using the high-
level transformation techniques. The particular transformation is randomly selected
from the library of possible transformations. The application of the transformations

produces a new design that is either discarded or kept to replace the initial design,

275



Chapter 10 — Development of Alternative Search Techniques

depending on its relative fitness and the results of the SA probabilistic selection
process. The annealing process is repeated until the frozen state is achieved i.e. the
solution with the required specifications is generated.

Specification of the initial value of TEMP 1is suggested to produce a
probability value of between 50% [Teuk95] and 80% [Khalifa97] for the initial
iterations of the SA process. The value of TEMP needs to be scaled in relation to
the typical OF comparisons executed throughout the process i.e. TEMP is problem
specific. The initial value of 7" for the power minimisation problem is determined
through experimental analysis; the algorithm is run for a number of generations and
the average oI determined. This is used to calculate an initial value of p which will
produce an average p(oF,) of between 0.5 and 0.8. This analysis produced a value of
0.05, which produces an average p(oF,) of approximately 0.6 in the initial iterations
of the SA process.

TEMP is reduced by 10% every 100 generations, as suggested by the
standard annealing parameters in [Teuk95]. For comparison with the GA, the
frozen_state is the production of the design with the lowest power consumption. As
this cannot be specified beforehand the frozen state is replaced with a timeout
parameter. If the best solution found so far does not improve for 5000 design
modifications the search is terminated. Initial experimental results illustrated that
the SA algorithm determines its optimum solution well within this timeout margin.

The performance of the SA algorithm is compared with that of GALOPS in
determining the lowest power solution for the ten benchmark circuits presented in

chapter 8. For each design, both GALOPS and the SA algorithm were executed 20

276



Chapter 10 — Development of Alternative Search Techniques

times to reduce the effect of both algorithm’s probabilistic nature on the results.

Table 10.2 presents the results for the benchmark designs.

Simulated Annealing GALOPS Gradient
Power |Area Supply Power Area Supply Power —
(% of |(%of [|Voltage (% of (% of  |Voltage GALOPS
original) |original) [(Volts) original) |original) |(Volts) Power
8TAPFIR 16.27| 4534 1.5 15.76| 4412 1.5 -0.51
AVENSDI 20.36| 304.2 2.0 20.06| 304.2 2.0 -0.30
AVENSPA 2417 156.8 23 2382 1558 23 -0.35
DCST 30.73] 1035 2.8 3068 1029 2.8 -0.06
BIQUAD3 31.08] 1054 2.8 30.89| 104.3 2.8 -0.19
GMLAT4 32.76| 1527 2.8 32.71 152.7 2.8 -0.05
ELLIPS 69.86| 58.98 43 69.86| 58.98 43 0.00
LMS5 89.68| 63.17 5.0 88.90| 62.73 5.0 -0.78
VOLTERRA| 9556 69.06 5.0 95.56| 69.06 5.0 0.00
ORTH2LAT 100.0f 100.0 5.0 97.55| 1621 5.0 -2.45

Table 10.2 Comparison of Results Obtained with SA and GA

The table of results is in the same format as Table 10.1. As Table 10.2
illustrates, the SA approach did not obtain a better result than the GA for any of the
ten benchmark designs. Differences in power reduction between SA and GA
produced designs are less than 3%. For both the SA and GA produced designs the
supply voltage is the same because both search techniques have been able to reduce
the critical path by the same amount. As supply voltage has the greatest impact on
power consumption the power reduction is similar for designs with the same supply
voltage.

The reduction of supply voltages to the same level could be due, in part, to
the set of transformations used for critical path reduction. As discussed in chapter 2
the transformations were selected for their particular properties of critical path
reduction. In addition, the transformations were implemented to contain inherent

critical path reduction qualities, such as the pipeline transformation targeting the

277



Chapter 10 — Development of Alternative Search Techniques

critical path of the DFG for the insertion of pipeline stages. The transformation set,
together with a heuristic search technique, is capable of significantly reducing the
critical path length of the benchmark DFGs.

The power differences are primarily due to area differences in the designs.
The area differences point to the fact that the GA produced designs that require less
registers (hence less area and capacitance) than the SA produced designs.

The typical Pareto-surface chart (in chapter 9) is useful for explaining the
differences in power consumption. Both techniques (SA and GA) reduce the critical
path to the same length. However, the GA is also able to optimise the area of the
designs, effectively moving further left across the area axis of designs with same

critical path length, as illustrated in Figure 10.4.

] Critical
| Path = N
1 Initial .- Critical Path
Solution
100% X=
o)
2]
(@]
a

Area

Figure 10.3 Comparison of GA and SA Search

278



Chapter 10 — Development of Alternative Search Techniques

Figure 10.4 is a representation of a typical GA and SA search process. Both
techniques are able to reach the same region of the solution space that contains the
solutions with the shortest critical path lengths. The selected set of transformations
enables both techniques to determine the low-voltage region of the solution space.
However, the GA is able improve on these results by locating the small area designs
within that region of the solution space; hence producing lower power designs.
These are typically designs that require fewer physical registers than the SA
designs. As well as offering lower power consumption and smaller area, designs
with fewer registers reduce the complexity of the layout and routing tasks of the
VLSI synthesis process, as there are fewer elements to process.

As described in chapter 9, an advantage of the GA 1is its ability to provide
information about the solution space, particularly the generation of Pareto-surface
data to illustrate trade-offs between competing parameters such as area and power.
Figure 10.4 shows two Pareto-surface charts for the non-unfolded synthesis of the
8TAPFIR design. One chart was generated with the GA (GALOPS) and the other
generated with the SA search mechanism. As an example point on the chart, the GA
produces a design with 18.2% power consumption at 9.1mm?* while the SA reports
that designs of that area consume 24.3% of the original power. In addition, the GA
pareto-surface is characterised with 10 pareto points while the SA pareto-surface
contains 6 points, the GA presents a more comprehensive set of trade-off points to
the VLSI designer. The ability of the GA to determine smaller designs than the SA
search mechanism is exploited throughout the search of the solution space, thus the

GA produces better pareto-surface charts with better area-power trade-offs.

279



Chapter 10 — Development of Alternative Search Techniques

100

J

90 -

80

70

—— GA Pareto Surface
60 - —— SA Pareto Surface
X Orignal Solution

Power (%)

50

40 -

30

20

L

10 T T T T T T T T T 1
0 2 4 6 8 10 12 14 16 18 20

Area (mm2)

Figure 10.4 Pareto-Surface Information Generated with SA and GA

10.3 Conclusion

The GA-based search technique used in GALOPS has been compared with
two alternative search techniques. The greedy nature of the gradient search
algorithm, though operating with a population of multiple solutions, failed to
determine a set of solutions with the same power reductions as the GA. The nature
of the low-power solution space requires a system that can suffer degradation in

quality of solutions to ultimately lead to an improvement. Therefore, gradient

280



Chapter 10 — Development of Alternative Search Techniques

search techniques that always move in the direction of greatest improvement over
the search space will become stuck in local optima. Where the supply voltage
obtained with both techniques was the same the results highlight the ability of the
GA to determine low-area implementations for that supply voltage in comparison
with the gradient search technique.

The SA and GA techniques produced designs with the same speeds and
hence the same supply-voltages, resulting in power reductions of the same order of
magnitude. The production of designs with the same supply voltage illustrates the
effectiveness of the transformations for critical path reduction, due in part to the
selection of transformations for that specific purpose and the implementation of the
transformations to target critical path reduction. As with the gradient search, where
designs with the same supply voltage were determined, the GA still produced lower
power consumption in most cases due to reduction of the area. The properties of the
transformations ensure that supply voltage reduction through speed-up
transformations is achieved. The heuristic properties of the SA and GA methods
take advantage of the transformation properties to produce fast designs and hence
low supply voltages. However, the GA provides low voltage operation while
additionally optimising the area of the design, hence the difference in power
consumption. While both techniques can achieve significant power reductions, the
specific properties of the GA are required to gain the extra power reduction through
area reduction. The GA is able to determine the ‘hard’ solutions that the other
algorithms cannot.

In addition, the analysis of Pareto-surface information illustrated the
superiority of the GA in providing invaluable information about the solution space.

Therefore, the GA not only provides better point solutions but it is also a better tool

281



Chapter 10 — Development of Alternative Search Techniques

for determining important trade-offs between area and power so that the VLSI
designer can select the solution which best meets the specified requirements.

The implementation of the gradient search and SA search mechanisms used
many of the core algorithms developed for the GALOPS system, including the
chromosome DFG representation and the implementation of the transformations for
manipulation of the chromosomes. The gradient and SA search techniques
presented in this chapter also required the transformation-mutation operations that
were developed as part of this work. The implementation of the gradient and SA
algorithms would not have been possible without the development of the
transformation and search mechanisms which form the core of the GA-based search

mechanism.

282



Chapter 11 — Conclusions and Future Work

Chapter 11 = Conclusions and Future Work

This Chapter details the main conclusions of the research presented in this
thesis. Section 11.1 highlights the primary contributions of this work to the fields of
low-power design and VLSI synthesis using GAs. Section 11.2 gives an overview
of the developed system, GALOPS, in terms of the implemented source code.
Section 11.3 discusses the results obtained with the GALOPS system in the context
of low-power design implications. Section 11.4 presents a summary of the
conclusions derived from this work. Finally, section 11.5 discusses future directions

and developments for the work initiated in this thesis.

11.1 Primary Features of This Work

The primary, original contribution of this thesis is the development of a
novel low-power design tool based around a core GA search and optimisation
technique. The tool, dubbed GALOPS (Genetic Algorithm for Low Power
Synthesis), targets low-power implementation of DSP algorithms.

The summary of power optimisation techniques at all levels of the design
process, in Chapter 2, was used to illustrate that targeting power as a high-level
objective parameter, alongside the traditional area and speed criteria, offers the
greatest benefits in terms of power reduction. Thus, the developed tool targets
power reduction at the behavioural level, modifying high-level algorithms using

behavioural transformations.

283



Chapter 11 — Conclusions and Future Work

Behavioural level optimisation required the development of a non-standard
chromosome representation that was specifically developed for the task of high-
level power conscious design. The chromosome does not use standard binary or
alphabet chromosome representation but incorporates the features of a standard
signal processing structure, the Data Flow Graph. The flexible nature of the
chromosome ensures it can represent a wide range of DFGs of varying size and
complexity, both initial designs and those generated throughout the search and
exploration process.

Chapter 5 illustrated that application of standard genetic operators, during
the search process, would result in corrupt designs with incorrect functionality.
Rather than implement a repair operation, which increases computation time and
can reduce the efficiency of the search technique, problem-specific VLSI design
techniques are incorporated into the GA. This work has developed problem specific
genetic operators to embed high-level transformations in a genetic exploration
framework. This enables the advantageous properties of a GA, as described in
Chapter 4, to be applied to the problems of high-level low power design. The
developed operators enable the behavioural level transformations to be used to
explore the low power solution space. The operators apply the transformations so as
to preserve algorithm functionality and specifically target speed increase for low
voltage operation.

Chapter 10 presented the development of alternatives to the GA-based
search technique. These algorithms were implemented using the core of the GA-
based technique, incorporating the transformation application and solution
manipulation routines developed as part of the GA tool. A comparative analysis of

the search algorithms was performed to illustrate the superiority of the GA in

284



Chapter 11 — Conclusions and Future Work

determining the best-found low power solution. The ability of the GA to provide
trade-off information to the design engineer was also presented, again illustrating

the advantages of using a GA for high-level design and exploration.

11.2 System Implementation

The GALOPS system was implemented in the C programming language.
The tool was designed and tested using the Microsoft Developer Studio platform
running under the Windows 95 operating system. The PC platform was a 100MHz
Pentium for development with 32 Megabytes of RAM. For testing and operation the
results presented in this thesis were produced with a Pentium-II 333MHz with 64
Megabytes of RAM running under the Windows NT operating system.

The GALOPS tool comprises approximately 7500 lines of code, broken
down into the following routines:

e The main core of the program, comprising program flow control, the user
interface and system administration routines such as disk access, memory
management, etc. The core also contains the standard GA routines such as
parent selection, roulette wheel construction, etc.— Approx. 1750 lines.

e Routines to interpret and compile the DFG input files into the chromosome
representation — Approx. 200 lines

¢ Routines for the fitness calculation procedures — Approx. 900 lines.

e Routines to determine the length and components of the critical path of a
DFG — Approx. 200 lines.

o Routines for the calculation of the capacitance and voltage of the designs —

Approx. 830 lines.

285



Chapter 11 — Conclusions and Future Work

e The retime and back retime transformations — Approx. 270 lines.

e The pipeline and remove_pipeline transformations — Approx. 460 lines.

e The automatic pipeline transformation — Approx. 130 lines.

e The unfold transformation — Approx. 390 lines.

e The implementation of the problem specific crossover operator — Approx.
970 lines.

e Various program control, test, IO and characterisation routines — Approx.

1340 lines.

11.3 Discussion

The comparative analysis of original and optimised designs was performed
with the use of high-level power estimation strategies. The difficulties and
properties of behavioural level power estimation were discussed in Chapter 3.
Behavioural level power estimation is a complex, and typically inaccurate process,
due to the large amount of undecided VLSI implementation variables. The
prototype version of GALOPS uses a technique similar to PFA where pre-
characterised functional modules and operation counts are used to estimate
capacitance. Voltage is estimated from a model of the effects of voltage reduction
on device speed. This enabled the GA to perform comparative evaluations between
different solutions during the search process. Chapter 5 illustrated the prototype
version of GALOPS on a set of varying complexity signal processing benchmarks.
The results illustrate that GALOPS was able to reduce the power consumption of all

designs.

286



Chapter 11 — Conclusions and Future Work

The prototype version of GALOPS utilised a relatively simple technique for
power estimation. Chapter 6 details the integration of more complex high-level area
and power estimation routines into the system. The routines incorporate high-level
design tasks such as scheduling and allocation to increase the accuracy of the power
estimation module. In addition, the results obtained with the improved module are
more relevant to standard signal processing design systems that incorporate such
high-level design tasks.

GA research has yielded a body of techniques that can be used to improve
the efficiency of a search and the results obtained. Unfortunately, no guiding metric
is available to select techniques for any particular application. Therefore Chapter 7
investigates techniques with the aim of improving GA performance. Elitism is a
selection scheme intended to exploit information currently in the GA population
pool by ensuring a set of the best solutions is always present in the pool. Elitism
was investigated for different application rates and the results indicate that a certain
level of elitism improved the results obtained, compared to not applying elitism or
applying it at too great a rate. A similar analysis for the Ranked Selection
Technique illustrated its superiority over fitness proportionate selection for this
problem. Chapter 7 also examined the Taguchi method for optimal GA parameter
settings. The results illustrated the difficulty of determining a global set of
parameters for a GA that is designed to process a wide range of problems with
different properties.

The modified GALOPS tool was analysed with a set of ten benchmark
circuits that cover a range of signal processing algorithms of varying complexity.
The results illustrated the success of the tool in obtaining low-power

implementations. The amount of power reduction obtained is very dependent on the

287



Chapter 11 — Conclusions and Future Work

properties of each individual algorithm. The amount of recursion in an algorithm
can limit the application of the transformation set and place a bound on the
minimum critical path length hence restricting voltage reduction techniques.

The generated low-power solutions typically require supply voltages below
the industry standards of 5V and more commonly 3.3V. As discussed in Chapter 8,
the required voltages could be achieved with small, on-chip level converters. These
converters enable the chip to source from a standard 3.3V power supply (to
integrate with other devices in a system) while the core of the chip operates at the
required low-power voltage. As discussed in Chapter 8, such systems have been
used in the development of practical DSPs and microprocessors.

The low-power solutions presented in Chapter 7 typically require an area
increase compared to the standard implementation of their non-optimised original
designs, which has obvious implications for the fabrication of low-power devices.
With decreased feature sizes and increased die sizes, the number of transistors that
can be placed on a single chip is increasing. This extra capacity was traditionally
used to increase the performance of the device. The results illustrate that where the
required performance constraint has been achieved the increased number of
available transistors can be traded for low power through reduced supply voltage. In
addition, the development of Multi-Chip Modules (MCMs) promises to provide
devices with giga-scale integration levels, which increases the potential to trade-off
area for low-power and low-voltage operation.

The results obtained in Chapter 8 are not compared with other high-level
power conscious design tools. The majority of ‘high-level’ systems, such as Power
Profiler [Martin95, Martin96], Design Power [Synop98] and others [Rag95,

Rag95a, Rag95b] operate during the translation of behavioural level descriptions

288



Chapter 11 — Conclusions and Future Work

into RT-level architectures. GALOPS operates on the behavioural description itself,
enabling subsequent application of the techniques applied in these tools. GALOPS
is not intended as a competitor or replacement for these tools, rather as a step in the
low-power design process that will incorporate techniques and design tools that
operate at all levels, to maximise total power reduction.

As with GALOPS, the HYPER-LP system [Chan95, Chan92a] considers
power at the behavioural level by optimising the high-level algorithms. However,
the results presented for HYPER-LP use power analysis techniques significantly
different to those used in GALOPS. In addition, the HYPER-LP system applies a
different set of high-level algorithmic transformations; therefore, differences in
results could be due to the set of transformations contained within the system rather
than the method of applying that set. In addition to differences due to the
optimisation technique used, the power analysis method could also account for
differences in the results obtained with different systems. The problem is that no
standard technique exists for benchmarking the performance of high-level
optimisation tools. The presentation of a range of benchmark designs in this thesis
and the publications arising from this thesis, is an attempt to address this problem of
comparison between different high-level design techniques. By presenting a range
of designs it is hoped that researchers can use them to compare the performance of
different high-level optimisation and analysis techniques.

One of the core optimisation techniques used in HYPER-LP is Simulated
Annealing (SA) for the application of certain transformations, hence the comparison
between GALOPS and a SA-based search. SA is a search process inspired by a
natural physical phenomenon that occurs during the cooling of materials. It has

been used to solve complex problems of VLSI design such as circuit-level routing.

289



Chapter 11 — Conclusions and Future Work

Unlike gradient search it incorporates a mechanism for escaping local maxima i.e. it
can suffer temporary degradation in solution quality during the search. In Chapter
10 the performance of the GALOPS system was compared with an SA algorithm
that utilised the same set of transformations and power analysis methods. The
results for SA compared to GALOPS show that both SA and GALOPS can reach
the minimum voltage area of the solution space. However, GALOPS improves on
the power reduction achieved through minimum-voltage design by refining the
solution to require fewer resources and less switched capacitance. A comparison of
Pareto-surfaces generated with GALOPS and the SA algorithm also demonstrate
that GALOPS provides more comprehensive trade-off information, characterised by
more points and lower power values at comparative areas. Therefore GALOPS not
only produces lower power single-point solutions but also presents more accurate
trade-off charts when compared to SA.

The results for the benchmark designs illustrate that low-power
implementation typically requires a considerable increase in area. This is due to the
low power design technique used where increase in speed is traded for a reduction
in supply voltage. This speed increase is achieved through increasing and exploiting
the concurrency in the algorithm. Processing more operations at the same time often
requires more hardware units hence the increase in area. This typically results in the
lowest power solution also being a large area solution. Rather than present a single
lowest power (and hence large area) solution, Chapter 9 exploits the multi-solution
nature of the GA search mechanism to provide trade-off information to the VLSI
designer. The information, presented in the form of Pareto-surfaces, illustrates the
lowest power solutions across the area range. This enables the designer to select the

solution that best meets the implementation requirements, rather than concentrating

290



Chapter 11 — Conclusions and Future Work

on the minimisation of a single parameter. In addition, the Pareto-surfaces are
useful in examining the nature of the solution space, illustrating the large effect that
speed increases can have on power reduction as well as the trend of decreased
power requiring larger area. The GALOPS tool is the first behavioural-level power-
optimisation tool to present such trade-off information as part of the optimisation
process, exploiting the inherent characteristics of the chosen GA search technique.
Chapter 10 compares the performance of the GA with two other search
techniques for optimising complex problems — steepest gradient and simulated
annealing (SA). Gradient search is a greedy algorithm that searches the solution
space only selecting solutions that improve on the current one. The results from this
search illustrate that the low power solution space is a complex, multi-modal
problem with non-optimum peaks. That is, determination of the highest peak in the
solution space requires a search mechanism that can suffer degradation in solutions

so as not to become stuck on a local maximum.

11.4 Conclusions

e This dissertation has presented the first use of a Genetic Algorithm for the
design and optimisation of behavioural level signal-processing algorithms
intended for low-power operation.

e The problem-specific chromosome representation enables application of high-
level VLSI design rules to explore the low power solution space without
corrupting algorithm functionality. The chromosome’s flexibility enables the
tool to process a wide range of signal processing algorithms.

e The development of problem-specific genetic operators, to incorporate the

291



Chapter 11 — Conclusions and Future Work

high-level algorithmic transformations, enables traditional high-level design
techniques to be incorporated into a genetic search and optimisation framework;
hence enabling high-level design to utilise the advantages of GAs.

The presented tool, dubbed GALOPS, successfully reduces the power
consumption of a wide range of signal processing benchmark designs of
varying complexity.

The presented results illustrate that low-voltage operation, when initial
maximum throughput is a constrained parameter, requires full exploitation of
the available concurrency in a signal-processing algorithm. In Application-
Specific signal processors this requires utilisation of maximum resources to
minimise the critical path length of the design.

The use of a transformation library to supply the GA provides a framework for
the addition of new transformations, to investigate their power reducing
applications or to determine the effect of interaction between transformations on
providing the best solution.

The multi-solution nature of the GA enables it to provide trade-off information
to the VLSI designer to meet objectives in addition to the reduction of power
(such as area constraints).

Incorporation of GA techniques such as Elitism and Ranking improve the
results when compared to a basic GA implementation.

Development of alternative heuristic search algorithms utilising the core
transformation application and solution manipulation routines developed for the
GA-based search. A comparison of the GA with Gradient Search and Simulated

Annealing illustrates the superiority of the GA-based search, both in presenting

292



Chapter 11 — Conclusions and Future Work

single low-power solutions and a range of area-power trade-offs.

11.5 Future Work

On the circuits side the problems of accurate and fast high-level power
estimation have been discussed. Further refinements to the power analysis module,
such as the consideration of switching capacitance and increased numbers of
characterised functional units, could improve the accuracy of the analysis.
However, the improved accuracy must not incur too great a speed penalty as to
render the optimisation process prohibitive in terms of time.

The current system processes high-level algorithms described as Data Flow
Graphs, which are compiled into the internal GA chromosome representation.
External compilers could be developed to process VHDL and Verilog high-level
descriptions as these languages are frequently used in high-level design systems.
This would improve the applicability of the tool in practical design processes.

The extension of the standard GA, to incorporate other genetic features such
as Ranking and Elitism, was shown to improve the performance of the GA. The
wealth of GA research contains a large body of techniques for enhancement that
could not all be investigated in this work due to time and space constraints.
Selection techniques such as Tournament Selection [Hanc95] and Stochastic
Remainder [Hanc96] could further improve the efficiency and results.

A related area is the extension of the crossover operator, which is currently a
localised operator that considers the crossover of single transformations. Further
crossover operators could transfer multiple transformations and also contain the
ability to recognise transformation histories i.e. the specific set of transformations

that produce the current solution.

293



Chapter 11 — Conclusions and Future Work

As discussed in Chapters 1 and 2, successful power reduction should target
power reduction at all levels of the design process. As such, GALOPS should be
integrated into a power-conscious design framework incorporating power analysis
and optimisation techniques at all levels. Architectural-, logic- and circuit-level
techniques, described in Chapter 2, could be used subsequent to GALOPS to
provide a complete automated low-power design process.

One of the most interesting developments in evolutionary design of recent
years has been the development of evolvable hardware. The evolutionary-inspired
processes typically used to design fixed hardware can be incorporated onto a
programmable device. The optimisation process can be performed in real-time to
produce a design that meets the current specifications with optimal objectives. The
evolvable device reconfigures itself to provide the optimum solution to the current
application. The recent research into dynamically variable voltages can be
incorporated into a GALOPS system on a re-configurable signal-processor chip.
The desired algorithm function can be optimised to meet the current throughput
requirements, with voltage levels set to provide the minimum power
implementation. This would result in a general-purpose signal-processing device
that achieves optimal low power operation dependent on the current throughput and
functional requirements.

The current GALOPS system is an implementation of a generational GA
where the entire population is replaced once per cycle (a generation). Steady-state
GAs keep a constant population, removing and adding a specific amount of new
solutions once per cycle in an attempt to improve the exploitation of the knowledge
currently stored in the population. Some research into steady-state GAs has

produced encouraging results that indicate the superiority of this approach for some

294



Chapter 11 — Conclusions and Future Work

problems [Whit89]. The GALOPS system could be modified to examine the
advantages of applying steady-state GA methods.

Parallel GAs (PGAs) are an evolution of the standard GA which effectively
employs parallel implementations of a GA or a single GA maintaining parallel
populations. One of the main advantages of PGAs is the exploitation of parallel
processing computers and environments. A parallel GA can operate on a number of
processing systems to increase the speed of the search and optimisation process.
However, PGAs do not only offer increased speed. Different implementation styles
use the parallel framework to improve the success of the search. Migration of
individuals is used to place members of one population into another. The different
populations can be running under different objective criteria or different operating
parameters to enable the GA to reduce problems such as premature convergence
and multi-objective optimisation criteria. Modifying a standard GA to become a
parallel GA is a non-trivial task, especially where the GA is expected to run on a
parallel processing system. Investigation of PGAs may improve the results obtained
with GALOPS.

The Pareto-surface generation uses the data produced during the GA search
and optimisation process. This could be further refined by incorporating Multi-
Objective GA (MOGA) techniques such as niching and fitness sharing. Such
techniques can improve the ability of the GA to fully explore the range of available
trade-offs.

The set of transformations currently incorporated in GALOPS are a subset
of transformations, specifically selected to increase system speed. The
implementation of GALOPS, to access a library of transformations, enables

relatively simple application of other transformations such as distributivity,

295



Chapter 11 — Conclusions and Future Work

associativity, etc. which need to be investigated for their power reducing
characteristics.

The GA has been compared with a number of techniques that target
optimisation of combinatorial problems. There are many other techniques such as
Tabu Search, Newton-Raphson, Integer Linear Programming, Lagrangian
Relaxation [Reeves95], etc. The development of SA and Gradient search techniques
illustrate that the GA-based framework provides a core set of routines for the
implementation of alternative search and optimisation techniques. The GA
framework could be used to investigate the efficiency of these other techniques for
high-level design.

In terms of evaluation of the tool, the fabrication of the devices will enable
practical examination of the power reductions and the associated implications for
area, speed and functionality.

The user interface of the GALOPS tool is a relatively simple textual
interface that prompts the user for information at the required moments. Although a
simple script-driven system has been developed, to enable a set of results (complete
synthesis runs) to be obtained from a single execution of the program, a practical
version of the tool will require a considerably more advanced user interface. This
was not tackled as part of this research project as the user interface is not
traditionally seen as a ‘novel’ or ‘interesting’ research avenue. The DFG designs
presented in Appendix A were obtained with a specifically developed tool. An
extension to this tool would be to provide a graphical front-end to the GALOPS
system, incorporating graphical capture of the designs as well as a windows-based

operating environment.

296



[Ajluni9s]

[Arslan95]

[Arslan96]

[Arslan96a]

[Arslan96b]

[Arslan96c¢]

[ASC]

[Ash95]

[Baker85]

[Beasley93]

References

C. Ajluni, “Flat-panel displays strive to cut power,” Electronic
Design, January 9 1995, pp. 88-90

T. Arslan, D.H. Horrocks and A.T. Erdogan, “Overview and
design directions for low-power circuits and architectures for
digital signal processing,” IEE Colloquium (Digest), No. 122,
1995, pp. 6/1-6/5

T. Arslan, E. Ozdemir, M.S. Bright, D.H. Horrocks, “Genetic
synthesis techniques for low-power digital signal processing
circuits,” Proc. IEE Colloquium on Digital Synthesis, London,
UK, 15th Dec 1996, pp. 7/1-7/5

T. Arslan, D.H. Horrocks, E. Ozdemir, “Structural cell-based
VLSI circuit design using a genetic algorithm,” Proc. IEEE Int.
Symposium On Circuits and Systems, Atlanta, USA, 1996, vol. 4.,
pp.308-311

T. Arslan, D.H. Horrocks, E. Ozdemir, “Structural synthesis of
cell-based VLSI circuits using a multi-objective genetic
algorithm,” /EE Electronic Letters, Vol. 32, No. 7, 28th March
1996, pp. 651-652

T. Arslan, M.J. O'Dare, “Transitional gate delay detection for
combinational circuits using a genetic algorithm,” IEE FElectronics
Letters, vol. 32, no. 19, Sep 12th 1996, pp. 1748-1749

Alternative Systems Concepts, Inc., “Low power synthesis and
optimization,” Available HTTP
http://www.ascinc.com/products/low_power/

P.J. Ashenden, Designers guide to VHDL, Los Angeles, USA:
Morgan Kaufman Publishers, 1995

J.E. Baker, “Adaptive selection methods for genetic algorithms,”
Proc. Ist Int. Conf. On Genetic Algorithms and Their
Applications, PA, USA, July24-26, 1985, pp.101-111

D. Beasley, D.R. Bull, RR. Martin, “An overview of genetic

algorithms : part 1, fundamentals,” University Computing, 1993,
15(2) pp. 58-69

297



[Beasley93a]

[Bella93]

[Bella95a]

[Bella95b]

|Bentz]

[Bentz97]

[Bhask90]

[Blair94]

[Bright93]

[Bright96]

[Bright97]

D. Beasley, D.R. Bull, RR. Martin, “An overview of genetic
algorithms: part 2, research topics,” University Computing, 1993,
15(4), pp. 170-181

A. Bellaouar and M 1. Elmasry, Low-Power Digital VLSI Design:
Circuits and Systems, Mass., USA: Kluwer Academic Publishers,
1995

A. Bellaouar and M.I. Elmasry, “Low-power VLSI design: an
overview,” in Low-Power Digital VLSI Design: Circuits and
Systems, Mass., USA: Kluwer Academic Publishers, 1995,
Chapter 1, pp. 1-12

A. Bellaovar and M.I. Elmasry, “Low-power VSLI design
methodology,” in Low-Power Digital VLSI Design: Circuits and
Systems, Mass., USA: Kluwer Academic Publishers, 1995,
Chapter 8, pp. 490-526

O. Bentz., “Hyper: synthesis for datapath intensive architectures,”
Available HTTP

http://infopad EECS.Berkeley. EDU/~hyper/Background/paperBac
kground.html

O. Bentz, JM. Rabaey and D. Lidsky, “A dynamic design
estimation and exploration environment,” Proc IEEE Design
Automation Conference, DAC 97, Anaheim Calif. USA, 1997, pp.
190-195

J. Bhasker and H-C. Lee, “An optimizer for hardware synthesis,”
IEEE Design and Test of Computers, Oct 1990, pp. 20-36

G.M. Blair, “Designing low power digital CMOS, ™" Electronics &
Communication Engineering Journal, Oct 1994, pp.229-236

M.S. Bright, Fault Analysis of VLSI Circuits, B.Eng. Dissertation,
School of Engineering, Cardiff University, 1995

M.S. Bright, T. Arslan, “A genetic framework for the high-level
optimization of low power VLSI DSP systems,” IEE Electronics
Letters, Vol. 32, No. 13, 20th June 1996, pp. 1150-1151

M. S. Bright and T. Arslan, “A genetic algorithm for the high-level
synthesis of DSP systems for low power,” Proc. IEE/IEEE Conf.
on Genetic Algorithms in Engineering Systems, Innovations and
Applications (GALESIA '97), Glasgow, UK, 2-4 Sept. 1997, pp.
174-179

298



[Bright98]

[Bright98a]

[Bright98b]

[Burch93]

[Burd96]

[Bursky95]

[Camp90]

[Camp91]

[Casa80]

[Chan92]

[Chan92a]

[Chan94]

M. S. Bright and T. Arslan, “Transformational-based synthesis of
VLSI based DSP systems for low power using a genetic
algorithm,” IEEE Int. Symposium on Circuits and Systems, I1SCAS
98, Monterey CA, 31 May - 3 June 1998

M.S. Bright and T. Arslan, “Supply voltage reduction through
high-level design techniques,” Proc. IEE UK Low Power Forum,
Sheffield, UK, Sept. 1998, pp. 10.1-10.5

M.S. Bright and T. Arslan, “Low-power high-level DSP system
methodologies and techniques: impact on CAD,” Proc. IEE UK
Low Power Forum, Sheftield, UK, Sept. 1998, pp. 7.1-7.5

R. Burch, F. N. Najm, P. Yang, T. N. Trick, “A Monte-Carlo
approach for power estimation,” /EEE Trans. on VLSI Systems,
vol. 1, no. 1, March 1993, pp. 63-71

T.D. Burd and R.W. Broderson, “Processor design for portable
systems,” Journal of VLSI Signal Processing, Kluwer Academic
Publishers; Volume 13, Numbers 2/3, August Sept. 1996, pp. 203-
222

D. Bursky, “Power-reduction schemes promise "cool" digital ICs,”
Electronic Design, January 9 1995, pp. 51-64

R. Camposano, “From behavior to structure: high level synthesis,”
IEEE Design and Test of Computers, Oct 1990, pp. 8-19

R. Camposano, “Path-based scheduling for synthesis,” [EEE
Trans. On Computer Aided Design, vol. 10, no. 1, Jan. 1991, pp.
85-93

A. E. Casavant, D. D. Gajski and D. J, Kuck, “Automatic design
with dependence graphs,” Proc. 17th ACM/EEE Design
Automation Conference, Minneapolis, June 1980, pp. 506-515

A.P. Chandrakasan, S. Sheng and R.W. Broderson, “Low power
CMOS digital design, " IEEE Journal of Solid-State Circuits, vol.
27, no. 4, April 1992, pp. 473-483

AP. Chandrakasan, M. Potkonjak, J. Rabaey, R W. Broderson,
“HYPER-LP: A system for power minimization using
architectural transformations,” Proc. IEEE Int. Conference on
CAD, 1992, pp. 300-303

A.P. Chandrakasan, A. Burstein, R W. Broderson, “A low-power

chipset for a portable multimedia I/O terminal, " IEEE Journal Of
Solid-State Circuits, vol. 29, no. 12, Dec 1994, pp. 1415-1428

299



[Chan94a]

[Chan95]

[Chan93a]

[Chan98]

[Chang95]

[Chau92]

[Chaud95]

[Chaud96]

[Chipp97]

[Chiu94]

[Chuang98]

[Chun94]

A P. Chandrakasan, R. Allmon, A. Stratakos and R.W. Broderson,
“Design of portable systems,” Proc. IEEE Custom Integrated
Circuits Conf., USA, 16th May 1994, pp. 259-266

AP. Chandrakasan, M. Potkonjak, R. Mehra, J.M. Rabaey and
R.W. Broderson, “Optimizing power using transformations,” /EEE
Transactions On Computer Aided Design Of Integrated Circuits
and Systems, vol. 14, no. 1, Jan 1995, pp. 12-31

A.P. Chandrakasan, R.W. Broderson, “Minimizing power
consumption in digital CMOS circuits,” Proc. of the IEEE, vol. 83,
no.4, April 1995, pp.498-523

AP. Chandrakasan, R. Amirthajarah, J. Goodmand, W. Rabiner,
“Trends in low power digital signal processing,” in Proc. IEEE
International Symposium on Circuits and Systems , ISCAS '98,
Monterey, CA, 1998

J-M. Chang, M. Pedram, “Register allocation and binding for low
power,” Proc. IEEF/ACM 32nd Design Automation Conference,
San Francisco, CA, June 1995, pp. 29-35

PM. Chau, S.R. Powell, “Power dissipation of VLSI array
processing systems,” Journal of VLSI Signal Processing, vol. 4,
1992, pp. 199-212

S. Chaudhuri, S.A. Blythe, R.A. Walker, “An exact methodology
for scheduling in a 3D design space, ” Proc. 8th IEEE Int. Symp.
on System Synthesis, Cannes, France, Sept 1995, pp. 78-83

S. Chaudhuri, R.A. Walker, “Computing lower bounds on
functional units before scheduling,” IEEE Trans. on VLSI Systems,
vol. 4., no. 2, June 1996, pp. 273-279

A. Chipperfield, “Introduction to Genetic Algorithms - Parallel
GAs,” in Genetic Algorithms in Engineering Systems, London UK:
IEE, 1997, Chapter 1, pp. 20-30

C.T. Chiu, K H. Tsui, “VLSI implementation of a generic discrete
transform processor for real-time applications,” Proc. of IEEE
Asia-Pacific Conf. on Circuits and Systems, 1994, pp. 79-84.

C-T. Chuang, S-L. Lu, K. Soumyanath, H. Partovi, T. Sakurai, V.
De, K. Roy, “Challenges for low-power and high-performance
chips,” IEEE Design & Test of Computers, July-Sept. 1998, pp.
119-124

J.G. Chung, K K. Parhi, “Pipelining of lattice IR digital filters,”

IEEE Trans. on Signal Processing, vol. 42, no. 4, April 1994 pp.
751-761

300



[Chwirka95]

[Cirit87]

[Coudert96]

[Darwin]

[Davis82]

[Davis87]

[Davis87a]

[Davis89]

[Davis91]

[Davis94]

[DeJong]

[Dev89]

[Dev9s]

S. Chwirka, “Power analysis tools evolve for portables,”
Electronic Design, January 9 1995, pp. 113-116

M. A. Cirit, “Estimating dynamic power consumption of CMOS
circuits,” IEEE Int. Conf. Computer-Aided Design, Nov. 9-12,
1987, pp. 534-537

O. Coudert, R. Haddad, K. Keutzer, “What is the state of the art in
commercial EDA tools for low power?,” Proc. of Int. Symposium
on Low Power Electronics and Design, Monterey, CA, USA,
1996, pp. 181-187

C. Darwin, On the origin of species, Available F'TP
ftp://sunsite unc.edu Directory:
/pub/docs/books/gutenberg/etext98/ File: otoos10.txt

AL. Davis, RM. Keller, “Data flow program graphs, ” IELE
Computing Magazine, 1982, Feb 15, pp. 26-41

L. Davis (Ed.), Genetic algorithms and Simulated Annealing,
Morgan Kaufman, LA, USA, 1987

L. Davis and M. Steenstrup, “Genetic algorithms and simulated
annealing: an overview,” in Genetic Algorithms and Simulated
Annealing, Morgan Kaufman, LA, USA, 1987, pp.1-11

L. Davis, “Adapting operator probabilities in genetic algorithms,”
Proc. 3rd Int. Conf On Genetic Algorithms, CA, June 1989, pp.
61-69

L. Davis (Ed.), Handbook Of Genetic Algorithms, Van Nostrand
Reinhold, New York, 1991

M. Davis, L. Liu, J.G. Elias, “VLSI circuit synthesis using a
parallel genetic algorithm,” Proc. IEEE Conf. On Evolutionary
Computation, vol. 1, 1994, pp. 104-109

K. Delong, Analysis of a Class of Genetic Adaptive Systems, Ph.D.
Thesis, Dept. of Computer and Communications Science, Univ. of
Michigan, 1975

S. Devadas, R. Newton, “Algorithms for hardware allocation in
data path synthesis,” IEEE Trans. On Computer-Aided Design,
vol. 8, no. 7, July 1989, pp.768-781

S. Devadas, S. Malik, “A survey of power optimization techniques

targeting low power VLSI circuits,” Proc. [EEE Design
Automation Conference, San Francisco, CA, 1995, pp. 242-247

301



[Esben96]

[Esch91]

[Fett93]

[Filho94]

[Frenk97]

[Fried94]

[Gajskio4]

[Galesia95]

[Galesia97]

[Gary94]

[Gary96]

[Gebot93]

H. Esbensen and E.S. Kuh, “Design space exploration using the
genetic algorithm,” Proc. IEEE Int. Symposium on Circuits and
Systems, ISCAS 96, Atlanta, USA, May 1996, pp. 500-503

L.J. Eshelman, "The CHC adaptive search algorithm: how to have
safe search when engaging in nontraditional genetic recombination
", in Foundations of Genetic Algorithms, G.J E. Rawlins (Ed.), San
Mateo, CA: Morgan Kaufmann, 1991, pp. 265-283.

G.P. Fettweis, L. Thiele, “Algebraic recurrence transformations
for massive parallelism, ” IEEE Trans. On Circuits and Systems I:
Fundamental Theory and Applications, vol. 40, no. 12, Dec 1993,
pp. 949-952

JR. Filho, C. Alippi and P. Treleaven, “Genetic algorithm
programming environments,” /EEE Computer, vol. 27, number 6,
June 1994, pp. 28-43

J. Frenkil, “Tools and methodologies for low power design,” Proc.
IEEE Design Automation Conference, DAC'97, California, USA,
1997, pp. 76-81

E.G. Friedman, “From 100 milliwats/mips to 10 microwatts/mips,
“ Proc. IEEFE Int. Symposium on Circuits and Systems, London,
UK, May 1994, pp. 1-6

D.D. Gajski, L. Ramachandran, “Introduction to high-level
synthesis,” IELE Design and Test of Computers, Winter 1994, pp.
45-54

Genetic Algorithms in Engineering Systems: Innovations and
Applications, Conf. Proc., GALESIA '95, IEE/EEE, Univ.
Sheffield, UK, 12-14 Sept. 1995

Genetic Algorithms in Engineering Systems: Innovations and
Applications, Conf. Proc., GALESIA '97, IEE/IEEE, Univ. of
Strathclyde, UK, 2-4 Sept. 1997

S. Gary, P. Ippolito, G. Gerosa, D. Dietz, J. Eno, H. Sanchez,
“Power PC603, a microprocessor for portable computers,” /EEE
Design and Test of Computers, Winter 1994, pp. 14-23

S. Gary, “Low-power microprocessor design,” in Low Power
Design Methodologies, Mass. USA: Kluwer Academic Publishers,
1996, Chapter 9, pp. 255-288

C.H. Gebotys, “Throughput optimized architectural synthesis,”

IEEE Trans. On VLSI Systems, vol. 1, no. 3, Sept 1993, pp. 254-
261

302



[Gela93]

[Genashor]

[Glover98]

[Goldberg89]

[Goldberg91]

[Good94]

[Gowan98]

[Gref84]

[Gref86]

[Gref87]

[Grewal97]

[Guerra98]

P.R. Gelabert and T.P. Barnwell 111, “Optimal automatic periodic
multiprocessor scheduler for fully specified flow graphs,” IEEE
Trans. on Signal Processing, vol. 41, no. 2, Feb. 1993, pp. 858-
888

Genashor Inc., “Xpower,” Available HTTP
http://pluto.njcc.com/~genashor/xpower.html

F.W. Glover, Tabu Search, Kluwer Academic Publishers, 1988

D.E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Reading, Mass: Addison-Wesley Publishing
Co. Inc., 1989

D.E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” in Foundations Of Genetic
Algorithms, Gregory J.E. Rawlins (Ed)., Morgan Kaufman, CA
USA, 1991, pp. 69-93

L. Goodby, A. Orailoglu and P.M. Chau, “A high-level synthesis
methodology for low-power VLSI design,” Proc. IEEE
Symposium on Low Power Electronics, 1994, pp. 48-49

MK. Gowan, L L. Biro, D.B. Jackson, “Power considerations in
the design of the Alpha 21264 microprocessor,” Proc. 35th Design
Automation Conference, DAC 98, San Francisco, CA, 1998, pp.
726-731

J. J. Grefenstette, “GENESIS: A system for using genetic search
procedures,” Proc. 1984 Conf. on Intelligent Systems and
Machines, 1984, pp. 161-165

J.J. Grefenstette, “Optimization of control parameters for genetic
algorithms,” IEEE Trans. on SMC, vol. 16, no. 1, 1986, pp. 122-
128

J.J. Grefenstette, “Incorporating problem specific knowledge into
genetic algorithms,” in Genetic Algorithms and Simulated
Annealing, Morgan Kaufman, LA, USA, 1987, pp.43-60

G.W. Grewal, T.C.Wilson, “An enhanced genetic solution for
scheduling, module allocation, and binding in VLSI design,” Proc.
IEEE 10th Int. Conf. on VLSI design, Jan 1997, pp. 51-56

L. Guerra, M. Potkonjak, J. M. Rabaey, “A methodology for
guided behavioral-level optimization,” Proc. 35th Design
Automation Conference, DAC 98, San Francisco, CA, 1998, pp.
309-314

303



[Guerts91]

[Gwee96]

[Hanc95]

[Holland92]

[Hong98]

[Horo94]

[Huang94]

[Huang96]

[Hwang91]

[Tkeda95]

[Iman96]

[Intel98]

W. Guerts, F. Catthoor, H. De Man, “Cathedral III : architecture-
driven high-level synthesis for high throughput DSP applications,”
Proc. 28th IEEE Design Automation Conference, DAC 91, USA,
June 1991, pp. 597-602

B. H  Gwee and M. H. Lim, “Polyominoes tiling by a genetic
algorithm,” Computational Optimization and Applications 6,
Mass. USA: Kluwer Academic Publishers, 1996, pp. 273-291

P.J.B. Hancock, “Selection methods for evolutionary algorithms,”
in Practical Handbook of GAs : New [Frontiers Vol. II, Lance
Chambers (Ed)., CRC Press Inc, 1995, pp.67-92

J. H. Holland, Adaptation in Natural and Artificial Systems, 2nd.
ed., Cambridge, Mass: MIT Press, 1992

I. Hong, D. Kirovski, G. Qu, M. Potkonjak and M.B. Srivastava,
“Power optimization of wvariable voltage core-based systems,”
Proc. 35th Design Automation Conference, DAC 98, San
Francisco, CA, 1998, pp. 176-181

M. Horowitz, T. Indermaur and R. Gonzalez, “Low-power digital
design, ” Proc. IEEE Symposium on Low Power Llectronics, 1994,
pp. 8-11

S-H. Huang, J. M. Rabaey, “Maximizing the throughput of high
performance DSP applications using behavioral transformations,”
Proc. EDAC-ETC-EUROASIC'94, Paris, France, March 1994, pp.
25-30

S-H. Huang, J. M. Rabaey, “An integrated framework for
optimizing transformations,” Proc. IEEE VLSI Signal Processing,
San Francisco, CA, Oct. 1996

C-T. Hwang, J-H. Lee, Y-C Hsu, “A formal approach to the
scheduling problem in high-level synthesis,” /EEE Trans. On
Computer Aided Design, vol. 10, no. 4, April 1991, pp. 464-475

T. Ikeda, “Think-pad low-power evolution,” Proc. IEEE
Symposium on Low Power FElectronics, Digest of Technical
Papers, San Jose, CA, Oct. 1995, pp. 6-7

S. Iman and M. Pedram, “Pose: power optimization and synthesis
environment,” Proc. 33rd IEEE Design Automation Conference,
DAC 33,1996, Las Vegas, USA

Intel Inc., “Mobile PC power,” Available H7TTP
http://www.intel.com/ mobile/techforum/power.htm

304



[Intel98b]

[Intel98c]

[Ketz94]

[Khalifa97]

[Kim96]

[Kim97]

[Kim98]

[Kirk83]

| Koel]

[Kumar95]

[Kunii95]

[Laksh98]

Intel Inc., “Mobile Pentium processor with MMX technology,”
Datasheet No. 243292-004

Intel Inc., “Pentium II processor at 233 MHz, 266MHz, 300 MHz
and 333MHz,” Datasheet No. 243335-003

K. Ketzer, “The impact of CAD on the design of low power digital
circuits,” Proc. IEEE Symposium on Low Power FElectronics,
1994, pp. 42-45

Y. M. A Khalifa, Evolutionary Methods for the Design of
Electronic  Circuits and Systems, Ph.D. Thesis, School of
Engineering, Cardiff University, 1997

H. Kim and S.Y. Hwang, “Heuristic algorithm for low power
design of combinational circuits,” IEE FElectronics Letters, 6th
June 1996, vol. 32, no. 12, pp. 1066-1067

D. Kim and K. Choi, “Power-conscious high level synthesis using
loop folding,” Proc IEEE Design Automation Conference, DAC
97, Anaheim Calif. USA, 1997, pp. 441-445

T. Kim, W. Jao, S. Tjiang, “Arithmetic operation using carry-save-
adders,” Proc. 35th Design Automation Conference, DAC 98, San
Francisco, CA, 1998, pp. 433-438

S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, “Optimization by
simulated annealing,” Science, 220(4598), May 1983, pp. 671-680

A M. Koelmans, F.P. Burns and D.J. Kinniment, “Use of a
theorem prover for transformational synthesis, ” Technical Report
426, Department of Computing Science, University of Newcastle
upon Tyne, 1993

N. Kumar, S. Katkoori, L. Rader, R. Vemuri, “Profile-driven
behavioral synthesis for low-power VLSI systems,” IEEE Design
and Test of Computers, Fall 1995, pp. 70-84

S. Kunii, “Means of realizing long battery life in portable PCs,”
Proc. IEEE Symposium on Low Power Electronics, Digest of
Technical Papers, San Jose, CA, Oct. 1995, pp. 20-23

G. Lakshminarayana and N.K. Jha, “FACT: a framework for the
application of throughput and power optimizing transformations to
control-flow intensive behavioral descriptions, ” Proc. 35th Design
Automation Conference, DAC 98, San Francisco, CA, 1998, pp.
102-107

305



[Laksh98a]

[Landman93]

[Landman94]

[Landman94a]

[Landman96]

[Landman96a]

[Larson98]

[Lee98]

[Lem94]

[Liao96]

[Lidsky96]

[Lienig97]

G. Lakshminarayana and N.K. Jha, “Synthesis of power-optimized
and area-optimized circuits from hierarchical behavioral
descriptions,” Proc. 35th Design Automation Conference, DAC 98,
San Francisco, CA, 1998, pp. 439-444

PE. Landman, J M. Rabaey, “Power estimation for high level
synthesis,” Proc. EDAC-EUROASIC '93, Paris, France, Feb 1993,
pp. 361-366

PE. Landman and J M. Rabaey, “Black-box capacitance models
for architectural power analysis,” IEEE Int. Workshop on Low-
Power Design, Napa, CA, April 1994, pp.165-170

PE. Landman, Low-power architectural design methodologies,
Ph.D. Thesis, Univ. Berkeley, CA, USA, 1994

PE. Landman, R. Mehra, J M. Rabaey, “An integrated CAD
environment for low-power design,” /EEE Design and Test of
Computers, vol. 13, no. 2, Summer, 1996

PE. Landman and J M. Rabaey, “Activity sensitive architectural
power analysis,” IEEE Trans. on Computer Aided Design, vol. 15,
no. 6, June 1996, pp. 571-587

E. Larson, “Low-power radio frequency circuit architectures for
portable wireless communications,” in Proc. IEEE International
Symposium on Circuits and Systems , ISCAS '98, Monterey, CA,
1998

W. Lee, P.E. Landman, B. Barton and G. Frantz, “A 1V
programmable DSP for Wireless Applications,” in Proc. IEEE
International Symposium on Circuits and Systems , ISCAS '98,
Monterey, CA, 1998

Z.J. Lemnios, K.J. Gabriel, “Low-power electronics,” IEEE
Design and Test of Computers, Winter 1994, pp. 8-13

H. Liao, W.W-M. Dai, “A new CMOS driver model for transient
analysis and power dissipation analysis,” in Low Power VLSI
Design and Technology, GK. Yeap, F.N. Najm (Eds.), London,
UK: World Scientific, 1996, pp. 47-63

D. Lidsky, J.M. Rabaey, “Early power exploration - a world wide
web application,” Proc. ACM/IEEE 33rd Design Automation
Conference, DAC 96, Las Vegas, USA, 1996,

J. Lienig, “A parallel genetic algorithm for performance-driven

VLSI routing,” IEEE Trans. Evolutionary Computation, vol. 1, no.
1, April 1997, pp. 29-39

306



[Lies83]

[Liu93]

[Liu94]

[Lo98]

[Lock93]

[Luck93]

[Lyon93]

[Ma90]

[Macii97]

[Madis96]

[Madis96a]

[Mandal96]

C. E. Lieserson, F. M. Rose, J. B. Saxe, “Optimizing synchronous
circuitry by retiming,” Proc. 3rd Caltech Conf on VLSI, Pasadena
CA, March 1983, pp. 87-116

D. Liu and C. Svensson, “Trading speed for low power by choice
of supply and threshold voltages,” IEEE Journal of Solid State
Circuits, vol. 28, no. 1, Jan 1993, pp. 10-17

D. Liu and C. Svensson, “Power consumption estimation in
CMOS VLSI chips,” IEEE Journal of Solid-State Circuits, vol. 29,
no. 6, June 1994, pp. 663-670

C-K. Lo and P.C H. Chan, “Design of low power differential logic
using adiabatic switching technique,” in Proc. IELE International
Symposium on Circuits and Systems , ISCAS '98, Monterey, CA,
1998

B. Lockyear, C. Ebeling, “The practical application of retiming to
the design of high-performance systems,” Proc. Int. Conf. CAD,
June 1993, pp. 288-295

LE. Lucke, KK. Parhi, “Data flow transformations for critical
path time reduction in high level DSP synthesis, ” /EEE Trans. on
CAD of Integrated Circuits and Systems, vol. 12, no. 7, July 1993,
pp.1064-1066

RF. Lyon, “Cost, power and parallelism in speech signal
processing,” IEEE Custom Integrated Circuits Conference, 1993,
pp. 15.1.1-15.1.9

G-K. Ma, FJ. Taylor, “Multiplier policies for digital signal
processing,” ILEE ASSP Magazine, Jan, 1990, pp. 6-19

E. Macii, M. Pedram and F. Somenzi, “High-level power
modeling, estimation and optimization,” Proc IEEE Design
Automation Conference, DAC 97, Anaheim Calif. USA, 1997, pp.
190-195

V.K. Madisetti, “Rapid digital system prototyping: current
practice, future challenges,” IEEE Design and Test of Computers,
Fall 1996, pp. 12-22

V K. Madisetti, M.A. Richards, “Advances in rapid prototyping of
digital systems,” ILEE Design and Test of Computers, Fall 1996,
pp. 9-11

C A Mandal, P.P. Chakrabarti, S. Ghose, “Allocation and binding
in data path synthesis using a genetic algorithm approach,” Proc.
IEEE 9th Int. Conf. On VLSI Design, Jan 1996, pp. 122-125

307



[Martin95]

[Martin96]

[McFar83]

[McFar90]

[Mcgrath95]

[Mehra94]

[Mehra96]

[Mehra96a]

[Meng98]

[Mess98]

[Michelioo]

[Michelio4]

R.S. Martin, J.P. Knight, “Power Profiler : optimizing ASICs
power consumption at the behavioral level, ” Proc. IEEE Design
Automation Conference, San Francisco, CA, 1995, pp. 42-47

R.S. Martin and J.P. Knight, “Optimizing power in ASIC
behavioral synthesis,” [ELE Design and Test of Computers,
Summer 1996, pp. 58-70

M.C. McFarland and A.C. Parker, “An abstract model of behavior
for hardware systems,” IEEE Trans. on Computers, vol. C-32, no.
7, July 1983, pp. 621-637

M.C. McFarland, A.C. Parker, R. Camposano, “The high-level
synthesis of digital systems,” Proc. of the IEEFE, vol. 78, no. 2, Feb
1990, pp. 301-318

S. McGrath and E. Scully, “Low power ASIC design for wireless
communications,” IEE Colloquium on 'Low Power Analogue and
Digital VLSI: Techniques and Applications’, 2 June 1995, London,
UK, pp. 3/1-3/6

R. Mehra, J M. Rabaey, “Behavioral level power estimation and
exploration,” Proc. 1994 Int. Workshop On Low Power Design,
Calif,, USA, 1994

R. Mehra, D.B. Lidsky, A. Abnous, P.E. Landman and J.M.
Rabaey, “Algorithm and architectural level methodologies for low
power,” in Low Power Design Methodologies, Mass. USA:
Kluwer Academic Publishers, 1996, chapter 11, pp. 335-362

R. Mehra, L. Guerra and J.M. Rabaey, “Low-power architectural
synthesis and the impact of exploiting locality,” Journal of VLSI
Signal Processing, Kluwer Academic Publishers; 1996, Available
HTTP: http://infopad.eecs.berkeley.edu/~renu/papers/vlsisp96.ps

TH. Meng, A.C. Hung, EK. Tsern and BM. Gordon, “Low-
Power signal processing system design for wireless applications,”
IEEE Personal Communications Magazine, June 1998, pp. 21-31

D.G. Messerschmitt, “Breaking the recursive bottleneck,” in
Performance Limits in Communication Theory and Practice, J K.
Skwirzynski (Ed.), Kluwer Academic Publishers, 1998, pp. 3-19

G. De Micheli, “High-level synthesis of digital circuits,” IEEE
Design and Test of Computers, Oct. 1990, pp. 6-7

G. De Micheli, Synthesis and Optimization of Digital Circuits,
New York, NY: McGraw-Hill, Inc., 1994

308



[Mitch96]

[Mont92]

[Najm94]

[Najm95]

[Neil]

[Odare94]

[Parhi89]

[Parhio1]

[Parhio2]

[Parhio3]

[Parkos]

[Paulin89]

M. Mitchell, An Introduction to Genetic Algorithms, Cambridge,
Mass: MIT Press, 1996

J. Monteiro, S. Devadas, A. Ghosh, “Retiming sequential circuits
for low power,” Proc. Int. Conf. CAD, June 1993

F.N. Najm, “A survey of power estimation techniques in VLSI
circuits,” IEEE Transactions on VLSI Systems, vol. 2, no. 4, Dec.
1994, pp. 446-455

F.N. Najm, “Feedback, correlation, and delay concerns in the
power estimation of VLSI circuits,” Proc. IEEE/ACM 32nd
Design Automation Conference, San Francisco, CA, June 1995,
pp. 612-617

J.P. Neil and P.B. Denyer, "Simulated annealing based synthesis
of fast discrete cosine transform blocks", in Algorithmic and
Knowledge-Based CAD for VLSI, GE. Taylor, G. Russell (Eds.),
London, UK: IEE Circuits and Systems Series, No 4, 1992

M.J. O'Dare, T. Arslan, “Generating test patterns for VLSI circuits
using a genetic algorithm,” /EE Electronics Letters, vol. 30, no.
10, May 1994, pp. 778-779

K.K. Parhi, “Algorithm transformation techniques for concurrent
processors,” Proc. of the IEEE, vol.77, no.12, Dec. 1989, pp.
1879-1895

K. K. Parhi, “Static rate-optimal scheduling of iterative data-flow
programs via optimum unfolding,” IEEE Trans. On Computers,
vol. 40, no. 2, Feb. 1991, pp. 178-195

K.K. Parhi, “Impact of architecture choices on DSP circuits,”
IEEE Region 10 Conf., Tencon 92, Nov 1992, pp. 784-788

K.K. Parhi, “High-level algorithm and architecture transformations
for DSP synthesis,” Journal of VLSI Signal Processing, vol. 9,
1995, pp. 121-143

N. Park and A.C. Walker, “Sehwa: a software package for
synthesis of pipelines from behavioral descriptions,” IEEE Trans
on Computer-Aided Design, vol. 7, no. 3, March 1998, pp. 356-
370

P.G. Paulin, JP. Knight, “Force-directed scheduling for the

behavioral synthesis of ASIC's, ” IEEE Trans. On Computer Aided
Design, vol. 8, no. 6, June 1989, pp. 661-679

309



[Pedram95]

[Potko89]

[Potko91]

[Potko92a]

[Potko94]

[Potko95]

[Potko97]

[Powell90]

[Powell91]

[Puck94]

[Rabaey]

[Rabaey90]

[Rabaey91]

M. Pedram, “CAD for low power: status and promising
directions,” Proc. Int. Symposium on VLSI Technology, 1995,
Available: HTTP http://atrak.usc.edu/~massoud/sign
download.cgi?vlsi-95-power-survey.ps

M. Potkonjak, J.M. Rabaey, “A scheduling and resource allocation
algorithm for hierarchical signal flow graphs,” Proc. ILEE 26th
Design Automation Conference, Las Vegas, USA, June 7-12th,
1989, pp. 7-12

M. Potkonjak, J. M. Rabaey, “Retiming for scheduling, ” VLSI
Signal Processing IV, H.S. Moscovitz, K. Yao and R. Jain (Eds.),
IEEE Press, New Jersey, 1991, pp. 23-32

M. Potkonjak, JM. Rabaey, “Pipelining: just another
transformation,” Proc. 1992 Application  Specific = Array
Processors Conference, USA, pp. 163-175

M. Potkonjak, J.M. Rabaey, “Optimizing resource utilization using
transformations,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 13, no. 3, March 1994, pp. 277-292

M. Potkonjak, J.M. Rabaey, “Power minimization in DSP
application specific systems using algorithm selection,” Proc.
IEEE Int. Conf Acoustics, Speech and Signal Processing, 1995,
vol. 4, pp. 2639-2642

M. Potkonjak, Personal Communication, E-mail, Wed 26 Nov.
1997

S.R. Powell, P.M. Chau, “Estimating power dissipation of VLSI
signal processing chips: the PFA technique,” VLSI Signal
Processing 1V, 1990, pp. 251-259

S.R. Powell and P.M. Chau, “A model for estimating power
dissipation in a class of DSP VLSI chips,” IEEE Trans. on
Circuits and Systems, vol. 38, no 6, June 1991, pp. 646-650

D.A. Pucknell, K. Eshragian, Basic VLSI Design, Silicon Systems
Engineering Series, Prentice Hall, 1994

J. M. Rabaey, “The Spice Page,” Available HTTP
http://infopad.eecs.berkeley.edu/~icdesign/SPICE/

J.M. Rabaey and M. Potkonjak, “Resource driven synthesis in the
HYPER system,” Proc. Symposium on Circuits and Systems, vol.
4, IEEE Press, New York, 1990, pp. 2592-2595

J.M. Rabaey, M. Potkonjak, “Complexity estimation for real time
circuits,” Proc. ESSCIRC, Milan, Italy, Sep. 1991, pp. 201-291

310



[Rabaey91a]

[Rabaey94]

[Rabaey95]

[Rabaey96]

[Rabaey97]

[Rag94]

[Rag95]

[Rag95a]

[Ranjit90]

|Reese94]

[Reeves9s]

[Rhis97]

[Rich93]

J.M. Rabaey, C. Chu, P. Hoang, M. Potkonjak, “Fast prototyping
of datapath-intensive architectures,” IEEE Design and Test Of
Computers, June 1991, pp. 40-51

J.M. Rabaey, M. Potkonjak, “Estimating implementation bounds
for real time DSP application specific circuits,” IEEE. Trans. on
CAD of Integrated Circuits and Systems, vol. 13, no. 6, June 1994,
pp. 669-683

J.M. Rabaey, L. Geurra, R. Mehra, “Design guidance in the power
dimension,” Proc. IEEFE Int. Conference On Acoustics, Speech and
Signal Processing, 1995, vol. 5, pp. 2387-2840

JM. Rabaey and M. Pedram (Eds.), Low Power Design
Methodologies, Mass., USA: Kluwer Academic Publishers, 1996

J.M. Rabaey, “Low-power design tools - where is the impact?,”
Proc IEEE Design Automation Conference, DAC 97, Anaheim
Calif. USA, 1997, pp. 82

A. Raghunathan, N.K. Jha, “Behavioral synthesis for low power,”
Proc. ICCD '94, 1994, pp. 318-322

A. Raghunathan, N.K. Jha, “An iterative improvement algorithm
for low power data path synthesis,” Proc. IEEE/ACM ICCAD '95,
Digest of Technical papers, 1995, pp. 597-602

A. Raghunathan, N.K. Jha, “An ILP formulation for low power
based on minimizing switched capacitance during data path

allocation,” Proc. IEEE Int. Symposium on Circuits and Systems,
vol. 2, 1995, pp. 1069-1073

R. K. Ranjit, A Primer on the Taguchi Method, New York, US:
Van Nostrand Reinhold. 1990.

B. Reese, “Using hyper to teach datapath design techniques in an
ASIC design course,” Proc. of the Annual IEEE International
ASIC Conference, NY, USA. Sep 1994, pp. 200-203

Colin R. Reeves (Ed.), Modern Heuristic Techniques for
Combinatorial Problems, London, UK: McGraw-Hill Int., 1995

G. Rhisiart, The Development of Graphics Routines for an
Intelligent DSP Synthesis System in C++, B.Eng. Dissertation,
School of Engineering, Cardiff University, 1997

E. Rich and K. Knight, “Heuristic search techniques,” in Artificial
Intelligence, McGraw-Hill, 2nd edition, USA, 1993, chapter 3, pp.
63-73

311



[Roy93]

[Sato94]

[Schaff93]

[Schnecke95]

[Schnecke95a]

[Schwef95]

[Sente]

[Sheng92]

[Shiue98]

[Sinclair9s8]

[Singh95]

[Snyder94]

K. Roy, “A design and test roundtable: low power design,” /EEE
Design and Test of Computers, Winter 1995, pp. 84-90

T. Sato, M. Nagamatsu and H. Tago, “Power and performance
simulator: ESP and its application for 100MIPS/W class RISC
design,” Proc. IEEE Symposium on Low Power Electronics, 1994,
pp. 46-47

J.D. Schaffer, L.J. Eshelman, “Designing multiplierless digital
filters using genetic algorithms,” Proc. Fifth Int. Conf. on Genetic
Algorithms, llinois, USA, July17-21 1993, pp. 439-444

V. Schnecke, “Genetic design of VLSI layouts,” in Genetic
algorithms In Engineering Systems, London, UK: IEE Press, 1995,
pp. 229-253

V. Schnecke, O. Vornberger, “Genetic design of VLSI layouts,”
Proc. Ist IEE/JIEEE Conf. On GAs In Eng. Systems: Innovations
and Apps, GALESIA'95, Sep 1995, UK, pp.430-435

H-P. Schwefel, Evolution and Optimum Seeking, New York, NY:
Wiley-Interscience, 1995

Sente, “WattWatcher Product Information,” Available H77TP
http://www.powereda.com/wwinfo.htm

S. Sheng, A. Chandrakasan, R.W. Broderson, “A portable
multimedia terminal,” [/EEE Communications Magazine, Dec
1992, pp. 64-75

W-T. Shiue and C. Chakrabarti, “Low power scheduling with
resources operating at multiple voltages,” in Proc. IEEE
International Symposium on Circuits and Systems , ISCAS '98,
Monterey, CA, 1998

M.C. Sinclair, “Operator-probability Adaptation in a Genetic-
algorithm/Heuristic Hybrid for Optical Network Wavelength
Allocation,” Proc. IEEE Intl. Conf. on Evolutionary Computation
(ICEC'98), Anchorage, Alaska, USA, May 1998, pp. 840-845

D. Singh, J M. Rabaey, M. Pedram, F. Catthoor, S. Rajgopal, N.
Sehgal, T.J. Mozdzen, “Power conscious CAD tools and
methodologies: a perspective,” Proc. of the IEEE, vol. 83, no. 4,
April 1995, pp. 570-594

J.H. Snyder, J.B. McKie and B.N. Locanthi, “Low-power software
for low-power people,” Proc. IEEE Symposium on Low Power
Electronics, 1994, pp. 32-35

312



[Srivo5]

[Srivo6]

[Strat94]

[Strat94a]

[Su94]

[Synop]

[Synop98]

[Synop98b]

[Synop98c]

[Synop98d]

[Szek98]

[Teuk95]

[Teuk95a]

M.B. Srivastava, “Optimum and heuristic transformation
techniques for simultaneous optimization of latency and
throughput,” IEEE Trans. on VLSI Systems, vol. 3, no. 1, March
1995, pp. 2-19

M. Srivastava, M. Potkonjak, “Power optimization in
programmable processors and ASIC implementations of Linear
Systems: Transformation based approach,” Proc. 33rd IEEE
Design Automation Conference, DAC 33, 1996, Las Vegas, USA

AlJ. Stratakos, R.W. Broderson and S.R. Sanders, “High-
efficiency low-voltage DC-DC conversion for portable
applications,” Proc. IEEE Int. Workshop on Low-Power Design,
CA, USA, April 1994

A.J. Stratakos, S.R. Sanders and R.W. Broderson, “A low-voltage
CMOS DC-DC converter for a portable battery-operated system,”
IEEE Power Electronics Specialists Conference, June 1994

C-L. Su, C-Y. Tsui, AM. Despain, “Low power architecture
design and compilation techniques for high-performance
processors,” IEEE Compcon, Feb 1994, pp. 489-498

Synopsys, “AMPS Datasheet,” Available HTTP
http://www.synopsys.com/products/etg/amps_ds.html

Synopsys Inc., USA, “Designing for low power,” Available HTTP
http://www.synopsys.com/products/power/ power br.html

Synopsys Inc., USA, “Powergate,” Available HTTP
http://www.synopsys.com/products/etg/powergate ds.html

Synopsys Inc., USA, “PowerMill Datasheet,” Available HTTP
http://www.synopsys.com/products/etg/powermill _ds html

Synopsys Inc., USA, “Power Family Datasheet,” Available HTTP
http://www.snyopsys.com/products/power/power ds.html

V. Szekeley, M. Renz, B. Courtois, “Tracing the thermal behavior
of ICs,” IEEE Design & Test of Computers, April-June 1998, pp.
15-21

S.A. Teukolsky, W. T. Vettering, W. H. Press and B. P. Flannery
(Eds.), “Simulated annealing methods,” in Numerical Recipes in
C, 2nd Ed., Cambridge, UK: Cambridge Univ. Press, 1995, pp.
444-445

S.A. Teukolsky, W. T. Vettering, W. H. Press and B. P. Flannery

(Eds.), “Sorting,” in Numerical Recipes in C, 2nd Ed., Cambridge,
UK: Cambridge Univ. Press, 1995, pp. 329-346

313



[Teuk95b]

[Tiwarios]

[Trick87]

[Tuck97]

[Turton94]

[Van93]

[Vecchi83]

[Veritools]

[Walker89]

[Walker94]

[Walker95]

[Wang95]

S.A. Teukolsky, W. T. Vettering, W. H. Press and B. P. Flannery
(Eds.), Numerical Recipes in C, 2nd Ed., Cambridge, UK:
Cambridge Univ. Press, 1995

V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, F. Baez,
“Reducing power in high-performance microprocessors,” Proc.
35th Design Automation Conference, DAC 98, San Francisco, CA,
1998, pp. 732-737

H. Trickey, “Flamel: a high-level hardware compiler,” /EEE
Trans. on CAD, vol. CAD-6, no. 2, March 1987, pp. 259-269

B. Tuck, “Editorial: prepare for deep submicron with low-power
strategy,” Computer Design, August 1997, Available HTTP
http://www.computer-
design.com/Editorial/1997/08/asic/897assub. html

B.C.H Turton, “Optimization of genetic algorithms using the
Taguchi method,” Journal of Systems Engineering, vol. 4, 1994,
pp. 121-130

P. Vanoostende, P. Six, J. Vandewalle, H.J. De Man, “Estimation
of typical power of synchronous CMOS circuits using a hierarchy
of simulators,” IEEFE Journal of Solid-State Circuits, vol. 28, no.
1, Jan 1993, pp. 26-39

M.P. Vecchi, S. Kirkpatrick, “Global wiring by simulated
annealing,” IEEE Trans. on CAD of Integrated Circuits, vol.
CAD-2, no. 4, Oct 1983, pp. 215-222

Veritools, “Power tool a PLI based power calculation too for
Verilog,” Available HTTP: http://www.veritools-
web.com/power_t.htm

R.A. Walker, D.E. Thomas, “Behavioral transformation for
algorithmic level 1C design,” IEEE Trans on Computer Aided
Design, vol. 8, no. 10, Oct 1989, pp. 1115-1127

R.A. Walker, “The status of high-level synthesis,” IELE Design
and Test of Computers, Winter 1994, pp. 42-43

R.A. Walker, S. Chaudhuri, “Introduction to the scheduling
problem,” IEEE Design & Test Of Computers, Summer 1995, pp.
60-69

C-Y. Wang, KK. Parhi, “High-level DSP synthesis using
concurrent transformations, scheduling and allocation,” IEEE
Trans. on CAD of ICs, vol. 14, no. 3, March 1995, pp. 274-295

314



[Whit89]

[Wilk92]

[Yeap9o6]

[Zalzala97]

D. Whitley, “The GENITOR algorithm and selection pressure:
why rank-based allocation of reproductive trials is best,” Proc. 3rd
Int. Conf On GAs, CA, June 1989, pp. 116-121

B. Wilkinson, R. Makki, Digital System Design, London, UK:
Prentice Hall International, 1992

G.K. Yeap, FN. Najm (Eds.), Low Power VLSI Design and
Technology, London, UK: World Scientific, 1996

A. M. S. Zalzala and P. J. Fleming (Eds.), Genetic Algorithms in
Engineering Systems, London, UK: IEE, 1997

315



Appendix A — Benchmark Designs

CONTENTS
AL STAPFIR NETLIST ..o 2
AL T STAPFIR DEG ..o 3
A2, AVENSDI NETLIST ... e 4
A2 TAVENSDI DEFG ... 5
A3 AVENSPA NETLIST ... 6
AZ TAVENSPA DEG ... 7
A DOCST NETLIST ...ttt 8
A4 T DCSTDEG ..o e 9
A5, BIQUADS NETLIST ..ottt 10
A5 DI BIQUAD3 DEG ..o 11
AG. GIMLATA NETLIST ... 12
A6 T GMLATE DEG ... 13
AT ELLIPS NETLIST ... 14
A7 TELLIPS DEG .o 15
AB. LIMSS INETLIST ...t 16
AB T LMSS DEG oo e e 17
A9, VOLTERRA NETLIST ... 18
A9 T VOLTERRA DI G ... e 19
ATO. ORTH2LAT NETLIST ... 20
AT0.1 ORTH2LAT DEG ..o 21



A1. 8TAPFIR Netlist

$8tapFIRfilter
Sprimary inputs

el

Sprimary outputs

€26

Scircuit description

$

output type

e2
el
ed
e5
€6
e7
e8
el12
el13
el14
el15
e16
el7
e18
e19
e20
e21
e22
€23
e24
e25
€26

del
del
del
del
del
del
del
mul
mul
mul
mul
mul
mul
mul
mul
add
add
add
add
add
add
add

inputs
el
e2
el
ed
e5
€6
e7
el
e2
el
ed
e5
€6
e7
e8
el12
e20
e21
e22
€23
e24
e25

el13
el14
el15
e16
el7
e18
e19



A1.1 8TAPFIR DFG

A-3



A2. AVENSDI Netlist

$ 8th Direct From Avenhaus

$Primary Inputs

el

$ Primary Outputs

ed

$ output type
e2 mul
el add
ed add
e5 del
€6 add
e7 mul
e8 mul
e9 add
e10 del
el add
el12 mul
el13 mul
el14 add
el15 del
e16 add
el7 mul
e18 mul
e19 add
e20 del
e21 add
e22 mul
€23 mul
e24 add
e25 del
€26 add
e27 mul
€28 mul
€29 add
e30 del
e31 add
e32 mul
e33 mul
e34 add
e35 del
€36 add
e3d7 mul
e38 mul
e39 add
e40 del
ed1 mul

inputs

el

e2

el

el

e7

e5

e5

e8

e5

el12
e10
e10
el13
e10
el7
el15
el15
e18
el15
e22
e20
e20
€23
e20
e27
e25
e25
€28
e25
e32
e30
e30
e33
e30
e3d7
e35
e35
e40
e35
e40

€6
e9

el

el14

e16

e19

e21

e24

€26

€29

e31

e34

€36

e39

ed1

e38



A2.1 AVEN8DI DFG

1

g




A3. AVENSBPA Netlist

$8th order Parallel Avenhaus

$Primary Inputs

el

$Primary Outputs

e7

$ output type
e2 mul
el mul
ed add
e5 mul
€6 add
e7 add
e8 del
e9 add
e10 mul
el mul
el12 del
el13 mul
el14 add
el15 mul
e16 add
el7 add
e18 del
e19 add
e20 mul
e21 mul
e22 mul
€23 del
e24 add
e25 mul
€26 add
e27 add
€28 del
€29 add
e30 mul
e31 mul
e32 del
e33 mul
e34 add
e35 mul
€36 add
e3d7 del
e38 add
e39 mul
e40 mul
ed1 del
ed42 mul

inputs
el
e2
e2
ed
e5
€6
ed
e10
e8
e8
e8
el12
e2
el14
el15
e16
el14
e20
e18
e18
€23
e18
e2
e24
e25
€26
e24
e30
€28
€28
€28
e32
e2
e34
e35
e34
e39
e3d7
e3d7
e3d7
ed1

e9

el
el7

el13

e19

e21
e27

e22

€29

e31
€36

e33

e38

e40

ed42

el



A3.1 AVEN8BPA DFG




A4. DCST Netlist

$ DCT/DST algorithm
$ primary inputs

el
e2

$ primary outputs

el14
el15

$ circuit description
$ DFG level

$

output type

el
ed
e5
€6
e7
e8
e9
e10
el
el12
el13
el14
el15
e16
el7

mul
mul
add
add
mul
mul
add
mul
mul
mul
mul
add
add
del

del

inputs
el
e2
el
e7
e5
e5
e8
€6
e9
e9
€6
e10
el13
el14
el15

e4
e16

el7

el12
el



A4.1 DCST DFG

D L

£

A-9



A5. BIQUAD3 Netlist

$ 3rd order biquad filter

$

el

$

el13

$ outputs type
e2 add
el add
ed del
e5 add
€6 mul
e7 mul
e8 add
e9 del
e10 mul
el mul
el12 add
el13 add
el14 del
el15 mul
e16 mul

inputs

el
e2
e2
€6
ed
ed
e7
ed
e9
e9
el
el12
el12
el14
el14

e5
e8

e10

el

el15
e16

A-10



A5.1 BIQUADS3 DFG

16

15

A-11



AB6. GMLAT4 Netlist

$ 4stage gray-markel filter

$ primary inputs

el

$ primary outputs

e30

$ circuit description
$ DFG level

$

output type

e2

el

ed

e5

€6

e7

e8

e9

e10
el
el12
el13
el14
el15
e16
el7
e18
e19
e20
e21
e22
€23
e24
e25
€26
e27
€28
€29
e30

add
add
add
add
mul
mul
mul
mul
mul
mul
mul
mul
add
del

add
del

add
del

add
del

mul
mul
mul
mul
mul
add
add
add
add

inputs
el
e2
el
ed
el15
el7
e19
e21
e2
el
ed
e5
e10
e16
el
e18
el12
e20
el13
e5
el14
e16
e18
e20
e5
e22
e24
e25
€26

eb
e7
e8
€9

el15

el7

e19

e21

e23
e27
e28
e29

A-12



A6.1 GMLAT4 DFG

A-13



A7. ELLIPS Netlist

$ 5th order elliptic wave filter

$ primary inputs

el

$ primary outputs

e40

$ circuit description
$ DFG level

$

output type

e2

el

ed

e5

€6

e7

e8

e9

e10
el
el12
el13
el14
el15
e16
el7
e18
e19
e20
e21
e22
€23
e24
e25
€26
e27
€28
€29
e30
e31
e32
e33
e34
e35
€36
e3d7
e38
e39
e40
ed1
ed42

del

add
add
add
mul
add
add
mul
add
add
add
del

add
add
mul
add
del

add
add
mul
add
add
mul
add
del

add
add
add
mul
add
add
del

add
add
mul
add
del

del

mul
add
add

inputs
el
e2
el
ed
e7
el
el
el
el
el12
el
el14
el15
e10
el15
e16
el7
el12
el12
e25
e19
e22
e25
e20
€23
e32
€29
e32
€29
e30
e33
e34
e35
€28
e35
e38
e3d7
ed42
ed1
e39
e31

el
€6
e8

e8
e9

e19
e19
el13

el7
e18

e18

e21
€26

e25
e27

e32
e24
e31
e27

e39
e39

e3d7
e38

€36

e31
e40

A-14



A7.1 ELLIP5 DFG

A-15



A8. LMSS5 Netlist

$ 5 stage LMS algorithm
$ primary inputs

el
e2

$ primary outputs

e10

$ circuit description
$ DFG level

$

output type

el

ed

e5

€6

e7

e8

e9

e10
el
el12
el13
el14
el15
e16
el7
e18
e19
e20
e21
e22
€23
e24
e25
€26
e27
€28
€29
e30
e31
e32

mul
del

mul
add
del

mul
add
add
del

mul
add
del

mul
add
add
del

mul
add
del

mul
del

mul
add
del

mul
add
mul
add
del

mul

inputs
el
el
el
e5
€6
el
e2
e9
ed
ed
el12
el13
ed
el15
e16
el
el
e19
e20
el
e18
e18
e24
e25
e18
e27
€23
€29
e30
€23

e10
e7

e7
e8
el7

e10
el14

el14
e22
€28

e10
e21

e21

e10
€26

e26
e32
e10
e31

e31

A-16



A8.1 LMS5 DFG

A-17



A9. VOLTERRA Netlist

$ volterra filter
$ primary inputs

el

$ primary outputs

el

$ circuit description
$ DFG level

$

output type

e2

el

ed

e5

€6

e7

e8

e9

e10
el
el12
el13
el14
el15
e16
el7
e18
e19
e20
e21
e22
€23
e24
e25
€26
e27
€28
€29
e30
e31
e32

mul
add
del

del

mul
mul
add
add
add
add
mul
mul
del

del

mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
add
add
add
add
add

inputs
el
e2
el
ed
ed
e5
€6
e10
e7
€28
el14
el15
el
el14
el14
el
ed
ed
e5
e5
e16
el7
e18
e19
e20
e21
e22
€23
e24
e25
€26

e8

e9

el12
el
el13

el15
el14
el15
el14
el15

€29
e30
e31
e32
e27

A-18



A9.1 VOLTERRA DFG

A-19



A10. ORTH2LAT Netlist

$ 2nd order orthogonal lattice filter

$ 30/3/98

$ primary inputs

el

$ primary outputs

el13

$ circuit description

$ DFG level

$ output type
e2 mul
el add
ed add
e5 del
€6 mul
e7 mul
e8 add
e9 del
e10 mul
el mul
el12 mul
el13 add
el14 mul
el15 mul
e16 mul
el7 mul
e18 add
e19 mul

inputs

el

e2 el
el el15
ed

e5

€6

e7 el7
e8

el

el12

e5

e10 el14
el12

e18

€6

e9

e16 e19
e9

A-20



A10.1 ORTH2LAT DFG

A-21



A-22



